forked from J700070/Stock-Analyzer-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
532 lines (401 loc) · 24.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
from locale import currency
import streamlit as st
import pandas as pd
import yfinance as yf
from datetime import datetime, date
from aux_functions import *
from scrapper import *
import plotly.express as px
from dateutil.relativedelta import relativedelta
import plotly.graph_objects as go
# ----------------------- LAYOUT ---------------------------
st.set_page_config(page_title="Stock Analyzer",layout="wide")
st.write(
"""
<style>
[data-testid="stMetricDelta"] svg {
display: none;
}
</style>
""",
unsafe_allow_html=True,
)
# ------- MAIN -------
header_cols = st.columns([3,1])
ticker = header_cols[1].text_input('Enter stock ticker', 'AAPL')
# Getting data
# ===============================
ticker_yahoo = yf.Ticker(ticker)
# Chart data
data = ticker_yahoo.history(period="max")
close_data = pd.DataFrame(data["Close"])
last_quote = data['Close'].iloc[-1] # Last price
day_delta = data['Close'].iloc[-1] - data['Close'].iloc[-2] # Change in price
# 52 weeks high and low
end = datetime.now()
start = end - relativedelta(weeks=52)
data_52w = ticker_yahoo.history(start=start, end=end)
high_52w = data_52w['High'].max()
low_52w = data_52w['Low'].min()
# Basic info
df = get_stock_basic_data(ticker)
name = df.loc['Name', "Information"]
currency = df.loc['Currency', "Information"]
sector = df.loc['Sector', "Information"]
industry = df.loc['Industry', "Information"]
country = df.loc['Country', "Information"]
exchange = df.loc['Exchange', "Information"]
insider_ownership = df.loc['Insider Percentage', "Information"]
institutional_ownership = df.loc['Institution Percentage', "Information"]
shares = ticker_yahoo.info['sharesOutstanding'] / 1000000000
market_cap = round(last_quote * shares,2)
# convert string to datetime
ipo_date = df.loc['IPO', "Information"]
ipo_year = int(ipo_date[-4:])
today = date.today()
years = today.year - ipo_year
div_yield = df.loc["Dividend Yield", "Information"]
revenue_per_share = df.loc["Revenue per Share", "Information"]
eps = df.loc["EPS", "Information"]
fcf_per_share = df.loc["FCF per Share", "Information"]
div_per_share = df.loc["Dividend per Share", "Information"]
capex_per_share = df.loc["Capex per Share", "Information"]
try:
div_payout = round(float(div_per_share) / float(eps),2)
except:
div_payout = "- -"
summary = df.loc["Summary", "Information"]
ret_1_year = df.loc["Return 1 Year Stock", "Information"]
ret_3_year = df.loc["Return 3 Years Stock", "Information"]
ret_5_years = df.loc["Return 5 Years Stock", "Information"]
ret_1_year_sp500 = df.loc["Return 1 Year S&P 500", "Information"]
ret_3_year_sp500 = df.loc["Return 3 Years S&P 500", "Information"]
ret_5_years_sp500 = df.loc["Return 5 Years S&P 500", "Information"]
ret_1_year, ret_3_year, ret_5_years, ret_1_year_sp500, ret_3_year_sp500, ret_5_years_sp500 = clean_string_to_numeric([ret_1_year, ret_3_year, ret_5_years, ret_1_year_sp500, ret_3_year_sp500, ret_5_years_sp500])
cagr_ret_3_year = ((1 + (float(ret_3_year) / 100)) ** (1 / 3) -1) * 100
cagr_ret_5_years = ((1 + (float(ret_5_years) / 100)) ** (1 / 5) -1) * 100
cagr_ret_3_year_sp500 = ((1 + (float(ret_3_year_sp500) / 100)) ** (1 / 3) -1) * 100
cagr_ret_5_years_sp500 = ((1 + (float(ret_5_years_sp500) / 100)) ** (1 / 5) -1) * 100
ret_1_year_alpha = round(float(ret_1_year) - float(ret_1_year_sp500),2)
ret_3_year_alpha = round(float(ret_3_year) - float(ret_3_year_sp500),2)
ret_5_years_alpha = round(float(ret_5_years) - float(ret_5_years_sp500),2)
cagr_ret_3_year_alpha = round(float(cagr_ret_3_year) - float(cagr_ret_3_year_sp500),2)
cagr_ret_5_years_alpha = round(float(cagr_ret_5_years) - float(cagr_ret_5_years_sp500),2)
# Financials
fudamentals_df = get_stock_fundamental_data(ticker, True)
