From 3c140d656c3a57d904ee73ddeb34777aaaa6b5ba Mon Sep 17 00:00:00 2001
From: Nikoletos Konstantinos <47646955+Nikoletos-K@users.noreply.github.com>
Date: Mon, 22 May 2023 16:21:47 +0300
Subject: [PATCH] updated website
---
docs/CleanCleanER.ipynb | 424 +-
docs/CleanCleanERwithoutGT.ipynb | 809 +
docs/Demo.ipynb | 333 +-
docs/DirtyER.ipynb | 551 +-
docs/Optuna.ipynb | 16869 +++++++++++++++
docs/Readers.ipynb | 26 +-
docs/WorkFlow.ipynb | 292 +-
docs/_build/.doctrees/CleanCleanER.doctree | Bin 84031 -> 73181 bytes
.../.doctrees/CleanCleanERwithoutGT.doctree | Bin 0 -> 57920 bytes
docs/_build/.doctrees/Demo.doctree | Bin 183057 -> 197173 bytes
docs/_build/.doctrees/DirtyER.doctree | Bin 182696 -> 124825 bytes
docs/_build/.doctrees/Optuna.doctree | Bin 0 -> 4574681 bytes
docs/_build/.doctrees/Readers.doctree | Bin 39949 -> 40477 bytes
docs/_build/.doctrees/WorkFlow.doctree | Bin 153564 -> 159791 bytes
docs/_build/.doctrees/contribution.doctree | Bin 0 -> 15015 bytes
docs/_build/.doctrees/environment.pickle | Bin 461649 -> 476094 bytes
docs/_build/.doctrees/intro.doctree | Bin 32352 -> 32782 bytes
docs/_build/html/CleanCleanER.html | 336 +-
docs/_build/html/CleanCleanERwithoutGT.html | 1194 ++
docs/_build/html/Demo.html | 248 +-
docs/_build/html/DirtyER.html | 439 +-
docs/_build/html/Optuna.html | 1596 ++
docs/_build/html/Readers.html | 33 +-
docs/_build/html/WorkFlow.html | 245 +-
.../_build/html/_images/CleanCleanER_38_0.png | Bin 10707 -> 10383 bytes
.../_images/CleanCleanERwithoutGT_34_0.png | Bin 0 -> 9853 bytes
docs/_build/html/_images/Demo_19_0.png | Bin 31892 -> 39390 bytes
docs/_build/html/_images/Demo_20_0.png | Bin 46899 -> 40238 bytes
docs/_build/html/_images/Demo_23_0.png | Bin 27458 -> 28363 bytes
docs/_build/html/_images/DirtyER_31_0.png | Bin 23375 -> 9548 bytes
docs/_build/html/_images/DirtyER_46_0.png | Bin 0 -> 39577 bytes
docs/_build/html/_images/WorkFlow_13_0.png | Bin 33054 -> 37972 bytes
docs/_build/html/_images/WorkFlow_14_0.png | Bin 44799 -> 40595 bytes
docs/_build/html/_images/WorkFlow_17_0.png | Bin 17609 -> 17498 bytes
docs/_build/html/_sources/CleanCleanER.ipynb | 424 +-
.../html/_sources/CleanCleanERwithoutGT.ipynb | 809 +
docs/_build/html/_sources/Demo.ipynb | 333 +-
docs/_build/html/_sources/DirtyER.ipynb | 551 +-
docs/_build/html/_sources/Optuna.ipynb | 16869 +++++++++++++++
docs/_build/html/_sources/Readers.ipynb | 26 +-
docs/_build/html/_sources/WorkFlow.ipynb | 292 +-
docs/_build/html/_sources/contribution.md | 20 +
docs/_build/html/_sources/intro.md | 18 +-
docs/_build/html/contribution.html | 531 +
docs/_build/html/genindex.html | 33 +-
docs/_build/html/intro.html | 53 +-
docs/_build/html/objects.inv | Bin 450 -> 491 bytes
docs/_build/html/search.html | 33 +-
docs/_build/html/searchindex.js | 2 +-
.../_build/jupyter_execute/CleanCleanER.ipynb | 427 +-
docs/_build/jupyter_execute/CleanCleanER.py | 124 +-
.../jupyter_execute/CleanCleanER_38_0.png | Bin 10707 -> 10383 bytes
.../CleanCleanERwithoutGT.ipynb | 813 +
.../jupyter_execute/CleanCleanERwithoutGT.py | 293 +
.../CleanCleanERwithoutGT_34_0.png | Bin 0 -> 9853 bytes
docs/_build/jupyter_execute/Demo.ipynb | 333 +-
docs/_build/jupyter_execute/Demo.py | 44 +-
docs/_build/jupyter_execute/Demo_19_0.png | Bin 31892 -> 39390 bytes
docs/_build/jupyter_execute/Demo_20_0.png | Bin 46899 -> 40238 bytes
docs/_build/jupyter_execute/Demo_23_0.png | Bin 27458 -> 28363 bytes
docs/_build/jupyter_execute/DirtyER.ipynb | 559 +-
docs/_build/jupyter_execute/DirtyER.py | 195 +-
docs/_build/jupyter_execute/DirtyER_31_0.png | Bin 23375 -> 9548 bytes
docs/_build/jupyter_execute/DirtyER_46_0.png | Bin 0 -> 39577 bytes
docs/_build/jupyter_execute/Optuna.ipynb | 16908 ++++++++++++++++
docs/_build/jupyter_execute/Optuna.py | 236 +
docs/_build/jupyter_execute/Optuna_16_1.png | Bin 0 -> 29257 bytes
docs/_build/jupyter_execute/Optuna_17_0.png | Bin 0 -> 102583 bytes
docs/_build/jupyter_execute/Optuna_18_0.png | Bin 0 -> 37040 bytes
docs/_build/jupyter_execute/Optuna_19_0.png | Bin 0 -> 79136 bytes
docs/_build/jupyter_execute/Optuna_20_0.png | Bin 0 -> 67179 bytes
docs/_build/jupyter_execute/Optuna_21_0.png | Bin 0 -> 26391 bytes
docs/_build/jupyter_execute/Optuna_22_0.png | Bin 0 -> 36814 bytes
docs/_build/jupyter_execute/Optuna_23_0.png | Bin 0 -> 15960 bytes
docs/_build/jupyter_execute/Optuna_24_0.png | Bin 0 -> 28813 bytes
docs/_build/jupyter_execute/Optuna_25_0.png | Bin 0 -> 23801 bytes
docs/_build/jupyter_execute/Readers.ipynb | 26 +-
docs/_build/jupyter_execute/Readers.py | 17 +-
docs/_build/jupyter_execute/WorkFlow.ipynb | 292 +-
docs/_build/jupyter_execute/WorkFlow.py | 33 +-
docs/_build/jupyter_execute/WorkFlow_13_0.png | Bin 33054 -> 37972 bytes
docs/_build/jupyter_execute/WorkFlow_14_0.png | Bin 44799 -> 40595 bytes
docs/_build/jupyter_execute/WorkFlow_17_0.png | Bin 17609 -> 17498 bytes
docs/_toc.yml | 10 +
docs/contribution.md | 20 +
docs/intro.md | 18 +-
86 files changed, 60479 insertions(+), 3258 deletions(-)
create mode 100644 docs/CleanCleanERwithoutGT.ipynb
create mode 100644 docs/Optuna.ipynb
create mode 100644 docs/_build/.doctrees/CleanCleanERwithoutGT.doctree
create mode 100644 docs/_build/.doctrees/Optuna.doctree
create mode 100644 docs/_build/.doctrees/contribution.doctree
create mode 100644 docs/_build/html/CleanCleanERwithoutGT.html
create mode 100644 docs/_build/html/Optuna.html
create mode 100644 docs/_build/html/_images/CleanCleanERwithoutGT_34_0.png
create mode 100644 docs/_build/html/_images/DirtyER_46_0.png
create mode 100644 docs/_build/html/_sources/CleanCleanERwithoutGT.ipynb
create mode 100644 docs/_build/html/_sources/Optuna.ipynb
create mode 100644 docs/_build/html/_sources/contribution.md
create mode 100644 docs/_build/html/contribution.html
create mode 100644 docs/_build/jupyter_execute/CleanCleanERwithoutGT.ipynb
create mode 100644 docs/_build/jupyter_execute/CleanCleanERwithoutGT.py
create mode 100644 docs/_build/jupyter_execute/CleanCleanERwithoutGT_34_0.png
create mode 100644 docs/_build/jupyter_execute/DirtyER_46_0.png
create mode 100644 docs/_build/jupyter_execute/Optuna.ipynb
create mode 100644 docs/_build/jupyter_execute/Optuna.py
create mode 100644 docs/_build/jupyter_execute/Optuna_16_1.png
create mode 100644 docs/_build/jupyter_execute/Optuna_17_0.png
create mode 100644 docs/_build/jupyter_execute/Optuna_18_0.png
create mode 100644 docs/_build/jupyter_execute/Optuna_19_0.png
create mode 100644 docs/_build/jupyter_execute/Optuna_20_0.png
create mode 100644 docs/_build/jupyter_execute/Optuna_21_0.png
create mode 100644 docs/_build/jupyter_execute/Optuna_22_0.png
create mode 100644 docs/_build/jupyter_execute/Optuna_23_0.png
create mode 100644 docs/_build/jupyter_execute/Optuna_24_0.png
create mode 100644 docs/_build/jupyter_execute/Optuna_25_0.png
create mode 100644 docs/contribution.md
diff --git a/docs/CleanCleanER.ipynb b/docs/CleanCleanER.ipynb
index 4256993..e6bdd8a 100644
--- a/docs/CleanCleanER.ipynb
+++ b/docs/CleanCleanER.ipynb
@@ -6,9 +6,9 @@
"id": "96ec678e-b20c-4213-8616-542010f46342",
"metadata": {},
"source": [
- "# Clean-Clean Entity Resolution\n",
- "
\n",
+ "# Clean-Clean ER\n",
"\n",
+ "---\n",
"\n",
"In this notebook we present the pyJedAI approach in the well-known ABT-BUY dataset. Clean-Clean ER in the link discovery/deduplication between two sets of entities."
]
@@ -38,7 +38,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "029a5825-799d-4c3f-a6cd-a75e257cadcc",
+ "id": "f71e6201",
"metadata": {},
"outputs": [],
"source": [
@@ -47,7 +47,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 2,
"id": "462695ec-3af1-4048-9971-9ed0bce0f07b",
"metadata": {},
"outputs": [
@@ -56,14 +56,14 @@
"output_type": "stream",
"text": [
"Name: pyjedai\n",
- "Version: 0.0.3\n",
+ "Version: 0.0.5\n",
"Summary: An open-source library that builds powerful end-to-end Entity Resolution workflows.\n",
"Home-page: \n",
"Author: \n",
"Author-email: Konstantinos Nikoletos , George Papadakis \n",
"License: Apache Software License 2.0\n",
- "Location: c:\\users\\nikol\\appdata\\local\\programs\\python\\python310\\lib\\site-packages\n",
- "Requires: faiss-cpu, gensim, matplotlib, matplotlib-inline, networkx, nltk, numpy, optuna, pandas, pandas-profiling, pandocfilters, PyYAML, rdflib, rdfpandas, regex, scipy, seaborn, sentence-transformers, strsim, strsimpy, tomli, tqdm, transformers\n",
+ "Location: c:\\users\\nikol\\anaconda3\\lib\\site-packages\n",
+ "Requires: PyYAML, optuna, scipy, gensim, pandocfilters, numpy, rdflib, pandas, transformers, regex, strsim, tqdm, networkx, seaborn, rdfpandas, strsimpy, matplotlib-inline, matplotlib, pandas-profiling, tomli, nltk, faiss-cpu, sentence-transformers\n",
"Required-by: \n"
]
}
@@ -82,7 +82,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"id": "6db50d83-51d8-4c95-9f27-30ef867338f2",
"metadata": {},
"outputs": [],
@@ -96,11 +96,12 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 4,
"id": "4d4e6a90-9fd8-4f7a-bf4f-a5b994e0adfb",
"metadata": {},
"outputs": [],
"source": [
+ "import pyjedai\n",
"from pyjedai.utils import (\n",
" text_cleaning_method,\n",
" print_clusters,\n",
@@ -132,36 +133,31 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 5,
"id": "e6aabec4-ef4f-4267-8c1e-377054e669d2",
"metadata": {},
"outputs": [],
"source": [
- "from pyjedai.datamodel import Data"
+ "from pyjedai.datamodel import Data\n",
+ "from pyjedai.evaluation import Evaluation"
]
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 8,
"id": "3d3feb89-1406-4c90-a1aa-dc2cf4707739",
"metadata": {},
"outputs": [],
"source": [
- "d1 = pd.read_csv(\"./../data/D2/abt.csv\", sep='|', engine='python', na_filter=False).astype(str)\n",
- "d2 = pd.read_csv(\"./../data/D2/buy.csv\", sep='|', engine='python', na_filter=False).astype(str)\n",
- "gt = pd.read_csv(\"./../data/D2/gt.csv\", sep='|', engine='python')\n",
+ "d1 = pd.read_csv(\"./../data/ccer/D2/abt.csv\", sep='|', engine='python', na_filter=False).astype(str)\n",
+ "d2 = pd.read_csv(\"./../data/ccer/D2/buy.csv\", sep='|', engine='python', na_filter=False).astype(str)\n",
+ "gt = pd.read_csv(\"./../data/ccer/D2/gt.csv\", sep='|', engine='python').astype(str)\n",
"\n",
- "data = Data(\n",
- " dataset_1=d1,\n",
- " attributes_1=['id','name','description'],\n",
- " id_column_name_1='id',\n",
- " dataset_2=d2,\n",
- " attributes_2=['id','name','description'],\n",
- " id_column_name_2='id',\n",
- " ground_truth=gt,\n",
- ")\n",
- "\n",
- "data.process()"
+ "data = Data(dataset_1=d1,\n",
+ " id_column_name_1='id',\n",
+ " dataset_2=d2,\n",
+ " id_column_name_2='id',\n",
+ " ground_truth=gt)"
]
},
{
@@ -174,7 +170,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 9,
"id": "7cb87af2-adda-49e0-82cc-b1a5f7a595ef",
"metadata": {},
"outputs": [
@@ -182,15 +178,23 @@
"name": "stdout",
"output_type": "stream",
"text": [
+ "------------------------- Data -------------------------\n",
"Type of Entity Resolution: Clean-Clean\n",
- "Number of entities in D1: 1076\n",
- "Attributes provided for D1: ['id', 'name', 'description']\n",
- "\n",
- "Number of entities in D2: 1076\n",
- "Attributes provided for D2: ['id', 'name', 'description']\n",
+ "Dataset-1:\n",
+ "\tNumber of entities: 1076\n",
+ "\tNumber of NaN values: 0\n",
+ "\tAttributes: \n",
+ "\t\t ['name', 'description', 'price']\n",
+ "Dataset-2:\n",
+ "\tNumber of entities: 1076\n",
+ "\tNumber of NaN values: 0\n",
+ "\tAttributes: \n",
+ "\t\t ['name', 'description', 'price']\n",
"\n",
"Total number of entities: 2152\n",
- "Number of matching pairs in ground-truth: 1076\n"
+ "Number of matching pairs in ground-truth: 1076\n",
+ "-------------------------------------------------------- \n",
+ "\n"
]
}
],
@@ -200,7 +204,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 10,
"id": "b822d7c0-19a2-4050-9554-c35a208bb848",
"metadata": {},
"outputs": [
@@ -287,7 +291,7 @@
"4 Bose 161 Bookshelf Speakers In White - 161WH/ ... 158 "
]
},
- "execution_count": 7,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -298,7 +302,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 11,
"id": "5c26b595-5e02-4bfc-8e79-e476ab2830ef",
"metadata": {},
"outputs": [
@@ -385,7 +389,7 @@
"4 Netgear ProSafe 16 Port 10/100 Rackmount Switc... "
]
},
- "execution_count": 8,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -396,7 +400,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 12,
"id": "b3c9827e-a08a-47b2-a7f2-6f3f72184a17",
"metadata": {},
"outputs": [
@@ -452,7 +456,7 @@
"2 182 160"
]
},
- "execution_count": 9,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -483,10 +487,18 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 13,
"id": "9c1b6213-a218-40cf-bc72-801b77d28da9",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Created embeddings directory at: C:\\Users\\nikol\\Desktop\\test\\tutorials\\.embeddings\n"
+ ]
+ }
+ ],
"source": [
"from pyjedai.block_building import (\n",
" StandardBlocking,\n",
@@ -494,26 +506,24 @@
" ExtendedQGramsBlocking,\n",
" SuffixArraysBlocking,\n",
" ExtendedSuffixArraysBlocking,\n",
- ")\n",
- "\n",
- "from pyjedai.vector_based_blocking import EmbeddingsNNBlockBuilding"
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 14,
"id": "9741f0c4-6250-455f-9c88-b8dc61ab7d4d",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "19750ba866d845f9b7046b969be38109",
+ "model_id": "e8f45ed2068a488d8987344463a830bd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
- "Q-Grams Blocking: 0%| | 0/2152 [00:00, ?it/s]"
+ "Suffix Arrays Blocking: 0%| | 0/2152 [00:00, ?it/s]"
]
},
"metadata": {},
@@ -521,13 +531,13 @@
}
],
"source": [
- "qgb = QGramsBlocking()\n",
- "blocks = qgb.build_blocks(data, attributes_1=['name'])"
+ "qgb = SuffixArraysBlocking()\n",
+ "blocks = qgb.build_blocks(data, attributes_1=['name'], attributes_2=['name'])"
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 15,
"id": "d2d9ae46-28fa-4438-87b7-ba901c75bd99",
"metadata": {},
"outputs": [
@@ -535,15 +545,16 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Method name: Q-Grams Blocking\n",
- "Method info: Creates one block for every q-gram that is extracted from any token in the attribute values of any entity. The q-gram must be shared by at least two entities.\n",
+ "Method name: Suffix Arrays Blocking\n",
+ "Method info: Creates one block for every suffix that appears in the attribute value tokens of at least two entities.\n",
"Parameters: \n",
- "\tQ-Gramms: 6\n",
+ "\tSuffix length: 6\n",
+ "\tMaximum Block Size: 53\n",
"Attributes from D1:\n",
"\tname\n",
"Attributes from D2:\n",
- "\tid, name, description, price\n",
- "Runtime: 0.2210 seconds\n"
+ "\tname\n",
+ "Runtime: 0.2220 seconds\n"
]
}
],
@@ -553,7 +564,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 16,
"id": "b0ac846d-0f13-4b90-b4c8-688054ed7ffe",
"metadata": {},
"outputs": [
@@ -561,29 +572,48 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Q-Grams Blocking Evaluation \n",
- "---\n",
- "Method name: Q-Grams Blocking\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Suffix Arrays Blocking\n",
+ "***************************************************************************************************************************\n",
+ "Method name: Suffix Arrays Blocking\n",
"Parameters: \n",
- "\tQ-Gramms: 6\n",
- "Runtime: 0.2210 seconds\n",
- "Scores:\n",
- "\tPrecision: 0.23% \n",
- "\tRecall: 99.91%\n",
- "\tF1-score: 0.45%\n",
+ "\tSuffix length: 6\n",
+ "\tMaximum Block Size: 53\n",
+ "Runtime: 0.2220 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 1.41% \n",
+ "\tRecall: 97.03%\n",
+ "\tF1-score: 2.78%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
"Classification report:\n",
- "\tTrue positives: 1075\n",
- "\tFalse positives: 471355\n",
- "\tTrue negatives: 686420\n",
- "\tFalse negatives: 1\n",
- "\tTotal comparisons: 472430\n",
- "---\n"
+ "\tTrue positives: 1044\n",
+ "\tFalse positives: 73021\n",
+ "\tTrue negatives: 1084723\n",
+ "\tFalse negatives: 32\n",
+ "\tTotal comparisons: 74065\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "{'Precision %': 1.4095726726523998,\n",
+ " 'Recall %': 97.02602230483272,\n",
+ " 'F1 %': 2.7787759013055453,\n",
+ " 'True Positives': 1044,\n",
+ " 'False Positives': 73021,\n",
+ " 'True Negatives': 1084723,\n",
+ " 'False Negatives': 32}"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
- "e = Evaluation(data)\n",
- "e.report(blocks, qgb.method_configuration())"
+ "_ = qgb.evaluate(blocks, with_classification_report=True)"
]
},
{
@@ -602,7 +632,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 17,
"id": "9c2c0e42-485a-444e-9161-975f30d21a02",
"metadata": {},
"outputs": [],
@@ -612,14 +642,14 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 18,
"id": "bf5c20ac-b16a-484d-82b0-61ecb9e7f3ea",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "5329619dacbc43f8a23a05acb7293375",
+ "model_id": "e8f34559708e407ab3588e7e5d89f8ae",
"version_major": 2,
"version_minor": 0
},
@@ -638,7 +668,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 19,
"id": "25fd0be0-91c3-4d0b-b596-c66dccba3c79",
"metadata": {},
"outputs": [
@@ -646,28 +676,40 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Block Filtering Evaluation \n",
- "---\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Block Filtering\n",
+ "***************************************************************************************************************************\n",
"Method name: Block Filtering\n",
"Parameters: \n",
"\tRatio: 0.8\n",
- "Runtime: 0.0730 seconds\n",
- "Scores:\n",
- "\tPrecision: 0.77% \n",
- "\tRecall: 99.63%\n",
- "\tF1-score: 1.52%\n",
- "Classification report:\n",
- "\tTrue positives: 1072\n",
- "\tFalse positives: 138721\n",
- "\tTrue negatives: 1019051\n",
- "\tFalse negatives: 4\n",
- "\tTotal comparisons: 139793\n",
- "---\n"
+ "Runtime: 0.0600 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 1.90% \n",
+ "\tRecall: 94.42%\n",
+ "\tF1-score: 3.72%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "{'Precision %': 1.8975048558195131,\n",
+ " 'Recall %': 94.42379182156134,\n",
+ " 'F1 %': 3.7202489930428415,\n",
+ " 'True Positives': 1016,\n",
+ " 'False Positives': 52528,\n",
+ " 'True Negatives': 1105188,\n",
+ " 'False Negatives': 60}"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
- "Evaluation(data).report(filtered_blocks, bf.method_configuration())"
+ "_ = bf.evaluate(filtered_blocks)"
]
},
{
@@ -703,7 +745,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 20,
"id": "725426e2-0af8-4295-baff-92653c841fdd",
"metadata": {},
"outputs": [],
@@ -713,19 +755,19 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 21,
"id": "7997b2b6-9629-44f0-a66d-5bc4fea28fb6",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "4e99825898fd40b9a645e131af7e70eb",
+ "model_id": "e64c79e8404844d391e7e1cda359fe50",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
- "Block Purging: 0%| | 0/6454 [00:00, ?it/s]"
+ "Block Purging: 0%| | 0/4680 [00:00, ?it/s]"
]
},
"metadata": {},
@@ -739,7 +781,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 22,
"id": "d8842b00-8765-449f-bdb7-f9b2206e91c7",
"metadata": {},
"outputs": [
@@ -751,8 +793,8 @@
"Method info: Discards the blocks exceeding a certain number of comparisons.\n",
"Parameters: \n",
"\tSmoothing factor: 1.025\n",
- "\tMax Comparisons per Block: 3528.0\n",
- "Runtime: 0.0540 seconds\n"
+ "\tMax Comparisons per Block: 600.0\n",
+ "Runtime: 0.0630 seconds\n"
]
}
],
@@ -762,7 +804,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 24,
"id": "bfbef308-2ae0-4a2b-aec4-1bac09e426a1",
"metadata": {},
"outputs": [
@@ -770,30 +812,25 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Block Purging Evaluation \n",
- "---\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Block Purging\n",
+ "***************************************************************************************************************************\n",
"Method name: Block Purging\n",
"Parameters: \n",
"\tSmoothing factor: 1.025\n",
- "\tMax Comparisons per Block: 3528.0\n",
- "Runtime: 0.0540 seconds\n",
- "Scores:\n",
- "\tPrecision: 0.80% \n",
- "\tRecall: 99.63%\n",
- "\tF1-score: 1.59%\n",
- "Classification report:\n",
- "\tTrue positives: 1072\n",
- "\tFalse positives: 133001\n",
- "\tTrue negatives: 1024771\n",
- "\tFalse negatives: 4\n",
- "\tTotal comparisons: 134073\n",
- "---\n"
+ "\tMax Comparisons per Block: 600.0\n",
+ "Runtime: 0.0630 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 1.90% \n",
+ "\tRecall: 94.42%\n",
+ "\tF1-score: 3.72%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "e = Evaluation(data)\n",
- "e.report(cleaned_blocks, cbbp.method_configuration())"
+ "_ = cbbp.evaluate(cleaned_blocks)"
]
},
{
@@ -806,7 +843,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 28,
"id": "1f7d75f3-6bed-482d-a572-c3b4927236a5",
"metadata": {},
"outputs": [],
@@ -825,18 +862,18 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 29,
"id": "c92e0ca3-5591-4620-b3f4-012a23637416",
"metadata": {},
"outputs": [],
"source": [
- "wep = CardinalityEdgePruning(weighting_scheme='X2')\n",
- "candidate_pairs_blocks = wep.process(filtered_blocks, data, tqdm_disable=True)"
+ "mb = CardinalityEdgePruning(weighting_scheme='X2')\n",
+ "candidate_pairs_blocks = mb.process(filtered_blocks, data, tqdm_disable=True)"
]
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 31,
"id": "f469e387-e135-4945-b97f-da14d391c6b1",
"metadata": {},
"outputs": [
@@ -844,29 +881,25 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Cardinality Edge Pruning Evaluation \n",
- "---\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Cardinality Edge Pruning\n",
+ "***************************************************************************************************************************\n",
"Method name: Cardinality Edge Pruning\n",
"Parameters: \n",
"\tNode centric: False\n",
"\tWeighting scheme: X2\n",
- "Runtime: 3.2131 seconds\n",
- "Scores:\n",
- "\tPrecision: 8.31% \n",
- "\tRecall: 95.35%\n",
- "\tF1-score: 15.28%\n",
- "Classification report:\n",
- "\tTrue positives: 1026\n",
- "\tFalse positives: 11326\n",
- "\tTrue negatives: 1146400\n",
- "\tFalse negatives: 50\n",
- "\tTotal comparisons: 12352\n",
- "---\n"
+ "Runtime: 1.4746 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 13.19% \n",
+ "\tRecall: 85.97%\n",
+ "\tF1-score: 22.86%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "Evaluation(data).report(candidate_pairs_blocks, wep.method_configuration())"
+ "_ = mb.evaluate(candidate_pairs_blocks)"
]
},
{
@@ -881,7 +914,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 32,
"id": "f479d967-8bac-4870-99bd-68c01e75747b",
"metadata": {},
"outputs": [],
@@ -891,13 +924,13 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 34,
"id": "ae7b1e6a-e937-44fe-bfe5-34696ea1156c",
"metadata": {},
"outputs": [],
"source": [
"EM = EntityMatching(\n",
- " metric='sorensen_dice',\n",
+ " metric='dice',\n",
" similarity_threshold=0.5,\n",
" attributes = ['description', 'name']\n",
")\n",
@@ -907,13 +940,13 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 35,
"id": "4d606bfc-3265-4042-93f3-22a1117c4886",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAApQElEQVR4nO3dfXCT170n8O/zSEJysBUH/AKtvXXAsWWnxV1IE9NOwIQkBDfdnfQ6LZ3re9N9KfTCdCeZ6TTJ9c2EbEqa9t4tnc1Aocxup613M+k6205JzA3QYCdbUJpAa26wZMcJbu0bbGyoYotYQi/P/iEENvhF0nMePW/fzz+dJPbRqSzpp3PO7/x+kqIoCoiIiGxC1nsCRERE+cTAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtsLAR0REtuLUewJEBIyHo+g4OYyeob+g/3wY0XgSbqeMmvIiNFQU4+E1FVha6NZ7mkSWICmKoug9CSK76hkKYU/XAI71nUciqSA5y7tRlgCHLOEeXxm2r69GQ2Vx3udJZCUMfEQ6afcPYldnEFOxREY/LwHwuBxoa/ahtbFK07kRWRm3OkkT6a274MgEJiJxeD1O+JZ5uWV3RSroBTAVS2b8OwqAqVgCuzoDAMDgR5QjrvhIqPTWXXf/GAAgGr/2wS5LgCRJWHdbCR7dWGPbLbueoRC2HPBnvNKbTYHLgZe2NmJVRbG4iRHZBAMfCZPeuovEEljoRSVLwNa7V+CJzXV5mZuRbP3FOzgSGIWad54kAZvqy7Gv9Q5xEyOyCV5nICGubd0tHPQAIKkA+974AN968ZTmczOS8XAU3f1jqoIeACgKcKxvDBfCUTETI7IRBj5SrWcodCVJI/PzqrSDp8/h+4cCGszKmDpODgsbSwLQcUrceER2wcBHqu3pGkBExXnV/jc/wOnhkLgJGVhwZGLGuacakXgSwXOTQsYishMGPlLl6tadijGSCvCjo/3C5mRkE5G44PFiQscjsgNeZyBVRG3ddfenzqvUXHUwwxUKr0fsW87rcQkdj8gOGPhIFVFbdwpS51Xb1q3M+nfnu0LhcY5g99F+NNWWGqLqiW+ZF27niJDnzOOU4VteJGBWRPbCrU5SRdTWXVJBTudV7f5BbDngx5HAKKLx5A0BJXLl3x3uHcWWA360+weFzDdXLWsqhI2lAGhZLW48Irtg4CNVRG7dZXteNeMKxQKHjIpyreqJnsGvpNCN9TWlkCT1Y3k9Tjz7ai/2db/Paw1EWWDgI1V8y7yQBXyIA9mdV+V6hWIqlsSuzqCuWaQ7mqrhcTpUjzMWvoxf//FD7D7Sh89//3Vsa38HPUMh9RMksjgGPlKlZU0FJAHLF7dDyuq8ak/XACLx3K5QRGIJ7O0ayOl3RWioLEZbsw8FLjFvv2hCQTSexGtnjLGdS2R0TG4hVUoK3bj7thJ09Y2pG0iSMj6vUlv9RAFwNHBedRapGukC09l0Z8jEQkWszZD5SqQ11uok1XqGQnjox7+btZdcph64PfO6k/u638fuo/2qMyM31Zdj/9/oW+vy9HAIe7sG8Nvg3P34cnF9Eev5M19lKIBhMl+JtMbAR0I8fyiAfW98kNPvZttp4NGX/oBf//HDnB5rOocE/Gr7FwzR4eBCOIqOU8PoGQrh9HAIw6GI6jHTXyauFg+Pz58EJEmAx8l+f2R9POMjIZ7YXIcvrVqe9e8VuGS0NfuyCj6irlAkFOh61jfd0kI3tq1bib1/vQb1n7hZyJjH+sawv3vAdJmvRFpj4CNhXvjaavzduhUZZ3kWuBxoa67LenUh8gqF0TocjIej6Oo7L2SseCKJfzzcb8rMVyItMfCRUI9vrsOvt38B99SWwiHhhiDodkhwO2U8cHs5XtramNOWWqr6iZiXrtE6HHScHEZc0EFfQkHOY0Xi+ma+EmmJWZ0k3KqKYvzPr9959dwqeG4SE5EYvB4XfMuL0LJaXQZhy5oK7BZU1NpoHQ6CIxPCElzUmN7vj9meZDUMfKSZ9LmVaOnqJ4d7R4WM13vuIyHjiHAhfFnvKVyVXg1r8Tck0hO3OsmUdjRVwyGoYszA+bBhzrMuXDJO4DPaaphIFAY+MqWGymJsrCsXMpaRsjslVZ0NxWO/P7IiBj4yrece+oywVZ9RsjtvWWys8zT2+yMrYuAj0yopdAtb9Rklu7OkcJHeU7iK/f7Iqhj4yNREnfUZ5TzLt8wLQYtY1djvj6yKgY9MraGyGCvLCoWMZYTzrJY1FZBF9XlSaUNtKa8ykCUx8JHp1S/3ChnHCOdZ6W4XenNIErY3Ves9DSJNMPCR6Ymo5GKk86zHNtYIa+6bq3vrygxRvJtICwx8ZHota9SfQxnpPKuhshhb716h2+M7pFTGLJFVMfCR6aUrueTaCF6SjHeelWu3C7dDgm9ZUc7PBQDcV19uqOeCSDQGPrKEHU3V8DgdOf2ux+kw5HlWLt0unnqwHt//8qqcn4sClzGfCyKRGPjIEhoqi9HW7EOBK7uXdC79APMpl24XVn0uiERhB3ayFCt3G8+224WVnwsiNRj4yHJOD4ewt2sAx/rGICF1OT3N45ShIHWmt72p2vKrGz4XRDdi4CPL0qofoBnxuSC6hoGPiIhshcktRERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkKwx8RERkK069J0DZGw9H0XFyGMGRCUxE4vB6nPAt8+LhNWwqSkS0EDaiNZGeoRD2dA2gu38MABCNJ6/+N1lK/e/K0kI89cU6rKsp02OKRESGx8BnEu3+QezqDCISTyCTv1jd8iI8/9AqNFQWaz43IiIzYeAzgVTQC2Aqllz4h6eRANxXX4bvPbSKW6BERFcw8Blcz1AIWw74MRVL5DyGU5awsa4M29dXcwVIRLbHrE6D29M1gEg896AHAPGkgsNnRrHlgB/t/kExEyMiMikGPgMbD0fR3T+W0ZneQhQAU7EEdnUGGPyIyNYY+Ays4+Sw8DGnYkns6gzi9HBI+NhERGbAwGdgwZGJGVcWRInEE9jbNSB8XCIiM2DgM7CJSFyTcRUFONY3hgvhqCbjExEZGSu3GJjXo92fRwLQcWoY29at1OwxKHfj4Sh+dmIQr707gg8/mkIsocDlkPDJ4gJsun0ZHllbxSsqRDli4DMw3zIv3M4RjbY7kwiemxQ+LqnTMxTCc4cC+P3Zi7g+pykaB/pGw+gbHcALxwZwV9USPLm5jldUiLLErU4Da1lToen4E5GYpuNTdtr9g2jZfxxvzRL0rqcogP/sRbTsP84sXaIsMfAZWEmhG+trSiFpNL7X49JoZMpWu38Qz7zSi1giu7srsYSCZ17pZfAjygIDn8HtaKqGx+UQPq7HKcO3vEj4uJS9nqEQnn01kHXQS4slFDz7aoBXVIgyxMBncA2VxWhr9sHtFPunUgC0rNZ2K5Uys6drQPU5bjSe5BUVogwx8JlAa2MVnvpiHVwOMZuekgRsqC1lVqABjIej6OobEzLW60FeUSHKBAOfSbQ2VuHlb34e9QK2Jz1OB7Y3VQuYFanVcXIYiaSYrN2koqDjlPhqP0RWw8BnIqsqitH5X9bhF//xTtSWF+Y0RoFLRluzD6sqisVOjnJy6N1zyPFo7wbxpMIrKkQZYOAzobtvK8Vrj67HybZ7sam+HA5p4S1QSQIKXA60NdehtbFK+0nSgtr9g+gZ/kjomLyiQrQwXmA3saWFbuz/mztwejiEvV0DONY3Bgmpy+lpHqcMBakzve1N1VzpGUTPUAhP/+aM8HF5RYVoYQx8FrCqohj7Wu/AhXAUHaeGETw3iYlIDF6PC77lRWhZXcFEFoN57lBA2BZnmgTwigpRBhj4LGRpoZu1N68zHo6i4+QwgiMTmIjE4fU44VvmxcNrxHwZyGX88XAUvz97UfVj30DiFRWiTEiKIqLNKZGx9AyF8MOj/fh/740hqWBGCTAZqTPPdTWleHRjTU61LnuGQtjTNYDu/tRVhOgs28tNtaXYvr76hvH/2+E+vHBM/J27T9zswfEnNgofl8hqGPjIcp4/FMBP3vwAyQxf2TcXOPH5lSVoqCjOaCXY7h/Ers4gIvEE5nv3SFLq6khbs+9qQtF4OIoHftSN8Uvik1DcTgmNK5Zi7YoSYStaIiti4CNL+daLp3Dw9DlVY8gAbr7Jhb9aXYG/W79yRgBJBb0ApmKZ370rcMl4ZG0V/jAUwtuDFzMOyLlySoDDIc+54iSyOwY+soznDwWw740PhI97k8uBz926BJ9achN++c7QjKxZI5ttxUlEDHxkEd395/H1n769YDsfO0oVLeD9TaI0Bj4ytXSSyZHeUQa9eUgA1q5YinU1pTz/I9uzReDTOqWd9JFOMpmKJfSeimnIEuCQJdzjK+P5H9mWpQPf9JR2BZiRVOB2SIAkMQHApHJJMqGZUiXseP5H9mPZwJdNSjs/AMylZyiELQf8XOkJwPM/siNLFqn+1ounsO+NzO9xTcUS2NUZQLt/UNN5kRh7ugYQiTPoiTAVS2JXZ5Dd28lWLFey7PlDgZzucaU/AFZVFLOQswH0j07iuc4ABsbCmLqcQMEiB6pLC7GjaSW6+8fmvThO2ZmKJbC3awD7Wu/QeypEeWGprc6eoRAe+vHvVF0QfuD2cn4A6KjjnSH84HAfzk+yk3g+uRwS/E9sZLIX2YJltjrHw1E89ss/qK6KcaxvDBfC/NDVw7dePIVvv3yaQU8HiSS7t5N9mH6rM32Pq6tvDJcTAjL8lNQHALsc5JeIUmOUu6SSei8R2YGpA1+mxYKzEU0oCJ6bFDMYZaTjnSEGPQPoH+XrnuzBtIFPy3tch3tH8MhP34JDlnnZPQ9+cLhP7ykQZrZWIrIyUwa+nqHQlYod2rxRL11OoLt//Oo/e5wj2H20n5fdNdA/OskzPYNwOy1z5E80L1O+0vN9jysSTyIaT+Jw7yi2HPDzvp9Az3UG9J4CXVFTXqT3FIjywnSBbzwc1e0el6LwsrtoA2NhvadASBWx5k4G2YXpAl/HSf1TrlntQpypy6zAYhQtqyv0ngJRXpjujC84MmGIQ/hInNUuRChY5AAu6T0L8rhkJm/ZBLvVmCzwjYej+Jd//UjvaQBIbXumL7vb5cWiherSQgz/ZUrvadjeIkdumz/8EDWPa3eezyORVJCYdlzkkD7ED4/0YYNN2lWZomTZ9PZCCQPN1uOU8dh9NbzsrkL/6CTu/9Ebek/D9ipvKcCb37kn45/v7j+P774awPtXzminV0zyOGUoALOgDaTdP4hnXwkgmkGRD7dDxlMPWrtjh+FXfNm0F8q3SDzJy+4q1ZQXoazIzSsNOqsuK8zo53qGQnj8/55GcGTu133kylHE4d5RvNE/zpZfOmv3D2LnwTPI9IQomkhi58EzAGDZv5uhA58ZylhNRGJ6T8H0vnN/Lb798mm9p2FrbZvrZvzzbFuYH1+O4/XAecQz/BI6PQsasO6HqJH1DIWw82BvxkEvLZ4Edh7stWy3GsMGvlzbC+Wb1+PSewqm13JHJbrfGzPF39uqHvrx71C5ZDE+80kvRiejOPH+BQBiqrmks6D/zZLFeHvwIl4PjmL80mUAwNLFbtxbV4ZH1lbxTFADzx0KIJ7jdlk8qeB7hwJ48RtrBc9Kf4Y84xPRXigfeMYnlhlW+KQNWQLurFqCJzfX8UxQkPFwFHc+d1TV56gsAW///b2W+1JiyHt8u3/bb/igBwAKePdJlJ6hEKLxJJyypPdUSAdJBfCfvYiW/cdZHEKQnx0fVP05mlSAn58YFDIfIzFc4BsPR/Hme+ML/6DOJAnYUFtquW9Cemj3D2LLAT+OBEZz3pYha4glFDzzSi+DnwCvB0eFjHM0cF7IOEZiuMDXcXIYBtx9vYHH6cD2pmq9p2F617psiGstReYWSyh49tUAKyOplD5HVeuCoHGMxHDJLcGRCWHbnEtvcuGuFUsRjSfh9bjw8eU4uvvHEE0kVX3IFrhktDX7LJntlE9ad9kg84rGk6yMRJoxXOCbiMSFjbWupgy7v/pZANfSsyPxBHo/nMCFS5chS1JWW2uSlFrp8V6SGPnuskHm8nqQlZHUWLrYjdEJ9fdjSwoXCZiNsRgu8Hk94qbUPzqBp3/zLv508eNZ07MlKJAlYOniRahcchMuReM4O34JsiRdvYQLXKtEsaG2FNubqrnSE0DPLhtkDklFQcepYWZN52hjXRl6z02oH8dXJmA2xmK4wOdb5oXbOSLk/tCZc5M4M09llXT5s/FLlxGOJtDW7MPmTy9Hx6lhBM9NYiISg9fjgm95EVpWs/agSB0nh5Fk1KN5xJMKKyOp8MjaKuw5NqD6OsPfrq0SNiejMFxyS8ua/F8PSFeY+O6rvXjyV6cRODeBjyIxFHmcqF3GoKeFznfPIWakwqtkSKyMlLuSQjc+V7VE1Rh33brEkp99hlvxlRS6sb6mFEd6R5Hvj8VIXMHh3pmpux7nCHYf7WfBXYHa/YN41yBdNsjYWBlJnb/fXIeW/cdz+pLpckh48rpSdlZhuBUfAOxoqobH5dB7GgBSBXej8SQO945iywE/7xeplM7k5HU9WohTluBbXqT3NEytobIYTz9YD5cju8IQLoeEpx+st2w+gyEDX0NlMdqafShwGWd60wvuMvjljpmclClZklgZSYDWxio8/WA93M7MPk/dThlPP1hv6cx1w211pqWf9F2dQURiibxve84lXXDXqlXLtcRMTsrGPT5WRhKltbEKqyqKsbdrAK8Hx5BUlBlXuZyyBFmScI/PHpnrhixSPd3p4RD2dg3gWN8YADHV4tWSJGBTfTkv12ZpX/f72H203xB/QzI2t1PG/9m21vIfwHq4EI7aPnPd8IEvbfof60hgBOGovttlbqeM44/fY5sXigiPvvQH/PqPH+o9DTK49PmSlbfaSF/GOURbwNJCN7atW4ndX/0sFrv136GVAHScGtZ7GqYisioPWRODHuWD/hHEpCLxJC/XZklkVR6yFllK3Rl7cnMdtzdJc6b8JBJVg04tXq7NjsiqPGQdvvJC/K//3MhjA8ob02x1Trexzhi143i5Njt6VOUhY/M4ZTxko6QKMgZTBr5H1lZB70bdHqfMy7VZSlflkdhkna5QAN7Vo7wz5VZnugbdW2cv6jYHvmEzk24HFRyZwIXwZfzp4iXe46OrNtTyrh7lnykDH6CuBp1aksQ37EJ6hkLY0zWArr4xJJJJsB41zebWpYv1ngLZkCm3OoHca9CJ4HE6sL2pOu+Paxbt/kF85ScncLh3FJcTDHo0t58eH8Tp4ZDe0yCbMc0F9rm0+wfx7KuBvGUKFrhktDXX8Z7RHNr9g3jmlV62HKKMbagtxV23LkVwZAITkTi8Hid8y7x4eA2TXkgbpg98wLWyZnPVoFMUBQpShaZz/T8rSamVXluzj0FvDj1DId22n8ncFjkkXJ72uvE4ZSgA24GRJiwR+NLmq0H3r6GpqzU/JaQuoKctckhXg6VTnv0NuKHWHsVb1fjqT07omnBE1nP9F87+0Uns/M0ZvPvhR5iKJZBUUu/Z8iI3bv+kFw0Vt3ClSAuyVODLxHzBEYDti7fmajwcxed2HTVMFw2yFpdDglOWMBXL7EjD45JRstiNz1TcjIaKYgZDmsF2gY+08Z2OHvzyJGuXkvFISK0cy71ufLL4JlTcUsAzRJtj4CMhPrPznzGpc8cMoky5HRIgSTxDtCnTXmcg4xgPRxn0yFSiCQXReBKvnRnFlgN+tPsH9Z4S5REDH6nWwS1OMrGpWAK7OgMMfjbCwEeqBUcm9J4CkSpTsSR2dQZ5md4mGPhINTaYJSuYiiWwt2tA72lQHjDwkWpsMEtWcaxvDBfC+vf6JG3xE4tUY4NZsgxFQcepYWxbt1LvmRjC9O4qVionx+sMpNp4OIovfP91Bj6yhIc++0ns/upn9Z6GrtLdVbr7xwBgxns7Xc1q7cql+NSSm/DRVMx0QZErPlIt3WD2SGCUvfbI9CYiMb2noKt2/yB2dQYRiSdmfT+nyz129Y3d8N88zhHsPtpv+PuRPOMjIXY0VcPjdOg9DSLVvB6X3lPQTSroBTAVmz3oLSQSTyIaT+Jwr7HvRzLwkRANlcVoa/ahwMWXFJmXLAG+5UV6T0MXPUMh7OoMZlwPdT6KYuz7kfyUImFaG6vQ1lyHApcDUv77AxOpJgFXC9bbzZ6uAUTiYiswGfV+JAMfCdXaWIWXtjZiU3053E4ZHufMl5jMgEgZkCXA7ZSxzJvfJIn1NaWGT8zQwng4iu7+MU3O6CNx492PZHILCbeqohj7Wu+YswXUv60sxld+4td7mmRg9cu9+Nl/uBNLC9341ouncPD0Oc0fU5aAR++t0fxxjEjLsoOKcu1+pFG+VDDwkWaWFrrnvA9VVuTG+UleFKYbeZwyvtTwiasfki98bTWaaoew69UALn6sXcbltrtX2LbRdHBkQtPrSBJgqPuR3OokXXzn/lq9p0AGpeDGc7a/Wl2JU0/dj6OPrsOqCi+cgj+5vrRqOR7fXCd2UBPRuuxgJJ5E8Nykpo+RDa74SBctd1Si+72xvGxhkXlIErChdu5zturyIvxmx90AMGMrfTwcxV8+vox4IomxySgufhxDJsdVsgRsW7cCjz9g36AH5KfsoJHuRzLwkW5e+NpqANmd39xfX4bu/nFWibEoj9OB7U3VGf3sfFvpp4dD2Ns1gGN9N1YekSVAkiSsu60Ej91bY9vtzenyUXbQSPcjWbJMJavWssunl08N4Qf/3IfRec78yovc+M4DtRibvIzdR/sZ+CyowCWjrbkOrY1VwsacK8GqZTXfn9NpXXbQ45Tx2H01hjnjY+DLUSa17IxetsdoBkYnsetQAAPnw/j4cgI3LXKguqwQbZvrUF2eulT86Et/wK//+KHOMyWRJCm10mtr9gkNepSdrb94R7Oyg26njOOP32OYLxvc6szQ9JVd4NwEBs6HkZjjBZKuZXe4dxRv9I/zDZ2h6vIi/PTrd877M+z9Z14SMOPcLf0FcUNtKbY3VXPLUWc7mqrx5nvjmIqJvcS+0LmtHhj4FjDfym4h08v2AGDwE4C9/8xLliV8+hNelBS6ueVoQOmyg6laneK2PLM5t80XforMY6Eq5ZlKl+1ZVVHMb7UqsfefeSWSCvpHJ/Hwmgp+CTSo9N9FxOcekD639Rnuc4/3+Oagtkr59YxYtseMWtbYs46iVRi1diNds1DZwUxIElDgcghPVhKFyS2z6BkKYcsBv/C9bqMd8JqVlofwpD1JAjbVl2Nf6x16T4UWMFtW7M0FTvz54sf43fsXIOFaTgNgnnNbbnXOQosq5YDxyvaYlVaH8JQfRqzdSLOb766kma+KMPBdR9sq5cYq22NWuR7CF7hkfGrpYgRH+DfQG78Emt98QdHoeMZ3HS2rlAPGKttjZtn0/pt+3tD+n+6Cg62RdMcvgaQnrviuo3WVciOV7TG71sYqrKoovlqaKtPzho115TjcO6rLnOkafgkkvTDwXUfLC9Iepwzf8iLNxrejhXr/zXbewDNCY+CXQNILA991tLwgPVu7FRIjm/OG9BnhdzsDiAi8qEuZ45dA0hPP+K6TuiAt/mkxYtkeO2ttrMK620r1noZt8Usg6YmB7zpaXZA2YtkeuxuZiOjyuLIENH96GTbVl8Mp2y/Thl8CSW/c6rxOSaEb62tKhV6QNmrZHjtr9w/iX4Y/yvvjShJwf3059v71GgCpvnHfOxTAW2cvImmTC/n8Ekh6Y+WWWYiq3MJ2K8bUMxRCy/7jiM3VXkNDBS4HXtraeMOXoAvhKH5+YhC/DZ7HePgyAGDp4kUovsmF3w9e1GWuWtCi5x5Rthj45nCtVmf2yQ9mKdtjV1/9yQm8dfZi3h83lw99rRuE5gu/BJKRcKtzDtlWKXdIEqrLFqN++c2mKdtjR+PhKN4e1CPo5fahr8XWu1ZkCVjkkE1Zu5HshYFvHrlekCbj+tmJwbyfpX3iZg/2ta7J+fVhlnuHDknCtnUr8OeLU6ar3Uj2wq3ODJm5ICtd0/zf30TvuYm8PuZGXxn+xyOfUzVGLlvvbqeMlaWL8f7YpRu+tDllCXENvgHUlBXiH1sa0FBZLHxsIlG44suQmQuy0jVDf/k4748pokJJNlvv15+nzfWlDYqCH7zWB5F5M/3nw9hywM+zPDI0Bj6yjXb/ICY1LEk3G5EVSnLdep/vS9uHH0XwC/+fhG7/TsUS2NUZuDpnIqPhVifZglbNhReyyCHhxBMbhW+Hi9p61zJrdK6rG0R644qPbEGr5sILubVksSZnwKK23tNZo1p0q4jEE9jbNcBO62Q4LFlGlqdlc+GFLL+5IP8PmqUdTdXwaFCfdnqndSIjYeAjy9O6ufB8HCaoxdlQWYx/+GIdtJhqutM6kZEw8JHlad1ceD5m6TnX2liFrXevED4uO62TEfGMjyxPy+bC8zFbz7knNtdBkoD9b3wgNMuTndbJaLjiI8vTsrnwfMzYc+7xB+rwX//d7ULP/Myy6iX7YOAjy9OqufB8zNxzrrWxCr/cthY1ZYWqxzLbqpfsgYGPLE+r5sLzMXvPuVUVxfjf32jEIoe6jwgzrnrJ+hj4yPLSd9WkPCVYWqXxcEmhG021uT9vZl71krUx8JEtpO6qOXL+fZdDWjAASFK6/ZB1Gq2qed7Mvuol62LgI1toqCxGW7MPBa7sXvIel4zv/vvb8fI3P49N9eVwO+UbEj88Thlup4xN9eV4aWujZYIekPvzZpVVL1kTa3WSraTa+2Tf4SDNru2p1D5vREbCwEe2c3o4xObCOeDzRlbBwEe2ZdfVm1p83sjsGPiIiMhWmNxCRES2wsBHRES2wsBHRES2wsBHRES2wsBHRES2wsBHRES2wsBHRES2wsBHRES2wsBHRES2wsBHRES2wsBHRES24tR7ApQ/4+EoOk4OIzgygYlIHF6PE75lXjy8hsWFicg+WKTaBnqGQtjTNYDu/jEAQHSWdjJNtaXYvr4aDZXF+kySiChPGPgsjg1EiYhm4lanhe3rHsA/He7DtAXenBQFmIolsKszAAAMfkRkWVzxWVDPUAjPHQrgrbMXc/r9ApcDL21tZBdtIrIkZnVaTLt/EFsO+HMOegAQiSewt2tA4KyIiIyDW50WkjrPC2AqlsHe5jwUBTjWN4YL4ajhsz2ZqUpE2eJWp0X0DIWw5YAfU7GEkPE8ThmP3VeDbetWChlPNGaqElGuuOKziD1dA4jExQQ9AIjEkwiemxQ2nkgLZapGrgTBw72jeKN/nJmqRDQDA58FjIej6O4fm/e6Qi4mIjGxAwqQzXYuM1WJaDZMbrGAjpPDmozr9bg0GTdXPUMh7OoMZn2GORVLYldnEKeHQ9pMjIhMhYHPAoIjEzPOuETwOGX4lhcJHVOt5w4Fcj7DZKYqEaVxq9MCJiJx4WMqAFpWVwgfN1f7ugdUXdEwU6bqQpjJSqQOA58FeD1i/4ySBGyoLTXMh2i7fxA/eK1P9TgSgI5Tw4bNVF3I/JmsI9h9tJ+ZrEQZYOCzAN8yL9zOEWHbnR6nA9ubqoWMpVbPUAjPvhpAUkDijpEzVRfCTFYicXjGZwEta8RtSRa4ZLQ1+wxTrmxP14DQ80sjZqou5Fom6/yFxoGZmazt/sG8zI/IbBj4LKCk0I31NaWQJHXjFLgcaGuuM8xKYTwcxbG+80LHNFqm6kKYyUokHrc6LWJHUzXefG8856zHtSuW4MnNdYZZ6QGpaxrxhLjLiUbMVF3Inq4BRHLNZI2lMln3td4hdE4ik2uYqEN6YOCziIbKYrQ1+7Ku1emUJXz7/hp8c70xzvSm6xkOQeSdfKNlqi4kveLN9TlQAPw2eF5YJqvI5Jr0WF1955FIKpj+/cYhfYgfHunDBl8ZE3VIE9zqtJDWxiq0NdehwOVYcNtTklJbmzu/VG/IoAcA/aNiE1GMlKmaiY6Tw0iozOpJJBV0nFJf4CDd9eNIYBTRePKGc9fIlX93uHcUWw745z1fbPcP4iv7T+Bw7yguJ2YGPQBIKMDlhILXzoziK/tP8KyShOOKz2JaG6uwqqIYe7sGcKxvDBKuZfwB1wo4b6gtxfamakNtbV5PZFKLQ5IMk6maqZ7hkOps1qSSWl2pIbJMXLt/EDsPnsmoOTIARBNJ7Dx4ZtaxiHLFwGdBqyqKsa/1DlwIR9FxahjBc5OYiMTg9bjgW16EltXmOD9xO8VtSNxbV2boID8bUSteNeOoTa5ZVVF89XnvGQph58HejINeWjwJ7DzYO2MsIjUY+CxsaaHbtJe1AaCmrBDvj10SMtZzD31GyDj5JGrFq2YcNV0/pq5LrnnuUADxHJew8aSC7x0K4MVvrM3p94mm4xkfGVZD5S2QVV7RAIDa8kJTrHCvJ2rFm+s4Irp+HOkdxYVwFOPhKN4ezL3kHAC8dfYiLoSjqsYgAhj4yMBa1lTAISDy/cMX6wXMJv9qygrFjFOe2xUOEV0/EgrwwrH38LPjg0LOK39+YlD1nIgY+MiwSgrd2FBbpmqM+uVFuPu2UkEzyi8RK15ZQs7XAUR1/Th8ZhSvB0dVjwMARwNiCxqQPTHwkaHtaKpGgcuR0++6HBKe//IqwTPKHxErXocs5Xx3UVTXj5GJCM5PitmivHDpspBxyN4Y+MjQ0hfzC1zZvVTdThlPP1hv6ixAESvejb6ynM83RXb9yLWiEJEWGPjI8LK6mI/UxfynvmicmqNqqFnxFrjUddnwLfMKSS5KKql7lCKUFC4SMg7ZGwMfmUJrYxVe2tqITfXlcDtleK7LVPQ4ZbidMjbdXo6XtjZaIugBua94RXTZaFlTIaxk3C2LxQSsjT51K2AigPf4yESscjE/W+kgPl8/vjRJSvVTFNGPr6TQjWVeN859pP58rn65F3+++LGqzE5ZAv52bZXquRAx8JHpmP1ifi70KkV3X90y/Nz/J1VjeJwyGiqLceHSZbx1Nve7fHfdusSSX2wo/yRFUXM9lYjyLZ8r3vFwFI3f+23OFVeAVKLR8cfvwfBfptCy/zhiObSacjkkvPzNz5s6WYmMgys+IpPJ54q3pNCNe3xlONI7mtN5nyRd64qxtNCNpx+sxzOv9GYV/FwOyfQZumQsTG4honntaKqGJ8fMUo9zZmZpa2MVnn6wPuMyaulrKVZJViJj4FYnES0om9ZEaanM0tmvlZweDmFv1wBeD44hqSgztlKdsgRZknCPz/its8icGPiIMjAejqLj5DCCIxOYiMTh9TjhW+bFw2usmUk6m1TwE5tZarcMXTIGBj6iefQMhbCnawDd/WMAZrb4SWdSNtWWYvv66pxrYppJeqVm9ibHZG8MfERzuLrCiSXmTewQeXfOLLhSIzNj4COaRbt/EM++GsiqO8F8Z1pEZBzM6iS6Ts9QCM+80pt1S56pWBK7OoM4PRzSZmJEJAQDH9F1nvjV6ZwuWQNAJJ7A3q4BwTMiIpEY+Iim6e47j8C5yZx/X1GAY31juBAW03+OiMRj4COa5rudAdVjSAA6Tg2rnwwRaYKBj+iK8XAU74+FVY8TiScRVLFqJCJtMfARXdFxclhY/7mJSEzQSEQkGgMf0RXBkYl5K5Jkw+txiRmIiIRj4CO6YiISFzKOLAG+5UVCxiIi8Rj4iK7wesR16WpZXSFsLCISi4GP6ArfMm/G7XLmU11WyLJdRAbGwEd0RcsaMau0p5rrhYxDRNpg4CO6oqTQjfU1pZCk3MeoX16Eu2tKxU2KiIRj4COaZkdTNTzO3LqNO2UJz395leAZEZFoDHxE0zRUFqOt2YcCV3ZvDbdDws4v1bMHHZEJiEtjI7KIdFuhTLqNA0CBy169+IjMjv34iObAbuNE1sTAR7QAdhsnshYGPiIishUmtxARka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka0w8BERka38f6LrdGgW7/pxAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAn/ElEQVR4nO3df2xc15Uf8O8bDsNhKtHEyrSsmnbUhBYpeUO7kmLQMGpTdlwlKpo2AINlUbqRjYJGpRqwiwLGQsUmLSq0RoFV0VSCUnYTea0WIEBgtynAbSVVpOytTf+QvFQciaQor1wyKzGk3DHFLmeWQ07/GD9rRJEz89499829734/f8rSzDOH885995x7jpfP5/MgIiJyRKLaF0BERBQlBj4iInIKAx8RETmFgY+IiJzCwEdERE5h4CMiIqcw8BERkVMY+IiIyCkMfERE5BQGPiIicgoDHxEROYWBj4iInMLAR0RETmHgIyIipzDwERGRUxj4iIjIKQx8RETkFAY+IiJyCgMfERE5hYGPiIicwsBHREROYeAjIiKnJKt9AUQq5hayGDg/jbEb85jP5NCQSqLt/gb8YFczNm2oq/jvEJE7vHw+n6/2RRAFNTqVxtHhSZybmAUAZHMrX/63VDKBPIC/+VAj8nngz6bS6/6dztYmHHi6BY8+2BjdxRNRVTHwkXVOjlzD4cExZHLLUP3t9TwglazBoX1t6OnYKnJ9RGQ2bnWSVQpB7zIWl1bK/+UK5PPA4tIyDg9eBgAGPyIH8ImPrDE6lUZ33wgWl5a1vH59bQ36ezvQ3tyo5fV1YP6SKDgGPrJG75sf4vTlGeXtzfV4HrB3x2Yc79mt5w0EVZLjZP6SaG0MfGSFuYUsnnz97B03eB3qkgm889ozRj8tVZrjZP6SaG08x0dWGDg/Hcn7eAAGLkTzXmHcznGWL+wpzl+eHLkWyfUR2YCBj6wwdmNe+9MeAGRyKxi7fkv7+4QxOpXG4cGxwIU9i0srODw4hovTaT0XRmQZBj6ywnwmF+F7LUX2XkEcHZ5EJheusCeTW8ax4UnhKyKyEwMfWaEhFd3Jm4ZUbWTvVam5hSzOTcyGLuzJ54Gh8VncXMjKXhiRhRj4yApt9zegLqn/1zWVTKBty0bt7xOURI7T9PwlUVQY+MgKXbuaI3mfPICundG8VxASOU6T85dEUWLnFhKh+yD1vRvq8PS2Ju3n+Pa0Nhl5lEEqx2lq/pIoSgx8pKT0QeobOHJmQuwg9cHOFrx9ZU5b55ZUsgYHOlu0vLYqqRyniflLoqgx8FFo5Q5SZ74IgqcuzeCtiTnlg9SPPtiIQ/vaRHt1+uprEzi0r83YdmVt9zegxvsLLCs87ZqavwTYeo2ixcBHoQRpFi3ZCNr/t+5NZ8grBb3CK5iXv4xyx4DIx5ZlFJhKs2ipRtAXp9M4NjyJofFZeLj9dAnc7lW586HCe1z4P+l1/86e1iYc6Gwx9kkPkGnObWIfUrZeo2rhEx8FJnGQWvUG3N7ciOM9u3FzIYuBC9MYu34L85klNKRq0bZlI7p23t4iq+TvmEzl5+0zLX9ZrR0DIoBPfBSQRLNoGxpBm0KqOffvfqcVLz1tRuAzYceA3MZzfBQID1JHS+LnnUx4hf1CQ6g8wS4uLePImQnhKyLXcKuTAnHxIHU1Kw4lft65lbwxP2/V1mtAofXaCyfexyvPbmPBC4XCwEeBSB2knrOgZ6QJFYdxO7guNV5qaHwWI598xoIXCoVbnRSI1EHq/311Di+d/BCjU2mR15N2cuQauvtGcPryDLK5lbueujJf/NmpSzPo7hvRNu8ubgfXJcdLcdYghcXAR4FINYteyUN70AjLpGGvEj9vkw6uS4+X4qxBCoOBjwKRbBZt4oRw04a9Svy8TTq4rmO8FGcNUlAMfBSI3yxaskjQpFW7acNeVX/euhpvzy1kcfzcVbzS/xFefOMDvNL/EY6fu1p23p+O8VKcNUhBsbiFAtPRLFrqYLsKyWGvkoFG5ectfXBdteCna1ezluMI/hGZl576hvhrVxN7mOrBwEeB6WgWrStoBCF5RlHyBhz25y3deFuiKbmu8VK2HZEpx4SK4jjjVieF0tOxFYf2bUd9bY3Ytme1D7abfEYxyM/b8wodTg7t2y5W6i9Z8HOwswWpZI3IdRUz5ciGKlMqiuOMgY9C6+nYiv7eDuzdsRkJgeBX7VW76Wfmin/edckEUqtyZalkAnXJBPbu2Iz+3g6xoCdd8OM/wdbXyt5+TDmyocKkiuI441YnKfGbRff8wXv408k55der5qrdhjNzQZpzS9HRlLx4vJRErtikIxthqS4w2psb2cO0Qgx8jtCdJL93w1cErrK6q/ZCxeEN5e3Oe76q/2u1aUNdJIUcOgt+ejq2or25EUfOTGBofFbpOk06shGWCVNPXMHAF3NRJcklgka1V+1SFYef3vxLgasxg+6Cn/bmRvx8/+PY//P3MTwRLvjpOrIRJVMriuOKgU+zapYjS1ThVUoiaFR71X7vhjp0fH3Tl4uEsN65ejM2N6CoCn5e/fY2vPfnnxlxZCMKq+8LNz7PILes9nOO65EOHRj4NKl2OXLUgz5Vy9RNWbV/7be+qvwacboBRVXwY8qRDd1K3RdUVbs4zCas6tSg2uXI1Wq7pVKmbsqqXaK4Jk43oCgLfqp9ZEO3cvcFCXE50qEbA58wE8qRq9V2K2yZukmrdtOPNETtnnr1YqMgudtqHdnQLch9QUUcjnREgVudgkwoR652kry4TH293KLP8wpPeibNVLPhSEOUPv1MvVAnaO62Gkc2fDpy8mHvC0FVuzjMJgx8gkwoR5aowlteyeMP372GV59rDfXv/TL1Y8OTGBqfhYfbhTRA4QuaRyGnd6CzxYgnPV8cqlOlzC1k8e7Vm8qv8+Q3NoUKGlEd2QD05uRV7gtBVLs4zCYMfEIknrROXZrB758exw+f2Bp6dSlRhZdbyeMnQ5MYm7kVuvimmqt2FXGoTpUiNS39IYGCIZ10Vj+r3hcqZUpxmC0Y+IRI3CRW8sDRoUn89K1PQq8upXJU/qBY1WMOUa7aJcSlOlWC1LT0zxdlh89K0l39LLV4KMeU4jBbsLhFiNRNYjkPpYpPyUGfrvYCjEN1qoS4F/pEUf0sdV8oxaTiMFsw8AmRukn4wgYdHYM+TRoUG4U4VKdKiHuhj0rubXGpsupn6ftCMRuPdJiCgU+I5JNWsaBBp2uXntySjuniJov7mbJKSCyiTC30kci9FVIBvyn5d3TcF2w90mESBj4hOp60fEGCjp+jkpqR5ys+5uCKuJ4pq5TEIsrUQh+pnPyLb3xYckdG4r6QTHh4ZEsDnm27D99/7AG8+tw2vPPaMzjeszs2uwtRY3GLEKkGx2sJerbuYGcL3r4yJzLupVicWnFVytbqVAlxLvSRyr3lVvIli10k7gs1CQ9/+OLjRv4cbcXAJ0T1JlFOkKATtu9hOXFqxRWUbdWpUlQWUSYX+kjm3ko1oIjz4sFm3OoUpFINWE7QoBMkRxWEqRV6pEdcC32kc2+l0hGsEjYPA5+gsDeJSgUNOsU5qoRQ8DO1Qo/0iWOhj3ROvlQOPK6LB5sx8AnT9aQFhAs6fo7qn+5pQY3i9ZhaoUf6xa3QR0f1s5+OWEscFw82Y45Pg9W9KpdX8sitqCX+VIPOP3piK3761idYVkjom1qhR9GIU6GPjpx8uXSEzT1s48bL53V3kXPbzYUs3nj3Gv7j0CRUYl9dMoF3XntG6cbS++aHSkn2vTs2KzfRJjLF6FQa3X0jotXPz7bdhz/44bfK/r04LB5sxic+zTZtqMM/e64VYzduVb2yK64VekRh6Kh+rjQd4WqVsCmcC3w65m1VwoSgE/aLziQ7xZWfQ/vxf79U9XQERceZrc7S87YKe+thJyJUKkgneF8h6MgmucuNYfGZOCiWSIe3Jn6D/Sc+qHo6gqLhROAz6UZvyrVcnE4zyU5UpPfND3H60gzC3BCZA7dL7AOfKU9ZxUwKOkyyExWoFLvU19agv7eDi0RLxDrwmf6LzKBDZBYTF8qVqFbtgq1iHfgkyvf/9d//Jn+hiBxiSjqiEibULtgotoFvbiGLJ18/q9SBPeEVRoJ4nsdfKCKHmJSOWI9NAdo0sQ18x89dxZEzEyKjR9bDXyiieDM1HWHrlqwpYnuOT2reVin5PLC4tFxyHhcR2cvEg+ajU2kcHhwLfOi+1Pgk18S2SbXkvK1y/F+oi9PpyN6TiNx0dHgSmVy4NmuLS8v495oGZtsktoFPet5WOaXmcRERSZhbyOLcxKxSY+2z47N44cT7GJ1Ki12XbWIb+KTnbZVTah4XEZGEgfNrjz0Kamh8Ft19Izg5ck3k9WwT28CnY95WOaXmcRERqZKsXfDrE1wMfrENfP68LelhsKWUm8dFRKRCunbB1fqE2AY+oDARIZWsifQ95zNLkb4fEblDR+2Ci/UJsQ58/hie+tro/jcrncdFRBSUjtoFF+sTYh34gMLZukP7tqO+tkb7tifncRGRTrpqF1yrT4h94AMKwa+/twN7d2xGXTKB1KoVUyqZwFdqEkgoBsY8gK6d0RfVEJEbdNUuuFafENvOLau1NzfieM/uki2IfvePfqnU1HpPaxMbVxORVgc7W/D2lblQU2dKcak+wZnA5yvVgkjlFyqVrMGBzhbVyyMiKsmvXQjaq7Mcl+oTnNjqrFTYYphC89c25/vfEVE0imsXJLhWn8DAt0qQYhjPKwysZcdzIoqaX7uwp7VJ+bVcq0+I7VgiVTbM4yIiAoD9J97H8PhsqH/rD90+3rNb+KrMxcBXhqnzuIiIfKNTaXT3jYSqT6ivrUF/b4dTC3gGPiKiGOBw2so5V9VJRBRHfvA6PDiGTG655LEszytUoh/a1+Zc0AP4xEdEFCusTyiPgY+IKIZYn7A+Bj4iInIKc3xERJaaW8hi4Pw0xm7MYz6TQ0Mqibb7G/CDXXyqK8X6Jz5+8ETkmtGpNI4OT+LcROHsXnaNPF5naxMOPN2CRx9srM5FGszawMcPnojippKFfOHYAis3VVgZ+PjBE1GcVLqQ/xub/hreePcaz+opsi7w8ZAmEcVJpQt5FS52ZynFmibVcwtZ/OgXH+NHv/hV4FEci0srODw4hovTaT0XR0QUwu2FvL6gBwCZ3DKODU/qewPLGF/VWbwFsLS8gpWQvxz+By/ZiJWFNUQU1uhUGocHx0Rn6q0nnweGxmdxcyHLexMMD3ySWwCSH3zp/fgbOHJmgoU1RFTS0eFJZHKyU9RL8QAMXJhedxC3S4zd6tSxBeB/8KrX1d03gtOXZ5DNrdwR9IBCe6BsbgWnLs2gu28EJ0euKb0fEcXP3EIW5yZmtW5vrpbJrWDs+q3o3tBgRj7x6doCUP3ggxTW5PPA4tIyDg9eBgAW1hDRlwbOqy3Aw5rPLFXlfU1j5BOfzi2AsB982GDMwhoiWm3sxvxdu0VRaEjVRv6eJjIu8OneAgj7wasEY1ZUEVGx+Uwu8vdMJRNo27Ix8vc1kXGBT+cWQNgPXjUYFxfWEBE1pKLPMuUBdO1sjvx9TWRc4NO5BRD2g5cIxhKFNUQUD233N6AuGd3t1/MKM/h4lKHAuMCnawtA5YOXCMasqCIiX9euaJ+8UskaHOhsifQ9TWZcVaeuLQCVD14qGLOiiogA4N4NdXh6WxNOX57RfqSh0LKxrWS7MteacRgX+ApbADdEtzsr+eBLkQrGy2HbzhBR7BzsbMHbV+awuBSuaM5DIX2z7n+voEm/q804jNvqlNwC8LxCc1bVBtVS+/HXP19Ufg0iiodHH2zEoX1tqK8Ndm+pr03gnzz1dex9ZDPqkgmkVt2bUskE6pIJ7N2xGf29Heve+1xuxmHcE5/EFkDCA2prEtjT2oQDnS3KHcm7djXj909PKL0GAPz53P9jrzwi+pIflMKOWbu5kMXAhWmMXb+F+cwSGlK1aNuyEV07S29Rut6Mw8ixRKNTaXT3jYTaAqjxgOc7voaXn3lYNMA8d+QcrvxmQek1UskEXn1uG3vlEdEdLk6ncWx4EkPjs/BQeNry+fP4pBbyKvfXuIw3Mu6JD7i9BWDS3L2/3phSDnys7CTTuFbUYKr25kYc79kd+gkuCIlmHJJTbqrByMAHqG8BSKtJyKRDWdlJJnC1qMF0mzbUad0RkmzGYfPCyLjilmI9HVvR39uBvTvUkrgSpCo72SuPqs3logbXDZyfxopidisOzTiMfeLzRbkFUIrEMQv2yqNqc72owXWDH1/H0rJa4ItDysb4wOeT3AIIk9fo2tWMI2fUKjvZK4+qSXXCSHtzo/VFDS47OXINH//6c5HXsj1lY03gq1SpoDb9fxdD5zVUj1mwVx5Vm1JRw1I8ihpc5S96pHpo2J6yiU3gK5es/3f/cwx5FLZv1vrs/fLhU5dm8NbE3JqFMiqdFtgrj6pJuagB/ndjFk9taxK9NtJPcsZpHFI2Rhe3VKqSZP1yHlhZJ+gVK85rrE7qq3RaUGmZRqRKYsLISh548Y0PWOxiGekZp3FI2Vgf+G4n60sfeQhqvcnpPR1bcWjfdtTX1sDzSr+GVMs0IlVS475yK/k1F4VkLskZp3FJ2Vgd+MIm6yu13uR0k45ZEFVCctzXeotCMpPkjNO4pGyszvFJ7luvpdRhTVOOWRBVQnrcV1w6eLhAatGT8BCblI21gU9633o9/mHN9Y5S6O60QCRBetxXXDp4uEBq0dP+wD2x2b2ydqtTct+6lDgc1iTSMfE7Dh08XCAxVu0rNR6++80tQldUfdYGPsl963JsP6xJ5J9DLVeQFQQXhXaQWPR4nmd9JWcxawOfZLK+HNsPaxIBhXOoqWSN6GtyUWg+1UVPXCo5i1kb+KST9euJw2FNIiD8OdRSuCi0g8qiJy6VnMWsDXwS+9aViMNhTSKffw41mVDf8+Si0B5svnEnawOfjmT9anF8xCfq6diKn/3wW1CNfVwU2oXNN26zNvDpSNavFsdHfCIAeGpbE769fXPof89FoZ3YfKPAy+d1n4TTZ3Qqje6+kVBNo8spPOLHc7VDBKh9f+pra9Df2xG7LTCXuNx8w+rABwQbrFkJzys86a01nYEobsJ8f7goJNtZ27nF53/5Dg+OIZMr36g64QEJz0My4X05iggoPOLnUdi+OdDZwpUsOSHI94eLQooL65/4fBen0zg2PImh8Vl4QMmg9kBjvbOP+ERrCfL94aKQbBebwOdzed+aSBW/P+SC2AU+cs/cQhYD56cxdmMe85kcGlJJtN3fgB/s4s2aiO7GwEfWGp1K4+jwJM5NzALAHb1b/e25ztYmHHi6BY8+2FidiySKkbgsMhn4yEqFakQWZBBFIW6LTAY+sg5L8ImiE8dFprWdW8hNo1NpHB4cC3xuc3FpBYcHx3BxOq3nwohi6PYis/xRsXweWFxaxuHByzg5ci2S6wuLgY+scnR4EplcuE49mdwyjg1PCl8RUTzFeZHJwEfWmFvI4tzEbNmV53ryeeDs2CxuLmRlL4wohuK8yGTgI2sMnJ9Wfo2/Wl7BP/jPIxidSqtfEFFMSSwyh8bNXWQy8JE1xm7M31FNFtbEzAK6+0aMz0MQVYvEIjOfz2Pggvrr6MDAR9aYz+TEXsuWJDxRNUgsMv9qOY/BX14XuiJZDHxkjYaUbE91G5LwRNUgtcj85a8/N3JxycBH1mi7vwF1SdlfWdOT8ETVILXIXMnDyMUlAx9Zo2tXs/hrmp6EJ6oGyUWmiYtLBj6yxr0b6vD0tiZ4nuzreoCxSXiiapBcZJq4uLR+EG1QcWmy6qqDnS14+8ocFpfCnS9aSya3grHrt8Rej8h2/iLz9OWZ0EcaivmLy5ee+ob6iwlwJvCVbrJ6A0fOTFjVZNVVjz7YiEP72gL36ixnPrMk9lpEUdC9iJdcZJq2uLQ28AX50Ms1WfWnTZ+6NIO3JuasaLLqMv+zKbRTknnya0jVirwOkW5RLeL9Rebv/eJXWBF46jNpcWnddIag4zHYyT++Lk6n8c8HRjExs6D0OqlkAq8+t82YbRii9VRjUsLfO/qnGJ3+XOk1AOD7jz2AI7/zmPLrSLCquOXkyDV0943g9OUZZHMrdx2wzHzxZ6cuzaC7bwT/9k8ux7bJKgHtzY34r/+4A1+pUat2yQPo2ilfMUokqVqTEr7721uUv2OpZAJtWzYqvYYkawJfmA/9P739CTIht8JMLMGlu927oQ6drfeFrvT0PGBPaxMLm8hoUpMS5hayOH7uKl7p/wgvvvEBXun/CMfPXS1Zcdm1qxmeYim1aYtLK3J8YT90lX3p4hJc3hTNppKETyVrcKCzRcNVEclRnZTwb/7kMjamakPlBVUrPE1cXFrxxKfyoavg+S47+En4+tpgv86FXG4b2psb9VwYkQCJSQnvfvIZTl+qLEW01tbowc4WpJI1od7fxMWl8YFP9UNXYVoJLq2vp2MrDu3bjvramrLbnp4H1NfWsICJrCAxKQEobDeW/O8l8oJxW1wav9Up9aGHZVIJLpXW07EV7c2NODY8iaHxWXi4fVQFuF31u6e1CQc6W4z7MhKtRWocV6X8vGB7c+Md35HiY0RRVpXqYHzgi/pDX43nu+zS3tyI4z27cXMhi4EL0xi7fgvzmSU0pGrRtmUjunayQw/ZRXIcV6X84r7jPbvv+PO4LC6ND3zV+NB9ppXgUuU2bajjuTyKBelxXJUoVdwXh8Wl8YGvGh+6z7QSXCJyT2FSwo3Id77K9de0eXFpfHGLjhlslTCxBJeI3KNjHFcl4lzcZ3zgq9aHbmIJLhG5R9c4rkrEtbjP+MAn8aEnAv5bU0twichNKufoVMS1uM/4wAeofej1tTV46amv83wXEVkr7Dk6FXEu7rMi8KkennztO9vR39uBvTs2oy6ZQGpVzjCVTKAumcDeHZvR39vBoEdExgnSpEFCnIv7rBpLJDGSw+YSXCKyn+oA2YvT6YrO0aX/cgnvXfssdH/NvTs233WOLy6sCnxA5R+6yYcno6Z7UjMRlRd0lmg55Rbxo1NpdPeNhGreXl9bg/7ejtjeQ60LfD4+uZUn/UUjonCqMUD29vtyEPdq1gY+Kq1aXzQiulO1gw/vBXdj4Iuhan/RiKjAlO1GpojuxMAXM6Z80YgI6H3zw9ADXAHgmdYm/Gz/42LXwxRRAQNfzJj2RSNy1dxCFk++fla5x+ae1ia88uw25uEFWXGOjyojMbT37PgsXjjxPkan0mLXReQiqVmiQ+Oz605Gp3AY+GKEXzQic0jOEl1vMjqFw8AXI/yiEZlDepaoPxn94nRa9HVdxMAXI/yiEZlDxyxRfzI6qWHgixF+0YjMoWOWaPFkdArP+AnsOsWtlZeOSc3FXzQbfyZE1dK1qxlHzkyIv265yehUnpOBr3Qrrxs4cmbCylZe/KIRmcOfJapyvGgtcZ6MHhXntjpPjlxDd98ITl+eQTa3ctfTUeaLPzt1aca6ykZdk5r5RSMKR9cA2bhORo+KU4Hvdiuv0j3rgMIWn42VjfyiEZlD1wDZuE5Gj4ozgW90Ko3Dg2OB+lcC9lU28otGZJbiAbIS4jwZPSrOBL6jw5PI5IL3rwQKT342VTbyi0Zklp6Orejv7cCe1ibl14rzZPSoONGrU6JnXsIDTuz/Fp7adp/glRXoqi69OJ3GkTMTGBqfVbq+umQC77z2DKs6iQTsP/E+hkN+J+M+GT0qTgS+4+eu4siZCeUy/2TCw4//7g6x0T1RDYrlF43IHJygUn1ObHVKtfLKreTFil2irC599dltobc9U8kaHOhsCf3eRHSnsHn4wszMNgY9AU4EPslWXhLFLlFXl/KLRmSW4jx8ueNHnld40uOgaDlOBD7pVl4qbbyqVV3KLxqRWXo6tuKnPTvxcNMGJLxCHUGxVDKBumQCe3dsRn9vB7+Lgpzo3CLdykuljZdKdakfcMPm23o6tqK9uRHHhicxND4LD4UtVZ+fV9zT2oQDnS180iPSZHV+f6Vo58cPgA/91lfxL/7Odi0Fda5zorhFahJysVQygVef21ZRGy+/anN0Oo3/8asbSu2LpCosby5kMXBhGmPXb2E+s4SGVC3atmxE1047+5QS2aKQ6hhDJlc61eF5hRz7oX1tfNoT5sQTn46eeZW08SpVtRmWVN/MTRvq2HuTKGK38/vl7wXF+X0ADH6CnMjxAXpaeZVq41WuajMs9s0kspMr3aNs4Ezg09HKa702XkGqNsNg30wi+0jk90mGM4EPuF3ZmFxdPhXCem28wq7qgmDfTCK7zC1kcW5iNvRCmANoZTkV+IBC8PvZD3ffVToc1Hr98lRWdZVg30wi+wycn0ZuWW0x7Of3SZ1zgQ8Antp2H769fTPCxj7PK5T8r65+VF3VVYINaonsM/jxdSwr3heY35fjZOADvih2EW7jNXBe72psvYBLROYanUrj419/LvJazO/LcDbw6WjjJdUTdD3sm0lkn6PDk3ccUFfB/L4MJ87xrcc/FyN1mFSyJ+hq7JtJZB8//SGB+X05Tgc+QLaNl3RPUIDdG4hsJpn+YH5fjvOBDwDamxtxvGe3chsvyZ6g7JtJZD/J9Afz+3IY+IqotvHq2tWMI2cmlK4h4QHfeeR+PPpgI/tmEllOKv2R8MD8viAGPkGqPUE9D/jbOzbj2D/cJX9xRBQ5qfRH+wP3cNdHkLNVnbqo9ARl1SZRvBTSH2q32WTCw3e/uUXoighg4BPHaedE5OvapV6MUpPwWNQijIFPA047JyLgdvqj3H1gPWxaoYcTg2ir5eJ0mtPOiRw3OpVGd98IFpeC9/Ctr61Bf28H7w/CGPgiwGnnRG4LMoDWV0h/cCdIBwY+IqIIFIKfTJcoUsPAR0QUEaY/zMDAZ5m5hSwGzk9j7MY85jM5NKSSaLu/AT/YxW1Toqiofg+Z/qguBj5LjE6lcXR48suGt9k1VoqdrU048HQLHn2wsToXSRRz/B7GAwOfBZgbIKo+fg/jg4HPcKwGIxeZtqXP72G8MPAZjOd/yDWmbSXOLWTxk7NXcHLkUyyHuFPye2gmBj6D9b75YeiG1wDwTGsTfrb/cdmLItLEpK3E4gC8tLwSeoK65wF7d2zG8Z7dshdIStiyzFD+5GaVZcnZ8Vm8cOJ9jE6lxa6LSIfbW4mlgx4A5PPA4tIyDg9exsmRa1qupbtvBKcvzyCbCx/0gMK1Do3P4uZCVu4CSRkDn6GkJjcPjc+iu29Eyw2CSMLoVBqHB8cC5c8AYHFpBYcHx3BxOi12LUECcKU8AAMX5CaxkzoGPkNJTm7WuTomUnV0eBKZXPA8NlD43VYd/uwLG4DLyeRWMHb9luhrkhoGPkNJTW726VgdE6mS2NIfEtrSVwnA5cxnlrS8LoXDwGcoqcnNxTK5ZRwbnhR/XaKwTNnSlwjApTSkavW8MIXCwGcoicnNqzHRTqYxZUtfKgCvJZVMoG3LRm2vT8Ex8BlKYnLzWphoJ5OYsqUvGYBXywOcoG4YBj5DqU5uXg8T7WQSU7b0pQOwjxPUzST/W0diDna24O0rc6E6t5Rie6LdtHZWFF5hS/+G6NNW8ZZ+pb8POgIwUDhof6CzRctrU3gMfAZ79MFGHNrXFrhHYDm2JtpLt7O6gSNnJtgZ3zJdu5rFjiMU87f0X3rqGxX9fR0BuNCrs43tygzErU7D9XRsxaF921FfWyPyerYm2ld301h9g8p88WenLs3wwL5FTNnSl8ype16hRycbVJuLgc8CPR1b0d/bgT2tTcqvZWOi3aR2ViTvYGcLUkmZhV2xIFv6EgE44QF1yQT27tiM/t4OBj2DsUm1ZfafeB/D47Oh/q10w9wocm0qEyoSHvC3Hr4XT3z9Xub/DBdm7E8533/sARz5nccq/vsqv2s1HvB8x9fw8jMP8/fMAgx8ljFhVFGUo2NUJ1TouCbSw5/OIFHMlUom8Opz2yrO8d15DZy7F3cMfBaq5pczytExcwtZPPn6WbGCA07GNt/F6TSOnJnAUMhdDV9dMoF3Xnsm1NOXSeORSA8GPktV48sZdcA9fu4qjpyZED9YzBW6PlLb3/t//j6GJ6q3pX9xOo1jw5MYGp+Fh0KxjM/fQdjT2oQDnS2s2rQQA5/FovxyVmOL9ZX+j/DHf/YXgd9P5zXR2qS3v03Y0geAmwtZDFyYxtj1W5jPLKEhVYu2LRvRtZM5Y5sx8MVAFF9OlVxb2BX4i298gLNjvwn+hhqvie6ma/eB+TbShQfYY2DThrrASfwgVDvXh+mkAejrpqFyTXSnIMGp+KgJgLLByf/vzLeRNJ7jo7L+w/+6gqVltTxbmObYOiZUFGPDbjVRTE73z7Du3bEZdckEUqt+H1LJBM/OUWB84qOSTo5cw39571OsKG6Ih2mOraudlU+qYbervUNVBrf6jaQr2Wpub27E8Z7dzLeRGAY+Wpe/jbUslAUO2hzb76aheo5P8pqKudw7tBrb37q39Mkd3OqkNYXdxiolTHNsXe2sfGEbdrveO1RicCu3mqlaGPhoTSrbWGsJ2xzbn1BRXyv/qxr2mtg7VGZwK2dDUrVwq5PuorqNtRaV5thBqvt0XtPcQhY/OXsFJ0c+Dbz96xd0tDc3ajk7GHWeUWpwq+2zIclODHx0F4ltrGISU6h7Oraivblx3QP7Oq+pOJe3tLwSutAnSEFHpaqVZ5Q6anLp+jxGp9Kxy4GS2Rj46C4S21jFpKZQr67ue/fqTbx1ZTZUIKr0mio9nF0J6bOD5a7NXxicujSDtybmRM+4SQ1uvf55Bt19Izx/R5Fijo/uIrWNBeiZQu1X95144XH8q+89Ejj/V+k1BcnlVUqqoKPaeUbJwa1xzIGS2Rj46C5S21g1nqe9fVTxhPpyQ0SDTMbWUdUKqBd0zC1k8Xv/7WP86Be/0npwvBzpyemS10ZUDgMf3UWiY0rCA55/4qFItq90dPeQrmotFqagY3Qqjd43P8STr5/FyfeCF9f4/DyjBOmjJpLXRlQKc3x0F4mOKbU1Cby852GhKypPsruHjqrWYkHPDpqaZ/SPmkhNTmf/VIoKAx/dRbVjikQVZ1gS3T2kq1qLBT07GGZCQTl+nlGiC0rxUROJyemS10a0Hm510ppUtrGkqjirRbqqtViQs4Om5hlX87eat9yjvtDhoXaKAgMfrSlsxxQdVZxRk6xqLRb0Sdi0PGMp7c2N2L7lHpHX4qF20o1bnbQuV+eh6ZoDGORJ2LQ8Y2WvKfNz03FtRMUY+Kikch1TUskE8ig8yRzobLH6Sc8ndTi7WNAnYZPyjJWS+LnpujaiYgx8VJZr89Ak5wCGfRI2Jc8YhMTPTde1ERVj4KOKuTIPTWIOYMIrHOkI+yRsSp4xCJurgcktDHxEazjY2YK3r8yFKtGv8YDnO76Gl595OPRN3IQ8YxgqPzfbq4HJHqzqJFqDSlXrv/zeI/jx935b6clFonvOalFU3LpcDUz2YOAjWoeuPqCVkGwCLX1t5VTz50ZUCS+f11UwTRQPF6fTValq7X3zw6rmGVVV6+dGVA4DH1GFoq5qHZ1Ko7tvJGSe0cPzTzyEl/eEzzNKcaUamOzBwEdksDC9Ogv5Mm4dEq2HVZ1EBnO1ew6RTnziI7IA82VEchj4iCzCfBmROgY+IiJyCs/xERGRUxj4iIjIKQx8RETkFAY+IiJyCgMfERE5hYGPiIicwsBHREROYeAjIiKnMPAREZFTGPiIiMgpDHxEROQUBj4iInIKAx8RETmFgY+IiJzCwEdERE5h4CMiIqcw8BERkVMY+IiIyCkMfERE5BQGPiIicgoDHxEROeX/AwTVtbKTioycAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -928,7 +961,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 38,
"id": "4a2a5f4a-6ffa-4c16-ae49-ff4fec4c467d",
"metadata": {},
"outputs": [
@@ -936,31 +969,26 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Entity Matching Evaluation \n",
- "---\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Entity Matching\n",
+ "***************************************************************************************************************************\n",
"Method name: Entity Matching\n",
"Parameters: \n",
- "\tMetric: sorensen_dice\n",
- "\tEmbeddings: None\n",
- "\tAttributes: ['description', 'name']\n",
- "\tSimilarity threshold: 0.5\n",
- "Runtime: 7.6384 seconds\n",
- "Scores:\n",
- "\tPrecision: 2.78% \n",
- "\tRecall: 23.33%\n",
- "\tF1-score: 4.97%\n",
- "Classification report:\n",
- "\tTrue positives: 251\n",
- "\tFalse positives: 8764\n",
- "\tTrue negatives: 1148187\n",
- "\tFalse negatives: 825\n",
- "\tTotal comparisons: 9015\n",
- "---\n"
+ "\tTokenizer: white_space_tokenizer\n",
+ "\tMetric: dice\n",
+ "\tSimilarity Threshold: 0.5\n",
+ "Runtime: 2.2469 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 97.14% \n",
+ "\tRecall: 3.16%\n",
+ "\tF1-score: 6.12%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "Evaluation(data).report(pairs_graph, EM.method_configuration())"
+ "_ = EM.evaluate(pairs_graph)"
]
},
{
@@ -975,7 +1003,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 39,
"id": "500d2ef7-7017-4dba-bbea-acdba8abf5b7",
"metadata": {},
"outputs": [],
@@ -985,18 +1013,18 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 41,
"id": "aebd9329-3a4b-48c9-bd05-c7bd4aed3ca9",
"metadata": {},
"outputs": [],
"source": [
"ccc = ConnectedComponentsClustering()\n",
- "clusters = ccc.process(pairs_graph)"
+ "clusters = ccc.process(pairs_graph, data)"
]
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 42,
"id": "5b52a534-691a-48be-b5e9-c073dc04b154",
"metadata": {},
"outputs": [
@@ -1006,7 +1034,8 @@
"text": [
"Method name: Connected Components Clustering\n",
"Method info: Gets equivalence clusters from the transitive closure of the similarity graph.\n",
- "Runtime: 0.0030 seconds\n"
+ "Parameters: None\n",
+ "Runtime: 0.0010 seconds\n"
]
}
],
@@ -1016,7 +1045,7 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 45,
"id": "00bc2e82-9bc1-4119-b8cb-4a1c18afee19",
"metadata": {},
"outputs": [
@@ -1024,49 +1053,23 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Evaluation \n",
- "---\n",
- "Scores:\n",
- "\tPrecision: 0.10% \n",
- "\tRecall: 88.66%\n",
- "\tF1-score: 0.20%\n",
- "Classification report:\n",
- "\tTrue positives: 954\n",
- "\tFalse positives: 970235\n",
- "\tTrue negatives: 187419\n",
- "\tFalse negatives: 122\n",
- "\tTotal comparisons: 971189\n",
- "---\n"
+ "***************************************************************************************************************************\n",
+ " Μethod: Connected Components Clustering\n",
+ "***************************************************************************************************************************\n",
+ "Method name: Connected Components Clustering\n",
+ "Parameters: \n",
+ "Runtime: 0.0010 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 97.14% \n",
+ "\tRecall: 3.16%\n",
+ "\tF1-score: 6.12%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "Evaluation(data).report(clusters)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "id": "074019c0-4b30-4270-a0c2-680149e0a345",
- "metadata": {
- "tags": []
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWsAAAEWCAYAAACg+rZnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAvzElEQVR4nO3dd5xU1fnH8c93QYN0EFCxAQYLgghYgw0j9vYTC6DGQiQxFhDBEoygRqNEjWIHK/YSC1iwIFhRAUEUUIMEFAgCSm8CPr8/zh0Ylt2Zu7szuzO7z9vXfe3cc+8998wsPnvm3FNkZjjnnMttBRVdAOecc+l5sHbOuTzgwdo55/KAB2vnnMsDHqydcy4PeLB2zrk84MHalZikwyRNlbROkkmqXcb8zo3yGZOhIuYcSQOj9/hoRZfF5ScP1pWMpI6SRkj6SdJqSd9JukvSlhm8zb3AHsDbwJ3AL2XMb2qUzwtlzKdYkppFwdIkLZZUK+nYNUnHHi1BnolrmsU4/RPCe3yrxIV3DpAPiqk8JHUFngCqAV8A44BmwGFAYzNbnKH7rIvusYuZzchEntkWBdT/JiVdYGYPSqoWpe8YpT9mZufGzDPxP09zM5uZ4rwtzGxtiQvtXBKvWVcSkmoC9xCC6BNAezO7wMw6A7sDK6Pz9pI0UtJCSQuiWvhuSfnMjGqLV0maKGmFpNclNYiOW3QPgO+i8zfUWpPyeTRKGxjtt5f0gaSlkpZL+krShdGxzZpBJB0i6f2oFjxX0pOSmiYdT9RqL5b0raRlkp6I+Q1iEXBh9Po4QqBeVOjz3C66/0JJa6PP6glJ9ZM+h4T/RmU5LKm54wVJz0laBZyZ3Ayi4K1o/4oov0Tt/vUY5XdVkAfryqMj0DB6/Xcz+zVxwMy+M7NfJG0HvAccRfhaPhE4HhiTCMZJrgUmA6uBY4A+UfqdSec8Ajwcs3yDgYMIzQBPE4Jjh6JOlLQX8E50/khgFtAdGClpi0KnXwd8TPgDciZwdoyyPAa0l7QfIWgvA14sdE4dYCtgBDA0Ku+ZwM3R8cKfw53A7KS0LsAuwOPAvOSMLXydPS/Kc6Ckk4C/AT8B58cov6uCPFhXHk2SXs8q5pyzgfrAGDM73syOBCYB2wKnFTp3gJmdA9wd7bcDMLPeSedcb2bXxyxfIsi+TghshwN/KubcP0fnP2ZmXYFDgPlAG6BT4XOjZovnk8uZxlBgHXATcCQhoC5PPsHMvgV6AtMI30qmRIcOj473Tjr9ejPrbWbTk9JmAPubWU8zG1m4AGY2B/gL4Q/CS8CW0XuZV/hclzmSHpY0X9JXMc8/PXqYPkXSU9kuXyoerCuP+Umvdy7mnGbRz2lJaV8Xc83E6Ofi6GdJe3xUK7Tfh1BTfxD4EvgZuDROOaP23kTbeCbKORcYDvye8P/AfYVPkNQN+By4BbgcODk61DhG/gCfmdm6NOc8B8wEFP0sXLt3mfcocHScEyW1BK4GOprZnkDv7BUrPQ/WlcfHbGx3vUbSht+tpJ2j5oOZUdLuSdcl2qsL18YTgSbOE+gVSfeqG71sXeic8WbWFmhAeOC5BXCzpOpF5LdJOaOyt8hAOZMlAvSHZlZULeuM6OcDwG+S9pV0TqKpqaj/j9bEKEMfwh+m1dHPy2Nc48rAzN4nVBQ2kLRL9BxnQvRcJfH/xwXAPWa2KLp2PhWoqP9RXB4ysxWSLgGGAWcBbSR9BjQFOgPbEB48/hXoJGk44at3O+BHytBtzswWSJoN7AA8IWk1sHeh00ZEPS++A+oRAuBPwPoishxC+B/lHElbEWrTTQhNEWNKW85CRgFHsGkPkWQ/Rj+PJfxhObaIc36Iyna3pG+B/nFvLqkN8HfCZ9AZeBe4QdJIM/sybj4uI4YQmqD+I2l/QtfUw4FdASR9RPimOLCoJq3y4jXrSsTMniS06b4O7AScQ+gPPRRYaWZzo+NvER5I7gO8BnQys5+LzDS+HoSmioMJNc5XCh0fQ/jDcSahB8Y44Awrou+omU0itCWPJQTJ5sAzwNFmVtY+3Yl7mJmNStH18DpgNKHZowOhfbuwKwkPFY8GehHan9OKeqw8TviD1cvMJkbX/wZ4PGaPFpcBCgO6fgc8L2kS4ZvUdtHh6kBLwjfBbsDQRG+giuD9rJ1zVUrU5/5VM2sdNdt9Y2bbFXHe/cCnZvZItD8KuMrMxpVrgSNes3bOVVlmtpTQT/40gKgPfNvo8MuEWjWSGhGaRSpsEJgHa+dclSHpaULz2m6SZkvqQWia6yHpC8JzkZOi098EfpI0ldAk1s/MfqqIcoM3gzjnXF7wmrVzzuWBnO26t3pdifvNuipg7qLVFV0El4NaNK6h9GeltlW7i2PHnFUT7y7z/UoqZ4O1c86VK+V2Q0Nul84558qLFH9Lm1XqOUiiXieDJU2XNFlS+3R5erB2zjkINeu4W3qPknoOkmMIA25aEiYM22x+msI8WDvnHGS0Zl3UHCSFnAQMi0bSfgLUj6YwLpa3WTvnHEBB4Ykis2p7wtwyCbOjtP8Vd4HXrJ1zDkrUDCKpp6TxSVvPbBfPa9bOOQexmjcSzGwIYba+0prDxnU/IcxYOSfVBV6zds45yPQDxnSGA3+IeoUcACwxs2KbQMBr1s45F5SgZp0+Kz1NmASqUTTX+wCipe3M7H7CNMbHAtMJy8adly5PD9bOOQcZHRRjZt3SHDfgopLk6cHaOeegvHuDlJgHa+ecg5wfbu7B2jnnAArKfW6mEvFg7Zxz4DVr55zLCxnsDZINHqydcw78AaNzzuUFbwZxzrk84M0gzjmXB7xm7ZxzecBr1s45lwe8Zu2cc3mgKvcGkTQCKLy8+xJgPPCAma3O5v2dcy62HK9ZZ7t0M4DlwNBoWwosA3aN9p1zLjdkcA3GbMh2M8jvzGzfpP0RksaZ2b6SpmT53s45F18Vr1nXlrRTYid6XTva/SXL93bOufiqeM36cuBDSd8BApoDf5FUC3gsy/d2zrn4crxmndVgbWavS2oJ7B4lfZP0UPGObN7bOedKQgVVOFhHOgDNonu1lYSZDSuH+zrnXGyqyoNiJD0O7AJMAtZHyQZ4sHbO5ZbcjtVZr1nvA7SKFod0zrmcVaVr1sBXwLbA/7J8H+ecK5OqHqwbAVMlfQasSSSa2YlZvq9zzpVIQRV/wDgwy/k751xm5HbFOutd997LZv7OOZcpVbIZRNKHZnaQpGVsOpGTADOzutm4r3POlVaVDNZmdlD0s0428nfOuUyrksE6maRqwDbJ9zKz77N9X+ecK4kqHawlXQIMAH4Efo2SDdgrm/d1zrmSUkEVDtZAL2A3M/spy/dxzrkyqdI1a+AHwsowzjmX06pksJbUJ3o5Axgj6TU2HRRzezbu65xzpZbbsTprNetEL5Dvo23LaHPOuZxUJWvWZnZdNvJ1zrlsyfVgndXB8JLellQ/ab+BpDezeU/nnCuNgoKC2Fs6ko6W9I2k6ZKuKuL4TpJGS5ooabKkY9OWr5TvK67GZrY4sWNmi4AmWb6nc86VnEqwpcomjC25BzgGaAV0k9Sq0GnXAM+ZWTugK3BvuuJlO1ivL7Rg7s5sOvzcOedygqTYWxr7AdPNbIaZ/QI8A5xU6BwDEtNu1APmpss02133+hMWzH2P8PfoYOBPWb6nc86VWEnarCX1BHomJQ0xsyHR6+0J3ZYTZgP7F8piIPBWNHCwFnBEuntme9a9kZLaAwdESb3NbGE27+mcc6VRkmAdBeYhaU8sXjfgUTO7TdKBwOOSWpvZr8VdkO3h5qPM7PfAq0WkOedczsjgcPM5wI5J+ztEacl6AEcDmNlYSTUIi7XMLy7TbA2KqQHUBBpJasDGJvm6hK8IVd6111zN+++NoWHDrXnxlfC3bMnixVzR9zLmzplD0+2355+33UHdevV49OEHef3VEQCsW7+e/874jjEfjGXVqlX0v/oKfv7pJ5A49bTTOfPscyrybbkYbr/pWj77+H3qN2jI/Y+/CMCwoXcz9sMxFKiAeg0acHn/G9i6URPGfjCaYQ/eQ4EKqFatGj0v7Ufrtu0BePuN4Tzz2FAAup5zAZ2PCQsw/efrqdx+099Ys2YN+x54EH/udSWS+ODdt3ji4fv4YdZ/uWPok+y6+54V8wHkqAx23RsHtJTUnBCkuwLdC53zPfB74FFJewA1gAUpy5eNtWwl9QJ6A02jwiY+haXAUDO7O10eq9dV7geRE8aPo2bNmvS/+soNwfpftw6ibr369LigJw8NHcLSpUu47PJ+m1w3ZvS7PDHsUR58ZBgLFsxn4YIF7NFqT1asWE7X07pwx+B72OW3v62It1Qu5i5aXdFFKLMvJ01gq61qcuvf+28I1itWLKdWrdoAvPL8k3w/cwaX9Psbq1aupMZWWyGJ/07/lpuu7cfQp15h2dIlXNqjG4MfehoQl/boyuCHnqFO3br0uqA7f+51Fbvv2YZr+17Eiad2Z98DD+L7mTMoKChg8KAb+OPFfSpVsG7RuEaZI22zXq/Gjjkz7zw+5f2irnh3ANWAh83sRknXA+PNbHjUO2QoUJvwsPEKM3srVZ5Z6Q1iZneaWXOgr5m1MLPm0dY2TqCuCjrssy9169XbJG306FGcePLJAJx48smMfvedza4b+fprHHPs8QA0btyEPVqF/+Fq1apNixYtmD//x+wW3JVZm707UKfuputvJAI1wOrVqyGq5W1Vs+aGGt/q1as2vJ7w6ce02/cA6tStR526dWm37wFM+PQjfl64gJUrVrBH672QxO+PPoGxH7wLwE7NWrDDTs3K4R3mpwz2BsHMXjezXc1sFzO7MUq71syGR6+nmlnHKCbunS5QQ4xmEElbA9XMbL6kwwm15RfMLG0Vx8zuktSa0NewRlL6sHTXVkU///QTjRuHbuiNGjUOzRtJVq1axUcffsDV/f+22bVz5szm62nTaLNX23Ipq8u8Rx+4i1FvjqBWrdrcPPjBDekfvTeKRx8YzOJFP3P9P0NdZ+GC+TRusu2Gcxo12YaFC+azcOF8GjXeZpP0nxYW2wzqkuX2AMZYNetXgeskHQa8AzwGPBQnc0kDgLuirRMwCCh2ZXNJPSWNlzT+oaFledCa/yRtqF0lvDdmNHu3a0+9+vU3SV+5YgWX976Uflf9ldq1a+Py07l/uoTHX3yLTkcex4gXn9mQ3vHQ3zP0qVe49h93MGzoPRVYwsotkzXrbIgTrFsB44GjgI8I7SxHx8z/VEIj+jwzOw9oS+gAXiQzG2Jm+5jZPj0u6FncaZVWw623ZsGCUAtasGA+DRs23OT4yDde45hjj9skbe3atfTpfSnHHncCR3Q+stzK6rKnU+dj+WjM5k1gbfbuwLy5s1myeBGNGjdhwfx5G44tnP8jjRo3oVGjJixc8OMm6Vs38kHDcRQUKPZWIeWLec4OQEfgDeBjkpo00lgV9RtcJ6kuoVvKjmmuqbIO63Q4w19+GYDhL79Mp04bezguW7aMCePGcdjhG9PMjIHX9qdFixb84dzzyru4LoPm/DBrw+uxH45mh52bAzB39vckOgFM/2Yaa9f+Qt169emw/+/4fNxYli1dyrKlS/l83Fg67P87GjZqTM1atZj21WTMjFEjR3DAwZ0q5D3lm1yvWcfpuvcZYWkuAy4HTgBmxsx/fDSR01BgArAcGFviUlZCV/btw/hxn7F48SI6H34IF150Cef/sSf9+vTm5RdfYLumTfnnbXdsOP/dd97mwI4dqVmz5oa0iZ9P4NXhr9By1105/ZQwmvWS3n04+JBDy/vtuBK4ecCVTJ40nqWLF3PW/3Xm7B4XMm7sh8z+fiYqKKDJNttxSb9rAPhwzDuMGjmC6tW3YMvf/IarrhuEJOrUrUe3c3rS64LQI6z7uX+iTt3wpfWiy/tz+41R170DOrLvAQcBoe37vjtuZsniRQzodzEtWu7GjbffXzEfQg7K8Un30nfdk9QYOBP4j5m9JqkLsNLM3ijRjaRmQF0zmxzn/Mredc+VTmXouucyLxNd93a78s3YMeebW44q99CesmYdzR41Gfibmb0GYGb/TpdpNMS82GNm9nlJC+qcc9mU6zXrlMHazNZL+grYpYT5jge+AhLzgCR/DAYcXsL8nHMuqyrqwWFccdqsawJXSOrMxmn8zMwKT/mXrA+hJ8gqwvSAL5nZ8jKV1DnnsqgyBOsDo5/tow3SzEltZncAd0hqQRgXP0rSLOAmM5tUuqI651z25HUzSKR5aTM3sxmSXgG2As4GdgUmlTY/55zLllxfg7HYYB09JPwO2LqYU2YVk05SjfokwiTczxBq1atKX1TnnMuevA3WhGn+uhECbVHNHtVSXDud0IvkFcJMezsBFyY+DDO7vTSFdc65bMnxWJ0yWA8jDH4ZRsnXTbw+6RqfrMI5l/Py9gFjNJcHhBGMJWJmA0tbIOecqwj53AwCgKRawKVAGzbOCWJm1qUkN5L0uZkVO1jGOecqUo7H6li9QR4EziA0ayTeTmmGguf4R+Gcq8pyvWYdZ9a9I4DE6i5nAC8A15TiXq+V4hrnnCsXiSnk42wVIU6wrk3o2SHCaMZxQN+S3sjMShPgnXOuXFSGKVJnEwL2d4QVYkToO52WpFOAW4Am0XUitHfXTXmhc86Vs7ztDZLkz4R5qCcBNxPaq/8aM/9BwAlmNq1UpXPOuXKS403W6YO1mY2StAWwG/BH4BszWxsz/x89UDvn8kGuP2CM03WvE/AEkFhK+X+SzjKzMTHyHy/pWeBlYE0i0cxeLHlRnXMue3I8VsdqBnmI0Gb9JOGB5AlRWpw5rusCK4HklVwN8GDtnMspeV+zJswBcpWZ3Qcg6S/AlXEyTxoF6ZxzOa0yBOsXgTMkTSPUrE8Hnkss3ZVqiS5JOwB3EVZGB/gA6GVms8tUauecy7DK0BukF6HpYlS0L+BgwmowkHr2vUeAp4DTov2zorTOJS6pc85lUY5XrGMF69LMupfQ2MweSdp/VFLvUublnHNZk/fNIGZ2bhny/0nSWcDT0X434Kcy5Oecc1mR47E61nDzsjif0MY9D/gfYRFdf+jonMs5BVLsrSLEaQYpNTObBZyYzXs451wmVIYHjCUm6doUh83MbsjGfZ1zrrRyPFbHGsG4UxHJi81saYrLVhSRVgvoQViA14O1cy6n5P0DRsI6jJv1BpE0HjjDzGYWPmZmtyWdV4fQ/e88wuK7txU+3znnKlomY7Wko4E7CV2bHzSzm4s453RgICG+fmFm3VPlGecB4wdRZmOjzYDxQFtSBF5JDSX9nTAXdnWgvZldaWbzY9zTOefKlUrwX8p8pGrAPcAxQCugm6RWhc5pCVwNdDSzPYHe6coXJ1ivAK42s4PM7CDC9KjzCesyHlxMYf9JWKRgGdDGzAaa2aIY93LOuQpRoPhbGvsB081shpn9QmhROKnQORcA9yTiYpxKbJxgfRBwgKTmkpoD+0dp0wkTPBXlcqApYfmvuZKWRtsySanaup1zrkIUFCj2JqmnpPFJW8+krLZn0wVaZkdpyXYFdpX0kaRPomaTlOK0Wb9MGCZ+clLaE4TVzr8t6gIzy3b/beecy6iS9J82syHAkDLcrjrQEjgM2AF4X1IbM1uc6oJ0/khoo+5EaK8eDTwAbEGYKtU55/JeBh8wzgF2TNrfIUpLNhv4NFrI5b+SviUE73HFZRpnuPkvwOBoS/ZLjEI751xeyGDXvXFAy6jZeA7QFSjc0+NlwvQbj0hqRGgWmZEq07TNFZK6SPqPpLWS1kfbutK8A+ecy1VS/C0VM1sHXAy8CUwDnjOzKZKul5QY0f0mYe6kqYTWin5mlnLepDjNIPcB9QgPFD1IO+cqpWoZbAcxs9eB1wulXZv02gjTTPchpjjBejFwg5ndFTdT55zLN5VhBOMY4EJJK4FEX2kzs5eyVirnnCtneT83CKE3CGzspiJCr5BUK8Q451xeqQw16+sp/UoxzjmXF3I8VsfqujewHMrhnHMVKm9r1pImA32BW4s4bGbWNmulcs65clYtxxutU9WsWwMNop/OOVep5XaoThGsk+b3eLacyuKccxWmotZWjCvWsl6SOgLN2NgDxMzs8WwVyjnnyluOx+pYy3o9SRjbviGJ0DvEg7VzrtLI2weMSY4HJgD/xoebO+cqqRyP1bFHMH5sZrdkuSzOOVdh8rY3iKTh0ct6wN8lHc+mw80LL1PjnHN5K5+bQY4vtN8x6bWPaHQVYs8j+1Z0EVwOWjXx7jLnkevLW6UK1s3LrRTOOVfB8rZmbWazACTtD1Qzs4+j/d8B64FZ5VJC55wrBzneZB2r5v88cGjS/iFRmnPOVRrVChR7qwhxeoNsTViAIGEp0DArpXHOuQqS6zXrOMH6a+AaSUYYENOfsK6Yc85VGjneZB0rWPcHXgLuIQTrNcD52SyUc86Vt7yfG8TMRkpqAxwZJb1lZtOzWyznnCtfud51L235JM0AdjOze83sXmB7SW9lv2jOOVd+pPhbRUg1grEuYT7rZsDOknaKDh0K/D77RXPOufKTt8PNgcuAawmjFe+KtoTvs1ko55wrbzkeq1MG62+BN4BjgYnAXELgXgQ8kP2iOedc+cnbB4xm9jTwtKQBwPNmNrX8iuWcc+Urx2N1rK57NwBnSDoLqBGlmZldnr1iOedc+crnZpCEu4A/R68Tb8cAD9bOuUpDOb5kbpxgfQrwNNAN6AWcDHyQxTI551y5q57jHa3jFK8BG4Pz/4AXgJ5ZK5FzzlUASbG3ihCnZj0vOm8e8CCwJWEyJ+ecqzRyvc06Ts36GuA7Qhv1amAJ0DuLZXLOuXKXtyMYE8zsiaTdZ7JYFuecqzB52886QdLehJGMzYFqUbKZWdsslss558pVtUrwgPEFQg+QtkDraGuTxTI551y5K0Cxt3QkHS3pG0nTJV2V4rwukkzSPunLl15dQs26upkVJLYY1znnXN7IVJu1pGqE+f+PAVoB3SS1KuK8OoTu0J/GKV+c3iC9CA8XZ0tK9AIxM3spzg2ccy4fZLA3yH7AdDObASDpGeAkoPCUHTcAtwD94mQaJ1gfAbQHHor2RRjBWK3YK5xzLs+U5AGjpJ5sOt5kiJkNiV5vD/yQdGw2sH+h69sDO5rZa5IyFqxPAyYAbwJr42TqnHP5piSdQaLAPCTtiUXeRwXA7cC5JbkuTrAeCUwxs+tKUS7nnMsLGVx8YA6wY9L+DlFaQh1CR40x0WjIbYHhkk40s/HFZRonWLcFukjqASyO0rzrnnOuUslgr4lxQEtJzQlBuivQPXHQzJYAjRL7ksYAfVMFaogXrFtGP3eINuecq3QyNeeHma2TdDGh6bga8LCZTZF0PTDezIaXJt84Ixi9m55zrtLL5PhFM3sdeL1Q2rXFnHtYnDzj1Kydc67Sy/vh5s45VxXkdqj2YO2ccwAU5PgcqR6snXOOjPYGyYpig7WkySmui9V1LxqlU9gSYJaZrYtRPuecKxcVtQJMXKlq1q0zkP+9hKHqkwlNQq2BKUA9SRea2VsZuIdzzpVZbofqFDX/5Bn2itpi5j8XaGdm+5hZB6AdMAPoDAwqe/Gdcy4zKsMajEjagTDVX40oycxsRIxLdzWzKYkdM5sqaXczm5HrXzmcc1VLtRyPSXFWiukJ3M3ms+zFmXVviqT72Lgc2BnAVEm/wSeFcs7lkNwO1fEegF4JJMasP0KY+u+BmPmfC0wnLLDbm9AEci4hUHeKXUrnnMuyvF8wlzA3678I87G+AHwGXBQnczNbBdwWbYUtj1lG55zLujjLdVWkOMF6KbAaWAXcCGxFzAmdJHUEBgI7J9/LzFqUtKDOOZdNOd5kHStYP0loLrmHjcvP/Ctm/g8BlxEWL1hf4tI551w5Ub7XrM3sssRrSQ9Had/EzH+Jmb1RyrI551y5yfXeIGkfMEraStI/JU0kTJh9kaTTY+Y/Orr2QEntE1uZSuycc1lQGR4w3gH0IPRs+Q2hy14/4LkY1yYWidwnKc2Aw+MX0Tnnsi/HK9axgvUpwD+BK6L9CcDZcTI3M++e55zLC3nfZg38yqb9xduSptudpLPM7AlJfYo6bma3xy+ic85lX47PkBorWL8GJILu44SVeB9Mc02t6GedUpbLOefKVWVYKaY3oWZ9HLAF8BjQN9UFZvZA9PO6MpbPOefKRd43g5jZUuC85DRJrYGv0l0rqTFwAdCMTQfFnF/SglZV69evp9vpXWiyzTbcfW/cUf4u2+4fcCbHHNKaBT8vY5/TbirynNuuOJWjOu7JytW/0HPA40z6ejZ77bo9g/t3pU6tGqxf/yuDHnqTF976fLPr/nDSgTTueDkAgy4/hUP23RWAmjW2pHHD2mx3yBUcsk9LBvXtsuG63Zptwx+ueoQRY1JNRZ9e3/OP5NyTDmT9r79y+aAXeGfsNADq1d6K+wZ0p9Uu22EGf77uST6d/N8y3SuX5HUziKQuQAvgMzN7T1Ib4HrghHTXRl4BPgDewQfFlMqTjw+jRYtdWL7CR+fnksdHfML9z77Hgzf8ocjjRx3Uil12akzrk65jvzbNGPzXrhzyh1tZuXotPf42jO++X8B2jevx0ZNX8PbH01iyfBUA7VvtRP06NTfJ64rbXtzw+sKuh9J2tzCA+P3x/+GArjcD0KBuTb4aPoB3PpkW+z18/dp17H7cgE3Sdm+xLacd1Z72p97Ido3r8fr9F9Pm5Ov59Vfj1itO5a2Pp9K930NsUb0aNWtsGfte+SDXa9bF9rOWdCehe94twLuSbgPGAScBE2PmX9PMrjSz58zs34mtzKWuIn6cN48P3h/D/3U5taKL4gr56PPv+HnJymKPH3/oXjz16mcAfPblTOrV2YptG9Vl+vfz+e77BQD8b8ESFixaRqOGtYGwBuBNvU+m/50vF5vv6Ud34LmREzZL/78j2vHWR1NZtTpMZtlujx1568FefPTkFQy/5yK2bVQ31vs6/rC9eP7Nz/ll7Tpmzf2J735YyL6tm1G3dg0Oar8Lj740FoC169Zv+ANTWeR6P+tUg2LOAD4BzgIeJgwbnwucZGb7xsz/VUnHlq2IVdegm2/issv7UVCQ66vDucKaNqnP7HmLNuzP+XExTZvU3+ScffbcmS2rV2fGDwsBuPCMQ3ntvS+Zt3BpkXnutF0Ddm66NWPGbT6A+LSj2m8I4tWrF3D7lafRvd9DdDxzEMNeGcvAi06IVe7tG9fbtNzzF9G0ST2aNd2ahYuWM+S6sxj79JXce233Slizjr9VhFRNGY2BPmb2lKR3CANjroyz6ICkZYTBLwL+KmkNYVpUERYuKPLPfDR3dk+Au+99gB4X9CzRm6lM3hszmoYNG9Jqz9aM++zTii6Oy7BtG9Xlob//gQuufRwzY7vG9TilczuOvODOYq857agOvDxqEr/+apvltWfLprw9dioAu+68Da122Y5X77sYgGoFBcxbuASAK3ocxSmd2wGwXeN6fPLMVQCMnTSDy24ufpxb9erV2Hv3Helzy/OM+2oWt/brQt/zO3P9va+V/kPIMbk+3DxVsBbQR1JXQi8QAy6TdDYh4J5U3IVmVqoue2Y2BBgCsHodlub0Sm3SxM8ZM+ZdPvzgfdasWcOKFcu5+sq+/OOWWyu6aC6GufMXs8O2DTbsb79NfebOXwxAnVo1eHHwhQy8ZwSffTkTgLa77UCLHRszZXhoQ65ZYwu+emUArU/a2KHq1KM6FBlQu3Ruz/B3J7Nu3a9AWJ5q2ox5HHbO5jMTD3roTQY99CYQ2qwTbd4JcxYs2bTcTRowd/4S5vy4iDnzFzPuq1kAvPTOJC4/r3NJP5bcltuxOu3cIO2B44GjCG/lgGj/+DiZS/o/SfWS9utLOrl0Ra1ael12OW+/+z5vvP0ut9x6O/vuf4AH6jzy2ntf0v34/QDYr00zli5fxbyFS9miejWeve0Cnnr1U156Z9KG80d+OIXmnf/K7scNYPfjBrBy9dpNAvWuzbahQd2afPLF5r0vQjv2+A373878kUb1a7P/Xs2B0CyyR4tt45V7zGROO6o9W25RnZ2bbs1vd2rMuK9m8uNPy5g9bxEtd24CwGH77cbXM+aV+HPJZSrBfxUhVc26eQbyH2BmLyV2zGyxpAHAyxnI27kK89g/zuXgDi1pVL8200fewA33v84W1cNKdw++8CEjP5zCUQftyZThIfD+aeATAHQ5sj0Htf8tDevX4qwTDwCg57WPM/nbOSnvd9pRHXj+zc0fLO60XUN22LYBH0yYviFt7br1dO/3ILddeRp1a9egerVq3P3kaKbFCK7TZszj329NZOK/+7Nu/a/0vvm5Dc0ufW55nkduOpctq1dj5pyF9BzwRLwPK0/keCsIMstea4OkyWa2V6G0L82sTbprq3oziCtag30vrugiuBy0auLdZQ6142YsiR1z9m1Rr9xDe7a7GYyXdLukXaLtdsJEUM45l1tyvDtItoP1JcAvwLOEFc5XA3/J8j2dc67ECqTYW0WIMwqxLI41s6uSEySdBjyf5fs651yJ5HiTddZr1lfHTHPOuYqV480gWalZSzoGOBbYXtLgpEN1gXXZuKdzzpVFJrvkSToauJOwstaDZnZzoeN9gD8S4uEC4Hwzm5Uqz2zVrOcC4wlt1BOStuGEPtvOOZdTMjU3iKRqwD3AMUAroJukVoVOmwjsE/WWewEYlK58WalZm9kXwBeSnjKztdm4h3POZVIGnxvuB0w3sxkhXz1DmABvauIEMxuddH5iDqaUst1m3UzSC5KmSpqR2LJ8T+ecK7GSjGCU1FPS+KQteSKj7YEfkvZnR2nF6QG8ka582e4N8ggwAPgX0ImwiIFPIeecyzklqVknz2NUtnvqLGAf4NB052Y7cG5lZqMIIyVnmdlAwvJgzjmXUzLYGWQOsGPS/g5R2qb3k44A+gMnmtmadJlmu2a9RlIB8B9JFxMKXDvL93TOuZLLXJv1OKClpOaEmNcV6L7JraR2wAPA0WY2P06m2a5Z9wJqApcCHYCzgXOyfE/nnCuxTM26Z2brgIuBN4FpwHNmNkXS9ZJOjE77J6Hi+rykSZKGpy1fNidyKgufyMkVxSdyckXJxERO0+auiB1z9mhaq9yHxmRrUEzKvxJmdmKq4845V+5yfLx5ttqsDyR0XXka+JSc/xicc1Vdrq9unq1gvS3QGehGaFh/DXjazKZk6X7OOVcmub74QFYeMJrZejMbaWbnEJYCmw6MiXqEOOdczsnxeZyy13VP0m8Ifaq7Ac2AwcBLqa5xzrkKk+M162w9YBwGtAZeB64zs6+ycR/nnMuUilpUIK5s1azPAlYQ+llfqo0fggAzs7pZuq9zzpVKbofq7M265/N/OOfyS45H62wPN3fOubxQVbvuOedcXsnxJmsP1s45Bx6snXMuL3gziHPO5QGvWTvnXB7I8Vjtwdo558Br1s45lydyO1p7sHbOOaAgt2O1B2vnnANvBnHOubzgXfeccy4f5Has9mDtnHOQ87Hag7VzzoG3WTvnXF5QjkdrD9bOOYc3gzjnXF7I8Yq1B2vnnAPvuuecc3nBa9bOOZcHPFg751we8GYQ55zLA16zds65PJDjsdqDtXPOATkfrT1YO+cc3mbtnHN5wRcfcM65fODB2jnncp83gzjnXB7I9a57MrOKLoNLQ1JPMxtS0eVwucX/XVQtBRVdABdLz4ougMtJ/u+iCvFg7ZxzecCDtXPO5QEP1vnB2yVdUfzfRRXiDxidcy4PeM3aOefygAdr55zLAx6sU5Bkkm5L2u8raWCG8h4Y5f/bpLTeUdo+aa7tLalmjPz7FnPs49KV2pVG9Dt9Imm/uqQFkl5Nc93eko6Nkf/yYtL/LOkPJS+xy0UerFNbA5wiqVGW8v8S6Jq0fxowJcZ1vYGUwToVM/tdaa91pbICaC1pq2i/MzAnxnV7A2mDdXHM7H4zG1ba611u8WCd2jrCE/fLCh+Q1EzSu5ImSxolaaco/VFJgyV9LGmGpFNT5P8ycFJ03S7AEmBh0j3ukzRe0hRJ10VplwJNgdGSRkdpR0v6XNIXkkYl5d9K0pioHJcm5bs8+nlYdPwFSV9LelIKg24lHRulTYjeT8paoEvrdeC46HU34OnEAUn7SRoraWL072Y3SVsC1wNnSJok6QxJtSU9IunL6N9dl6Q8box+/59I2iZK2/DtKvo93yLpM0nfSjo4Sq8p6TlJUyW9JOnTdN/sXMXwYJ3ePcCZkuoVSr8LeMzM9gKeBAYnHdsOOAg4Hrg5Rd5LgR8ktSbUsJ8tdLy/me0D7AUcKmkvMxsMzAU6mVknSY2BoUAXM2tLqJ0n7A4cBewHDJC0RRFlaEeoqbcCWgAdJdUAHgCOMbMOQOMU78HF8wzQNfps9wI+TTr2NXCwmbUDrgVuMrNfotfPmtneZvYs8DdgiZm1if7dvRtdXwv4JPr9vw9cUEwZqpvZfoTf94Ao7S/AIjNrFeXfITNv12WaB+s0zGwpMAy4tNChA4GnotePE4Jzwstm9quZTQW2SXOLZwiB+mTgpULHTpf0OTAR2JMQUAs7AHjfzP4blffnpGOvmdkaM1sIzC+mLJ+Z2Wwz+xWYBDQjBPkZiTxJqgW60jGzyYTPthuhlp2sHvC8pK+AfxF+10U5glB5SOS5KHr5C5D45jMhuk9RXizinIMI/wYxs6+Ayenei6sYHqzjuQPoQajBxLEm6XWiWeHG6OvspELnvgqcDXwf/WEgOr850Bf4fVSLeg2oUcJyJ5djPUXPshjnHJcZw4Fb2fyP3w3AaDNrDZxAyX/Pa23jgIlUv8M1Mc5xOcqDdQxRbfU5QsBO+JiNDwfPBD5Ik0f/6Ovs3oXSVwJXAjcWuqQu4cHUkqgN8pikY8uAOtHrT4BDouCOpIYx31Yq3wAtJDWL9s/IQJ4OHgauM7MvC6XXY+MDx3OT0pN/zwBvAxcldiQ1yECZPgJOj/JrBbTJQJ4uCzxYx3cbkNwr5BLgPEmTCTXjXqXN2MyeMbPPC6V9QWj++JrQ3PJR0uEhwEhJo81sAWH2tRclfcHm7d6lKc8qQlvmSEkTCEFjSVnzreqi5qbBRRwaBPxD0kQ2rfGOJjwkniTpDODvQANJX0W/604ZKNa9QGNJU6P8p+C/65zkw81dkSTVNrPlUe+Qe4D/mNm/KrpcLrMkVQO2MLPVUY+kd4DdogecLod4u5UrzgWSzgG2JNTwH6jg8rjsqEnoBroF4fnKXzxQ5yavWTvnXB7wNmvnnMsDHqydcy4PeLB2zrk84MHaJeY5saTtZ0nPSNo6A3n3jfI8N9qfWdwscUnX/C6a12LvUtzv1Oh+A0tV4KLzPCzK8+5M5elcSXlvEJdsIvBP4FTCQJgVbDoQCAjdvcxsfSnvcQmhh0kqvyPMXTGTMAS+ok0lDBP/tqiDkqqb2bryLZKrarxm7ZLNNbOngWui/f1hQ214haR7JS0B2kg6MJopbnk0i1u3RCZRbXphNNCi8Ii4u4DHovO2lPQPSbMkrZL0vqTDCH8wAB6JarTNJO0h6W1JS6PzL0u6X3dJ/5M0ixQDRZJqyCMkfShpkaTbo77kRDPWLZW0UmG2wYOjS1sRhoifH503JsrnTkkLgeOjbwI/Slotabqk7iX+9J1LwYO1S7ZFNIvfydH+90nHahKmZu1LmBTqVaA+YZj8TOAJhcny2xKC7TzCnCpHpLjfVdE2BbgY+JxQi30yOn4/oUa7CHiFEDQHEWasu13SCdFQ/IeAX6OyHBrjfR5KmLxoMmH62xOi9LeBPsBAYFvC8PBU2hGmCviR8E1gCmE06RP4/1suw7wZxCU7khCIIcxV8ddCx88xsyWSjgMaRttNSccPJ0wSBPAvM3tI0o5srKkXdgJgwBlmtiyRGE12dSbwqZk9I2lPoGV0+Iak6zsTgmIN4GEzGyJpPfBgmvf5ipndLWkaYcTeYZLeBdoDVwPVksqyVTF5AFxsZpOjASXzgN0Is9h9xsYZ7pzLCA/WLtmnQH/gZ2CqmSXPyLfCzArPGTGMMD1swkw2TrCvQj9LoriRWm8SZq1LmAfsUor7FXXuWYRVWZ4iNNPcRJjb+Tcp8pkLYGZro28UXQi17fuBw6I8ncsID9Yu2UIzG5X+NMYSAvrRwDjCv6PjCbXeMdE5vSUVAOelyGcEsA/wrKQXgL3MrDeh2QPgGEkrCbXU/xBqraOAlYTmlZcIAXw1YVKt79l83vGinCjpIqLZ5qIyN41e1yUsDhB79jlJdQhNPx8D44HuSfk5lxHeruZKLJoy9nhgOmElnP6EADozmi2wH6HN9xLgvRRZ3RxtrQmzv7WP0ocTJsjvAjwV9bQ4iTDz4DWEPwp1gC/N7EdCj5UCQvvxJzHewruEtvC2hMn+RxDayd8h/BE4lLDiSlzrgJ2j9zKY8IeluKYf50rF5wZxVUbU02Q0cI+ZXVyxpXGuZLxm7ZxzecBr1s45lwe8Zu2cc3nAg7VzzuUBD9bOOZcHPFg751we8GDtnHN54P8BXLwMKwmJEmEAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "e.confusion_matrix()"
+ "_ = ccc.evaluate(clusters)"
]
},
{
@@ -1100,7 +1103,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.5"
+ "version": "3.7.6"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "824e5f4123a1a5b690f910010b2896a5dc6379151ca1c56e0c0465c15ebbd094"
+ }
}
},
"nbformat": 4,
diff --git a/docs/CleanCleanERwithoutGT.ipynb b/docs/CleanCleanERwithoutGT.ipynb
new file mode 100644
index 0000000..2678a31
--- /dev/null
+++ b/docs/CleanCleanERwithoutGT.ipynb
@@ -0,0 +1,809 @@
+{
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "96ec678e-b20c-4213-8616-542010f46342",
+ "metadata": {},
+ "source": [
+ "# Clean-Clean ER without GT\n",
+ "\n",
+ "---\n",
+ "\n",
+ "In this notebook we present the pyJedAI approach in the well-known ABT-BUY dataset but without a Ground-Truth file. Clean-Clean ER in the link discovery/deduplication between two sets of entities."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9c49d2b7-11b5-40b3-9341-de98608dde13",
+ "metadata": {},
+ "source": [
+ "Dataset: __Abt-Buy dataset__\n",
+ "\n",
+ "The Abt-Buy dataset for entity resolution derives from the online retailers Abt.com and Buy.com. The dataset contains 1076 entities from abt.com and 1076 entities from buy.com as well as a gold standard (perfect mapping) with 1076 matching record pairs between the two data sources. The common attributes between the two data sources are: product name, product description and product price."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "744b3017-9a5c-4d3c-8e0a-fe39b069b647",
+ "metadata": {},
+ "source": [
+ "# Instalation\n",
+ "\n",
+ "pyJedAI is an open-source library that can be installed from PyPI.\n",
+ "\n",
+ "For more: [pypi.org/project/pyjedai/](https://pypi.org/project/pyjedai/)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "029a5825-799d-4c3f-a6cd-a75e257cadcc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install pyjedai -U"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "462695ec-3af1-4048-9971-9ed0bce0f07b",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Name: pyjedai\n",
+ "Version: 0.0.5\n",
+ "Summary: An open-source library that builds powerful end-to-end Entity Resolution workflows.\n",
+ "Home-page: \n",
+ "Author: \n",
+ "Author-email: Konstantinos Nikoletos , George Papadakis \n",
+ "License: Apache Software License 2.0\n",
+ "Location: c:\\users\\nikol\\anaconda3\\lib\\site-packages\n",
+ "Requires: tqdm, gensim, rdflib, optuna, matplotlib, sentence-transformers, networkx, pandas-profiling, matplotlib-inline, tomli, regex, pandas, PyYAML, seaborn, numpy, nltk, strsim, strsimpy, rdfpandas, pandocfilters, faiss-cpu, transformers, scipy\n",
+ "Required-by: \n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip show pyjedai"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7b4c62c5-6581-4d2e-9d44-c7c02f43d441",
+ "metadata": {},
+ "source": [
