-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathScript.py
211 lines (178 loc) · 7.49 KB
/
Script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import Controller
import numpy as np
import time as stopwatch
# General models for any amount of species
# Model 1: A -> B -> C ... -> Z -> 0
# Model 2: A -> B -> C ... -> Z
# Specific models for a certain amount of species
# Model 3: A -> B -> C -> D; B -> D
# Model 4: A -> B -> C -> D -> E; B -> E
# Model 5: A -> B -> C -> D -> E; C -> E
# Model 6: A -> B -> C -> D -> E -> F; C -> F
# Model 7: A -> B; A -> C
# Model 8: A -> B ; B -> C ; B -> D
# Model "custom matrix"
"""General Settings"""
# for an interactive plot overlay type "%matplotlib qt5" into the console
# to revert this type "%matplotlib inline"
# The directory that contains the data files.
# Must be a folder with three files ending with "delays.txt" "lambda.txt" "spectra.txt".
path = "/home/user/Documents/data"
# Choose model: 0 for GLA, 1-8 for GTA and "custom matrix" for a custom GTA model.
model = 0
# Lower and upper limits for the wavelengths and delays.
# [None, None] to use all data.
w_bounds = [350, 750]
d_bounds = [0.2, 3400]
# Plotting the data: 0 doesn't show the plot of the original data,
# 3 shows the 3-in-1 plot or less subplots if wavelength_slices and delay_slices are empty.
# 4 shows a 3D contour plot
orig = 0
# Plotting the fitted data: 0 doesn't calculate a fit, 1 outputs the fitted
# parameters, 2 shows the fitted 3-in-1 plot and 3 shows both.
# 4 shows the fitted 3D contour plot and the fitted parameters
fit = 1
# Plotting the residuals: 0 doesn't show the residuals, 1 and 2 create a 1D or
# 2D image and 3 shows both. Only works if fit is not 0.
resi = 0
# Algorithm used for the minimization of the tau values
opt_method = 'Nelder-Mead'
# Options:
# 'least_squares' 'Nelder-Mead' 'Powell' 'CG' 'BFGS' 'L-BFGS-B' 'TNC' 'COBYLA'
# 'SLSQP' 'trust-constr' 'ampgo' 'basinhopping'
# !'Newton-CG' 'dogleg' 'trust-ncg' 'trust-exact' 'trust-krylov' DO NOT WORK!
"""Settings for Global Lifetime Analysis"""
# The guessed lifetimes which will be fitted.
GLA_tau_guess = [1,100]
# The lifetimes which won't be fitted.
GLA_tau_fix = [900000]
"""Settings for Global Target Analysis"""
# The guessed lifetimes which will be fitted.
GTA_tau = [1, 100, 9e5]
# Lower and upper limits for the fitting of the lifetimes.
GTA_tau_lb = [0, 0, 8e5] # No bounds: GTA_tau_lb = None
GTA_tau_ub = [3e2, 1e5, 10e5] # No bounds: GTA_tau_ub = None
# The inital concentrations. If empty all concentrations will be set to 0
# except the first one which will be 1. Def.: []
c0 = []
# A custom matrix for the GTA which only works if model=="custom matrix"
# and the dimension of the matrix is (n,n).
M = [[-4001, 300, 0],
[1, -320, 0],
[4000, 20, 0]]
# M = np.genfromtxt("path")
# Algorithm used for solving the ivp
ivp_method = "BDF"
# Options:
# 'RK45' 'RK23' 'DOP853' 'Radau' 'BDF' 'LSODA'
"""Settings for the 3-in-1 plots of the original and the fitted data"""
# The wavelenght slices whose plots (delays against absorption change) will be shown.
# If not of interest set to []. Corresponding plots won't be shown.
wavelength_slices = [360, 560, 700]
# The delay slices whose plots (absorption change against delays) will be shown.
# If not of interest set to []. Corresponding plots won't be shown.
delay_slices = [1.2, 106, 4000]
