-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
220 lines (180 loc) · 7.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import sys
import time
import signal
import argparse
import numpy as np
import torch
import visdom
import data
from models import *
from comm import CommNetMLP
from utils import *
from action_utils import parse_action_args
from trainer import Trainer
from multi_processing import MultiProcessTrainer
from arguments import *
from pprint import pprint
torch.utils.backcompat.broadcast_warning.enabled = True
torch.utils.backcompat.keepdim_warning.enabled = True
torch.set_default_tensor_type('torch.DoubleTensor')
def run(num_epochs):
for ep in range(num_epochs):
epoch_begin_time = time.time()
stat = dict()
for n in range(args.epoch_size):
if n == args.epoch_size - 1 and args.display:
trainer.display = True
if n == args.epoch_size - 1 and args.record_video:
trainer.record_video = True
trainer.video_name = args.video_name #Attention!!!!!
# +'_epoch'+str(ep+1)
s = trainer.train_batch(ep)
merge_stat(s, stat)
trainer.display = False
trainer.record_video = False
epoch_time = time.time() - epoch_begin_time
epoch = len(log['epoch'].data) + 1
for k, v in log.items():
if k == 'epoch':
v.data.append(epoch)
else:
if k in stat and v.divide_by is not None and stat[v.divide_by] > 0:
stat[k] = stat[k] / stat[v.divide_by]
v.data.append(stat.get(k, 0))
np.set_printoptions(precision=2)
print('Epoch {}\tReward {}\tTime {:.2f}s'.format(
epoch, stat['reward'], epoch_time
))
if 'enemy_reward' in stat.keys():
print('Enemy-Reward: {}'.format(stat['enemy_reward']))
if 'add_rate' in stat.keys():
print('Add-Rate: {:.2f}'.format(stat['add_rate']))
if 'success' in stat.keys():
print('Success: {:.2f}'.format(stat['success']))
if 'steps_taken' in stat.keys():
print('Steps-taken: {:.2f}'.format(stat['steps_taken']))
if 'comm_action' in stat.keys():
print('Comm-Action: {}'.format(stat['comm_action']))
if 'enemy_comm' in stat.keys():
print('Enemy-Comm: {}'.format(stat['enemy_comm']))
if stat['steps_taken'] < args.difficulty_level_threshold:
if trainer.difficulty_level < args.nagents:
trainer.difficulty_level += 1
print('Change to next difficulty_level:{}'.format(trainer.difficulty_level))
if args.plot:
for k, v in log.items():
if v.plot and len(v.data) > 0:
vis.line(np.asarray(v.data), np.asarray(log[v.x_axis].data[-len(v.data):]),
win=k, opts=dict(xlabel=v.x_axis, ylabel=k))
if args.save_every and epoch and args.save != '' and epoch % args.save_every == 0:
# fname, ext = args.save.split('.')
# save(fname + '_' + str(ep) + '.' + ext)
save(args.save + '_' + str(epoch))
if args.save != '':
save(args.save)
def save(path):
d = dict()
d['policy_net'] = policy_net.state_dict()
d['log'] = log
d['trainer'] = trainer.state_dict()
torch.save(d, path)
def load(path):
d = torch.load(path)
# log.clear()
policy_net.load_state_dict(d['policy_net'])
log.update(d['log'])
trainer.load_state_dict(d['trainer'])
def signal_handler(signal, frame):
print('You pressed Ctrl+C! Exiting gracefully.')
if args.display:
env.end_display()
sys.exit(0)
if __name__ =='__main__':
args = get_args()
if args.ic3net:
args.commnet = 1
args.hard_attn = 1
args.mean_ratio = 0
# For TJ set comm action to 1 as specified in paper to showcase
# importance of individual rewards even in cooperative games
if args.env_name == "traffic_junction":
args.comm_action_one = True
# Enemy comm
args.nfriendly = args.nagents
if hasattr(args, 'enemy_comm') and args.enemy_comm:
if hasattr(args, 'nenemies'):
args.nagents += args.nenemies
else:
raise RuntimeError("Env. needs to pass argument 'nenemy'.")
env = data.init(args.env_name, args, False)
num_inputs = env.observation_dim
args.num_actions = env.num_actions
# Multi-action
if not isinstance(args.num_actions, (list, tuple)): # single action case
args.num_actions = [args.num_actions]
args.dim_actions = env.dim_actions
args.num_inputs = num_inputs
if args.commnet:
args.collaborative = True
# Hard attention
if args.hard_attn and args.commnet:
# add comm_action as last dim in actions
args.num_actions = [*args.num_actions, 2]
args.dim_actions = env.dim_actions + 1
# Recurrence
if args.commnet and (args.recurrent or args.rnn_type == 'LSTM'):
args.recurrent = True
args.rnn_type = 'LSTM'
parse_action_args(args)
if args.seed == -1:
args.seed = np.random.randint(0,10000)
torch.manual_seed(args.seed)
pprint('args')
pprint(args.__dict__)
if args.commnet:
policy_net = CommNetMLP(args, num_inputs)
elif args.random:
policy_net = Random(args, num_inputs)
elif args.recurrent:
policy_net = RNN(args, num_inputs)
else:
policy_net = MLP(args, num_inputs)
if not args.display:
display_models([policy_net])
# share parameters among threads, but not gradients
for p in policy_net.parameters():
p.data.share_memory_()
if args.nprocesses > 1:
trainer = MultiProcessTrainer(args, lambda: Trainer(args, policy_net, data.init(args.env_name, args)))
else:
trainer = Trainer(args, policy_net, data.init(args.env_name, args))
disp_trainer = Trainer(args, policy_net, data.init(args.env_name, args, False))
disp_trainer.display = True
def disp():
x = disp_trainer.get_episode()
log = dict()
log['epoch'] = LogField(list(), False, None, None)
log['reward'] = LogField(list(), True, 'epoch', 'num_episodes')
log['enemy_reward'] = LogField(list(), True, 'epoch', 'num_episodes')
log['success'] = LogField(list(), True, 'epoch', 'num_episodes')
log['steps_taken'] = LogField(list(), True, 'epoch', 'num_episodes')
log['add_rate'] = LogField(list(), True, 'epoch', 'num_episodes')
log['comm_action'] = LogField(list(), True, 'epoch', 'num_steps')
log['enemy_comm'] = LogField(list(), True, 'epoch', 'num_steps')
log['value_loss'] = LogField(list(), True, 'epoch', 'num_steps')
log['action_loss'] = LogField(list(), True, 'epoch', 'num_steps')
log['entropy'] = LogField(list(), True, 'epoch', 'num_steps')
if args.plot:
vis = visdom.Visdom(env=args.plot_env)
signal.signal(signal.SIGINT, signal_handler)
if args.load != '':
load(args.load)
run(args.num_epochs)
if args.display:
env.end_display()
if args.save != '':
save(args.save)
if sys.flags.interactive == 0 and args.nprocesses > 1:
trainer.quit()
import os
os._exit(0)