+ "Imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "6db50d83-51d8-4c95-9f27-30ef867338f2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import sys\n",
+ "import pandas as pd\n",
+ "import networkx\n",
+ "from networkx import draw, Graph"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "69702d3d-31d4-428c-a06f-dcb6203bf6d7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pyjedai"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "4d4e6a90-9fd8-4f7a-bf4f-a5b994e0adfb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyjedai.utils import (\n",
+ " text_cleaning_method,\n",
+ " print_clusters,\n",
+ " print_blocks,\n",
+ " print_candidate_pairs\n",
+ ")\n",
+ "from pyjedai.evaluation import Evaluation, write"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "451bf970-4425-487b-8756-776abb9536ea",
+ "metadata": {},
+ "source": [
+ "# Workflow Architecture\n",
+ "\n",
+ "![workflow-example.png](https://github.com/AI-team-UoA/pyJedAI/blob/main/documentation/workflow-example.png?raw=true)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "af77914f-5e76-4da8-a0ad-1c53e0111a0f",
+ "metadata": {},
+ "source": [
+ "# Data Reading\n",
+ "\n",
+ "pyJedAI in order to perfrom needs only the tranformation of the initial data into a pandas DataFrame. Hence, pyJedAI can function in every structured or semi-structured data. In this case Abt-Buy dataset is provided as .csv files. \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "e6aabec4-ef4f-4267-8c1e-377054e669d2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyjedai.datamodel import Data\n",
+ "from pyjedai.evaluation import Evaluation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "3d3feb89-1406-4c90-a1aa-dc2cf4707739",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "d1 = pd.read_csv(\"./../data/ccer/D2/abt.csv\", sep='|', engine='python', na_filter=False).astype(str)\n",
+ "d2 = pd.read_csv(\"./../data/ccer/D2/buy.csv\", sep='|', engine='python', na_filter=False).astype(str)\n",
+ "\n",
+ "data = Data(\n",
+ " dataset_1=d1,\n",
+ " attributes_1=['id','name','description'],\n",
+ " id_column_name_1='id',\n",
+ " dataset_2=d2,\n",
+ " attributes_2=['id','name','description'],\n",
+ " id_column_name_2='id'\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5d8a8a78-858e-4c79-90fe-197a68e95e11",
+ "metadata": {},
+ "source": [
+ "pyJedAI offers also dataset analysis methods (more will be developed)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "7cb87af2-adda-49e0-82cc-b1a5f7a595ef",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "------------------------- Data -------------------------\n",
+ "Type of Entity Resolution: Clean-Clean\n",
+ "Dataset-1:\n",
+ "\tNumber of entities: 1076\n",
+ "\tNumber of NaN values: 0\n",
+ "\tAttributes: \n",
+ "\t\t ['id', 'name', 'description']\n",
+ "Dataset-2:\n",
+ "\tNumber of entities: 1076\n",
+ "\tNumber of NaN values: 0\n",
+ "\tAttributes: \n",
+ "\t\t ['name', 'description', 'price']\n",
+ "\n",
+ "Total number of entities: 2152\n",
+ "-------------------------------------------------------- \n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "data.print_specs()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "b822d7c0-19a2-4050-9554-c35a208bb848",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " name | \n",
+ " description | \n",
+ " price | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " Sony Turntable - PSLX350H | \n",
+ " Sony Turntable - PSLX350H/ Belt Drive System/ ... | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Bose Acoustimass 5 Series III Speaker System -... | \n",
+ " Bose Acoustimass 5 Series III Speaker System -... | \n",
+ " 399 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " Sony Switcher - SBV40S | \n",
+ " Sony Switcher - SBV40S/ Eliminates Disconnecti... | \n",
+ " 49 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " Sony 5 Disc CD Player - CDPCE375 | \n",
+ " Sony 5 Disc CD Player- CDPCE375/ 5 Disc Change... | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " Bose 27028 161 Bookshelf Pair Speakers In Whit... | \n",
+ " Bose 161 Bookshelf Speakers In White - 161WH/ ... | \n",
+ " 158 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id name \\\n",
+ "0 0 Sony Turntable - PSLX350H \n",
+ "1 1 Bose Acoustimass 5 Series III Speaker System -... \n",
+ "2 2 Sony Switcher - SBV40S \n",
+ "3 3 Sony 5 Disc CD Player - CDPCE375 \n",
+ "4 4 Bose 27028 161 Bookshelf Pair Speakers In Whit... \n",
+ "\n",
+ " description price \n",
+ "0 Sony Turntable - PSLX350H/ Belt Drive System/ ... \n",
+ "1 Bose Acoustimass 5 Series III Speaker System -... 399 \n",
+ "2 Sony Switcher - SBV40S/ Eliminates Disconnecti... 49 \n",
+ "3 Sony 5 Disc CD Player- CDPCE375/ 5 Disc Change... \n",
+ "4 Bose 161 Bookshelf Speakers In White - 161WH/ ... 158 "
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.dataset_1.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "5c26b595-5e02-4bfc-8e79-e476ab2830ef",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " name | \n",
+ " description | \n",
+ " price | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " Linksys EtherFast EZXS88W Ethernet Switch - EZ... | \n",
+ " Linksys EtherFast 8-Port 10/100 Switch (New/Wo... | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Linksys EtherFast EZXS55W Ethernet Switch | \n",
+ " 5 x 10/100Base-TX LAN | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " Netgear ProSafe FS105 Ethernet Switch - FS105NA | \n",
+ " NETGEAR FS105 Prosafe 5 Port 10/100 Desktop Sw... | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " Belkin Pro Series High Integrity VGA/SVGA Moni... | \n",
+ " 1 x HD-15 - 1 x HD-15 - 10ft - Beige | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " Netgear ProSafe JFS516 Ethernet Switch | \n",
+ " Netgear ProSafe 16 Port 10/100 Rackmount Switc... | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id name \\\n",
+ "0 0 Linksys EtherFast EZXS88W Ethernet Switch - EZ... \n",
+ "1 1 Linksys EtherFast EZXS55W Ethernet Switch \n",
+ "2 2 Netgear ProSafe FS105 Ethernet Switch - FS105NA \n",
+ "3 3 Belkin Pro Series High Integrity VGA/SVGA Moni... \n",
+ "4 4 Netgear ProSafe JFS516 Ethernet Switch \n",
+ "\n",
+ " description price \n",
+ "0 Linksys EtherFast 8-Port 10/100 Switch (New/Wo... \n",
+ "1 5 x 10/100Base-TX LAN \n",
+ "2 NETGEAR FS105 Prosafe 5 Port 10/100 Desktop Sw... \n",
+ "3 1 x HD-15 - 1 x HD-15 - 10ft - Beige \n",
+ "4 Netgear ProSafe 16 Port 10/100 Rackmount Switc... "
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.dataset_2.head(5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9c068252-4a69-405a-a320-c2875ec08ea5",
+ "metadata": {},
+ "source": [
+ "# Block Building\n",
+ "\n",
+ "It clusters entities into overlapping blocks in a lazy manner that relies on unsupervised blocking keys: every token in an attribute value forms a key. Blocks are then extracted, possibly using a transformation, based on its equality or on its similarity with other keys.\n",
+ "\n",
+ "The following methods are currently supported:\n",
+ "\n",
+ "- Standard/Token Blocking\n",
+ "- Sorted Neighborhood\n",
+ "- Extended Sorted Neighborhood\n",
+ "- Q-Grams Blocking\n",
+ "- Extended Q-Grams Blocking\n",
+ "- Suffix Arrays Blocking\n",
+ "- Extended Suffix Arrays Blocking"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "9c1b6213-a218-40cf-bc72-801b77d28da9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyjedai.block_building import (\n",
+ " StandardBlocking,\n",
+ " QGramsBlocking,\n",
+ " ExtendedQGramsBlocking,\n",
+ " SuffixArraysBlocking,\n",
+ " ExtendedSuffixArraysBlocking,\n",
+ ")\n",
+ "\n",
+ "from pyjedai.vector_based_blocking import EmbeddingsNNBlockBuilding"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "9741f0c4-6250-455f-9c88-b8dc61ab7d4d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7a5665d8ba9041dfbbf246e7f91b836a",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Suffix Arrays Blocking: 0%| | 0/2152 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "qgb = SuffixArraysBlocking()\n",
+ "blocks = qgb.build_blocks(data, attributes_1=['name'], attributes_2=['name'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "d2d9ae46-28fa-4438-87b7-ba901c75bd99",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Method name: Suffix Arrays Blocking\n",
+ "Method info: Creates one block for every suffix that appears in the attribute value tokens of at least two entities.\n",
+ "Parameters: \n",
+ "\tSuffix length: 6\n",
+ "\tMaximum Block Size: 53\n",
+ "Attributes from D1:\n",
+ "\tname\n",
+ "Attributes from D2:\n",
+ "\tname\n",
+ "Runtime: 0.2390 seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "qgb.report()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9f9e77d5-c906-431a-bdc7-68dc9c00cc31",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "# Block Cleaning\n",
+ "\n",
+ "___Optional step___\n",
+ "\n",
+ "Its goal is to clean a set of overlapping blocks from unnecessary comparisons, which can be either redundant (i.e., repeated comparisons that have already been executed in a previously examined block) or superfluous (i.e., comparisons that involve non-matching entities). Its methods operate on the coarse level of individual blocks or entities."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "9c2c0e42-485a-444e-9161-975f30d21a02",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyjedai.block_cleaning import BlockFiltering"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "bf5c20ac-b16a-484d-82b0-61ecb9e7f3ea",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "91151e6adbbe4bceb75dce144241e3ea",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Block Filtering: 0%| | 0/3 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "bf = BlockFiltering(ratio=0.8)\n",
+ "filtered_blocks = bf.process(blocks, data, tqdm_disable=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9cd12048-bd0c-4571-ba70-488d46afcdd6",
+ "metadata": {},
+ "source": [
+ "# Comparison Cleaning\n",
+ "\n",
+ "___Optional step___\n",
+ "\n",
+ "Similar to Block Cleaning, this step aims to clean a set of blocks from both redundant and superfluous comparisons. Unlike Block Cleaning, its methods operate on the finer granularity of individual comparisons.\n",
+ "\n",
+ "The following methods are currently supported:\n",
+ "\n",
+ "- Comparison Propagation\n",
+ "- Cardinality Edge Pruning (CEP)\n",
+ "- Cardinality Node Pruning (CNP)\n",
+ "- Weighed Edge Pruning (WEP)\n",
+ "- Weighed Node Pruning (WNP)\n",
+ "- Reciprocal Cardinality Node Pruning (ReCNP)\n",
+ "- Reciprocal Weighed Node Pruning (ReWNP)\n",
+ "- BLAST\n",
+ "\n",
+ "Most of these methods are Meta-blocking techniques. All methods are optional, but competive, in the sense that only one of them can part of an ER workflow. For more details on the functionality of these methods, see here. They can be combined with one of the following weighting schemes:\n",
+ "\n",
+ "- Aggregate Reciprocal Comparisons Scheme (ARCS)\n",
+ "- Common Blocks Scheme (CBS)\n",
+ "- Enhanced Common Blocks Scheme (ECBS)\n",
+ "- Jaccard Scheme (JS)\n",
+ "- Enhanced Jaccard Scheme (EJS)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "725426e2-0af8-4295-baff-92653c841fdd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyjedai.block_cleaning import BlockPurging"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "7997b2b6-9629-44f0-a66d-5bc4fea28fb6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "d8b320ddb92d4bfe86833b39fa04a9b6",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Block Purging: 0%| | 0/4680 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "cbbp = BlockPurging()\n",
+ "cleaned_blocks = cbbp.process(filtered_blocks, data, tqdm_disable=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "d8842b00-8765-449f-bdb7-f9b2206e91c7",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Method name: Block Purging\n",
+ "Method info: Discards the blocks exceeding a certain number of comparisons.\n",
+ "Parameters: \n",
+ "\tSmoothing factor: 1.025\n",
+ "\tMax Comparisons per Block: 570.0\n",
+ "Runtime: 0.0630 seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "cbbp.report()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4920ae72-7ad6-42aa-932b-aaae20ace85a",
+ "metadata": {},
+ "source": [
+ "## Meta Blocking"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "1f7d75f3-6bed-482d-a572-c3b4927236a5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyjedai.comparison_cleaning import (\n",
+ " WeightedEdgePruning,\n",
+ " WeightedNodePruning,\n",
+ " CardinalityEdgePruning,\n",
+ " CardinalityNodePruning,\n",
+ " BLAST,\n",
+ " ReciprocalCardinalityNodePruning,\n",
+ " ReciprocalWeightedNodePruning,\n",
+ " ComparisonPropagation\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "c92e0ca3-5591-4620-b3f4-012a23637416",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "wep = CardinalityEdgePruning(weighting_scheme='X2')\n",
+ "candidate_pairs_blocks = wep.process(filtered_blocks, data, tqdm_disable=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6aeff39a-b51b-4166-a55b-f8452ec258a7",
+ "metadata": {},
+ "source": [
+ "# Entity Matching\n",
+ "\n",
+ "It compares pairs of entity profiles, associating every pair with a similarity in [0,1]. Its output comprises the similarity graph, i.e., an undirected, weighted graph where the nodes correspond to entities and the edges connect pairs of compared entities."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "f479d967-8bac-4870-99bd-68c01e75747b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyjedai.matching import EntityMatching"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "ae7b1e6a-e937-44fe-bfe5-34696ea1156c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EM = EntityMatching(\n",
+ " metric='dice',\n",
+ " similarity_threshold=0.5,\n",
+ " attributes = ['description', 'name']\n",
+ ")\n",
+ "\n",
+ "pairs_graph = EM.predict(candidate_pairs_blocks, data, tqdm_disable=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "4d606bfc-3265-4042-93f3-22a1117c4886",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAl6klEQVR4nO3dX2xc55nf8d+ZP+bQlhXu2pTsho6FNS1RDCC5lpMyMdailTgqVOQiAIMIWAZOW4DeSnCxAQL4QmjjAtWFgQAqdmFDgJDuH7MX6uqizbYqKmtl2UFdYms7KzWRKEo25Ihdiya15sq0RZp/phfjkUYUyZlzzvu+5z3nfD93Esgzh+TMed4/z/s8QbVarQoAgJwoJH0DAAC4ROADAOQKgQ8AkCsEPgBArhD4AAC5QuADAOQKgQ8AkCsEPgBArhD4AAC5QuADAOQKgQ8AkCsEPgBArhD4AAC5QuADAOQKgQ8AkCsEPgBArhD4AAC5QuADAOQKgQ8AkCsEPgBArhD4AAC5QuADAORKKekbAJC8qZk5HXtnXKNXr+v67ILWV0rqeWC9vr+jS/eta0v69gCjgmq1Wk36JgDY0SygnbkyrZdPX9IbY5OSpLmFpZvfWykVVJXUv6VT+3Z2a/tDHcn8EIBhBD4gg1oJaL/XeY/en/xUny8uaa2nQBBIlVJRB/b0aLBvk90bBxwg8AEtSNNS4PDIZR08PqrZhcU1A1pY7eWCDuzZSvBD6hH4gDWkbSmwFvTO68b8UvMvjqC9XNTRoT5t6+qwcn3ABQIfsIpWZ06+LAWeuTKtvUdGdGN+0dprBIG0u3ejDg8+Ye01ANs4zgCs4NbMqflyYbUq3Zhf1MHj5zU8ctnJ/a3k5dOXNLtgL+hJtZ/19QuTujYzZ/V1AJsIfECDqZk5/dv/+mv99Be/Cb1ceGN+SQePj+rs+LSdm1vD1Myc3hibNLqnt5pA0rF3x+2/EGAJ5/gA3b6XN7+4pKWIAWR2YVGvnL7kfCnw2DvuAtHswpJGP/wk9PelKUEI2UbgQ+6ZzIJsXAp0+TAfvXr9tsQb267Pzrf8tWsnCF3VoZNjXiUIIftY6kSuhdnLa1USS4HXZxecvt76Srmlrxseuay9R0b02vkJzS0s3RGcZ7/4vxPnJrT3yEiie6TID2Z8yK0zV6Z18Pio8dT/qEuBcayvuPsoV0oF9Tx4b9OvC3O0ojFBSBJnBWEVgQ+5ZTMLMsxSoAk9D6xXW+mqk+XOqqSBx7vu+P/GPbzxj2/oV7/9WIshZ9H1BKFtXR2cFYQ1BD7kku0syFaXAk0Z2NGlQyfHrL9OEEhPb+m8bf9yrT28KJJKEEJ+sMeHXLKZBdnqUqBJ969r087NnQoCu69TKRW1r7/75r+b7eFFwVlB2EbgQy7ZzIJcbSnQtv393aqUitauX6vV2XNzCdJGYlAdZwVhE4EPuWQrC3KlpUBXtj/UoQN7etReNvuxDoJajc7GAtW2EoPqkkgQQn6wx4dcspUFuXwp0LV6YGq1xuhdhYIe2XCP3pv8VIFqAaeuXoT76S2d2tfffVuyiYvyaK4ThJAfBD7kko0syOVLgUkZ7NukbV0deuX0Jb1+YbKlgHZtZk7H3h3X6Ief6PrsvNZXyup58F4NPH5nVRVX5dFcJwghP+jOgFyampnTky+dMhL4fOnOsJIwAa1Vh994T4dOjlk9OlEpFfTjZzbruacesfYayC9mfEgdEzUf61mQr52fiDxzKQRSuVhYcSnQF/etazMePFyUR0sqQQj5QOBDapiu+bi/v1u/vDgVqX9dMQj0w298Rc8//WjuCizbLo+WZIIQ8oHAh9CSqLLfrJB0fQ/rxLkJvTk21dKyYz0LMmzH8tpe3lbvljVdsV0eLekEIWQfgQ8tS6rKvs2aj2GzIH3dy3PJZnk0XxKEkG0kt6AlrbbuMR0czlyZ1t4jI5GWI9vLRR0d6mvpIXp2fDpUFmSemUwMqmNQAZcIfGgqzIyrztRy4NCrb0dOQAkk7f7qxlA1H21kQWZRnL9LIwYVSAKBD6uampnTn5y6qOGRD0JX2ZfCzbhWe/24M4tCIP3Zj76upzZ3Rr4G7hRnJl4MAj3+lQ51/c7dDCqQCAIf7tC4lze/uKSliO+QIJB294abcTUydV6sVAj04nd7WUIzzOZKQBIJVMgPkltwm1b38lrRWGU/ysPK1HmxhaUqDU4tsJEYlFQCFfKFItW4yUa1/ThV9k2eF6s3OD07Pm3smqgFv6NDfdrdu1FtpYIqpdsfKZVSQW2lgnb3btTRob41g16zFkezX/zfiXMT2ntkRMMjly38RMgDZnyQZK/afpwq+6bPi9Hg1I5tXR06PPhErMQgm0dWbGApNt0IfJBkt9p+1Cr7ps+LxV16xdqilkeLOuiqz+K3dXU4ywZlKTYbWOqE9Wr7UavsD+wwX6uRBqf+iTPoqs/iXWApNjsIfNCxd+wFgkqpoJ4H7430vfVC0kFg7n5ocOqXuIOuxlm8TWH2vxuXYgl+fiLwwWq1/bhV9vf3d6tSKpq7IdHg1BdTM3P6yV+e0fxivPee7Vl83KVYEqr8Q+CDtWr7Jqrs1wtJt5fNvVVpcJqsM1emNfTq23rypVN68+Jk5HOidbZn8WlZikXrSG6BtWr7pqrs17P2Xvyrc1qI+ZSMs/SK+EyeE21kaxZvcimWhCp/EPhgpdq+6Sr7g32b9JXfvUc/+rO/iTVDoMFpcqJUemmVqVn88mMKV/9hVguGlmLpJu8PAh80sKNLh06OGbmWzSr7T23u1Le3btSJcxOR740Gp8mwdU5UMjOLX+uYQlwkVPmHwIeb2ZNxqu0XAqlcLFivsh+nazoNTpNj85xo3Fm8reXXRiRU+YXA5zGX1SHiBJRiIP2w72E9v+tR67OpeF3TaXCaBJvnROPO4m0uvzYiocovBD4PJVEdIl5Aid93Lwy6pqeL3XOi0WfxNpdfG5FQ5R8Cn2eaLbvUO4OfODehN8emjD7Q0xRQBvs2aVtXB13TU8DWOdG4s3iby6+NSKjyD4HPIz4U6k1TQDFRHBn2mT4namLQZbtMXx0JVX4i8HnCp0K9aQsoUYsjww1T50RNJlDZXH5tREKVnwh8njBRHcJ0ux0CCkwwcU60EEg7N3fqZwPbjQy6bJbpqyOhyl8EPg+YqA7x2vmP9K/+09uaW6jSGwxeMXFOtFwsGAt6kr0yfVLy+99ojsDnARPLLotLVf2PX9862E1vMPgi7jlRG/tkNsr0+bT/jbUR+DxgY9nFZvYnEJZvhQdMLL+WCoG2bLxXD3yp4u3+N1ZG4POAzWUXW9mfQBi+FR4wsfxaLAT6i3/xdQJdCtGWyAO2uiM0ojcYkjbYt0kH9mxVe7nYtLlwEEjt5aK14ghxmxxzTCHdCHweqC272P9T0BsMSRvs26SjQ33a3btRbaWCKsve95VSQW2lgnb3btTRoT6rKxRxmhxzTCHdgmrV9hFONDM1M6cnXzplPb1aktpKBb31wi5GqkicD+dEo9TqtFWmz2Vt3rwj8Hli6NW3Y3VHaFWlVNCPn9nM+TzgC612Z7B1TGHt2ry1TFGys80i8HnizJVp7T0yEinrLazvPfZlHfrBY9ZfB0iLs+PTiZTpSzro5hWBzyOuWqR8q2eDfv7s16y+BpBGLpdffVpmzRuOM3gkTHeEOOgNBqzMVZk+n2rz5hFZnZ5plvUWF73BgOSZqM2L6Fjq9NjyZZe2UkH/8zdXtRjjL0ZWJ+DW8mzNtmKgE+c/0uJS9A8yn+N4crXUmbZ04ZWWXeJkf3LotjVpe5/AT2tla8YVSDr27jjZ2RHlYsaXpXThONmf7eWijg715XZvoFlAy9L7BMlqNVszDrKzo8t84MtiujDZYOG0EtB+r/Mevf/Rp/p8aSkz7xMkg+xs/2V6qTPMGzBNxZzDZH/m/UHdbOBTP691/sNPWrpemt4ncC9qtmYUZGdHl9mszrjpwr4Xc/ap5qGvbg18zC83peV9ArfiZGuGQXZ2PJld6oybBLK7d6MODz5h/sYs8KHmoW9cVMJJ2/sEdlFzNz0yudQ5NTOnN8YmI4/yq1Xp9QuTujYzl4o3lqtDt2niYuSdtvcJ7Dr2zriT13GZnZ3VDOdMBj4Tb0DShdMr7sAnDN4nqBu9et3JbM9FS6S1E8Ku6tDJsVRnOGcy8Jl4A84uLGm0xYQH+MXVyFvifYJbrs8uWH8NWx3pG7WaEHbi3ITeHJtKZeJcJgOfqTfg//1/0/qjo7/K1BQ/D1yNvOuuz847ey34a33F3uPUVXZ2VjPhl8tE4Fu+Dj02YWYE/v7Up7o0+enNf2dhip8HLkbejUgrhyT1PLBebaWrRgddNlsiLffGhY/04l+d00LIUmppLJyd6sBnsySQJC3/+2dhip8HNkfey5FWjrqBHV06dHIs1jWKgbT7qw9obmHJWXZ2/Tl68vzEHc+8VtULZ6clwzm1gc9FSaDVpHmKnwc2Rt6rqUoaeLzL+uvAf/eva9POzZ2xjlE907tRr/zBDvM3t4qbz9H5RcV5jKYtwzmVB9htHkwOg0PMfhrY4SYQUfQby+3v71alVIz0vS6yNRvd9hw1cL16hnMapC7wuSwJ1Ap6Y/mnPvIOAruv4/pBBf9tf6hDB/b0qL0c7tHqIluzkY3naJoynFMX+FyVBGpV4xQf/ogz8m6F6wcV0mOwb5MO7Nmq9nKx6eArCGpdU1wXkLf1HE1LhnOqAp/Lg8lhpGmKnxdRR97NJPWgQrr4XEvX5nM0LRnOqUpucXkwOYw0TfHzJGwXi7uKBT3SeY/em/xUgW5l8Upu08qRDdu6OnR48Anvaunaeo6mKcM5VYHP9cHkMNIyxc+bwb5N2tbVoVdOX9LrFyZbCmi+PaiQbr7V0rX1HE1ThnOqAp/rg8lhpGWKn0dhR96+PagAk2w8R9OW4ZyqwOfyYHIYaZri5xkBDbDzHE1bhnOqkltqB5P9u+U0TfEB5Jvp52gaM5z9iyJrcHUwOYy0TfEB5JvJ52haM5xTFfhcHUwOI21TfAD5ZuI5Wgikf/pV90cxTElV4JPsH0wOI41TfACI8xwtFQL9+Y++rsODT6T22Ze6wGfrYHIYHGIGkGZxSqu9+N1e/f7mTkt35oafaZJNhD2YXCkV9e2tG3Ty/ESs2nQcYgaQFYN9mzQzt6CfnRhr2oPPVSNcV4Jq1bcCYK07Oz4d6mByq62MgkBqKxa0c3On7r6rxCFmAJnS2Mu0Wq3q88WVH4h3FQMFQZC5wX6qA19dmEobYYMlAGRJmF6mpUKgn3xns/5wZ7YS+DIR+KKgLBWAvLnVg6/1LZ9aEl+28hlyG/gAIE/OXJnW3iMjujEfvh1Re7moo0N9mVkFS11WJwAgvDg9+LLWcJvABwAZF7cHX9YabhP4ACDjTPTgm19c0h+fumjgbpJH4AOAjDPRg2+pKg2P/FbDI5fN3FSCCHwAkHGmevAtVqs6ePx86oMfgQ8AMs5kD74b80s6eHxUZ8enjV3TNQIfAGSc6R58ac/yTGWtzqmZOR17Z1yjV6/r+uyC1ldK6nlgvb6/g8PnALDcwI4uHTo5Zux6jVmeaXzmpuoAe2N9OUm3bdbWy431b+nUvp3d2v5Qxx3fT8AEkFdDr76t185PRD7SsFylVNCPn9ms5556xMwFHUpN4AtTYHp5FfG4ARMA0i5O5ZbVfO+xL+vQDx4zdj1XUhH44tSXk8K1L8pK2w0AWC7Ks3Qt3+rZoJ8/+zUj13LJ+z2+M1emdfD4aOg/1I35Jf27/3ZOBUlzq7TcaFStSjfmF3Xw+HlJIvgByJz6c+2nv/iNWngsNrW+Uo5/kQR4n9UZp77c/GK1paDXKAupugCwmsG+TRrse1iFIN51KqWCeh6818xNOeZ14ItbXy6qtKfqAsBant/1qMrFeI//qqSBx7vM3JBjXgc+E/XloshaQVYAaHT/ujbt3NypIOKsLwhqDbvTmg3vdeAzUV8uqkDSsXeTCbwAYNv+/m5VSsVI31spFbWvP71d2b1ObjFVXy6K2YUljX74SWKvn1atnJXkPCWQvO0PdejAnp6IGfM9qW5K63XgM1lfLorrs/OJvn6arH1W8qoOnRzTP/5Kh6pV6W+vTK/6NZynBNypZ3nm7ciX14GvVl/uamLLnWlN1XWtWXGB2S/+fiPv//2q16h/zYlzE3pzbCoTHy4gDQb7NmlbV4deOX1Jr1+YVKBbn0fpVpGPp7d0al9/d6pnenVeH2CfmpnTky+dSiTwpbkcj0umD8TW1QsQEPwAd67NzOnYu+Ma/fATXZ+d1/pKWT0P3quBx7O1DeF14JPM15drVVupoLde2JWpP7ZpNkogNWovF3V0qC8TI0wA/vA6q1OKl3kUVdpTdV2JU1ygFZynBGCD94GvnnnUXg53q22lgkoRSxOkPVXXBRfFBThPCcAG7wOfVNt8PbBnq9rLxaYHLoOgtkT2b/7ZVr343d7QATMLqbouuCouwHlKAKZ5ndXZKE7mUd5SdV1wVVyA85QATEtN4JOkbV0dOjz4RKjMozym6rrgsrgA5ykBmJSqwFd337q2UMcMogRMrM1lcQHOUwL+SXMFplQGvqjCBkyszlVxgTS3PgGyqJUqTb5XYPL+HB/85Kq4AOcpATuizNiaVWmq8z1nIvUzvjRPt9Os3tbEZnEBzlMC5kWdsYWp0lStSjfmF3Xw+HlJ8i74pXbGt/Yfr5aw4vt0O+2o3AKkS9QZW5zPuo+f41QGvqxMt7OAWp1AOkT5rNY/h29enIq8uhME0u7ejTo8+ET4b7YkdYEvzh+Ph6gdrQ5EWsFgBTAvzoytXgBrKcZn27e9+tQEvqmZOf3JqYsaHvlAixHu2MfpdpacHZ9uelby8a90SJLe/e005ykBh5Iq9l/nW7cb75NbGvfy5heXIo866gWPfZpuZ0mYs5KcpwTccVFXtxnfKjB5HfhMLqE1Fjzm4WpPK2clOU8JuOOqrm4zPlVg8rZI9a29vPhBr46CxwDyxlVd3WZ8qsDkZeA7c2VaB4+PGs8U9G26DQC2uayruxrfKjB5GfhsNjj1aboNALa5rKu7mqqkgce7kr6Nm7wLfLY3Yn2abgOAbbW6usk96n2swORd4LO5EevbdBsAbBvYkexMq1Iqal9/d6L3sJx3gc/mRqxv020AsK1eVzcI3L92MZAO7Onx7lyud4HP1kasj9NtAHBhf3+3KqWi89ft3rDOywpM3gU+WxuxPk63AcCF7Q916MCeHrWX3T7yex/8ktPXa5V3gc/GRmytVqd/020AcGWwb5MO7Nmq9nLRybKnzzkV3gU+kxuxQVCr0UmBagCoBb+jQ33a3btRbaXCzQLUNvicU+Flkeq4BVULgVQuFih4DACruDYzpz+OUfh/LT62ImrkZeCL00KjGEg/7HtYz+96lEQWAGjCRk9N37vheBn4JLt996Zm5nTsnXGNXr2u67MLWl8pqeeB9fr+DroDAMgfkw0B0tD/1NvAJ5nvtN7Y4kjSbecF6/3g+rd0at/Obm1/qMPMDwEAKbBWT81WpKmJtNeBT2qtwWkre3mmgygAZNFK/TK/dHdJH1z7TG+9dy0TTaS9D3x1cZqX2lw2BYC8yEoT6dQEvqjiJMr4vkELYGXs42MtmQ98Q6++rdfOTSjKD+l7Si6A27GPj1ZkOvC9ceEj/fM//z9aivETtpUKeuuFXYwSAc+xj49WeVe5xZThkcv6l3/xdqygJ0mBpGPv2muVBCC+W/v4zdPxq1XpxvyiDh4/r+GRy07uD37JZOCrfwgW4kY91bKXRj/8xMBdAbDhzJVpHTw+GvoA9o35JR08Pqqz49N2bgzeylzgi/ohWMv12Xlj1wJg1qG/HouUvCZJswuLeuX0JcN3BN9lLvC9fPqSZheifQhWs75SNno9APGduTKtZ//0b3T6wmTka1Sr0usXJnVtZs7gncF3mQp8UzNzemNsMnbJnUY+t9YA8mp45LL2Hhm5mb0ZB/v4+WOn62tCjr1j/s3rc2sNII9MF1VmHz9/MjXjG716/bZzO3EFQa0MD0cZAD/Y2MOX2MfPm0wFvuuzC0avVykVta+/2+g1AURnYw9fYh8/bzIV+NZXzK3c1mp19lCuDPCEjT18iX38PMpU4Ot5YL3aSvF/pFIhoEA14Bkbe/gS+/h5lKnAN7Aj/pu3EEh/+uzXCHqAZ0zv4Uvs4+dVpgLf/evatHNzp4Ig+jW+07tRv7+509xNATDC9B6+xD5+XmUq8EnS/v5uVUrFSN/bXuZDAPjK5B6+xD5+nmUu8G1/qEMH9vSovRzuR+NDAPjN1B6+VBvkso+fX5kLfJI02LdJB/ZsVXu52HTZMwj4EABpYGIPX6rt6R0d6uPznmOZ7sd3dnxar5y+pNcvTCpQrUJDXb0p5dNbOrWvv3vNmR7dnAE/DL36tl47PxH5SMOuLZ36jz/6utmbQupkOvDVXZuZ07F3xzX64Se6Pjuv9ZWyeh68VwOPrx246OYM+OXMlWntPTISqRtDe7moo0N93m1nhBlYMwg3IxeBLwq6OQN+ilKrs7aH79d2RpiBtSQG4QYR+FaQlQ8WkFVpH5iGuf9iECgIpIWlaip/Vh/lKvC1skyQxaUUIItM7eG7Zrq7xHIMwpvLReALs6Tw8ulLkTfPg0Da3btRhwefMHTnAJqJuoefhDgD6zAYhK8t84EvzJJCW7Gg+cUlLcb4jbSVCnrrhV3efeAAJC9uVmqrGISvLZPn+OpuLSmsHfQkqVqtLZXECXoS3ZwBrMxWd4mVVKvS6xcmdW1mzv6LpVBmA5+thpXN0M0ZwEpsdZdYDYPw1WU28NlqWNkKujkDWM5Gd4m1MAhfXSYDn8slhZXQzRnAcja6SzR/TQbhK8lk4HO9pNCIbs4AVmK6u0Rrr8kgfCXu/xIOuF5SaEQ3ZwArqXWXuOrs2RR2EJ6ncmiZDHxJLClIdHMGsLqBHV06dHLM2eu1Oghf+5zzVR06OZa5cmiZXOpMYklBopszgNXdv65NOzd3Nm2VZkKrg/Dhkcvae2REr52f0NzC0h2z0dkv/u/EuQntPTKi4ZHLFu/anUzO+FwvKUg0svVRnpZukA77+7v1y4tT1iu3tDIID1M6rVqVbswv6uDx85KU+nJomazcMjUzpydfOhUr8JUKgUqFQHOLSxSGTRnaScFnPtTqzHtN4kwudcZdUggC6dtbN+g/P/cN7e7dqLZSQZXS7b+qSqmgtlJBu3s30s3ZI3ldukF6DPZt0oE9W9VeLjZ9RgVBbRBeLgYtfW17udhSgeo455xnFxb1yulLkb7XF5mc8UlmRzRpKoKbZ1FG0qVCoN5/tF73r2tjKRROhekuIclYJwoTK2Jpr0mc2cAn0VcvT0xVvWcpFK6FGViv9rW7tmzQX49+1NJ+9k9/8Wu9OvKBlmI8+Sulgn78zGY999Qj0S+SoEwHPsm/hpUkXNhhuuo9e7dIg7D72cMjl/XTX/wmdjF+SfreY1/WoR88Fv9CCch84JPcNaxcK6iNf3yDhAtLTCzdrIYVAPgq7KD+21s36OT5CWNJNd/q2aCfP/s1I9dyLReBr87WXl2zUdfCUlVL1WrTpQVmGdEcfuM9HTo5Zu34Shay2JAttjNDW5HmGV8mz/Gt5r51bcbXpJuNumZDPIyzdlbGFdsl6upZbDT1hA+SarnWKO01iTN5nMGVMI1uw7gxv6SDx0d1dnza3EUzzHaJOpp6widJtlyrS3tNYgJfRLZHXVk4K+OKixJ1NPWED5JuuSZloyYxgS8i26MuZhmtq5Wos/tWpqknfJBky7W6LNQkJvBF4GrUxSyjNQM73Cy50NQTSUuy5ZqUnZrEBL4IXI26mGW0xlXVe5p6ImlJtVyTpGKgzBztIfBF4HLUxSyjNfv7u1UpFa1dP+1ZbMiGpFquFQLph30PZyLoSQS+SFyOuphltGb7Qx06sKdH7WU7b+m0Z7EhG1zsZ6+kXCzo+V2POn9dWwh8EbgadTHLCCdM1fswspDFhmxwtZ+9XNbe/wS+CFyNuphlhDfYt0lHh/pWbScVRRay2JANLru415UKQebe/7mq3GLKwI4uHTo5ZvU1mGVEt62rQ4cHn7ijRN21mTn9+u/+QWG2Z7OSxZZmFHa/nasu7nU/+c7mzL3/c1Wr0yTT3QCWoz6kHb5168DqwnYeyBNXtTp7H7xXx//1U1ZfIwkEvohM9X9bCR0B7HLVrQPRMUBprtXfUVRtxYL+8g+/kcnPAIEvBtOjrjx/iJNgq1sH4qGBdOtaGcQ90nmP3vtoRnMhmvBl/fdJ4Iup5ZGpaoEtUC01mFkGcKc4Kyl53h5oNohjBn07Ap8BYZbOvtzRHnqWweY+8iLO3nkQSLt7N9I+ahUs8d9C4DPI9NIZm/vIk6mZOT350qlYVZEKgfTNR+7X/evuYnC4Cpb4CXzeYmkCeXP4jfd06OSYsXKADA6xGg6weyhMg9vGru3DI5ed3B9gg+kauLMLS5pbWNKJcxPae2SEzwduIvB5JmqDW7q2I+1s1cBlcIjlCHyeidPglq7tSDPbNXAZHKKOwOeRuA1u6dqONHNRA5fBISRqdSZmpSMK05/F771X79r+3FOPxL9JwCEXNXAbB4d5yWDEnQh8jq11RKEQSEsxc2zp2o60qncesFkDV2JwCAKfU82OKMQNenV0bUdaueg8wOAQ7PE5EuaIQlx0bUdabX+oQwf29Ki9bPfRxOAw35jxORD1iEIUvndtp/wamqkXYrDZeYDBYb4R+ByIc0QhLF+7tq9dfu2qDp0co8IGbhrs26RtXR2r1paMw/fBIeyjZJllJuoPtsrXIr2UX0McjbUlp2bm9L/em4q1H95WKuitF3axwpBjzPgsO/bOuLPXqpSK2tff7ez1WhGmt1pjhQ1JBD9Iku5b13ZbBmbcDg5Pb+kk6OUcyS2Wma4/uJpa48ger9qJUH4NNuzv71alVIz0vT4ODuEegc8yW/UH64Kg1oDTx27JlF+DDVEzP30cHCIZLHVaZqr+4PLD7b43jjRZfo1lKSwXJvOTvWMsR+CzrFZ/8Gqs5c62YqBvdt+vjva7UtM40sTeJhU2sJZmmZ++Dw6RHAKfZUbqDwaBfjaw3dsgt5L//f612HubVNhAM9u6OnR48Am6iiMUAp9lcesPpjELbXjksn55cdLItaiwgVYsz/wE1kJyiwN5ykKrH18wVXeUChsATGPG50A9C63V82x1actCM12ajQobqKPUHUwi8DmShyw006XZfC2/BncodQcbKFnm2Nnx6UxmoZkuzeZr+TW4Q6k72MKMz7GsZqGZLs3mcm+TZTT/UOoONjHjgxF/dPRX+i9/+3dGrlXb27RfiWbtZbTa7JtlNPfOXJnW3iMjkZrRtpeLOjrUl6rVErhHVieMMFWarRDISdAbHrmsvUdG9Nr5Cc0tLN2xRDv7xf+dODehvUdGNDxy2er94BZK3cE2Ah+MMFWa7alHO50EvdoyWvMmp43LaAQ/+0yWugNWwx5fDtnY0zJRmq1SKugbj9wX+ftbEbdjxLauDpbRLKLUHVwg8OWIzdRwE6XZXBxfMLGMRqapPSbaeM0uLGl45ANVqyJBCStiqTMnbO9p1UuzBUG0+3NRmo1lNP+Z2iu+8vEN/YeTY/rmS6f03PDbOnNl2sh1kQ3M+HIgSmr4v//v5/TmxUndfVep5eXQ/f3d+uXFqUjZeC6OL/i+jMaxCnN7xdKtM7Inzk3ozbEpzvnhJgJfxkXd05pdqOrEuY9u+79my6G+l2YztYxmumME1UluMbFXvBzn/LAcgS/jTJYRa2UE7XNpNlPLaCY7RjSrTpLUrCWp2aeRNl6rIEEJdQS+DIu7p7WaZiNoXxuEmlpGM9UxwsfqJEnPPuO28WqGBCVIBL5MM11GbLm1RtA+lmb77PP4M19THSN8PFbhy+wzzl5xM40JSnnZN8WdCHwZZmJPq5lmI2hfGoQOj1zWm2Pxm+OaOnLh27EKn2afUfeKW8U5P3CcIcNM7WmtJQ0p/vXZ1WzMQYCpIxe+HauIO/s8Oz5t5D4aDfZt0oE9W9VeLkY+IrMaGwlKSBcCX4aZTA1fS30E7StTCT6mjlyYPFZhgq+1MQf7NunoUJ92925UW6mgSsnc48pkghLSh6XODLORGr4Sn0fQphJ8KqXA2JELn45VmJx92tgzW75XPDzyga58fCP2dU0lKCGdmPFl2MAOd93LfR1Bm0rw2bl5g7G9LJ+OVfg2+1xNfa/4D/7Jw2qLOfMzlaCE9CLwZVjcMmJh+DqCNpXgc/dd5hZHfDpW4dPssxUmBnMuasLCbwS+jNvf361KqWj1NXweQfs0u6qrLUH7MWs59+H12NeQ3M3401ATFv4j8GVcPTW8vWzvT+3zCNqn2VXdwI4uLcXcdFysVmP/zs9cmdZ7H83Eukadyxl/nMGci5qw8B+BLwdspob7PoL2aXZVd/+6Nv3O3XfFusbv3n1X7N/5y6cvadFAdRTXM/6ogzlXNWHhPwJfTthKDfd9BO3jntDUzJw+/uzzWNf4+88+j3WOr57NaUISM/4wg7kgkNrLRR3Ys5UC1ZDEcYZcWauM2GefL+iNi5Oa9bCrQhxxaz/amNEee2dchSBQLWREUwyCWNVHTJazS2rG72tNWPiPwJdDq5URa1arsc51V4W4fOsT6EMmpals12KgRGf8PtaEhf8IfLgpqyNo3/oE+pBpauoeujes8+J94EtNWKQDgQ+3yeoI2qc+gT5kmpq6h94Hv2TkOoBLBD6sKIsjaF9mtCZKycXNpPThHoCkBNWqjXaPgN+SnNFOzczpyZdOxQo6baWC3nphV+R79eEegKQw40MuJTmj9SHT1Id7AJLCOT4gAT5UH/HhHoAkEPiABPhQfcSHewCSwFInkBAfMk19uAfANZJbgISdHZ9OPNPUh3sAXCHwAZ7w4eykD/cA2EbgAwDkCsktAIBcIfABAHKFwAcAyBUCHwAgVwh8AIBcIfABAHKFwAcAyBUCHwAgVwh8AIBcIfABAHKFwAcAyBUCHwAgVwh8AIBcIfABAHKFwAcAyBUCHwAgVwh8AIBcIfABAHKFwAcAyBUCHwAgVwh8AIBc+f/dozw2+OjCDgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "draw(pairs_graph)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "93b72120-4578-4d5c-a408-a24ee78bf6cb",
+ "metadata": {},
+ "source": [
+ "# Entity Clustering\n",
+ "\n",
+ "It takes as input the similarity graph produced by Entity Matching and partitions it into a set of equivalence clusters, with every cluster corresponding to a distinct real-world object."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "500d2ef7-7017-4dba-bbea-acdba8abf5b7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyjedai.clustering import ConnectedComponentsClustering"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "aebd9329-3a4b-48c9-bd05-c7bd4aed3ca9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ccc = ConnectedComponentsClustering()\n",
+ "clusters = ccc.process(pairs_graph, data)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "315369d8-6564-44d4-aea0-14034b54cf16",
+ "metadata": {},
+ "source": [
+ "
\n",
+ "\n",
+ "K. Nikoletos, G. Papadakis & M. Koubarakis\n",
+ "
\n",
+ ""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.6"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "824e5f4123a1a5b690f910010b2896a5dc6379151ca1c56e0c0465c15ebbd094"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs/Demo.ipynb b/docs/Demo.ipynb
index 357bd04..6c5fede 100644
--- a/docs/Demo.ipynb
+++ b/docs/Demo.ipynb
@@ -6,8 +6,12 @@
"id": "594b36f3-1d24-426b-8c72-5e25a05ded65",
"metadata": {},
"source": [
- "# Build workflow from scratch\n",
- "
\n",
+ "# Demo\n",
+ "\n",
+ "\n",
+ "----\n",
+ "\n",
+ "\n",
"\n",
"In this notebook we present the pyJedAI approach. pyJedAI is a an end-to-end and an upcoming python framework for Entity Resolution that will be a manual of the Entity Resolution. Its usages will outperform other state-of-the-art ER frameworks as it's easy-to-use and highly optimized as it is consisted from other established python libraries (i.e pandas, networkX, ..)."
]
@@ -26,10 +30,102 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"id": "d06cb8d5-4fe0-414d-ac65-3d5960906f34",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: pyjedai in c:\\users\\nikol\\anaconda3\\lib\\site-packages (0.0.5)\n",
+ "Requirement already satisfied: strsim>=0.0.3 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (0.0.3)\n",
+ "Requirement already satisfied: numpy>=1.21 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (1.21.2)\n",
+ "Requirement already satisfied: pandas>=0.25.3 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (1.3.4)\n",
+ "Requirement already satisfied: PyYAML>=6.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (6.0)\n",
+ "Requirement already satisfied: transformers>=4.21 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (4.21.3)\n",
+ "Requirement already satisfied: scipy>=1.7 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (1.7.1)\n",
+ "Requirement already satisfied: pandas-profiling>=3.2 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (3.2.0)\n",
+ "Requirement already satisfied: sentence-transformers>=2.2 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (2.2.2)\n",
+ "Requirement already satisfied: rdfpandas>=1.1.5 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (1.1.5)\n",
+ "Requirement already satisfied: matplotlib-inline>=0.1.3 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (0.1.6)\n",
+ "Requirement already satisfied: strsimpy>=0.2.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (0.2.1)\n",
+ "Requirement already satisfied: tomli in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (2.0.1)\n",
+ "Requirement already satisfied: seaborn>=0.11 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (0.11.2)\n",
+ "Requirement already satisfied: gensim>=4.2.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (4.2.0)\n",
+ "Requirement already satisfied: optuna>=3.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (3.0.1)\n",
+ "Requirement already satisfied: networkx>=2.3 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (2.6.3)\n",
+ "Requirement already satisfied: faiss-cpu>=1.7 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (1.7.2)\n",
+ "Requirement already satisfied: pandocfilters>=1.5 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (1.5.0)\n",
+ "Requirement already satisfied: tqdm>=4.64 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (4.64.0)\n",
+ "Requirement already satisfied: rdflib>=6.1.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (6.1.1)\n",
+ "Requirement already satisfied: nltk>=3.7 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (3.7)\n",
+ "Requirement already satisfied: regex>=2022.6.2 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (2022.6.2)\n",
+ "Requirement already satisfied: matplotlib>=3.1.3 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pyjedai) (3.5.3)\n",
+ "Requirement already satisfied: Cython==0.29.28 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from gensim>=4.2.0->pyjedai) (0.29.28)\n",
+ "Requirement already satisfied: smart-open>=1.8.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from gensim>=4.2.0->pyjedai) (5.1.0)\n",
+ "Requirement already satisfied: cycler>=0.10 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from matplotlib>=3.1.3->pyjedai) (0.10.0)\n",
+ "Requirement already satisfied: pillow>=6.2.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from matplotlib>=3.1.3->pyjedai) (8.4.0)\n",
+ "Requirement already satisfied: pyparsing>=2.2.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from matplotlib>=3.1.3->pyjedai) (3.0.4)\n",
+ "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from matplotlib>=3.1.3->pyjedai) (4.25.0)\n",
+ "Requirement already satisfied: packaging>=20.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from matplotlib>=3.1.3->pyjedai) (21.3)\n",
+ "Requirement already satisfied: kiwisolver>=1.0.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from matplotlib>=3.1.3->pyjedai) (1.3.1)\n",
+ "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from matplotlib>=3.1.3->pyjedai) (2.8.2)\n",
+ "Requirement already satisfied: six in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from cycler>=0.10->matplotlib>=3.1.3->pyjedai) (1.16.0)\n",
+ "Requirement already satisfied: traitlets in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from matplotlib-inline>=0.1.3->pyjedai) (5.1.1)\n",
+ "Requirement already satisfied: joblib in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from nltk>=3.7->pyjedai) (1.1.0)\n",
+ "Requirement already satisfied: click in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from nltk>=3.7->pyjedai) (8.0.3)\n",
+ "Requirement already satisfied: sqlalchemy>=1.1.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from optuna>=3.0->pyjedai) (1.4.22)\n",
+ "Requirement already satisfied: colorlog in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from optuna>=3.0->pyjedai) (6.6.0)\n",
+ "Requirement already satisfied: cmaes>=0.8.2 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from optuna>=3.0->pyjedai) (0.8.2)\n",
+ "Requirement already satisfied: cliff in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from optuna>=3.0->pyjedai) (3.10.0)\n",
+ "Requirement already satisfied: alembic in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from optuna>=3.0->pyjedai) (1.7.5)\n",
+ "Requirement already satisfied: typing-extensions>=3.10.0.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from optuna>=3.0->pyjedai) (4.3.0)\n",
+ "Requirement already satisfied: pytz>=2017.3 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas>=0.25.3->pyjedai) (2021.3)\n",
+ "Requirement already satisfied: jinja2>=2.11.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas-profiling>=3.2->pyjedai) (3.0.2)\n",
+ "Requirement already satisfied: missingno>=0.4.2 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas-profiling>=3.2->pyjedai) (0.5.1)\n",
+ "Requirement already satisfied: multimethod>=1.4 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas-profiling>=3.2->pyjedai) (1.9)\n",
+ "Requirement already satisfied: phik>=0.11.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas-profiling>=3.2->pyjedai) (0.12.2)\n",
+ "Requirement already satisfied: requests>=2.24.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas-profiling>=3.2->pyjedai) (2.26.0)\n",
+ "Requirement already satisfied: markupsafe~=2.1.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas-profiling>=3.2->pyjedai) (2.1.1)\n",
+ "Requirement already satisfied: pydantic>=1.8.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas-profiling>=3.2->pyjedai) (1.10.2)\n",
+ "Requirement already satisfied: tangled-up-in-unicode==0.2.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas-profiling>=3.2->pyjedai) (0.2.0)\n",
+ "Requirement already satisfied: visions[type_image_path]==0.7.4 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas-profiling>=3.2->pyjedai) (0.7.4)\n",
+ "Requirement already satisfied: htmlmin>=0.1.12 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from pandas-profiling>=3.2->pyjedai) (0.1.12)\n",
+ "Requirement already satisfied: attrs>=19.3.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from visions[type_image_path]==0.7.4->pandas-profiling>=3.2->pyjedai) (21.2.0)\n",
+ "Requirement already satisfied: imagehash in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from visions[type_image_path]==0.7.4->pandas-profiling>=3.2->pyjedai) (4.3.1)\n",
+ "Requirement already satisfied: importlib-metadata in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from rdflib>=6.1.1->pyjedai) (4.8.1)\n",
+ "Requirement already satisfied: isodate in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from rdflib>=6.1.1->pyjedai) (0.6.1)\n",
+ "Requirement already satisfied: setuptools in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from rdflib>=6.1.1->pyjedai) (58.0.4)\n",
+ "Requirement already satisfied: charset-normalizer~=2.0.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from requests>=2.24.0->pandas-profiling>=3.2->pyjedai) (2.0.4)\n",
+ "Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from requests>=2.24.0->pandas-profiling>=3.2->pyjedai) (1.26.7)\n",
+ "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from requests>=2.24.0->pandas-profiling>=3.2->pyjedai) (3.3)\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from requests>=2.24.0->pandas-profiling>=3.2->pyjedai) (2022.9.14)\n",
+ "Requirement already satisfied: sentencepiece in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from sentence-transformers>=2.2->pyjedai) (0.1.97)\n",
+ "Requirement already satisfied: huggingface-hub>=0.4.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from sentence-transformers>=2.2->pyjedai) (0.10.0)\n",
+ "Requirement already satisfied: torchvision in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from sentence-transformers>=2.2->pyjedai) (0.13.1)\n",
+ "Requirement already satisfied: torch>=1.6.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from sentence-transformers>=2.2->pyjedai) (1.12.1)\n",
+ "Requirement already satisfied: scikit-learn in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from sentence-transformers>=2.2->pyjedai) (1.0.1)\n",
+ "Requirement already satisfied: filelock in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from huggingface-hub>=0.4.0->sentence-transformers>=2.2->pyjedai) (3.3.1)\n",
+ "Requirement already satisfied: greenlet!=0.4.17 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from sqlalchemy>=1.1.0->optuna>=3.0->pyjedai) (1.1.1)\n",
+ "Requirement already satisfied: colorama in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from tqdm>=4.64->pyjedai) (0.4.4)\n",
+ "Requirement already satisfied: tokenizers!=0.11.3,<0.13,>=0.11.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from transformers>=4.21->pyjedai) (0.12.1)\n",
+ "Requirement already satisfied: importlib-resources in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from alembic->optuna>=3.0->pyjedai) (5.4.0)\n",
+ "Requirement already satisfied: Mako in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from alembic->optuna>=3.0->pyjedai) (1.1.4)\n",
+ "Requirement already satisfied: pbr!=2.1.0,>=2.0.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from cliff->optuna>=3.0->pyjedai) (5.6.0)\n",
+ "Requirement already satisfied: stevedore>=2.0.1 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from cliff->optuna>=3.0->pyjedai) (3.5.0)\n",
+ "Requirement already satisfied: PrettyTable>=0.7.2 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from cliff->optuna>=3.0->pyjedai) (2.4.0)\n",
+ "Requirement already satisfied: cmd2>=1.0.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from cliff->optuna>=3.0->pyjedai) (2.3.2)\n",
+ "Requirement already satisfied: autopage>=0.4.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from cliff->optuna>=3.0->pyjedai) (0.4.0)\n",
+ "Requirement already satisfied: pyreadline in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from cmd2>=1.0.0->cliff->optuna>=3.0->pyjedai) (2.1)\n",
+ "Requirement already satisfied: pyperclip>=1.6 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from cmd2>=1.0.0->cliff->optuna>=3.0->pyjedai) (1.8.2)\n",
+ "Requirement already satisfied: wcwidth>=0.1.7 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from cmd2>=1.0.0->cliff->optuna>=3.0->pyjedai) (0.2.5)\n",
+ "Requirement already satisfied: zipp>=0.5 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from importlib-metadata->rdflib>=6.1.1->pyjedai) (3.6.0)\n",
+ "Requirement already satisfied: PyWavelets in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from imagehash->visions[type_image_path]==0.7.4->pandas-profiling>=3.2->pyjedai) (1.1.1)\n",
+ "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\nikol\\anaconda3\\lib\\site-packages (from scikit-learn->sentence-transformers>=2.2->pyjedai) (2.2.0)\n"
+ ]
+ }
+ ],
"source": [
"!pip install pyjedai -U"
]
@@ -45,14 +141,14 @@
"output_type": "stream",
"text": [
"Name: pyjedai\n",
- "Version: 0.0.3\n",
+ "Version: 0.0.5\n",
"Summary: An open-source library that builds powerful end-to-end Entity Resolution workflows.\n",
"Home-page: \n",
"Author: \n",
"Author-email: Konstantinos Nikoletos , George Papadakis \n",
"License: Apache Software License 2.0\n",
- "Location: c:\\users\\nikol\\appdata\\local\\programs\\python\\python310\\lib\\site-packages\n",
- "Requires: faiss-cpu, gensim, matplotlib, matplotlib-inline, networkx, nltk, numpy, optuna, pandas, pandas-profiling, pandocfilters, PyYAML, rdflib, rdfpandas, regex, scipy, seaborn, sentence-transformers, strsim, strsimpy, tomli, tqdm, transformers\n",
+ "Location: c:\\users\\nikol\\anaconda3\\lib\\site-packages\n",
+ "Requires: numpy, rdfpandas, pandocfilters, pandas, seaborn, networkx, PyYAML, strsim, gensim, optuna, transformers, nltk, matplotlib-inline, tqdm, tomli, pandas-profiling, regex, matplotlib, sentence-transformers, scipy, strsimpy, faiss-cpu, rdflib\n",
"Required-by: \n"
]
}
@@ -87,7 +183,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 7,
"id": "b7ad9d02-946f-4afb-9150-6b199aeae143",
"metadata": {},
"outputs": [],
@@ -96,9 +192,9 @@
"\n",
"from pyjedai.datamodel import Data\n",
"\n",
- "d1 = pd.read_csv(\"./../data/D2/abt.csv\", sep='|', engine='python', na_filter=False).astype(str)\n",
- "d2 = pd.read_csv(\"./../data/D2/buy.csv\", sep='|', engine='python', na_filter=False).astype(str)\n",
- "gt = pd.read_csv(\"./../data/D2/gt.csv\", sep='|', engine='python')\n",
+ "d1 = pd.read_csv(\"./../data/ccer/D2/abt.csv\", sep='|', engine='python', na_filter=False).astype(str)\n",
+ "d2 = pd.read_csv(\"./../data/ccer/D2/buy.csv\", sep='|', engine='python', na_filter=False).astype(str)\n",
+ "gt = pd.read_csv(\"./../data/ccer/D2/gt.csv\", sep='|', engine='python')\n",
"\n",
"data = Data(\n",
" dataset_1=d1,\n",
@@ -108,14 +204,12 @@
" attributes_2=['id','name','description'],\n",
" id_column_name_2='id',\n",
" ground_truth=gt,\n",
- ")\n",
- "\n",
- "data.process()"
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 8,
"id": "d6bebdf5-f014-4f9d-af70-42f8921fd189",
"metadata": {},
"outputs": [
@@ -123,15 +217,23 @@
"name": "stdout",
"output_type": "stream",
"text": [
+ "------------------------- Data -------------------------\n",
"Type of Entity Resolution: Clean-Clean\n",
- "Number of entities in D1: 1076\n",
- "Attributes provided for D1: ['id', 'name', 'description']\n",
- "\n",
- "Number of entities in D2: 1076\n",
- "Attributes provided for D2: ['id', 'name', 'description']\n",
+ "Dataset-1:\n",
+ "\tNumber of entities: 1076\n",
+ "\tNumber of NaN values: 0\n",
+ "\tAttributes: \n",
+ "\t\t ['id', 'name', 'description']\n",
+ "Dataset-2:\n",
+ "\tNumber of entities: 1076\n",
+ "\tNumber of NaN values: 0\n",
+ "\tAttributes: \n",
+ "\t\t ['name', 'description', 'price']\n",
"\n",
"Total number of entities: 2152\n",
- "Number of matching pairs in ground-truth: 1076\n"
+ "Number of matching pairs in ground-truth: 1076\n",
+ "-------------------------------------------------------- \n",
+ "\n"
]
}
],
@@ -141,7 +243,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 9,
"id": "969a133f-d78a-457f-a56e-426a6fd8951c",
"metadata": {},
"outputs": [
@@ -201,7 +303,7 @@
"1 Bose Acoustimass 5 Series III Speaker System -... 399 "
]
},
- "execution_count": 12,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -212,7 +314,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 10,
"id": "2eb152a8-3699-4512-aca7-c65712be02f0",
"metadata": {},
"outputs": [
@@ -272,7 +374,7 @@
"1 5 x 10/100Base-TX LAN "
]
},
- "execution_count": 13,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -283,7 +385,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 11,
"id": "9afbae1d-9610-4c6e-a430-105aedb92b9d",
"metadata": {},
"outputs": [
@@ -333,7 +435,7 @@
"1 60 46"
]
},
- "execution_count": 14,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -356,7 +458,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 12,
"id": "ccead4e2-69e1-47e2-86e9-b14b3dba9fc2",
"metadata": {},
"outputs": [],
@@ -406,7 +508,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 13,
"id": "0a7ff49d-60a5-43d7-9396-34b780d4ccd4",
"metadata": {},
"outputs": [],
@@ -448,14 +550,14 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 14,
"id": "ebc4ac86-0ad8-413d-b339-b9401cb4e8e2",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ad4d1b575b4f4bada4d39d315f05c603",
+ "model_id": "7a4a66b1fd9c45af9a1277baffb6073d",
"version_major": 2,
"version_minor": 0
},
@@ -473,7 +575,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 15,
"id": "f53057c4-2d59-4669-9b54-9f6221c239c8",
"metadata": {},
"outputs": [
@@ -510,55 +612,55 @@
" \n",
" 0 | \n",
" Q-Grams Blocking | \n",
- " 0.041641 | \n",
+ " 0.041558 | \n",
" 100.000000 | \n",
- " 0.020825 | \n",
- " 0.393975 | \n",
+ " 0.020784 | \n",
+ " 0.467047 | \n",
" {'Q-Gramms': 3} | \n",
"
\n",
" \n",
" 1 | \n",
" Block Filtering | \n",
- " 0.029729 | \n",
+ " 0.063367 | \n",
" 100.000000 | \n",
- " 0.014867 | \n",
- " 0.231038 | \n",
+ " 0.031694 | \n",
+ " 0.299006 | \n",
" {'Ratio': 0.8} | \n",
"
\n",
" \n",
" 2 | \n",
" Block Purging | \n",
- " 0.023116 | \n",
+ " 0.072956 | \n",
" 100.000000 | \n",
- " 0.011559 | \n",
- " 0.022002 | \n",
+ " 0.036491 | \n",
+ " 0.026966 | \n",
" {'Smoothing factor': 1.025, 'Max Comparisons p... | \n",
"
\n",
" \n",
" 3 | \n",
" Cardinality Edge Pruning | \n",
- " 3.383632 | \n",
- " 98.884758 | \n",
- " 1.721265 | \n",
- " 3.764078 | \n",
+ " 3.554522 | \n",
+ " 98.048327 | \n",
+ " 1.810071 | \n",
+ " 8.116037 | \n",
" {'Node centric': False, 'Weighting scheme': 'JS'} | \n",
"
\n",
" \n",
" 4 | \n",
" Entity Matching | \n",
- " 3.383632 | \n",
- " 98.884758 | \n",
- " 1.721265 | \n",
- " 34.352360 | \n",
- " {'Metric': 'sorensen_dice', 'Embeddings': None... | \n",
+ " 3.807797 | \n",
+ " 1.951673 | \n",
+ " 77.777778 | \n",
+ " 26.423726 | \n",
+ " {'Tokenizer': 'white_space_tokenizer', 'Metric... | \n",
"
\n",
" \n",
" 5 | \n",
" Connected Components Clustering | \n",
- " 0.176289 | \n",
- " 99.907063 | \n",
- " 0.088222 | \n",
- " 0.003999 | \n",
+ " 3.463993 | \n",
+ " 1.765799 | \n",
+ " 90.476190 | \n",
+ " 0.000000 | \n",
" {} | \n",
"
\n",
" \n",
@@ -567,23 +669,23 @@
],
"text/plain": [
" Algorithm F1 Recall Precision \\\n",
- "0 Q-Grams Blocking 0.041641 100.000000 0.020825 \n",
- "1 Block Filtering 0.029729 100.000000 0.014867 \n",
- "2 Block Purging 0.023116 100.000000 0.011559 \n",
- "3 Cardinality Edge Pruning 3.383632 98.884758 1.721265 \n",
- "4 Entity Matching 3.383632 98.884758 1.721265 \n",
- "5 Connected Components Clustering 0.176289 99.907063 0.088222 \n",
+ "0 Q-Grams Blocking 0.041558 100.000000 0.020784 \n",
+ "1 Block Filtering 0.063367 100.000000 0.031694 \n",
+ "2 Block Purging 0.072956 100.000000 0.036491 \n",
+ "3 Cardinality Edge Pruning 3.554522 98.048327 1.810071 \n",
+ "4 Entity Matching 3.807797 1.951673 77.777778 \n",
+ "5 Connected Components Clustering 3.463993 1.765799 90.476190 \n",
"\n",
" Runtime (sec) Params \n",
- "0 0.393975 {'Q-Gramms': 3} \n",
- "1 0.231038 {'Ratio': 0.8} \n",
- "2 0.022002 {'Smoothing factor': 1.025, 'Max Comparisons p... \n",
- "3 3.764078 {'Node centric': False, 'Weighting scheme': 'JS'} \n",
- "4 34.352360 {'Metric': 'sorensen_dice', 'Embeddings': None... \n",
- "5 0.003999 {} "
+ "0 0.467047 {'Q-Gramms': 3} \n",
+ "1 0.299006 {'Ratio': 0.8} \n",
+ "2 0.026966 {'Smoothing factor': 1.025, 'Max Comparisons p... \n",
+ "3 8.116037 {'Node centric': False, 'Weighting scheme': 'JS'} \n",
+ "4 26.423726 {'Tokenizer': 'white_space_tokenizer', 'Metric... \n",
+ "5 0.000000 {} "
]
},
- "execution_count": 18,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -602,13 +704,13 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 16,
"id": "15814d8e-ec89-45b3-973a-e5b7658bd850",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAIpCAYAAAAb9bTHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAB8AUlEQVR4nO3dd3iUVdrH8e+k0WFVFBUVFfUWu7IrlkXUxc7a1rIW7F3Xvrq69ra61vW1V7D3tq7YewONFY23HQUbYkECIW3eP84ZMgkJBEjmmUl+n+vKNfP0M3My89xzaiqdTiMiIiIi+a8o6QSIiIiISOsocBMREREpEArcRERERAqEAjcRERGRAqHATURERKRAKHATERERKRAlSSdAJJ+Y2UeAARu4+2tx3Z3AX4EqoLe718T1U4CFgcXd/fv5vN5Q4AZgWeAd4GrgZuBadz9kgV7MvKVjT+BwYPW4ajxwpbvf2sy+2wPHxX2Lgc+BUcD/uXttLtLbGma2LPBFk9W1wPfAze5+ata+aWCmu3dto2t/CQwAlnD375rZ3qbXa+b8HwMrAn9197uz1ncBfgR6AqsCj80pne2Qri+zr9eW74OZLQps6+43xuVRwN7Abu5+14KeXyRfqMRNpLGx8XGdrHUbxceumfVmtjwhaPtifoO26GxgJeAToHwBzjPfzOwS4FbgD8BHQAXwe+AWM7u4yb4nAg8CGwATgDeAlYFLgOtzmOx5MQ14OP49DfQBTjGzQxNM08PAI+14/vvj4/ZN1m9CCNoq3P1D4MmYlqp2TMuctMn7YGZG+N/dOWv1W/H8Exf0/CL5RCVuIo29DuwFDAYwsxWAJYF6wg+dDQjB3eC4/2sLeL3F4uP27v6pme2zgOebJ7HE7xigGtja3Z+J6zcFxgDHmtmD7v6yma0BnBv3/bO7Pxn3XYXwPuxjZue7u+fyNbTCJHffPrNgZjsD9wB/JpRw5lx2etrJfcA/gK3MrDRTSkx4zZntuPtB7ZyOOWrD92EJwg+p7HNfDlzeRucXyRsK3EQay5S4ZQKzYfHxHkJ16QbApYQSKQiBHmbWHTgn7rMwodrzH+7+fNw+ilBtcyZwEDAd6E644QB8YmZnAl82TZCZbRLPvTYwFbgLOMndZ5jZG3F9X3f/xcwuB/4GnOXup5vZSoADz7n7ps283n3i4+hM0Abg7s+a2WjgwLjPy8D+hKrRGzJBW9z3QzPbCvgF+Dim+fn43p1MqFb9yN3/aGbbEUoZVySU8jwDHOruk83sDOB04DBgu3j8u8Bu8TUdAPwKnODud8brbB3fGwNmAM8Ch7v75GZea0aX+PhlSzuY2SLAhcC2hHx6BTje3d/N2mdf4CRgGeAr4N/ufkMz51oOeJNQ0retuz+WXUWYVaX7P+ApQsDVHbgROM7d01nXO5Pw/3VLfL3HAptk/s8y3L08VksuSyhly+TXiPh4fzznlzSuutwrXn85wnv9CHBU/F/bGHgOeMLdt4zHXwMcDOzr7qPMrBdwJbAV0Du+x+c0V+Uej89+H0YRPiNNZc7d7P8O0COmC2ALM0u7e6q5qtJYynpUfH1fAZe4+9VxW+b1XRVf+yGEqvUL3f3C5tIvkgRVlYo09h4hqFrFzLrSUE36H+A3QuAGs5e43UcouaojBH9/AJ4ysw2bnP9UQnDzOvAooRoPwg37o6aJMbMN4rb1CNWSNYQbT6YqbAwhmNo4Lg+Nj5nr/ik+/q+F17tWfHyxmW0vNdnnDy3t6+6vuvuHmSAjyxmE4Ou1GKDcC6wAvEoIQv9CeE+yXQIsAvwMDAHeBvYgVOEuBdxoZr1jm6b7CVW1LwPfEarKbmpyvv5m9lD8e5pQpfsZofRwNmZWRggK9gV+iukfDrwYS2Axs23idfrH96kfcL2ZbdvkdN0JVcsLE4Kwx5q7ZjQUOA34FOhF+H8aHq+3ftb13gR2IATVc9KoutTM1iQEmZ9kB6BZr3sNQlvFJQgBTGW8xr/ncp1sFwMjCe/bK4S8vjnm1dxkqjYfBsZlrf96Lv870+O1AH6Ix88mVvNfRShBf4WQZ1eZ2QlNdt2TUOr+KbAocEH8ASSSFxS4iWSJjevLCaXRaxBKfaYRgqZXgCXjTWQwocTj3RicbUUIyFZ292GEkoAS4Kwml7jd3Td29z1jNdWkuP6gFhpQn0kIzA6J512Z0B5uq1jNmQkE/mRmfWKa08AQMytm7oFbn/jYXAnVD032WSQ+TsnsYGbvmFk66+8fTc5xgbv/yd3/TghqTyJUC/+JEHxAKEHJNtbd/wDsGpd7A+u7+xDCzbQbMJAQYHQlBG27EEoejyPcnLP1JJTgbUd4P7oCKWD5Zl4zhOBvTeAFYBV3Xx/4V0zHSXGfzOP27r5ZfC3PAAs1Odd18VzXuvt/Wrhedjo3dvehwB1xXeYHwlHx8QR33xhYjVAaNCf3xcdtzSxFQzXp/S3svyzhfXmYEBQNBo4nlDa31mOE//lVYwnv/wj/vy2917O4++Wx6vSvQGlcfVUsCW7xf8fdfwBOictvN1f9ambdgH8SfvisH9O2flw+LW7PSAF/cPd1CZ/5FI3bvIokSoGbyOwy1aU7EKqRXnP3OhpKmkYCvwPejG2H1ovrH3T3yvg8UzWU2ZYxr23iMsffBhDP/0DWtnGEQOpPhNLAIkL1Vk/CzWYT4HN3/8jMNs0qeXootmP7NZ4r09Yu25LxcWp8nNJkPYSSmYcJ1bHNmfV63f3rmLb1YslXpkSvaY/C5+NjJqid6O6fx+ffxscuwAfx+psRekq+QAjqsktr4qU9RXhvehN6zy4P3N/khp2Rec/vyuole0uTbasQAuTn4gWedffh7j66ybkygfOvzN037v5+fJ4pfc1U62ZKfB6J15tCeL1zMpbQML8/oWo/UxrYUuD2HKE38d6EErP7CcHhnDrNpJos/49QMnpd7NmaCRbnpdfolYQgvJxQFTwv/zstWYVQivmWu38Qz/kBoZSvByEQznjX3TP/Z03zQSRxCtxEZvd6fDw4PmYCtsyN8pAm+9XP4VxNqw6nNrtXy+Z4bnevB54ABhFKqOqB8+L2IwhVdJnStmVoKHnaLi6/E7dtBGBmi5nZ1Wa2BJBpE/defMwEYcMzCXD3Y2IJR0vDLcx6vWa2HiEwGEmoJt4tbmp688/0cMy89ulZ22a9HzGY3hzYkRAo9yO0d3vbzHo0TYi7p939N3e/itAeb1Ea37Bnu0YzsvMzRShNwsxScaiNpioIQeURZrb4HM4LjV9nJmDMvDclTZbnKlZbZ4L8QwjB25fu/mYL+/8GrEvInwcJpbuX0RAkZWTfN5q+5vuBOwnv4QnxPK1Od2xjtx8hf3Z295lxfWv/d1oypzyFxvk6p3wQSZwCN5HZZQKyTLVXJnB7g1A9milxygQyb8fHHbIChpFN9smom8e0ZM69J0A8/45Nzj0ma5/x7j6O0N5rj7j+fwDuPsrdU1l/o2goSdorlsCtTKiqej8+krXPTYQb2a5xLDdimpYBtm4h/dmvd0+gDPiPu1/GvJXCzCbezG8ClnP3/dx9IKHadOn4Olo6bglCKQuEAKGpzHv+VzPLBEx7xcfMe14RHzePj5sClWbWtHPCroRODt2ZvS1fU02D/GyZkp8/A5hZPxraNc5Jprp0X0Lw0VJpG7GDyU1AvbvvTmhP+BWwTuysMSPuumTcv4SsKkQz6xvT9wOhA86jhCrtVjGzVQm9fOuBke6ePQbf3P53MoFZS/c0JwRk68Re0JnrrUNouzo+a9855YNI4hS4iTTh7pNoqKabSaw6jdWir2ftmrmJv0gojVsJ+MjMXiDcgGoIjc0XxLmEm9I18bwfEdqEPerumQbZj8d9imkIMl+Ky5U0VD3Oxt1fIAyZUEboeXghYYDaRQilPF8QgrhM1dKJhO+NB8zsXTN7htC27w/x9X44h9cyIT6eF6u7MtXJPef2JrTgO0J19kVm9qKZvUzolDGZxh09sjsnjCF0NigltKX7pJnz3kO40Q8DPjSz1wjtq34ltHWD8D4B3G1mTxEComIa2hxmTAauIAQzB8T2kfPjmvj479hj931aF/i+QnifMiVGLQZuhOrRnYBRMX/eJJTKfhirZj8ifB5WNbPHCFWry2Ud/wvhPVosHvshoc0ltC6PbyIEuD8T3qtMnh3J3P93Mm00h5rZq02rwN19OqHTSynwevy/fS0un+nuSY1jJzLPFLiJNC8ToI3LVNdEmerSCR5Hmo/VlSMIPU+LCD0hxwHDPc6+ML/c/SlgS8JN5g+EAOtSsgYadfcfCTdKaKjWyqTzmSbpb+4aRxGG/HiTUHW4NKF08VXCjfkTM1ss7ntJTM+ThJKXDQk31csJDdLnNJjqFYRqNAhVu5cRAsNV4zAS88TdvySUeL1A6ACwKqGDwJZZbQ2hceeEzQkBz38JDfCbO+90QtXxKEKp65qEgXuHZtrauftDhOrHb+K+3wMHu/sDLZzvfELenTmvrzOe41lCh5fvCKVEo+NrgDCuXkvH1dNQXTmJxj88mu47ltAD9R1CW75lgIeIbePc/VdCyd1EQg/Yj2gIYDMde3YndCAxQpvIS+Pm9VvxMvvFx0VoXKW/DnP533H3CsJ7Ukf4/23u/+k0wrAyk4A/EvLsEHe/uJl9RfJWKp1WqbCIzC72RDwMWN1zOP2WzM7MdiIE0W94w9iArxICohXc/bMEkyciOaTATUQkz5nZIYTq95mEqu/FCSWBDgxqZvw8EemgNHOCiEj+u44whMlfCb16pxN6Ex+toE2kc1GJm4iIiEiBUOcEERERkQKhwE1ERESkQChwExERESkQCtxERERECoQCNxEREZECocBNREREpEAocBMREREpEArcRERERAqEAjcRERGRAqHATURERKRAKHATERERKRAK3EREREQKhAI3ERERkQKhwE1ERESkQChwExERESkQCtxERERECoQCNxEREZECocBNREREpEAocBMREREpEArcRERERAqEAjcRERGRAqHATURERKRAKHATERERKRAK3EREREQKhAI3ERERkQKhwE1ERESkQChwExERESkQCtxERERECoQCNxEREZECUZJ0AkSkYzKzZYHPgPezVqeA/7j7TfN4rqWBMUAdcIi7v9ZW6ewMzGw54CJ3/0vSaRGRBaPATUTa0wx3XyuzYGb9gfFm9qa7vzcP59kE+M7dh7d1AjuJAYAlnQgRWXAK3EQkZ9x9kpl9AqwEvGdm+wOHEZptTAGOcPePzGwUsDAwEJgGLAH0MbPn3H0TMzsIOJJQAvd9PO7jJsc9CvQDZgB/ABYH7gEmA3+Oywe4+7NmthJwJdATWBJ4B9jV3avMrAo4H9gsbvuPu18GYGYnAXsDtcAnwD7u/mtLryv7vTCzjYELgUnA8jGd+7h7hZmVARcAw4Bi4G3gSHefamZfAmOBNYCT3f3BrHOuDNwIdCWUbt4AXBsf+5vZE+6+hZltEM/fA6gHznD3R81sH2C3mO7+MW17u/s3c8tbEckNtXETkZwxs/WBFYCxZjaMEPQMdfe1gX8DD2Tt3t3dV3X3IcBpwEsxaNsUOAHYxN3XBO4AHjKzVJPjTozLawPrA78HjgGmufsGwH+Af8R9DgRGu3smfcsB28RtXYAf3X1DYCfgfDPrambbAvsA67v7asAXwBGteF3Z1gEudvc1gJuBW+P6fxCCwcHxNX5DCB4zxrv7oOygLfo78F93HwxsDWwEpIEDgM9i0LZQvNZId18H2Ba42syWiefYEDjc3VcByoHLW0i7iCRAJW4i0p66mdk78XkJ8COwh7t/bWZ/IwRJr5rNqsVb2MwWjs9fbuGcWwJ3u/tkAHcfZWb/AZZt4bj/unsN8J2ZVQKPx/WfEUrnAE4ENjOzEwilgUsSSt8yHo6PbxECuR7AcOBed/85puNYADP7d0uvy91/apK2d939pfj8JuBKM1sEGAH8LqYJoAz4Ieu4l2jeg8AtZrYu8DShlK4+Kx0QgtglCMFuZl2aUIIH8KS7fxyfX08ofRSRPKHATUTaU6M2bk0UA7dmSsbMrIgQMP0ct09r4bjmagpSQGkLx81sslzTzPF3Er4P7wH+BywTz5kxA8Dd0zHYSRFKxNKZHczsd4Rga26vK1ttk9eQIlT/FgNHufuYeI6ehOrPjGbfm1jduSKhWvdPwOmxWjRbMVARSzIzaV+SUIW8R5M0FcX0iEieUFWpiCTlSWA3M1siLh8CPNOK454AdjWzRQHMbF9CO7JPFyAtWwBnufvdhGBsCCHAmZOngR3NrHdcPgM4lnl7XWuZWaak6yDgFXf/hfAajzCzshj4XQ/8a24vwszuILTNu4vQxm4qsDQhGMsEtq8DK5rZRvGYtQjt85aM2/8UO5Fk0v7fuV1XRHJHgZuIJMLdnyA0kH/KzN4Ddgd2dPf0XI57CrgUeNbMPiC0Jxvh7vULkJyTgQfN7E3gGuAFQnXnnNLxGKGt2Ctm9j6hs8M/5/F1fQecG4/fHhgZ158NfEnolPAhoSTuuFa8jrOBPczsXUIHhgfja/kAqDOzcYTq6r8AF8b9biW0d5sQzzERuNXMKgjVz0e34roikiOpdHqO35EiItIOYq/SK2LHhrwQe5Xu5O4jkk6LiDRPJW4iIiIiBUIlbiIiIiIFQiVuIiIiIgVCgZuIiIhIgVDgJiIiIlIgOsUAvOXl5WrIJyIiIgVj8ODBqebWd4rADWDw4MHtfo2KigoGDRrU7teR1lOe5CflS/5RnuQn5Uv+yUWelJeXt7hNVaUiIiIiBUKBW1up+pX+L58AVb8mnRLJUJ7kJ+WLiBSqPPj+yuvAzcyGmNnz8fkKZvaymb1kZlfH+fsws9PNbJyZvWpm6yaWWB9D70kvgj+eWBKkCeVJflK+iEihyoPvr7wN3MzsBOAGoGtcdQlwirsPJczbt52ZrQMMI0wI/VfgyiTSCsDbtzZ+lOQpT/KT8iX/5EEpgjRD+ZJ/8uD7K587J3wG7EiYABlgMGGyZIAxwOaAA0/GyZu/MrMSM1vU3Se3e+pGbwtfvNCwXFQaHr96Dc7o07B+8TVgszPbPTkCPHU6fPdew3JR/PdWniSrtfnS//eww7VQVAzFpWG/otJmlvP292bhyi5FWHPXpFMjGcqXZKTTUF8H9bVw219gwssN2zL3+q/HNv7+Wm4Y7P1ITpKXt4Gbu99vZstmrUrFAA3gN6AP0BuYkrVPZn37B24bHQ8Tx0HNjLBcXxMfaxvv9917cOsO7Z4caUYmL5Qn+aWlfJn0JlzRmt7fqRjIxWCuuKTlIG9O22Ytz+t5mu6bWZ7Ttsx54rlnbWthOdeySxEUIOSPfMiXdDp8Vutroa4mPq9rWNfsX9087l8LdS2co76Fc7T3/i3J3OvrqhvWlXaDjf7evvmQJW8Dt2bUZz3vBfwCTI3Pm66fTUVFRRsnZ1G6b3gRS790HEV1VbNtTVNE1UIrUlfWu42vK3NSXD2Vrj9/QqrRv0ugPEnOnPMlRU2PJUgXl0F9Hal0Lan42HQ5VV8LpMOXZvYXZweSJgVFxaRTJaTjY8vLJZAqJl00p31LSMd9Mvv2nPQCZdO/b7hmqogUkJ7wCqmsUoSZPfvz6/LbJfAudE59Pn+YLtMmzVpuKV9qui3Gb/2Hxs9FHaTrSNXXhufxMTwPj6n62rjPPO6friOVnv0z2xmkU0WkU8Xh85NOU1RXRXODqtUXd+XrP17E9Kq+0OZxRvMKKXB728w2dvfnga2A54BPgX+b2UXAUkCRu//Y3MHtMubKoEGwRF+4d2+ozQreSrqS2nk03WzLtr+mzJ0/rjzJR3PIl7LW5ks6Den6rF/yNeGXcvbyrF/WNU1+aWcvz2lb5jzx3LO2NV2e131bd54UoYQjRS3UtU9WNJW5OTe9SXeZNonF3rsqN4mQ2bSUL6UzfmDhT+/PXUKKSubwV5xVWpy1nNj+JU1KzJseU9rMOZrsnyomVVTUOFBr4furaOfRDGiH+8qcxnErpMDtOOB6MysDKoD73L3OzF4CXiN0tDg856mq+jVkeqqI+qJSiuprwrIakyZHeZKf2iJfUilIFSdTnZgr9fVzCPIyAWqT5/OyLbP848fw7p3NVwsVlcAq20GfpXL/+ju7X76GikdayJdSWHsk9F2xSTV80wClhSBntv0z+zQT5GQCmVRR+Nx1dnl0X8nrwM3dvwTWi88/JvQgbbrPGcAZuUxXI2/fAtXTYfHVmWj7s4zfCN+9r7YiSVKe5CflS+sUFUFRF6BL+19r5RHNliKw82hQ6XRyWijdUb4kKI++v9Q9a0F16Q2bnwMHvUDl4kPgoOdh87OhS6+5HirtRHmSn5Qv+Se7FKG4SyhdUel08pQv+SePvr9S6XTHn3+9vLw8rblKOyflSX5SvuSJUdvAl6/A4qvzVXYpwrJ/hH0eTTp1nZfyJa/laq7SliaZV4mbiEhnlUelCJJF+SJzkNdt3EREpB3tdmfj5aJi2OBv4U+So3yROVCJm4iIiEiBUOAmIiIiUiAUuImIiIgUCAVuIiIiIgVCgZuIiIhIgVDgJiIiIlIgFLiJiIiIFAgFbiIiIiIFQoGbiIiISIFQ4CYiIiJSIBS4iYiIiBQIBW4iIiIiBUKBm4iIiEiBUOAmIiIiUiAUuImIiIgUCAVuIiIiIgVCgZuIiIhIgVDgJiIiIlIgFLiJiIiIFAgFbiIiIiIFQoGbiIiISIEoSToB88LMSoHRwLJAHXAgUAuMAtLAeOBwd69PKIkiIiIi7abQSty2BkrcfQPgLOBc4BLgFHcfCqSA7RJMn4iIiEi7KbTA7WOgxMyKgN5ADTAYeCFuHwMMTyhtIiIiIu2qoKpKgWmEatKPgL7ACGAjd0/H7b8BfZo7sKKiot0TV1VVlZPrSOspT/KT8iX/KE/yk/Il/ySdJ4UWuB0DPOHuJ5nZ0sCzQFnW9l7AL80dOGjQoHZPXEVFRU6uI62nPMlPypf8ozzJT8qX/JOLPCkvL29xW6FVlf4M/Bqf/wSUAm+b2cZx3VbASwmkS0RERKTdFVqJ26XATWb2EqGk7WTgTeB6MysDKoD7EkyfiIiISLspqMDN3acBuzSzaViu0yIiIiKSa4VWVSoiIiLSaSlwExERESkQCtxERERECoQCNxEREZECocBNREREpEAocBMREREpEArcRERERAqEAjcRERGRAqHATURERKRAKHATERERKRAK3EREREQKhAI3ERERkQKhwE1ERESkQChwExERESkQCtxERERECoQCNxEREZECocBNREREpEAocBMREREpEArcRERERAqEAjcRERGRAlGSqwuZ2QDgbKAb8C93fytX1xYRERHpCHIWuAEXAJcDaeA64Pc5vLaIiIhIwWu3qlIzG21mi2Wt6gF8CXwOdG2v64qIiIh0VO1Z4nY9cJ+ZPQxcRqgmvRcoA05px+uKiIiIdEjtFri5+8tmtjFwKPACcIa7b7ig5zWzk4BtCQHgVfHcowhVsOOBw929fkGvIyIiIpJv2rtXaXfgJmA7YBczu8fMlp7fk8VAcANgQ2AYsDRwCXCKuw8FUvFaIiIiIh1Oe7Zx+yfwOvAWsIO7HwRcCNxiZqfO52m3AN4HHgT+CzwKDCaUugGMAYYvSLpFRERE8lV7tnHbxd1XM7NSQgB3g7u/AWxiZvvP5zn7AgOAEcBywCNAkbun4/bfgD7NHVhRUTGfl2y9qqqqnFxHWk95kp+UL/lHeZKflC/5J+k8ac/A7RczO4FQXfpF9gZ3v3E+zzkF+MjdqwE3sypCdWlGL+CX5g4cNGjQfF6y9SoqKnJyHWk95Ul+Ur7kH+VJflK+5J9c5El5eXmL29qzjdsOwAzgG2CvNjrny8CWZpYysyUJQ4w8E9u+AWwFvNRG1xIRERHJK+3Zq/Qn4P/a+JyPmtlGwDhC0Hk4oTTvejMrAyqA+9rymiIiIiL5IpczJ7QJdz+hmdXDcp4QERERkRzTJPMiIiIiBUKBm4iIiEiBaPeqUjNbGfgjcCNh/LU1gP3d/bn2vraIiIhIR5KLErdrCb1LRxDGYdsPOC8H1xURERHpUHIRuHV199uBzYF73P15oDQH1xURERHpUHIRuHUxs37ANsDT8Xm3HFxXREREpEPJVVXpBOBld/8QeAO4LAfXFREREelQ2j1wc/erge7unpk9YW13v769rysiIiLS0bR74GZmPYHLzewZM1sYOC+uExEREZF5kIuq0suBX4F+QBXQG7guB9cVERER6VByEbit7e7/BGrcfTqwB7BWDq4rIiIi0qHkInCra7JcDNTn4LoiIiIiHUouArcXzewCoJuZbQE8AGjWBBEREZF5lIvA7URgGqGd27nAe8Dfc3BdERERkQ6l3ecqBc5y95OAs3NwLREREZEOKxclbiNycA0RERGRDi8XJW6fm9mTwMuEKlMA3P2SHFxbREREpMPIReD2U3xcLmtdOgfXFREREelQ2j1wc/d9AcxsAFDq7p+29zVFREREOqJ2D9zMbAXgYWBJoMjMfgS2cfeP2vvaIiIiIh1JLjonXAH8290Xcvc+wDnAVTm4roiIiEiHkovArZ+7j84suPvNwKI5uK6IiIhIh5KLwK3EzBbOLJhZX9Q5QURERGSe5aJX6f8Br5vZ3XF5V+DSHFxXREREpENp9xI3d78OOBgoA7oCh7r71e19XREREZGOJhe9SvsDO7v7YWZmwAVm9oG7f7cA51wMKAc2A2qBUYTq1/HA4e5ev+ApFxEREckvuWjjNhrIDP0xAXgeuGl+T2ZmpcC1wIy46hLgFHcfCqSA7eY7pSIiIiJ5LBeBW193vxzA3avc/TJgiQU430XANcA3cXkw8EJ8PgYYvgDnFhEREclbueicUGJmS7r7NwBm1o9QMjbPzGwfYLK7P2FmJ8XVKXfP9FL9DejT3LEVFRXzc8l5UlVVlZPrSOspT/KT8iX/KE/yk/Il/ySdJ7kI3C4B3jGzxwnt0IYDf5/Pc+0HpM1sOLAWcAuwWNb2XsAvzR04aNCg+bxk61VUVOTkOtJ6ypP8pHzJP8qT/KR8yT+5yJPy8vIWt+WiV+lNhGDtbeBNYAt3v2M+z7WRuw9z942Bd4C9gDFmtnHcZSvgpQVNs4iIiEg+atcSNzNLAcXu/p6ZfUHoBTqzjS9zHHC9mZUBFcB9bXx+ERERkbzQboGbma0CPAYcYWbPAOMIVaXdzexAd39qQc4fS90yhi3IuUREREQKQXtWlV4I/NPdHwX+SuiQsBowFDijHa8rIiIi0iG1Z+C2jLvfHp9vAjzk7vXu/jUt9PwUERERkZa1Z+BWl/V8A+DFrOWu7XhdERERkQ6pPTsn/GRmaxKG6FiCOEiumW0ATGrH64qIiIh0SO0ZuJ0MPE2oFj3B3SvN7Hjgn8D27XhdERERkQ6p3QI3d389TjDf3d1/iatfBdZ190/a67oiIiIiHVW7juPm7tVAddbyq+15PREREZGOLBeTzIuIiIhIG1DgJiIiIlIgFLiJiIiIFAgFbiIiIiIFQoGbiIiISIFQ4CYiIiJSIBS4iYiIiBQIBW4iIiIiBUKBm4iIiEiBUOAmIiIiUiAUuImIiIgUCAVuIiIiIgVCgZuIiIhIgShJOgEiIiLS+UyYUsn1L33OQ29/Q+XMWnp0KWH7tZfkwKHLM2CRHkknL28pcBMREZGces5/4LDb3qKmrp7a+jQA02bWcte4r7m/fBJX7bkOm9hiCacyP6mqVERERHJmwpRKDrvtLWbU1M0K2jJq69PMqKnjsNveYsKUyvk6/9ixY1l//fUZOXIkI0eOZJddduHWW2+d7/Qec8wxVFdXN7vtgQce4Jlnnpnvc88PlbiJiIhIzlz/0ufU1NXPcZ+aunpueOkLzt5+tfm6xnrrrcell14KQHV1NVtuuSXbbbcdvXv3nudzZc7TnB133HG+0rcgCipwM7NS4CZgWaALcA7wITAKSAPjgcPdfc7/ESIiItKu9r15HM/55Pk6trY+za2vT+DW1yc0Wr+JLcrN+647T+eaNm0aRUVF7LPPPiy99NL8+uuvXHfddZxxxhlMmDCB+vp6jj76aIYMGcJzzz3HFVdcQTqdZtVVV+XMM89k+PDhjBkzhhdeeIHrr7+empoaBgwYwKWXXsqVV15J37592W233Tj//PMpLy8HYMSIEey999784x//oKysjEmTJvHDDz9w/vnns+qqq87Xe5JRUIEbsCcwxd1HmtnCwDvx7xR3f97MrgG2Ax5MLokiIiKSpNdff52RI0eSSqUoLS3l1FNP5YYbbmDEiBFsttlm3HHHHSy00EKcd955/Pzzz+y55548/PDDnH322dx7770sssgiXH/99Xz33Xezzvnoo4+y//77M2DAANydadOmzdr23HPPMXHiRO655x5qa2vZfffdWW+99QBYcsklOeuss7jnnnu4++67OeussxbotRVa4HYvcF98ngJqgcHAC3HdGGBzFLiJiIgkqqWSsdVOf4JpM2vnenzPLiWMP3OL+bp2dlVpxg033MByyy0HwMcff0x5eTnvvfceALW1tfz444/07t2bRRZZBIADDzyw0fEnnXQS1157Lddddx2rrbYaw4cPn7Xts88+4/e///2sQHHNNdfks88+A2DQoEEALL744rz11lvz9XqyFVTg5u7TAMysFyGAOwW4yN0zrRt/A/o0d2xFRUW7p6+qqion15HWU57kJ+VL/lGe5KeOmC/Dlu3O4x9PpS7d8j7FKdh42e7z9donTJjA1KlTZzu2srKSL774gpqaGnr06MEf/vAHdt55Z2bOnMl9993HlClTmDJlCuPGjaNXr15cf/31DBs2jOrqaj766CPuvfdettlmG7bbbjtuuukmRo8ezeTJk6mtrWWRRRbhmWeeYciQIdTW1vLaa6+x1lpr8csvvzBx4kQqKir4+uuv+eWXXxY4PwsqcAMws6UJJWpXufsdZvbvrM29gF+aOy4T8banioqKnFxHWk95kp+UL/lHeZKfOmK+nLBYJc9e9hIzaupa3KespJi/b7vOfI3nNnXqVHr37j3b+9ajRw+WX355Bg4cyMCBAznllFM499xzmTZtGrvvvjurrroq55xzDhdffDFFRUWsssoqbLvttvznP/9h5ZVXZtNNN+Xiiy8GYNFFF2X33Xfntttum9XG7dtvv+WMM86gpqaG7bbbjhEjRvDyyy+z9NJLM2jQICZPnszvfve7VuVnpq1cc1Lp9BxC3jxjZv2A54Ej3P2ZuO6/wMVZbdyec/e7s48rLy9PDx48uN3T1xE/YIVOeZKflC/5R3mSnzpqvjQ3jhtASVGK0uKivB7HLRd5Ul5ezuDBg1PNbSu0EreTgYWAU83s1LjuKOByMysDKmhoAyciIiJ5aBNbjMePHsoNL33Bg29PorK6lh5lJeywdn8OGLqcZk6Yg4IK3Nz9KEKg1tSwXKdFRERE5t+ARXpw9varzfdYbZ2VZk4QERERKRAK3EREREQKhAI3ERERSU7Vr3DX7uFR5kqBm4iIiCTHx8BH/wN/POmUFAQFbiIiIpKct29t/LiAxo4dy/rrr8/IkSMZOXIkO+64I0ceeSTV1dULdN6JEyeyyy67ALDpppsyc+bMtkjuPCuoXqUiIiJS4EZvC1+80LBcXBYevx4LZ2RNfrTcMNj7kfm6RNMpr4477jieffZZttxyy/k6Xz5R4CYiIiJt7/ad4ZMn575fXXXjx4wvXmgcyAGsuDnsce88JaO6upoffviBPn36cPHFF/Pmm29SX1/PPvvsw1ZbbcW7777LeeedR319Pf369eOiiy7ivffe44orriCdTlNZWcnFF19MaWnpPF23vShwExERkQ7l9ddfZ+TIkUyZMoWioiJ22WUXqqurmThxInfeeSczZ85kl112YcMNN+S0007jkksuYeDAgdx777189tlnfPLJJ1x44YX069ePa665hscff5w///nPSb8sQIGbiIiItIe5lYz543Dv3lBb1bCupCvsPBpswao0M1WlP//8M/vttx9LLbUUH3/8MR988AEjR44EoLa2lkmTJvHjjz8ycOBAAHbeeWcAvv32W84991y6d+/O999/zzrrrLNA6WlLCtxEREQk96p+haJiSBVBcReomxmW23BYkIUWWogLL7yQvfbai7///e8MGTKEs88+m/r6eq666iqWXnppFltsMb788kuWXXZZrrvuOpZbbjlOO+00nnrqKXr27MmJJ55IPs3rrsBNREREcu/tW6B6Oiy+Omx2Jjx1Onz3fuhduuaubXaZFVZYgZEjR/Lcc8+xxBJLsPvuuzN9+nSGDx9Oz549OfPMMzn55JMpKipi0UUXZZ999mHbbbdljz32oFu3bvTt25cffvihzdKzoBS4iYiISO516Q2bnwPrHQZFRaEX6etXwYRXF+i0Q4YMYciQIY3WHXrooS3uv8Yaa3DHHXc0WnfSSSc1u+8999xDRUUFzz777AKlcUEocBMREZHc2+3OxstFxbDB38KftEgD8IqIiIgUCAVuIiIiIgVCgZuIiIhIgVDgJiIiIjlz0/ibGPftuDnuM+7bcdw0/qYcpaiwKHATEelkdOPMT50lX1ZbZDWOf+H4Fl/ruG/HcfwLx7PaIqvlOGWFQYGbiEgnoxtnfuos+bLuEuty0bCLmn2tmdd40bCLWHeJdefr/BMnTmSdddZh5MiRs/6uuOIKACZMmDDHqasefPBB9tprL0aOHMlf//pXXn755flKQ7tKp9Md/u/NN99M58KHH36Yk+tI6ylP8pPyJXljvxmbHnrn0PTYb8am0+mGPGm6XnKrM+VL09fUVq/x66+/Tu+8886zrX/wwQfTO+ywQ3qDDTZo9ripU6emhw8fnp45c2Y6nU6nv/vuu/TQoUPTdXV1jfbLxfdXjFuajWk0jpuISCe07hLr8ve1z+HQp45m5qQ9qPx1WXr0eZYu/W/njCHnz3dphyyYjpQvhz19GC9Nemmu++3/5P5zXM42tP9Qrhp+1Xylp0+fPtx2221sttlmzW4vKyujpqaGO++8k0022YRlllmGp59+mqKiIr788ktOOeUUampqqKur47rrrmP69OmcfPLJ1NXVkUqlOOWUU1h55ZXZZJNNWH755Rk4cCD77rsvp556KjNnzqRLly6cffbZLLHEEvOV/gwFbiIiBS6dTjOjdgaVNZVMq5nG9JrpTKuZxrSaaVTWVM76m1bdsPzlz1N4d9L3UNyF1BLX0qNfGRRVU1XTg5NeOoWL3iqja2lx0i+t06mqqWNKZTXpVJrUEtfSfbFuUFzFjOlL8I+nr+ahTx9mYN9F6FHagx6lPehe0r3heWl3epb2bLTco6QHxUWdLx8//fTTWZPJA1x00UVssskmczymS5cujB49mtGjR3PAAQdQU1PDgQceyO67784FF1zAQQcdxEYbbcTo0aP58MMPueeee9hrr70YPnw4FRUVnHzyyTzwwAN8++23PPDAAyy00EIcffTRjBw5kmHDhvHaa69x0UUXcfHFFy/Qa1PgJiKSkOq66lnBVtMAKzsAa7pPo23VlVTWVlKfrp/n6xd1z1oonglAqmQaAD9VA9Vt8CJlnqVKIZV5XjIdgOJuk4BJjPtxPON+nLfzdS3uGoK4rGCvZ1lPepT0aLQ+O9ib9by0Bz1Le8563rW4K6lUau4XhVaVjGXatO1iu3CP37NAbduyrbDCCtx6661z3e/ggw9m+vTprLTSShx00EFUVVVx2mmnAfDFF1+w61670mVAFz7+9HP+N6mMw05/gsqZfenxeSXd3v6Ag445iXHfjmN83Xi+++47IExsv9BCCwHw8ccfc+2113LDDTeEas6SBQ+7FLjNp5vG38Rqi6xGv7JVuf6lz3no7W+onFlLjy5fsf3aS3Lg0OX5vvoDxk8Zz36r7Zd0cjsF5Ul+6mj5UldfR2VtZQicqpsp1WoSYGUCq+zSrsy2mvqaNktX1+Ku4SZb1rPhxhxvurNuzCU96FLcnSfe/5k3v5hBXW0XUmWT6brYk9T8uhalfd6h6rttqZsxgOIUbLzSYuy5/rJtlkaZs1tf+5IXPv6BujQUd5tA18UfoWbqGpT2fpeZP25CumZhiotnsvay3dl45d5Mrwv/h5n/qVnPaxsvV9VVUVVXxU9VPy1wGotSRbMFfJlgL/O/12h91v9e0yDxwykfcuKLJ84K1tZdfN0F7pgwr6699tpZzz/44ANOOukk7rjjDnr27En//v1ZZOFFOP/NC5maXogJT79G7aIrUfR1OdOrp1NdujA7X3AhfYaO47ilj6Jv377hPSpq6Pe5/PLLs99++7HOOuvw2Wef8cYbbyxwmlPpdHqBT5I0MysCrgLWBGYCB7j7p5nt5eXl6cGDB7fpNcd9O44jnz2WqRP+SvW05amtb3gfS4pSlPX8nN4D7uLyTS8pqDYJhUx5kp/yIV+yqxKzA6empVrZ1YnNbquZxozaGW2WruJUMV2Le9ClqDtdirtTmupKWVF3SlLdKKEbxXSlmG4U0ZVUuiup+i6Q7kq6rgvp+q7U15VRX9eFuroyampTVNfWM7O2nuq6eqpr41/W8+z3HqC4+2d07X8HVZN2p276wNmWJRmtzZeSohRlJUWUlRRRWlxEWXF4nnksLU5RWpKipKSW4uKZFBVXU1Q0E4pmkoqP6dRM0qkq6plJXaqKuvQMaqmiNj2DmvoZVKdnUF0/g5l1M5hZP52a+rYthi0tKqVXWa9ZAV99up4vpn7BWouuxTK9l5lj4JddOtijtAfdSrqRSqWYOHEixx57LPfcc0+z19xwww155ZVXmt127733cvvtt9O1a1fq6urYZMs/c8X3U6FsNDWP9IK6rqSLS6n9/R4Ul3xM6Tt3kp6xGIMWXYSzzzyd1VdfvdH5v/76a8444wxmzpxJVVUV//znP1l77bXn+r6Ul5czePDgZos2O0qJ2/ZAV3df38zWAy4GtmvPC/YrW5WpE/5Kqt9tpGt3h6wPU7rrp6T63cHUCXvSr2zV9kyGZFGe5KcFyZeauppmA6xp1dNCqUJ1QwnXb9XTZv1lB2gzaqczvbaSNPNeldisdIoiuoRAKt2VVH1X0vVdSNd3ob4u/NXVllFX2yWu70q6vgzqMwFXl/C8vgukS2ioFJsfdcD0+Nc6ZSVFVNfWNxsM1E0fSNWk3RutX3nxXguQPpkXH333W6vzBaC2Pk1tdR3Tq+vm4Spd4t/8qouBXzWp4qpZQWAqKyBMFVdTUlxNcclMioqqSRXPJFU8E1Jhn/rUNOpToUq+pr6Gn6p+4icalwa++f2bvPn9m/OUshRFdC3pRvfi7nTbtQc7PbxrCOrKetCztAe9ysLzva/em9srbm9UOpgJBDfYagM2+/Nm9CjtQWlxKac89D7Vn31NuutIuu59B1WTts8Kph+lqufBpKpWYPV1l2H11cMwLdlB4dJLL82NN964AO93M6+zg5S4XQKMc/e74vIkd++f2d4eJW6nPPQ+d437mnTXT+na/3Zqfl4X0l1JlU6htM871Py6FtQswpK/68bKi/du02vPTSubH8ztLDk4Q5skdJaKb6cy8ZcZpEqmUPq7t6n5ZW3qaxahqLRhOV27CEst1J1VlshxnrTxay0kH34zla9/nk6q9MeGfKjrTVHZ95T0+pC66QMgXUr3rjV07VJLTXoGtekZ1DKDNLVtlo50fWkMmrqQrmsItsgEV3WZ52E57Jf1fNb6Ulo7BGZpcaqhFKQkuzSkmLKSIroUN13fzHIL+3SZ67bi2c5XWpwilUqx2r+uJL3YrS2WrGWCh9QPIxl/0uFtlgcyZ/OSL+//4zBq6tJU19VTk12ymlXCWhOfz2yyz6z1tfXhHLX1VNfVzXo+M2ufWfvXtbC+mWvXzyWsKFv4BeqqlqJu+vKQqmkS9IXnxV2/oqjLD9TNGJAVGFY3DhKLq0gVVWcFj23X9AAgRQn1s36AlQFpirr8SN20FSjqNrFRPvXsUsL4M7dos2t3hhK33sCvWct1Zlbi7m33rd/EQ29/E6odpg9k5g9b0G3JBxttL1so1GP/CLy84M0KpDXKoMtiWYsLj228OS5PBl6Yx8a9sgDKoEu/rMUm+VLS8zMgtIOvblIolk4XhaqJWYFTlyYlV5kSrVACVkI3SlLdKE11pTTVnS5F3Skr6k6X4m50KSltCG66FLUqcOrSaLl4tn27zCnoKi6iqCg/A/ZVl/+Vtz/eI9w4m1E3fSA13+zBOiv92ux2aR/zki+pVIqyklBVukAFaO2grj7duKp+toBxg3kKDEPgmaa6ri6ubybArK6nuq4mVOnWherdmvSMrB+CVdRT1ThInPW8ukkwGIJEUrWkSmpJUdno9ZX0cmZO3rRRcF1Z3W7hxmw6SuA2Fcguzy9qGrRVVFS06QUrZzacvvbXP1DbezwlPT+hdvoy1E1frtG+K/Yta8Mrz/mnTKEUoKbn8jrmx+c/NW57UdztS4q7f03d9KWpmzGg0bblF87lN12BZEo7+fynmY2Wi7tNoLj7RGqnDaT2t9UbBWS7rtqP7rGqo0dJd7oWlTa01SlKxcdQktV4XYriNgmS0oTqxzlUPWU2Vzcszoh/heKgZUdw2PsTmdP/ZmrmQA5cdqk2/+6UlnWGfCkGsjszkyJEIiXMJQDN7Dj/0uk0NfVQU5emtj5NTV2amvqs53Vxeww8Z9ZXc/GrE6lJh2CuuPvndFn0KWp+GUzpQmOpmz5wVvDWrSSVszzpKIHbK8CfgXtiG7f3m+4waNCgNr1gjy5fMS0Gb8Xdv6Co6zfMnLwppQuNpXryFo2KT/93XNsVn0rLVjv9iaw8+YySPm/NypPayVs2ypMxxypPcmX2fHlnVr7UT9m0Ub6c9xflSy4MAq753eIcdttb1NTVz9ZhpLS4iKv2XIdNbLGWTyJtTvmSf76uis2iSj+lrO9zzJi4F3XTB1I7bdVZbQ5TVSvwl8HLtGmcUV5e3uK2jjJX6YNAlZm9ClwKHNPeF9x+7SUpKUo1akha/ePmsxqQFnf/jJKiFDus3X/uJ5M2oTzJT8qX/LSJLcbjRw9lt3WXoWeXElKE4Hm3dZfh8aOHKjhIiPIlvxw4dHnKen4+xw4jZT0/54Chy83lTG2nQ3ROmJv26JwwYUolW117M6l+t83WkDRzg0p/vydjDt6XAYv0aNNrS/OUJ/lJ+VIYKioq2rxmQhac8iVZSQ1nNKfOCR2lxC3nvq/+gN4D7iL9/Z6kqlZotC1VtQLp7/ek94C7+L76g4RS2PkoT/KT8kVECtX4KeO5fNNLGHPwvs2Wgo45eF8u3/QSxk8Zn7M0dZQ2bjmXycx+Zatyw0tf8ODbk+Jo8CXssHZ/Dhg6jO+r12X8lPEa7DVHlCf5SfkiIoUqezaXs7dfjbO3X222UtABrJvT7y5VlbYhFWnnH+VJflK+5B/lSX5SvuSfXOSJqkpFREREOoBOU+KWdBpEREREWqulErdOEbiJiIiIdASqKhUREREpEArcRERERAqEAjcRERGRAqHATURERKRAKHATERERKRAK3EREREQKhAI3ERERkQKhwE1ERESkQChwExERESkQCtxERERECoQCNxEREZECocBNREREpEAocBMREREpEArcRERERAqEAjcRERGRAqHATURERKRAKHATERERKRAK3EREREQKhAI3ERERkQJRknQCRETmxszSwHigrsmm7d39yxylYRtgiLufZmbbAsPd/cg2Ovf1wDXuXm5mNwB3ufvTbXFuEelYFLiJSKHYxN1/TPD6fwAWBnD3R4BH2vDcmwHXxnMf0IbnFZEORoGbiBQ0M9sbOB1YA0gDbwL/cvdbzOzPwClAGTAdON7dXzOzEuDfwAigFngVOAw4Gejr7kfEc58B9AVuBQ4Bis3sV+ATYCd3H2FmSwFXA8sCKWC0u19oZssCzwCPAUMIQd8/3f3uJuk/F1gSuN3M9gIuAK6Ir+PZ+Lc+UAocDxwMrBy37+bu9Wa2QTyuB1APnOHujy74uysi+UZt3ESkUDxnZu9k/T0I4O6jgdcIgdjlwEsxaFsROA/Y2t3XBg4CHjCzHoQgbTCwJrAa0AvYtaULu/tY4Brgbnf/Z5PNtwPPufvqwIbAnmb217hteeAJd18XODGmsem5/wl8A+wRr5NtOeARd1+VEAT+B9gNWBUYCqxnZgsBNwMj3X0dYFvgajNbpuW3UkQKlUrcRKRQzKmq9BDgXWAGISCDUP24BPCMmWX2qwdWAIYDt7r7jLh+V5hVwtZqMQjcENgcwN1/NbNRwFbA60ANocQN4C1iVes8qAH+G59/Brzq7lPjtb+J51uf8DofynqdaUIJ5FfzeD0RyXMK3ESkI+gHdAW6EKodPweKgWfcfVZJmpktTSjdqiUEN5n1/Qg1EGlCdWdG2VyuW9Rk/8y60vi82t3r4/Om526NandPZy3XNLNPMVDh7kMyK8xsSWDyPF5LRAqAqkpFpKCZWSlwJ3AacCZwZ1z3LLC5ma0c99saeI8Q4D0N7G5mXcysiNBGbTdCsDPYzFKxNG3zrEvV0hCQAeDuvxFK1g6P1+gD7AU8NY8vY7Zzz4PXgRXNbKOYhrUIbfCWnM/ziUgeU4mbiBSK58ys6XAgJwObAN+5+w0AZrY9cK67n2BmBwF3mVmKEBxt6+6VZnYtoTNBOaEU7HlC+7gehGrOT4BJhLZzmVKyZwht5KrjcRl7AFea2b6EErrbgVHAgHl4bQ8Bd5vZPPcodffJZvYX4EIz60r4QT7S3SfM67lEJP+l0un03PcSERERkcSpqlRERESkQChwExERESkQCtxERERECoQCNxEREZECocBNREREpEAU5HAgZrYYoTv+ZoQu/qMIg1uOBw7PGvASgPLycnWdFRERkYIxePDgZgfsLrjALQ6seS1hahuAS4BT3P15M7sG2A54sOlxgwcPbrqqzVVUVDBo0KB2v460nvIkPylf8o/yJD8pX/JPLvKkvLy8xW2FWFV6EWGy52/i8mDghfh8DGEOQhEREZEOp6BK3MxsH2Cyuz9hZifF1amsufx+A/o0d2xFRUW7p6+qqion15HWU57kJ+VL/lGe5CflS/5JOk8KKnAD9gPSZjYcWAu4BVgsa3sv4JfmDsxFUbOKtPOP8iQ/KV/yj/IkPylf8o+qSueBu2/k7sPcfWPgHcJkzmPMbOO4y1bAS8mkTkREpI3U1cGjj9L36qvh0UfDsiQrT/Kk0ErcmnMccL2ZlQEVwH0Jp0dERGT+1dXBFlvA2LH0rayEm2+GIUPgiSeguDjp1HVOeZQnBRu4xVK3jGFJpUNERKRNjRkDr78OlZWkAKZNgxdegC23hGWWadtrpXM0WlYurtOe1/j6a3jxRaitbciTsWNDXo0Y0X7XbUbBBm4iIiIdUnk5VFY2XldbC08/nUx6pHmVlfDOOwrcREREOrXPP599XZcucNBBsOaa7XPNVLNjveoaGe+8A9dcAzNnNqzr0QPWWqt9rjcHCtxERETyxdtvwx13hOddu5KeOZNUjx6hPdWll6qNW1Lq6mD8eBg7lnRlZUOebLVVzpOiwE1ERCQfzJgBe+wRqkUPPRS23prJTz3FYpttFgIEBW3JKS4OHRHGjEk8TxS4iYiI5IN//AMqKmDlleGii6B7d6YMHMhiGsctPxQXw4gRiedJQY3jJiIi0iE9+SRcfjmUlMBtt0H37kmnSPKUAjcREZEkTZkC++wTnp95JgwenGhyJL8pcBMREUlKOg2HHALffgsbbggnnph0iiTPKXATERFJyq23wn33Qa9e4bk6IMhcKHATERFJwhdfwBFHhOeXXw7LLZdseqQgKHATERHJtbo62Gsv+O032HFH2HvvpFMkBUKBm4iISK5deCG8/DIsvjhce21uZhWQDkGBm4iISC699Racdlp4PmoU9O2baHKksChwExERyZUZM2DPPaGmJrRv22KLpFMkBUaBm4iISK6ceGLD7AgXXJB0aqQAKXATERHJhSefhP/7vzA7wu23a3YEmS8K3ERERNpb9uwIZ50F66yTaHKkcClwExERaU/pNBx8cJgd4Y9/hBNOSDpFUsAUuImIiLSnW26B++8PsyPccotmR5AFosBNRESkvXzxBfztb+G5ZkeQNqDATUREpD3U1cHIkWF2hL/8RbMjSJtQ4CYiItIe/v1veOUVWGIJzY4gbUaBm4iISFvLnh3h5pthkUWSTY90GArcRERE2tL06bDHHlBbq9kRpM0pcBMREWlLJ54IH30EgwZpdgRpcwrcRERE2soTT8AVV4TZEW67TbMjSJtT4CYiItIWpkyBffcNzzU7grQTBW4iIiILKp2Ggw7S7AjS7hS4iYiILKjRo+GBBzQ7grQ7BW4iIiIL4osv4Mgjw/P/+z/NjiDtSoGbiIjI/Go6O8JeeyWdIungFLiJiIjML82OIDmmwE1ERGR+lJdrdgTJOQVuIiIi82r6dNhzzzA7wt/+ptkRJGdKkk7AvDCzYuB6wIA0cAhQBYyKy+OBw929Pqk0iohIJ6DZESQhhVbi9mcAd98QOAU4F7gEOMXdhwIpYLvkkiciIh3e4483nh2hW7ekUySdSEEFbu7+EHBQXBwA/AIMBl6I68YAw3OeMBER6Rx+/LFhdoSzz9bsCJJzBVVVCuDutWY2GtgB2AnYzN3TcfNvQJ/mjquoqGj3tFVVVeXkOtJ6ypP8pHzJP8qTVkin6X/00fT+7jumDx7MhBEjoJ3fM+VL/kk6TwoucANw973N7ERgLJBdRt2LUAo3m0GDBrV7uioqKnJyHWk95Ul+Ur7kH+VJK4waBU89Bb160f2++xi07LLtfknlS/7JRZ6Ul5e3uK2gqkrNbKSZnRQXpwP1wJtmtnFctxXwUhJpExGRDuzzz0PvUQizI+QgaBNpTqGVuD0A3GxmLwKlwNFABXC9mZXF5/cllzwREelw6urCjAjTpsFOO2l2BElUQQVu7l4J7NLMpmG5TouIiHQSF1zQMDvCNddodgRJVEFVlYqIiORUeTmcfnp4PmqUZkeQxClwExERaU7T2RE23zzpFIkocBMREWnWCSdodgTJOwrcREREmnr8cbjySigthdtv1+wIkjcUuImIiGTLnh3hrLNg7bWTTY9IFgVuIiIiGek0HHwwfPcdDB0Kf/970ikSaUSBm4iISMaoUfDAA9CrF9xyCxQXJ50ikUYUuImIiECYHeHII8PzK67Q7AiSlxS4iYiINJ0dYeTIpFMk0iwFbiIiIpodQQqEAjcREenc3nxTsyNIwVDgJiIinVf27AhHHqnZESTvKXATEZHO64QTwB1WWQXOPz/p1IjMVUlSFzazPwM7AgbUAR8B97r7k0mlSUREOpExYxpmR7jtNs2OIAUh54GbmRkwCvgZeBS4CygGlgeONLMzgAPc/cNcp01ERDqJH3+E/fYLz88+W7MjSMFIosTtFGB3d/+imW1XmNlA4Cxgj9wmS0REOoV0Gg46qGF2hOOPTzpFIq2W88DN3WcbHMfMioAid691989Q0CYiIu1l1Ch48EHNjiAFKbHOCWa2iZm9GxcHARPNbP2k0iMiIp1A9uwIV16p2RGk4CTZq/RCYF8Ad/8A2Bq4NMH0iIhIR1ZbG2ZEmDYNdt45DAMiUmCSDNzK3P2tzEJ83iXB9IiISEd2wQXw6quw5JKaHUEKVpKB23Qz2zKzYGZ/AqYlmB4REemo3nwTzjgjPB81ChZeOMnUiMy3xMZxA44CHjSzWiAd/3ZMMD0iItIRZc+OcNRRsNlmSadIZL4lFri5+1gzWwZYHagNq7w6qfSIiEgH9fe/N8yO8K9/JZ0akQWSZK/SIuDo+PclcJyZqU+2iIi0nTFj4KqrwuwIt9+u2RGk4CVZVXohsCjwByAFbAksARyZYJpERKSjaDo7wlprJZockbaQZOeEPwH7AFXuPhXYHFDDAxERWXDpNBx4YJgdYaONNDuCdBhJBm417l6fWXD3mYS2biIiIgvm5pvhoYegd2/NjiAdSpJVpePN7HCgOE48fyzwToLpERGRjuDzz0PvUYArroABA5JNj0gbSrLE7ShgHaAf8ArQk9BRQUREZP5odgTp4JIcDmQqsD+AmaWAEnevSSo9IiLSAWh2BOngkhwO5I9mdoqZlQHlwK9mtmtS6RERkQKXPTvC6NGaHUE6pKQnmX8d2B74DlgFOC7B9IiISKFqOjvC8OFJp0ikXSQZuBW7+9OEIUAecvcvAXX7ERGReafZEaSTSDRwM7N1gW2AJ81sNaA0wfSIiEgheuwxzY4gnUaSw4GcC9wB3OjuX5rZF4Sepi0ys1LgJmBZoAtwDvAhMIowSf144PDs8eFERKQDmzy5YXaEc87R7AjS4SXZq/QB4IGsVSu4e91cDtsTmOLuI81sYcK4b+8Ap7j782Z2DbAd8GA7JFlERPJJOg0HHQTffx9mRzhOzaSl48t5VamZPWxmazddnwnazOz3ZvZIC4ffC5wan6cIMy0MBl6I68YAapEqItIZaHYE6YSSKHE7FLjezBYFHgU+JXRKWB7YCvgFOLi5A919GoCZ9QLuA04BLnL3dNzlN6BPeyZeRETywGefwZFHhudXXqnZEaTTyHng5u7fANuY2RBgJ2A3oB74GDjK3cfO6XgzW5pQFXqVu99hZv/O2tyLEPjNpqKiog1SP2dVVVU5uY60nvIkPylf8k9B5UltLQP22ovulZVM3XJLJq2zDhRK2udRQeVLJ5F0niTZxm0sMMcgrSkz6wc8CRzh7s/E1W+b2cbu/jyhxO655o4dNGjQAqS2dSoqKnJyHWk95Ul+Ur