forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yaml
114 lines (114 loc) · 4.76 KB
/
metafile.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Collections:
- Name: BiSeNetV2
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
Paper:
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
Segmentation'
URL: https://arxiv.org/abs/2004.02147
README: configs/bisenetv2/README.md
Frameworks:
- PyTorch
Models:
- Name: bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024
In Collection: BiSeNetV2
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 73.21
mIoU(ms+flip): 75.74
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 16
Architecture:
- BiSeNetV2
- BiSeNetV2
Training Resources: 4x V100 GPUS
Memory (GB): 7.64
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551-bcf10f09.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551.log.json
Paper:
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
Segmentation'
URL: https://arxiv.org/abs/2004.02147
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
Framework: PyTorch
- Name: bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024
In Collection: BiSeNetV2
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 73.57
mIoU(ms+flip): 75.8
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 16
Architecture:
- BiSeNetV2
- BiSeNetV2
Training Resources: 4x V100 GPUS
Memory (GB): 7.64
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947-5f8103b4.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947.log.json
Paper:
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
Segmentation'
URL: https://arxiv.org/abs/2004.02147
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
Framework: PyTorch
- Name: bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024
In Collection: BiSeNetV2
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.76
mIoU(ms+flip): 77.79
Config: configs/bisenetv2/bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 32
Architecture:
- BiSeNetV2
- BiSeNetV2
Training Resources: 4x V100 GPUS
Memory (GB): 15.05
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032-e1a2eed6.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032.log.json
Paper:
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
Segmentation'
URL: https://arxiv.org/abs/2004.02147
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
Framework: PyTorch
- Name: bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024
In Collection: BiSeNetV2
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 73.07
mIoU(ms+flip): 75.13
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 16
Architecture:
- BiSeNetV2
- BiSeNetV2
Training Resources: 4x V100 GPUS
Memory (GB): 5.77
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942-b979777b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942.log.json
Paper:
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
Segmentation'
URL: https://arxiv.org/abs/2004.02147
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
Framework: PyTorch