forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathredq.py
168 lines (142 loc) · 4.45 KB
/
redq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import uuid
from datetime import datetime
try:
import configargparse as argparse
_configargparse = True
except ImportError:
import argparse
_configargparse = False
import torch.cuda
from torch.utils.tensorboard import SummaryWriter
from torchrl.agents.helpers.agents import make_agent, parser_agent_args
from torchrl.agents.helpers.collectors import (
make_collector_offpolicy,
parser_collector_args_offpolicy,
)
from torchrl.agents.helpers.envs import (
correct_for_frame_skip,
get_stats_random_rollout,
parallel_env_constructor,
parser_env_args,
transformed_env_constructor,
)
from torchrl.agents.helpers.losses import make_redq_loss, parser_loss_args
from torchrl.agents.helpers.models import (
make_redq_model,
parser_model_args_continuous,
)
from torchrl.agents.helpers.recorder import parser_recorder_args
from torchrl.agents.helpers.replay_buffer import (
make_replay_buffer,
parser_replay_args,
)
from torchrl.envs.transforms import RewardScaling, TransformedEnv
from torchrl.modules import OrnsteinUhlenbeckProcessWrapper
def make_args():
parser = argparse.ArgumentParser()
if _configargparse:
parser.add_argument(
"-c",
"--config",
required=True,
is_config_file=True,
help="config file path",
)
parser_agent_args(parser)
parser_collector_args_offpolicy(parser)
parser_env_args(parser)
parser_loss_args(parser, algorithm="REDQ")
parser_model_args_continuous(parser, "REDQ")
parser_recorder_args(parser)
parser_replay_args(parser)
return parser
parser = make_args()
DEFAULT_REWARD_SCALING = {
"Hopper-v1": 5,
"Walker2d-v1": 5,
"HalfCheetah-v1": 5,
"cheetah": 5,
"Ant-v2": 5,
"Humanoid-v2": 20,
"humanoid": 100,
}
if __name__ == "__main__":
args = parser.parse_args()
args = correct_for_frame_skip(args)
if not isinstance(args.reward_scaling, float):
args.reward_scaling = DEFAULT_REWARD_SCALING.get(args.env_name, 5.0)
device = (
torch.device("cpu")
if torch.cuda.device_count() == 0
else torch.device("cuda:0")
)
exp_name = "_".join(
[
"REDQ",
args.exp_name,
str(uuid.uuid4())[:8],
datetime.now().strftime("%y_%m_%d-%H_%M_%S"),
]
)
writer = SummaryWriter(f"redq_logging/{exp_name}")
video_tag = exp_name if args.record_video else ""
proof_env = transformed_env_constructor(args=args, use_env_creator=False)()
model = make_redq_model(
proof_env,
device=device,
tanh_loc=args.tanh_loc,
default_policy_scale=args.default_policy_scale,
)
loss_module, target_net_updater = make_redq_loss(model, args)
actor_model_explore = model[0]
if args.ou_exploration:
actor_model_explore = OrnsteinUhlenbeckProcessWrapper(
actor_model_explore, annealing_num_steps=args.annealing_frames
).to(device)
if device == torch.device("cpu"):
# mostly for debugging
actor_model_explore.share_memory()
stats = None
if not args.vecnorm:
stats = get_stats_random_rollout(args, proof_env)
# make sure proof_env is closed
proof_env.close()
create_env_fn = parallel_env_constructor(args=args, stats=stats)
collector = make_collector_offpolicy(
make_env=create_env_fn,
actor_model_explore=actor_model_explore,
args=args,
)
replay_buffer = make_replay_buffer(device, args)
recorder = transformed_env_constructor(
args,
video_tag=video_tag,
norm_obs_only=True,
stats=stats,
writer=writer,
)()
# remove video recorder from recorder to have matching state_dict keys
if args.record_video:
recorder_rm = TransformedEnv(recorder.env, recorder.transform[1:])
else:
recorder_rm = recorder
recorder_rm.load_state_dict(create_env_fn.state_dict()["worker0"])
# reset reward scaling
for t in recorder.transform:
if isinstance(t, RewardScaling):
t.scale.fill_(1.0)
agent = make_agent(
collector,
loss_module,
recorder,
target_net_updater,
actor_model_explore,
replay_buffer,
writer,
args,
)
agent.train()