7kn4LKk3POgXfegf796X377fTuwAPtFlS+dBK5yJPy8vIWtyXZq3R+nAwsBJxqZpm2bkcBl8cZGCoIVagiItIRvfEGnHlmeD5qlGZHkE6noAI3dz+K5ocMGZbrtIiISI5VVjbMjnD00ZodQTqlJAfgFRERab2//x0+/hhWXVWzI0inlWiJm5ntBKwFnAds5+53JpkeERHJU489Bldf3TA7QteuSadIJBGJlbiZ2T8IQ4PsAnQDTs9qtyYiIhI0nR1hzTWTTY9IgpKsKv0rsDVQ6e5TgPWA3RNMj4iI5Jt0Gg48MMyOMGyYZkeQTi/JwK3G3WdmFtz9F6AmueSIiEjeuekmePjhMDvC6NGaHUE6vSTbuH1tZtsAaTPrAhwPTEgwPSIikk8++wyOigMJaHYEESDZwO0I4FZgDaASeB3YI8H0iIhIvqithZEjwxAgu+wCe+j2IALJzpzwDfAnM+sOFLv7b0mlRURE8sy//gWvvQb9+4fepKlU0ikSyQuJBW5mtjiwD7BwXAbA3U9IKk0iIpIHsmdHGD1asyOIZEmyc8IjwLpAqsmfiIh0VpnZEerqwuwIf/pT0ikSyStJtnErc/cdE7y+iIjkG82OIDJHSZa4lZvZagleX0RE8sn//hfas5WVaXYEkRYkWeL2CvCOmX1L1vht7r58ckkSEZFETJ4M++8fnmt2BJEWJRm4nUGYKeGzBNMgIiJJazo7wrHHJp0ikbyVZOD2k7vfk+D1RUQkH2h2BJFWSzJw+5+ZXQTcD2RPffVWckkSEZGc+vTThtkRrrpKsyOIzEWSgVtmQvm/ZK1LA2rjJiLSGWTPjrDrrrD77nM/RqSTS3LmhOWSuraIiOSBf/0LXn9dsyOIzIOcB25mdoK7/9vMLm9uu7sfmes0iYhIjo0b13h2hIUWSjY9IgUiiRK3X+PjlASuLSIiScueHeGYYzQ7gsg8SCJwOxi41t3PTODaIiKStOOPh08+gdVWg/POSzo1IgUliZkT1IhBRKSz+t//4JprwuwIt92m2RFE5lESJW5dzWxtWgjgNByIiEgH9cMPsN9+4blmRxCZL0kEbssTxm5rLnDTcCAiIh1RZnaEH36AjTfW7Agi8ymJwO1Dd187geuKiEhSbrwRHnkE+vTR7AgiCyCJNm4iItKZfPopHH10eH7llbDMMokmR6SQJRG4vZjANUVEJAmaHUGkTeU8cHP3o3J9TRERSch554XZEZZaSrMjiLQBVZWKiEj7GDcOzjorPB81SrMjiLQBBW4iItL2NDuCSLtQ4CYiIm1PsyOItAsFbiIi0rYefbRhdoTbb9fsCCJtSIGbiIi0nR9+gP33D8/PPRfWWCPZ9Ih0MArcRESkbWh2BJF2l8TMCQvMzIYAF7j7xma2AjCKMF3WeOBwd69PMn0iIp1S09kRilQ2INLWCu5TZWYnADcAmUYTlwCnuPtQwvyn2yWVNhGRTit7doSrrtLsCCLtpOACN+AzYMes5cHAC/H5GGB4zlMkItKZ1daGoT8qK+Gvf9XsCCLtqOACN3e/H6jJWpVy93R8/hvQJ/epEhHpxM47D8aODbMjXHVV0qkR6dAKso1bE9nt2XoBvzS3U0VFRbsnpKqqKifXkdZTnuQn5Uv+md886freeyx71lmkgAlnncX0776D775r+wR2Uvqs5J+k86QjBG5vm9nG7v48sBXwXHM7DRo0qN0TUlFRkZPrSOspT/KT8iX/zFeeVFbCdtuF2RGOPZYB++7bPonrxPRZyT+5yJPy8vIWt3WEwO044HozKwMqgPsSTo+ISOdw3HFhdoTVVw9jtolIuyvIwM3dvwTWi88/BoYlmiARkc7m0Ufh2mvD7Ai33abZEURypOA6J4iISMKyZ0c47zzNjiCSQwrcRESk9dJpOOCAELxtsgkcc0zSKRLpVBS4iYhI691wA/z3v5odQSQh+sSJiEjrfPJJ49kRll460eSIdEYK3EREZO5qa2HkSJg+HXbbTbMjiCREgZuIiMzduec2zI5w5ZVJp0ak01LgJiIiczZ2LJx9dng+ejQstFCy6RHpxBS4iYhIy6ZNCxPIx9kR2HTTpFMk0qkpcBMRkZYddxx8+qlmRxDJEwrcRESkef/9L1x3XZgd4fbbNTuCSB5Q4CYiIrP74Ycw0C6E2RFWXz3Z9IgIoMBNRESa0uwIInlLgZuIiDR2/fWaHUEkT+nTKCIiDT75pKGE7eqrNTuCSJ5R4CYiIkHT2RF22y3pFIlIEwrcREQk0OwIInmvJOkEiIhIgurqYMwYFr/lFrj//rDulls0O4JInlLgJiLSWdXVwRZbwOuv87vKyrBumWVgo42STZeItEhVpSIinU1VFYwfD6ecAi+9BJWVpDLbpkyBMWOSTJ2IzIFK3EREOqoff4SPPpr974svoL6++WOmT4d33oERI3KaVBFpHQVuIiKFrK4OvvwyBGQVFY0DtClTmj+mqAhWXDG0Y3v7baipadjWowestVYuUi4i80GBm4hIIZg2DdxnLz37+GOorm7+mF69YOWVZ/8bOBC6dGlo4zZ2LOnKSlI9esCQIbDVVrl9bSLSagrcRETyRToN33zTfPXmxIktH7fUUiEgGzSocYC2xBKQSrV8XHExPPEEjBnD5KeeYrHNNgtBW3Fx2782EWkTCtxERHKtuho+/bT5AO2335o/pqwMVlpp9tKzlVYKJWvzq7gYRoxgysCBLDZo0PyfR0RyQoGbiEh7+emn5oOzzz8P1ZTN6du3+erNZZdVSZiIKHATEVkgdXXw1VezB2cVFTB5cvPHFBWFdmbZgdmgQWAWAjcRkRYocBMRaY3KytARoLnOAVVVzR/To0fzpWcrrABdu+Y2/SLSIShwExHJSKfh+++bH1rjq69aPq5//+YDtP7959w5QERkHilwE5HOp6YGPvus+fZnv/7a/DGlpWHss6bBmRn07p3b9ItIp6XATUQ6rl9+aT44++wzqK1t/piFFpp9WI2VV4blloMSfWWKSLL0LSQiha2+Hr7+uvkA7bvvmj8mlQqBWHNjn/Xtq+pNEclbCtxEpDDMmNF85wD3sK053buHqsympWcrrgjduuU2/SIibUCBm3RMdXUwZgx9n3wSNt9co8Hni7nlSzodhtBoOqzGRx/BhAlhe3OWWKL5zgFLLRWG3hAR6SAUuLUFBQn5JWv+xb6VlXDzzWH+xSeeUL4kqWm+3HhjGBZjt90al6T9/HPzx5eUhP2bG/usT5/cvhYRkYQocFtQuQoS0ulwrfr6uT+2Zp+2PDZXx7T22O+/h/ffh7o6UhAm537uOVhzTVh44dnf1+be61zs09nOO20aTJoE6XTIl+nT4b33wl+2Pn2a7xyw/PKhZ6eISCfWIQI3MysCrgLWBGYCB7j7pzm5+Jgx8PrrUFnZOEhYccUw+GZbBSmyYOrr4YMPkk6FNGf99WHvvRsCtMUWU+cAEZEWdIjADdge6Oru65vZesDFwHY5ufLbb4eSg2z19fDFF21/raKiUIrXmsd52XdBjsn19VqzzxtvwL/+1Xg0+27d4NRTYYMNZg8KmgsScrVPZzrv88/D8cc3/rz07AknnwwjRsx+jIiIzKajBG5/BB4HcPfXzez3Obvy2muHkrVp0xrWdesG558PG2/cdkGKGli33uabw4svwtixpCsrSfXoEaqvTzhBbdyStNJKcP/9s+fLVlslnTIRkYLRUQK33kD2cOd1Zlbi7rNG2KyoqGifKy+7LMusthpd33uPohkzqO/Wjao11uCrTTdtHCRkqj0lNy67jJ4vvUTx+PHUrbYa04YODQ3gJVnKl7xVVVXVft+TMt+UL/kn6TzpKIHbVKBX1nJRdtAGMGjQoPa7+ssvw5gx/PDUUyy22Wb02GorBqlkJ3mrrUZFRUX75r3MO+VLXlKe5CflS/7JRZ6Ul5e3uK2jBG6vAH8G7olt3N7P6dWLi2HECKYMHMhi+oCJiIhIO+kogduDwGZm9iqQAvZNOD0iIiIiba5DBG7uXg8cknQ6RERERNqTuiqKiIiIFIhUuqW5/zqQ8vLyjv8iRUREpMMYPHhwsyORd4rATURERKQjUFWpiIiISIFQ4CYiIiJSIBS4SYdgZvpfFmkFfVbyj/IkP5lZs23MkqZ/lnlgZil9wPJLJj/ikDCYWb9kUySgG1E+MrNiCJ8VM+ttZt2TTlNnl7mnZH1/dU06TRLEfMnLTgDqnNBKTT5cvYH1gHJ3n5JsygTAzH4P7EwYm/A0d69MOEmdVpPPykpAf3d/LuFkSWRmuxM+Ky+5+yVJp0fAzAYQxiJ14HZ3r0k4ScKsQPpvwLvu/mTS6cnQr+JWyroRnQjcB5wKrJloojqp7NIcMys2s8uB84GeQH9gi6TSJrNKdJYysyuA0cC+ZrZ80unqbJqWeprZ8mb2BjAEmACsbWaaoy/Hmnx/pczsJGAUsDJwEKDPSgKaVoua2eHAjcBw4LBEEtUCBW4taFotamZFZnYUMAjYB3gPWD/+UpIcaFotGi0CLOnuw939cOAZQr70TyKNnVEzAUIf4CLgXeCIuHojM+uS67R1VmZWnPVjM/O+rwj8z92PAi4APgJ2SyiJnU4mMGjy/dUf2AjY3N13IHxmRphZtwSS2CllVVens9atAmwPnE74DvvNzI5o4RQ5p8CtGWZW4u7pWHKwopktHj9sg4Fn3P0b4GrCL9c/5GsDxo4iVk1nl3ruZmZ3m9mewGRgdTNbN+7+BbAK8KdEEtvJmFkqK19+H4OEFLAqcIu7lxOC6S0J+SLtxMy6mllfAHevM7NeZnYN8H9mNhyoBbaL278FaoC1zGz9xBLdCWTaEmYCAzPb0MyuM7P1gDpgGrBB3P1uYG9g9STS2plktfnM3OuXN7PtzGxhYBmgwt0/dfdPgDHAjnFb4hS4MSviLjWzAwDcvTZ+CZ4APAZcYGYjgbuAEXGf8YSquT8CSyWU9A7PzHYDtonPlzKzU4HNgUeAXYA9gDOAq+INaD9C4LCGmS2USKI7ODNbycy2gvClZ2bLmdmtwE3AJcBA4H7gn/GQicAAQkmoGl+3AzMrIbTF+V1c/iMhPz4B/hefv0goOTjJzI4hlPRMA4YmkebOIAbM/4zP+5rZQYTq0EpgT0KpzuPAUbE96DaE+/Ku8RgVCrQDM9sM2Dg+L46labcBBxLu8y8Bm5nZmvHH6CpAGXBoMiluTIEbsyLuGuBnADNbFrgZWJTwy+duQj33ZOBXM7s9thV5Evg9oN5ZbczMSgHc/U7gPjNbGtiEUMr5gLvfDlxOCNzuBc4B9idUAV0ILOzuPyeR9k4gDXwPYGY7EKpFnwXWBT4DRgJ3AMPN7HbgeOAFwhflzATS22HFH53F7l5LCJpnmtlgQu1AP+Bad38YeBQ4C9gM+BxYFtiBENhNTiLtHVkMpHH3p939n2a2JOFH/pHAxe5+DKFatB8wlpA//wKeJ3ynDczU/CSR/o4qKxD+GngujkKwK6EN2zB3H0FoY7gacAqh9PN1YAohJqjLeaKb0akDt2a6wz9mZncAk4BfCTeZWuBN4GNgW3c/CHiIkNk3Ar8RInFpQ5leVWa2LXAN4ab0KvAW4Uvtd+7+NPADocTtv4Q2O2sTgrg34vH6xdoGstuxxaqDlJmdS3ifi4Bf3b0KeBroQWhPtQnwirtvBbwDVAEqcWsjmXY5sVq0u7vXETpNDQPKgVdoaMN2EnA4sAIhWBsHXEX44fl2zhPfQcXS6J4xkM6sGwZ84O4PARXAGnHTa4QS0j8SSnseI3yW/kP4IZTdFk4WUGzWkQmEi4DdCT8yPycEcn+O204E7nb3+wkFAccADwI7EuKCxHXa4UBil/gD3H1TM/sdcBrwD8IH5lZCkHAscLm7v21mGxGqSTNVdbsQbk6nu/sTCbyEDiWr4W6mHchSwD2Em88ZwC2EUpxKQsnNy+7+aCyJq3H372Lx9xDgDnf/POcvooPK/sIzs6GE//2/E0rXNgS2BhYHrgR+InTeKXP3K2OPuaHADOBId5+U+1fQccVqnHMJPRLvI1S7nUcIBBYjfB5ud/c3zWzt+F3WnVCD0M/dr08o6R1OrJ7enXD/mEq4p7xB+NF5G6Fk7RVCg/f93f2H+J3l7v6Vmf2ZUAp6o7u/ksRr6Iis8fBEixI6GyxD6GC4GKGUsyewFXCEu1eZ2V2EKu4yQin1nsD57v5A7l/B7Dpd4BaLn2vj8/cJRaTfAke7+xFmtiahfc5g4GigG2Goid/iL9rMedZ093dznf6OqMkHa1lCfvQAngKudvcbYpuqg4ATCMXXXxIav1cnkuhOoEm+rEioOphKKMXZDViS8Ct1H0IbqoeAOwlB28x43MLAou7uuU5/R2dmqxOCtOcIPzhfIbQv3BFYiBAoDAHe1I/L9pO5p8Qg+jhCNXR/QinNioSxJc8j1BasAlwHvO7u/5dMijuH7O+vrHV/A04Glnf3GbHN9FTCZ2Uf4EN3v7zJMT3ybVzQThe4ZYu/cM4AriWUpu3v7pPN7CJgYULEvTUwKhO0xfYkeVHPXchiCdsKsdoNC93fzyCU4DxJqIJ+k/CFt1n8FfQAIZi7391/SCThnUwsnUkR2ub0cfd/mNk2wAXuvpqZlRMCuhQwzd1fzDp2ti9OmXeZEs+sx4HAcoT3/HJgZ3cfb2bnENrn7EMorT6fUEX3W1Jp70zMbDlCCc4BwPfufoqFYYluIFS37U+4rxwJzNBno300/d4xsz2ATQkDTo+K31mnuvtjZrYxsBOh2vo94Gt3/6W58+STThe4mdkmhF9FlfHxCkIHhNcJ7W/KCZ0RzgL2VYlO2zOzHvHp34CnYzXONoS2HicT2hj8BdiL0Iun1t2PNbPFCG2pMqU52W0WpI3FntQ7EkrS1gYecvfn47YXCdU/HwHrufu/E0pmh9bc/7iZnUyo2nmA0GxgSXc/Nm6rJFRNf+Pu3+U4uZ1CbNBe5+4/xuUtCW0IJxM+K/2AvsDN7v6xhYFct3L3EWbWP9NcIJ8Dg0JlZusAK7n7XXH5DMKPmX8QatJuJrRTO9LdN4z77A68kJUveX9f6dCBW9PSMTNbnNCh4BLgZ3d/y8zWIDREHBTbS/0bOMfdP8g6Lu8zshDEnlbHEHrrngZcRmjAfgKhkXQZoe3BD4RfQN8SirH3JvRMrI/j7Sg/2lGsFp0IfAMc5+43mdlZhOrrqwmlCkcCfyD0xJqYWGI7qGZKDQ4l9JQ+N+bPvoSg+SPCj5vH3P1eM1s1+7tL2l5s77wjIRioJgwfcau7/zdu/z1h3MIfCE0ISoGBcQgpBWztoEmzjh8J7aH/Rfjx/xVhoPadgS/dfW8ze5vQDOe6pNK8IDp0r9Ks6s11zKwnIfMWd/dnYtC2PqEtyEdmdp27f+3uu2W++KxhpH4FCQvAzMpiI9xDaCi9GUgo9ZxEGFricUIPn9sJHUC2IbSNetvdj3b32swHU/nRNjJDFjRZ15fwpbcCodH71nHTFYRA+hxC6cL5hCEMBsTjOvR3Sa6Y2TaxKrQ0Lu9uYeqwGcAhZrZkbF7wJaH6pydhqJXfxVN8GI9Tb+o2ZHGw1ugTQged+4G1CHnzZtyvJ2GQ43pCO7eF3H1GJmiD2WZOkAWQdY+utzC7UW/CCBBbeRhkegnC91VXdx8GfB7bUY8gFOIUpA5V4mZmmxKKsF+Iy9sTeoZ+SagO3ZLQ3uBOd7/DzE4ntMu52MwW8ThhvH4RtY0YGJxMmGT84Pjl15UQoK1MaNO2PrC7u480s38B0wlB273ufnHWuZQnbSTmy98JJWc3Eya23gCYFKt2DiBUwY0kDONxjLs/G4/dlNB1flPCr9kd3f37XL+GjiZW8RxL6J37HuFHzYOEzh5nuPudZnYJ4Yfn7jEf/kkIqJ9w9+kJJb1Da1q6H5tr9CT8uFza3TNjFb5EaFe4N6HTzj8JNQS1zZxW2lhsr745cDHwI6Hp0xGE8deOJATb6xGGJDrU3X+NxxXkfaVDBG5m1svdfzOzQwiR9O6EX0H3A//n7k+Z2XlAH+B6QnXPD4TGvSe4+0fxPAWZifnIwowH+wDvA+e5+09mthPwH3fvb2aPE8Yr+pBQfdqTMJDua0Aq64OlatE2FPNlJCFffgZWIgQHfyH0rLqNUGV9B6Hhe1/gZHdfMx4/lNC7dypwimuQ4/kWS8XKCKWXawNXxurOEYRA+npCM4Kp7n5i7MDzLOHG9DvgTA9jGc46nz4rbcPM1gZ+dPev4/LmhB87XYDT3P15MxsNPEGY0u1AQrOPCcC/sjpdKU/amDUenqiE0PSpP+E761d3f9rCwOBnEgpriglDfXyU3XmqkBV04GZhqIGzgaWBV939/Pjr51nCOGxHE36tfhv3/4jQLqcMGODubyWS8A7OzE4kvPfrZn3xLenu35jZs4R2H5MIbXMOJ1Rhn0hoW/hZ3F9BdBszs/MJ7/eKmYbrZnYfoRfccELwcGfsoXgxsJG7/8HMVnD3T7PO00s9FduOmb1ECNoyDarPAaa7+3lmNoTwObne3V8xswGEHqUvZN28FBy0odiB7THgInc/NfY8PJjQznZ3QvXo3wntca8lDP59MdAj095TedL2zKzUGwZmLyO0i/6UEKC9RqhBWBv4gPBj6BbC8Cu7uTcMR9QR7i0FG7jF4GALQtuoxwj12LcQhpE4ifAh+xfwMGE09+0I1XL7e1ZP0aYdGGT+WcNwBcsAz7j7irHNwaWEX0LHxl+y9xKqSu8HHnT3UcmluuPLypflgOfdfUDMl3MI4xQeQSiNPpbQAaEXoWPCk97Qi7Tgv+zyTea7J5YO7EmYU3RnwsDGZ7v79zGfDgFWc/e9mjs+5wnv4CwMgfM0oUT6vPg4nNBEYBtCldv1hAGn9wNK3P2qrOP1WWlDZvYnwgwsVVnrNid8b/2L0B50TcIsR88SCgGOJLThr84c15GC6YJsUBx7f25DuLH8Ozb8nAkUufurhCh8U0KV6NKEBu9rEqp2Gg3voS+++ZdpAJ3diSPeTL4C7rUwwPE9QIXH4Qrc/W1C9eg5wF7ZQZsauLeNOeTLF4R8+YJQrTDB3Q9095kexsW7mtBL8WN3PzkTtMVz6EbUBqzx1GF18fFB4DvCYODnuvsRmXaD7j6V8EPn3Kbn0ndX2zCz/c3sADNbKK5ahFBj8yjhO+pDwg+Zddz9AMKAx1sCg9z9uuygDfRZaUsWZjXakxCkYWZPALj7k4TvqqGEErYvCM03TiV0DKkhDJpflelY0lGCNijQEjcLE5BvQyhxu5MwKe9mhDY6/QnThjxKaFT9upktE4MJ/RpqQ9lF11nrsmemeIswUOvdcbnM3avNrCvQOwYLHeqXUD5oRb58Tfhs3Nd0W5Nj9FlpI9Z4uIJSQieq+qxSt1UJbT739DB9mz4TOWBmvQj3ijWAu9z90Lj+bkL7teUIvRSnEErf3id0sPqnu3+cdR7lVxuJvT4PInQq/IhQonYAoTPUg8D77n6Sma1CKPk8lTDV3p6EJgT/TSDZOVUQJRxNS2LiTWkcoXPBfcCz7r68u+8GLEVojHg3cUJrBW1tz8xOAEbH50ua2eVm1sfD1C+ZrvP/IZQiAJBV2jnTwzx9Gm6ljbUyX84gtEEEoIWgLaXPyoKzhjl4M0HbicAo4B9mtlBWqdsHhHktz40/cPSZyIHYVvM0Qju1YWZ2mJkNAq4iNBsYRyhd+xi4BnjA3Xf20Ps6lXUe5VcbiJ+PmwidB9cmDNf1PmEi+CMJvXb3MbPusSS0jlDq9rG7H+8NY+kVRGwzv/L6xWXd2Ge7gbj7N4TqnhcJI4hjZvsTIvQ6d78su6qnpfPIvImlBRB+6fzezFYgNNKd6u6/xtKezM1oNLBIzJdZMl9yyo+2M4/5ciOwhJnt29L5dCNaMGaWaloKY2GexKUIpQebA8daGDcv42LC6PvFSC5VAC8Thr6ZQMiHrQlNOl4mtG1bxN2vidXamUIAfUbaUKwWXQrYyd0vA/7m7g/HmplHCJ0RuhHGX3vKzF4nTIF4scfhcJr+UOqoCqKq1MLgrXsRhid4yxsG1l2IMIL4loT67Z+ASzwO7yHty8LwK7sQPlTrAftkNQQtdfea2FHhm+ZKdaR9tDJfBhDGbVO+tLEm1dKLE5py3Ezo/FFJ+ME8lFCa8x93n6KOBu0rq4NOUayiHuLuY7O2r00ohb6KMLPLZYC7+zbNNT2QtmdmWxGG59okBmCpmFfLAMsSBm1f390PMrPhwGR3fzce26mqqvMucGv6BWZmpwFDCEFbDfCGZw1FED9wpwE3uvujcV2nysRcij3gDiVMI3IaYbqXvsC7hF49XwIXxkbVs31hJpPqjk/5kpzMTQY4JNNQ3cy6AKcDKxIGZL2HMP7aBcA/3P02M7sMeNjdn2tyPuVJG4n5UJ8deMUmAxXAtt4whmd3YDfCFG57mdm6QJW7vxe3657SzsxsTUIv3avd/aNYi1BL6JjzNaH08wDg3541ryh0vhqCvKkqzaoWrTOz0tjwEELDxLcJE8UeCZwdG/JmvOvuO2QFbSrCbiPWeJoXLMyReDBhVPAbYnX1uYQxp3Yj9BRdmTCeDqBq0fagfMk/8X08ysz2i6v2Jky3cyihFGd1Qnuc24B1LIzdliaM8N7cuWQBxHtIMWFg6ZSZdTGzP5vZ4FgwcDuhDRsAsartJeBHM1ve3cdlgra4XfeUNjKH9meV8W9YvI/XxPd9OeBDd3/f3Y/KBG0Q8qUz5k3iJW7NtAP5PaGdzhRCqcHrwKpAv7j+YuBmd3+jyXn0K7UdxF+iKxCmDFmfMIr+8LhtOGHcvMuAMe5+VlLp7GyUL/knthk8wt0Hm9l1wFMeZkJYjBBUTwXOIoywP8k1GXy7sDBe4Uh3P8vMriX8aHmb0H7tr8C2hNH2L3P3N7J69uoe0s6s8awHQwjV0b9kbR9OyKMZhBK2fQilbce6+7S4T6fPp8RL3LIz0cyuJExNMZJQSrAKYUydLwlVEVcTqn9ma8PW2TOyLZjZdrHqObO8N2FAw6OB5wlffqVmNizusj2hJPRPwEVZxyX+f9WRKF/yi5ktFXsfLhqX+5rZNcC6QBczO4zwo/PMeEiK8MNzTeD37v6ku38QOzAoT9qImS1qZv08jFf4HzNbhHDzX5kQRF9KGFh3d8LnYwtoNJ5epudvqrnzy/wxs+6xViAzpuTKZnYn4fOxgZn1yezrYQq3EwjtP/8InOXuB2WCtrhPp7/XJ/KlkV3VY2Z9zOxgwnyVMwhdgHsQusZPBDYiFJ+WAo+6+y6u6XbalJn1jE/XBo6J1QyLENp8HOru+wHjCYMgngucYWZPErpqv+Tu0919us2hF7DMO+VL/jGz4wnVnT3cfXJcvS3Q08MYYH8hBNSvA8/HkrfHCQHDF4Tp9maVPChP2tRywGVm1o/QrvAmwuCsZxEKBCBMkfg0UE0YqHW2QK0zVr21sx7AxWa2vIX5dvclTHm4PaEN6IqZHWPp50/ufqu7/83dX4vr9QMnS07fjOx2bHG5mNDxYCRwj7sfT+iCPZjwoRpLmIqnyt0v8oYBQ9Vdvg3EkoNbgRvN7Ch3P4Nw09+a8GH6hFDaCaGqZ2dCSc9fgRPdfQ+Pc/OBAoO2onzJP2Y2IrZLWwzY3d0vzNrcBXjLzHq4uxPaSl3t7ocRBgjfjlAqOhiYBgoO2kr2vcDdxxF6UY8lDBsxlhAcXAsMMrOdgTXc/X1CSfQa8TjlRRuzxjOETCb8YPkA2Jgws1ERYUaQMuB4M9s+7lvX3Hn0HdZYTgK3pm++mf3VzJ4BrvMwdcVLwPLxl88YwngtG7v7K8CpHie4zupBom7zCyBW0ZxP+EU6jvAr9E+xV8/NwK6EG8xywKZmtgRwIGGqlzp3/97D1FX6JdSGlC95bRDQy91PcPdvzOz3ZvaYma0EfEsYquBPZrYyoeagT/y+6g4cR2ibe6y7lyf1AjoSa5jGKFMIsEosjb4MqHH3twiDsw8kBGinEEbj3yyeYhHg11gCJG3EGsYvzNzrV43tcUcTPicfufv1hAHyzyDMWtGT0Pt9NgrYmtfunROs8VQvRYTMWoJQUvAwIep+gFDffZ27v2JmI4HnMqUGTTswyIIxs+UJE7xf7GFYgiJCycAl7j7WzG4hfKBqCF96w4E3CRNf/5RUujs65Uv+adKY+h1CYLAiofTsbne/OW77K2F+5FUJ840+ljke6Ofu3+U+9R2PmW0I/OTuFXF5FeDfwOLAve5+gZldRRh4+h8WBv/eBtgJ6J7VwH0vwtBSFYm8kA4uVlefSeiIcy+hhHMEsJ+7b2ph4vj9CAH0pe7+RGKJLUDtErhZnJMya7kXcD6hbcjSwK+EKHuH+DeA0MZtKuGmpUFB21H8tbo7oWTzPsKQBesQpnWZDpwM3Ars72E8naWyguhO36OnvShf8puFAUJvIwTS52atH0EYdX8KYTq3zA/VZueAlXlnZksDJxGC5lM9zEF9KqHjwY3A94Qxvl4hNBt4jdD+82bgk1iF3WnH/WpPNvvYqzsRhsO5h9Ce8FDChO8XmtnLhPv/dcDr7v59EmkudG1enWJh1Pb7zewKM1svfuBGExrvvkbIyM2Bhd19T0IX7X8SBti90BtGHFfPnnYSP2RPE36l3g6McveV3X1bQhuRSYQJljNzvU7M9IBTcNB+lC/JynznZD2uHEt4AHD3MYSAIBMsb2dmTxAavk919xkeJ46P+ytoW0BZzQduBCrcfTN3z4x99wHQnxCYfUDoEPJHQvu2vYBH3P3RTNAGnXfcr/aUVV29cayufosw+8Qkd/+WMC3lkma2AaG5x/+AZzJBm9qsz7s2K3GzMP7a+YSG01cCvyP0DO1KGDOnIq5PAacSeposShxNXCUHuRdLCka6+65x+ThCgDDS4xRJknvKl9yK7ZwW8jBwcfb6q4AX3f0uM+vi7jPNbDVCcP0qoQPVZe7+cu5T3TlkNR+40N3viOt2A37n7ldbGFbieXe/Nu57AKGZzVNZ51BTmzZkDbOuZB5XJTQh+JJQe3YuoS1hV3c/3sx6A4cBP7j7TU3Pk/tXUPjassRtA+B6dz/U3ccTiq6vJ8yZeBewErCihxGq/0voiXWThy6/E7OKsBW05c6LwIdm9riZPUCssvaGeS1V6pkM5UsOmFlZfLoCsK2Z9Tazk6xh9oNnCPMgE4O2ovjd9n/AE+6+UyZoU2eQdjOB8MN/iJn90czuILRXey1uvxzYx8xWdvfPgfOzgzZQtWhbsqyZibLe162Au9z9QEJMsR+hg9W6Zrath2n2rlHQ1nbassTtLeBvsXPBUEKPuBcIg4DuB+xPGDvn0qYNqVXKlpxYFXQCcJG7vxTXKT8Spnxpf7GzxzGEwVivJ7SPepmGwOADYBlgFOG7K9X0/VeetL/Ye/oywgwhB2YaspvZksDPwFHA4+7+TtYxCgzaSfzheCLwA6E0dA9C29xq4D+Ez9PdwDDCUF4PZh+rfFlwCxy4Zb64zOx0QluDTHF2L3f/zczuI/SEe5PQ0Pq2rMa7+tJLWNMPkvIkPyhf2kcsGbsSeNndb49tcKcR2t18SviBuShhmJU94377JpVeCVpoPrA3cHp2YCBtK+v+nqkW3YpQGLMwYYzVpwi93LcjBGvvE4K3s9392aTS3dHNU+BmYYyiyYSGuDVmVuruNXHboYTpqB72ODmvmW1KKDU41ZvMLSr5pWnPIMkPype2k3XzGUEYW204YcDvU4EnCSU333gYZwozO5Ew6PFx7v5mQskWILaTOoZQ6lZFmL/yvNj4XSU57aDpj0Uz60qYbvImD/PAbkOY5u0dwogQuxDatl/uYQxWaSetCtzMbABwGmH8tQmEoTyOdPef4/ZehIi7G3AwoXHiFoRqhqvd/b9Z59IHTERyprng18xuAMoJo+vfSBiCZUfCyO7fEkrlMkOwXO9ZM1FIMrKaD1yY3bZQJdHtx8z6EqYM+5Yw7uqKhHv/MDPrQhjYOA2cB3Rx91/jcRp2pR3NtUGtmfUntPF4x923JtRt/0yYE67EzM4GHiIMing9YYDdnsDb7r51JmhTRopIErKGK9jbzC4zszWACwlT7X1BKDE4wd3vJfR+X5gQtA0m/CDtnUS6ZTavuvt2CtraR9MONmY2BHiE0ITgXUJ7tpeBlJnt6e4zCTMdjXX3qqygrUjDrrSvuZa4mdmewCrufnLWui6EX6r7EcbRGectDKSnqh4RyaWmPxLNbFHCgJ/fA98A/QjzVw4n1AqcQwjglnP3H7POsxqQjmOESZ7QPaVtxYAtnfV5WdLDtG7DgaHufnpcfy2hqdTjwJ3uvnRiie7kWtuFvSR7IUba9wN/dvf/uvv3LXWH1wdMRHIl3tTTsS1baVy9CPCYux8CzCQM/7ExYWT3YYS2ues2CdqK3H28grb8o3tK23L3+vh5GWhm9wCjzWwXwmekKA6qC2Hw7+pY4rkVaGiipLSmxG1rQgPEUe7+ZcyoYwhfeMWEwXNfaveUioi0wMz6ZZf6x17uKwNPuftN8Ua0E3AVYTDjzQnjsX3o3jCyvkhn0LTUMnYu3JfQZq2SEJhVE+bedULzgQ0I40m+kPsUS7bWlLg9Tegev7OZDYjFqVsTfqU+BPximrJCRBJgYUqkkYRG05jZKmZ2E2HGlmuAU81sfeA7Qs+3H4ChhCGKnlPQJp1JpmYsq93nn2LTp/eANdz9ydgj9CtC6fRJhGZRXwDrK2jLD63tVboEcCywHKG770fAWe7+Q7umTkSkBbFUbRl33z/2flsKWJNQcnCsu79lYe7kbYC/AA/EQ1VLIJ1KM+0+Fyf0pl6IMLTKAYQZKr5391PM7CBCIHdEk/OofWEemNdx3LoBS7n7J3FZvXpEJKeajB/5NWFi8e0JHQ3uBTYlDFFwfmy78zlwPGGMyezqIQ1NJJ2KmS1LGPnhK+Bjd78t/gAqIcxOMYnQ9rMP8G8PMyE1mps0mZRLtnmaX8/dZyhoE5EkZFXzZIK2bQmzHvyH0F5tIUKP0ffj8+3ioZsDj2RVDxXH8+gmJB1WdhOm2KRgZ8Ln5C3CEDebxc23An8glFifAFgcduUVaPic6POSP9psrlIRkfbQTDVPCWFu0WrgCsJ0VXsQBgDfEvgvsDZh6ILbMseqxEA6ozgczjTCDCFruvs2ZrYKcDjwqLuPMbMjCG1AbwV+A7ZSc4L8pcBNRApCnMHlXEJVz6nAFe7+Rix5O9fdVzezWwlDFb3o7j8ll1qRZJnZxsDfCDVrDxF+6KwJPO/uj8eepBsTBqKu9YY5xEcAnqldk/yjwE1E8k4zwxX8iTBry5uEIQvOBb5092tjFWo1sCvhpjQl6ziVskmHFmc3+gehF+gkd7/UzJYDriZ8TuoI7T4XIvQeXRM4G+gCLO7u78TzaHajAlEy911ERHIrqz3aDoQG028RqnLedfd6M3sN2N7MNgAWIwxb8Ji7z4jHpTTtjnRUWR0G9gP2Ah4EJhI+CwAGdMtUd8bgbjVCp4RVgf7uPp4wTA6ggK2QKHATkcSZ2QqEKammu3udmf0B+CcwgzAA+I7AXcAfzewVd38kBm/bEuawrIjnUcAmHV7W//dKhEnf32uySznwjZlt4+7/I4xz2M3dnzOzV+PsR1Kg5qlXqYhIWzKzZeKAudcAdwK7xU1/JszWshthgutL3P0+wgjuW5tZD3ef7O43untF7DWnalHp8DJVmmY2iNBG7f24XBwfBxB6Ut8InGZmjxBmPbgFwpSVmqqqsClwE5FEmFk/4AbgTXcfDpwP3Bc3jwHWNLNbCBPCr2lm+wB3E9q2VWadR6Vs0qGZWXcz2zV7XSxl/pEwlRtAWXxcEdjO3Z8m9LY+z91HxKrRzLH6rBQwdU4QkUSY2Y7A2u5+apP1CxOGLziC0Jj6e+BmQtB2kW460pnEzjcrEP7/D4o9qYuBemBnYE9gt8yPGTP7D/C5u/+nyXk060EHoTZuIpKUWmBAZjDveINKEap5SuPfZcDHwP7u/m5iKRVJQCxNrgc+NrPHgIOBN7I679xHmHv3htjmc0vgW0J70EYUtHUcKnETkUTEDgg7AQ+6++tZ6x8itGl70czWyDS8ju1yMjcykU7BzFYETiY0bVoBuNjdHzCzEnevjQNSr0No7/aqu78cj1Obzw5KJW4ikpS3CeNL7Wxm37n7l3EE9+6EYQvICtoy1Ty6EUmH1UJ15iHA1+5+mpn9BTjIzB6JQVuxu9cC4+Jf5jyakrIDU4mbiCTGzHoCxwGDgMUJPeQucPeJiSZMJEGx/WclMBY4C7jH3V+Opc73EapLz2/mOJWydQIK3EQkcWbWDVjG3T0uq8RAOjwz60oYi+0zd6+MQ3ncBrxDmNmgnDCUxyTC/Lz9CXOMTgJOVLu1zkmBm4jkFQVt0lnEIXEOInTAeQX4A7CUu/+fmT0M/ArcC6wODAb6AKdktwmVzkeBm4iISI40Mw/vrYTx1rYitO+8ljDo9OWEUrfv3f0lM1va3b/OOk4/cDopdU4QERHJkayhPHYCugGjCEPfVBFK3t4CXgK+AS4Bbo3LE+Nxxe5ep6Ct81KJm4iISDvJTC+V6TQQB5i+izDI9JfAv4BtCJPAXwAsCuwArAJc6u5v5j7Vks9U4iYiItIOsqszs3p8rkKY2eCQrMGnxxHatz0AXA38291rMseBpqmSBipxExERaUdmdhahOnQcof3a48Agd68zsxMJJW9PABu5+yNZx6kdm8xGgZuIiEgbiNO2pd09HUvK+gBXARWEtmxvEaalOpAwmPRDwN+Ba9z9vqzzaDw2aZECNxERkQXUpFp0SXf/xsx6EAbQfZIwB+86wGPA/xHmHV0LuDEzTZVIayhwExERaQNxJpBTCUN73AE8DxwFGKFk7TngHEKng8lNjlUpm7RKUdIJEBERKTSxWjR7eQPCsB3jgZ2AjYBehOrRpwidD14DpmYHbZnzKGiT1lKJm4iISCs1M7zHYOA9wmC5PwN/dPexZnYYsDRwT1y/C2HO0S+TSLd0HArcRERE5pGZLQ6cDgwDXgYuBIYDu7j7JmZWRpgQfrS735913KwODAkkWzoAVZWKiIjMgZkVN1keDlwBfASsSZgU/ih3vxpYxMz2d/dq4MgmQVvK3esVtMmCUOAmIiIyB1nTVG1hZgZ8BtQDv8aBcp8Cis3sz8CRwFLxuC/jcRpEV9qMqkpFRESymNkKwPfA9DhI7hqEeUOnAIsD1xB6ihYBNwJfAbsBS7v7BcmkWjoLlbiJiIgAZraMmd1ECMzuJARjEOYOfcbddwX+CQwhtGtbljCgbhFwf3bQ1rTXqUhb0T+WiIh0embWD7gBeNPdhwPnA5n2aVVALUAcLHdgXHcbMMHd69x9ZjxPZngPTVUl7UKTzIuIiMCGwFh3vyouvxKnruoN/AIMNLOdgKlAb6CyuRkPFLBJe1OJm4iISChRG5BVxZkys1JgU2Aa8AywPbAvcIK7v51IKqXTU+AmIiIC38a/dSGUnMUeo3sD37n7E8Df3H23OMBuKsG0SiemwE1ERATeBn4CdjazZQHM7AigO/A5gLv/HNcXaWgPSYqGAxEREWHWJPHHAYMIw368D1zg7hMTTZhIFgVuIiIiWcysG7CMu3tcLlKnA8kXCtxERERaoKBN8o0CNxEREZECoc4JIiIiIgVCgZuIiIhIgVDgJiIiIlIgFLiJiIiIFAgFbiIiIiIFQoGbiIiISIFQ4CYiIiJSIP4f1EkxxtQAdZkAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAIpCAYAAAAb9bTHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACZS0lEQVR4nOzdd3xUVfrH8c+kE3pHaQLiEQUVUQSVtWFHUdeKYu9r+ylrd+2uq6KudRUsWLCLYEFFxQ6oEUUkPioqAipNaYHUmd8f5w6EkECAZO5M8n0rr5m59869z8xJMs+cGonFYoiIiIhI8ksLOwARERERqR4lbiIiIiIpQombiIiISIpQ4iYiIiKSIpS4iYiIiKQIJW4iIiIiKSIj7ABEkolz7jvAAbua2aRg2zPAsUAh0MTMSoLti4AWQDszm7eR1xsAjAS2AL4CHgQeAx4ys7M36cVsWBwnAP8AegWbpgP3m9mTlRx7GHBJcGw68BPwOHCvmZUmIt7qcM5tAfxcYXMpMA94zMyuKXdsDCgys5wauvYvQGdgMzP7o5L9NXq9Ss7/PdAdONbMniu3PRtYCDQCtgXeWFectRDXL+WvV5Pvg3OuNXComT0SPH4cOAk4zsye3dTziyQL1biJrGlKcLtjuW1/C25z4tudc13xSdvPG5u0BW4EtgJ+API24TwbzTl3J/AksDPwHZAP7AQ84ZwbXuHYy4AxwK7ALOBzYGvgTmBEAsPeEMuBscG/d4CmwNXOuXNCjGksMK4Wz/9ScHtYhe174ZO2fDObAbwdxFJYi7GsS428D845h//ZParc5i+D88/Z1POLJBPVuImsaTJwItAHwDm3JbA5EMV/0dkVn9z1CY6ftInXaxPcHmZmPzrnTt7E822QoMbv/4Bi4CAzezfYvjcwHrjYOTfGzD52zm0H3Bwce4iZvR0cuw3+fTjZOXermVkiX0M1zDWzw+IPnHNHAc8Dh+BrOBOufDy15EXgcuBA51xmvJYY/5rj+zGzM2s5jnWqwfdhM/wXqfLnvge4p4bOL5I0lLiJrCle4xZPzPYIbp/HN5fuCtyFr5ECn+jhnMsFbgqOaYFv9rzczN4P9j+Ob7a5HjgTWAHk4j9wAH5wzl0P/FIxIOfcXsG5ewNLgWeBK8xspXPu82B7KzNb7Jy7BzgfuMHMrnXObQUYMNHM9q7k9Z4c3I6KJ20AZvaec24UcEZwzMfAafim0ZHxpC04doZz7kBgMfB9EPP7wXt3Jb5Z9Tsz2905Nxhfy9gdX8vzLnCOmS1wzl0HXAucCwwOnv81cFzwmk4HlgCXmtkzwXUOCt4bB6wE3gP+YWYLKnmtcdnB7S9VHeCcawncDhyKL6dPgGFm9nW5Y04BrgA6Ab8Ct5nZyErO1QX4Al/Td6iZvVG+ibBck+7rwAR8wpULPAJcYmaxcte7Hv/z9UTwei8G9or/nMWZWV7QLLkFvpYtXl6DgtuXgnP+wppNlycG1++Cf6/HARcGP2t7AhOBt8zsgOD5/wPOAk4xs8edc42B+4EDgSbBe3xTZU3uwfPLvw+P439HKoqfu9KfHaBhEBfA/s65mJlFKmsqDWpZLwxe36/AnWb2YLAv/voeCF772fim9dvN7PbK4hcJg5pKRdY0DZ9UbeOcy2F1M+l/gWX4xA3WrnF7EV9zVYZP/nYGJjjndqtw/mvwyc1k4DV8Mx74D+zvKgbjnNs12NcP3yxZgv/giTeFjccnU3sGjwcEt/Hr7hPcvl7F690huP2wkn0fVThm56qONbNPzWxGPMko5zp88jUpSFBeALYEPsUnoX/Hvyfl3Qm0BP4CdgGmAsfjm3A7AI8455oEfZpewjfVfgz8gW8qe7TC+do7514J/r2Db9Kdia89XItzLgufFJwC/BnEPxD4MKiBxTl3cHCd9sH71BYY4Zw7tMLpcvFNyy3wSdgblV0zMAD4F/Aj0Bj/8zQwuF7/ctf7Ajgcn1SvyxrNpc657fFJ5g/lE9Byr3s7fF/FzfAJTEFwjdvWc53yhgND8e/bJ/iyfiwoq/WJN22OBT4rt332en52VgTXApgfPH8tQTP/A/ga9E/wZfaAc+7SCoeegK91/xFoDfwn+AIkkhSUuImUE3Suz8PXRm+Hr/VZjk+aPgE2Dz5E+uBrPL4OkrMD8QnZ1ma2B74mIAO4ocIlnjazPc3shKCZam6w/cwqOlBfj0/Mzg7OuzW+P9yBQTNnPBHYxznXNIg5BuzinEtn/Ylb0+C2shqq+RWOaRncLoof4Jz7yjkXK/fv8grn+I+Z7WNm/8QntVfgm4X3wScf4GtQyptiZjsDxwSPmwD9zWwX/IdpA6AbPsHIwSdtR+NrHi/BfziX1whfgzcY/37kABGgayWvGXzytz3wAbCNmfUH/h3EcUVwTPz2MDPbN3gt7wLNK5zr4eBcD5nZf6u4Xvk49zSzAcDoYFv8C8KFwe2lZrYn0BNfG7QuLwa3hzrnIqxuJn2piuO3wL8vY/FJUR9gGL62ubrewP/MbxvU8L6O//mt6r1exczuCZpOjwUyg80PBDXBVf7smNl84Org8dTKml+dcw2Aq/BffPoHsfUPHv8r2B8XAXY2s7743/kIa/Z5FQmVEjeRtcWbSw/HNyNNMrMyVtc0DQWaAV8EfYf6BdvHmFlBcD/eNBTfF7ehfeLiz38KIDj/y+X2fYZPpPbB1wam4Zu3GuE/bPYCfjKz75xze5ereXol6Me2JDhXvK9deZsHt0uD20UVtoOvmRmLb46tzKrXa2azg9j6BTVf8Rq9iiMK3w9u40ntHDP7Kbj/e3CbDXwbXH9f/EjJD/BJXfnamuDSFsG/N03wo2e7Ai9V+MCOi7/nz5YbJftEhX3b4BPkicEF3jOzgWY2qsK54onzEtbvNzP7Jrgfr32NN+vGa3zGBddbhH+96zIF3zG/Pb5pP14bWFXiNhE/mvgkfI3ZS/jkcF2DZiIVHr+Orxl9OBjZGk8WN2TU6P34JDwP3xS8IT87VdkGX4v5pZl9G5zzW3wtX0N8Ihz3tZnFf84qloNI6JS4iaxtcnB7VnAbT9jiH5RnVzguuo5zVWw6XFrpUVVb57nNLAq8BfTA11BFgVuC/efhm+jitW2dWF3zNDh4/FWw728Azrk2zrkHnXObAfE+cdOC23gSNjAegJn9X1DDUdV0C6ter3OuHz4xGIpvJj4u2FXxwz8+wjH+2leU27fq/QiS6f2AI/CJclt8f7epzrmGFQMxs5iZLTOzB/D98Vqz5gf2WteoRPnyjOBrk3DORYKpNirKxyeV5znn2q3jvLDm64wnjPH3JqPC4/UKmq3jSf7Z+OTtFzP7oorjlwF98eUzBl+7ezerk6S48p8bFV/zS8Az+Pfw0uA81Y476GN3Kr58jjKzomB7dX92qrKuMoU1y3Vd5SASOiVuImuLJ2TxZq944vY5vnk0XuMUT2SmBreHl0sYhlY4Jq5sA2OJn/sEgOD8R1Q49/hyx0w3s8/w/b2OD7a/DmBmj5tZpNy/x1ldk3RiUAO3Nb6p6pvglnLHPIr/IDsmmMuNIKZOwEFVxF/+9Z4AZAH/NbO72bBamLUEH+aPAl3M7FQz64ZvNu0YvI6qnrcZvpYFfIJQUfw9P9Y5F0+YTgxu4+95fnC7X3C7N1DgnKs4OOEY/CCHXNbuy1dRxSS/vHjNzyEAzrm2rO7XuC7x5tJT8MlHVbVtBANMHgWiZjYE35/wV2DHYLDGyuDQzYPjMyjXhOicaxXENx8/AOc1fJN2tTjntsWP8o0CQ82s/Bx86/vZiSdmVX2mGT4h2zEYBR2/3o74vqvTyx27rnIQCZ0SN5EKzGwuq5vpigiaToNm0cnlDo1/iH+Ir43bCvjOOfcB/gOoBN/ZfFPcjP9Q+l9w3u/wfcJeM7N4h+w3g2PSWZ1kfhQ8LmB10+NazOwD/JQJWfiRh7fjJ6htia/l+RmfxMWbli7D/9142Tn3tXPuXXzfvp2D1ztjHa9lVnB7S9DcFW9ObrS+N6EKf+Cbs+9wzn3onPsYPyhjAWsO9Cg/OGE8frBBJr4v3Q+VnPd5/Af9HsAM59wkfP+qJfi+buDfJ4DnnHMT8AlROqv7HMYtAO7DJzOnB/0jN8b/gtvbghG731C9xPcT/PsUrzGqMnHDN48eCTwelM8X+FrZGUHT7Hf434dtnXNv4JtWu5R7/mL8e9QmeO4MfJ9LqF4ZP4pPcP/Cv1fxMruA9f/sxPtoDnDOfVqxCdzMVuAHvWQCk4Of20nB4+vNLKx57EQ2mBI3kcrFE7TP4s01gXhz6SwLZpoPmisH4UeepuFHQn4GDLRg9YWNZWYTgAPwHzI74xOsuyg30aiZLcR/UMLqZq14nO9WiL+ya1yIn/LjC3zTYUd87eKn+A/mH5xzbYJj7wzieRtf87Ib/kP1HnyH9HVNpnofvhkNfNPu3fjEcNtgGokNYma/4Gu8PsAPANgWP0DggHJ9DWHNwQn74ROeV/Ed8Cs77wp80/Hj+FrX7fET9w6I97Uzs1fwzY+/BcfOA84ys5erON+t+LK7fkNfZ3CO9/ADXv7A1xKNCl4D+Hn1qnpelNXNlXNZ84tHxWOn4EegfoXvy9cJeIWgb5yZLcHX3M3Bj4D9jtUJbHxgzxD8ABKH7xN5V7C7fzVeZtvgtiVrNunvyHp+dswsH/+elOF/fiv7efoXflqZucDu+DI728yGV3KsSNKKxGKqFRaRtQUjEc8FelkCl9+StTnnjsQn0Z/b6rkBP8UnRFua2cwQwxORBFLiJiKS5JxzZ+Ob34vwTd/t8DWBBvSoZP48EamjtHKCiEjyexg/hcmx+FG9K/CjiS9S0iZSv6jGTURERCRFaHCCiIiISIpQ4iYiIiKSIpS4iYiIiKQIJW4iIiIiKUKJm4iIiEiKUOImIiIikiKUuImIiIikCCVuIiIiIilCiZuIiIhIilDiJiIiIpIilLiJiIiIpAglbiIiIiIpQombiIiISIpQ4iYiIiKSIpS4iYiIiKQIJW4iIiIiKUKJm4iIiEiKUOImIiIikiKUuImIiIikCCVuIiIiIilCiZuIiIhIilDiJiIiIpIilLiJiIiIpAglbiIiIiIpQombiIiISIpQ4iYiIiKSIpS4iYiIiKQIJW4iIiIiKUKJm4iIiEiKyAg7ABGpm5xzWwAzgW/KbY4A/zWzRzfwXB2B8UAZcLaZTaqpOOsD51wX4A4z+3vYsYjIplHiJiK1aaWZ7RB/4JxrD0x3zn1hZtM24Dx7AX+Y2cCaDrCe6Ay4sIMQkU2nxE1EEsbM5jrnfgC2AqY5504DzsV321gEnGdm3znnHgdaAN2A5cBmQFPn3EQz28s5dyZwAb4Gbl7wvO8rPO81oC2wEtgZaAc8DywADgken25m7znntgLuBxoBmwNfAceYWaFzrhC4Fdg32PdfM7sbwDl3BXASUAr8AJxsZkuqel3l3wvn3J7A7cBcoGsQ58lmlu+cywL+A+wBpANTgQvMbKlz7hdgCrAdcKWZjSl3zq2BR4AcfO3mSOCh4La9c+4tM9vfObdrcP6GQBS4zsxec86dDBwXxN0+iO0kM/ttfWUrIomhPm4ikjDOuf7AlsAU59we+KRngJn1Bm4DXi53eK6ZbWtmuwD/Aj4Kkra9gUuBvcxse2A08IpzLlLheZcFj3sD/YGdgP8DlpvZrsB/gcuDY84ARplZPL4uwMHBvmxgoZntBhwJ3Oqcy3HOHQqcDPQ3s57Az8B51Xhd5e0IDDez7YDHgCeD7Zfjk8E+wWv8DZ88xk03sx7lk7bAP4FXzawPcBDwNyAGnA7MDJK25sG1hprZjsChwIPOuU7BOXYD/mFm2wB5wD1VxC4iIVCNm4jUpgbOua+C+xnAQuB4M5vtnDsfnyR96tyqVrwWzrkWwf2PqzjnAcBzZrYAwMwed879F9iiiue9amYlwB/OuQLgzWD7THztHMBlwL7OuUvxtYGb42vf4sYGt1/iE7mGwEDgBTP7K4jjYgDn3G1VvS4z+7NCbF+b2UfB/UeB+51zLYFBQLMgJoAsYH65531E5cYATzjn+gLv4GvpouXiAJ/EboZPduPbYvgaPIC3zez74P4IfO2jiCQJJW4iUpvW6ONWQTrwZLxmzDmXhk+Y/gr2L6/ieZW1FESAzCqeV1ThcUklz38G//fweeB1oFNwzriVAGYWC5KdCL5GLBY/wDnXDJ9sre91lVda4TVE8M2/6cCFZjY+OEcjfPNnXKXvTdDc2R3frLsPcG3QLFpeOpAf1GTGY98c34R8fIWY0oJ4RCRJqKlURMLyNnCcc26z4PHZwLvVeN5bwDHOudYAzrlT8P3IftyEWPYHbjCz5/DJ2C74BGdd3gGOcM41CR5fB1zMhr2uHZxz8ZquM4FPzGwx/jWe55zLChK/EcC/1/cinHOj8X3znsX3sVsKdMQnY/HEdjLQ3Tn3t+A5O+D7520e7N8nGEQSj/3V9V1XRBJHiZuIhMLM3sJ3kJ/gnJsGDAGOMLPYep43AbgLeM859y2+P9kgM4tuQjhXAmOcc18A/wM+wDd3riuON/B9xT5xzn2DH+xw1Qa+rj+Am4PnHwYMDbbfCPyCH5QwA18Td0k1XseNwPHOua/xAxjGBK/lW6DMOfcZvrn678DtwXFP4vu7zQrOMQd40jmXj29+vqga1xWRBInEYuv8GykiIrUgGFV6XzCwISkEo0qPNLNBYcciIpVTjZuIiIhIilCNm4iIiEiKUI2biIiISIpQ4iYiIiKSIpS4iYiIiKSIejEBb15enjryiYiISMro06dPpLLt9SJxA+jTp0+tXyM/P58ePXrU+nWk+lQmyUnlknxUJslJ5ZJ8ElEmeXl5Ve5TU6mIiIhIilDiVlMKl9D+40uhcEnYkUicyiQ5qVxERDZaUiduzrldnHPvB/e3dM597Jz7yDn3YLB+H865a51znznnPnXO9Q0tWBtPk7kfgr0ZWghSgcokOalcREQ2WtImbs65S4GRQE6w6U7gajMbgF+3b7BzbkdgD/yC0McC94cRKwBTn1zzVsKnMklOKhcRkY2WzIMTZgJH4BdABuiDXywZYDywH2DA28Hizb865zKcc63NbEGtRzfqUPj5g9WP0zL97a+T4Lqmq7e32w72vb7WwxFgwrXwx7TVj9OCH2+VSbiqWy6ddoUhz0JGDqRnQaTSAVVSG+LN112egpym6z9eREKTtImbmb3knNui3KZIkKABLAOaAk2AReWOiW+v/cTtb8NgzmdQstI/jpYEt6VrHvfHNHjy8FoPRyoRLwuVSXKpqlx+/RRu7bT6cUYOZGRXcbuufdW4Ta/GMfUpcSzffL39MWFHIyLrkLSJWyWi5e43BhYDS4P7FbevJT8/v4bDaU3ubnfQ8aNLSCsrXGtvjDQKm3enLKtJDV9X1iW9eCk5f/1AZI0fF09lEp51l0uEsuxmAESixUTKikmLlkBpof9HOIMYomlZxNL9P38/2z9OyyKavvrx6uOyy+3zj8ufo+LjaFp2uX3lzhscQyRxPVk6ffwQDYGCTx7i16ztEnZdWb/CwsJa+PySTRF2maRS4jbVObenmb0PHAhMBH4EbnPO3QF0ANLMbGFlT66VOVd69IDNWsELJwUfMIGMHCJHjaKBO6DmrynrZ2+qTJLROsolo2K5RKNQVhQkb9W93ZBj13NbVkxatBiixVCS2LdplfSsTa9ZrKqW8r0b4fevV18r6OrRcNE39Hiu3+rtXfaAk8Yl+IVLeZrHLfmEPY9bKiVulwAjnHNZQD7wopmVOec+AibhB1r8I+FRFS6BtHSIpBFNy/Q1BWnpmuogTCqT5LQh5ZKWBmkNILNB4uOEDUgcayhRXCtxLIKyYv+vKBGvN8hOy4pXb8tsAH/7ZwIuLiIbIqkTNzP7BegX3P8eP4K04jHXAdclMq41TH0CildAu17McafRyR6BP77xI+bUVyQcKpPklErlkhSJY3HN1jSWVUg0l8+Hhd8DlawImNkAhrwAXQYk/KWLyLoldeKWErKbwH43Qb9zKTCDPYbC5Adg1qdhR1Z/qUySk8ql+tLSIC0HMnPWf+ymqKz5Oi0TjnxcSZtIklLitqmOe2bNx2npsOv5/p+EQ2WSnFQuyad88zVppMVKfbPp0rlhRyYiVUjaCXhFRKSWxZuv2/ZkzoA7IDPXb//gP+HGJSJVUuImIlJfxZuvz/yAgs36wRkTIZIOy+fBD++EHZ2IVEKJm4hIfXXcM7Dreb5PHUCbrWGfa/z91y6ComWhhSYilVPiJiIiq/U/HzbbAZbMhneuCzsaEalAgxNERGS19AwYfB88vCd8PhK2PQK22C3sqERCNWtRASM++olXpv5GQVEpDbN/5bDem3PGgK50btkwobGoxk1ERNbUrhfsfrG/P+781Wsyi9RDE20+B9z9Ec9+NpvlRaXEgOVFpTz72WwOuPsjJtr8hMajxE1ERNb2t2HQemv4cyZMvCXsaERCMWtRAec+9SUrS8ooja45WXVpNMbKkjLOfepLZi0qSFhMStxERGRtGdkw+H6/2P2k+2Bu1WsnitRVIz76iZKy6DqPKSmLMvKjnxMUkRI3ERGpSoedoN+5EIvC2POhtHj9zxGpQ16Z+ttaNW0VlUZjjJmauEmrNThBRESqttdV8N3rMP9b+Pgu2POysCMSqRXRaIyfFhbwzdzFfDNnKd/MXczyotJqPbeguHrH1QQlbiIiUrWsXDj0Xhg1CD68HXocAm23CTsqkU0Si8WYtWgF0+Yu4Zs5i5k2Zwnf/ra02olaRQ2zEpdOKXETEZF16zIA+pwCeY/BuPPgtAl+jVORFBCLxZjz10qmzVnCtLmL+WbOEqbPXcLSwrWTtM2a5tCrfVO269CUXh2a8drXvzFm6tx1NpdmpEU4vHf72nwJa14vYVcSEZHUte8N8MPbfpDC5Adg1/PDjkhkLbFYjN+WFPLNnCV8M9fXpH0zdwmLV5SsdWzrxtls36Epvdo3o1eHJvRs35Q2jXPWOGaLlrm8Nu13SqNlVV4zMz2N0wd0qfHXUhUlbiIisn45TWDQ3TD6KHjvJnAHQctuYUcl9dy8pYU+OZuzOGj2XMKigrUH0bRsmEWvDk3Zrr2vSduuQ1PaNsmp5Ixr6tyyIQ+csCPnPvUlJWXRNWreMtIiZKan8cAJOyZ0El4lbiIiUj1b7QfbHQPTnoNxF8BJr65e51Skli1YVrSqFm363CVMm7OE+cuK1jquWW7m6ubO9j5J26xpDpFIZKOuu5drw5sXDWDkRz8zZurcYOWEDA7v3Z7TB3RJ+MoJStxERKT6DrgVZr4Hsz72fd52Pi3siKQO+rOgmG/KDRz4Zu4Sfl9SuNZxjXMyViVo8WStQ/MGG52kVaVzy4bceFhPbjysJ/n5+fTo0aNGz78hlLiJiEj15baAg26HF06GCdfCVvtD0w5hRyUpbMmKEr6Zu3rgwLQ5S5i7eO1l1hpmpdOz3MCB7do3pVOLXNLSajZJS3ZK3EREZMNscxhsPQi+ew1evQiOfwFquIZD6qalhSVMn7u6qfObuUuYtWjFWsc1yEynZ/smq5o6e3VoSpeWDetdklYZJW4iIrJhIhE4eDj88hH8OMH3edv+2LCjkiRTUFTKt78tZdqcxUGz5xJ+Wrj2mp7ZGWlsu3kTtuvQbFWNWrfWjUhXklYpJW4iIrLhGreD/W+Bsf+ANy+HbntDozZhRyUhWVlcxozfg1q0oCbtxwXLiVWY/iwrPY0emzUORng2o1eHpnRv04iMdA1yqS4lbiIisnF2OB6mv+QHK7wxDI5+IuyIJAEKS8r47o9lawwc+H7eMirOUZuRFmHrzRuvbu5s35St2jYmK0NJ2qZQ4iYiIhsnEvFzuz3QH2aMhRnjYJtDw45KalBxaRT7Y9kaAwe+n7dsrZUE0tMi9GjXmO3aN6VnMF+aa9eYnEytsFHTlLiJiMjGa94ZBl4H4/8Jr18CW+zuR55Kyikpi/L9vGWrmjq/mbuE735fRnFZdI3j0iKwVdtGawwc2GazJkrSEiSlEjfnXCYwCtgCKAPOAEqBx4EYMB34h5lFqziFiIjUtJ1Ph29fhl8nwVtXweEPhh2RrEdpWZSZCwpWDRyYNmcJM35fSnHpmh+fkQh0a92Q7Tqsnidtm82bkJvARdVlTan2zh8EZJjZrs65fYGbgUzgajN73zn3P2AwMCbMIEVE6pW0NDj0XnhwN/h6NPT8O3QfGHZUEiiLxvh54XK/yHpQmzbjt6WsLFl7/c0urRrSq73vj9arQ1O23bwJjXMyQ4haqpJqidv3QIZzLg1oApQA/YAPgv3jgf1Q4iYiklitusNeV8A718FrF8G5kyC7cdhRpaRZiwoY8dFPvDL1t2B5pV85rPfmnDGg63qXV4pGY/yyqGDV9BvT5i7h27lLKCheO0nr2KLBqpGd27Vvyrbtm9K0gZK0ZBeJVRyrm8Sccx2BsUAjoBUwCHjRzDYP9u8NnGpmJ5R/Xl5eXiw3N7fW4yssLCQnZ/2L1kriqEySk8ol+dRImURL2eKd02nw13f8ueXfmdfnnzUTXD3y+ZwV3PzBPErLYpSV+3hOj0BGeoSr9mjLzh3851ksFuOP5aX8sKiIHxYW+dtFRawoWftzvU3DDLq3zKJ7q2y6t8xmyxbZNMlRn7SNkYi/XytWrKBPnz6VTmSXajVu/we8ZWZXBEnce0BWuf2NgcWVPTER64qFvX6ZrE1lkpxULsmnxsqk5Uh4eE9a/PgSLXY/DbbYbdPPWU/MWlTAv0d/RFHp2olXWQzKSmPc9P58jtypA7P/XMG0OUtYsrJkrWPbNckptzSUb/Zs1Sg7ES+hXkjE36+8vLwq96Va4vYXvnkU4E98/7apzrk9zex94EBgYkixiYhIu16w+8Xw4W0w7nw45xPIbBB2VClhxEc/UVK27rF1xWVRRk/5ddXjVo2yV82RFr9t00S12XVZqiVudwGPOuc+wte0XQl8AYxwzmUB+cCLIcYnIiJ/Gwb542DBdzDxFtjvxrAjSgmvTP1trfnRKpOVnsZ9Q3rTq0NT2jXJIaJ1YuuVlErczGw5cHQlu/ZIdCwiIlKFjGwYfD88si9Mug+2PQza9wk7qqRXUFRareNKolH227ZdLUcjyUrrToiISM3rsBP0OxdiURh7PpQWhx1R0muYXb26lIaaQ61eU+ImIiK1Y6+roHkXmP8tfHxX2NEkvb17tFnvMRlpEQ7v3T4B0UiyUuImIiK1IyvXT8wL8OHtMG9GuPEksaWFJXz161/rPS4zPY3TB3RJQESSrJS4iYhI7ekyAPqcAtESGHceRNeeCLa+K4vGOH/0VH79cyXtmzUgJzONjLQ1BxxkpEVokJnOAyfsuN5JeKVuU+ImIiK1a98boEl7mJsHkx8IO5qkc+v4fD74fgEtGmbx7Jn9eOuiv3Fc3040ys4gAjTKzuC4vp1486IB7OXW35wqdZt6OIqISO3KaQKD7obRR8F7N4E7CFp2CzuqpPBi3hxGfPQzGWkRHjh+Rzq28Ksi3HhYT248rKcmq5a1qMZNRERq31b7wXbHQGkhjLsAouueaLY+yJv1J1e+/A3gE7V+XVuGHJGkAiVuIiKSGAfcCg1bw6yPIe+xsKMJ1dzFKznryTyKy6KcvOsWHNe3U9ghSYpQ4iYiIomR2wIOut3fn3AtLJkTbjwhWVFcyhmjvmDh8mJ237IVVx+splCpPiVuIiKSONscBlsPguJl8OpFEFv/Ek91STQaY9gLXzPj96Vs0TKX+4b0JiNdH8VSffppERGRxIlE4ODhkNMUfpwA054LO6KEuue9H3jjmz9onJ3ByJN2plluVtghSYpR4iYiIonVuB3s/29//83LYfn8cONJkPHf/M7d7/xAWgTuGdKbLds0CjskSUFK3EREJPF2GALd9oaVf8Ebw8KOptZNn7uEi5//GoArD+qh+dhkoylxExGRxItE/NxumQ1hxliYMS7siGrNgmVFnPnEF6wsKePIPh04bXctWSUbT4mbiIiEo3lnGHidv//6JbDiz1DDqQ1FpWWc9eQX/LakkD6dm3Pz4T2JRCLrf6JIFZS4iYhIeHY+HTr1h4L58NZVYUdTo2KxGFeNmc6Xvy5m86Y5/O+EPmRnpIcdlqQ4JW4iIhKetDQ49F5Iz4avR8MP74QdUY155OOfeTFvDg0y03n4xJ1o3Tg77JCkDlDiJiIi4WrVHfa6wt9/7SIoWhZqODVhos3nljfyARh+9Pb0bN805IikrlDiJiIi4et/Pmy2AyyZDe9cF3Y0m+TH+cu4YPRUojG4aGB3Duq1WdghSR2ixE1ERMKXngGD74O0DPh8JPzySdgRbZTFK4o5fdQXLCsq5aBe7bhg7+5hhyR1TMISN+dcZ+fcE865F5xzOybquiIikiLa9YLdL/b3x50PJSvDjWcDlZZFOW/0VH5ZtIJtNmvCHUdtT1qaRpBKzUpkjdt/gP8BdwIPJ/C6IiKSKv42DFpvDX/OhIm3hB3NBrnp9Xw+/nEhrRplMeKkncjNygg7JKmDai1xc86Ncm6NqaEbAr8APwE5tXVdERFJYRnZMPh+iKTBpPtgbl7YEVXL6Cm/8vinv5CVnsZDQ/vQvlmDsEOSOqo2a9xGAC865y5xzqUDNwIvAK8BV9fidUVEJJV12An6nQuxKIw9H0qLw45onSb/tIh/jZ0OwC1H9KJP5xYhRyR1Wa3V45rZx865PYFzgA+A68xst009r3PuCuBQIAt4IDj340AMmA78w8yim3odEREJ0V5XwXevw/xv4eO7YM/Lwo6oUrP/XME5T+VRGo1xxoAuHNmnQ9ghSR1X233ccoFHgcHA0c65551zHTf2ZEEiuCuwG7AH0BHfZ+5qMxsARIJriYhIKsvK9RPzAnx4O8ybEW48lVheVMrpo77grxUl7Olac/mBPcIOSeqB2uzjdhUwGfgSONzMzgRuB55wzl2zkafdH/gGGAO8im927YOvdQMYDwzclLhFRCRJdBkAfU6BaAmMOw+iZWFHtEo0GuP/nvsKm7eMbq0bcs9xvUnXCFJJgNoc8nK0mfV0zmXiE7iRZvY5sJdz7rSNPGcroDMwCOgCjAPSzCwW7F8GVDo9dX5+/kZesvoKCwsTch2pPpVJclK5JJ9kLZO0zifQdcbrZM7NY97Ya/lz6+PDDgmAx7/8kwkzFtMoK40rdm/B3J9/ZG4tXCdZy6U+C7tMajNxW+ycuxTfXPpz+R1m9shGnnMR8J2ZFQPmnCvEN5fGNQYWV/bEHj1qvwo7Pz8/IdeR6lOZJCeVS/JJ6jLJuR9GH0Xbb0fQ9m+nQMtuoYYz9qu5PPfNT6SnRXjoxJ3ZbctWtXatpC6XeioRZZKXV/Vo6trs43Y4sBL4DTixhs75MXCAcy7inNscP8XIu0HfN4ADgY9q6FoiIpIMttoPtjsGSgth3AUQDW/82dezF3Ppi9MA+NegbWo1aROpTG2OKv0TuLeGz/mac+5vwGf4pPMf+Nq8Ec65LCAfeLEmrykiIknggFth5nsw62PIewx23tgeNxtv3tJCznjiC4pKoxzXtxMn9u+c8BhEUm5aZzO7tJLNeyQ8EBERSZzcFnDQ7fDCyTDhWthqf2iauKk3CkvKOPOJL5i/rIi+XVpw/aHbEoloMIIknhaZFxGR1LDNYbD1ICheBq9eBLHY+p5RI2KxGJe9NI2v5yyhQ/MG/O+EPmRl6ONTwqGfPBERSQ2RCBw8HHKawo8TYNpzCbnsA+/PZOxXv9EwK51HTtqZFg2zEnJdkcrUelOpc25rYHfgEfz8a9sBp5nZxNq+toiI1DGN28H+/4ax58Kbl0O3vaFRm/U/byNNmDGPO942IhG4+9jeuHaNa+1aItWRiBq3h/CjSwfh52E7FbglAdcVEZG6aIchPmFb+Re8MazWLvPdH0u56NmpxGIwbD/Hvtu0rbVriVRXIhK3HDN7GtgPeN7M3gcyE3BdERGpiyIRGHQ3ZDaEGWNhxrgav8SfBcWcPuoLCorLGLzD5py7Z7hzx4nEJSJxy3bOtQUOBt4J7jdIwHVFRKSuat4ZBl7n779+Caz4s8ZOXVwa5Zyn8pjz10q279CU//x9O40glaSRqKbSWcDHZjYD+By4OwHXFRGRumzn06FTfyiYD29dVSOnjMViXDvuW6b8/Cdtm2Tz8Ik7kZOZXiPnFqkJtZ64mdmDQK6ZxVdP6G1mI2r7uiIiUselpcGh90J6Nnw9Gn54Z5NP+cSkWTzz2a9kZ6Tx8NCdaNskpwYCFak5tZ64OecaAfc45951zrUAbgm2iYiIbJpW3WGvK/z91y6ComUbfapPflzIDa/NAOC2I7dj+47NNj0+kRqWiKbSe4AlQFugEGgCPJyA64qISH3Q/3zYbAdYMhveuW6jTvHzwgLOffpLyqIxzt2zG4N3aF+jIYrUlEQkbr3N7CqgxMxWAMcDOyTguiIiUh+kZ8Dg+yAtAz4fCb98skFPX1pYwumjPmfJyhL23aYtw/ZztRSoyKZLROJWVuFxOhBNwHVFRKS+aNcLdr/Y3x93PpSsrNbTyqIxzh89lZkLCnBtG3PXMTuQlqYRpJK8EpG4feic+w/QwDm3P/AyoFUTRESkZv1tGLTeGv6cCROrN8/7rePz+eD7BbRomMXIk3aiUXatLygkskkSkbhdBizH93O7GZgG/DMB1xURkfokIxsG3w+RNJh0H8z9cp2Hv5g3hxEf/UxGWoQHjt+Rji1yExSoyMZLxFeLG8zsCuDGBFxLRETqsw47Qb9zfeI29jw4833IWHtR+LxZf3Lly98AcMPgnvTr2jLBgYpsnETUuA1KwDVERES8va6C5l1g/rfw8V1r7Z67eCVnPZlHcVmUk/p3ZsgunUIIUmTjJKLG7Sfn3NvAx/gmUwDM7M4EXFtEROqbrFw/Me+oQfDh7dDjEGi7DQAriks5Y9QXLFxezO5btuKaQduEHKzIhklEjdufwFygC9Ar+NczAdcVEZH6qssA6HMKREtg3HkQLSMajTHsha+Z8ftStmiZy31DepORnoiPQZGaU+s1bmZ2CoBzrjOQaWY/1vY1RURE2PcG+OFtmJsHkx/gnhX788Y3f9A4O4ORJ+1Ms9y1+76JJLtaT9ycc1sCY4HNgTTn3ELgYDP7rravLSIi9VhOExh0N4w+irJ3bmTMylzSIu24Z0hvtmyjlRclNSWijvg+4DYza25mTYGbgAcScF0REanvttqPxVseTnq0iP9kjuCKAxx7uTZhRyWy0RKRuLU1s1HxB2b2GNA6AdcVEZF6bsGyIo799TAWxJrQLy2f03M/CDskkU2SiMQtwznXIv7AOdcKiCXguiIiUo8VlZZx1pNf8N3STEY1Ow+AyIRrYcmckCMT2XiJSNzuBSY75250zt0IfAo8mIDriohIPRWLxbhqzHS+/HUxmzfN4aTTLoStB0HxMnj1Ioip/kBSU60nbmb2MHAWkAXkAOeYmRI3ERGpNY98/DMv5s2hQWY6D5+4E62b5MDBwyGnKfw4AaY9F3aIIhslEaNK2wNHmdm5zjkH/Mc5962Z/bEJ52wD5AH7AqXA4/jm1+nAP8wsuumRi4hIKppo87nljXwAhh+9PT3bN/U7GreD/f8NY8+FNy+HbntDIw1UkNSSiKbSUUB86o9ZwPvAoxt7MudcJvAQsDLYdCdwtZkNACLA4I2OVEREUtqP85dxweipRGNw0cDuHNRrszUP2GGIT9hW/gVvDAsnSJFNkIjErZWZ3QNgZoVmdjew2bqfsk53AP8Dfgse9wHiw4TGAwM34dwiIpKiFq8o5vRRX7CsqJSDerXjgr27r31QJOLndstsCDPGwoxxCY9TZFMkYq3SDOfc5mb2G4Bzri2+ZmyDOedOBhaY2VvOuSuCzREzi/cyXQY0rey5+fn5G3PJDVJYWJiQ60j1qUySk8ol+aR6mZRFY1zzzh/8smglXVtkcUavHNY1z3vzXmfT7svhlI67kJnFbYhmV/rREbpUL5e6KOwySUTidifwlXPuTXw/tIHAPzfyXKcCMefcQGAH4AmgfAeFxsDiyp7Yo0ePjbxk9eXn5yfkOlJ9KpPkpHJJPqleJteN+5apv6+kVaMsnjxzd9o3a7DuJ7irYeGnZPw6CffzKDg8OcfMpXq51EWJKJO8vLwq9yViVOmj+GRtKvAFsL+Zjd7Ic/3NzPYwsz2Br4ATgfHOuT2DQw4EPtrUmEVEJHWMnvIrj3/6C1npaTw0tM/6kzaAtDQ49F5Iz4avR8MP79R+oCI1oFYTN+dcxDmXYWbTgJHAXKCohi9zCXC9c24SfsqRF2v4/CIikqQm/7SIf42dDsDNh/ekT+cW63lGOa26w15Br5vXLoKiZTUfoEgNq7WmUufcNsAbwHnOuXeBz/BNpbnOuTPMbMKmnD+odYvbY1POJSIiqWf2nys456k8SqMxzhjQhaN26rjhJ+l/Pnz7Cvz+FbxznZ/rTSSJ1WaN2+3AVWb2GnAsfkBCT2AAcF0tXldEROq45UWlnD7qC/5aUcKerjWXH7iRfY7SM2DwfZCWAZ+PhF8+qdlARWpYbSZunczs6eD+XsArZhY1s9lUMfJTRERkfaLRGP/33FfYvGV0a92Qe47rTXraRk1W4LXrBbtf7O+POx9KVq77eJEQ1WbiVlbu/q7Ah+Ue59TidUVEpA4bPsGYMGMeTRtkMvKknWmSk7npJ/3bMGi9Nfw5EybesunnE6kltZm4/emc2945tzt+wt0PAJxzu+IHKYiIiGyQsV/N5f6JM0lPi3D/kB3p0qphzZw4IxsG3w+RNJh0H8z9smbOK1LDajNxuxJ4B3gP39etwDk3DHgd+FctXldEROqgr2cv5tIXpwHwr0HbsHv3VjV7gQ47Qb9zIRaFsedBaXHNnl+kBtRa4mZmk4H2QJtgmSuAT4G+ZvZBlU8UERGpYN7SQs544guKSqMc17cTJ/bvXDsX2usqaN4F5n8LH99VO9cQ2QS1Oo+bmRWb2eJyjz81sx9q85oiIlK3FJaUceYTXzB/WRF9u7Tg+kO3JRLZhMEI65KV6yfmBfjwdpg3o3auI7KRErHIvIiIyEaJxWJc9tI0vp6zhA7NG/C/E/qQlVHLH11dBkCfUyBaAuPOg2jZ+p8jkiBK3EREJGk98P5Mxn71Gw2z0hl50k60aJiVmAvvewM0aQ9z82DyA4m5pkg1KHETEZGkNGHGPO5424hE4O5je7N1uyaJu3hOExh0t7//3k2waGbiri2yDkrcREQk6Xz3x1IuenYqsRgM28+x7zZtEx/EVvvBdsdAaSGMuwCi0cTHIFKBEjcREUkqfxYUc/qoLygoLmPwDptz7p7dwgvmgFuhYWuY9THkPRZeHCIBJW4iIpI0ikujnPNUHnP+Wsn2HZryn79vV3sjSKsjtwUcdLu/P+FaWDInvFhEUOImIiJJIhaLce24b5ny85+0bZLNwyfuRE5methhwTaHwdaDoHgZvHoRxGJhRyT1mBI3ERFJCk9MmsUzn/1KdkYaDw/dibZNkmRZ60gEDh4OOU3hxwkw7bmwI5J6TImbiIiE7pMfF3LDa36y29uO3I7tOzYLN6CKGreD/f/t7795OSyfH248Um8pcRMRkVD9vLCAc5/+krJojHP37MbgHdqHHVLldhgC3faBlX/BG8PCjkbqKSVuIiISmqWFJZw+6nOWrCxhYI+2DNvPhR1S1SIROORuyGwIM8bCjHFhRyT1kBI3EREJRVk0xgXPTGXmggJc28bcfewOpKWFOIK0Opp1goHX+fuvXwIr/gw1HKl/lLiJiEgobh2fz/u2gOa5mYw8aScaZWeEHVL17Hw6dOoPBfPhravCjkbqmRT5LRERkbrkxbw5jPjoZzLSIjx4Qh86tsgNO6TqS0uDQ++FB3eDr0dDz79D94FhR5VyZi0qYMRHP/HK1N8oKCqlYXYGh/XenDMGdKVzy4Zhh5e0VOMmIiIJlTfrT658+RsAbhjck35dW4Yc0UZo1R32usLff+0iKFoWajipZqLN54C7P+LZz2azvKiUGLC8qJRnP5vNAXd/xETTqN2qKHETEZGE+W3xSs568kuKy6Kc1L8zQ3bpFHZIG6//+bDZDrBkNrxzXdjRpIxZiwo496kvWVlSRml0zcmMS6MxVpaUce5TXzJrUcFGnX/KlCn079+foUOHMnToUI4++miefPLJjY73//7v/yguLq5038svv8y777670efeGErcREQkIVYUl3LGE1+wcHkRu23ZkmsGbRN2SJsmPQMG3wdpGfD5SPjlk7AjSgkjPvqJkrLoOo8pKYsy8qOfN/oa/fr148knn+TJJ5/kqaee4rHHHmPp0qUbda677rqLrKysSvcdccQR7LPPPhsd58ZIqT5uzrlM4FFgCyAbuAmYATwOxIDpwD/MbN0/ESIiklDRaIxhL3zNt78tZYuWudw/ZEcy0utA3UG7XrD7xfDhbTDufDjnE8hsEHZUSeGUxz5joi3YqOeWRmM8OXkWT06etcb2vVxrHjul7wada/ny5aSlpXHyySfTsWNHlixZwsMPP8x1113HrFmziEajXHTRReyyyy5MnDiR++67j1gsxrbbbsv111/PwIEDGT9+PB988AEjRoygpKSEzp07c9ddd3H//ffTqlUrjjvuOG699Vby8vIAGDRoECeddBKXX345WVlZzJ07l/nz53Prrbey7bbbbtR7EpdSiRtwArDIzIY651oAXwX/rjaz951z/wMGA2PCC1FERCq6570feOObP2icncHIk3amWW7lNRgp6W/DIH8cLPgO3v837HtD2BHVe5MnT2bo0KFEIhEyMzO55pprGDlyJIMGDWLfffdl9OjRNG/enFtuuYW//vqLE044gbFjx3LjjTfywgsv0LJlS0aMGMEff/yx6pyvvfYap512Gp07d8bMWL58+ap9EydOZM6cOTz//POUlpYyZMgQ+vXrB8Dmm2/ODTfcwPPPP89zzz3HDTds2s9HqiVuLwAvBvcjQCnQB/gg2DYe2A8lbiIiSWP8N79z9zs/kBaBe4b0Zss2jcIOqWZlZMPg++GRfeHTe/2i9O13DDuq0FVVM9bz2rdYXlS63uc3ys5g+vX7b9S1+/Xrx1133bXGtpEjR9KlSxcAvv/+e/Ly8pg2bRoApaWlLFy4kCZNmtCypR8sc8YZZ6zx/CuuuIKHHnqIhx9+mJ49ezJw4OqRxDNnzmSnnXZalShuv/32zJw5E4AePXoA0K5dO7788suNej3lpVTiZmbLAZxzjfEJ3NXAHWYW7924DGha2XPz8/NrPb7CwsKEXEeqT2WSnFQuyae2ymTmn0VcMv43AE7t04J20UXk5y+q8euEryFtuh9Dy++fofD50/l538chPXOTz1oXf1f22CKXN79fSlms6mPSI7DnFrkb9dpnzZrF0qVL13puQUEBP//8MyUlJTRs2JCdd96Zo446iqKiIl588UUWLVrEokWL+Oyzz2jcuDEjRoxgjz32oLi4mO+++44XXniBgw8+mMGDB/Poo48yatQoFixYQGlpKS1btuTdd99ll112obS0lEmTJrHDDjuwePFi5syZQ35+PrNnz2bx4sWbXJ4plbgBOOc64mvUHjCz0c6528rtbgwsrux58Yy3NuXn5yfkOlJ9KpPkpHJJPrVRJguWFXHaKx9TVBrjyD4duOrv2xGJJPnKCJui253w4GRy/ppJj4XjYc/LNvmUdfF35dI2Bbx390esLCmr8pisjHT+eeiOGzWf29KlS2nSpMla71vDhg3p2rUr3bp1o1u3blx99dXcfPPNLF++nCFDhrDtttty0003MXz4cNLS0thmm2049NBD+e9//8vWW2/N3nvvzfDhwwFo3bo1Q4YM4amnnlrVx+3333/nuuuuo6SkhMGDBzNo0CA+/vhjOnbsSI8ePViwYAHNmjWrVnnG+8pVJhKLrSPlTTLOubbA+8B5ZvZusO1VYHi5Pm4Tzey58s/Ly8uL9enTp9bjq4u/YKlOZZKcVC7Jp6bLpKi0jOMensyXvy5mx07NeObMfmRnpNfY+ZPWzx/BqEGQlglnfQhtN23kbF39XZlo8zn3qS8pKYuuMSVIRlqEzPQ0HjhhR/ZybUKMsGqJKJO8vDz69OlT6becVBvScyXQHLjGOfe+c+59fHPp9c65SUAWq/vAiYhICGKxGFeNmc6Xvy5m86Y5PDR0p/qRtAF0GQB9ToFoCYw7D6JV1yrVZ3u5Nrx50QCO69uJRtkZRCK+T9txfTvx5kUDkjZpSwYp1VRqZhcCF1aya49ExyIiIpV75OOfeTFvDg0y03n4xJ1o3Tg77JASa98b4Ie3YW4eTH4Adj0/7IiSUueWDbnxsJ7ceFjPsENJKalW4yYiIklsos3nljd85+vhR29Pz/aVjher23KawKC7/f33boJFM0MNR+oWJW4iIlIjfpy/nAtGTyUagwv36c5BvTYLO6TwbLUfbHcMlBbCuAsgqnnhpWYocRMRkU22eEUxp4/6nGVFpRzUqx0X7tM97JDCd8Ct0LA1zPoY8h4LO5rkVbgEnh3ib2W9lLiJiMgmKS2Lct7oqfyyaAXbbNaEO47anrS0OjztR3XltoCDbvf3J1wLS+aEG0+ysvHw3etgb4YdSUpQ4iYiIpvkptfz+fjHhbRqlMWIk3YiNyulxr3Vrm0Og60HQfEyePUiSKEpuBJm6pNr3m6iKVOm0L9/f4YOHcrQoUM54ogjuOCCCyguLt6k886ZM4ejjz4agL333puioqKaCHeD6bdLREQ22jOf/crjn/5CVnoaDw3tQ/tmWmB9DZEIHDwcfvkIfpwA056D7Y8NO6pwjToUfv5g9eP0YN3a2VPgunKDWbrsASeN26hLVFzy6pJLLuG9997jgAMO2KjzJRMlbiIislEm/7SIa16ZDsDNh/ekT+cWIUeUpBq3g/3/DWPPhTcvh257Q6N6ME/Z00f5aVHWp6x4zdu4nz9YM5ED6L4fHP/CBoVRXFzM/Pnzadq0KcOHD+eLL74gGo1y8sknc+CBB/L1119zyy23EI1Gadu2LXfccQfTpk3jvvvuIxaLUVBQwPDhw8nM3PQlzGqCEjcREdlgs/9cwTlP5VEajXHGgC4ctVPHsENKbjsMgekvwcx34Y1hcPQTYUdUp02ePJmhQ4eyaNEi0tLSOProoykuLmbOnDk888wzFBUVcfTRR7Pbbrvxr3/9izvvvJNu3brxwgsvMHPmTH744Qduv/122rZty//+9z/efPNNDjnkkLBfFqDETURENtDyolJOH/UFf60oYU/XmssPrHtLMtW4SAQOuRse6A8zxsKMcbDNoWFHVbvWVzNmb8ILJ/kpU+IycuCoUeA2rUkz3lT6119/ceqpp9KhQwe+//57vv32W4YOHQpAaWkpc+fOZeHChXTr1g2Ao446CoDff/+dm2++mdzcXObNm8eOO+64SfHUJA1OEBGRaotGY/zfc19h85bRrXVD7jmuN+kaQVo9zTrBwOv8/dcvgRV/hhpO6AqXQFo6RNIgo4G/TUuv0WlBmjdvzu23387VV19Nq1at2GWXXXjyyScZNWoUBx54IB07dqRNmzb88ssvADz88MNMmDCBa665hltuuYVbb72VNm3akEzruitxExGRahs+wZgwYx5NG2Qy8qSdaZKTHP1+UsZOp0Gn/lAwH966KuxowjX1CSheAW17wnGj/W3xihobXRq35ZZbMnToUCZOnEhubi5DhgzhiCOOAKBRo0Zcf/31XHnllZxwwgnk5+ezxx57cOihh3L88cdz7LHHUlBQwPz582s0pk2hplIREamWsV/N5f6JM0lPi3D/kB3p0qph2CGlnrQ0OPReeHA3+Ho09Pw7dB8YdlThyG4C+90E/c7170uXPfzarrM+3aTT7rLLLuyyyy5rbDvnnHOqPH677bZj9OjRa2y74oorKj32+eefJz8/n/fee2+TYtwUqnETEZH1+nr2Yi59cRoA/xq0Dbt3bxVyRCmsVXfYK0gMXrsIipaFGk5ojnsGdj3PJ23gm0l3Pd9vlyopcRMRkXWat7SQM574gqLSKMf17cSJ/TuHHVLq638+bLYDLJkN71wXdjSSQpS4iYhIlQpLyjjziS+Yv6yIvl1acP2h2xKJaDDCJkvPgMH3QVoGfD4Sfvkk7IgkRShxExGRSsViMS57aRpfz1lCh+YN+N8JfcjK0MdGjWnXC3a/2N8fdz6UrAw3HkkJ+g0UEZFKPfjBTMZ+9RsNs9IZedJOtGiYFXZIdc/fhkHrreHPmTz66il89vtn6zz8s98/49HpjyYouNrx6PRH68XrrC1K3ERE6pnqfHA+MPkt7v78YSIRuOuYHdi6XZMERVfPZGTD4PshkkbPH95n2MSLqiybz37/jGEfDKNny54JDrJm9WzZk2EfDEuJ15mMSaYSNxGRemZ9H5wvfjuRB2ZcS9nKDgzbz7Hftu0SHGE902En6HcufVeu5I6lpQz74JK1yiaezNyxxx303axvSIHWjL6b9eWOPe6o9GewJl7nnDlz2HHHHRk6dOiqf/fddx8As2bNWufSVWPGjOHEE09k6NChHHvsscR+iiVfkhmLxer8vy+++CKWCDNmzEjIdaT6VCbJSeUSvim/TYkNeGZAbMpvU2Kx2OoymfDTx7Fej+4S63r9f2MXPPNlLBqNhhlm/VFUEIvdvX0sdm2T2JTxF/my+eW92JKHB8Wm/PLeGmVVV1T8Gaz4eGPNnj07dtRRR621fcyYMbHDDz88tuuuu1b6vKVLl8YGDhwYKyoqisVisdgff/wRGzBgQGzSnEmV/q7UVLyVCfKWSnMaTcArIlIP9d2sL5fscAPnTLiQot8PY8XydjRo/BJprcex8veD2arVZpw1sCEzF88kFv8vWPYnfj/+n/9/zW2VHhvcAmscG41FV5+jquMqu94mxlHpcRW2VRXHhhwbjy1KdI19a8XVc2+Y/hKx719h560Gcu4HF7N1tIDvPriYvToP5NPfPmXS75OIECESiRAhQlokbY3HkYjfBqzeV/H4YFRwfH/8+EgkQhppa5yr/P41rlXx+pVc44GvHuDbRd+u92fxtLdPW+fj8nZssyPX9LvGxxSh0vdg3op5FJcV80fBH2u+Nw0i3DPyHo4adBSLCxev9TpKI6UUFxfz5NNPsseee9C5U2fGvz2e7KxsLu52MaeedCqdczvQrOAPTrnjBq799D+0/qA1/331v0QiEa6++mq23npr9tprL7p27Uq3bt045ZRTuOaaaygqKiI7O5sbb7yRzTbbbL3vybpE4j88dVleXl6sT58+tX6d/Px8evTQYsvJRGWSnFQumyYai7KiZAXLS5ZTUFLA8pLlLC9evvpxcL/844KSApaVLKOg2B+/pGg5K0tXEInU/c8AqV9ii2OUjCwh0m71tDUZgzOINPaPi/9bTNaFlQ+0if0Zo+zzMqI/RaEM0vunk94nnZIXSkjfMZ20bmm0nFHMytyGdJ+zDScfczIDBw4kPz+fq666ipdffpmtt96aSZMm0bx5cy666CIOP/xw9thjDyZNmsSLL77I8OHD1/sa8vLy6NOnT6Xz7qjGTURq1aPTH6Vny57r7K/y2e+fMX3RdE7teWoCI0u8ignXsuJlqxKvqhKuVY+LVx9XUFKwqnZnU0QiECvzH2CR9GJiZQ2IleVCzNdEdGyRS1Z6+qpaC/+cyFo1LFVuD2pEqjy24u16nlvl9nhsVR1byfkr3lb2GtY65ya83vI1U1W+hi+fIPLnT0SA2RkZvN6oIdsVFTEtO5sDl6+gY2kpUSDWYguiOwxZVcMYjUXXqkmM4msxV+0rtz8ai65VKxiNRQHWub+qWssqrxGvaaz43HLXWFq8lJ+X/EyrBq1YuHIhnRp3Ijczt9LXE69oqvT1lttWUlzCgrYLaHNmm0prOhdEFtAkqwkxYix9eimx4hhpbdLI3j2baDRK2kFpRGNRyhaVUfRMEemd0mERRNr78ly0TRZnxXIZ/9lf7LzzzgD06NGDP/74A/AL2zdv3hyA77//noceeoiRI0f6Zs6MTU+7lLhtpPiHUdusbRnx0U+8MvU3CopKaZj9K4f13pwzBnRlXvG39eLDKFmoTJJTvCP8P3vfxJT85muVyy49/uL2qVdzxx53hB1qlconXGvUbFUnAQsSrvi+mpKbkUujzEY0zGpIo8xG/l9WIxpm+scNMxuSm9GQ7PSGZKflkp3WgMxILplpDXh60nw+yF9KWVk26bk/k9N+NMULdiez+RQKfz+CshXdyEiLsFPrTtx4WPgj++qNRlvB6KP5LD3K402bcN+8BfQtLOKznGyGtWnFHfMX0re4DDp2hwXz8BlgvFImfj94HL+/1v40ID04bB3Pie9Pq845y++nmnFE+Gz5LIYtGsfDXY6mb+Mt/ONfxnD1FkfQt3GXSp7Des8JMGf+X1zc4Cme73XR2vsjEXbLuIpP+lzrt+0UWXXItz/O5oq7n2T07cNolNuA4pJShrx8Ebf9NpfhuY3p820Jj+/QjO2/WMnjkVK2LpnLF5d0Z58OReTn7kKrVn4ZuLS01eM+u3btyqmnnsqOO+7IzJkz+fzzz6ss/uqqE02lzrk04AFge6AION3Mfozvr42m0s9+/4wL3ruYpbOOpXh5V0qjq9/HjLQIWY1+oknnZ7ln7ztTfgRQqlCZJK+HPnuLe6dfS/Hc4yku6Lpqe1bDn8hq/zTn97yes/ruX+PXXVfCtd4ErJYSruz0BuSk5ZKdnkt2WkMyIw3ITMslgxwyIg1IJ5f0WA4RciC6+l+sLIdoWRZlZdmUlWVRUgpFpVGKg39Fwb/i0jKKy/y26Hr+vKfnziSn/WgK5w6hbEW3tR43ys5g+vU1Xy5Stc+mjmTY1Lu4Y75P2lZtL5+8ldueqqp6PTXxOucsT+fiT5vy/H5/Vrp/tzGt+eTwBZXue2FmA57+PpecjBhlMTiy60qO2XIlrxY34MovmtK1qIQ2kSjH7bWSa5q0oO24IhqURihtsRVX33QbvXr1YrfdduOTT/xKGLNnz+a6666jqKiIwsJCrrrqKnr37r3e11AfmkoPA3LMrL9zrh8wHBhcmxdsm7UtS2cdS6TtU8RKh8CKbqv2xXJ+JNJ2NEtnnUDbrG1rMwwpR2WSnGYtKuDuV2MUZw4hp/3TlJVLEjI3H83KOUO4++cYB3QroHPLhsCGJVzLipazrHgZy4qXs6ykgIKS5RSULGdFSQEry1bU2OtIi2UTieUE/xoQi2YTK8shVpZNtCyb0tJsSkuzgiQrm1g0h1g0B+LHRbMhms2yTZqFqTT4V71EMj0tQlZ6GtmZaWSlp5GV4f/9tKBgrSQNoGxFNwrnDlm1vWBlt/VcQWrSZ79/xjB7gjt6nkPft29YY1/f4jLuaLwdwzJ/5I62e9I3px1BW2kgBrEYqzbE71e5bX3PYc1tG/z8qp/zWclihq2YwR25PejbvOka+/sS446SxQzb7AfuyNmSvulNqr7mWtu8DrEYz/epOs5P/ln16ziqKxw1cM39nxUt5PbMpTzSpFwyGYNGRYsYNrQ1d/T+P/r2Pn3V9eNJG0DHjh155JFHqEl1JXHbHXgTwMwmO+d2qu0LjvjoJ4qXdyVW6j+MSv7ahVg0h7TMRWQ2m0rJ4t6Q+SunjLmNHps1XfPJ1azl3Jg+LBv0nA2sbd2Qc2/omav9nHXE/P285ZRlrYTlW9Og4+OULN2OWElzIpl/ktnkG0qW9oKsmZz08s10b9togyJcZ0g1dqZ1XSQxNeM10W+qoh/nLyfarJD0GJQu34oGHR8nWtiOtJzfKVvZkayW7xNJe4vBrwwnI6OIUlZSRmGNXT9WllVlEuXvxx/nrNq35rE5EM2iutNeZqZHyMlI90lSpk+UsjNWJ00+kUr3txkV9qfHH6evPj7Yn13V/nKJ2erz+f3paZWvKdrz3/cTa7Nm0hZXPnmLzB+6qW+/bIDpi6b7+cvm/+zXMI2UEE3LJC1aAhnZ9N3qcO5o04Xpi6bTN4W7e0yf/ih3tLywypaPvsAdQb/XsF/nqnnlup5L37dvXGNf39IId/Q8xyfb7bZLWEtOXUncmgBLyj0uc85lmFlpbV3wlam/+aa4Fd0omr8/DTYfs8b+rBZ+sr4FwIKFtRWFrCELslqXe9gsb83dzb4EYBGw6K8ExlXfZUFWqzU3pefOBiCj4c+rtpUF/+KqSrhi0RxYVaPlE650Gvgmx4jvx5WVlktOekOy0xuQnZHhE5rMtROfNRKn9PKJ0tqJUfZ69mel+39pVSRLyWTbrkuY+v3xlK3oWun+shXdKPnteHbcakml+6V2rOp7+9b1ULwC2vVijjuNTvYI/PENTH2Svie/lvJdParTx7jvZn2T4nWumUynQyRtdTKdlk7f7NbcsccdPslU4rZBlgKNyz1Oq5i05efn1+gFC4pWn750yc6UNvmGjEY/UraiE2Urt1jj2G4tamJ9vw35MKj62E3/SFnzDJEa+4yq/okiVRxrC9fsD5Ge+xMZub9QWrDFWh9QrnX2hoe4ETGlppp9Ld8tWF0u8drPshWdSW/wK8V/DqBsZacgGcvhzD6bk5vRgNz0BuRkpJOZHiEzLeJvK9zPCh5npLFqBODGiwb/1rO7ZPXDwuBfKjpzi0Gc+80c1lVfHCnqxhlbdKjxv52yfh2KIxTscD5/bXUshUXFFAx4kObfP0fugq+Yq/JIqP7p/WExFHz8P3KLV1DYrDtze5xJ+/yHyVn8Ays+eYjGe91P//T+CftdqSuJ2yfAIcDzQR+3byoeUNNzRjXM/pXlQfKWnvszaTm/U7RgbzKbT6F0wf6rmh8aZWfwxsXq3JsIPa99q1yZzCSz2ZRVZVK8cN81yuTVYSqTRImXi+9TNYmVs09eoyN82YquRFd2plF2BpcPVrkkQg/gf83ace5TX1JSFl1rIE9mehoPnLAje7k24QVZn/V4jcZAO8rNebitH92rFWND8lU76H0TDfqdS4kZDfY9FSY/QMNZn9bKnJR5eXlV7qsra5WOAQqdc58CdwH/V9sXPKz35mSkRdbo4Fu8cL9VfUPSc2eSkRbh8N7tazsUCahMktNhvTcnq+FP6+wIn9XwJ5VLgu3l2vDmRQM4rm8nGmVnEMF/qTmubyfevGiAkjaR8o57BnY9D+JTfaSlw67n++0JVidq3MwsCpydyGueMaArL8/4gEjbqj+MYvNO4PQBeyQyrHpNZZKcdunxF6/8+TQr51TdEb5Bh6fp22P7kCKsvzq3bMiNh/XkxsN6ajULkRRRV2rcEm5e8bc06fwssXknECncco19kcItic07gSadn2Ve8frXaZOaoTJJTgtKfuT8nteTVbIVGRU67mekRcgq2Yrze17PgpIfqziDiIjE1YkatzBMXzSde/a+k7ZZ2zLyo58ZM3VuMBt8Bof3bs/pA/ZgXnHfhI40qe9UJskpPoLsgG4FVZRLl1Xzt4mIyLrViZUT1keLzNdfKpPkpHJJPiqT5KRyST6JKJN1rZygplIRERGRFFFvatzCjkFERESkuqqqcasXiZuIiIhIXaCmUhEREZEUocRNREREJEUocRMRERFJEUrcRERERFKEEjcRERGRFKHETURERCRFKHETERERSRFK3ERERERShBI3ERERkRShxE1EREQkRShxExEREUkRStxEREREUoQSNxEREZEUocRNREREJEUocRMRERFJEUrcRERERFKEEjcRERGRFKHETURERCRFKHETERERSREZYQcgIrI+zrkYMB0oq7DrMDP7JUExHAzsYmb/cs4dCgw0swtq6NwjgP+ZWZ5zbiTwrJm9UxPnFpG6RYmbiKSKvcxsYYjX3xloAWBm44BxNXjufYGHgnOfXoPnFZE6RombiKQ059xJwLXAdkAM+AL4t5k94Zw7BLgayAJWAMPMbJJzLgO4DRgElAKfAucCVwKtzOy84NzXAa2AJ4GzgXTn3BLgB+BIMxvknOsAPAhsAUSAUWZ2u3NuC+Bd4A1gF3zSd5WZPVch/puBzYGnnXMnAv8B7gtex3vBv/5AJjAMOAvYOth/nJlFnXO7Bs9rCESB68zstU1/d0Uk2aiPm4ikionOua/K/RsDYGajgEn4ROwe4KMgaesO3AIcZGa9gTOBl51zDfFJWh9ge6An0Bg4pqoLm9kU4H/Ac2Z2VYXdTwMTzawXsBtwgnPu2GBfV+AtM+sLXBbEWPHcVwG/AccH1ymvCzDOzLbFJ4H/BY4DtgUGAP2cc82Bx4ChZrYjcCjwoHOuU9VvpYikKtW4iUiqWFdT6dnA18BKfEIGvvlxM+Bd51z8uCiwJTAQeNLMVgbbj4FVNWzVFiSBuwH7AZjZEufc48CBwGSgBF/jBvAlQVPrBigBXg3uzwQ+NbOlwbV/C87XH/86Xyn3OmP4GshfN/B6IpLklLiJSF3QFsgBsvHNjj8B6cC7ZraqJs051xFfu1WKT27i29viWyBi+ObOuKz1XDetwvHxbZnB/WIziwb3K567OorNLFbucUklx6QD+Wa2S3yDc25zYMEGXktEUoCaSkUkpTnnMoFngH8B1wPPBNveA/Zzzm0dHHcQMA2f4L0DDHHOZTvn0vB91I7DJzt9nHORoDZtv3KXKmV1QgaAmS3D16z9I7hGU+BEYMIGvoy1zr0BJgPdnXN/C2LYAd8Hb/ONPJ+IJDHVuIlIqpjonKs4HciVwF7AH2Y2EsA5dxhws5ld6pw7E3jWORfBJ0eHmlmBc+4h/GCCPHwt2Pv4/nEN8c2cPwBz8X3n4rVk7+L7yBUHz4s7HrjfOXcKvobuaeBxoPMGvLZXgOeccxs8otTMFjjn/g7c7pzLwX8hH2pmszb0XCKS/CKxWGz9R4mIiIhI6NRUKiIiIpIilLiJiIiIpAglbiIiIiIpQombiIiISIpQ4iYiIiKSIurFdCB5eXkaOisiIiIpo0+fPpVO2F0vEjeAPn36rP+gTZSfn0+PHj1q/TpSfSqT5KRyST4qk+Skckk+iSiTvLy8KvepqVREREQkRShxExEREUkRStxEREREUoQSNxERkWRTVgavvUarBx+E117zjyVcSVIm9WZwgoiISEooK4P994cpU2hVUACPPQa77AJvvQXp6WFHVz8lUZmkVOLmnEsHRgAOiAFnA5nAa8APwWEPmtlz4UQoIiKyicaPh0mTYMUKIgDLl8MHH8B++0HHjmFHVz/Nng0ffgilpavLZMoUX1aDBiU0lJRK3IBDAMxsN+fcnsDNwKvAnWY2PMzAREREasTkybBixZrbSkvhvffCiUcqV1AAX32lxG1dzOwV59xrwcPOwGKgD+Ccc4PxtW4XmdmykEIUERHZeNEoTJiw9vbsbDj7bNhhh4SHJPgE7X//g6Ki1dsaNgylPCKxWOotKuCcGwUcDhwJtAemmVmec+4qoLmZDSt/fF5eXiw3N7fW4yosLCQnJ6fWryPVpzJJTiqX5KMySQ6t77qLViNGEEtPJ5aZSaSoiGiDBhRutx2/jhihPm5hKSuj0xlnkDNtGmkrV9Z6maxYsaJurZxgZic55y4DpgC7mtncYNcY4N7KnpOImac1w3XyUZkkJ5VL8lGZJIGnn4YgEYi88QaR4mLmT5hAm333peGBB9JDSVu4Pv4Yxo9PSJmsa+WElErcnHNDgQ5m9m9gBRAFXnbOnW9mnwH7AFW/WhERkWQ0ZQqcdpq//9//+oEIwKJu3WijhDo5pKfDoEGhl0lKJW7Ay8BjzrkP8aNJLwJmA/c650qAP4AzwwtPRERkA82ZA4cd5vtPnX02nHtu2BFJEkupxM3MCoCjK9m1W6JjERER2WQrVvik7Y8/YM894Z57IFJp1yYRQCsniIiIhCMWg1NOgbw86NoVXnwRMjPDjkqSnBI3ERGRMNx0Ezz/PDRuDOPGQcuWYUckKUCJm4iISKK99BL861++WfSZZ2DbbcOOSFKEEjcREZFE+uorOPFEf/+22+Dgg0MNR1KLEjcREZFEmTcPDj3UD0o48US45JKwI5IUo8RNREQkEYqK4PDD/YLl/fvDQw9pBKlsMCVuIiIitS0Wg7POgkmToGNHePll0BJjshGUuImIiNS2O++EUaMgNxfGjoV27cKOSFKUEjcREZHa9MYb8M9/+vujRkHv3uHGIylNiZuIiEhtmTEDjj3WN5Vefz0ceWTYEUmKU+ImIiJSGxYtgkMOgWXL4Oij4Zprwo5I6gAlbiIiIjWtpASOOgp++gl23BEee0wjSKVGKHETERGpaRdeCBMn+kEIY8f6QQkiNUCJm4iISE164AF48EHIzoZXXoEOHcKOSOoQJW4iIiI15d134YIL/P2RI2GXXcKNR+qcjLAD2BDOuXRgBOCAGHA2UAg8HjyeDvzDzKJhxSgiIvXUjz/6fm1lZXDZZXDCCWFHJHVQqtW4HQJgZrsBVwM3A3cCV5vZACACDA4vPBERqZeWLPEjSP/6y9/efHPYEUkdlVKJm5m9ApwZPOwMLAb6AB8E28YDAxMemIiI1F9lZX6utu++g5494emnIT097KikjkqpplIAMyt1zo0CDgeOBPY1s1iwexnQtLLn5efn13pshYWFCbmOVJ/KJDmpXJKPymTjtfnPf2j55puUNmvGL3feScmcOTV2bpVL8gm7TFIucQMws5Occ5cBU4AG5XY1xtfCraVHjx61Hld+fn5CriPVpzJJTiqX5KMy2UiPPeaXscrIIOOVV9hyjz1q9PQql+STiDLJy8urcl9KNZU654Y6564IHq4AosAXzrk9g20HAh+FEZuIiNQzn3wCZ53l7z/wANRw0iZSmVSrcXsZeMw59yGQCVwE5AMjnHNZwf0XwwtPRETqhVmz4PDD/QoJF1wAZ5wRdkRST6RU4mZmBcDRlezS1xwREUmM5cvh0ENhwQLYd18YPjzsiKQeSammUhERkVBFo3DiiTBtGmy1FTz3HGSkVB2IpDglbiIiItV17bUwZgw0bQrjxkHz5mFHJPWMEjcREZHqeOYZuOkmSEuD558H58KOSOohJW4iIiLr8/nncOqp/v5dd8F++4Ubj9RbStxERETW5bff4LDDoLAQTj8dzj8/7IikHlPiJiIiUpWVK33S9ttvMGAA3H8/RCJhRyX1mBI3ERGRysRicNppvpl0iy3gpZcgKyvsqKSeU+ImIiJSmX//2w9IaNTIjyBt3TrsiESUuImIiKxl7Fi46irfLPr009CrV9gRiQBK3ERERNY0bRocf7y/f8stfpUEkSShxE1ERCRu/nyfqBUU+OTtssvCjkhkDUrcREREAIqL4e9/9wvI9+0LI0dqBKkkHSVuIiIisRiccw58/DG0bw+vvAI5OWFHJbIWJW4iIiL//S88+ig0aOAHJmy2WdgRiVRKiZuIiNRvb74Jl1zi7z/+OPTpE2o4IuuSEXYAG8I5lwk8CmwBZAM3AbOB14AfgsMeNLPnQglQRERSy3ffwTHHQDQK11wDRx8ddkQi65RSiRtwArDIzIY651oAXwE3AHea2fBQIxMRkdTy559wyCGwdCkccQRcd13YEYmsV6olbi8ALwb3I0Ap0AdwzrnB+Fq3i8xsWUjxiYhIKigp8bVrP/4I228PTzwBaeo9JMkvEovFwo5hgznnGgPjgBH4JtNpZpbnnLsKaG5mw8ofn5eXF8vNza31uAoLC8nRKKSkojJJTiqX5FPfyqTtTTfRYvRoSlu25OfnnqN0883DDqlS9a1cUkEiymTFihX06dOn0rloUq3GDedcR2AM8ICZjXbONTOzxcHuMcC9lT2vR48etR5bfn5+Qq4j1acySU4ql+RTr8rkoYdg9GjIyiJj3Di677pr2BFVqV6VS4pIRJnk5eVVuS+l6oWdc22Bt4HLzOzRYPNbzrm+wf19gKpfrYiI1G/vvw/nnefvP/QQJHHSJlKZVKtxuxJoDlzjnLsm2HYxcJdzrgT4AzgzrOBERCSJ/fSTXxmhtBSGDYOTTw47IpENllKJm5ldCFxYya7dEh2LiIikkKVL/QjSP/+Egw6CW28NOyKRjZJSTaUiIiIbrKzMLxg/Ywb06AHPPAPp6WFHJbJRlLiJiEjdduWV8Npr0KIFjBsHTZqEHZHIRgutqdQ5dwhwBOCAMuA74AUzezusmEREpI554gm47TbIyIAXX4Qttww7IpFNkvDEzTnngMeBv/BLVT0LpANdgQucc9cBp5vZjETHJiIidcikSXDGGf7+vffCXnuFG49IDQijxu1qYIiZ/VzJvvucc93wy1gdn9iwRESkzpg9Gw4/HIqL4dxz4eyzw45IpEYkPHEzs6EVtznn0oA0Mys1s5koaRMRkY1VUACDB8O8ebD33nD33WFHJFJjQhuc4Jzbyzn3dfCwBzDHOdc/rHhERKQOiEbhpJNg6lTo1g1eeAEyM8OOSqTGhDmq9HbgFAAz+xY4CLgrxHhERCTV3XADvPSSHzn66qt+JKlIHRJm4pZlZl/GHwT3s0OMR0REUtkLL8D110NaGjz7rJ+zTaSOCTNxW+GcOyD+wDm3D7A8xHhERCRVffmlbyIFuP12OPDAcOMRqSVhLnl1ITDGOVcKxIJ/R4QYj4iIpKLff/eDEVauhFNOgf/7v7AjEqk1oSVuZjbFOdcJ6AWU+k1WHFY8IiKSggoL/bQfc+bArrvCgw9CJBJ2VCK1JsxRpWnARcG/X4BLnHNaPE5ERKonFoMzz4QpU6BTJ3j5ZchWV2mp28JsKr0daA3sDESAA4DNgAtCjElERFLF7bfDk09Cbq5fg7Rt27AjEql1YQ5O2Ac4GSg0s6XAfsC+IcYjIiKp4tVX4fLL/f2nnoLttw83HpEECbPGrcTMon7pUjCzomCgQpWcc5nAo8AW+KlDbgJm4Nc+jQHTgX+YWbT2whYRkVBNnw5Dhvim0htv9H3cROqJMGvcpjvn/gGkO+8h4Kv1POcEYJGZDcA3rd4H3AlcHWyLAINrMWYREQnTwoVw6KGwfDkceyxcdVXYEYkkVJiJ24XAjkBb4BOgEX6gwrq8AFwT3I/gR6P2AT4Ito0HBtZ0oCIikgSKi+HII+Hnn2GnneDRRzWCVOqdMKcDWQqcBuCciwAZZlaynucsD45vDLwIXA3cYWax4JBlQNNaC1pERMIRi8F558EHH8Bmm8Err0CDBmFHJZJwoSVuzrndgT2B24DJwNbOuVPM7Ln1PK8jMAZ4wMxGO+duK7e7MbC4sufl5+fXRNjrVFhYmJDrSPWpTJKTyiX5JHuZNH/qKdqNGEE0K4tZd91F4dKlsHRp2GHVumQvl/oo7DIJezqQa4DDgD/wqyY8D1SZuDnn2gJvA+eZ2bvB5qnOuT3N7H3gQGBiZc/tkYA16/Lz8xNyHak+lUlyUrkkn6QukwkT4D//ASDtscfocswxIQeUOEldLvVUIsokLy+vyn1h9nFLN7N38FOAvGJmvwDrm4D3SqA5cI1z7n3n3Pv45tLrnXOTgCx8E6qIiNQF338PRx8NZWVw5ZV+NKlIPRZmjVu6c64vcDBws3OuJ5C5rieY2YX4QQ0V7VEL8YmISJj++gsOOQQWL/Zrkd54Y9gRiYQuzBq3m4HRwCNBbdur+NozERGp70pL/XQf338PvXr5SXbTwvzIEkkOYY4qfRl4udymLc2sLKx4REQkifzzn/D229CqlV/OqlGjsCMSSQoJ//rinBvrnOtdcXs8aXPO7eScG5fouEREJEmMHAl33w2ZmX7h+C22CDsikaQRRo3bOcAI51xr4DXgR/yghK74UaGLgbNCiEtERML24Ydw7rn+/oMPwoAB4cYjkmQSnriZ2W/Awc65XYAjgeOAKPA9cKGZTUl0TCIikgR++QX+/ncoKYGLLoLTTgs7IpGkE2YftymAkjQREYFly/wapAsXwv77w+23hx2RSFLSEB0REQlXNAonnADffAPOwbPPQkaYs1WJJC8lbiIiEq6rr/YjR5s3h1dfhWbNwo5IJGkpcRMRkfA8/TT8+9+Qng7PPw/du4cdkUhSC7Uu2jl3JLADcAsw2MyeCTMeERFJoM8+Wz0A4e67YeDAUMMRSQWh1bg55y7HTw1yNNAAuNY5d01Y8YiISALNmeOXsSoqgrPOgn/8I+yIRFJCmE2lxwIHAQVmtgjoB2j1YBGRum7FCjjsMPjjD9hzT7j3XohEwo5KJCWEmbiVmFlR/IGZLQZKwgtHRERqXSwGp54KeXnQpQu88IJfIUFEqiXMPm6znXMHAzHnXDYwDJgVYjwiIlLbbr4ZnnvOrz366qt+LVIRqbYwE7fzgCeB7YACYDJwfIjxiIhIbXr5ZbjmGt8s+swzsO22YUckknLCXDnhN2Af51wukG5my6r73GC5rP+Y2Z7BgvWvAT8Eux80s+dqPmIREdloX30FQ4f6+7feCoMGhRqOSKoKLXFzzrUDTgZaBI8BMLNL1/O8S4Gh+Fo6gD7AnWY2vLZiFRGRTTBvnl/OasUKn7z9859hRySSssIcnDAO6AtEKvxbn5nAEeUe98EvWv+hc+4R51zjGo9UREQ2TlERHHEEzJ4N/frBww9rBKnIJgizj1uWmR2x/sPWZGYvOee2KLfpM2CkmeU5564CrsUPdBARkTDFYnD22fDpp9ChA4wZAzk5YUclktLCTNzynHM9zWz6Jp5nTDCVCMAY4N7KDsrPz9/Ey6xfYWFhQq4j1acySU4ql+RTG2XS4rHHaPv440Rzcvjl7rsp+usv+OuvGr1GXaffleQTdpmEmbh9AnzlnPudcvO3mVnXDTzPW865883sM2AfIK+yg3r06LHRgVZXfn5+Qq4j1acySU4ql+RT42Xyxhtwxx0ApD3xBF3//veaO3c9ot+V5JOIMsnLqzSVAcJN3K7Dr5QwcxPPcw5wr3OuBPgDOHMTzyciIptixgw47jjfVHrddXDUUWFHJFJnhJm4/Wlmz2/ME83sF/wSWZjZl8BuNRiXiIhsrEWL/AjSpUt9wnaNlqAWqUlhJm6vO+fuAF4Cyi999WV4IYmIyEYrKfHJ2syZ0Ls3PP44pIU5eYFI3RNm4hZfUL58x4cYsKF93EREJBlceCFMnAht28LYsZCbG3ZEInVOmCsndAnr2iIiUsMeeAAefBCys+GVV6Bjx7AjEqmTEp64OecuNbPbnHP3VLbfzC5IdEwiIrIJ3nsPLgj+dI8Y4SfaFZFaEUaN25LgdlEI1xYRkZr0449w5JFQVgaXXrp6PVIRqRVhJG5nAQ+Z2fUhXFtERGrKkiVwyCF+Ut1Bg+CWW8KOSKTOC2O4jxapExFJdWVlfq62776DbbeFp5+G9PSwoxKp88KocctxzvWmigRO04GIiKSAyy6D8eOhZUsYNw6aNAk7IpF6IYzErSt+7rbKEjdNByIikuweewyGD4eMDHjpJeiqP9siiRJG4jbDzHqHcF0REdlUn3wCZ53l799/P+yxR7jxiNQzmtJaRESqZ9YsOOIIv0LC+efDmVoaWiTRwkjcPgzhmiIisimWL4fBg2H+fBg4EO68M+yIROqlhCduZnZhoq8pIiKbIBqFE0+Er7+G7t3h+ed9/zYRSTg1lYqIyLpdey2MGQNNm/oRpM2bhx2RSL2lxE1ERKr23HNw002Qlubvb7112BGJ1GtK3EREpHJffAEnn+zvDx8O++8fajgiEs50IJvMObcL8B8z29M5tyXwOH4OuOnAP8wsGmZ8IiIp77ff/GCEwkI47TS4UN2TRZJBytW4OecuBUYCOcGmO4GrzWwAflLfwWHFJiJSJ6xcCYcd5pO3AQPggQcgotUKRZJByiVuwEzgiHKP+wAfBPfHAwMTHpGISF0Ri8Hpp8Pnn0Pnzn5lhKyssKMSkUDKNZWa2UvOuS3KbYqYWSy4vwxoWtnz8vPzazs0CgsLE3IdqT6VSXJSuSSfeJm0fPhh2oweTbRBA365+26KFi6EhQvDDq/e0u9K8gm7TFIucatE+f5sjYHFlR3Uo0ePWg8kPz8/IdeR6lOZJCeVS/LJz8+nx/ffw913QyRC2jPP0HWwep6ETb8ryScRZZKXl1flvlRsKq1oqnNuz+D+gcBHIcYiIpJaysrgtddoe+ONcMwxftvNN/uBCSKSdOpCjdslwAjnXBaQD7wYcjwiIqmhrMxP8TF5Ms0LCvy2tm3hn/8MNy4RqVJKJm5m9gvQL7j/PbBHqAGJiKSi0aPho4+guJhVY0aXL4c334RBg8KMTESqUBeaSkVEpLoKC/1aowcfDCedBMXFa+5fsQK++iqU0ERk/VKyxk1ERDZALAaTJ8OoUX7ZqsWL/fa0NP+vrGz1sQ0bwg47hBGliFSDatxEROqqX3/1Aw223hp23RUeesgnbTvuCP/9L8ydC3vuCY0aEYtEoFEj2GUXOPDAsCMXkSqoxk1EpC4pKICXX4bHH4eJE31tG0C7dnDCCb55tGfP1ce/9RaMH8+CCRNos+++PmlLTw8ldBFZPyVuIiKpLhqFDz/0TaEvvugHGABkZ/ulq046CfbdFzIq+ZOfng6DBrGoWzfaaL4wkaSnxE1EJFX9+CM88YT/N2vW6u39+8PJJ8PRR0OzZmFFJyK1QImbiEgqWbLEjwodNQo++WT19o4d4cQT/b+ttgovPhGpVUrcRESSXVkZTJjgk7VXXvFTeoAfAfr3v/um0D339CNERaROU+ImIpKsvv3WJ2tPPQW//756+157+WTt73/3I0FFpN5Q4iYikkwWLoRnnvEJW/mFprfc0idrQ4dC587hxScioVLiJiIStuJiGD/eJ2uvvQYlJX57kyZw7LE+YevfHyKRdZ9HROo8JW4iImGIxWDqVJ+sjR7ta9rA91M74ACfrA0eDA0ahBuniCQVJW4iIon0++/w9NM+YZs+ffX2bbf1ydrxx8Pmm4cXn4gkNSVuIiK1rbAQxo71ydpbb/kJcwFatoQhQ3zCtuOOagoVkfVS4iYiUhtiMZg0afXC7kuW+O0ZGXDooT5ZO+ggyMoKN04RSSl1JnFzzn0JLA0e/mxmp4QZj4jUU7/+uno1gx9+WL29Tx+frB13HLRqFV58IpLS6kTi5pzLASJmtmfYsYhIPbR8uV/YfdSo6i3sLiKykepE4gZsD+Q6597Gv6YrzWxyyDGJSF0WjcIHH6xe2L2gwG+vzsLuIiIbKRKLfzNMYc65XkA/YCTQHRgPODMrBcjLy4vl5ubWehyFhYXk5OTU+nWk+lQmySmVyyVz1iyajR1Lk3HjyPrtt1XbV/TuzZLBg1l6wAFEmzQJMcKNk8plUpepXJJPIspkxYoV9OnTp9LRSnXlq+D3wI9mFgO+d84tAjYDZscP6NGjR60HkZ+fn5DrSPWpTJJTypXL4sWrF3b/9NPV2zt1WrWwe2737uTi//CkopQrk3pC5ZJ8ElEmeeVXTamgriRupwK9gHOdc5sDTYDf1/0UEZF1KC1dvbD72LFrLux+5JG+KXSPPbSwu4gkVF1J3B4BHnfOfQzEgFPjzaQiIhtEC7uLSBKrE4mbmRUDQ8KOQ0RSlBZ2F5EUUScSNxGRDVZcDG+84ZO1119fvbB706ZwzDFa2F1EkpISNxGpP2Ix+PJLn6w988yaC7sfeKBP1g49VAu7i0jSUuImInXf77/7PmujRvk+bHE9e65e2H2zVB0PKiL1iRI3EambVq5cvbD722+vXti9VavVC7v37q2mUBFJKUrcRKTuqGph98xM3wR68sm+SVQLu4tIilLiJiKpb9YsePJJLewuInWeEjcRSU3Ll8NLL61e2D1us81WL+y+7bbhxSciUguUuIlI6ohG4f33fbL20kurF3bPyVm9sPvAgVrYXUTqLP11E5Hk98MPPll78kn49dfV23fbzSdrRx0FzZqFFp6ISKIocROR5FSNhd3p3j208EREwqDETUSSR/mF3V95BYqK/HYt7C4iAihxE5FkMH366oXd//jDb4tEYO+9fbJ2xBFa2F1EBCVuUleVlcH48bR6+23Ybz8/d1d6ethRSfly6dcP5s/3/da+/HL1Md27r17YvVOn8GIVEUlCStxqgpKExIlG/ftdWlr1bXGx7//09de0WrkSHnkEevWChx5aXS6x2OpzVuf+xjxH51rzflkZXHMNfPcdrYqK4N57V+9v2hSOPdYnbP36aTUDEZEqKHHbVGVlsP/+MGUKrQoK4LHHYJdd4K23Njx5q05SkqjbZIihstuKycF6RABWrIApU2CHHTasPKTWrErL0tPh4ovhhhv8lB4iIrJOdSJxc86lAQ8A2wNFwOlm9mNCLj5+PEyeDAUF/sNo+XI/GWjXrtCgQa0mJfVWRob/wK/qdvlyPyKxotatoU2b1Y/L1+pUdb+6x+lc6983c+aaqxqA/7LSpImSNhGRaqoTiRtwGJBjZv2dc/2A4cDghFx56lRfo1NeNLrmXFMbYn1JSTLchnnt6owmfO01v8TR8uWrtzVqBI8+CoMGbVy5yKarrFwaNlRNqIjIBqgridvuwJsAZjbZObdTwq7cu7f/8Cn/YdSgAdx2G+yzT80nJbJ+Bx7om6unTCFWUECkYUP/+MADw46sflO5iIhsskisDjTPOedGAi+Z2fjg8a9AVzMrBcjLy4vl5ubWzsXLyuh0xhnkTJtG2sqVRBs0oHC77fh1xAgNUAhTWRmNPvqI9OnTKevZk+UDBqg8koHKJWkVFhaSoybrpKNyST6JKJMVK1bQp0+fSkdp1ZUat6VA43KP0+JJW1yPHj1q7+offwzjxzN/wgTa7LsvDQ88kB76MApfz57k5+fXbtnLhlO5JCWVSXJSuSSfRJRJXl5elfvqSuL2CXAI8HzQx+2bhF49PR0GDWJRt2600S+YiIiI1JK6kriNAfZ1zn2Kn2nglJDjEREREalxdSJxM7MocHbYcYiIiIjUJg1jFBEREUkRdWJU6frk5eXV/RcpIiIidUZVo0rrReImIiIiUheoqVREREQkRShxExEREUkRStykTnDO6WdZpBr0u5J8VCbJyTlXaR+zsOmHZQM45yL6BUsu8fIIpoTBOdc23IgE9EGUjJxz6eB/V5xzTZxztbQOoFRX/DOl3N8vrW2VJIJyScpBABqcUE0VfrmaAP2APDNbFG5kAuCc2wk4Cj834b/MrCDkkOqtCr8rWwHtzWxiyGFJwDk3BP+78pGZ3Rl2PALOuc74uUgNeNrMSkIOSViVSJ8PfG1mb4cdT5y+FVdTuQ+iy4AXgWuA7UMNqp4qX5vjnEt3zt0D3Ao0AtoD+4cVm6yq0engnLsPGAWc4pzrGnZc9U3FWk/nXFfn3OfALsAsoLdzTmv0JViFv18R59wVwOPA1sCZgH5XQlCxWdQ59w/gEWAgcG4oQVVBiVsVKjaLOufSnHMXAj2Ak4FpQP/gm5IkQMVm0UBLYHMzG2hm/wDexZdL+zBirI8qSRCaAncAXwPnBZv/5pzLTnRs9ZVzLr3cl834+94deN3MLgT+A3wHHBdSiPVOPDGo8PerPfA3YD8zOxz/OzPIOdcghBDrpXLN1bFy27YBDgOuxf8NW+acO6+KUyScErdKOOcyzCwW1Bx0d861C37Z+gDvmtlvwIP4b647J2sHxroiaJouX+t5nHPuOefcCcACoJdzrm9w+M/ANsA+oQRbzzjnIuXKZacgSYgA2wJPmFkePpk+AF8uUkuccznOuVYAZlbmnGvsnPsfcK9zbiBQCgwO9v8OlAA7OOf6hxZ0PRDvSxhPDJxzuznnHnbO9QPKgOXArsHhzwEnAb3CiLU+KdfnM/5Z39U5N9g51wLoBOSb2Y9m9gMwHjgi2Bc6JW6syrgznXOnA5hZafBH8FLgDeA/zrmhwLPAoOCY6fimud2BDiGFXuc5544DDg7ud3DOXQPsB4wDjgaOB64DHgg+gE7FJw7bOeeahxJ0Heec28o5dyD4P3rOuS7OuSeBR4E7gW7AS8BVwVPmAJ3xNaHqfF0LnHMZ+L44zYLHu+PL4wfg9eD+h/iagyucc/+Hr+lZDgwII+b6IEiYrwrut3LOnYlvDi0ATsDX6rwJXBj0Bz0Y/7l8TPAcVQrUAufcvsCewf30oDbtKeAM/Of8R8C+zrntgy+j2wBZwDnhRLwmJW6syrhLgL8AnHNbAI8BrfHffJ7Dt3MvAJY4554O+oq8DewEaHRWDXPOZQKY2TPAi865jsBe+FrOl83saeAefOL2AnATcBq+Ceh2oIWZ/RVG7PVADJgH4Jw7HN8s+h7QF5gJDAVGAwOdc08Dw4AP8H8oi0KIt84KvnSmm1kpPmkucs71wbcOtAUeMrOxwGvADcC+wE/AFsDh+MRuQRix12VBIo2ZvWNmVznnNsd/yb8AGG5m/4dvFm0LTMGXz7+B9/F/07rFW37CiL+uKpcIzwYmBrMQHIPvw7aHmQ3C9zHsCVyNr/2cDCzC5wRlCQ+6EvU6catkOPwbzrnRwFxgCf5DphT4AvgeONTMzgRewRf2I8AyfCYuNSg+qso5dyjwP/yH0qfAl/g/as3M7B1gPr7G7VV8n53e+CTu8+D5+sZaA8r3YwuaDiLOuZvx73MasMTMCoF3gIb4/lR7AZ+Y2YHAV0AhoBq3GhLvlxM0i+aaWRl+0NQeQB7wCav7sF0B/APYEp+sfQY8gP/iOTXhwddRQW10oyCRjm/bA/jWzF4B8oHtgl2T8DWku+Nre97A/y79F/9FqHxfONlEQbeOeCKcBgzBf8n8CZ/IHRLsuwx4zsxewlcE/B8wBjgCnxeErt5OBxIMiT/dzPZ2zjUD/gVcjv+FeRKfJFwM3GNmU51zf8M3k8ab6o7Gfzhda2ZvhfAS6pRyHXfj/UA6AM/jP3yuA57A1+IU4GtuPjaz14KauBIz+yOo/t4FGG1mPyX8RdRR5f/gOecG4H/2/4mvXdsNOAhoB9wP/IkfvJNlZvcHI+YGACuBC8xsbuJfQd0VNOPcjB+R+CK+2e0WfCLQBv/78LSZfeGc6x38LcvFtyC0NbMRIYVe5wTN00Pwnx9L8Z8pn+O/dD6Fr1n7BN/h/TQzmx/8zTIz+9U5dwi+FvQRM/skjNdQF7k1pydqjR9s0Ak/wLANvpazEXAgcJ6ZFTrnnsU3cWfha6lPAG41s5cT/wrWVu8St6D6uTS4/w2+ivR34CIzO885tz2+f04f4CKgAX6qiWXBN9r4ebY3s68THX9dVOEXawt8eTQEJgAPmtnIoE/VmcCl+OrrX/Cd34tDCboeqFAu3fFNB0vxtTjHAZvjv6WejO9D9QrwDD5pKwqe1wJobWaW6PjrOudcL3ySNhH/hfMTfP/CI4Dm+ERhF+ALfbmsPfHPlCCJvgTfDN0eX0vTHT+35C341oJtgIeByWZ2bzgR1w/l/36V23Y+cCXQ1cxWBn2ml+J/V04GZpjZPRWe0zDZ5gWtd4lbecE3nOuAh/C1aaeZ2QLn3B1AC3zGfRDweDxpC/qTJEU7dyoLati2DJrdcH74+3X4Gpy38U3QX+D/4O0bfAt6GZ/MvWRm80MJvJ4Jamci+L45Tc3scufcwcB/zKyncy4Pn9BFgOVm9mG55671h1M2XLzGs9xtN6AL/j2/BzjKzKY7527C9885GV9bfSu+iW5ZWLHXJ865LvganNOBeWZ2tfPTEo3EN7edhv9cuQBYqd+N2lHx745z7nhgb/yE048Hf7OuMbM3nHN7Akfim62nAbPNbHFl50km9S5xc87thf9WVBDc3ocfgDAZ3/8mDz8Y4QbgFNXo1DznXMPg7vnAO0EzzsH4vh5X4vsY/B04ET+Kp9TMLnbOtcH3pYrX5pTvsyA1LBhJfQS+Jq038IqZvR/s+xDf/PMd0M/MbgspzDqtsp9x59yV+Kadl/HdBjY3s4uDfQX4punfzOyPBIdbLwQd2svMbGHw+AB8H8IF+N+VtkAr4DEz+975iVwPNLNBzrn28e4CyZwYpCrn3I7AVmb2bPD4OvyXmcvxLWmP4fupXWBmuwXHDAE+KFcuSf+5UqcTt4q1Y865dvgBBXcCf5nZl8657fAdEXsE/aVuA24ys2/LPS/pCzIVBCOt/g8/WvdfwN34DuyX4jtJZ+H7HszHfwP6HV+NfRJ+ZGI0mG9H5VGLgmbROcBvwCVm9qhz7gZ88/WD+FqFC4Cd8SOx5oQWbB1VSa3BOfiR0jcH5XMKPmn+Dv/l5g0ze8E5t235v11S84L+zkfgk4Fi/PQRT5rZq8H+nfDzFs7HdyHIBLoFU0gpYasFFbp1LMT3h/43/sv/r/iJ2o8CfjGzk5xzU/HdcB4OK+ZNUadHlZZr3tzROdcIX3jtzOzdIGnrj+8L8p1z7mEzm21mx8X/8LnVM/UrSdgEzrmsoBPu2ayuvemGr/Wci59a4k38CJ+n8QNADsb3jZpqZheZWWn8F1PlUTPiUxZU2NYK/0dvS3yn94OCXffhE+mb8LULt+KnMOgcPK9O/y1JFOfcwUFTaGbweIjzS4etBM52zm0edC/4Bd/80wg/1Uqz4BQzgudpNHUNcsFkrYEf8AN0XgJ2wJfNF8FxjfCTHEfx/dyam9nKeNIGa62cIJug3Gd01PnVjZrgZ4A40Pwk05vh/17lmNkewE9BP+pB+EqclFSnatycc3vjq7A/CB4fhh8Z+gu+OfQAfH+DZ8xstHPuWny/nOHOuZYWLBivb0Q1I0gMrsQvMn5W8McvB5+gbY3v09YfGGJmQ51z/wZW4JO2F8xseLlzqUxqSFAu/8TXnD2GX9h6V2Bu0LRzOr4Jbih+Go//M7P3gufujR86vzf+2+wRZjYv0a+hrgmaeC7Gj86dhv9SMwY/2OM6M3vGOXcn/ovnkKAcrsIn1G+Z2YqQQq/TKtbuB901GuG/XHY0s/hchR/h+xWehB+0cxW+haC0ktNKDQv6q+8HDAcW4rs+nYeff+0CfLLdDz8l0TlmtiR4Xkp+rtSJxM0519jMljnnzsZn0kPw34JeAu41swnOuVuApsAIfHPPfHzn3kvN7LvgPClZiMnI+RUPTga+AW4xsz+dc0cC/zWz9s65N/HzFc3AN582wk+kOwmIlPvFUrNoDQrKZSi+XP4CtsInB3/Hj6x6Ct9kPRrf8b0VcKWZbR88fwB+dO9S4GrTJMcbLagVy8LXXvYG7g+aOwfhE+kR+G4ES83ssmAAz3v4D6ZmwPXm5zJcdT79rtQM51xvYKGZzQ4e74f/spMN/MvM3nfOjQLewi/pdga+28cs4N/lBl2pTGqYW3N6ogx816f2+L9ZS8zsHecnBr8eX1mTjp/q47vyg6dSWUonbs5PNXAj0BH41MxuDb79vIefh+0i/LfV34Pjv8P3y8kCOpvZl6EEXsc55y7Dv/d9y/3h29zMfnPOvYfv9zEX3zfnH/gm7MvwfQtnBscria5hzrlb8e9393jHdefci/hRcAPxycMzwQjF4cDfzGxn59yWZvZjufM01kjFmuOc+wiftMU7VN8ErDCzW5xzu+B/T0aY2SfOuc74EaUflPvwUnJQg4IBbG8Ad5jZNcHIw7Pw/WyH4JtH/4nvj/sQfvLv4UDDeH9PlUnNc85l2uqJ2bPw/aJ/xCdok/AtCL2Bb/Ffhp7AT79ynNnq6YjqwmdLyiZuQXKwP75v1Bv4duwn8NNIXIH/Jfs3MBY/m/tgfLPcaVZupGjFAQyy8dzq6Qo6Ae+aWfegz8Fd+G9CFwffZF/AN5W+BIwxs8fDi7ruK1cuXYD3zaxzUC434ecpPA9fG30xfgBCY/zAhLdt9SjSlP9jl2zif3uC2oET8GuKHoWf2PhGM5sXlNPZQE8zO7Gy5yc88DrO+Slw3sHXSN8S3A7EdxE4GN/kNgI/4fSpQIaZPVDu+fpdqUHOuX3wK7AUltu2H/7v1r/x/UG3x69y9B6+EuACfB/+4vjz6lIynZIdioPRnwfjP1huCzp+FgFpZvYpPgvfG98k2vH/2zvzsLvGc43/koiYFVVKzPQmWjmGUkopoeahjSGteSqO4RTH0DZoND1moSqmGEprilnNSokhoTEEcetpRRFCUY45EueP592ysiWaNHt/+xue33V9V7LX3mtdK9+btdeznuG+iYb3vkRpZyp5j/zi+/epNUBXhzjKzeTvwNUKgeOrgLEucgW2HyPKo78Edq0Gbdng3hi+YF2eJ9bleaKs8ILtfWx/5NDFG0pMKT5n+6e1oK0cI29EDUBTW4dNKn9eB7xKiIEPtn1grW/Q9jvEg87g+mPld1djkLSXpL0lLVA2LURUbG4mvqOeIR5kVrO9NyF4vCmwku3zqkEb5LXSSBSuRjsTQRqSbgewfQfxXbUekWF7nmjfGEgMhkwkRPM/rA2WdJagDTpoxk1hQL4FkXG7nDDl3Zjo0VmcsA25mWiqfljSkiWYyKehBlJNXVe2VZ0pRhNCrVeW17Pb/ljSHMB8JVjoVE9C7YEZWJcXiWtjeP17dfvktdIgNLVcQU9iiGpyJeu2MtHzubPDvi2viTZA0rzEvWIV4Arb+5ftVxL9a8sQU4pvENm3McSA1c9sP1c5Tq5XgyhTn/sSQ4XPEhm1vYlhqOuAMbaPltSHyHwOJKz2diZaCG5qwWm3KR0iw1GfiSk3pVHEcMFw4I+2l7U9AOhNNCNeSTG0zqCt8Ug6Arik/H0xSWdKmt9h/VIbnT+DyCIAUMl2fuTw6Uu5lQYzg+tyHNGDCMB0grZuea3MOpriwVsL2o4ELgaOkrRAJev2NOFrObg84OQ10QaUXs1jiD619SUdIGkl4GyibWAUkV17DjgHuNb29o7p626V4+R6NYByfVxIDA+uSsh1jSGM4A8mpnZ3lzRXyYROIrJuz9k+3FO09DpEbPPv0q7/cZUb++duILbHE+We+wgFcSTtRUTok2wPqZZ6pnecZOYo2QKIJ501JC1PNOm+Y/vtku2p3YwuARYq6/IZtS+5XI/GMZPrMgz4qqQ9pne8vBHNGpK61WdhFD6JvYnswSbAoQrdvBqnEur7PUjakrHACEL65gViHTYnWjpGEL1tC9k+p5S1a0mAvEYaSCmL9gb62x4CHGT7hlKZuZEYRpiT0F+7U9LDhAXiqS5yOPUPSp2VDlEqVYi37krIE4z2FGHdBQgF8U2J+vabwGku8h5Jc1HIr+xAXFTfAnavNIL2tD2xDCqMn1ZWJ2kOM7guSxG6bbkuDaauLL0o0cpxETH88R7xwLwekc05w/YbOWjQXCoDOt1LiXot2yMr769KZKHPJpxdhgC2vcW0Wg+SxiNpM0Ke67slAOtW1mpJYGlCtH1t2/tK6ge8bvuJsm+XKlW3u8Ct/gtM0jHAWkTQNhF4xBUpgnLBHQMMs31z2dalFrEtKRNw+xM2IscQdi9fBp4gpnrGASeXpurPfWG25qw7P7kuraN2kwH2qzWqS+oFHAusQAiyXkXor50IHGX7MklDgBts31N3vFyTBlHWYXI18CotA2OBrT1Fw3MuYABh4barpDWBD20/Wd7Pe0qTkdSXmNIdavvZUkX4hBjMeZHIfu4NnOSKryh0vQpBuymVVsqikyT1LI2HEI2JjxFGsQcDx5dG3hpP2N6uErRlCrtBaGqbFxQeiT8mVMEvKOXqwYTm1ABiUnRFQk8HyLJoM8h1aX+U3+MhkvYsm3Yj7Hb2J7I43yD6cS4DVlNot31KKLxP61jJLFDuIT0IYeluknpJ2krS6iUx8Duihw2AUmq7H/iHpGVtj6oFbeX9vKc0iC/oP3uv/Kxf7uMTy+99GeAZ22NsH1IL2iDWpSuuTcszbtPoA1mD6NN5g8gaPAysDCxStp8KXGT7kbrj5FNqEyhPossTliFrEyr6/cp7/QjdvCHArbYHteo8uxq5Lu2P0jN4oO3VJZ0H3OlwQvgKEVS/AwwiFPZfdprBNwWFXuEutgdJOpd4aHmM6F/bCdiaUNsfYvuRymRv3kOajKZ2PViLKEf/s/J+P2KNPiAybLsT2bZDbb9bPtPl16nlGbfqIkr6DWFNsQuRJehDaOqMI0oRQ4nyz+d62Lr6QjYCSduU0nPt9W6EoOF/AfcSX349Ja1fPrItkQndCDilsl/L/191JnJd2heSepfpw4XL6y9LOgdYE+gl6QDiofMXZZduxINnX2AN23fYfroMMOSaNAhJC0taxKFXeIakhYib/4pEEH06Iaz7Q+L6+B5MpadXm/ztNq3jJ/8ekuYqVYGapuSKki4nro91JM1f+6zDwu0Iov9zXWCQ7X1rQVv5TJe/17fkS6Na6pE0v6QfE36VHxAjwHMTo/EvAd8h0qc9gZtt7+C022kokuYpf10V+EkpMyxE9Hzsb3tP4ClCBHEwcJykO4hR7fttv2/7fX3BFHAy8+S6tD8kHU6UO+e2/XrZvDUwj0MD7AdEQP0wcG/JvN1GBAzPE3Z7n2Ueck0ayjLAEEmLEH2FFxLirIOIhACEReJdwMeEUOvnArWuWHprMnMDp0paVuG3uwdhebgt0QO6Qu2DJfv5pu1LbR9k+6GyPR9wKrTpL6Pax1Ze9yAGD3YBrrJ9ODGCvTpxUY0krHg+tH2KpwiG5rh8AyiZg0uBYZIOsX0ccdPfnLiY/kJkOyFKPdsTmZ6dgCNt/8jFmw8yMGgUuS7tD0lblr60rwA/tH1y5e1ewGhJc9s20Ss11PYBhED4NkRWdHXgXcjgoFFU7wW2RxFT1CMJ2YiRRHBwLrCSpO2BVWyPITLRq5T9ci0ajKZ2CHmdeGB5GtiAcDbqTjiCzA4cLmnb8tlJ0zpOfodNTZsEbvW/fEk7SbobOM9hXXE/sGx58rmV0GvZwPYDwEAXg+vKBEmOzc8CpURzAvFEOop4Ct2oTPVcBOxI3GCWATaU9FVgH8LqZZLtCQ7rqnwSaiC5Lu2alYB5bR9he7ykNSTdIulrwCuEVMFGklYkKgfzl++ruYDDiN7cQ23/uVX/gM6EptgY1ZIAfUo2eggw0fZoQpx9OSJA+zmhxr9xOcRCwNslA5Q0CE3RL6zd61cu/biXENfJs7bPJwTyjyNcK+Yhpt8/RwZs06bpwwma2uqlO7FYXyUyBTcQUfe1RL37PNsPSNoFuKeWNagfYEhmDUnLEgbvpzpkCboTmYHTbI+U9FvigppIfOn1Ax4ljK/fbNV5d3ZyXdofdc3UjxOBwQpE9uxK2xeV93Yi/JFXJvxGb6ntDyxi+9W2P/vOh6RvA2/aHlte9wFOAhYFrrZ9oqSzCeHpoxTi31sA/YG5Kg3uuxLSUmNb8g/p5JRy9S+IQZyriQznlsCetjdUGMfvSQTQp9u+vWUn2wFpSuCm4klZeT0vcALRG7IE8DYRZW9XfpYietzeIW5aKQraRMrT6g+JzOZwQrJgNcLW5X3gp8ClwF4OPZ3elSC6y0/0NItcl/aNQiD0MiKQHlzZviWhuv8GYedWe1CdpgdsMvNIWgI4mgiaBzo8qAcSgwfDgAmExtcDRNvAQ0T/50XAX0oJu8vqfjUTfV57tT8hh3MV0U+4P2H4frKkEcT9/zzgYdsTWnHOHZ2Gl1MUqu3XSDpL0rfKBXcJ0bz7ELGQmwAL2t6ZGNH+GSGwe7KnKI7nZE+TKBfZXcRT6u+Ai22vaHtrokfkZcJgueb1+lJtAi6Dg+aR69Jaat85lT9XLBkeAGzfSgQEtWB5G0m3E43v79j+wMU4vnw+g7ZZpNI+MAwYa3tj2zXtu6eBxYnA7GliIGRdor9tV+BG2zfXgjbourpfzaRSrt6glKtHE+4TL9t+hbClXEzSOkS7xx+Au2tBW/aszzwNy7gp9NdOIBqnfwN8iZgMnYPQzBlbtncDBhKTJgtT1MQzc9D2lEzBLrZ3LK8PIwKEXVwskpK2J9elbSl9Tgs4hIur288G7rN9haRetj+S9HUiuH6QGKAaYntE259116DSPnCy7d+XbQOAL9keqpCVuNf2ueWzexNtNndWjpGtNg1EU1xXan+uTLQQjCOqZ4OJXsI5bB8uaT7gAOA12xfWH6ft/wUdn0Zm3NYBzre9v+2niNT1+YRn4hXA14AVHArVNxGTWBc6Rn5fqqSwM2hrO+4DnpF0m6RrKSVrT/G1zKxna8h1aQMkzV7+ujywtaT5JB2tKe4HdxM+yJSgrXv5bvs1cLvt/rWgLYdBmsYLxIP/WpLWlfR7ol/tofL+mcDukla0/TfghGrQBlkWbSSqOBNVfq+bAVfY3oeIKfYkBqzWlLS1w2bvnAzaGkcjM26jgYPKcMF6xETcnwgR0D2BvQjtnNPrG6kzy9Y6SinoCOAU2/eXbbkeLSbXpfmUYY+fEGKs5xP9USOYEhg8DSwJXEx8d3Wr//3nmjSfMj09hHAI2afWyC5pMeAt4BDgNtuPV/bJwKBJlAfHI4HXiGzoj4je3I+BM4jr6UpgfULK67rqvrkus84sB261Ly5JxxK9BrV09ry2/0/ScGIS7lGi0fqySvNufum1mPoLKdekfZDr0hxKZuw3wAjbvys9uO8SfTf/SzxgLkzIrOxcPrdHq843CabTPrAbcGw1MEgaS+X+XiuLbkYkYxYkNFbvJKbctyGCtTFE8Ha87T+26rw7OzMVuCk0il4nGnEnSuppe2J5b3/CjuoGF3NeSRsSWYOBrvMWTdoX9ZNBSfsg16VxVG4+WxLaav0Iwe+BwB1E5ma8Q2cKSUcSoseH2X60RaedAKVP6idE1u1Dwr/yV6X5PTM5TaD+YVHSHITd5IUOH9gtCJu3xwlFiB2I3vYzHRqsSZOYocBN0lLAMYT+2guElMfBtt8q789LRNxzAj8mmhO/R5QZhtq+qXKsvMCSJGkzphX8SroA+DOhrj+MkGD5PqHs/gqRlatJsJzvihNF0hoq7QMnV3sLMxPdPCR9mbAMe4XQXV2BuPevL6kXIWz8KfAroJftt8t+KbvSRP5lQ62kxYkej8dtb07Utt8iPOFmk3Q8cD0hing+IbA7D/CY7c1rQVsuZJIkraAiV7CbpCGSVgFOJqz2nicyBkfYvpqYfl+QCNpWJx5I52vFeSef40Hb22TQ1hzqB2wkrQXcSLQQPEH0s40Aukna2fZHhNPRSNsfVoK27im70lz+ZcZN0s5AH9s/rWzrRTyp7kno6IzydIT0stSTJElbUv+QKGlhQvBzAjAeWITwr+xHVAV+SQRwy9j+R+U4Xwc+LRphSTsh7ymNpQRsn1aul8Uctm79gPVsH1u2n0u0St0GXG57iZaddBdnRkfYZ6u+KJH2NcBWtm+yPWF64/B5gSVJ0laUm/qnpZetZ9m8EHCL7f2Ajwj5jw0IZff1id7cNeuCtu62n8qgrf2R95TGYntyuV6Wk3QVcImkHYhrpHsR1YUQ//64ZDw3g5QmahUzknHbnGhAvNj2uLJQPyG+8HoQ4rn3N/1MkyRJpoOkRapZ/zLlviJwp+0Ly42oP3A2IWa8CaHH9ow9RVk/SboC9VnLMly4B9Gz9h4RmH1MeO+aaB9Yh9CT/FPbn3FSZUYybncR4/HbS1qqpFM3J55Srwf+qbSsSJKkBSgskXYhmqaR1EfShYRjyznAQElrA68Sk2+vAesREkX3ZNCWdCVqlbFK3+dGpfXpSWAV23eUidC/E9npo4m2qOeBtTNoax/M6FTpV4FDgWWIcd9ngUG2X2vq2SVJkkyHklVb0vZeZfqtN9CXyBwcanu0wjt5C+AHwLVl16wSJF2KafR9LkpMUy9ASKvsTThUTLD9c0n7EoHcgXXHyf7CdsDM6rjNCfS2/ZfyOqd6kiRpU+r0I18kjMW3JQYNrgY2JCQKTii9O38DDic0JqvloZQmSroUkpYmlB/+Djxn+7LyADQb4U7xMtH7OT9wksMJaSpv0taceVJlpvz1bH+QQVuSJK2gUuapBW1bE64HZxD9agsQE6Njyt+3KbtuAtxYKQ/1KMfJm1DSaam2MJWWgu2J62Q0IXGzcXn7UuCbRMb6CEBFduUBmHKd5PXSfmiYV2mSJEkzmEaZZzbCW/Rj4CzCrupHhAD4psBNwKqEdMFltX0zY5B0RYoczruEQ0hf21tI6gP8J3Cz7VslHUj0gF4K/B+wWbYTtF8ycEuSpENQHFwGE6WegcBZth8pmbfBtr8h6VJCqug+22+27myTpLVI2gA4iKisXU886PQF7rV9W5kk3YAQov7EUzzEtwRcq64l7Y8M3JIkaXdMQ65gI8K15VFCsmAwMM72uaWE+jGwI3FTeqOyX2bZkk5NcTc6ipgCfdn26ZKWAYYS18kkou9zAWJ6tC9wPNALWNT24+U46W7UQZjtX38kSZKkban0o21HNEyPJko5T9ieLOkhYFtJ6wBfIWQLbrH9QdmvW9ruJJ2VysDAnsCuwHXAS8S1ACBgzlq5swR3XyeGElYGFrf9FCGTA2TA1pHIwC1JkpYjaXnCkup925MkfRP4GfABIQD+feAKYF1JD9i+sQRvWxMelmPLcTJgSzo9lf/fXyNM35+s+8ifgfGStrD9B0LncE7b90h6sLgfJR2UmZoqTZIkaSSSliyCuecAlwMDyltbEW4tAwiD69NsDycU3DeXNLft120Psz22TM1lWTTp9NRKmpJWInrUxpTXPcqfSxGT1MOAYyTdSLge/BbCsjKtqjo2GbglSdISJC0CXAA8arsfcAIwvLx9K9BX0m8JQ/i+knYHriR6296rHCezbEmnRtJcknasbitZ5n8QVm4As5c/VwC2sX0XMW39K9tbltJobd+8VjowOZyQJElLkPR9YFXbA+u2L0jIFxxINFNPAC4igrZT8qaTdCXK8M3yxP//fcskdQ9gMrA9sDMwoPYwI+kM4G+2z6g7TroedBKyxy1JklbxCbBUTcy73KC6EWWenuVnCPAcsJftJ1p2pknSAko2eTLwnKRbgB8Dj1SGd4YT3rsXlJ7PTYFXiH7QqcigrfOQGbckSVpCGUDoD1xn++HK9uuJnrb7JK1Sa7wufTm1G1mSdAkkrQD8lGhtWh441fa1kmaz/UkRpF6N6Hd70PaIsl/2fHZSMuOWJEmreIzQl9pe0qu2xxUF97kI2QIqQVutzJM3oqTTMp1y5n7Ai7aPkfQDYF9JN5agrYftT4BR5ad2nLSk7MRkxi1JkpYhaR7gMGAlYFFiQu5E2y+19MSSpIWU/s/3gJHAIOAq2yNK1nk4US49YRr7ZZatC5CBW5IkLUfSnMCStl1eZ8Yg6fRImoPQYvur7feKlMdlwOOEs8GfCSmPlwl/3sUJj9GXgSOzb61rkoFbkiTtigzakq5CkcTZlxjAeQD4JtDb9q8l3QC8DVwNfANYHZgf+Hm1JzTpemTgliRJkiRtxDR8eC8l9NY2I/o7zyVEp88ksm4TbN8vaQnbL1b2ywecLkoOJyRJkiRJG1GR8ugPzAlcTEjffEhk3kYD9wPjgdOAS8vrl8p+PWxPyqCt65IZtyRJkiRpEjV7qdrQQBGYvoIQmR4H/A+wBWECfyKwMLAd0Ac43fajbX/WSXsmM25JkiRJ0gSq5czKxGcfwtlgv4r49Ciiv+1aYChwku2Jtf0gbaqSKWTGLUmSJEmaiKRBRDl0FNG/dhuwku1Jko4kMm+3A9+xfWNlv+xjSz5HBm5JkiRJ0gCKbduntj8tmbL5gbOBsUQv22jClmofQkz6euC/gXNsD68cJ/XYkumSgVuSJEmSzCJ1ZdHFbI+XNDchoHsH4cG7GnAL8GvCd/Q/gGE1m6okmREycEuSJEmSBlCcQAYS0h6/B+4FDgFEZNbuAX5JDB28XrdvZtmSGaJ7q08gSZIkSToapSxafb0OIdvxFNAf+A4wL1EevZMYPngIeKcatNWOk0FbMqNkxi1JkiRJZpBpyHusDjxJiOW+Baxre6SkA4AlgKvK9h0Iz9FxrTjvpPOQgVuSJEmSzCSSFgWOBdYHRgAnA/2AHWx/V9LshCH8Jbavqez32QBDC0476QRkqTRJkiRJvgBJPepe9wPOAp4F+hKm8IfYHgosJGkv2x8DB9cFbd1sT86gLZkVMnBLkiRJki+gYlP1PUkC/gpMBt4uQrl3Aj0kbQUcDPQu+40r+6WIbtIwslSaJEmSJBUkLQ9MAN4vIrmrEL6hbwCLAucQk6LdgWHA34EBwBK2T2zNWSddhcy4JUmSJAkgaUlJFxKB2eVEMAbhHXq37R2BnwFrEX1tSxOCut2Ba6pBW/3UaZI0ivyPlSRJknR5JC0CXAA8arsfcAJQ60/7EPgEoIjlLle2XQa8YHuS7Y/KcWryHmlVlTSFNJlPkiRJEvg2MNL22eX1A8W6aj7gn8BykvoD7wDzAe9Ny/EgA7ak2WTGLUmSJEkio7ZUpcTZTVJPYEPgXeBuYFtgD+AI24+15CyTLk8GbkmSJEkCr5SfNSEyZ2VidDfgVdu3AwfZHlAEdru18FyTLkwGbkmSJEkCjwFvAttLWhpA0oHAXMDfAGy/VbZ3T2mPpFWkHEiSJEmS8JlJ/GHASoTsxxjgRNsvtfTEkqRCBm5JkiRJUkHSnMCStl1ed8+hg6S9kIFbkiRJkkyHDNqS9kYGbkmSJEmSJB2EHE5IkiRJkiTpIGTgliRJkiRJ0kHIwC1JkiRJkqSDkIFbkiRJkiRJByEDtyRJkiRJkg5CBm5JkiRJkiQdhAzckiRJkiRJOgj/D/Zfq7RfZ4KsAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -625,13 +727,13 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 17,
"id": "5fa8914c-3f9d-4a13-a587-3dd12558ba15",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAIpCAYAAAA4ruUSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAC2oElEQVR4nOzdeXxU9dX48c9kJ4EAIQTZZOckuCCCsgiC4F6s2tVq7V5rW7vZ5+m+r7/um49dbK3WVq2tW9UqKhBkRyKoQDjsOySEAIGE7PP7494JQ0xC1rl37pz365VXZu69c+fMEO6c+S7nGwqHwxhjjDHGmOBK8joAY4wxxhjTsyzhM8YYY4wJOEv4jDHGGGMCzhI+Y4wxxpiAs4TPGGOMMSbgLOEzxhhjjAm4FK8DMCbeichmQIAZqrrS3fYIcAtQDWSrap27/QiQA5yjqiWdfL5ZwJ+BkcB64PfAX4E/quqdXXoxHYvj/cCngQvcTRuA/1PVh1o49ibgi+6xycAO4AHgd6paH4t420NERgI7m22uB0qAv6rqN6OODQM1qprRTc+9CxgBDFbVQy3s79bna+H8W4BxwC2q+s+o7elAGdAbOA/4b1tx9kBcu6KfrzvfBxEZCLxdVf/i3n8A+CDwPlV9tKvnN8ZPrIXPmK5b7f6+OGrb5e7vjMh2ERmNk+zt7Gyy5/o+MB7YChR14TydJiK/BB4CLgE2A8XAFOBvIvKLZsd+GXgSmAHsBl4F8oFfAvfFMOyOOAk87f68DPQFviEin/QwpqeB//Tg+R93f9/UbPsVOMlesapuAl50Y6nuwVja0i3vg4gIzt/uu6M2v+aef19Xz2+M31gLnzFdtwr4ADAZQETGAkOARpwvVTNwksLJ7vEru/h8ee7vm1R1m4h8qIvn6xC3hfELQC1wvaoudLfPBZ4H7haRJ1V1mYhcCPzQPfYGVX3RPXYCzvvwIRH5f6qqsXwN7bBfVW+K3BGRdwOPATfgtKjGXHQ8PeTfwFeA60QkNdIqjfOaI/tR1Tt6OI42deP7MBjnC1j0uX8L/Labzm+Mr1jCZ0zXRVr4IgndbPf3YzjdujOAX+G0gIGTICIimcAP3GNycLpnv6Kqhe7+B3C6l74L3AFUAZk4H1QAW0Xku8Cu5gGJyBXuuScBFcCjwFdV9ZSIvOpuz1XVYyLyW+AzwPdU9dsiMh5QYLGqzm3h9X7I/f1gJNkDUNVFIvIg8HH3mGXAR3G6cP8cSfbcYzeJyHXAMWCLG3Oh+959Daf7d7OqzhSRG3FaNcfhtCotBD6pqodF5DvAt4FPATe6j38deJ/7mj4GHAe+pKqPuM9zvfveCHAKWAR8WlUPt/BaI9Ld37taO0BEBgA/A96O8++0HPgfVX096pgPA18FzgX2AD9V1T+3cK5RwFqclsW3q+p/o7syo7qenwNewknUMoG/AF9U1XDU830X5+/rb+7rvRu4IvJ3FqGqRW736UicVr3Iv9d89/fj7jl3cWYX6wfc5x+F817/B/ic+7c2B1gMLFDVa93H/wH4BPBhVX1ARPoA/wdcB2S77/EPWhoa4D4++n14AOf/SHORc7f4twNkuXEBXCMiYVUNtdSl67bqfs59fXuAX6rq7919kdd3r/va78QZAvAzVf1ZS/Eb4xXr0jWm697AScYmiEgGp7tzfwOcwEn44K0tfP/GaSlrwEkaLwFeEpHLmp3/mzhJ0SrgWZzuRnA+6Dc3D0ZEZrj7puF0n9bhfGBFuuyex0nC5rj3Z7m/I887z/39XCuv9yL39yst7Fva7JhLWjtWVVeo6qZIchLlOzhJ20o3sfkXMBZYgZO8vhPnPYn2S2AAcBSYCqwDbsPpah4G/EVEst0xW4/jdCkvAw7hdOnd3+x8Q0XkKffnZZyu5+04rZVvISJpOMnEh4FyN/4rgVfcFl9E5G3u8wx136dBwH0i8vZmp8vE6QLPwUne/tvSc7pmAd8CtgF9cP6ernSfb3rU860FbsZJxttyRreuiEzESU63RieuUa/7QpyxmINxEp9K9zl+epbnifYL4Hac9205zr/1X91/q7OJdME+DayJ2r73LH87Ve5zAZS6j38LdzjCvTgt9stx/s3uFZEvNTv0/Tit/NuAgcBP3C9OxviGJXzGdJE76aAIp8X8QpxWppM4ydZyYIj74TMZp4XldTepuw4nkctX1dk4LQ8pwPeaPcU/VHWOqr7f7U7b726/o5WB5d/FSejudM+bjzPe7zq3OzaSQMwTkb5uzGFgqogkc/aEr6/7u6UWsdJmxwxwfx+JHCAi60UkHPXzlWbn+ImqzlPV/8VJhr+K0309DydpAafFJtpqVb0EeK97PxuYrqpTcT6EewFjcBKTDJxk7z04LZ1fxPlQj9Ybp8XwRpz3IwMIAaNbeM3gJI0TgSXABFWdDvzYjeOr7jGR3zep6lXua1kI9G92rj+55/qjqv6mleeLjnOOqs4CHna3Rb5YfM79/SVVnQOcj9P61JZ/u7/fLiIhTnfnPt7K8SNx3pencZKpycD/4LRut9d/cf7mz3NblJ/D+ftt7b1uoqq/dbt4bwFS3c33ui3Prf7tqGop8A33/rqWuolFpBfwdZwvTNPd2Ka797/l7o8IAZeo6qU4/+dDnDmm1xjPWcJnTPeIdOvejNPdtVJVGzjdsnU70A9Y646NmuZuf1JVK93bkS6syL6Ijo75izz+7wDu+Z+I2rcGJwGbh9P6mITTDdcb50PqCmCHqm4WkblRLV1PueP0jrvniowljDbE/V3h/j7SbDs4LUFP43Qbt6Tp9arqXje2aW5LW6QFsfkMzUL3dyQZ3qeqO9zbB93f6cBG9/mvwpl5ugQnGYxuHXKfWkM47002zmzk0cDjzT7oIyLv+aNRs47/1mzfBJzEerH7BItU9UpVfbDZuSIJ93HO7oCqvunejrT2RrqfIy1M/3Gf7wjO623LapwJC0NxhiBEWh9bS/gW48zO/iBOC93jOEllW5OJQs3uP4fTEvsnd6ZwJMnsyCzc/8NJ3otwuqw78rfTmgk4raavqepG95wbcVoVs3AS6IjXVTXyd9b838EYX7CEz5juscr9/Qn3dyTRi3zA3tnsuMY2ztW8i7OixaNa1+a5VbURWAAU4LSINQI/cvffhdOVGGndO5fTLV03uvfXu/suBxCRPBH5vYgMBiJj/t5wf0eStysjAajqF9wWldbKXjS9XhGZhpNQ3I7Tnf0+d1fzpCEyYzTy2qui9jW9H24SfjXwDpwEexDOeL51IpLVPBBVDavqCVW9F2e84UDO/KB/y3O0IPrfM4TTeoWIhNySJ80V4ySjd4nIOW2cF858nZFEM/LepDS7f1Zu93rky8GdOEnfLlVd28rxJ4BLcf59nsRpTf41p5OriOjPmuav+XHgEZz38EvuedodtzuG8CM4/z7vVtUad3t7/3Za09a/KZz579rWv4MxvmAJnzHdI5LIRbrnIgnfqzjduJEWrkgCtM79fXNUonF7s2MiGjoYS+Tc7wdwz/+OZud+PuqYDaq6Bmc8223u9ucAVPUBVQ1F/TzA6ZarD7gtfvk4XWpvur+JOuZ+nA/A97q1+HBjOhe4vpX4o1/v+4E04Deq+ms61urzFm4ScD8wSlU/oqpjcLp3h7uvo7XHDcZp1QEnsWgu8p7fIiKRROsD7u/Ie17s/r7a/T0XqBSR5pM23osz+SOTt45VbK75l4NokZamGwBEZBCnx222JdKt+2GcpKW11j3ciTf3A42qeivOeMk9wMXuJJZT7qFD3ONTiOrqFJFcN75SnIlJz+J0vbeLiJyHM2u6EbhdVaNrKJ7tbyeS0LX2Oag4idzF7qzyyPNdjDM2d0PUsW39OxjjC5bwGdMNVHU/p7sTa3C7eN3u21VRh0Y+/F/Baf0bD2wWkSU4H1x1OIPwu+KHOB9mf3DPuxlnzNuzqhoZqP6Ce0wyp5PTpe79Sk53kb6Fqi7BKV2RhjOT82c4hYkH4LQq7cRJ/iJdYF/GudY8ISKvi8hCnLGLl7ivd1Mbr2W3+/tHbrdcpNu799nehFYcwul2/7mIvCIiy3AmqxzmzAkw0ZM2nseZhJGKM1ZwawvnfQwnQZgNbBKRlTjjx47jjOUD530C+KeIvISTSCVzekxlxGHgHpwk6GPu+M/O+IP7+6fuDOg3aV/CvBznfYq0ULWa8OF0474LeMD991mL0wq8ye1C3ozz/+E8EfkvThfwqKjHH8N5j/Lcx27CGVMK7fs3vh8nMT6K815F/s0+y9n/diJjUGeJyIrmXfWqWoUzGSgVWOX+3a50739XVb2qQ2hMp1jCZ0z3iSR2ayLdSq5It+5udVcmcLtV5+PM5E3CmVm6BrhS3dU6OktVXwKuxflwugQnMfsVUQVmVbUM5wMWTne/ReJc2Cz+lp7jczilV9bidHEOx2nNXIHzgb5VRPLcY3/pxvMiTkvPZTgfxr/FGajfVhHde3C6+8Dpgv41TkJ5nlvOo0NUdRdOC9sSnIkR5+FMnLg2aiwlnDlp42qcROkZnIkJLZ23CqeL+wGcVt6JOAWbZ0XGEqrqUzjdpAfcY0uAT6jqE62c7//h/Nt9t6Ov0z3HIpyJQIdwWqUedF8DOHURW3tcI6e7Vfdz5heW5seuxpnRux5nrOK5wFO4Y/9U9ThOS+E+nBnFmzmd+EYmPN2KM7FGcMZ8/srdPb0dL3OQ+3sAZw49uJiz/O2oajHOe9KA8/fb0t/Tt3DK++wHZuL8m92pqr9o4VhjfC0UDltLtDGme7gzOz8FXKAxXObNvJWIvAsn+X5VT9d2XIGTSI1V1e0ehmeMiTFL+IwxJoBE5E6cYQI1OF305+C0PCpQ0EL9Q2NMgNlKG8YYE0x/wiklcwvOLOkqnNnZn7dkz5jEYy18xhhjjDEBZ5M2jDHGGGMCzhI+Y4wxxpiAs4TPGGOMMSbgLOEzxhhjjAk4S/iMMcYYYwLOEj5jjDHGmICzhM8YY4wxJuAs4TPGGGOMCThL+IwxxhhjAs4SPmOMMcaYgLOEzxhjjDEm4CzhM8YYY4wJOEv4jDHGGGMCzhI+Y4wxxpiAs4TPGGOMMSbgLOEzxhhjjAk4S/iMMcYYYwLOEj5jjDHGmICzhM8YY4wxJuAs4TPGGGOMCThL+IwxxhhjAs4SPmOMMcaYgLOEzxhjjDEm4CzhM8YYY4wJOEv4jDHGGGMCzhI+Y4wxxpiAs4TPGGOMMSbgLOEzxhhjjAk4S/iMMcYYYwIuxesAjOkMERkJbAfejNocAn6jqvd3w/m/B2xT1b+1ccx6YI6qHuvq8xljTDQRCQMbgAYgDGQCFcAnVXVtNz/XSGCDqvYWke8Auap6V3c+h/GeJXwmnp1S1Ysid0RkKLBBRNaq6htdObGqfqsdx1x0tmOMMaYLrlDVssgdEfkf4HfAdO9CMvHKEj4TGKq6X0S2AleLyP8BWcBxVb1CRD4KfApnGMMR4C5V3SwivXEuoJcB9cBTwNeBv+J84/25iHwXuBmodR/7IVU96H4DH6iqZSLyTeB97jm2uOc/JCKFwEr3/OcCS4EPqmpjLN4TY0wwiEgKzjWkPGrb14F34lzXdgGfUtUDInIO8AcgH2gE/qCqvxWRacBPgXRgMPCSqn40pi/EeMbG8JnAEJHpwFigF3AeTnfrFSIyG/ggMEtVJ+Fc8J5wH/Y9IAMoAC7CScxmR51zOPB54BJVnQK8CExt9rwfBq5zj7kQpxvmgahDxgBzgAuAudHnN8aYNiwWkddF5ADOF0mADwOIyAdwrimXur0N/wX+7B5zL7BFVfNxWgPvEJGxwOeAb6nqVGAC8HYRmRyzV2M8ZS18Jp71csfRgfO3XAbcBgwC3lDVCnff23ASwRUiEnlsjojkAFcCd6tqA85YmdkAIvIh97j9wOvAayLyPPC8qi5sFsd1wF9VtdK9/xvg6yKS5t5/xm3ROyEi24CcLr9yY0wiuMLtQZgEPA+sUNVSd9984FJgrXtdS8YZ5wfOde1LAKp6HDgfQEQ+CFwvIl/Daf3LBHrj9FyYgLOEz8SzUy2No3OTtZNRm5KBh1T1y+7+JGAIcBSnCzYc9djhQFXkvqo2ui2EU3Auor8SkcWq+rmo8zdvKU/C+b8VisQZtS8ctd0YY85KVdeJyBeAP4vIKlXdhXNd+4mq/h5ARNKB/u5Dml/XRuN8IX4J5wvsC8BjOL0Vdj1KENalaxLBi8D7RGSwe/9OINJK9zLwQRFJci+Y/+bMLt2JOF20xar6Y+BXwMRm518AfFhEstz7nwVeUdWaHnk1xpiEo6qP4IwH/rW7aQHwMRHJdu9/D3jIvf0yp7t+++Jc78bhfHH9sqo+AQzF6flIjkX8xnuW8JnAU9UFwE+Al0TkDeBW4B2qGga+izMZ43VgHfBf92IYeezrON+E14rIWuAjwBeaPcVfcC6wa0SkGLgYp2vZGGO6013AdSJyDc54vWeBVSKyEbgQ+FDUcQXu9W458GNVLQJ+jDM8ZS3wVXff2Ni+BOOVUDgcPvtRxhhjjDEmblkLnzHGGGNMwFnCZ4wxxhgTcJbwGWOMMcYEnCV8xhhjjDEBZwmfMcYYY0zAWeHlNhQVFdkUZmMS0OTJkwNRjNauYcYkntauX5bwncXkye1fZrC4uJiCgoIejKZnWNyxZXHHVkfjLioq6sFoYq+917BE+ff1C4s79uI19o7E3db1KzAJn4hMxVlmZk7UtnOAR6MOuwj4CvBHYB+w1d2+UlW/GptIjTHGGGNiKxAJn4h8CbgdqIzerqqHgDnuMdOBHwL3AWOA11T1hthGahLV7iOV3Ld0B0+tO0BlTT1Z6Xu4adIQPj5rNCMGZJ39BB6J17hNx1RU1/G9RYf446ixZGekeh1Ou1ncxrRfUCZtbAfe0dpOEQkBvwM+qaoNwGRgqIgsFpH/iojEKE6TgBZrKdf+eimPrtnLyZp6wsDJmnoeXbOXa3+9lMVa6nWILYrXuP1ORKaKSKF7e6yILBORpSLyexFJcrd/W0TWiMgKEbm0hXPcICKvishKEfl4V2N6eVMJK/dWsbC4pKuniimL25j2C0QLn6o+LiIj2zjkBmCjqqp7/yDO2oL/EpGZwN+BS1p6YHFxcbvjqK6u7tDxfmFx95wDFXV86pl91NS/dex8fWOY+sYG7nxoLffeMIwh2f75ph+vcbfET38nLfRG/BL4hqoWisgfgBtFZDcwG5gKDAceJ+r6JCKpwK/cbZXAchH5j6p2Ont4bO1e5/er+7h50rDOnibmLG5j2i8QCV87vB/4TdT9tUA9gKouE5EhIhJS1bd8unVkgGciDAj1k3iI+x9PvUlDY9vH1DeEeWRzDR+cMTg2QbXDw8W7qG9oe4JnQyMUHkzi+1P9/W/gs0kbkd6Ih9z7k4El7u3ngasBBV50r0d7RCRFRAaq6mH3uAJgm6oeBRCRZcDlwL/aG8Rt961i+fYjTfdTk51Jfa/uKmfkV55r2n7ekGy+cl1+R19jj/l/z29m44GKpvspSfEd99rdZ8Z92ZgB/OPj02Ien0kMiZLwTQFWRN3/NnAE+KmITAT2tpTsGdNVT607QH3jWRKnMLxcXMrLxfHVRVrfGObJdfv5/k3nex1K3GihNyL6i+YJoC+QjXN9otn2SMKXDRxvYX+7fXruWF7bc4xTdQ0A1LnJffO/1Y0HKrj9L2s6cuqYisQbr3HXRX2p6pWazF1zx3kVkkkAgUz4RORWoLeq/klEBgIVzRK6/wf8XUTehtPS9yEPwjQJoLKmvt3Hzhyb24ORdMyybWXtOq6ytv2vz7Qouv23D3AMqHBvN98ecbb9Z2ipO7s/8O0r8vj2wkPUtNCSGwLG5KTRJz35LOHH3omaBraX19LS16h4jTs9OcR35ubRr7aUYp9/8fPTEImOitfYuyvuwCR8qroLmObefjhq+2GccizRxx4F3hbD8EyCykpP4WQ7kr7e6Sn8/WNTYxBR+5z/7QXtijsrLTCXEK+sE5E5qloIXAcsBrbh9D78HBgGJKlqdAZeDIwTkRzgJE537s9be4LWurMLCmDg4BI+9Y/XqKk/nXempyRx720XM69gUNdeWQ9aWGxxeyUehtK0Jl5j7646fEGZpWuML900aUjTeJ3WpCSFuHnS0BhF1D7xGncc+iLwXRFZCaQB/1bVImApsBJnwsanwem5EJE7VLUOuBtY4B5zv6ru78yTV1TXkZIUIikEacnO7+SkEBXVdd3w0npOEOKOSArh+7hNMNjXc2N60Mdnjebxov3UNza0ekxqchIfmzUqhlGdXbzGHQ+a9UZswZmR2/yY7wDfabYtuufiGeCZrsbyz1f3UlXXwITB2dx6XiYPb6xi08EK388eDULcSQ21vFlSTXVdo+/jNsFgLXzG9KARA7K49/0Xk5b81v9qKUkheqUmc+/7L/ZdEeNI3L1Sk9/S0hcC38ZtOqZPeipfu76AZ+6aycVDMvnPXTP56nX59M7wd1tAEOK+aqwzDHP0wCzfx22Cwf7KjOlhV0gec/IH8uLGEtJSkqirbyQrPYWbJw3lY7NG+TZpukLyeOHzs/jz0p08uW4/lW7x5dTkEM9+5jLG5PU56zmMv933wSln3E9OCnHH5WO443KPAmqnIMQ9eWgvAPYfO8Vzn53lVUgmgVjCZ0wPa2wM89ruowA8c9dMGo/ui5uBwyMGZPH9m87n+zedT3FxMZ9+roQdZZUcqaxjjNfBGRPHcnqlcN6QbDYeqGD1znJmjx/odUgm4KxL15getvFABWUnaxncN4Pxg3p7HU6XzM3PA7AloYzpBnPESfIKbZlCEwOW8BnTwyIX8zkykFCo7ZmvfhcpHbFws31AGdNVc8T5ArWkaREVY85UUV3H9xYd6paZ3JbwGdPDlmxxLuazx+d5HEnXTRnZnz4ZKWwrPcnuI5Vnf4AxplWThvcjOyOFHWWV7DlS5XU4xode3lTCyr1V3dKrYgmfMT3oeFUdr+05SkpSiMvGDvA6nC5LTU5qGmu00OcrAhjjdynJScwa5/x/WrLF/j+Zt3ps7V7n96v7unwum7RhTA9auu0wjWG4dFR/+mSkeh1Ot7iyYBDPvnGQRZtL+chMq8NnTFfMloE89+ZBCvUwt08f6XU4xmO33beK5dtPL6WdmuwMA1q7u5yRX3muaftlYwbwj49P69C5rYXPmB5U6I7NiYzVCYLZ4weSFILVO49wwlYIMKZL5rgt5iu2H6G6rvVC5yYxfHruWHqlnl4Lus5d67ouas3rXqnJ3DV3XIfPbQmfMT2ksTEcNX4vOCUX+melMXlEf+oawizdWnb2BxhjWpWXnUHB4GxO1TXw6q5yr8MxHpsxJpe/fGjKGUlftF6pydz/oUuYPqbjQ4Qs4TOmh2w6WMHhEzWck51B/jnBKlLcNFvXxvEZ02Wny7PYbF3jJH333DqJ5jUd0lOSuOfWSZ1K9sASPmN6THTrXryXY2lunluPb7GW0tAYPsvRxpi2RLp1rR6fidhTXkXkypqWHCIp5Kwo05XyLJbwGdNDouvvBc3YvN6cm5NJeWUt6/ce8zocY+LaxSP60yc9he2HK9lbbuVZDDy4chcAfTJS+PbcQU3d/l2ZrRuYWboiMhX4iarOabb9C8DHgEhb+SeAPcDfgTzgBPBBVWtLN93n+Kk6XttzzCnHMi7X63C6XSgUYm5+Hg+s2MWizSVMHtHf65CMiVupyUnMHJfL8xsOUbjlMLdPG+F1SMZjFafqAfjm/AlckHWSW664mL8s28Gru452+pyBaOETkS8BfwYyWtg9GfiAqs5xfxT4JPCmqs4C/gZ8I3bRmkSwbGsZDY1hLh7Rn+yAlGNpbl5BZJk164YypqsiPQFLrFs34VVU13Giuo6kEFzljpdOTgpxx+VjuO8DUzp93kAkfMB24B2t7JsMfFVElonIV91tM4EX3NvPA1f2cHwmwQS5Ozdi6qgBZKUls/nQCfYdtW4oY7oishLPiu1HqKm38iyJrFAPU9cQ5pKROfTPSuu28wYi4VPVx4HWRjI+CtwJzAVmish8IBs47u4/AfTt8SBNwgiHT5djmROA5dRak5aSxOXuYPPFtrauMV1yTl9nNn9VbQOv7ux8t52Jfy9uPATA1eed063nDcwYvpaISAj4taoed+8/B0wCKoBInYw+wLHWzlFcXNzu56uuru7Q8X5hcXev7eU1lJ6oYUCvZDi2j+LjZ87Q9WvcZ9NS3AV9G3geeHrtDqb0O+VNYGcRr++3STxzJI/Nh05QqKXMDODYX3N2NfUNTeV5rp4wqFvPHeiED6clb4OIFACVOK189wNVwPXAGuA6YGlrJygoKGj3kxUXF3foeL+wuLvXosXbAJh33mAmTJjwlv1+jftsWop74PAafrXiZd44VMO5o8eRle6/S0pH3++ioqIejMaY1s2RgfxhyXYKtxy2geUJatWOck7W1JN/Th+G52R267kD0aXbnIjcKiJ3uC17XwMW4yR1G1X1v8DvgfNEZBlwB/Bd76I1QbMkgMuptSa3dzoXDe9HbUMjy7bZqhvGdMVktzzLttKTNi42Qb20qWe6cyFALXyquguY5t5+OGr7Q8BDzY6tAt4dy/hMYjh+qo6iPUdJTgpx2djE6JKZl5/Huj3HWFRcyjU9cJEyJlGkJidx2dhcXth4iEI9zPutPEtCaWwM89KmEqD7u3MhQAmfMX6wfJtTjuXSkTn07RXMcizNzSsYxM9f3MIiLaWxMUxSUrBWFelpIpIO/BUYjTO++NPAKOAnOENRXlDVHzR7zLk4X2RDQDlwq/tF1sS5OTLQEr4E9cb+45RU1DCkbwbnDcnu9vMHskvXGK9EunNnB7gcS3P55/RhSN8MDp+o4c39x8/+ANPcx4GTqjoN+AxwL05d0Xeq6kwgX0RmNnvMF4B/qurlwEbgo7EM2PScyLVjxfYyK8+SYCLduVdNGNQjy3FawmdMNzmjHEsCJXyhUIh5bnHQhVaepTMm4NQDxS0MfxlwVFV3uPuX49QOjbYeiCxvkk3rZalMnBnct1dTeZa1XVhVwcSfFze63bk9NDTGEj5jusnmQyc4VFFNXp90Jgzu/uZ4P5vrrrqxaHOJx5HEpfXAfBEJicg0IB3IFJF8EUnGqSiQ1ewx+4C7RGQjTqWBf8UyYNOzIq18kS+QJvh2llWytfQk2RkpXDoqp0eew8bwGdNNIrWTZo8f2CPN8X42ffQAeqUms2F/BYeOV3NO35ZWOTStuB8owKkksBwoAj6LU02gBtgANJ8C/TPgQ6q6QETehrNE5NtaOnl7axDGa73CIMY9OsOpabngjb3cPCqWUZ1dvL7f4O/Y/73hGACTh2SwbYuesa+74raEz5hucno5teCXY2kuIzWZmeNyeWlTCYs2l3Lr1HO9DimeXAIsVNUviMgUYARwjftTBzyBM6kj2lFOrxZ0gNPdu2/R3hqEQaoPGQ/ainvMuEa+X3iY3cfq6Dt4JEP69YpxdK2L1/cb/B37G0tWAPDu6eMpKBh8xr6OxN1WHVHr0jWmG5yorqNo91GSQjAzQcqxNDcv37p1O2kr8HkRWQl8H7gbJ4lbA6zASQY3ikiOiDzhPuYzwI9EZAnwG5yZvSYg0lKSmDFmAHC658AEV9nJGtbuPkpa8unlKnuCtfAZ0w2WbyujvjHMlBH96ZuZGOVYmpvrJnzLtpVRXddARmqyxxHFB1UtA65stvk+9yf6uHLgHe7tTTgrB5mAmiN5vLiphEK1FvOgW1hcQjgMl40dQO8eXK3IWviM6QaFmnizc5vLy87gwmF9qa5rZMV2W3XDmK6IXEuWbyujtr7R42hMT4oUW75qQs8WrreEz5guCofDUQlf4o3fixZp5Xu52MqzGNMVQ/r1Yvyg3lTWNrB2d7nX4ZgeUlVbz9KtZYRCcOWEnv38sITPmC7SEqccS27vxCvH0tyVbj2+RcWlhMNhj6MxJr5FvkAusXF8gfXKljJq6huZNLwfeX16trqBJXzGdFF0OZZEX1bsvCHZDMpO51BFNZsOVngdjjFxbY47gN8mbgTXi02ra/T8OuSW8BnTRafLsSTu+L2IUCjU1K270Lp1jemSKSNzyEpLRktOcODYKa/DMd2svqGRRe7qRFefN6jHn88SPmO64ER1HWt3OeVYZo1LzHIszc3Lt2XWjOkOaSlJzHDLPNmqG8Hz6q6jHKuqY/TALMYM7N3jz2cJnzFdsHzbEeobw0w6tz/9MtO8DscXLhubS3pKEq/vPcbhEzVeh2NMXIv0HER6EkxwRLpzr45Bdy5YwmdMlyzZ4nbn9mCxzHjTKy25qWjsYmvlM6ZLIhM3lm87YuVZAiQcDkeVY+n57lwIUOFlEZkK/ERV5zTb/j7g80A98CbwKVVtFJHXgMio8p2q+uEYhmsCwMqxtG5ewSAW62EWbi7hPZcM9zocY+LW0H69GJfXm62lJynafZTp7pcpE9+KD55g39FT5PZOZ9LwfjF5zkAkfCLyJeB2oLLZ9l7AD4ALVLVKRB4B5ovIi0CoeXJoTEdsLT3JwePV5PZO47whiV2OpbnIxI2lW8uoqW8gPcVW3TCms+bIQLaWnqRwS6klfAER3boXq+oOQenS3Y675FAzNcAMVa1y76cA1cBEIFNEXhSRRSIyLUZxmgCJjKm53MqxvMWQfr0oGJxNVW0Dq3ZY0VhjusLq8QXP6fF7senOhYC08Knq4yIysoXtjUAJgIh8BugNvAScD/wc+DMwDnheRERV65ufo7i4uN1xVFdXd+h4v7C4O+e51w4AMK53nf2dtOCigUkUH4R/r9hMXoN3S63F6/ttTMSUkf3JTEtm86ETHDx+isF9e3kdkumCfUer2Higgqy05Ji22AYi4WuLiCQBPwXGA+9U1bCIbAG2qWoY2CIiR4DBwN7mjy8oKGj3cxUXF3foeL+wuDvuZE09mw7vJCkE75szsUMzdBPl/X5P1lEeeWMF60rqyM/PJxTyphW0o3EXFRX1YDTGdFx6SjIzxuTycnEJS/Qwt1x6rtchmS542e3OnS0DyUiN3XCXoHTptuWPQAZwU1TX7keAXwCIyBAgGzjoTXgmHq3YVkZdQ5iLhvezciytmDisH7m909h39BRbSk56HY4xcS1SnsXq8cW/F92EL1blWCIC2cInIrfidN+uBT4KLAUWiQjAb4C/AA+IyDIgDHykpe5cY1pTuMVm555NUlKIKySPfxXtY+HmEuScPl6HZEzcmu2Wflq2tYy6hkZSkxOhvSZ4jlfVsXpnOcnu9TGWApPwqeouYJp7++GoXa39r7i1p2MywRQOh5sGT8+2+nttmlfgJnzFpXxqzlivwzEmbg3PyWTMwCy2H67ktd1HmTraZuvGo0VaQkNjmMvGDqBvZmpMn9u+IhjTQdtKT7L/2CkGZKVxwdC+XofjazPHDSQtOYnX9hylvLLW63CMiWuRHoVC69aNW03lWApiNzs3whI+YzooUmzZyrGcXe/0FKaOziEctqWhjOmq08usWcIXj6rrGpr+7a46L7bj98ASPmM6rDCynJpYd257zHOLMC8stoTPmK64dFQOvVKTKT5YQUlFtdfhmA5asb2MqtoGzh+azdB+sS+tYwmfMR1QWVPPqzuPEgrBrHGW8LXHPLfr4pUth20tUGO6wCnP4ozdsyLM8ed0d27sW/fAEj5jOmTF9iPUNjQycVg/crKsHEt7DM/JZPyg3pyoqWftLlt1w5iuaOrW3WIt5vGksTHMS5ucf7Orz4v9+D0I0CxdY2IhMg7NunM7Zm7+ILaUnOTl4lJmjM31OhxfEZF04K/AaKAC+DQwCvgJzvrgL6jqD5o9Jgv4vXtcGvAZVV0Ty7iNN5yJGxtZurWM+oZGUqw8S1xYt/cYZSdrGNa/F/kelaiyvxRj2ikcDjcNuLX6ex1zZYE7jm9zCeFw2ONofOfjwElVnQZ8BrgXZ9nHd6rqTCBfRGY2e8z/AhtUdZb7eIllwMY7w3MyGT0wixPV9by255jX4Zh2Or127jmerTpkCZ8x7bT9sFOOJScrjQutHEuHTDq3P/0zU9l9pIodZZVeh+M3E4DnAVRVgcuAo6q6w92/HGie8F0D1IrIAuCbwIIYxWp8YM54tzyLzXyPG03j9yZ4050LPk34RGSEiPxNRP4lIhd7HY8xEFWOZVyulWPpoOiq8guLSzyOpvt007VqPTBfREIiMg1IBzJFJF9EkoHrgaxmj8kF+qvqNcAzwM87+dwmDll5lviyrfQkOw5X0i8zlUtG9vcsDr+O4fsJ8FucZc/+BEzxNhxjsO7cLppbkMcT6/azsLiUOy4f43U43aU7rlX3AwU4S0AuB4qAz+KM0asBNgBlzR5zBPiPe/sZ4Cutnby4uLhdQVRXV7f7WD9JxLj7NjSSnhJi08EKlhe9SU5m7D7K4/X9Bu9if+zNYwBMGZzO1i3a4cd3V9y+SPhE5EHgf1Wb2qezgF1AA5DhVVzGRFTV1rNmZzmhkFNw2XTc5eMHkpIUYu3uoxyvqov5skLdoYeuVZcAC1X1CyIyBRiB02V7DVAHPIEzqSPaMpyWvyLgcmBjaycvKChoVxDFxcXtPtZPEjXuy8ZWsWhzKfvD/bisYHg3Rta2eH2/wbvY1y9eDsC7pgsFnSjJ0pG4i4qKWt3nly7d+4B/i8gX3S6M7wP/Ap4FvuFpZMYAK91yLBdaOZZOy85I5dJROTQ0huO5pERPXKu2Ap8XkZXu+e4GDgBrgBU4yeBGEckRkSfcx/wImOQ+5os4kzhMAol061o9Pn8rrahm3Z5jpKckcfl4bysU+KKFT1WXicgc4JPAEuA7qnqZt1EZc1pTd6617nXJ3Pw8Vmw/wqLNpdx40VCvw+mwnrhWqWoZcGWzzfe5P9HHlQPvaH7bJCZn4sZGlm49bOVZfOxld4WhWeNyyUzzNuXy019IJs5YlhuB94jIYyISu3ZqY1oRDodtObVuEll1o1CdD6k4Zdcq47lzB2QyOjeLiup61u095nU4phXR5Vi85ouET0S+DqwCXgNuVtU7gJ8BfxORb3oanEl4O8oq2Vt+iv6ZqVw4rJ/X4cS1UblZjB6YxfFTdRTtPup1OB1m1yrjJ7OtW9fXTtbUs2LbEUIhZ9Ka13yR8AHvUdXzgQtxukpQ1VdV9QqcsSzGeKapHMv4gSRbOZYum5fvXPgWbY7LcXx2rTK+EakYEMdjYgNtiR6mtqGRKSP6k9s73etw/DGGDzgmIl/C6SrZGb1DVf/SnhOIyFTgJ6o6p9n2G4BvAfXA/ap6n4j0Av4O5AEngA+q2lck0zJbTq17zc0fxH1Ld/JycQlfvT7uZvt1+VplTHeZOiqHjNQkNuyvoPRENXl9rKiFn/ipOxf808J3M3AK5xvyBzr6YPcC/GealUUQkVTgV8DVwGzgDhEZhPPN/E13WaK/YTOBTStO1Tawemc5ALPGWcLXHaaM7E92RgrbD1eyK/5W3ejStcqY7pSRmsy00QMAeGVL81KNxkt1DY1NvRherq4RzRctfO6Ms9914RTbcWasPdRsewGwTVWPAojIMpyaVTOBn7rHPI+zNJExb7FyRxm19Y1cOKyvL5rkgyA1OYnZksczrx9g0eZSPjJzlNchtVs3XKuM6VZzxg+kUA9TqKW8a/Iwr8MxrtU7yjlRXc/4Qb0Zmdt8oRxv+CLh6ypVfVxERrawKxs4HnX/BNC32fbIthZ1pLp1vFYgt7hb9+Qq51vzeTmhbnsue7+hILueZ4D/FO1k+oDqbjlna+L1/TamPeZIHjyziaVby6w8i4+85Hbn+qV1DwKS8LWhAugTdb8PcKzZ9si2FnWkKne8ViC3uFsWDod5/ZlCAN512QQKRnTPGoj2fsPgEbX8fNlLbCipZtiosfTJ6LlVNzoad1uV6o3xm5G5WYwckMmuI1W8vu8Yk0fkeB1SwguHw7y0yVkz3C/j98A/Y/h6SjEwzq1Qn4bTnbsSZ73K691jrsNZw9KYM+wsq2RPeRX9MlO5aHg/r8MJlH6ZaUwZkUN9Y9jGHhnTRU2zdW3uoS9sPFDBgePVDMpO54KhrXYgxpyvEj4RyReRj4lISESeEpEdInJFJ85zq4jcoap1OMsULcBJ9O5X1f04i5Kf547puwP4bne+DhMMkYvnrHFWjqUnzHPrUi3cXOJxJB3XXdcqY7pDpB6fJXz+8OLG0925ST767PBbl+4fgT8B84Fc4CPAj4HpZ3ugqu4Cprm3H47a/gzwTLNjq4B3d1fQJpgKt9hyaj1pXkEeP35+M4V6mIbGcLwl1Z2+VhnT3aaPHkB6ShJv7j/O4RM1DOxjE8y89KIPu3PBZy18QIaq/gOnjMpjqloI9NzgHmNacaq2gVU7jgBOwWXT/cYM7M25OZmUV9ayfm/crbph1yrjG2eWZ7FWPi/tOVLF5kMn6JOe0vRv4hd+S/jS3Tp5bwNedm/38jgmk4BW7ThCbX0jFwzta9+We0goFDrdrVscdysF2LXK+EqkMHyhJXyeihRbnpOfR1qKv1Isf0XjdJPsBpap6ibgVeDXnkZkEtKSSHeura7Ro+blOyUL4nCZNbtWGV+JTNxYutUZImG8EZmd66dyLBG+SvhU9fdApqpGKthPUtX7vIzJJCZbTi02Lh2VQ+/0FDYfOsG+o1Veh9Nudq0yfjMqN4sRAzI5VlXH+r3HvA4nIZVX1vLqrnJSk0O+/OzwVcInIr2B34rIQhHJAX7kbjMmZnaVVbLrSBV9e6Vy0fDuqb1nWpaWksTl43OB+Grls2uV8aPIBLMlGj//l4Jk0eZSGsMwbfQAsnuwtmhn+SrhA36LswLGIKAaZ0WMP3kakUk4kda9WeNy423maFya63brxtk4PrtWGd9pqsdn4/g8ESnHcvV5/pqdG+G3hG+Sqn4dqHNLp9wGXORtSCbRNJVjcS+epmddIQMJhWDl9iNU1tR7HU572bXK+M600QNIS0nijX3HKTtZ43U4CeVUbQOvbHU+O64q8N/4PfBfwtfQ7H4y0OhFICYxVdc1sHK7U45ltpVjiYkBvdOZNLwftQ2NLNsWN6tu2LXK+E6vNCvP4pVl28qormtk4rC+nNM3w+twWuS3hO8VEfkJ0EtErgGeABZ7HJNJIKt2HKGmvpHzh2ZbOZYYmud+I14UP926dq0yvtQ0js8Svpjye3cu+C/h+zJwEmdszA+BN4D/9TQik1AiSxPNGW/dubF0epm1Uhrjo6SEXauML0Vmh76yxcqzxEpDY5iF7qQzP5ZjifDb0mrfU9WvAt/3OhCTmKz+njdkUB+G9uvF/mOneHP/cSYO7+d1SGfTbdcqEUkH/gqMBiqATwOjgJ8AlcALqvqDVh47G/i7qg7vahwmGEblZnFuTiZ7yqt4Y98xJp1rlQZ6WtHuo5RX1jJyQCbj8vw7Wd9vLXzzvQ7AJK7dRyrZWVZJdkYKF/k/4QiUUCjE3PzIqhslHkfTLt15rfo4cFJVpwGfAe4F/gy8U1VnAvkiMrP5g0RkOHA3tqSbiRIKhZrGH0d6LEzPinTnXjVhEKGQfys7+K2Fb4eIvAgsw+kuAUBVf+ldSCZRRC6Os8YNJCXZb9+Fgm9eQR4PrdrNws2l3H21eB3O2XTntWoC8Lz7eBWRy4CtqrrD3b8cmOk+FwAikgH8AbgDKOrUKzCBNUcG8tCq3RRuOcwXrhrvdTiBFg6Hecn9kurn8Xvgv4Sv3P09KmqbDUIwMRGpvzfbunM9MW30AHqlJrPxQAWHjlf7dqabqzuvVeuB+SLyFDAVSAcyRSQf2Apc7x4T7R7g56q6X8T3ybGJseljBpCWnMQb+45x5GQNA3rbBLSesqXkJLuPVDEgK42Lfd597quET1U/DCAiI4BUVd3mcUgmQVTXNbByh1OOZY6VY/FERmoyM8fl8tKmEhZuLuG2qSO8DqlV3Xytuh8oAJbitOYVAZ8Ffg/UABuApno1IjIEmAWMFZFvAzki8qiq3tLSyYuLi9sVRHV1dbuP9ROLu2Xn5aWz7uApHl3yOnNH9+m288br+w09E/sjbxwFYPLgdLbo5m49d0R3xe2rhE9ExgJPA0OAJBEpA96m2va7KCJJOONeJuJcID8WuQCLyEWcuaj5NOAmYA2wBediCvCkqv6mu16LiS+rd5ZTXdfIhMHZ5GX7umUp0K4syOOlTSUsKi71dcLX2WtVKy4BFqrqF0RkCjACuMb9qcMp+fLXyMGqegBoatYTkUOtJXsABQUF7QqiuLi43cf6icXdsreVpbPuuWK2nkjl0934PPH6fkPPxL5+oTPS4j0zhIIeKrjckbiLilof4eG3gUr3AD9V1f6q2hf4AU4idzY3ARmqOh34CvCLyA5VXa+qc1R1DvB/wOOq+gJwMfBIZJ8le4kt0p1rs3O9dYW7usmybWWcqm1e29hXOnutaslW4PMishJn1u/dwAGcL6UrcJLBjSKSIyJPdEPsJgFEVgp6ZWtZvJQ6ijsHj5/ijX3H6eX2Tvidr1r4gEGq+mDkjqr+VUTubsfjZgIvuI9Z5X5LPoOIZAHfBS53N00GJovIEqAU+KyqHuzqCzDxaYnacmp+kJedwcRhfXl933FWbC9rKsjsQ529Vr2FqpYBVzbbfJ/7E31cOfCOFh7v75HixhNjBmYxrH8v9h09xRv7j1vlgR7w8iZnssbl43PJSE32OJqz81sLX4qI5ETuiEgu7RsInY1TADWiQUSaJ7MfBf7lXlwBNgPfUtXZwFPA7zodtYlre45UsaOskj4ZKVx8bj+vw0l4c/OdJC9SyNSnOnutMiYmQqFQU49FpAfDdK8X3YTvqgnx8Z3Lby18vwNWicg/3fvvBX7VjsdVANGjUpNUtfkq7LcB74q6vwiocm8/CXyvpRN3ZKBkvA5mTfS4n93sfFeYOCidrVu0y+c7m0R/v89mdIaz6PuCN/fzfknucl2rHoq7s9cqY2Jmzvg8/r5qD4V6mM9faeVZutPxU3Ws3H6EpBDMy4+PniFfJXyq+icR2Qpci9P6+ElVXdiOhy4HbgAeE5FpwJvRO0WkL5CuqnujNv8ZeBx4DJhHK7WsOjLAM14HsyZ63D9f/SoAb58yhoKCnl+wINHf77PJD4f5wStllFTU0Nh3KOcP7dul83U07rYGPUd04VplTMzMGOuUZ3l93zHKK2vJyUrzOqTAKNRS6hvDTB2VQ/84eV991aUrIkOBd6vql3ESss+ISHvaSp8EqkVkBc637C+IyN0i8nZ3/3hgV7PHfAX4pIgUAncCn+uGl2DiTHVdAyu2O+VYrP6ePzirbjjduot82q3bhWuVMTGTmZbCpaNyCIdh6VZbdaM7vbQpPootR/NVCx/wIPAf9/ZuoBCnRtX1bT1IVRtxkrZom6P2v4ozkzf6MTuBK7oUrYl7r+4q51RdAwWDsxlk5Vh8Y15+Ho+s2cPC4hI+O2+c1+G0pFPXKmNibY4MZNm2Mgr1MDdeNNTrcAKhpr6haWWmqyf4dmLZW/iqhQ/IVdXfAqhqtar+GhjsbUgmyAqbZuda656fXDY2l/SUJF7fd5zSE9Veh9MSu1aZuBC5tr2y5bCVZ+kmq3aUc7Kmnvxz+jA8J9PrcNrNbwlfiltFHgARGQT4dyViE/ea6u/Z6hq+0istmcvGOnWtCjf7sivKrlUmLowZ2Juh/XpxpLKWN/cfP/sDzFm9uPEQEF/dueC/hO+XwHoR+ZuIPAi8BvzU45hMQO0tr2L74Ur6pKdw8Qh/r4GYiOYVODPfXnYXJvcZu1aZuBBdnmXJFl9+eYorjY3h0+P34qg7F3yW8Knq/TgFSNcBa4FrVPVhb6MyQVXoXvxmjsslNdlX/xUMMDf/9Kob1XX+WnXDrlUmnkQKyls9vq57Y/9xSk/UMKRvBucNyfY6nA7xzaeciIREJEVV38CZ9bYfZ11cY3rEEltOzdcG9+3FhMHZVNU2sHpnudfhNLFrlYk3M8YMIDU5xPq9xzhWVet1OHEt0p171YRBXa4RGmu+SPhEZAKwE7hWRHrhrCH5A+AlEbnK0+BMINXUny7HcrmN3/OtK91u3YU+6da1a5WJR1npKVwyMofGsLO2rum8eCzHEuGLhA/4GfB1VX0WuAVn8PP5wCzgOx7GZQLq1Z1HqaptIP+cPgzu28vrcEwr5rpr6S4sLiUc9sUMQ7tWmbhky6x13c6ySraWniQ7w6lvGG/8kvCdq6r/cG9fATylqo3uyhhdK7NvTAsiFz0rtuxvFw7tS27vdPYfO8WWkpNehwN2rTJxKjKOz8qzdN5Lm5zu3Ln5eXE57tsvEUePyJ4BvBJ136rhmm4XmbAxZ3x8rIGYqJKSQszNd5Jyn8zWtWuViUvj8nozpG8GZSdr2Xigwutw4tKLG+O3Oxf8k/CVi8hEEZmJU7x0CYCIzMAZEG1Mt9l3tIptpSfpnZ7ClJFWjsXvfLbMml2rTFwKhULMttm6nXb4RA1Fe46SlpwUt+O+/ZLwfQ14GViEMz6mUkT+B3gO+JankZnAiayucdnYAXHZLJ9oZo3LJS05idf2HOXISc8nw9q1ysStpnF8Vo+vwxZtLiEcdj43eqf7bVXa9vHFp52qrgKGAnnuEkUAK4BLVXWJZ4GZQDq9nJp158aDrPQUpo0ZQDh8+t/OK3atMvHssrG5pCaHWLfnqJVn6aBId+5VE+KzOxfAN2mqqtYCtVH3V3gYjgmo2vpGVmx3yhJY/b34MS8/j1e2HGbR5lLeOXmYp7HYtcrEq97pKUwZkcPKHUdYurWMGyYOOfuDDJU19SzdVkYoBFdOiN+GAl+08BkTK2t3lVNV24AMsnIs8SSy6saSLYeprW/0OBpj4tfp8izWrdteS7c6151Jw/uR1yd+52ZZwmcSStPsXGvdiyvDczKRQX04WVPPq7v8s+qGMfEmMpRliZVnabcXN8V/dy5YwmcSjNXfi19zm1bdsBmGxnTW+EG9Gdw3g7KTNWw6aOVZzqa+obHpmnP1eYM8jqZrfDOGrytEJAm4F5iIs6blx1R1W9T+3wAzgRPuphuBVOBhoBdwAPiwqlbFMm4TWwfc4r1ZaclMGRF/VdIT3ZUFefy+cDsLN5fwzfkFcbeOZWtEJB34KzAaqAA+DYwCfgJUAi+o6g+aPeZc4H6ca3gIuENVNZZxm/gUCoWYIwN5ZM1eCrWU84davfC2rNlVzvFTdYwemMWYgb29DqdLgtLCdxOQoarTga8Av2i2fzJwjarOcX+O45RQeFhVZwHrgE/EMmATe6fLseSSlhKUP/3EcdHw/vTPTGX3kSq2H670Opzu9HHgpKpOAz6D8+X1z8A7VXUmkO/W/Yv2feAeVZ0D/Aj4cQzjNXFu9vhIPT4bx3c2TWvnxnl3LgQn4ZsJvABNZROmRHa4rX/jgD+JyHIR+UjzxwDPA1fGLlzjhUh3rpVjiU/JSSGucP/tFm32xaob3WUCzjUIt5XuMuCoqu5w9y/HuV5F+yJO7T9wWvmqYxCnCYjLxg4gJSnEa3uOcryqzutwfCscDkeVY4nv7lwISJcukA0cj7rfICIpqloPZAG/A34JJAOLRWRts8ecoJV1MIuLi9sdRHV1dYeO94tEiLuuIczSLU7CNyz5uKevNxHe756Sn+18OP2naBezBravjpgf4j6L9cB8EXkKmAqkA5kikg9sBa53j2miqmUAIiLAz3F6OYxplz4ZqUwZ2Z9VO8pZuu0w8y+08iwtKT54gv3HTpHbO51Jw/t5HU6XBSXhqwD6RN1PcpM9gCrgN5HxeSKyCGesX+Qxp9zfx1o6cUFBQbuDKC4u7tDxfpEIca/YXsap+p2MH9Sby6dc0MORtS0R3u+eMnRUHT9d+hLFh2sYPGIM/TLTzvqYjsZdVFTUlRA7436gAFiK05pXBHwW+D3OmOQNQFnzB4nIFTjdv7e3NX6vvcluHCTGLbK4O2dCf1gFPL1mK2NSj5/1+Aiv4+6Kjsb+8PqjAFwyJA3VzT0V1ll113selIRvOXAD8JiITAPejNo3HviniEzC6cKeCTzoPuZ64AHgOpyLrQmoJba6RiBkZ6Ry6agcVmw/wpIth7nxoqFeh9QdLgEWquoXRGQKMAK4xv2pA57AmdTRxE32fgNcq6q72zp5e5NdPyT0nWFxd857+ldwf9FSXi+pIz8/v92ToLyOuys6Gvu6l5y04D0z8inI9+6zoyNxt/WFNShj+J4EqkVkBfAr4AsicreIvF1Vi4GHcL7MLAH+pqobgR8At4jIcmA6cI9HsZsYaFpOLU4XvTanzStwxtIEqDzLVuDzIrISZzLG3TiVA9bgLNu2UFU3ikiOiDzhPubXQBrwoIgUisgfPYjbxDEZ1IdzsjMoPWHlWVqy72gVGw9UkJWWzPQxA7wOp1sEooVPVRuBO5tt3hy1/2fAz5o9pgS4tuejM147cOwUWnKCzLRkJo/s73U4povm5efx/Wc3Uail1Dc0kpIc399b3fF4zSeN3ef+RB9XDrzDvT0xNtGZoAqFQsweP5B/rt1LoR7mvCFWniVaZHbubBlIRmqyx9F0j/i+UhrTDkvc1TVmjMklPSUY/3ET2cjcLMYMzKKiup61u496HY4xcSuy4tASK8/yFkEqxxJhCZ8JvNPlWKw7Nygi3bqLNgemW9eYmLtsXC4pSSGK9hzl+CkrzxJxrKqW1TvLzygFFQSW8JlAq61vZPm2I4AlfEEyNz+yzFqg6vEZE1PZGalcPKI/DY1hlm97y0TwhLVYS2loDDNtdA59M1O9DqfbWMJnAq1o91FO1tQzNq83w/pneh2O6SZTRvQnOyOF7Ycr2VUWqFU3jImpyBfhSE+IoanYcpC6c8ESPhNwkfF7Njs3WFKSk5pK7Cy0bl1jOm2Ou8zaki2HCYfDHkfjveq6hqbPjSsDsLpGNEv4TKDZcmrBNa8gkMusGRNTBYP7MCg7nZKKGooPnvA6HM+t2F5GVW0D5w/NZmi/Xl6H060s4TOBdeh4NZsPOeVYLhll5ViCZvb4gSQnhVi9o5yKahtwbkxnRMqzABRusdbyprVzC4LVnQuW8JkAW+JevGaMGWDlWAKoX2Yak0f0p74xzNItNuDcmM6K9IAUJnh5lobGMC+7E8GuPi9Y3blgCZ8JsMjFa7Z15wbWvMhsXevWNabTLhubS3JSiKLdRxO6tXz93qOUnaxlWP9e5J/Tx+twup0lfCaQ6hoaWbbVafWxCRvBFanHV6iHaWi0AefGdEbfXqlMPtctz7I1cVvLX4wqttzetYXjiSV8JpBe232UEzX1jBmYxfAcK8cSVGMGZjFiQCbllbWs32urbhjTWbObyrMkZrduOBw+XY4lgN25YAmfCajCSDkW684NtFAoxLx85+L8crENODems5qWWUvQ8izbD59kZ1kl/TJTmTIimJP8LOEzgRT5lmqrawRfU3kWS/iM6bQJg7PJ65POoQqnukGiiXTnzssfREpyMFOjYL4qk9BKKqopPlhBr9RkLh2V43U4poddMjKHPukpaMkJ9pZXeR2OMXHpjPIsCdit21SOJWDFlqNZwmcCZ4l7sbJyLIkhLSWJy90PqkW26oYxnRYZArMkwerxlVZUs37vMdJTkrh8fK7X4fQYS/hM4ESKh1p3buKYm2/LrBnTVTPHOeVZ1u46yokEKs/yklt7b9a4XDLTUjyOpucE4pWJSBJwLzARqAE+pqrbovZ/AbjFvftfVf2uiISAfcBWd/tKVf1qDMM2PaC+oZGlblmB2eNtwkaimCMDCYVg1fYjVNbUk5UeiEubMTHVt1cqF5/bj1d3HWX5tiNce37wVptoyUtR5ViCLCgtfDcBGao6HfgK8IvIDhEZDdwGzACmAVeLyIXAGOA1VZ3j/liyFwCv7TnGiep6Rudmce4AK8eSKAb0Tufic/tTG5XwG2M6LjKOL1G6dU9U17Fi2xFCIZhbEOxGgqAkfDOBFwBUdRUwJWrfXuBaVW1Q1TCQClQDk4GhIrJYRP4rIhLroE33K1TnIjXbunMTTqRbd5GtumFMp0Uvs5YI5VmWbDlMbUMjU0b0J7d3utfh9Kig9HtkA8ej7jeISIqq1qtqHVDmduH+DFinqltE5Bzgx6r6LxGZCfwduKT5iYuLi9sdRHV1dYeO94sgxf3CG/sAGNPLv68pSO+3n4xKrwXgpQ0H2TghlSS3Ur7f4zbGTyYMzia3dzoHj1ezpeQkEsAlxqIlSncuBCfhqwCi/yqTVLU+ckdEMoD7gRPAp9zNa4F6AFVdJiJDRCTktgI2KSgoaHcQxcXFHTreL4ISd2lFNTvKd5CRmsS7Zl9ERqo/Z+gG5f32m/xwmKGvHGH/sVPU9RnCRcP7AR2Pu6ioqIciNMb/kpKc8iyPv7aPQi0NdMJX19DYNLM/yOVYIoLSpbscuB5ARKYBb0Z2uC17TwOvq+onVLXB3fVt4PPuMROBvc2TPRNflrira0wfPcC3yZ7pOaFQKKoIs3XrGtNZcxJkmbXVO8o5UV3P+EG9GZmb5XU4PS4oLXxPAleJyAogBHxYRO4GtgHJwGwgXUSuc4//KvD/gL+LyNtwWvo+FPOoTbey5dTMvIJB/G3lbl4uLuXuq+NjWK6IpAN/BUbj9FZ8GhgF/ASoBF5Q1R80e0wu8DDQCzgAfFhVreq06RazxuWSFIK1u8s5WVNP74DOen9x0yEgMVr3ICAJn6o2Anc227w56nZGKw99W89EZGKtvqGRpVtsObVEN3VUDplpyWw6WMHB46cY3LeX1yG1x8eBk6o6zZ08di8gwBxV3SEifxeRmaq6LOox3wIeVtUHROQrwCeAX8U+dBNE/TLTmHRuf4p2H2X5tjKuOS9449vC4XBCjd+D4HTpmgS3fu8xKqrrGZWbxYgBwW+aNy3LSE1m5linUn4crboxAXgeQFUVuAw4qqo73P3LcSoRRGuqTOA+9soYxGkSyJyAL7O2YX8FB49XMyg7nQuG9vU6nJgIRAufMZGLUqSGlElcVxYM4sVNJSwsLuW2qSO8Dqc91gPzReQpYCqQDmSKSD5OYfjr3WOiRVcmOAG0+onV3hnK8Tqb2eLuGSPSawB4eeN+bs9PJhSAWe/RsT+8rhyAKYPTUd3c1sM8113vuSV8JhBsOTUTMSff+RtYvq2MU7UNZznaF+4HCoClOK15RcBngd/jrBy0AWheTTpSmeCU+/tYaydv7wxlv8/Cbo3F3TOkMcz3Cg9z+GQtKQOGM36QM1vX73G3JTr2dQteAeC9l+VT4POGgo68521VGbAuXRP3Sk9Us2F/BekpSUwbPcDrcIzH8vpkMHFYX2rqG1mxPS5W3bgEWKiqM4F/ATuAa9yf63BWBXq52WOaKhO4xyyNTagmUSQlhbi8qVs3boZHtMueI1VsPnSCPukpCfWZYQmfiXuvbHE+1KePsXIsxjGvwJl193JxXHxQbQU+LyIrge8Dd+PMvF0DrMBJBjeKSI6IPOE+5gfALSKyHJgO3ONB3CbgolfdCJLI7Nw5+XmkpSROGmRduibuRb59zvF5s7yJnYLBTvfTo2v28OgayErfw02ThvDxWaN9N6lHVct466SL+9yf6OPKgXe4t0uAa2MSoElYl7vlWV7dFazyLC+6s3MTpRxLROKktiaQ6hsaWbrVaeGz+nsGYLGW8tlH1gMQdn9O1tTz6Jq9XPvrpSwOWPeUMT2lX2YaFw3vR11DmBXb4mJ4xFmVV9aydlc5qcmhhBvzbQmfiWuv7zvG8VN1jByQmRCV0k3bdh+p5FN/f41TdW+drFHfGOZUXQOf+vtr7D5S6UF0xsSfyBfpyEpG8W5hcQmNYZg2egDZGalehxNTlvCZuBYZW2KtewbgvqU7qGtobPOYuoZG/rx0Z4wiMia+RS+zFg7H/+qjke7cqwNYTPpsLOEzca2p/l6CNc2blj217gD1jW1/KNU3hnly3f4YRWRMfDt/SF8GZKWx/9gpth8+6XU4XVJd38jSrc5nxlUFiTV+DyzhM3Hs6Kl63tx/nLSUJKaNSpyp9aZ1lTX17Tuutn3HGZPozizPEt/duusOnKK6rpGJw/pyTt/WVlwNLkv4TNwqOnAKcMZi9EqzciwGsto5izArLRizDY2Jhehu3Xi2cq8zdjcRu3PByrJ02e4jldy3dAdPrTtAZU29r8s/RIvXuKOt3VcFWDkWc9pNk4bw6Jq9bXbrpiSFuHnS0BhGZUx8mzVuIKEQrNlZzqlLe3sdTqc0NIZZvdf5zEi0ciwR1sLXBYu1lGt/vZRH1+zlZE193JR/iNe4wUlUv/HUm5z/7QUs2eV8W1u/96jNujQAfHzWaFKT276spSYn8bFZo2IUkTHxLycrjYnD+lHb0MhXXzxIRXWd1yF12NIth6moaeTc/r0YlxefSWtXWcLXSdHlH5q3Jvi5/EO8xg1vTVQj/vvmId8nqiY2RgzI4t73X0yv1GRSkkJn7EtJCtErNZl7339x3LRiG+MXkW5dLathYXGJx9F03F9XODPzR+f1JhQKneXoYApEl66IJAH3AhNxFhv/mKpui9r/ceATQD3wA1V9VkRygYeBXjjLGH1YVava+5ztKf9QW9/Aj/5bzCdmjyElKURSKERykvPTdDsUIjnZ+Z2UhHM/KURSZF/S6eOSkrr+R9qRshXfv+n8Lj9fdzlbfbX6RidRfeHzs+zDPMFdIXm88PlZ/HnpTp5ct98dspDCzZOG8rFZo+zvw5hOmCN5/PrlrQA89upebp40zOOI2i8cDrNqRzkAh0/UeByNdwKR8AE3ARmqOl1EpgG/AG4EEJFzgM8CU4AMYJmIvAR8C3hYVR8Qka/gJIS/au8Ttqf8Q0MYFmwsYcHG7vs2dDr5g5SkJJJCvCWJTAqFSEk+nSQ2/U6CTQcqOEvY1DeGeXjNHg5VVJMUghDO84VCzrlDQFII53YoRCjU+v0k95uUc9uZ8RUicq7IY07fDxF1XNT9BRsPUVP/1mQvmh8TVeONEQOy+P5N5/P9m86nuLiYgoICr0MyJu7cdt8qlm8/8pbta3aWM/IrzzXdH52bxYcuGxnDyM7ugeW72FH21p6qLSUnzoj9sjED+MfHp8UyNM8EJeGbCbwAoKqrRGRK1L5LgeWqWgPUiMg24EL3MT9yj3nevd3uhK+95R8AJg7vR2NjmPrGMI2NYRrCp383uNvqG8M0uvcbGsM0hp1Bpg1R28DdRhgaANpuqeuKhsYwL22Kr2b7SH01S/iMMabrPj13LK/tOfaWnpWGZo0GO8oq+dbTG2MYWefVRQXfKzWZu+aO8zCa2ApKwpcNHI+63yAiKapa38K+E0DfZtsj29otKz3ljHFkremdnsLTn76sI6du1RlJYlQi2NCURHI6mWwxiQzz3j+uarFbtLmM1CR+c8skwmEn+QyHoTHsnCMchjDO851xv+kYIHz6frj5b6LuN56+7zxPOOq5nPOGw/CnV3a06z2y+mrGGNM9ZozJ5S8fmsJHH1jb4udGclKIuZLn25p2h45Xs0hLmxpMovVKTeb+D13C9DGJU8M1KAlfBdAn6n6Sm+y1tK8PcCxq+6mobW9RXFzc4hPOHpnJC1sq3vJNJ1pyCOaMzGz1HLGU7P7MHZ3VrrivHN2bc5OOxiq8s/r7yhBVdWdf1qdXSsgX73dbqqurfR9jSyxuYxLPjDG53HPrJD71j9eoqT/dq5SeksS9t13MPJ+vWLGwuKTF2O+5dVJCJXsQnIRvOXAD8Jg7hu/NqH1rgB+KSAaQDhQAG9zHXA88AFwHLG3pxK2N/flSXiWLfr20zdaytJRk/vft/poRGK9xv2Nyfbvqq71z8rm+H68Vr2PKEiXuoqKiHozGmPhTUV1HSlKIupBzna1vDJOcFIqL8izxHHt3C0pZlieBahFZgTMO7wsicreIvF1VDwG/xUnoFgFfV9Vq4AfALSKyHJgO3NORJ4zX8g/xGrfVVzPGGG/889W9VNU1UDA4m2/PHUTB4GxO1TXw2Kv7vA7trOI59u4WiBY+VW0E7my2eXPU/vuA+5o9pgS4tivPG6/lH+Ix7kii+qm/v0ZdQ+MZLX0pSSFSk5N8magaY0y865OeyteuL+Cjl41CdTO3XHExf1m2g1d3+WfYT2viOfbuFoiEz0vxWv4hHuOOx0TVGGPi3X0fnHLG/eSkEHdcPoY7LvcooA6I59i7myV8Jq7EY6JqjDHGeC0oY/iMMcYYY0wrQuHw2UtdJKqioiJ7c4xJQJMnTw7EYpt2DTMm8bR2/bKEzxhjjDEm4KxL1xhjjDEm4CzhM8YYY4wJOEv4jDHGGGMCzhI+Y4wxxpiAs4TPGGOMMSbgLOEzxhhjjAk4S/iMMcYYYwLOEj5jjDHGmICzhM8YY4wxJuAs4TPGGGOMCThL+IwxxhhjAs4SPmOMMcaYgLOEzxhjjDEm4CzhM8YYY4wJOEv4jDHGGGMCzhI+Y4wxxpiAs4TPGGOMMSbgLOEzxhhjjAk4S/iMMcYYYwIuxesAjOkMEQkDG4CGqM1rVfVjUcd8BLhZVW9o4zxvA74BZOL8f9gI3K2q+3okcGNMYLRyHQK4SVV3xSiGtwFTVfVbIvJ24EpV/Ww3nfs+4A+qWiQifwYeVdWXu+PcJvYs4TPx7ApVLWu+UURygB8BtwOLW3uwiAwBHgQmq+pud9vXgceAGT0SsTEmaFq8DsXQJUAOgKr+B/hPN577KuCP7rk/dpZjjc9ZwmeC6D3AQeB/gLe1cVwukAb0jtr2a2B95I6IfBX4IFAPbAU+pKrHReSbwPvc7VuAu1T1kIgUAuVAPvB74G/Ab4ALgFRgIfC/qlrf1RdpjPEvEfkg8G3gQiAMrAV+rKp/E5EbcHoW0oAq4H9UdaWIpAA/BebjXFtWAJ8Cvgbkqupd7rm/g3P9egi4E0gWkeM416h3qep8ERmGcw0aCYSAB1X1ZyIyEuc69F9gKk6y+HVV/Wez+H8IDAH+ISIfAH4C3OO+jkXuz3Sc69r/AJ/Aue6tBd6nqo0iMsN9XBbQCHxHVZ/t+rtrOsPG8Jl4tlhE1kf95AGo6h9U9bvAqbYerKpvAPcB60Rkk9t9cQOwAMDtHvkQMF1Vzwd2AneJyIeB64BLVPVCnC6dB6JOfVRVJ6jq74BfAUWqOhmYhHORvrubXr8xxnvNr0NPAqjqg8BKnATut8BSN9kbh9MDcb2qTgLuAJ4QkSyc5G4yMBE4H+gDvLe1J1bV1cAfgH+q6teb7f4HsFhVLwAuA94vIre4+0YDC1T1UuDLbozNz/114ABwm/s80UYB/1HV83CSx9/gfAE+D5gFTBOR/sBfgdtV9WLg7cDvReTc1t9K05Oshc/Esy53pajqF0XkR8AcYDbwM+AzInI5cCXwL1U96h57N4CIPAb8VVUr3dP8Bvi6iKS595dGPcV84FIR+ah7v1dX4jXG+E5b16E7gddxvnxOdrddBQwGFopI5LhGYCzONechVY18WX0vNLXotZubPF4GXA3g9ko8gPNFdRVQh9PCB/AabpdwB9QBz7i3twMrVLXCfe4D7vmm47zOp6JeZxinxXNPB5/PdANL+EzCcAcdT3Hv/gHn2+sAVf0r8DjwuIh8DdiL0xpXj3OBijy+H9CPt7aMJ+H8Xwq5909G7UsG3q2qxVHnCGOMSQSDgAwgHad7dAfONWGhqja13InIcJzrUfNrziCc60uY09cXcLqC25LU7PjItlT3dq2qNrq3m5+7PWpVNfo6VtfCMclAsapOjWxwx00f7uBzmW5iXbomYajqx1T1IvfnD8AJ4MciMiHqsFFANc631peBd4hItrvvOzjdsQuAD7vfogE+C7yiqjUtPO0C4AsiEhKRdJwB1Xd192szxviLiKQCjwDfAr4LPOJuWwRcLSL57nHXA2/gJIYvA7eKSLqIJOGMwXsfTpI02b2OZOG23LnqOZ3IAaCqJ3Ba8j7tPkdf4APASx18GW85dwesAsa5vSWIyEU4YwyHdPJ8poushc8kLFVdLCJ3AQ+6LW/1OJM9bnS7cf/rJoPL3S6JjcDHgUpgOLDGvShvA25r5Wk+i9Pl+ybOhfNlWhgvY4yJW4tFpHlZlq8BVwCHVPXPACJyE/BDVf2SiNwBPCoiIZzrzttVtVJE/ogzyaIIp9WtEGf8XxZOd+xWYD/O2MBIq9xCnDGAte7jIm4D/s8dc5yGM6bvAWBEB17bU8A/RaTDM3RV9bCIvBP4mYhk4DQw3R6piGBiLxQOW++SMcYYY0yQWZeuMcYYY0zAWcJnjDHGGBNwlvAZY4wxxgScJXzGGGOMMQEX2Fm6IpKMs4qC4NQZulNVN0Tt/wLwMU7XBPqEqmrMAzXGGGOM6WGBTfhwlshCVS8TkTnAD4Ebo/ZPBj6gqkUtPBaAoqIim8JsTAKaPHlyRwvR9jh36cAinJUa6nFKbIRxlvb7dFQh3SZ2DTMm8bR2/QpswqeqT4lIZJHmEcCxZodMBr4qIucAz6nqj1s6z+TJk1va3KLi4mIKCgo6Ea23LO7Ysrhjq6NxFxW1+h3QM27B3j9yen3oXwLfUNVCEfkDzpfZJ1t6bHuvYYny7+sXFnfsxWvsHYm7retXoMfwqWq9iDwI/A6n6GS0R3HWOZwLzBSR+bGOzxhj2unnnF4OEJwvrEvc28/jrMFqjDGtSojCy24r3mpgglvNPARkq+pxd/+ncNZU/X7044qKisKZmZntfp7q6moyMjK6MfLYsLh7zr82HGP8gHQmDu7VtK153K8fPMWWIzW8+/x+HkTYsniNuyUd/TupqqryVZeuiHwIGKaqPxCRQpwvqotUdYi7fy7wEVV9f/PHduQaFg//n1piccdWvMYN8Rt7R+Ju6/oV2C5dEbkd5yL5Y6AKaHR/ALKBDSJSgLNM1lzg/pbO05Hm30RoLvaTeIj7yrQy7np4HffcOokZY3KBM+Nesb2Mny539he4+/0gXuNuSQC6dD8ChEXkSuAi4G9AXtT+Prx1yEqT9r72ePj/1BKLO7biNW6I39itS/fsngAmicgrOAvYfx64WUTucFv2vgYsBpYCG1X1v55FagJrxphc7rl1Enc9vI4V28vO2Ldi+1uTKr+I17iDSFUvV9XZqjoHWA98AHjenYwGzhqrS72Jzpg40NAAzz5L7u9/D88+69yPB90cd2Bb+FS1EnhPG/sfAh6KXUQmUUUnT/fcOon+xEfSFK9xJ4gvAveJSBpQDPzb43iM8aeGBrjmGli9mtzKSvjrX2HqVFiwAJKTvY6udT0Qd2ATPmP8JJI8ffxvReRlhth/YhdTR+XweNF+Hi/a73V4bTpvSDYf+uur5A9IY9/JfZbsecht5YuY7VUcxsSN55+HVaugspIQwMmTsGQJXHstnHtu64/ryPyGjs6FaM/xe/fCK69Aff3puFevdl7P/M7NMbWEz5gYmTisH6dq69lZ49xfurWs7Qf4zBsl1dw8aagle8aY+LFuHVRWnrmtvh5eftmbeLqishLWr7eEzxi/u3/5ThrDkJ2eREM4xPunjWBsXm+vwzqrbaUnuX/5Tuoawjz/5kHePWWYJX3GmPhw0UUQCp3ZqpaeDnfcARMntv3YUAcm63fk2PYcv349/OEPUFNzeltWlvN6OskSPmNiYMX2Mu5ZtA2At+f35fpLx8fFWLgV28v48fOb+dr1BXz3mU30zUyNi7iNMQaAoUObkr1wKEQoK8sZC/erX/l/DN+GDbB6NeHKytNxX3ddp08Z5Fm6xvhCZKJDn3Tn+9WUob3anAXrF9ETND4wfSR90pMoqajha9fn+zpuY4xp8vTTzu+rr+bwZz4Djzzi/wkb4MS3YAE88ki3xW0JnzE9KJI0fe26fMoqa8nJSmNcbjrQdukTrzWfjZucFOKSoU4B3/LKWt/GbYwxZ3jSXXHwC1/gyJ13OuPf/J7sRSQnw/z53Ra3JXzG9KA39h3nnlsncexUHQCXj8slKWrsRiTpe2Pfca9CbFEk7uhu26nDnYRvYXGpb+M2xpgm27bBm29CdjbMnet1NJ6zMXzG9KA7Z48B4N7F2wGYI3lAxRnHzBiT67vxcJG4o108pBcpSSHW7j7K8ao6X8ZtjDFNIq178+dDWpq3sfiAtfAZ08Mqa+pZs7OcUAguHz/Q63A6rXdaMpeMzKGhMUzhllKvwzHGmLY98YTz++abvY3DJyzhM6aHrdx+hNqGRi4c1o+crPj+ljmvwFnCddFmS/iMMT524IBTcDkjwymybCzhM6anLdlyGIA5cdy6FzGvYBAAhXqY+oZGj6MxxphWRM3Opbf/653GgiV8xvSgcPh09+ccif+Eb1RuFqMHZnH8VB1Fu496HY4xxrTMunPfwhI+Y3rQjrJK9pafon9mKhcO6+d1ON1iXr7TrbvQunWNMX5UXg6FhU4Zkxtu8Doa37CEz5geVKhOd+7l4weSnNTBpXd8KtKtu7C4xONIjDGmBc8+66yXO3s2DBjgdTS+YQmfMT2oUJ1WsNkBGL8XMXlEf7IzUth+uJJdZZVnf4AxxsRSpBzLO97hbRw+YwmfMT3kVG0Dq3eWA/FdjqW51OQkZot16xpjfKiyEl54wbl9002ehuI3lvAZ00NW7iijtr6RC4f1Jbd3utfhdKsrm8qzWLeuMcZHFiyA6mqYOhWGDvU6Gl8J7EobIpIM3AcIEAbuVNUNUftvAL4F1AP3q+p9ngRqAisyfi8I5Viam+2OSVy9o5yK6jqyM1K9DskYY2x2bhuC3MJ3A4CqXgZ8A/hhZIeIpAK/Aq4GZgN3iMggL4I0wRQOh5sSvkj3Z5D0y0xj8oj+1DeGWbqlzOtwjDEGamudCRtgCV8LApvwqepTwB3u3RHAsajdBcA2VT2qqrXAMuDymAZoAm1nWSV7yqvol5nKRcP7eR1Oj2gqz2KzdY0xfrB4MRw/DuedB+PHex2N7wS2SxdAVetF5EHgZuBdUbuygeNR908AfVs6R3Fxcbufr7q6ukPH+4XF3f2e2uT8eU3MS2OLbj5jn5/jbkvzuEem1QLw8qaDbNiY5tuyM/H6fhtjOshm57Yp0AkfgKp+UES+DKwWkQmqWglUAH2iDuvDmS2ATQoKCtr9XMXFxR063i8s7u7345VrAHj7JWMpKBh2xj4/x92W5nHnh8OMWFbO7iNV1PQ+h8kjcjyMrnUdfb+Liop6MBpjTI9oaICnnnJuW3duiwLbpSsit4vIV927VUCj+wNQDIwTkRwRScPpzl3pQZgmgE7VNrBqxxEgWOVYmguFQsx1u3VfLrbyLMYYD61aBSUlMHIkXHSR19H4UmATPuAJYJKIvAIsAD4P3Cwid6hqHXC3u30lzizd/Z5FagJl1Y4j1NY3csHQvgzsE6xyLM1d6a66scgSPmOMl6Jn54b8ObzEa4Ht0nW7bt/Txv5ngGdiF5FJFJHVNeZIcFv3Ii4ZmUOf9BS05AR7y6sYnpPpdUjGmEQTDtv4vXYIcgufMZ4o3OLW30uAhC8tJamp23qRrbphjPHC66/Dzp2QlwfTp3sdjW9ZwmdMN9pZVsnuI1X07ZXKRcP7ex1OTJwex2flWYwxHoi07t10EyQnexqKn1nCZ0w3WuJ2584al+vbMiXdbY4MJBSC1TvKOVlT73U4xphEY6trtIslfMZ0o9PducFbXaM1A3qnc/G5/altaGTZVlt1wxgTQ1u3woYNkJ0Nc+d6HY2vWcJnTDeprmtg5XanHMvsAJdjaclcW3XDGOOFSHfu/PmQluZtLD5nCZ8x3WTVjiPU1Ddy/tDswJdjaS5SnmWxltLYGPY4GmNMwrDZue1mCZ8x3aRQ3e7c8YnTnRsxflBvhvbrRdnJWl7fd8zrcIwxieDAAafgckYGXHut19H4niV8xnSTJe74vdkJUI6luVAoxJUFTqJr5VmMMTERWUrtmmsgK8vTUOKBJXzGdIPdRyrZWVZJdkYKk4b38zocT8x1u3VtmTVjTExEunNtdm67WMJnTDeIdOfOGjeQlOTE/G81dVQOmWnJFB+s4MCxU16HY4wJsvJyWLzYqbt3ww1eRxMXAru0mjGxFFlOLRG7cyMyUpOZNS6XBRtLWLS5lPdPG+F1SIEgIsnAfYAAYeBOoBp4wL2/Afi0qjZ6FaMxMffss9DQAPPmQU6O19HEhcRsijCmG1XXNbByh1OOZU6ClWNpbl6+061r5Vm61Q0AqnoZ8A3gh8AvgW+o6iwgBNzoXXjGeMCKLXeYJXzGdNHqneVU1zUyYXA2edkZXofjqSvcenzLtx+hqtZW3egOqvoUcId7dwRwDJgMLHG3PQ9cGfPAjPFKZSUsWODcvukmT0OJJ9ala0wXRbpz5yRwd27EwD7pTBzej9f3HmP5tiNcNWGQ1yEFgqrWi8iDwM3Au4CrVDVS8PAE0Le1xxYXF7frOaqrq9t9rJ9Y3LHlh7j7vPgiw6qrOXXhheyqqICKinY9zg+xd0Z3xW0JnzFdtEQTbzm1tlyZn8fre4+xaHOJJXzdSFU/KCJfBlYDvaJ29cFp9WtRQUFBu85fXFzc7mP9xOKOLV/E/cMfAtDrtts6FIsvYu+EjsRdVFTU6j7r0jWmC/YcqWJHWSV9MlK4+Nx+XofjC3MLIsuslRIO26obXSUit4vIV927VUAjsFZE5rjbrgOWehGbMTFXW+tM2AAbv9dBgW3hE5FU4H5gJJAO/EBV/xO1/wvAx4DD7qZPqKrGOk4T3wq3ON25s8blJmw5luYmDM5mcN8MDh6vZsP+Ci4Y1mpvo2mfJ4C/isgrQCrweaAYuE9E0tzb//YuPGNiaPFiOH4czj8fxo3zOpq4EtiED3g/cERVbxeRHGA98J+o/ZOBD6hq6+2fxpxFIi+n1ppQKMTc/Dz+sXoPCzeXWMLXRapaCbynhV2zYx2LMZ6z2bmdFuQmiX8B33Rvh4DmUwYnA18VkWVR3SXGtFt1XQMrtpcBiV1/ryXzorp1jTGmWzQ0wNNPO7ff8Q5vY4lDgW3hU9WTACLSB6e74xvNDnkU+D+gAnhSROar6rPNz9ORmTGJPgMo1ryO+7UDVVTXNTK6fxrl+3dSvr99j/M67s7qSNw59Y2kJ4d4c/9xlhW9yYBM7y418fp+G2OaWbkSSkpg5EiYONHraOJOYBM+ABEZDjwJ3KuqD0dtDwG/VtXj7v3ngEnAWxI+mwHkX17H/e/tmwC4ZuJwCgry2/04r+PurI7GPeu1Kl4uLmVvQ19mFpzbg5G1raNxtzXLzRjjocjaue94B4RC3sYShwLbpSsig4AXgS+r6v3NdmcDG0Skt5v8zQXsKm86pKn+XoKvrtGaeQWRVTesW9cY00XhsI3f66Igt/B9DegPfFNEImP57gOyVPVPIvI1YDFQAyxU1f96FKeJQ3vLq9h+uJI+6SlcPKK/1+H40hVuXcLl28qormsgIzXZ44iMMXHr9ddh1y4YNAimT/c6mrgU2IRPVT8HfK6N/Q8BD8UuIhMkhVuc2bkzx+WSauVYWnRO3wzOH5rNhv0VrNx+pGnZNWOM6bBI696NN0KyfXnsDPukMqYTlrjdubOtO7dN8/Ldbt3NJR5HYoyJa9Hj90ynWMJnTAfV1DewYvsRwMqxnE2kPMsiW3XDGNNZW7fChg3Qty9ccYXX0cQtS/iM6aBXdx6lqraB/HP6MLhvr7M/IIGdP6QveX3SOXC8muKDJ7wOxxgTjyKte/PnQ1qat7HEMUv4jOmgyOxca907u6QkZ9UNgIXF1q1rjOmESMJns3O7xBI+YzooMmHDllNrn6byLJutPIsxpoP274dVqyAjA6691uto4polfMZ0wL6jVWwrPUnv9BSmjLRyLO1x2dgBpKUk8fq+Yxw+UeN1OMaYeBJZSu2aayAry9tY4pwlfMZ0QKE6rXuXjR1g5VjaKTMthRljBhAOw2K1Vj5jTAdEyrHY7NwuC2wdPmN6QiThmyPWndsR8woGUaiHWVRcynumDPc6HM+IyA3AOwABGoDNwL9U9UVPAzPGj8rLobDQqbs3f77X0cQ9a6Iwpp2ccixlAMyxCRsdEpm4sXTrYWrqGzyOJvbEsRL4JPAq8F3gx8DrwGdFZIWITPAyRmN855lnoKHBKcWSk+N1NHEvrlr4RGQE8H2gF/BjVX3N45BMAlm7yynHIoOsHEtHDe3Xi4LB2RQfrGD1jnIuT7yC1d8AblXVnS3su0dExgDfA26LbVjG+JjNzu1WcZXwAT8BfguEgT8BU7wNxySSSDkWa93rnHn5eRQfrGDR5tKES/hU9fbm20QkCUhS1XpV3Y4le8acVlkJCxY4t2+80dtYAsLXXboi8qDIGYOlsoBdwA4gw5OgTMKKjN+z+nudE1l14+XikoRddUNErhCR1927BcA+EbGV4I1p7oUXoLoapk2DoUO9jiYQfJ3wAfcB/xaRL4pIMk537r+AZ3G6SIyJif3HTrG19CRZaclMGWFjSTpj4rB+DMhKY99R571MUD8DPgygqhuB64FfeRqRMX4UmZ1r3bndxtcJn6ouA+YA1cASIFtVL1PVS1T1KS9jM4llSVM5llzSUnz938a3kpJCXJF/upUvQaVFjz12b6d7GI8x/lNbC88+69y2hK/bxMMnVyZwP3Aj8B4ReUxEEreug/HE6fF7Vo6lK650u3UXFSdsPb4qEWlaLkBE5gEJ29xpTIsWLYKKCjj/fBg3zutoAsPXkzZE5OvA+4Bk4BeqeoeIXAL8TUQWqer3vY3QJILa+kaWb7NyLN1h5riBpCUn8dqeo5RX1pKTlXALoX8OeFJE6nEmn4Vx6vIZYyIis3Ot2HK38nsL33tU9XzgQpz6Vajqq6p6BXCgrQeKSKqIPCQiS0VkjYi8vdn+G0TkVRFZKSIf77FXYOLe2t3lVNY2MH5Qb4b0s3IsXdE7PYWpo3NoDJ9uNU0kqroaOBenx2I+MN7KSxkTpaEBnnrKuW3dud3K7wnfMRH5EvB14Iz6Var6l7M89v3AEVWdBVwL3BPZISKpOAOlrwZmA3eIyKDuDNwExxJbXaNbzXPH8S3cnHgJn1uK5fPuzy4gMiHNGAOwciWUlsKoUTBxotfRBIrfE76bgVM4rXkf6OBj/wV8070dAuqj9hUA21T1qKrWAsuAy7sYqwmopnIsCVY7rqfMK3C+W72ih6mtb/Q4mpj7GU6PxaU416VrsVm6xpwWPTs3FPI2loDx9Rg+VS0HftfJx54EEJE+wL85s4xLNnA86v4JoG9L5ykuLm73c1ZXV3foeL+wuFt3uLIeLTlBRkqI3tWlFBcf7vI57f2GEf1S2X2sjsdfWc9Fg3u2m9xn7/c84GKgSFUrRORqYL23IRnjE+Gwjd/rQb5O+LrKnc37JHCvqj4ctasC6BN1vw9wrKVzFBQUtPv5iouLO3S8X1jcrVu/Zg8AM8flMfH87lnq1N5vuG5XiD8s2c7Wygze18PvRUfjLioq6sFoqFPVRhEBQFVr3Akcxpj162HXLhg0CKZbPfLu5vcu3U5zx+S9CHxZVe9vtrsYGCciOSKShtOduzLWMRr/s+XUekakPMvCzQm36sYGEfk0kCyOP2ItfMY4Iq17N90ESYFNTzwT5Ba+rwH9gW+KSGQs331Alqr+SUTuBhbgJL33q+p+j+I0PuWUYzkCWMLX3Sad25/+mansPlLF9sOVjM3r7XVIsfI5nDF7g4DlONegz3oakTF+Yatr9Ki4SPhEJB+YCfwFp4v2QuCjqrq4tceo6udwLq6t7X8GeKabQzUBUrT7KCdr6hmb15th/TO9DidQkpNCXCF5PLFuP4s2lyRMwqeqFcBHAUQkBKSoap23URnjA1u3wsaN0LcvXHGF19EEUry0mf4RZ7bufCAX+AjwI08jMoFXuMXtzrXZuT1ibqRbN4FW3RCRmSLyDXcoSRFwXETe63Vcxngu0p07fz6kJVxB9piIl4QvQ1X/gVM37zFVLQRSvQ3JBJ3V3+tZl48fSEpSiLW7j3K8KmEauX4GrAJuAg4BE4AvehmQMb4Q6c612bk9Jl4SvnR3EsbbgJfd27bkgekxB4+fYvOhE2SmJXPJqP5ehxNI2RmpXDoqh4bGcFNragJIVtWXgauAp1R1F87SkcYkrv37YfVqyMiAa67xOprAipeE74/AbmCZqm4CXgV+7WlEJtAirXszxgwgPcU+j3vK3PyE69ZNFpFLcb68vigi52O9FSbRRZZSu/ZayMryNJQgi4tJG6r6exH5o6pGyvJPUtUjngZlAq1pdQ3rzu1RVxYM4gfPFVOopdQ3NJKSHC/fQTvth8DDwF9UdZeI7KSNyWXQtBTk/cBIIB34AbAJeAAIAxuAT0ddH42JL5HxezY7t0fFxdVVRHoDvxWRhSKSA/zI3WZMt6traGT5tjLAJmz0tJG5WYwemEVFdT1Fu496HU6PU9UnVHWsqkZKRY1V1f+c5WEtrQv+S+Ab7rYQcGOPBW1MTzpyBAoLISXFmbBhekxcJHzAb3GWQhsEVOMsjfYnTyMygfXa7qOcqKlnzMAshudYOZaedqW7tu7CzcHt1hWRp0VkUvPtqtrg7p8iIq0lfi2tCz4ZWOJuex64snsjNiZGnn0WGhpgzhzIyfE6mkCLiy5dnC7cj4jI9apaJSK34XRjGNPtCrfY7NxYmpufx59e2cHC4hK+dn38LTnXTp8E7hORgcCzwDacyRqjgetwlnb8REsPbGVd8J+ramSJklbXAjfG92x2bszES8LX0Ox+MmDjVUyPKGwqx2LdubEweUR/sjNS2H64kl1llYzMDd6gbVU9ALxNRKYC7wLeh3MN2wJ8TlVXt/X45uuCi8hPo3a3uhY4OGsJt0d1dXW7j/UTizu2ujPuUGUl4xcsIAnYOmEC9T38fiT6ex4vCd8rIvIToJeIXAPcBbS6yoYxnVVSUU3xwQp6pSZz6SjrXoiF1OQk5kge/3n9AAs3l/LRmaO8DqnHuIldm8ldc1Hrgt+lqgvdzetEZI5bk/Q62rgeFhS0r9W0uLi43cf6icUdW90a97//DTU1MH0642bP7p5ztiER3vOioqJW98XLGL4vAydxxvH9EHgD+F9PIzKBZOVYvDGvadWNEo8j8aXodcELRaQQp1v3uyKyEkjD6eo1Jr7Y7NyYipcWvu+p6leB73sdiAm2puXUrDs3pmaPH0hyUog1O8upqK4jO8NK00W0sS54zzeJGNNTamudCRtgCV+MxEsLn83VNj2uvqGRpVudciyzx9uEjVjql5nG5BH9qW8Ms3RLmdfhGGN62qJFUFEBF1wAY8d6HU1CiJcWvh0i8iKwDKdrFwBV/aV3IZmgeW3PMU5U1zM6N4tzB1g5lli7siCPNTvLWVhcwtsuHOx1OD1GRN4FXAT8CLhRVR/xNiJjPBCZnWutezETLy185cB+YBRwgftzvqcRmcApVKc7d7Z153pibr5Tj2+xltLQGD7L0fFJRL6CU6LlPTjrgX9bRL7Z9qOMCZiGBnj6aee2lWOJmbho4VPVDwOIyAggVVW3eRySCaDT5VisO9cLYwZmMWJAJruPVLFuz1GmjAzkLOlbgKnAKlU9IiLTgJXY+GSTSFasgNJSGDUKLrzQ62gSRly08InIWBHZCKwHikRku4jkt/OxU91Zbc23f0FENkZmvYmIdG/UJp6UVlSz6WAFGalJTLVyLJ4IhULMyw/8qht1qloTuaOqx4A678IxxgOR2bnveAeEQt7GkkDiIuHDWTvyp6raX1X74iwefu/ZHiQiXwL+DGS0sHsy8AFVneP+aLdGbOJKZHWN6aMHkJFq5Vi8kgDlWfaKyNuAsIiki8jXgd1eB2VMzITDNn7PI/GS8A1S1Qcjd1T1r0B7BlptB1obIDAZ+KqILBORr3ZDjCaOLbHuXF+4ZGQOfdJT2FJykr3lVV6H0xPuAu4GLgQqcYom3+VpRMbE0vr1sHs3nHMOTJ/udTQJJS7G8AEpIpKjquUAIpILnHVUt6o+LiIjW9n9KPB/QAXwpIjMV9Vnmx/UkeVMEn3ZlljrrrgbGsMsUadFaVhyRY+/F4n+fp/NReeks3R3PQ8XvsHbC7q+RKyf3m93ibV5IpIJJKvqCa9jMiamIq17N94ISfHS5hQM8ZLw/Q5YJSL/dO+/F/hVZ08mIiHg16p63L3/HDAJZ1HzM3RkGZZEWLbFT7or7ld3lXOydiejcrOYN7XnBxAn+vt9Njef6sPS3a+