forked from gastonstat/CreditScoring
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPart3_CredScoring_PCA.R
124 lines (102 loc) · 4.07 KB
/
Part3_CredScoring_PCA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
##################################################################################
# Project: Credit Scoring Analysis (petit example)
# Description: Part 3 - Principal Components Analysis
# Data: CleanCreditScoring.csv
# By: Gaston Sanchez
# url: www.gastonsanchez.com
#
# Apply PCA with continuous variables, using Status
# as an illustrative projected variable
##################################################################################
# remember to change your working directory!!! (don't use mine)
# setwd("/Users/gaston/Documents/Gaston/StatsDataMining")
# load package ggplot2
require(ggplot2)
# read cleaned data set
dd = read.csv("CleanCreditScoring.csv", header=TRUE)
# select continuous variables
ddcon = subset(dd, select=c(Seniority, Time, Age, Expenses,
Income, Assets, Debt, Amount, Price, Finrat, Savings))
# PCA
pca = prcomp(ddcon, scale=TRUE)
# let's check the screeplot
screeplot(pca, type="lines")
# what percentage of total inertia is represented in subspaces?
inertias = 100 * cumsum(pca$sdev^2) / ncol(ddcon)
barplot(inertias, col="gray85", border=NA, names.arg=1:ncol(ddcon),
main="Percentage of inertia for each dimension")
# how many dimensions do we keep?
nd = 7
# get eigenvalues, eigenvectors (loadings), and projections (ie scores)
egis = pca$sdev[1:nd]^2
U = pca$rotation[,1:nd]
Psi = as.data.frame(pca$x[,1:nd])
Phi = as.data.frame(cor(ddcon, Psi))
# Plot of individuals on first two dimensions
ggplot(data=Psi, aes(x=PC1, y=PC2)) +
geom_hline(yintercept=0, colour="gray65") +
geom_vline(xintercept=0, colour="gray65") +
geom_point(alpha=0.3) +
opts(title="PCA plot of individuals")
# Plot of variables
# function to create a circle
circle <- function(center=c(0,0), npoints=100)
{
r = 1
zz = seq(0, 2*pi, length=npoints)
xx = center[1] + r * cos(zz)
yy = center[1] + r * sin(zz)
return(data.frame(x = xx, y = yy))
}
corcir = circle(c(0,0), npoints = 100)
# data frame with arrows coordinates
arrows = data.frame(
x1=rep(0,ncol(ddcon)), y1=rep(0,ncol(ddcon)),
x2=Phi$PC1, y2=Phi$PC2)
# geom_path will do open circles
ggplot() +
geom_path(data=corcir, aes(x=x, y=y), colour="gray65") +
geom_segment(data=arrows, aes(x=x1, y=y1, xend=x2, yend=y2), colour="gray65") +
geom_text(data=Phi, aes(x=PC1, y=PC2, label=rownames(Phi))) +
geom_hline(yintercept=0, colour="gray65") +
geom_vline(xintercept=0, colour="gray65") +
xlim(-1.1,1.1) + ylim(-1.1,1.1) +
labs(x="pc1 aixs", y="pc2 axis") +
opts(title="Circle of correlations")
# how would you interpret the first two dimensions?
Phi[,1:2]
# Every PC is a linear combination of the standardized original variables
# For instance, PC1 expressed in terms of the observed variables
Z = scale(ddcon)
reg1 = lm(Psi[,1] ~ Z)
print(reg1)
barplot(sort(reg1$coefficients[-1]), border=NA, las=2,
main="sorted coefficients of linear combination for PC1")
# Let's add information about the credit Status
# and visualize it on the plot formed by PC1-vs-PC2
Psi$Status = dd$Status
# ggplot
ggplot(data=Psi, aes(x=PC1, y=PC2)) +
geom_hline(yintercept=0, colour="gray65") +
geom_vline(xintercept=0, colour="gray65") +
geom_point(aes(colour=Status), alpha=0.3) +
opts(title="PCA plot of individuals")
# let's try another plot adding density curves
ggplot(data=Psi, aes(x=PC1, y=PC2, group=Status)) +
geom_hline(yintercept=0, colour="gray65") +
geom_vline(xintercept=0, colour="gray65") +
geom_point(aes(colour=Status), alpha=0.4, size=1.5) +
stat_density2d(aes(colour=Status)) +
opts(title="PCA plot of individuals\nStatus as illustrative")
# add centers of gravity (cog)
stat1 = tapply(Psi[,1], dd$Status, mean)
stat2 = tapply(Psi[,2], dd$Status, mean)
cog = data.frame(stat1, stat2, Status=c("bad","good"))
ggplot() +
geom_hline(yintercept=0, colour="gray65") +
geom_vline(xintercept=0, colour="gray65") +
geom_point(data=Psi, aes(x=PC1, y=PC2, colour=Status),
alpha=0.2, size=1.5) +
stat_density2d(data=Psi, aes(x=PC1, y=PC2, colour=Status), alpha=0.4) +
geom_point(data=cog, aes(stat1, stat2, colour=Status), size=5) +
opts(title="PCA plot of individuals\nStatus as illustrative with centers of gravity")