forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yaml
188 lines (188 loc) · 7.72 KB
/
metafile.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
Collections:
- Name: KNet
License: Apache License 2.0
Metadata:
Training Data:
- ADE20K
Paper:
Title: 'K-Net: Towards Unified Image Segmentation'
URL: https://arxiv.org/abs/2106.14855
README: configs/knet/README.md
Frameworks:
- PyTorch
Models:
- Name: knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512
In Collection: KNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.6
mIoU(ms+flip): 45.12
Config: configs/knet/knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- KNet
- FCN
Training Resources: 8x V100 GPUS
Memory (GB): 7.01
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751.log.json
Paper:
Title: 'K-Net: Towards Unified Image Segmentation'
URL: https://arxiv.org/abs/2106.14855
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
Framework: PyTorch
- Name: knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512
In Collection: KNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 44.18
mIoU(ms+flip): 45.58
Config: configs/knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- KNet
- PSPNet
Training Resources: 8x V100 GPUS
Memory (GB): 6.98
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634.log.json
Paper:
Title: 'K-Net: Towards Unified Image Segmentation'
URL: https://arxiv.org/abs/2106.14855
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
Framework: PyTorch
- Name: knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512
In Collection: KNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.06
mIoU(ms+flip): 46.11
Config: configs/knet/knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- KNet
- DeepLabV3
Training Resources: 8x V100 GPUS
Memory (GB): 7.42
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642.log.json
Paper:
Title: 'K-Net: Towards Unified Image Segmentation'
URL: https://arxiv.org/abs/2106.14855
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
Framework: PyTorch
- Name: knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512
In Collection: KNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.45
mIoU(ms+flip): 44.07
Config: configs/knet/knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- KNet
- UperNet
Training Resources: 8x V100 GPUS
Memory (GB): 7.34
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657.log.json
Paper:
Title: 'K-Net: Towards Unified Image Segmentation'
URL: https://arxiv.org/abs/2106.14855
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
Framework: PyTorch
- Name: knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512
In Collection: KNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.84
mIoU(ms+flip): 46.27
Config: configs/knet/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-T
- KNet
- UperNet
Training Resources: 8x V100 GPUS
Memory (GB): 7.57
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059.log.json
Paper:
Title: 'K-Net: Towards Unified Image Segmentation'
URL: https://arxiv.org/abs/2106.14855
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
Framework: PyTorch
- Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512
In Collection: KNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 52.05
mIoU(ms+flip): 53.24
Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-L
- KNet
- UperNet
Training Resources: 8x V100 GPUS
Memory (GB): 13.5
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559.log.json
Paper:
Title: 'K-Net: Towards Unified Image Segmentation'
URL: https://arxiv.org/abs/2106.14855
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
Framework: PyTorch
- Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640
In Collection: KNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 52.21
mIoU(ms+flip): 53.34
Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-L
- KNet
- UperNet
Training Resources: 8x V100 GPUS
Memory (GB): 13.54
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747.log.json
Paper:
Title: 'K-Net: Towards Unified Image Segmentation'
URL: https://arxiv.org/abs/2106.14855
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
Framework: PyTorch