last_5_years_fundamentals = fudamentals_df.iloc[:,-5:]
enterprise_value = market_cap + (last_5_years_fundamentals.loc["Net Debt"].to_numpy()[-1]/1000)
# Showing data
header_cols[0].title(name + " [" + ticker + "]")
main_columns = st.columns([2,1,1,1])
# Price Chart
fig = px.area(close_data, title = name + 'share price')
fig.update_xaxes(
title_text = 'Date',
rangeslider_visible = True,
rangeselector = dict(
buttons = list([
dict(count = 1, label = '1M', step = 'month', stepmode = 'backward'),
dict(count = 6, label = '6M', step = 'month', stepmode = 'backward'),
dict(count = 1, label = 'YTD', step = 'year', stepmode = 'todate'),
dict(count = 1, label = '1Y', step = 'year', stepmode = 'backward'),
dict(count = 3, label = '3Y', step = 'year', stepmode = 'backward'),
dict(count = 5, label = '5Y', step = 'year', stepmode = 'backward'),
dict(count = 10, label = '10Y', step = 'year', stepmode = 'backward'),
dict(step = 'all')]
),
font = dict(color = "#000000")
)
)
fig.update_yaxes(title_text = ticker + ' Close Price', tickprefix = '$')
fig.update_layout(template="plotly_dark", showlegend = False,
title = {
'text': name +' SHARE PRICE',
'y':0.9,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'},
)
initial_range = [
datetime.now() - relativedelta(years=3), datetime.now()
]
fig['layout']['xaxis'].update(range=initial_range)
main_columns[0].plotly_chart(fig)
# Summary Info
main_columns[1].metric("Price", str(round(last_quote,2)) + " " + currency, str(round(day_delta,2)) + " " + currency + " (" + str(round(day_delta/last_quote*100,2)) + "%)")
main_columns[2].metric("Sector & Industry", sector, industry,delta_color="off")
main_columns[3].metric("Country & Exchange", country, exchange, delta_color="off")
main_columns[1].metric("Market Cap & EV","{:,.0f}".format(market_cap) + " B", "{:,.0f}".format(enterprise_value) + " B",delta_color="off")
main_columns[2].metric("Years & IPO Date", str(years), ipo_date, delta_color="off")
main_columns[3].metric("Dividend Yield & Payout", str(div_yield), str(div_payout) + "%", delta_color="off")
main_columns[1].metric("52 week high", str(round(high_52w,2)) + " " + currency, str(round(((last_quote / high_52w) -1) *100,2)) + "%")
main_columns[2].metric("Insider Ownership",insider_ownership)
main_columns[3].metric("Institutional Ownership", institutional_ownership)
# END OF SECTION 0
with st.expander("Share Return", expanded=True):
share_return_columns = st.columns(5)
share_return_columns[0].metric("Return 1 year", ret_1_year + "%", str(ret_1_year_alpha) + "%")
share_return_columns[1].metric("Return 3 years", ret_3_year + "%", str(ret_3_year_alpha) + "%")
share_return_columns[2].metric("Return 5 years", ret_5_years + "%", str(ret_5_years_alpha) + "%")
share_return_columns[3].metric("CAGR 3 years", str(round(cagr_ret_3_year,2)) + "%", str(cagr_ret_3_year_alpha) + "%")
share_return_columns[4].metric("CAGR 5 years", str(round(cagr_ret_5_years,2)) + "%", str(cagr_ret_5_years_alpha) + "%")
st.markdown("**Return compared to sp500*")
st.markdown("**Summary:**")
st.write(summary)
# END OF SECTION 1
with st.expander("Earnings & Growth", expanded=True):
earnings_df = last_5_years_fundamentals.loc[["Revenue", "Gross Profit", "EBITDA", "Operating Income", "Net Income", "Free Cash Flow", "Dividends Paid"],:].copy()
earnings_df = earnings_df.applymap('{:,.0f}'.format)
growth_df = last_5_years_fundamentals.iloc[-115:-55,-1]
new_growth_df = pd.DataFrame(index=["Revenue", "Gross Profit", "EBITDA", "Operating Income", "Net Income", "EPS Diluted", "Free Cash Flow", "FCF per share"],
columns=["Growth yy", "Growth 3y. av.", "Growth 5y. av.", "Growth 10y. av.", "CAGR"])
for index, row in new_growth_df.iterrows():
new_growth_df.at[index, "Growth yy"] = growth_df.loc[index+" growth yy"]
new_growth_df.at[index, "Growth 3y. av."] = growth_df.loc[index+" growth 3y. av."]
