Skip to content

ADA-research/OverfittingCASH

Repository files navigation

Overfitting in Combined Algorithm Selection and Hyperparameter Optimization

This repository contains the implementation of the experiments conducted for our paper: "Overfitting in Combined Algorithm Selection and Hyperparameter Optimization".

Installation

To use the implementation, clone the repository, install the requirements and run the main experiment on the adult dataset:

  1. git clone https://github.com/ADA-research/OverfittingCASH.git
  2. cd OverfittingCASH
  3. pip3 install -r requirements.txt
  4. python3 experiments.py

Installation of the requirements works on Linux or Mac. Due to the usage of the smac package, installation on Windows can be done using WSL.

After experiments.py has produced some results, visualize.py can be used to produce the holdout plots from Figure 2 in the paper:

  1. python3 visualize.py

Datasets

Large Scale Holdout Experiments

The following table combines the classification and regression datasets used in the large-scale holdout experiments. It includes the OpenML dataset ID, name, number of instances, number of features, and type of task (Classification or Regression).

ID Name Instances Features Classes Task Type
3 kr-vs-kp 3196 37 2 Classification
6 letter 20000 17 26 Classification
11 balance-scale 625 5 3 Classification
15 breast-w 699 10 2 Classification
18 mfeat-morphological 2000 7 10 Classification
22 mfeat-zernike 2000 48 10 Classification
23 cmc 1473 10 3 Classification
29 credit-approval 690 16 2 Classification
31 credit-g 1000 21 2 Classification
32 pendigits 10992 17 10 Classification
37 diabetes 768 9 2 Classification
38 sick 3772 30 2 Classification
50 tic-tac-toe 958 10 2 Classification
54 vehicle 846 19 4 Classification
151 electricity 45312 9 2 Classification
182 satimage 6430 37 6 Classification
188 eucalyptus 736 20 5 Classification
307 vowel 990 13 11 Classification
469 analcatdata_dmft 797 5 6 Classification
1049 pc4 1458 38 2 Classification
1050 pc3 1563 38 2 Classification
1053 jm1 10885 22 2 Classification
1063 kc2 522 22 2 Classification
1067 kc1 2109 22 2 Classification
1068 pc1 1109 22 2 Classification
1461 bank-marketing 45211 17 2 Classification
1462 banknote-authentication 1372 5 2 Classification
1464 blood-transfusion-service-center 748 5 2 Classification
1480 ilpd 583 11 2 Classification
1489 phoneme 5404 6 2 Classification
1494 qsar-biodeg 1055 42 2 Classification
1497 wall-robot-navigation 5456 25 4 Classification
1510 wdbc 569 31 2 Classification
1590 adult 48842 15 2 Classification
23381 dresses-sales 500 13 2 Classification
23517 numerai28.6 96320 22 2 Classification
40499 texture 5500 41 11 Classification
40668 connect-4 67557 43 3 Classification
40701 churn 5000 21 2 Classification
40975 car 1728 7 4 Classification
40982 steel-plates-fault 1941 28 7 Classification
40983 wilt 4839 6 2 Classification
40984 segment 2310 20 7 Classification
40994 climate-model-simulation-crashes 540 21 2 Classification
41027 jungle_chess_2pcs_raw_endgame_complete 44819 7 3 Classification
4534 PhishingWebsites 11055 31 2 Classification
4538 GesturePhaseSegmentationProcessed 9873 33 5 Classification
6332 cylinder-bands 540 40 2 Classification
201 pol 15000 49 - Regression
287 wine_quality 6497 12 - Regression
507 space_ga 3107 7 - Regression
531 boston 506 14 - Regression
541 socmob 1156 6 - Regression
546 sensory 576 12 - Regression
550 quake 2178 4 - Regression
574 house_16H 22784 17 - Regression
41021 Moneyball 1232 15 - Regression
41540 black_friday 166821 10 - Regression
42225 diamonds 53940 10 - Regression
42688 Brazilian_houses 10692 13 - Regression
42726 abalone 4177 9 - Regression
42727 colleges 7063 48 - Regression
42728 Airlines_DepDelay_10M 10000000 10 - Regression
42729 nyc-taxi-green-dec-2016 581835 19 - Regression

10CV and Altering Validation Sizes

The following table lists the binary classification datasets used to investigate 10-fold cross-validation (10CV) and varying validation sizes. These datasets were selected from OpenML-CC18 and include all binary datasets with more than 40,000 samples. These datasets are also included in the large-scale holdout experiments.

ID Name Instances Features Classes
151 electricity 45312 9 2
1590 adult 48842 15 2
1461 bank-marketing 45211 17 2
23517 numerai28.6 96320 22 2

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages