-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathChirpSelector.py
224 lines (196 loc) · 7.62 KB
/
ChirpSelector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.widgets import SpanSelector
from matplotlib.widgets import Button
class ChirpSelector():
def __init__(self, wave, time, spec, corrector):
"""
Initializes the ChirpSelector object, which allows for the visual
selection of the wavelength range, where the chirp is located.
Parameters
----------
wave : np.array
The wavelength data of the OKE measurement.
time : np.array
The delay data of the OKE measurement.
spec : np.ndarray
The absorption data of the OKE measurement.
corrector : ChirpCorrector
The ChripCorrector object created by the ChirpCorrector.py module,
which handles the correction of the chirped data.
Returns
-------
None.
"""
self.corr = corrector
self.wave = wave
self.time = time
self.spec = spec
self.bounds = []
self.axes = []
self.all_lv = []
self.initFigure()
def initFigure(self):
"""
Initilizes the matplotlib figure.
Returns
-------
None.
"""
self.fig = plt.figure(figsize=(6, 5.5), layout="constrained")
self.gs = self.fig.add_gridspec(4, 4)
self.axa = self.fig.add_subplot(self.gs[1, 0])
self.axb = self.fig.add_subplot(self.gs[1, 1])
self.axc = self.fig.add_subplot(self.gs[1, 2])
self.axd = self.fig.add_subplot(self.gs[1, 3])
button_width = 0.15
button_height = 0.05
button_padding = 0.01
total_width = 4 * button_width + (4 - 1) * button_padding
start_x = 0.5 - total_width / 2
ax_Show_x = start_x + 0 * (button_width + button_padding)
ax_Undo_x = start_x + 1 * (button_width + button_padding)
ax_Res_x = start_x + 2 * (button_width + button_padding)
ax_Cont_x = start_x + 3 * (button_width + button_padding)
button_y = 0.5 - button_height / 2
self.ax_Show = Button(self.axa, 'Show')
self.ax_Undo = Button(self.axb, 'Undo')
self.ax_Res = Button(self.axc, 'Reset', color='red')
self.ax_Cont = Button(self.axd, 'Continue', color='green')
self.ax_Show.on_clicked(self.show)
self.ax_Undo.on_clicked(self.undo)
self.ax_Res.on_clicked(self.reset)
self.ax_Cont.on_clicked(self.cont)
self.ax_Show.ax.set_position([ax_Show_x, button_y, button_width, button_height])
self.ax_Undo.ax.set_position([ax_Undo_x, button_y, button_width, button_height])
self.ax_Res.ax.set_position([ax_Res_x, button_y, button_width, button_height])
self.ax_Cont.ax.set_position([ax_Cont_x, button_y, button_width, button_height])
X, Y = np.meshgrid(self.wave, self.time)
ax_full = self.fig.add_subplot(self.gs[0, :])
ax_full.contourf(X, Y, self.spec, cmap="seismic")
ax_full.set_title("OKE Measurement")
self.span = SpanSelector(
ax_full,
self.onselect,
"horizontal",
useblit=True,
props=dict(alpha=0.5, facecolor="tab:blue"),
interactive=True,
drag_from_anywhere=True
)
ax_text = self.fig.add_subplot(self.gs[2, :])
ax_text.spines['top'].set_visible(False)
ax_text.spines['right'].set_visible(False)
ax_text.spines['bottom'].set_visible(False)
ax_text.spines['left'].set_visible(False)
ax_text.xaxis.set_ticks([])
ax_text.yaxis.set_ticks([])
text = "Please select the data range to use for the chirp fitting. \n You can select one or more areas with your mouse by left-clicking on the figure, holding and draging your mouse. \n Click 'Show' to show all selected areas, 'Undo' remove the last selected area, \n 'Reset' to remove all selected areas and 'Continue' once you are finished to start the fitting process."
ax_text.text(0.5, 0.5, text, ha='center', va='center', fontsize=12)
def onselect(self, xmin, xmax):
"""
Save the selected span of the SpanSelector, if the selected span is
bigger than 1. The span will be saved in the bounds list, which is then
used by the undo, reset and show function.
Parameters
----------
xmin : float
The lower x-axis bound of the selected span.
xmax : float
The upper x-axis bound of the selected span.
Returns
-------
None.
"""
if xmax - xmin > 1:
self.bounds.append([xmin, xmax])
def undo(self, event):
"""
Removes the latest selected span form the selection.
Parameters
----------
event : button click event
The event triggered by clicken the "Undo"-Button.
Returns
-------
None.
"""
if len(self.bounds) != 0:
ax = self.axes.pop()
self.fig.delaxes(ax)
self.bounds.pop()
self.all_lv.pop()
if hasattr(self, "plotgrid"):
for i in range(self.plotgrid.nrows - 1):
self.plotgrid[0, i].remove()
self.fig.canvas.draw_idle()
def reset(self, event):
"""
Removes ALL selected spans form the selection.
Parameters
----------
event : button click event
The event triggered by clicken the "Reset"-Button.
Returns
-------
None.
"""
if len(self.bounds) != 0:
self.bounds = []
self.all_lv = []
if self.axes:
while self.axes:
ax = self.axes.pop()
self.fig.delaxes(ax)
self.fig.canvas.draw_idle()
def show(self, event):
"""
Shows all currently selected spans.
Parameters
----------
event : button click event
The event triggered by clicken the "Show"-Button.
Returns
-------
None.
"""
if self.axes:
while self.axes:
ax = self.axes.pop()
self.fig.delaxes(ax)
self.fig.canvas.draw_idle()
if self.bounds:
self.plotgrid = self.gs[3, :].subgridspec(1, len(self.bounds))
for ind, pair in enumerate(self.bounds):
lv = (self.wave >= pair[0]) & (self.wave <= pair[1])
self.all_lv.append(lv)
region_x = self.wave[lv]
region_y = self.spec[:, lv]
if len(region_y[1]) >= 2:
ax = self.fig.add_subplot(self.plotgrid[0, ind])
X, Y = np.meshgrid(region_x, self.time)
ax.contourf(X, Y, region_y, cmap="seismic")
ax.set_xlim(region_x[0], region_x[-1])
ax.set_ylim(self.time[0], self.time[-1])
ax.get_yaxis().set_visible(False)
self.axes.append(ax)
self.fig.canvas.draw_idle()
def cont(self, event):
"""
Truncates the orignal data, so that only the selected spans are used in
the fitting of the chirp. Starts the fitting process in the
ChirpCorrector object and closes the selection figure.
Parameters
----------
event : button click event
The event triggered by clicken the "Continue"-Button.
Returns
-------
None.
"""
if self.axes:
full_lv = np.array(self.all_lv).any(axis=0)
self.sel_wave = self.wave[full_lv]
self.sel_spec = self.spec[:, full_lv]
self.corr.prepareFitting(self.sel_wave, self.time, self.sel_spec)
plt.close(self.fig)