new_growth_df.at[index, "Growth 5y. av."] = growth_df.loc[index+" growth 5y. av."]
new_growth_df.at[index, "Growth 10y. av."] = growth_df.loc[index+" growth 10y. av."]
new_growth_df.at[index, "CAGR"] = growth_df.loc[index+" cagr"]
new_growth_df = new_growth_df.applymap('{:.2%}'.format)
buyback_rate = round(growth_df.at["Weighted Avg. Shares Outs. cagr"] * 100,2)
# Metrics
earnings_columns = st.columns(5)
earnings_columns[0].metric("Revenue per share", revenue_per_share, delta_color="off")
earnings_columns[1].metric("EPS", eps, delta_color="off")
earnings_columns[2].metric("Free Cash Flow per share", fcf_per_share, delta_color="off")
earnings_columns[3].metric("Dividend per share", div_per_share, delta_color="off")
earnings_columns[4].metric("Buyback Rate", str(buyback_rate) + "%", delta_color="off")
earnings_columns2 = st.columns(2)
# Income
earnings_columns2[0].write("Income Statement (mm):")
earnings_columns2[0].table(data=earnings_df)
# Growth
earnings_columns2[0].write("Growth:")
earnings_columns2[0].table(data=new_growth_df)
# Income Statement Chart
fig = go.Figure()
fig.add_trace(go.Bar(
x=last_5_years_fundamentals.columns,
y=last_5_years_fundamentals.loc["Revenue"],
name='Revenue',
))
fig.add_trace(go.Bar(
x=last_5_years_fundamentals.columns,
y=last_5_years_fundamentals.loc["Gross Profit"],
name='Gross Profit',
))
fig.add_trace(go.Bar(
x=last_5_years_fundamentals.columns,
y=last_5_years_fundamentals.loc["EBITDA"],
name='EBITDA',
))
fig.add_trace(go.Bar(
x=last_5_years_fundamentals.columns,
y=last_5_years_fundamentals.loc["Operating Income"],
name='Operating Income',
))
fig.add_trace(go.Bar(
x=last_5_years_fundamentals.columns,
y=last_5_years_fundamentals.loc["Net Income"],
name='Net Income',
))
fig.add_trace(go.Bar(
x=last_5_years_fundamentals.columns,
y=last_5_years_fundamentals.loc["Free Cash Flow"],
name='Free Cash Flow',
))
fig.add_trace(go.Bar(
x=last_5_years_fundamentals.columns,
y=last_5_years_fundamentals.loc["Dividends Paid"],
name='Dividends Paid',
))
fig.update_layout(barmode='group', xaxis_tickangle=-45, width=800, height=650)
earnings_columns2[1].plotly_chart(fig)
# END OF SECTION 3
with st.expander("Profitability", expanded=True):
# Returns
prof_columns = st.columns(2)
prof_columns[0].write("Returns:")
returns_df = last_5_years_fundamentals.loc[["Return on Assets", "Return on Equity", "Return on Invested Capital"],:]
returns_df["Average"] = returns_df.mean(axis=1)
new_returns_df = returns_df.applymap('{:.2%}'.format)
prof_columns[0].dataframe(data=new_returns_df)
prof_columns[0].write("Margins:")
margins_df = last_5_years_fundamentals.loc[["Gross Profit Ratio", "EBITDA ratio", "Operating Income ratio", "Net Income Ratio", "FCF Ratio"],:]
margins_df.loc[["Gross Profit Ratio", "EBITDA ratio", "Operating Income ratio", "Net Income Ratio"]] = margins_df.loc[["Gross Profit Ratio", "EBITDA ratio", "Operating Income ratio", "Net Income Ratio"]] / 100
margins_df["Average"] = margins_df.mean(axis=1)
new_margins_df = margins_df.applymap('{:.2%}'.format)
prof_columns[0].dataframe(data=new_margins_df)