# The lower and upper boundaries for the colorbar in the 2D plot.
# None for automatic determination.
v_min = None
v_max = None
# Determines how much contour lines will be shown in the 2D plot.
# High values will show more lines.
cont = 25
# The value by which the absorption data should be multiplied depending on the
# unit of measurement. If not of interest set to 1.
# Do NOT set to values <=0.
mul = 1000
"""Program"""
Controller = Controller.Controller(path)
wavelength_slices.sort()
delay_slices.sort()
if model == "custom matrix":
M = np.array(M)
ones = np.full(M.shape, 1)
GTA_tau = np.divide(ones, M, out=np.zeros_like(M), where=M!=0)
# Calculation and Plotting
Controller.createOrigData(d_bounds, w_bounds, opt_method, ivp_method)
tau_fit = None
if mul <= 0:
mul = 1
if model == 0:
start = stopwatch.time()
if fit != 0:
tau_fit, spec, res, D_fit, fit_report = Controller.calcDAS(
[GLA_tau_fix, GLA_tau_guess], d_bounds, w_bounds, opt_method)
print("runtime GLA:", stopwatch.time()-start)
if fit == 1:
print(fit_report)
elif fit == 2:
Controller.plot3FittedData(wavelength_slices, delay_slices, v_min, v_max, model, cont, mul)
elif fit == 3:
print(fit_report)
Controller.plot3FittedData(wavelength_slices, delay_slices, v_min, v_max, model, cont, mul)
elif fit == 4:
print(fit_report)
Controller.plot3DFittedData(v_min, v_max, model, mul)
else:
start = stopwatch.time()
if fit != 0:
tau_fit, spec, res, D_fit,fit_report = Controller.calcSAS(GTA_tau, c0, d_bounds,
w_bounds, model,
GTA_tau_lb, GTA_tau_ub,
opt_method, ivp_method)
print("runtime GTA:", stopwatch.time()-start)
if fit == 1:
if model != "custom matrix":
print(fit_report)
else:
ones = np.full(tau_fit.shape, 1)
k_fit = np.divide(ones, tau_fit, out=np.zeros_like(tau_fit),
where=tau_fit!=0)
print("Custom Matrix - GTA: ", k_fit)
elif fit == 2:
Controller.plot3FittedData(wavelength_slices, delay_slices, v_min, v_max, model, cont, mul)
elif fit == 3:
if model != "custom matrix":
print(fit_report)
else:
ones = np.full(tau_fit.shape, 1)
k_fit = np.divide(ones, tau_fit, out=np.zeros_like(tau_fit),
where=tau_fit!=0)
print("Custom Matrix - GTA: ", k_fit)
Controller.plot3FittedData(wavelength_slices, delay_slices, v_min, v_max, model, cont, mul)
elif fit == 4:
if model != "custom matrix":
print(fit_report)
else:
ones = np.full(tau_fit.shape, 1)
k_fit = np.divide(ones, tau_fit, out=np.zeros_like(tau_fit),
where=tau_fit!=0)
print("Custom Matrix - GTA: ", k_fit)
Controller.plot3DFittedData(v_min, v_max, model, mul)
if fit != 0:
if resi == 1:
Controller.plot1Dresiduals(model)
elif resi == 2:
Controller.plot2Dresiduals(v_min, v_max, model, cont, mul)
elif resi == 3:
Controller.plot1Dresiduals(model)
Controller.plot2Dresiduals(v_min, v_max, model, cont, mul)
if orig == 3:
Controller.plot3OrigData(wavelength_slices, delay_slices, v_min, v_max, d_bounds, w_bounds,
cont, mul, opt_method, ivp_method)
if orig ==4:
Controller.plot3DOrigData(v_min, v_max, d_bounds, w_bounds,
mul, opt_method, ivp_method)
"""Custom plots"""
# If you want to create custom plots you can write the code here below.
# Keep in mind that you still have to choose the right values for model,
# d_bounds, w_bounds and c0 for GTA in the settings at the beginning.
# The method you will want to use is Controller.plotCustom(...).
# custom describes which subplots will be plotted, read further in README
custom = "1+2"
# add is an addition to the title of the plot, the default is ""
add = "1+2"
# Controller.plotCustom(wavelength_slices, delay_slices, v_min, v_max, model, cont, custom, mul, add)
# if fit != 0:
# if model != 0:
# Controller.plotKinetics(model)
# Controller.plotDAS(model, tau_fit, mul)