# Income Statement Chart
fig = px.line(last_5_years_fundamentals.loc[["Return on Assets", "Return on Equity", "Return on Invested Capital"],:].T)
fig.update_layout(xaxis_title=None, yaxis_title=None, width=800)
prof_columns[1].plotly_chart(fig)
with st.expander("Financial Strength", expanded=True):
fin_columns = st.columns([1,1,1,3])
# fin_columns[0].markdown('##')
fin_columns[0].markdown('### Financial Ratios:')
fin_columns[1].markdown('##')
fin_columns[1].markdown('#')
fin_columns[2].markdown('##')
fin_columns[2].markdown('#')
# cash_and_short_term_invs
cash_and_short_term_invs = last_5_years_fundamentals.loc["Cash & Short-Term Investments",:]
delta_cash_and_short_term_invs = cash_and_short_term_invs.diff()
cash_and_short_term_invs = cash_and_short_term_invs.map('{:,.0f}'.format)
delta_cash_and_short_term_invs = delta_cash_and_short_term_invs.map('{:,.0f}'.format)
fin_columns[0].metric("Cash & Short-Term Investments", cash_and_short_term_invs[-1],delta_cash_and_short_term_invs[-1])
# total_debt
total_debt = last_5_years_fundamentals.loc["Total Debt",:]
delta_total_debt = total_debt.diff()
total_debt = total_debt.map('{:,.0f}'.format)
delta_total_debt = delta_total_debt.map('{:,.0f}'.format)
fin_columns[1].metric("Total Debt", total_debt[-1],delta_total_debt[-1], delta_color="inverse")
# net_debt
net_debt = last_5_years_fundamentals.loc["Net Debt",:]
delta_net_debt = net_debt.diff()
net_debt = net_debt.map('{:,.0f}'.format)
delta_net_debt = delta_net_debt.map('{:,.0f}'.format)
fin_columns[2].metric("Net Debt", net_debt[-1],delta_net_debt[-1], delta_color="inverse")
# debt_to_equity
debt_to_equity = last_5_years_fundamentals.loc["Debt to Equity",:]
delta_debt_to_equity = debt_to_equity.diff()
debt_to_equity = debt_to_equity.map('{:,.2f}'.format)
delta_debt_to_equity = delta_debt_to_equity.map('{:,.2f}'.format)
fin_columns[0].metric("Debt to Equity", debt_to_equity[-1],delta_debt_to_equity[-1], delta_color="inverse")
# debt_to_ebitda
debt_to_ebitda = last_5_years_fundamentals.loc["Debt to EBITDA",:]
delta_debt_to_ebitda = debt_to_ebitda.diff()
debt_to_ebitda = debt_to_ebitda.map('{:,.2f}'.format)
delta_debt_to_ebitda = delta_debt_to_ebitda.map('{:,.2f}'.format)
fin_columns[1].metric("Debt to EBITDA", debt_to_ebitda[-1],delta_debt_to_ebitda[-1], delta_color="inverse")
# interest_coverage
interest_coverage = last_5_years_fundamentals.loc["Interest Coverage",:]
delta_interest_coverage = interest_coverage.diff()
interest_coverage = interest_coverage.map('{:,.2f}'.format)
delta_interest_coverage = delta_interest_coverage.map('{:,.2f}'.format)
fin_columns[2].metric("Interest Coverage", interest_coverage[-1],delta_interest_coverage[-1])
# current ratio
current_ratio = last_5_years_fundamentals.loc["Current Ratio",:]
delta_current_ratio = current_ratio.diff()
current_ratio = current_ratio.map('{:,.2f}'.format)
delta_current_ratio = delta_current_ratio.map('{:,.2f}'.format)
fin_columns[0].metric("Current Ratio", current_ratio[-1],delta_current_ratio[-1])
# quick ratio
quick_ratio = last_5_years_fundamentals.loc["Quick Ratio",:]
delta_quick_ratio = quick_ratio.diff()
quick_ratio = quick_ratio.map('{:,.2f}'.format)
delta_quick_ratio = delta_quick_ratio.map('{:,.2f}'.format)
fin_columns[1].metric("Quick Ratio", quick_ratio[-1],delta_quick_ratio[-1])
# liabilities to assets
liabilities_to_assets = last_5_years_fundamentals.loc["Liabilities to Assets",:]
delta_liabilities_to_assets = liabilities_to_assets.diff()
liabilities_to_assets = liabilities_to_assets.map('{:,.2f}'.format)
delta_liabilities_to_assets = delta_liabilities_to_assets.map('{:,.2f}'.format)
fin_columns[2].metric("Liabilities to Assets", liabilities_to_assets[-1],delta_liabilities_to_assets[-1], delta_color="inverse")
# Chart
financial_health_df = pd.DataFrame(columns=["Term", "Type", "Value"])
financial_health_df = financial_health_df.append({"Term":"Long", "Type": "Assets", "Value": last_5_years_fundamentals.at["Total Non-Current Assets", last_5_years_fundamentals.columns[-1]]},ignore_index=True)
financial_health_df = financial_health_df.append({"Term":"Long", "Type": "Liabilities", "Value": last_5_years_fundamentals.at["Total Non-Current Liabilities", last_5_years_fundamentals.columns[-1]]},ignore_index=True)
financial_health_df = financial_health_df.append({"Term":"Short", "Type": "Assets","Value": last_5_years_fundamentals.at["Total Current Assets", last_5_years_fundamentals.columns[-1]]},ignore_index=True)
financial_health_df = financial_health_df.append({"Term":"Short", "Type": "Liabilities","Value": last_5_years_fundamentals.at["Total Current Liabilities", last_5_years_fundamentals.columns[-1]]},ignore_index=True)
fig = px.bar(financial_health_df, x="Term", y="Value", color="Type",barmode="group", width=800)
fin_columns[3].plotly_chart(fig)
with st.expander("Valuation", expanded=True):
last_year_fundamentals = (fudamentals_df.iloc[:,-1].T).copy()
last_year_fundamentals["Price to Sales"] = last_quote / last_year_fundamentals["Revenue per Share"]
last_year_fundamentals["Price to Book"] = last_quote / last_year_fundamentals["Book value per share"]
last_year_fundamentals["Price to Earnings"] = last_quote / last_year_fundamentals["EPS"]
last_year_fundamentals["Price to FCF"] = last_quote / last_year_fundamentals["FCF per share"]
last_year_fundamentals["EV to EBITDA"] = (enterprise_value * 1000) / last_year_fundamentals["EBITDA"]
last_year_fundamentals["EV to FCF"] = (enterprise_value * 1000) / last_year_fundamentals["Free Cash Flow"]
last_year_fundamentals["EV to Revenue"] = (enterprise_value * 1000) / last_year_fundamentals["Revenue"]
last_year_fundamentals["PS to growth"] = last_year_fundamentals["Price to Sales"] / (last_year_fundamentals["Revenue growth 3y. av."] * 100)
last_year_fundamentals["PE to growth"] = last_year_fundamentals["Price to Earnings"] / (last_year_fundamentals["EPS growth 3y. av."] * 100)
last_year_fundamentals["PB to growth"] = last_year_fundamentals["Price to Book"] / (last_year_fundamentals["Book value growth 3y. av."] * 100)
last_year_fundamentals["PFCF to growth"] = last_year_fundamentals["Price to FCF"] / (last_year_fundamentals["FCF per share growth 3y. av."] * 100)
last_year_fundamentals["EVEBITDA to growth"] = last_year_fundamentals["EV to EBITDA"] / (last_year_fundamentals["EBITDA growth 3y. av."] * 100)
last_year_fundamentals["EVFCF to growth"] = last_year_fundamentals["EV to FCF"] / (last_year_fundamentals["Free Cash Flow growth 3y. av."] * 100)
last_year_fundamentals["EVRevenue to growth"] = last_year_fundamentals["EV to Revenue"] / (last_year_fundamentals["Revenue growth 3y. av."] * 100)
last_year_fundamentals = last_year_fundamentals.T
print(last_year_fundamentals)
st.markdown("Basic ratios:")
val_columns = st.columns(7)
val_columns[0].metric("Price to Earnings", round(last_year_fundamentals.loc["Price to Earnings"],1))
val_columns[1].metric("Price to Sales", round(last_year_fundamentals.loc["Price to Sales"],1))
val_columns[2].metric("Price to Book", round(last_year_fundamentals.loc["Price to Book"],1))
val_columns[3].metric("Price to FCF", round(last_year_fundamentals.loc["Price to FCF"],1))
val_columns[4].metric("EV to Revenue", round(last_year_fundamentals.loc["EV to Revenue"],1))
val_columns[5].metric("EV to EBITDA", round(last_year_fundamentals.loc["EV to EBITDA"],1))
val_columns[6].metric("EV to FCF", round(last_year_fundamentals.loc["EV to FCF"],1))
# st.markdown("With growth (3 year average):")
val_columns2 = st.columns(7)
val_columns2[0].metric("Price to Earnings", round(last_year_fundamentals.loc["PE to growth"],1), str(round(last_year_fundamentals["EPS growth 3y. av."] * 100,2)) + "%")
val_columns2[1].metric("Price to Sales", round(last_year_fundamentals.loc["PS to growth"],1), str(round(last_year_fundamentals["Revenue growth 3y. av."] * 100,2)) + "%")
val_columns2[2].metric("Price to Book", round(last_year_fundamentals.loc["PB to growth"],1), str(round(last_year_fundamentals["Book value growth 3y. av."] * 100,2)) + "%")
val_columns2[3].metric("Price to FCF", round(last_year_fundamentals.loc["PFCF to growth"],1), str(round(last_year_fundamentals["FCF per share growth 3y. av."] * 100,2)) + "%")
val_columns2[4].metric("EV to Revenue", round(last_year_fundamentals.loc["EVRevenue to growth"],1), str(round(last_year_fundamentals["Revenue growth 3y. av."] * 100,2)) + "%")
val_columns2[5].metric("EV to EBITDA", round(last_year_fundamentals.loc["EVEBITDA to growth"],1), str(round(last_year_fundamentals["EBITDA growth 3y. av."] * 100,2)) + "%")
val_columns2[6].metric("EV to FCF", round(last_year_fundamentals.loc["EVFCF to growth"],1), str(round(last_year_fundamentals["Free Cash Flow growth 3y. av."] * 100,2)) + "%")
st.write("*Seconds row is divided by growth (3 year average)")
st.markdown("### Discounted Cash Flow Model")
dcf_columns = st.columns([1,1,2])
growth_1 = dcf_columns[0].number_input("Growth years 1-5 (%)", value=round(last_year_fundamentals["EPS growth 3y. av."] * 100,2)*0.8)
growth_2 = dcf_columns[0].number_input("Growth years 6-10 (%)", value=round(last_year_fundamentals["EPS growth 3y. av."]*100,2)/2)
expected_multiple = dcf_columns[0].number_input("Expected multiple", value=15)
discount_rate = dcf_columns[0].number_input("Discount rate (%)", value=14)
current_earnings = dcf_columns[0].number_input("Current earnings (mm)", value=last_year_fundamentals["Net Income"])
dcf_columns2 = st.columns(4)
add_cash = dcf_columns2[0].checkbox("Add cash & short term investments")
add_long_term_investments = dcf_columns2[0].checkbox("Add long term investments")
substract_debt = dcf_columns2[0].checkbox("Substract debt")
# Discounted Cash Flow
year1 = (current_earnings * (1 + growth_1/100))
year2 = (year1 * (1 + growth_1/100))
year3 = (year2 * (1 + growth_1/100))
year4 = (year3 * (1 + growth_1/100))
year5 = (year4 * (1 + growth_1/100))
year6 = (year5 * (1 + growth_2/100))
year7 = (year6 * (1 + growth_2/100))
year8 = (year7 * (1 + growth_2/100))
year9 = (year8 * (1 + growth_2/100))
year10 = (year9 * (1 + growth_2/100))
discounted_year1 = year1 / (1 + discount_rate/100)
discounted_year2 = year2 / (1 + discount_rate/100)**2
discounted_year3 = year3 / (1 + discount_rate/100)**3
discounted_year4 = year4 / (1 + discount_rate/100)**4
discounted_year5 = year5 / (1 + discount_rate/100)**5
discounted_year6 = year6 / (1 + discount_rate/100)**6
discounted_year7 = year7 / (1 + discount_rate/100)**7
discounted_year8 = year8 / (1 + discount_rate/100)**8
discounted_year9 = year9 / (1 + discount_rate/100)**9
discounted_year10 = year10 / (1 + discount_rate/100)**10
discounted_values = [discounted_year1, discounted_year2, discounted_year3, discounted_year4, discounted_year5, discounted_year6, discounted_year7, discounted_year8, discounted_year9, discounted_year10]
exit_value = (year10 * expected_multiple) / (1 + discount_rate/100)**10
dcf = pd.DataFrame({"Discounted Value": discounted_values}, index=["Year 1", "Year 2", "Year 3", "Year 4", "Year 5", "Year 6", "Year 7", "Year 8", "Year 9", "Year 10"])
dcf["Cumulative Value"] = dcf["Discounted Value"].cumsum()
present_value = dcf.at["Year 9","Cumulative Value"] + exit_value
present_value_with_cash = present_value
if add_cash:
present_value_with_cash += last_year_fundamentals.at["Cash & Short-Term Investments"]
if add_long_term_investments:
present_value_with_cash += last_year_fundamentals.at["Investments"]
if substract_debt:
present_value_with_cash -= last_year_fundamentals.at["Total Debt"]
dcf_columns[1].markdown("#")
dcf_columns[1].markdown("#")
dcf_columns[1].table(dcf)
# Chart
fig = go.Figure(data=go.Scatter(x=dcf.index, y=dcf["Cumulative Value"]))
fig.update_layout(title='Proyected Value of Future Cash Flows', width=800, height=500)
dcf_columns[2].plotly_chart(fig)
dcf_columns2[1].metric("Present Value of Future Cash Flows:","{:,.0f}".format(present_value))
if add_cash:
dcf_columns2[2].metric("Cash & Short-Term Investments::","{:,.0f}".format(last_year_fundamentals.at["Cash & Short-Term Investments"]))
if add_long_term_investments:
dcf_columns2[2].metric("Long Term Investments:","{:,.0f}".format(last_year_fundamentals.at["Investments"]))
if substract_debt:
dcf_columns2[3].metric("Debt:","{:,.0f}".format(last_year_fundamentals.at["Total Debt"]))
dcf_columns2[1].metric("Number of shares:","{:,.0f}".format(ticker_yahoo.info['sharesOutstanding']/1000000))
fair_value = int(present_value_with_cash) / (int(ticker_yahoo.info['sharesOutstanding'] / 1000000))
dcf_columns2[3].metric("Fair Value per share", round(fair_value,2))
dcf_columns2[0].write("*All in millions except per shares amounts.")
st.markdown("#")