z4WiIL3fD83U07raWJuoqETkH+BCQ494HQFW/1GNPaoyfRI/fMzEVF+m1qv4J+ATOEkIZwCdV9fddOGU2sEFEervJ31yg567yxteayrGMt3IsfjBH8giFYPWOck7W1HsdTnf7D3ApEGr2Y0zwbdkCGzdC374wZ47X0SScuGjhE5GhwLtV9VPubNqfiMhGVT3UwfPcCvRW1T+JyNdwFhyvARaq6n+7P3ITD5ZsiYzfs4TPD3Ky0rj43P4U7T7Ksq2Hufb8QBVhTlNVa9owiSnSunfDDZCW5m0sCSguEj7gQZxvxuDMaCsE7geuP9sDVXUXMM29/XDU9oeAh7o5ThNnSk9Us2F/BekpSUwbPcDrcIxrXkEeRbuPsrC4NGgJX5GInK+qG7wOxJiYiyR8NjvXE3HRpQvkqupvAVS1WlV/DQTqU8B44xV33dbpY6wci5/Mi1p1ozFYq24sB9aLyF4R2RH58TooY3rc/v2wejX06gXXXON1NAkpXlr4UkRkiDvDDREZhI17Md0gMn5vjo3f85Xxg3ozrH8v9h09xev7jjHp3P5eh9RdvgPcilMyypjE8dRTzu9rroGsLE9DSVTxkvD9Eudb8Qs45ViuBP7X25BMvKtvaGTpVqeFz+rv+Yuz6kYeD67czaLNpUFK+MpV9TGvgzAm5iLlWGx2rmfioktXVe/HSfLWAWuBa6LH4xnTGa/vO8bxU3WMHJDJyFz7xuk38wqcbt2XiwO1zNpzIvJzEZkuIhdHfrwOypgedeQILFkCKSkwf77X0SQs37fwuWVTklX1DRHZCVyFM7PWmC4ptNU1fG3q6Bwy05IpPljBgWOnGNKvl9chdYdb3d/vjNoWBkZ7EIsxsfHMM9DQAFddBf0D01ofd3yd8InIBOC/wF0ishBYg3NxzBSRj6vqS54GaOJaJOGz+nv+lJ6SzKxxuSzYWMLCzaXcPm2E1yF1maqO8joGY2LOZuf6gq8TPuBnwNdV9VkR+TDORI3zgKE4S6NZwmc65fCJGt7cf5w0K8fia/MKBrFgYwmLikviOuETkS+p6k9F5Lct7VfVz8Y6JmNi4uRJWLAAQiG46Savo0lofk/4zlXVf7i3rwCeUtVGYK+IdH2RTZOwXnGLLU8bPYBeaVaOxa+ucFfdWL79CFW19WSm+f2S1arj7u8jnkZhTKy98ALU1MD06TDYqql5ye9Xz4ao2zOA6G/BGTGOxQRIYWR1DevO9bWBfdKZOKwf6/ceY/m2I1w1YZDXIXXWJ4A/qup3vQ7EmJiy2bm+4fdZuuUiMlFEZuIUWl4CICIzgP2eRmbiVkNjmKVbbTm1eDEv35lUs2hziceRdInVDTWJp6YGnnvOuW3j9zzn9xa+rwEvA32BL6lqpYj8D/B14CYvAzPxa/3eYxyrquPcnExGWTkW35tXMIhfvLSFhcXOqhtJSXGZO2WIyCRaSfxU9bUYx2NMz1u0CCoq4MILYcwYr6NJeL5O+FR1lYgMBTJV9Zi7eQVwqapu9S4yE8+WRFbXkIGEQnGZPCSUgsF9GNw3g4PHq9l4oIILhsXl8N3RwOO0nPBZWRYTTDY711d8nfABqGotUBt1f4WH4ZgAaBq/Z925cSEUCjE3P49/rN7Dy8Ul8ZrwbVLVSV4HYUzMNDScXk7NEj5f8PsYPmO6VdnJGt7Y55RjmT461+twTDtd6a66sWhzoFbdMCa4VqyAw4dh9GinS9d4zhI+k1Ai5VimjsqxcixxZPqYAWSkJvHm/uOUVFR7HU5nvOJ1AMbEVGR27s03OzX4jOcs4TMJZckWW04tHmWkJjNzrNMFH4+tfKr6Oa9jMCZmwuHT4/esHItvBD7hE5GpIlLYwvYbRORVEVkpIh/3IDQTYw2N4aYWPhu/F3/mFThJ+sLi+Ev4jEko69bB7t1wzjkwbZrX0RhXoBM+EfkS8GeaFWkWkVTgV8DVwGzgDhGJ24qupn3e2HeMo1V1DM/pxWgrxxJ35rr1+JZtO0x1XcNZjjbGeCbSunfTTZAU6DQjrgT9X2I70FJ7cgGwTVWPurOAlwGXxzQyE3OFGlldI8/KscShQdkZXDC0L9V1jazcbiuUGeNbVo7Fl3xflqUrVPVxERnZwq5sTq9tCXACp7jzWxQXF7f7+aqrqzt0vF8kStwvvO4szjIm09vXmyjvd0+4MDfEm/vhXys2c064fUmfH+I2JmFs2QIbN0K/fjBnjtfRmCiBTvjaUAH0ibrfBzjW0oEFBQXtPmlxcXGHjveLRIj7yMkathzZQVpyEu+ZcxGZad796SfC+91TbulznH+8vox1JXXk5+e3q6W2o3EXFRV1JURjElukdW/+fEhL8zYWc4agd+m2phgYJyI5IpKG05270uOYTA9aurWMcBimjs7xNNkzXXPekGzy+qRz8Hg1xQdPeB2OMaa5SDkWm53rOwn1yScitwK9VfVPInI3sAAn6b1fVfd7G53pSYXucmqzx9vs3HiWlBRiXkEej6zZy8LiEiYMyfY6pJgRkanAT1R1joiMBR7AWZZtA/BpVW30Mj5j2LcP1qyBXr3gmmu8jsY0E/iET1V3AdPc2w9HbX8GeMajsEwMNTaGeWVrGWDlWIJgbv4gJ+HbXMpn5o3zOpyYcCsO3A5Uupt+CXxDVQtF5A/AjcCTXsVnDHB6KbVrr4XMTE9DMW+VqF26JoG8sf845ZW1DO3XizEDe3sdjumiy8YOIC0lidf3HePwiRqvw4mV5hUHJgNL3NvPA1fGPCJjmrPZub5mCZ8JvEh37hwZaOVYAiAzLYXLxgwgHIbFmhhFmFX1caAualNIVcPu7VarDBgTM0eOwJIlkJLiTNgwvhP4Ll1jmurv2XJqgTG3YBCL9TCLikt5z5ThXofjhejxeq1WGYD2l5aK1/I1FndstRZ33yefZEhDAydnzGDvoUNw6JAH0bUtaO95R1nCZwKtvLKW1/cdIy05iRljBngdjukm8/Lz+CawdOthauobSE9J9jqkWFsnInNUtRC4Dljc2oHtLUnjh7I7nWFxx1arcX/5ywD0vv12376uwL3nLWirrJR16ZpAW7r1MOEwXDKqP1np9v0mKIb060XB4GwqaxtYvaPc63C88EXguyKyEkgD/u1xPCaRnTwJL74IoRDceKPX0ZhW2CegCbTo5dRMsFxZkEfxwQoWFpdweQKU22lWcWALzjrgxnjv+eehpgZmzIDBg72OxrTCWvhMYDU2hnllS2T8XvATgkQzN99J4hduLiUcDp/laGNMj7HZuXHBEj4TWG/uP84RtxzL2DwrxxI0E4f1I7d3GvuOnmJLyUmvwzEmMdXUwLPPOrct4fM1S/hMYC1xW/dmWzmWQEpKCnGFRFr5SjyOxpgEtWgRnDgBF14IY8Z4HY1pgyV8JrCa6u8lwPiuRDWvwEn4FhUnRj0+Y3zH1s6NG5bwmUA6VlXL+r3HSE0OMWNsrtfhmB4yc9xA0pKTeG3PUcora70Ox5jE0tAATz/t3LbuXN+zhM8E0itby2gMwyUjc+ht5VgCq3d6ClNH59AYPt2ia4yJkeXL4fBhpyv3ggu8jsachSV8JpCil1MzwXZlwSAAFlq3rjGxFT0718ZJ+54lfCZwzizHYvX3gi5SnuWVLYeprW88y9HGmG4RDp8ev2fduXHBEj4TOBsPVFB2spYhfTMYZ+VYAm94TibjB/XmRE09r+5KyFU3jIm9detgzx445xyYNs3raEw7WMJnAifSnTtb8qwcS4KYZ926xsRWpDv3ppsgyVKJeBDY0ewikgTcC0wEaoCPqeq2qP2/AWYCJ9xNN6rq8ZgHarpdoa2ukXDm5efx+8LtLNxcwjfnF1iib0xPs3IscSewCR9wE5ChqtNFZBrwCyB6VefJwDWqWuZFcKZnHKuqZd2eo6QkhZgxZoDX4ZgYmXRuf/pnprL7SBXbD1fayirG9CRV2LQJ+vWDOXO8jsa0U5DbYWcCLwCo6ipgSmSH2/o3DviTiCwXkY94E6LpbkvdcixTRvanT0aq1+GYGEmOWnVjka26YUzPinTn3nADpNp1Nl4EuYUvG4juom0QkRRVrQeygN8BvwSSgcUislZV32h+kuLi4nY/YXV1dYeO94sgxf30GmcM14T+Hfu3i6Ugvd9+kp9dB8B/inYxa+DpIsx+j9uYuBNdjsXEjSAnfBVAn6j7SW6yB1AF/EZVqwBEZBHOWL+3JHwFBQXtfsLi4uIOHe8XQYm7sTHM+sf3A/CeWeeRf062V6G1KSjvt98MHVXHT5e+RPHhGgaPGEO/zDSg43EXFRX1VIjGxL2UQ4dgzRro1QuuucbrcEwHBLlLdzlwPYA7hu/NqH3jgeUikiwiqTjdv6/FPkTTnTYdrKDsZA3nZGcgg/qc/QEmULIzUrl0VA4NjWGWuBN3jDHdq8/Chc6Na6+FzExvgzEdEuSE70mgWkRWAL8CviAid4vI21W1GHgIWAUsAf6mqhs9jNV0g+jVNWyWZmKy8izG9JCGBnj2WXIefNC5f9NNnoZjOi6wXbqq2gjc2Wzz5qj9PwN+FtOgTI8qVCvHkujm5efx/Wc3Uail1Dc0kpIc5O+0xsRIQ4PTfbtqFamVlc62v/wFbrsNkpO9jc20m10NTSAcr6rjNbccy2Vjc70Ox3hkZG4WYwZmUVFdz9rdR70Ox5hgeP55WLkSKitp6jt57TVnu4kblvCZQFi2zSnHMnmElWNJdJFu3UWbrVvXmC45dAh+9zv41KegqurMfZWVsH69J2GZzrGEzwTC6fF7eR5HYrw2L9/5G3i52OrxGdNhR47AfffBvHkwdCh89rOwd+9bj8vKgosuinl4pvMCO4bPJI5w+PSsTBu/ZyaP6E92Rgo7Dleys6zS63CM8b+KCvjPf+DRR2HBAqh3K5ilpcF118F73uMkgWvXEq6sJJSVBVOnOvtM3LCEz8S9TQcrKD3hlGPJP8fKsSS6lOQk5kge/3n9AIs2lzLDVtgz5q1OnYLnnnOSvOeeg+pqZ3tysjNB45ZbnJm4/fo529/7Xnj+eQ6/9BJ5V13lJHs2YSOuWMJn4l5kdu7s8VaOxTjmFTgJ38LiEmbM7Ot1OMb4Q20tvPiik+Q9/TScPOlsD4Xg8sudJO9d74KBLfSUJCfD/PkcGTOGPB8XYDets4TPxL0lVo7FuP6wZDsXDuvLnPF5JCeFWLOznMpLz2z1XbG9jDf2HefO2WM8itKYGGpogMJCJ8l7/HE4GjV7/dJLnSTv3e+GYcM8C9HEhiV8Jq4dP1VHUaQcyzgrx5LoLhzWl7seXsc9t05iyoj+rN5ZTtGBKqZMdPav2F7WtN+YwGpsdMqoPPoo/OtfUBI1gemCC5wk75ZbYPRo72I0MWcJn4lry7eV0dAY5tJROWRbOZaEN2NMLvfcOom7Hl7HtecPYvXOctbsreITnJnszRhjXw5MwITDsG4dPPII/POfZ86sHTsW3vc+Zxzeeed5F6PxlCV8Jq5FL6dmDJxO+j75d2d57Ff3V7FsaxmffdSSPRNAmzY5LXmPPgpbt57ePnz46Za8SZOccXomoVnCZ+JWdDmW2eMt4TOnzRiTy+9vu5j3/2U1FTWNfOofRfzh9smW7Jlg2L7dacV79FF4883T2/PynBIqt9wC06dDkpXaNadZwmfi1s6jtZRU1JDXJ50Jg7O9Dsf4zIyxuVw1YRALNpbw3kuGW7Jn4tv+/fDYY06St2bN6e39+8M73+kkebNnQ4p9rJuW2V9GJ0VmA7b1IWKzAXvW2v2nACvHYlq2YnsZr+46yvsu7Mfjr+3nivw8S/pMfDl8GP79byfJW7rUGacH0Ls33Hijk+RdfbVTINmYs7D23k6KzAZcsb2sxf2RAeIXDvNXDbA/LNneaswRK7aX8Ycl22MUUfu0FPer+521HSPLqfkxbuON6AkaH5iU0zSR42x/+8Z47tgxeOABp/jx4MHOOravvOIkde985+lZt3//O8yfb8meaTdL+DopejZg8w8RP88GjNdEtXncFdV1bCqtJjkpxMxxub6N28ReS///2vr/auJUQwM8+yy5v/89PPuscz8etBR3ZaXTinfTTTBoEHz4w06B5FAIrr8eHnoISkud1r53vQsyM71+FSYOWZduF0R/iNxz6yT64+9kD94ac3SMfo69edzHq+poDMMlI/qx8cBx38ZtYqutv+G2/vYTWkMDPP88uS++6HQPxsOSWQ0NTgvY6tXkVlbC/2/vvMOsKK8//tmlCIK9YMXuETTws8QWe9CoEFsswdhbNLFEE3tQo2JsKJpYscbejTH2GsEOxBLxq4kSe40BRUFg9/fHeS87LAsuhJ25c/d8nodnd+69M/cwO/Od97zvKVdf7b1dH3ywum1vbvewYTD//PDll97qDHyQt8UWvly7006wSPQGDOYONTvgM7N64GKgLzAJOEDSPzPvHwj8HJgCnC7p3jn5ng1XWpTzd+vLvle/QI9uHfjoq7Gsu8LC3DHyfe4e/T4d6uv8X10d9enntNfq66hvtt30OdJr9XSoZ7rP1dfV0bF++uPV16fXpn2O9Ll66uuZ7thLLdCVkwf05hfXj2Lwjmuw0JQpPPDqhxx35yuc85M+rL7UAoyfOJn6ujrq6/w4wHTbdXXkHjeXfWD3Wdpn8lZctHs8wINpvPzeuFleC5Vr6OX3xsX1AnM2cGpshClTYPJkb9WV/dna1/7Xz7/3HowcCVOnUgfeIuzxx6FPH1h44SY7q+3nl1968kVjo9s9cWJTD9sNN2xqbbbkkjP/mwXBHFKzAz5gB6CLpA3MbH1gCLA9gJktARwOrAN0AYab2cOSJs3JFy0xf1cmTWngnXENAAz/Z3mWjH554+j02zsAHHjdyNnavzIArK+rg7rpt+twZ7W+Prs9/aAx+7M+DSKn2yazXe/bC3XtxBOpHMv9r34Y5TaCabQmQWrDlRatievlu5zaVnH//fDcc/DVV00Dp8ceg549PTZsZoOuaqShwWvSlZGjjoIhQ4q2IqhxannAtxHwAICkZ81sncx76wIj0gBvkpn9E+gDvDAnX/T5V5OYv0tH1li8My99PIm91l+eFRbrRkNDI1MbG5na0PSvobGRqQ0wtaHBfzY2TvtcQ0MjU6b7nP+cMrUx8znS53z/7Oempv2zx5ua9m/6HNPZM37iZL7+dipdOtXTtVMHGhr9mI2NXucuu93Q2EgjTdvAtPehcc7/Uv8De2+4fE08vINgDtiBmTi1rWb0aI8fy9LYCB98MOv9OnSATp18UNjSz9l9b3Y//9JLcO65TbNjAF27wkkn+UxZZfWh2n4++SQcfTR8/XWT3d27w+abz/p8B8FcoJYHfPMD4zLbU82so6QpLbz3JdBitP+YMWNm+SUvffgNZzz5MSds2gNbqA590cgZT77NCZv2oO+SXefA7Lr0r+2p2L5L7+48+K+vOXajRVttc2Ma/DU2kgaB6bXsNpWBIzTQ9H5D+kxj+kxDY9NxKoPM6ban+55G3vhsEteO+oItV+zKtSPeYumOE+bwXBfDxIkTv/O6qkbC7qpjVk5t61hzTejWzWf2KnTtCued11Tuo/mgq1On4gv67rij94p97jkaJ0ygrls3X4o++ujqjuFbbTW4884Z7d5mm6ItC9oBtTzgGw/Ml9muT4O9lt6bD/hvSwfp1avXTL/g6X99xtkjRnPpXt9nw5UWZcyYMfx0i170XK56kx8qZG1f6NtP2fEHi1W9zeB2n/rEaIbt43bvukk57M4yZsyYWV5X1Up7sXvkyNkLayiQWTm105jlYHf55em5xhp0efll6r/5hoauXZnYpw/vbLQRTJrk/6qVoUPp/tRTdHj1VaausQZfbbwxvPFG0VZ9N2W1O1FmB6qsts8tu2t5wDcC+DFwa1ruyPSf4XlgsJl1AeYBegGvzs7By5wN2Nz2MWM+rXqbobx2B0EbMSundhrfOdgdPhzuv59PHn6Yxbfckm7bbEOvap4ly7LGGuV0RMpqN+V1/KC8ts+O3bNyWGu5Dt9dwEQzexo4HzjSzI4ys+0kfQRcCDwFPAacKGniLI41A7OTDVhNtHagWm21yspqdxC0ISOAbQFacGpbT4cOMGAAnx98sBfyLctgLwiC2aJmZ/gkNQAHN3v59cz7w4Bhc3r8smYDlrVsRVntDoI25C5gy+TU1gH7FmxPEARVTM0O+IKWKetAtax2B0FbMROnNgiCoEVqeUk3CIIgCIIgAOoaG4upn1YGRo4cGScnCNoha6+9dr5tZNqI0LAgaH/MTL9iwBcEQRAEQVDjxJJuEARBEARBjRMDviAIgiAIghonBnzthNRoPciRsp7zEttdE3F3QcuU9bosK2U93yW2u831q5QnpijMrK5sF1PF3lTCATPrUaxFrads57qCmXUAP+dmNr+ZzVu0Ta2hcn1nrpUuRdvUWpLdEZA8C8qoXxAaljehX/mTl35F0kYraXYhzQ+sD4yU9HmxlrWO1Fh9F7z24kmSJhRs0ixpdr5XBZaW9HjBZs0WZrY7fs6fknRe0fa0FjNbDq/vJuAGSZMLNqlVJIE/DHhJ0kNF21NNlF2/IDQsb0K/8iUP/Sqd91EUmRv3WOB2YBDQt1CjZkLWqzSzDmZ2IXAm0B1YGvhRUba1luRdLmNmfwSuBfY1sxWLtqslmnvxZraimb0ArAf8G1jTzKqygWOza6XOzI4HrgFWAw4CqvWc1zXb/iVwJdAP+EUhRlUxZdIvCA3Lk9Cv/ClKv2LANxOaL3+YWb2ZHQH0AvYBXgY2SN5EVdB86SOxCLCUpH6Sfgk8itu9dBE2zowWRGcB4FzgJeDQ9PImZjZP3rbNCjPrkHmYVmxbBfirpCOAs/CWfgMLMrFFKoLT7FpZGtgE2ErSjvi5H2BmXQswsUUyyzaNmdd6AzsAJ+PXypdmduhMDtEuKKN+QWhY3oR+5UvR+hUDvhYws46SGpOHtoqZLZEurLWBRyV9AFyCe0DfLzpYPC3RZL34gWZ2i5ntAXwKfM/M1k0ffxvoDfywEGNbwMzqMravk4SnDlgd+JOkkbjIb43bXihm1sXMFgWQNNXM5jOzS4E/mFk/YAqwfXr/Q2Ay8H9mtkFhRicq8TgVwTGzH5jZ5Wa2PjAV+ArYMH38FmBv4HtF2JolE1dUuS9XNLPtzWxhoCcwRtI/Jb0J3A/slN5rd5RNvyA0LE9Cv/KnWvQrBnxMG3V3MrMDACRNSTfFMcB9wFlmtidwMzAgfeZVfHlhI2CZgkzHzAYC/dPvy5jZIGAr4B5gV+BnwCnAxemG3Q8Xoj5mtlAhRrutq5rZNuA3gZmtYGbXAVcB5wErAXcAJ6Zd3gOWwz37woJxzawjHmexYNreCLf5TeCv6fe/4V7a8WZ2JO51fgVsXITNFZKYn5h+X9TMDsKXPSYAe+Be5gPAEeYxR/1xjdgt7VPIwMDMtgQ2S793SN7v9cCB+D35FLClmfVND9reQGfgkCLszZsy6xeEhuVsc+hXzlSTfsWAj2mj7snAFwBmtjxwNbAY7h3cgq+tfwqMM7MbzGMcHgLWAXLPYjKzTsn2m4DbzWxZYHPca79T0g3AhbhY3gacDuyPT9GfAyws6Yu87c7QCHwMYGY74ksfjwHrAv8C9gRuBPqZ2Q3Ab4An8RtnUt7GpodqB0lTcDGfZGZr47MmPYDLJP0ZuBc4FdgSeAtYHtgRF9RP87Y72d4RQNIjkk40s6XwB/3hwBBJR+LLHz2A5/D/w++BJ/DrZ6XKrFHOdlcE+l3gcfPszN3wGJdNJQ3AY3TWAH6Le/PPAp/j9+/UPO0tijLqV7IzNCwnQr9Cv6CdD/hsxnTz+8zsRuB9YBx+U04BXgTeALaTdBBwN/6HuxL4Eh+N50ol88jMtgMuxW/ip4FR+AW+oKRHgE9w7/gveCzGmrhwvpD2z83rsUyMS5q6rjOzwcmWemCcpInAI0A3PJZkc2CEpG2AvwMTgVy9Y0sxF2n5Y15JU/Gg902BkcAImmJcjgd+CayMi+TzwMX4g3V0znavambdk8hXXtsU+Ieku4ExQJ/01jO4178R7n3eh/9NLsAfYtlYmTYnLZFVBLoe2B1/gL6FC+iP03vHArdIugMfCBwJ3AXshN/DNUuZ9QtCw/K0OfQr9AvacVkW85TzAyRtYWYLAicBx+EXx3W48BwFXChptJltgi+HVJYbdsVv5pMlPZiDvZUg1UrswjLArfjNegrwJ9ybnIB7kMMl3Zu85smSPkpTy+sBN0p6q61tbm5/xvaN8fN3NO4J/wDYFlgCuAj4Dx5Y3lnSReaZVxsD3wCHS3o/T9uTzfMAg/Hsr9vxpYMzcHFZHD+vN0h60czWTNfMvPjMSg9Jw3K2dyNcZK4DxuPX9wv4Q/V63BMegQcK7y/pk3R9SNI7ZvZj3LO/UtKIHO3OlrJYDA9i7oknGSyOe+3dgW2AQyVNNLOb8aWezvjMxB7AmZLuzMvuvCmbfiWbQ8MK0rDQr9zsrmr9ancDvjS1OyX9/go+vfoh8CtJh5pZXzzuYm3gV0BXvBzAl8kzqhynr6SXcrI5exEtn+ztBjwMXCLpihRLchBwDD41PBYPFv42DxtnRjPbV8GnrsfjHuVAYCnc29kHjx+5G7gJF8pJab+FgcUkKW/70/d/DxfHx/EH6gg8PmcnYCFcfNYDXszr4TkzKtd3Evhf40syS+Ne4yp4DbMz8FmU3sDlwLOS/lCMxU72Osm8dhhwArCipG/MY7vG4+d7H+A1SRc226ebqrw+2/9CGfUrfV9oWEEaFvrV9pRFv9rdgC9L8gJOAS7Dvd/9JX1qZucCC+Oj7m2BaypimeIg2jw2KHnDK6dlA8xTy0/BPcmH8KWYF/GLf8vkKdyJC+gdkj5paxtbS/IU6/CYiwUkHWdm/YGzJK1hZiNxEa0DvpL0t8y+M9xIbWhnnTz4uvJzJWCFZNeFwC6SXjWz0/HYi33wGYoz8WWGL/OwszWY2Qq4R3kA8LGk35qXsbgCXzbYH7/GDwe+yesct2DndH9fM/sZsAVe7PWadG0MknSfmW0G7Iwv37wMvCvpvy0dpz1QzfqVvis0jPyuzdCvQuwslX61uwGfmW2Oew4T0s8/4oHNz+JxFSPxIOdTgX2L8C7NrFv69TDgkTTN3h+PTzgBX/f/CbAXnskzRdJRZrY4HkNS8SqzcQSFYJ4duBPu9a4J3C3pifTe3/Dp+deB9SWdXZCZLZ4rMzsBn36/E19iWkrSUem9CfgSzQeSPsrZ3KyNPYCpkj5L21vjcTif4ue8B7AocLWkN8wLfG4jaYCZLV1ZWipiwGRmawGrSro5bZ+CP4iOw2eprsbjWA6X9IP0md2BJzN2F36N50kZ9CvZGRqWr42hX6Ff30lND/iae7NmtgQeqHwe8IWkUWbWBw+a7GUeK3I2cLqkf2T2y+WPYp6NdCSeXXcSMBQP+D0GD5rtjMcDfIJ7CR/iU8R74xlgDfIaP9UgkqvgZQg+AH4t6SozOxVfxrkE994OB76PZyy9V5CdzT20Q/Dsv8Hp/7AvLuav4w+m+yTdZmarZ6+RojCPzdoJF5lv8TT/6yT9Jb2/Dl776xN8uakTsJK8LEdRQpldIvsMj9v6Pf7wfwcvtLsLMFbS3mY2Gl/2uzxPO4umbPqVvis0LF8bQ79Cv1pNTWfpZpYx1jKz7vgfYglJjyax3ACPYXjdzC6X9K6kgZUbwZqqvrep8JhZZ/OA04Np8iJXwr349/HU/wfwLJ8b8MDr/nhMyGhJv5I0pXIR5imUSeCbv7YofhOsjAcKb5ve+iMu8KfjXtyZeAr9cmm/3K5HM+ufljw6pe3dzVsgfQMcbGZLpaWosfgUfXe8pMKC6RCvpf1yr+1kqYhn4k08ePwO4P9w+19Mn+uOF1BtwONgFpL0TUUsYYZK9W1K5n5qMO/8MD+ePbqNvMDrkvh10UXSpsBb5vFeA/CBTruiLPqVvis0jPw0LPTLCf2aPWpqhs/MtsCnh59M2zvgmWpj8WWPrfEYgJsk3WhmJ+PxFkPMbBGlRuJ5eQ1JaE7Am2r/PN0IXXBRXA2Pd9kA2F3Snmb2e+BrXChvkzQkc6xcPZ1k+9G4l3s13qh6Q+D9NPV+AL6MsCdeiuBISY+lfbfAU9O3wL2inSR9nJPda+HXxBJ4HMUEPCD4JuAUSTeZ2Xn4g3X3ZOuJuNA/KOnrPOxsieazHmn5qzv+8FxWUqXe11N4bM7eeED5ifjMyZQWDps75rFnWwFDgM/w5chD8fpTh+MPgfXx8hWHSBqX9qvpOL2y6Vf6rtCwHDUs9Kt4yqxfNTHgM7P5JH1pZgfjo+ndcU/hDuAPkh42szOABYBh+HT8J3gw6zGSXk/HyVMoB+JBs68AZ0j6j5ntDFwgaWkzewCvIfQavkTSHS8++gxQl7mIcl/6SLbvmWz/AlgVF5yf4BlI1+NLNzfiwcKLAidI6pv23xjPxhsP/FZtXDw1ebGdcW98TeCitKwxABf4YfiS03hJx5oHlz+G38wLAr+T1wObdrycZyDWBD6T9G7a3gp/UM0DnCTpCTO7FngQb990IL6M9m/g92oKmi/iWsmWsuiIL0cujV8b4yQ9Yl609nf4gKYDXrLgdWUC32uZMupX+r7QsBw0LPQr9GtuUeoBn3mq+2nAssDTks5MHsJjeB2qX+Fez4fp86/j8RadgeUkjSrI7mOTbetmboKlJH1gZo/hsQrv4zEXv8SXco7FY3P+lT5fiLdgZmcmm1ZRCvY1s9vxbKp+uCDdJM8GGwJsIun7ZraypH9mjjOfcs4KM7OncLGsBNmeDnwt6QwzWw8/38MkjTBvKr8CHmBbueGLEJzN8SKi50oaZJ7p9XM83ml3fBnkaDwu6jK8OO0QoJtSTFFBdndSU2Hdznj81j9xYXwGn1VZE/gH/iD7E15mYaDUVLqiGrzitqKs+pVsCQ3LWcNCv3K1uyb1q7QDviQ4P8LjQu7D187/hKf6H49fUL8H/oxXPd8eX1rYX5nMNcu5TIE8Xb4n3sR8FfM4gPNxb+Go5A3dhi+H3AHcJemaPOybFRnbVwCekLRcsv10vNbXofgMxFF4UPN8eLDzQ2rKaCtK4DvIq8zviBe1/CseVPsv4DRJH6f/y8HAGpL2amn/vO1O3z0vfv1+gZev+AJ/KL2LL4utj3v4F+E9RjtKujizf96zPj/EuwpMzLy2FX59/B6POeqLd4B4DB8EHI7HE39b2a8Ikc+TMupX+r7QsPyTBEK/8rO3pvWrlEkb5tlo/fEb8Wx5EOckoF7S0/hIfAt86WNZPEi4Lz71Pl2Zgra8EdJU/HTB0+nmewe4zbxw6q3AGKV0eUmj8SWQ04G9skJp+SY1zMz2t5Ptb+PT2v+WdKCkSfK6WZfgGWFvSDqhIpTpGLkH2KbvnZp+3gV8hBerHSzpUKW4G0nj8YfU4ObHyvmBur+ZHWBNTeEXwWd77sWvh9fwh9Bakg7Ai6luDfSSdHlWLJPteZ7zBfEH0qFp+8Fkw0P4NbEx7hG/jS+FDcIDsifjhYEnWgrorkaxnFuURb+SraFhBWhY6Nc020O/5iKlnOEzb7rdH/eQb8IbJG+Jx14sjbdUuRcPsn3WzHomgco7Tm/atHDmtWyl/FF44c5b0nZnSd+aWRdg/iQ+hU9pz8T2d/Hze3vz95rtk7eHlk2Z74QHwTdkvOTV8biiPeStmqrGEzOz+fDrtg9ws6RD0uu34PEtK+BZYZ/j3vIreID8iZLeyBwnzzIcy+OxTGNxUeyEL43thQeTvyLpeDPrjXvyg/C2U3vgy01/ycPOaqIs+lWxNTQs12dG6FfoV5tRihm+5l5huomfx4OWbwcek7SipIHAMnjg5C2kBtUFDfaOAa5Nvy9lZhea2QLytjGVtPQLcG+t8v+qeO+T5L0BcyurMAe2n4LH8JBsbEko63I835U+nRWxPBa4BjjOzBbKeMn/wHsyDk4Pp6oQSwB5PNBJeBzLpmb2CzPrhTcv74Zf81vjonkpcKekXeQZhXWZ4+QllsfisVqf4PEsC+Ei/ha+zLE3sI95w/bXgKm4l/yGpN+oqdZWKXRoTimjfqXvCw3LScNCv0K/8qCqDc2IxQw3nKQP8On4v+GVxDGz/fFR+lRJQ7NT8TM7ThvY3Cn9OgxYx8xWxgNSx0sal7zOys17LbBIsjtrZ2Ne9maZTduvBJY0s31ndrw8blwzq2vuEZr3MFwG99S2Ao4yr6tVYQheyb0D1ccYYDheBuLfuK3b4ktkw/HYl0UkXZqWeCoDgbwfqAvi53hnSUOBwyT9Oc3o3IMHOXfF6089bGbP4i2zhiiVhmj+kKs1yqhfyY7QsERb31ehX6FfeVKKJV3zgp574enxo9RUkHQhvJL41via+n+A85TKFBSNeZmFXfELaH1gHzUFdXaSNNk8+PmDlrzLImml7cvhNasKsb3Z8swS+NLY1XjQ9QTcodkY9ywvkPS5FRjAXMGagsfr03LNepKey7y/Jj7zcDHesWAoIEn9W1qmKgLzRvfHSNo8CV9d+r/0xBuerwRsIOkgM+sHfCrppbRv1SxD5UFZ9QtCw9rYvtCvgmiv+lV1A77mF7SZnQSsh4vlZOAFZVLh08V1EnClpHvTa4X9QcwzqQ7BW6ychLeKWRR4Cc/sGQucIw+yneHmKcLmCtVue+XGBA5WCu41s3mAk4FV8CKdt+L1p84CjpN0vZkNBf4s6fFmx8t7iWwevIDo5MxrHXCveDs11VObFxiIt2vay8zWBSZKejm9X7jgmFlfPKvuEkmvp5mVKXjQ+Lu4N38AcLYyfSOhegOa5wZl16/0/VWtA7Oimm0P/Qr9KpqqWdLNLH9MNbNO5kGS4EGUo/GmxIcDp5kHrlZ4SdKOGbHMbXrYpm8Rg3nvwp/jlcGvSMs2g/FaSQPxrLXV8Bo+QKFLH6W0PX3XEWa2X3ppb7ylzSG4R/k9PNbiemAt89pVjXg19JaO1eak67kDXtS1zszmMbMfm9naaXBwAx7jUrHra7za/GdmtqKk5ytimd7Ps2jqzDRiQvq3abrnJie7VgBek/SKpCMqYglud5nFclaUUb/S95VSB5KtpbM99Cv0q0gKn+FrPto3b5Y8DM/kuRm/0FcHeqTXhwBXS3qh2XGKqvE2L95v8U28TtYJkvql9/rhdbWGAvdLOjVv+2ZFWW03j7k5VNLaZnY58LC88vziuNiPB07Fq7W/rwKbhJvX/NpT0qlmdhn+wBmNx7f8FNgOr94+VNIL1pSNVw2zJdkq8+vhyzL/zbzfD/8/fIN7xPvg3vFRkr5Knyn8/9GWlF2/0neXUgegnLaHfuVD6NeMFD7Dl/2DmNlFeFuSPXFvrDdex2csPhV+CT49P0OMS05LitunJZjK9t548cVfAU/gN0InM9s0fWQH3LP/IXBuZr/cz3sZbTezZcwzvRZL24ua2aXAusA8ZvYL/KH6u7RLHf5g7QusI+khSf8wD4zO9Zyb2WJm1kNe8+sCM1sEF5XVcIE/Hy9Iujt+nn8E09XcqmTr5drc3MzmTTMllbplq5nZTfg53tDMFqh8Vt6u6Rg8xmgj4FRJB1XEMvv/qFXKpF/JztLpQOY7S2V76FfoV7VRyIAvOxVvZguY2c/xXovf4OnR3fDU8/eATfCp107AvZJ2Vf4tubqnX9cEjkxT3IvgcQqHSNoPeBUv2DgYOMXMHsLTvJ+S9LWkr20WWXth+wx2/wZf1ugm6dP08nZAd3l9p5/gQv8s8ETylB/ARehtvP3UNC+vgBt3BWComfXAY3Ouwot2nooPCsDbaj0CfIsX8JxBIAtYQugGDDGzFc17cu6Lt8jaAY8zWqXyweTN/0fSdZIOk/RMer1wR7ItKZt+JTtLqQNltT30ywn9qi7y9hqmxbmk7Q54QPOewK2SfoOnb6+NX0DP4a1uJko6V00FMnNJR08e2nXAlWZ2hKRTcBHZFr9w3sS9d/Cp+F1wj/OnwLGSfqbUDxByF8lS2m5mA8zjVhYHdpd0TubteYBRZtZNkvA4kUsk/QIvYLs97uWvDXyV7C4kHkrS83hm4HN4ev9zuOhcBvQys12APpJewWcf+uRtb4WswKWHU2dc3DfDuz7U41X8OwO/MbMd0mentnScWvOKK5RNv9J3lVIHymp76FfoVzWT19T2dCfSzH5qZo8Cl8vbljwFrJi8g/vxGjibSRoBDFJqWG1NWTJt3k7IvMH2Vfh072nAD80ze64GdsNvyBWALcxsSeBAvE3MVEkfy9sL5e4tlNn2RC9gPknHyBuxr2Nm95nZqsCHeLr8D81sNXxGZYF0XcwL/BqPkTpK0si8DLamdjqVgUDvNAMxFJgsb3J/e7K9D/BbvLr7lukQiwDjkkeaG9ZUA6xyX65uHhN1LX6uX5c0DC8CfApeRb87nvE4A7UqlGXTr8p3lVUHymw7oV+5Efo1+7R50oZN3yqmHj/xS+Ie2Z/xkfed+Br75ZJGmNmewOMV78xyTuM2sxXxpt9D5Gnx9bgHdp6k58zsT/jFMxm/AfoBL+KNrP+Tl50tUVbbbfoA27/jYrMK7u3eIunq9N5P8T6jq+P9JO+r7A/0kPRRjjb/APiPpDFpuzdwNrAEcJuks8zsYrzo63HmxWn7AzsD86opMHgvvFzHmLxsb/b/6IHff5vj9+O5wABgP0lbmDcU3w8X9vMlPViEnUVQRv1K31lKHYBy2h76FfpVBtpkwGepn2Jmez7gTDymYVlgHD7S3jH9Ww6PgRmP3+SFFvBMHs/uuKd+O54yvxbeEuZr4ATgOmB/eQ2fZTLiXmhWT5ltr2BeFPN6XOAHZ14fgFdw/xxv3VR5ELfYA7MN7VsWOB4X9EHyfqeD8IDmK4GP8RpOI/AlpmfwGKOrgTfTck52xifXZRtNXyduZ7w0xK14PM4heCPwc8xsOH6vXg48q9SovdYpu35BuXWgzLYnG0K/2s720K//gbk+3W1e3fwOM/ujma2fLq5r8WDVZ/A/ylbAwpL2wNO7T8QLk56jpsrjuWb3ZEkX1CO4p3MDcI2k1SRth8c1vI83g670unwvTS8XLjZlsL3yt838XC15m5X/w/24yFREfHszexAPFh4v6RulhuLp87mIZWap6UpgjKQtJVXqY/0Db3z/pryMwrN45ldXvMvCPZLurYhlsjv3uk6ZZZvN0rLNKLwa/vuSPsRbfS1lZhviS2d/BR6tiKXlGH9WBLWgX1AOHZgZ1W576Ne0/2foV8mYazN85vWnzsQDaS8CFsQz1brgdXrGpNfrgEF4Ns1ipKri1eShVUge2Z6Sdkvbv8YFZ0+lFj3VSjXabh7jsZC8IGr29YuBv0m62czmkTTJzNbARf9pPAB+qKTh+Vs9nZ2VpaZzJN2YXhsILCjpEvP0/yckXZY+ewC+tPdw5hh5hydUOglUfq6OLzeNxWemBuOxOF0k/cbM5gd+AXwi6aqi7M6bWtQvqE4daC3VZnvoV+hX2ZmbM3wbAsMkHSLpVXxaeBjey/BmYFVgFXkV7r/gGUtXydOh38tMD1eNWOLewmtm9oCZ3UlaulFTP8ZCvfjvoGpsN7PO6deVge3MbH4zO96aqs0/ivcTJYllfbqG/gA8KGnnilhasSnz/8Yf/uuZ2UZmdiMez/JMev9CYB8zW03SW8CZWbGE/KvMV74v873bADdLOhC///fDg+PXNbPt5C2nLm2HYlmL+gVVpANzQFXYHvrVROhXuZmbM3yjgMPkQcsb45lVT+JFL/cD9sfr9ZyvZoG11eYVZ0lT9ccA50p6Kr1WtfZmqRbbzYOsj8QLdA7DY0OG0yQ2/wB6Atfg10hdcxur5ZybZwQOxav6H6gUAGxmSwFfAEcAD0j6e2afIns71wHHAp/g3v3P8Piob4EL8L/JLcCmePmQu7L7thehrFX9gurRgTmhGmwP/Qr9qhX+5wFf5UI2s5Px9f/KVPF8kr40s9vxjKoX8cDb65XJequGm2BWNL9oymBzhSJtT57sRcBwSTeYx0J9hcdU/BN/gC6Gl1PYI31u3zxs+1+ZyVLT3sDJWcEpwK7KvVhZ/tgGH7AsjNeDexjPbNweF8lXcNE8TdJjRdldJLWuXxAaNoffG/qVv12hX23MbA34zGsHfYoHnk42s06SJqf3DsHbBv1ZqVGymW2Be2eD1Kx3ZNmwZtlBZSJv2zM37AC8tlQ/vCDtIOAh3Iv8QF4jCTM7Fi+m+mtJL+Zl55yS4kSOxL3kiXj/xTPkQcOFeJbNH4Rm1gVv4XWVvA9mf7yl09/xbNJd8Ti1C+X14mqe9qxfEBo2G98V+hX6VZO0asBnZssBJ+H1p/6NlyQ4XNIX6f358FF3V+DneCDlj/Bp7ksk/SVzrJhmrVFaEmUzuwIYiVdqvxIvtbATXgX9Q9yLrpRaGKZMZfxqJrPUdE42PqfImRMzWxRvffQhXiNuFfw+3dTM5sELpjYCZwDzSBqX9su9vEKehH4FrSH0K/Sr1vnOAFIzWxqPTfi7pG3x9fQv8D57Hc3sNOBuvIDjMLwwaXdgtKRtK2IZf5TaR00p83ub2VAz6wOcg7eeehv3zo6RdBue9bgwLpZr4w/c+Yuwew55WtL2RYll8+BvM1sPuAdfbnoJj3cZDtSZ2R6SJuFdIJ6TNDEjlvUqoLxCXoR+Ba0l9Cv0q9b5zhk+M9sD6C3phMxr8+Aez3547Z7nNZOihmVeRghmTfOHoJkthhe5/Bj4AOiB917sh8+WnI4L5wqSPsscZw2gUV7/qVQUsFxej5+ryjlfSt7CqR+wsaST0+uX4cuXDwA3SVo2LxuridCvYGaEfoV+tTdamyLeMbuRRtt3AD+W9BdJHzcfsWc+G2JZgyShaEyxLp3Sy4sA90k6GJiElzHYDK+CvikeI7VuM7Gsl/RqGcUS8r++JTWkc76Smd0KXGtmu+Lnud68GCl4Ydpvkwe/DTQ94NohoV/BdIR+OaFf7YvWzPBtiwdLXiNpbDrpR+I3QAe86OhTbW5pUBWYWY/sbIh5duNqwMOSrko3787AxXiR1K3welSvSU1V2oPW09wLTwkG++IxLRNwQfwW788pfKlpQ7xm2ZP5W1w9hH4FWUK/8if0q3pozQzfI3j6+S5mtlyait0W93buBv5r7bxdSXvAvC3PnnggLWbW28yuwjsRXAoMMrMNgI/wLKpPgI3xkhaPh1jOPpVZp0xs0Q/TcuTLQB9JD6UMtXfwGYnj8aXKt4ENQiyB0K+A0K8iCP2qPlqbpbskcBSwAp4K/TpwqqRP2tS6oCpIXnBPSfunTKplgL64l3aUpFHmPUj7Az8B7ky7xuzJHNBCbNESeIbgQngJhQPwivkfS/qtmR2EC+ihzY4T8WeEfrV3Qr/yJfSrepndOnxdgWUkvZm2S1PAM5h9bPo6Ze/izbR3wAOYbwO2wNPkz0xxGW8Bv8FrmWWn8KOUxRxgZsvjWaPvAG9Iuj49vDri1fLfx+OLFgDOlneJmK73ZDGWVyehX+2L0K9iCf2qPmarr5+kb0Isa5/MVHxFLLfDq8xfgMezLIRnsL2Sft8+7boVcE9mCr9DOk7cuN9BdlkxLT/tgp/rUXi5hy3T29cB38dnKY4BTF5eYQQ0nes45zMS+tU+CP3Kn9CvcjDXeukG5aeFqfiOeO/Ib4E/4m2FfoYXqN0abyK/Jp4+f31l3/DO5pxUGuIrvKp/X0n9zaw38EvgXkn3m9mheJzRdcCXwDax9BS0d0K/iif0q7qJAV8wA+adCQbj0/GDgD9KeiF5yoMlfc/MrsNLW/xNzZrJB7OPmW0GHIbPut+NP6T6Ak9IeiBltm2GF4GdoqZ+rgMAVWaugqC9E/qVP6Ff5SAGfO2cFlLmf4h3I3gRT5sfDIyVdFlaKvkW2A2/kT/P7BdecSsw7/xwHJ6V9r6k881sBeAS/FxPxWOLFsKz2foCpwHzAEtI+ns6TnR+CNo9oV/5EvpVbjp+90eCWiYTr7IjHkQ7Cp9uf0lSg5k9A+xgZhsCi+Op8/dJ+ibtV6dobTNLMoHI+wF7AXcB7+HnE8CArpVljSSqa+DBzqsDS0t6FS8ZAYRQBgGEfuVB6FftEAO+doaZrYy3Dvpa0lQz+z5wIvANXqB2J+BmYCMzGyHpniSa2+H9F8ek44RQtpLMOVoVbwb+crOPjAQ+MLP+kv6K1wrrKulxM3ta3hkiCNo9oV/5E/pVO8xWlm5QXsysZyo0eilwEzAwvfVjvAvBQLxp9XmSbsernW9rZt0kfSrpSkljUgZWLH+0ksrShZn1wmNYXknbHdLP5fDswCuBk8zsHrzK/J/A24BZtBQK2jmhX8UQ+lVbxICvHWBmPYArgBcl9QPOBG5Pb98P9DWzP+GNwvua2T7ALXjsy4TMccIrbgVmNq+Z7ZZ9Lc0sfIa3bQLonH6uAmwv6RE8g/AMSQPSEkhl3zjfQbsl9CtfQr9ql0jaaAeY2U7AmpIGNXt9YTyF/lA8wPZj4GpcLM+NG3X2SYHhK+Pn8KCUHdgBaAB2AfYABlYeRGZ2AfCWpAuaHSeqzAcBoV95EvpV20QMX/tgCrBcpdhsuqnr8Kn4TunfUOANYH9JLxVmaYlJMwgNwBtmdh/wc+CFTGD57Xh/zitSXNHWwId4zNF0hFgGwTRCv3Ig9Kv2iRm+dkAKbN4ZuEvSs5nX78ZjXv5mZn0qwbgp5qJy8wezgZmtApyAh0usDAyRdKeZdZQ0JRWDXQuPh3la0vC0X8QVBUELhH7lR+hXbRMzfO2D0XhtpF3M7CNJY82rnc+Lp86TEcvKVHzcvN/BTJYtDgbelXSSmf0EOMjM7kli2UHSFOD59K9ynGjzFQQzJ/SrDQj9an/EDF87wcy6A78GegFL4NlWZ0l6r1DDaoAUYzQBeA44FbhV0vA003A7vixyZgv7hVccBK0g9KvtCP1qP8SAr51hZl2BnpKUtsM7ayVm1gWvRfUvSRNSSYLrgb/jleRH4iUJ3sd7eC6N95B8Hzg24lqC4H8j9GvOCf0KYsDXjgmxnD1SeYiD8ODwEcD3gWUk/cHM/gyMA24DvgesDSwA/DYbdxQEwdwh9Gv2CP0KYsAXBLOgeZyLedP1nwHb4DFEl+EFXy/EveSPJT1lZstKejezXzycgiDIldCvIEskbQTBLMiUJNgZ6Apcg5eBmIh7yqOAp4APgPOA69L2e2m/DpKmhlgGQZA3oV9BlpjhC4IMlTZAlWDkVNz1ZrzA61jg90B/vDn4WcBiwI5Ab+B8SS/mb3UQBEHoVzBrYoYvCBLZZYtMBlpvvJL8wZnCr8/j8S93ApcAZ0uaXNkPop1QEAT5EvoVfBcxwxcEzTCzU/Flj+fx+JYHgF6SpprZsbin/CCwiaR7MvtFnEsQBIUS+hXMjBjwBe2W1KKpUVJj8mwXAC4GxuCxLqPw9kEH4oVc7waOBi6VdHvmOFGPKgiCXAn9CmaXGPAF7ZJmyx9LSfrAzLrhhUcfwvt0rgXcB/wB7yv5f8CVlXZCQRAERRD6FcwJMeAL2i2pev8gvETBjcATwBGA4Z7w48DpeDDzp832Da84CILCCP0KZpf6og0IgjxIyx/Z7Q3x8gOv4o3ZNwHmw5dBHsaDmp8BxmfFsnKcEMsgCPIi9CuYG8QMX1DTtFCmYG3gZbzI6BfARpKeM7NfAMsCt6bXd8V7So4twu4gCILQr2BuEgO+oF1gZksAJwObAsOBc4B+wK6SNjezznij8Gsl3ZHZb1pgdAFmB0EQhH4Fc4VY0g1qDjPr0Gy7H/BH4HWgL94s/AhJlwCLmNn+kr4FDm8mlnWSGkIsgyDIi9CvoK2IAV9Qc2TaCf3IzAz4F9AAjEsFRh8GOpjZj4HDgWXSfmPTflF8NAiCQgj9CtqKWNINSo+ZrQx8DHydiov2wftCfg4sAVyKZ67VA1cC7wADgWUlnVWM1UEQBKFfQX7EDF9QWsysp5ldhQviTbgIgveGfFTSbsCJwHp43MvyeCHSeuCOrFg2z4ILgiBoS0K/gryJiyQoJWbWA7gCeFFSP+BMoBK/MhGYApCKjK6UXrse+LekqZImpeNUyhRES6EgCHIh9Csogo5FGxAEc8gPgOckXZy2R6QWQ/MD/wVWMrOdgfHA/MCElirMh1AGQVAAoV9B7sQMX1BWpgDLZZYy6sysE7AF8BXwKLADsC9wjKTRhVgZBEEwI6FfQe7EgC8oKx+mf+uCe7opg21v4CNJDwKHSRqYCpPWFWhrEARBltCvIHdiwBeUldHAf4BdzGx5ADM7FJgXeAtA0hfp9fooURAEQRUR+hXkTpRlCUpLah7+a6AXXr7gFeAsSe8ValgQBMF3EPoV5E0M+ILSY2ZdgZ6SlLbrI5g5CIIyEPoV5EUM+IKaIsQyCIKyEvoVtCUx4AuCIAiCIKhxImkjCIIgCIKgxokBXxAEQRAEQY0TA74gCIIgCIIaJwZ8QRAEQRAENU4M+IIgCIIgCGqcGPAFQRAEQRDUODHgC4IgCIIgqHH+H1hFuBG4SH8QAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAIpCAYAAAA4ruUSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACcm0lEQVR4nOzdd5xU1f3/8ddsBZbeBQtNP4BYELsiYK9R0zXWaIyJftO/JlHT2y/JN8aYRE1MYkmi0dgSewMUuyAWZPkgIIogvZeFLfP749yBYdlddtnduVPez8eDx065c+czw8yZzz2fc85NJJNJRERERCR/FcUdgIiIiIi0LyV8IiIiInlOCZ+IiIhInlPCJyIiIpLnlPCJiIiI5DklfCIiIiJ5riTuAERynZnNAgw40t1fim67C/gsUAV0dffq6PYVQE+gv7sv2cXnGwv8BRgEvAHcBNwK/MndL2/Vi2lZHOcBVwD7RTfNAP7o7n9vYNuzgG9G2xYD84DbgN+7e00m4m0OMxsEvFfv5hpgCXCru38vbdsksNndO7TRc88H9gJ2c/fFDdzfps/XwP5nA3sDn3X3u9NuLweWA52BfYFHm4qzHeKan/58bfk+mFkf4GPu/tfo+m3AhcA57v6v1u5fJJuoh0+k9V6J/h6Udtsx0d8OqdvNbAgh2XtvV5O9yE+AfYB3gWmt2M8uM7PrgL8DhwCzgErgYOAOM/tNvW2/DTwAHAm8D7wGDAeuA27JYNgtsR74T/TvaaAbcK2ZfSnGmP4D/Lcd939f9PeserdPICR7le4+E3gyiqWqHWNpSpu8D2ZmhM/up9Jufj3a/4et3b9ItlEPn0jrvQxcAIwBMLNhwACgjnBQdSQhKRwTbf9SK5+vb/T3LHefY2YXtXJ/LRL1MH4d2AKc6u7PRLcfCzwGfMPMHnD3581sf+Bn0bZnuPuT0bYjCe/DRWb2/9zdM/kammGhu5+VumJmnwLuAc4g9KhmXHo87eRe4DvAKWZWmuqVJrzm1P24+2XtHEeT2vB92I1wAJa+7xuAG9po/yJZRQmfSOulevhSCd246O89hLLukcBvCT1gEBJEzKwT8NNom56E8ux33H1ydP9thPLSj4DLgI1AJ8IPFcC7ZvYjYH79gMxsQrTv0cBa4F/Ad919k5m9Ft3e291Xm9kNwP8AP3b3H5jZPoADk9z92AZe70XR39tTyR6Au080s9uBL0TbPA9cQijh/iWV7EXbzjSzU4DVwOwo5snRe3c1ofw7y92PNrMzCb2aexN6lZ4BvuTuy8zsh8APgC8DZ0aPfxM4J3pNlwJrgKvc/a7oeU6N3hsDNgETgSvcfVkDrzWlPPo7v7ENzKwX8GvgY4T/pxeAb7n7m2nbXAx8F9gT+AD4lbv/pYF9DQamEnoWP+buj6aXMtNKz48ATxEStU7AX4Fvunsy7fl+RPh83RG93m8AE1KfsxR3nxaVTwcRevVS/1+nR3/vi/Y5n+1LrBdEzz+Y8F7/F/hq9FkbD0wCnnD3k6PH3wx8EbjY3W8zsy7AH4FTgK7Re/zThoYGRI9Pfx9uI3xH6kvtu8HPDlARxQVwkpkl3T3RUEk36tX9avT6PgCuc/ebovtSr+/G6LVfThgC8Gt3/3VD8YvERSVdkdZ7i5CMjTSzDmwr5/4OWEdI+GDHHr57CT1ltYSk8RDgKTM7qt7+v0dIil4GHiaUGyH80M+qH4yZHRnddzihfFpN+MFKleweIyRh46PrY6O/qec9Lvr7SCOv98Do73MN3Del3jaHNLatu7/o7jNTyUmaHxKStpeixObfwDDgRULy+gnCe5LuOqAXsAo4DJgOfI5Qat4d+KuZdY3GbN1HKCk/DywmlPT+Vm9/A83swejf04TS81xCb+UOzKyMkExcDKyM4j8eeC7q8cXMToueZ2D0PvUDbjGzj9XbXSdCCbwnIXl7tKHnjIwFvg/MAboQPk/HR893RNrzTQXOJiTjTdmurGtmBxCS03fTE9e0170/YSzmboTEZ0P0HL/ayfOk+w1wPuF9e4Hwf31r9H+1M6kS7H+AV9NuX7CTz87G6LkAlkaP30E0HOFGQo/9C4T/sxvN7Kp6m55H6OWfA/QBfhkdOIlkDSV8Iq0UTTqYRugx35/Qy7SekGy9AAyIfnzGEHpY3oySulMIidxwdx9H6HkoAX5c7yn+6e7j3f28qJy2MLr9skYGlv+IkNBdHu13OGG83ylROTaVQBxnZt2imJPAYWZWzM4Tvm7R34Z6xJbW26ZX9HdFagMze8PMkmn/vlNvH7909+Pc/X8JyfB3CeXr4whJC4Qem3SvuPshwGei612BI9z9MMKPcEdgKCEx6UBI9j5N6On8JuFHPV1nQo/hmYT3owOQAIY08JohJI0HAM8CI939COAXURzfjbZJ/T3L3U+IXsszQI96+/pztK8/ufvvGnm+9DjHu/tY4M7ottSBxVejv1e5+3hgFKH3qSn3Rn8/ZmYJtpVz72tk+0GE9+U/hGRqDPAtQu92cz1K+MzvG/UoP0L4/Db2Xm/l7jdEJd7PAqXRzTdGPc+NfnbcfSlwbXR9ekNlYjPrCFxDOGA6IortiOj696P7UxLAIe5+KOE7n2D7Mb0isVPCJ9I2UmXdswnlrpfcvZZtPVvnA92BqdHYqMOj2x9w9w3R5VQJK3VfSkvH/KUe/w+AaP/3p933KiEBO47Q+1hEKMN1JvxITQDmufssMzs2rafrwWic3ppoX6mxhOkGRH/XRn9X1LsdQk/Qfwhl44Zsfb3uviCK7fCopy3Vg1h/hubk6G8qGf7Q3edFlz+K/pYD70TPfwJh5umzhGQwvXcoempPEN6broTZyEOA++r90Kek3vN/pc06vqPefSMJifWk6Akmuvvx7n57vX2lEu417Nwid387upzq7U2Vn1M9TP+Nnm8F4fU25RXChIWBhCEIqd7HxhK+SYTZ2RcSeujuIySVTU0mStS7/gihJ/bP0UzhVJLZklm4fyQk79MIJeuWfHYaM5LQa/q6u78T7fMdQq9iBSGBTnnT3VOfs/r/DyJZQQmfSNt4Ofr7xehvKtFL/cBeXm+7uib2Vb/EubbBrRrX5L7dvQ54AhhB6BGrA34e3X8loZSY6t3bk209XWdG19+I7jsGwMz6mtlNZrYbkBrz91b0N5W8HZ8KwN2/HvWoNLbsxdbXa2aHExKK8wnl7HOiu+onDakZo6nXvjHtvq3vR5SEnwh8nJBg9yOM55tuZhX1A3H3pLuvc/cbCeMN+7D9D/0Oz9GA9P/PBKH3CjNLREue1FdJSEavNLP+TewXtn+dqUQz9d6U1Lu+U1F5PXVwcDkh6Zvv7lMb2X4dcCjh/+cBQm/y9WxLrlLSf2vqv+b7gLsI7+FV0X6aHXc0hvDzhP+fT7n75uj25n52GtPU/yls///a1P+DSFZQwifSNlKJXKo8l0r4XiOUcVM9XKkEaHr09+y0ROP8etuk1LYwltS+zwOI9v/xevt+LG2bGe7+KmE82+ei2x8BcPfb3D2R9u82tvVcXRD1+A0nlNTejv6Sts3fCD+An4nW4iOKaU/g1EbiT3+95wFlwO/c/Xpa1uuzgygJ+Bsw2N0/7+5DCeXdPaLX0djjdiP06kBILOpLveefNbNUonVB9Df1nldGf0+M/h4LbDCz+pM2PkOY/NGJHccq1lf/4CBdqqfpDAAz68e2cZtNSZV1LyYkLY317hFNvPkbUOfu5xLGS34AHBRNYtkUbTog2r6EtFKnmfWO4ltKmJj0MKH03ixmti9h1nQdcL67p6+huLPPTiqha+x30AmJ3EHRrPLU8x1EGJs7I23bpv4fRLKCEj6RNuDuC9lWTtxMVOKNyrcvp22a+vF/jtD7tw8wy8yeJfxwVRMG4bfGzwg/ZjdH+51FGPP2sLunBqo/Hm1TzLbkdEp0fQPbSqQ7cPdnCUtXlBFmcv6asDBxL0Kv0nuE5C9VAvs2oa2538zeNLNnCGMXD4le78wmXsv70d+fR2W5VNm7887ehEYsJpTd/8/MnjOz5wmTVZax/QSY9EkbjxEmYZQSxgq+28B+7yEkCOOAmWb2EmH82BrCWD4I7xPA3Wb2FCGRKmbbmMqUZcAfCEnQpdH4z11xc/T3V9EM6LdpXsL8AuF9SvVQNZrwEcq4nwRui/5/phJ6gWdGJeRZhO/Dvmb2KKEEPDjt8asJ71Hf6LEzCWNKoXn/x38jJMarCO9V6v/sK+z8s5MagzrWzF6sX6p3942EyUClwMvR5/al6PqP3D2udQhFdokSPpG2k0rsXk2VlSKpsu77Hp2ZICqrnk6YyVtEmFn6KnC8R2fr2FXu/hRwMuHH6RBCYvZb0haYdfflhB9Y2FZ+S8X5TL34G3qOrxKWXplKKHHuQejNfJHwg/6umfWNtr0uiudJQk/PUYQf4xsIA/WbWkT3D4RyH4QS9PWEhHLfaDmPFnH3+YQetmcJEyP2JUycODltLCVsP2njREKi9BBhYkJD+91IKHHfRujlPYCwYPPY1FhCd3+QUCZdFG27BPiiu9/fyP7+H+H/7kctfZ3RPiYSJgItJvRK3R69BgjrIjb2uDq2lVUXsv0BS/1tXyHM6H2DMFZxT+BBorF/7r6G0FP4IWFG8Sy2Jb6pCU/nEibWGGHM52+ju49oxsvsF/3txfZDDw5iJ58dd68kvCe1hM9vQ5+n7xOW91kIHE34P7vc3X/TwLYiWS2RTKonWkTaRjSz88vAfp7B07zJjszsk4Tk+zXftrbji4REapi7z40xPBHJMCV8IiJ5yMwuJwwT2Ewo0fcn9Dw6MKKB9Q9FJI/pTBsiIvnpz4SlZD5LmCW9kTA7+2tK9kQKj3r4RERERPKcJm2IiIiI5DklfCIiIiJ5TgmfiIiISJ5TwiciIiKS55TwiYiIiOQ5JXwiIiIieU4Jn4iIiEieU8InIiIikueU8ImIiIjkOSV8IiIiInlOCZ+IiIhInlPCJyIiIpLnlPCJiIiI5DklfCIiIiJ5TgmfiIiISJ5TwiciIiKS55TwiYiIiOQ5JXwiIiIieU4Jn4iIiEieU8InIiIikueU8ImIiIjkOSV8IiIiInlOCZ+IiIhInlPCJyIiIpLnlPCJiIiI5DklfCIiIiJ5TgmfiIiISJ5TwiciIiKS55TwiYiIiOS5krgDENkVZjYImAu8nXZzAvidu/+tDfb/Y2COu9/RxDZvAOPdfXVrn09EJJ2ZJYEZQC2QBDoBa4EvufvUNn6uQcAMd+9sZj8Eerv7lW35HBI/JXySyza5+4GpK2Y2EJhhZlPd/a3W7Njdv9+MbQ7c2TYiIq0wwd2Xp66Y2beA3wNHxBeS5ColfJI33H2hmb0LnGhmfwQqgDXuPsHMLgG+TBjGsAK40t1nmVlnQgN6FFADPAhcA9xKOOL9PzP7EXA2sCV67EXu/lF0BN7H3Zeb2feAc6J9zI72v9jMJgMvRfvfE5gCXOjudZl4T0QkP5hZCaENWZl22zXAJwjt2nzgy+6+yMz6AzcDw4E64GZ3v8HMDgd+BZQDuwFPufslGX0hEhuN4ZO8YWZHAMOAjsC+hHLrBDMbB1wIjHX30YQG7/7oYT8GOgAjgAMJidm4tH3uAXwNOMTdDwaeBA6r97wXA6dE2+xPKMPclrbJUGA8sB9wbPr+RUSaMMnM3jSzRYQDSYCLAczsAkKbcmhUbXgU+Eu0zY3AbHcfTugNvMzMhgFfBb7v7ocBI4GPmdmYjL0aiZV6+CSXdYzG0UH4LC8HPgf0A95y97XRfacREsEXzSz12J5m1hM4HviGu9cSxsqMAzCzi6LtFgJvAq+b2WPAY+7+TL04TgFudfcN0fXfAdeYWVl0/aGoR2+dmc0Berb6lYtIIZgQVRBGA48BL7r70ui+04FDgalRu1ZMGOcHoV27CsDd1wCjAMzsQuBUM7ua0PvXCehMqFxInlPCJ7lsU0Pj6KJkbX3aTcXA393929H9RcAAYBWhBJtMe+wewMbUdXevi3oIDyY0or81s0nu/tW0/dfvKS8ifLcSqTjT7kum3S4islPuPt3Mvg78xcxedvf5hHbtl+5+E4CZlQM9oofUb9eGEA6InyIcwD4O3EOoVqg9KhAq6UoheBI4x8x2i65fDqR66Z4GLjSzoqjBvJftS7oHEEq0le7+C+C3wAH19v8EcLGZVUTXvwI85+6b2+XViEjBcfe7COOBr49uegK41My6Rtd/DPw9uvw020q/3Qjt3d6EA9dvu/v9wEBC5aM4E/FL/JTwSd5z9yeAXwJPmdlbwLnAx909CfyIMBnjTWA68GjUGKYe+ybhSHiqmU0FPg98vd5T/JXQwL5qZpXAQYTSsohIW7oSOMXMTiKM13sYeNnM3gH2By5K225E1N69APzC3acBvyAMT5kKfDe6b1hmX4LEJZFMJne+lYiIiIjkLPXwiYiIiOQ5JXwiIiIieU4Jn4iIiEieU8InIiIikueU8ImIiIjkOS283IRp06ZpCrNIARozZkxeLEarNkyk8DTWfinh24kxY5p/msHKykpGjBjRjtG0D8WdWYo7s1oa97Rp09oxmsxrbhtWKP+/2UJxZ16uxt6SuJtqv1TSFREREclzSvhEJO+8v2ID1z74NqN+8ASn3j6PUT94gmsffJv3V2yIO7SstLaqmh9PXMzaquq4Q2kRxS3SfEr4RCSvTPKlnHz9FP716gLWb64hCazfXMO/Xl3AyddPYZIvjTvEnTKzw8xscnR5mJk9b2ZTzOwmMyuKbv+Bmb1qZi+a2aGteb6nZy7hpQUbeaZySRtEnzmKW6T5lPCJSN54f8UGvvyP19lUXUtN3fbzFWrqkmyqruXL/3g9q3v6zOwqwnlSO0Q3XQdc6+5jgQRwppkdBIwDDgM+C/yxNc95z9QF4e9rH7ZmNxmnuEWaT5M2RCRv3DJlHtW1dU1uU11bx1+mvMdPzhqVoahabC7wceDv0fUxwLPR5ceAEwEHnnT3JPCBmZWYWR93X9acJ/jcLS/zwtwVW6+XFodJfa/NX8mg7zyy9fZ9B3TlO6cMb92raUP/77FZvLNo7dbrJUX5FfdRQ3vxzy8cnvH4mitViv7T4GF07VAadzjSQkr4RCRvPDh90Q49e/XV1CV5YPrCrE343P0+MxuUdlMiSuwA1gHdgK7AirRtUrc3K+G74thhvP7BajZV1wJQXRt2X/+9e2fRWs7/66stfxEZkoo3X+J+e+Eajv3NZLp3LKV7pzK6dyylW6dSuncso1vHErp3Kouub7u/a8dSiosys4pQein67NG7Z+Q5pe0o4RORvLFhc03zttvSvO2yRHqXZRdgNbA2ulz/9h1UVlbucFsP4AcT+vKDZxazuXbHBDkBDO1ZRpfy4l2Nud2s21zL3JVbaCitz9W4U9ZW1bC2quWfzYrSIrqUh3+dy4qjy8V0KSuic3kRXbbetu1y5/IiyopbNqrrtmcXAXDrs87wDutaHGfcqqqqGvw+ZLu2ilsJn4jkvOXrN3PLlHlN/pimqyjLqaZvupmNd/fJwCnAJGAO8Csz+z9gd6DI3Zc39ODG1u8aMQL67LaEL//zdTbXbMspy0uKuPFzB3HciH5t/DLazjOV+Rf30Xv3Zs2matZsrGZ12t/VG7ewZlM1q9Our92UulzN2qpqNlTXsaG6jsXrWxZPh9Iiuncso3unUrp1LKV71JvYvVPoObz/9Q+Zu2zbeNdU6b9y2WZOuX3e1tuzvRSdUujr8OVUqycikm7puipueW4e/3j5g63lyZ0pKUpw9uiB7RxZm/omcIuZlQGVwL3uXmtmU4CXCJPvrtiVHa+tqqakKEF1IrwvNXVJiosSWb9cSD7GXV5STN8uxfTt0mHnO0pTW5dkXVVI/tZsaiBJ3FjN6k1RkrhxW6K4ZtMWqqrrWFxdxeK1Vc16rlTpvzqtV7hjaTFXHrt3i2KWeCjhE5Gcs2RtFTc/O5c7X/lga2/JccP78qmDd+frd7/ZZPJXWlzEpWMHZyrUXeLu84HDo8uzCTNy62/zQ+CHrXmeu19bwMbqWkbu1pVz9+3Ene9sZOZHa7nntQ+zeoyW4t6muCgRxvN1KmvR45LJJBu31Kb1Hm5J61UMyeOaTVuYu3Q9U99fRUNDYzuWFvO3iw7hiKG9dil2ySwlfCKSMxat3sTNz87lX68tYEuU6J04sh9fOW5vRg3sBkB5aTFf/sfrVNfWbTcovqQoQWlxETeedxB79aqIJf5s06W8lKtPHcElRw3GfRafnXAQf31+Hq/NXxV3aE1S3K2XSCSoKC+horyEAd07NrltY6XoP5w7WsleDlHCJyJZb8HKjdz07Fz+PXXB1nLSqfv158oJezNyQNfttp1gfXn8a2P5y5T3eGD6QjZsrqGivISzRw/k0rGDleylueXCg7e7XlyU4LJjhnLZMTEF1EyKO7PSS9GpY6hEgqwvocv2lPCJSNb6YMVG/jhpDve9/iE1dUkSCTjjgAFcOWEY1r9Lo4/bq1cFPzlrFD85a1TODtQWyRbppeiKohpe/XAjVdV1WV9Cl+0p4RORrPPe8g38cdIcHpi+kNq6JEUJOHv0QK6YMJRhfRtP9ESk7aWXov/+zOu8+uFGdutWTucOSiFyif63RCRrzFm6nj9OmsN/3lhIXTKUvD5x0O5cMWEoQ/p0jjs8kYKUXorev38HykuK+GjNZv5zZXYuXi4NU8InIrGbvWQdf5g4h4feWkQyGSZYfGrM7nx5wlCNuRPJIh1KijhiaC8m+zKe9WV86uA94g5JmkkJn4jEpvKjtfxh4hwenfERyWRY2PVTB+/Bl8YNZY+eneIOT0QacOzwvkz2ZUzypUr4cogSPhHJuBkL1/D7ie/yxDtLACgrLuIzh+zBl8YP3ekSESISrwnWF3iHKbOXU11bR2kLT9Em8VDCJyIZ8+aC1fx+4rs8XbkUCGt5nXPonlw+bij9u7XsDAMiEo89enZiWN/OzFm6nqnzV2ktvhyhhE9E2t3rH6zihmfeZbIvA8I5PM87bC8uO2YIfbsq0RPJNROsD3OWrmeyL1XClyOU8IlIu5k6fyW/e+Zdpry7HIBOZcWcf8RefGHsEHp3Lo85OhHZVROG9+WWKe8xcdZSvnuq1rnMBQWR8JlZKXA7MAioBb4A1AC3AUlgBnCFu9c1sgsRaYGX563ghmfe5cW5KwDoXF7ChUfuxSVHD6FnRcvO+Ski2eeQQT3pXF7Cu0vXs2DlRk2yygEFkfABpwIl7n6kmZ0A/AwoBa5198lmdjNwJvBAnEGK5LJkMslLc1dw/TPv8up7KwHoUl7CxUcN4vNHD27xyd1FJHuVFhcxdu/ePDZjMZN9KecfMSjukGQnCiXhmw2UmFkR0BWoBg4Hno3ufww4ESV8Itt5f8UGbpkyjwenL4rOSfsBZ40ewBfGDtm6Pl4ymWTKu8u54Zl3mfp+OAl81w4lXHL0EC46ahDdOpbG+RJEpJ1MGN6Xx2YsZuIsJXy5oFASvvWEcu4soDdwOnCMu0engWYd0K2hB1ZWVjb7Saqqqlq0fbZQ3JmVK3G/9uFGfvbsEmpqk9RG35T1m2u465UP+PfUBVw9ri+Q4M43V+HLNwPQpbyIj4/sxhnDu1FRVsOi+XNYFN9LAHLn/RbJNeOtDwAvzl1BVXUtHUqLY45ImlIoCd/XgSfc/btmtgcwEUivL3UBVjf0wJacdD1XT9KuuDMrF+J+f8UGfnHnFDbXJHe4rzYJtTVJfjhxCcno7p4VZXxh7BDOP2IvOpdnV7PS0vd72rRp7RiNSP7o26UD+w3sxtsL1/DS3BVMGN437pCkCYWyWuIqYE10eSVh/N50Mxsf3XYKMCWGuESy0i1T5lFd2/QcpmQyrKN3zakjeP7bE/jS+KFZl+yJSPuaEPXyTfKlMUciO1MoCd9vgYPMbAqhd+9q4ArgR2b2EqG3794Y4xPJKg9OX0RN3Y69e/WVFhfxhWOG0KlMiZ5IIUr16k2ctZRkcudthsSnIFppd18PfLqBu8ZlOhaRXLBhc03zttvSvO1EJD8dsHt3elWU8eGqTcxZup69+3WJOyRpRKH08IlIC1Q0szRboZ49kYJWVJRg3D4q6+YCJXwisoOzRg+gpCjR5DYlRQnOHj0wQxGJSLZKL+tK9lLCJyI7+MLYIZQWN908lBYXcenYwRmKSESy1TF796G4KMHU+atYW1UddzjSCCV8IrKDvXpVcON5B1FesmMTUVKUoGNpMTeed9DWxZdFpHB161TKmD17UFOX5PnovNmSfZTwiUiDJlhfTty3HwBlxQkShHPinnPonjz+tbFMMK25JSLB+OHROD6VdbOWRlyLSINqaut4Yc4KAP5z5dGwemHWLxgtIvE4dnhffvW4M8mXUVeXpGgnY4Al85TwiUiDXpy7gpUbtjCkTwXD+3dh1uq4IypMZlYK3E44PWQt8AWgBrgNSAIzgCvcvemVskXakfXrwoBuHVi0pop3Fq1lv90bPFupxEglXRFp0MNvhbPgnr7/ABIJHa3H6FSgxN2PBH4M/Ay4DrjW3ccCCeDMGOMTIZFIMF6zdbOaEj4R2cGWmjoen7EYgDP23y3maArebKDEzIqArkA1MAZ4Nrr/MeD4mGIT2erYaFzvRK3Hl5VU0hWRHTw/Zxlrq2qwfl20cn781hPKubOA3sDpwDHunjqP1TpA9TOJ3ZHDelFWUsRbH65m+frN9O5cHndIkkYJn4js4OE3PwLgdPXuZYOvA0+4+3fNbA/C+cDL0u7vAqxu7MGVlZXNepKqqqpmb5tNFHdm7Szu/fqWM23RJu6a/CbHD82ug8V8fc+bSwmfiGynqrqWp2YuAeA0JXzZYBWhjAuwEigFppvZeHefDJwCTGrswc2dWV1ZWZmTs7AVd2btLO7TV3Zg2qKZ+NoS/ifLXl++vufppk2b1uh9GsMnItt5bvYy1m2uYeRuXRnSp3Pc4Qj8FjjIzKYQeveuBq4AfmRmLxF6++6NMT6RrVLrcz43exk1tZo4nk3Uwyci23n4raice4B697KBu68HPt3AXeMyHYvIzgzqXcGQ3hXMW76B1z9YzaGDe8YdkkTUwyciW23aUsvTlaGce/p+A2KORkRy0QQtz5KVlPCJyFaTfCkbt9RywO7d2LNXp7jDEZEcdGyU8E3W8ixZRQmfiGyVvtiyiMiuOGRQTyrKipm1eB0LV2+KOxyJKOETEQA2bK7ZWoLR7FwR2VVlJUUcvXdvACaprJs1lPCJCADPzFpKVXUdY/bqwYDuHeMOR0RyWGq2rsq62UMJn4gA8PCboZx72n7q3ROR1klN3HhhzgqqqmtjjkZACZ+IAOuqqpk8exmJhMq5ItJ6/bp2YORuXdlUXcsr762MOxxBCZ+IAE/NXMKWmjoOGdSTfl07xB2OiOSB1GxdjePLDkr4RGTrYstnqHdPRNpI+np8yWQy5mhECZ9IgVuzsZop7y6jKAEnj1LCJyJt48A9utOjUykfrNzIvOUb4g6n4CnhEylwT8xcTHVtkiOG9qJPl/K4wxGRPFFclGDcPn0AlXWzgRI+kQK39dy5WmxZRNpYqqw7ScuzxE4Jn0gBW7lhCy/MWU5xUYKT9u0fdzgikmeO2bsPRQl49b2VrN9cE3c4BU0Jn0gBe3zGYmrrkhw1rDc9K8riDkdE8kyPijJG79mD6tokz7+7PO5wClpJ3AFkipl9F/gYUAbcCDwL3AYkgRnAFe5eF1uAIjHYdu5cTdYQkfZx7PC+THt/FZNmLeXkUaokxKUgevjMbDxwJHAUMA7YA7gOuNbdxwIJ4MzYAhSJwbJ1m3l53gpKixOcNFKNsIi0j9Rp1ia5lmeJU0EkfMBJwNvAA8BDwMPAGEIvH8BjwPHxhCYSj8dmfERdMoyx6dapNO5wRCRPjditC/27dmDpus28s2ht3OEUrEIp6fYG9gJOBwYD/wWK3D11qLEO6NbQAysrK5v9JFVVVS3aPlso7szKlrjveTmUcw/qnWxWPNkSd0vlatwi+SKRSDBheB/uenUBk30powY2+HMr7axQEr4VwCx33wK4mVURyropXYDVDT1wxIgRzX6SysrKFm2fLRR3ZmVD3EvWVvHO0nmUlRRxwfGj6dJh5z182RD3rmhp3NOmTWvHaEQK03jry12vLmDirKVceezecYdTkAqlpPs8cLKZJcxsAFABPBON7QM4BZgSV3AimfbIWx+RTML4ffo0K9kTEWmNo4f1prQ4wfQFq1m5YUvc4RSknO3hM7O9gJ8AHYFfuPvrjW3r7g+b2THAq4Qk9wrgPeAWMysDKoF72z9qkeywdXbuAVpsuT21pJ0SyWcV5SUcNrgXz89ZznOzl3HW6IFxh1RwcjbhA34J3EBYVuXPwMFNbezuVzVw87h2iEskqy1cvYnXP1hNh9IijotWwZd206J2SiSfTRjel+fnLGfirKVK+GKQMyVdM7vdzNJ/nSqA+cA8oEMsQYnkoEei3r3jhvejojyXj/myj9opkcZNsHBe3WdnL6O2TsuzZFoutfa3APea2X+A6wllkn8TFlK+Nsa4RHLKI1vPnavFltuB2imRRgzp05lBvToxf8VGpn+wioMH9Yw7pIKSMz187v48MB6oIqyf19Xdj3L3Q9z9wThjE8kVH6zYyJsfrqGirHjrSc2l7aidEmlaqt2Z5EtjjqTw5FIPH0An4G/Av4BfmNllwDfdfUG8YYnkhoffDuXc40f2o0NpcczR5K02b6d0akjJFxOsL7e+MJ+Js5bxvycNjzucgpIzPXxmdg3wMvA6cLa7Xwb8GrjDzL4Xa3AiOeLhN0M597T9VM5tD+3RTunUkJJPDhvSk46lxVR+tJaP1myKO5yCkjMJH/Bpdx8F7A98CcDdX3P3CcCiWCMTyQHzlq1n5kdr6VJewrho8LS0ufZop3RqSMkb5SXFHDWsNwCTfVnM0RSWXCrprjazqwjlkvfS73D3v8YTkkjueDiarHHCvv0oL1E5t520Rzu1y6eGFMlGxw7vy9OVS5g4aynnHLpn3OEUjFxK+M4GPkc4Bdqv4g1FJPekFls+Y38tttyO2qOd2uVTQ0Lzzweeq+ccVtyZ1RZx715cA8CU2Ut5c8ZMyooTbRHaThXyew45lPC5+0rg93HHIZKLZi9Zx+wl6+nWsXRrOUXaXju1U88DXzWz64DdSDs1pLtPJpwaclJjD27ueYQL5VzJ2aKQ4x4BDH9+FbMWr2NteR/G7p2ZISaF8J43dS7wXBrDJyK7KFXOPXnf/pSV6GufS9z9YWA64dSQDxFODflN4Edm9hJh5q5ODSk55djU8iyzNI4vU3Kmh09Edk0ymdxazj1Niy3nJJ0aUvLNhOF9uXHyXCb5Ur5/xsi4wykIOtQXyXOVH61j3rIN9Kwo48ihveIOR0SE0Xt0p1vHUt5bvoH3lm+IO5yCkHM9fGY2HDga+CthmYL9gUvcvdExLCKFLNW7d/Ko/pQU6xgvE9ROiTStpLiIY/bpw0NvLmLSrKUMPnpw3CHlvVxs/f8EbCIsUdAb+Dzw81gjEslSoZyrc+fGQO2UyE4cOzxM1tBp1jIjFxO+Du7+T+BE4J5ollppvCGJZKe3F67hg5Ub6dOlnMMGq5ybQWqnRHbimL37kEjAK/NWsmFzTdzh5L1cTPjKzawfcBrwdHS5Y8wxiWSlR6LevVNH9ae4KDNrXQmgdkpkp3p1LufAPbqzpbaOF+YsjzucvJeLCd+fgPeB5919JvAacH2sEYlkoe3KuQdoseUMUzsl0gzHWrQ8i06z1u5yLuFz95uATu5+QXTTaHe/Jc6YRLLR9AWrWbh6E/27dmDMnj3iDqegqJ0SaZ4J0Xp8k30pyWRyJ1tLa+RcwmdmnYEbzOwZM+sJ/Dy6TUTSPPxmVM7dbzeKVM7NKLVTIs2z74Cu9O1Szkdrqpi1eF3c4eS1nEv4gBuANUA/oAroCvw51ohEskxdXZJH306VczU7NwZqp0SaIZFIMN7CbN2JszRbtz3lYsI32t2vAardfSPhROUHxhuSSHaZ+v4qFq+tYmD3jozeo3vc4RQitVMizbTtNGtK+NpTLiZ8tfWuFwN1cQQikq1Siy2fvv9uJBIq58ZA7ZRIMx01rDelxQle/2AVqzduiTucvJWLCd9zZvZLoKOZnQTcD2j1epFIbV2SR99eDMDp+2t2bkzUTok0U5cOpRwyqCd1SXh2tmbrtpdcTPi+DawnjI/5GfAW8L+xRiSSRV55bwXL129mr16dGDWwa9zhFCq1UyItMMFSs3WV8LWXnDuXLvBjd/8u8JO4AxHJRqm1907bT+XcGKmdEmmBCcP78rNHK5nsS6mtS2qh+HaQiz18p8cdgEi2qqmt4/EZKudmAbVTIi0wtE8Fe/bsxKqN1bz54eq4w8lLudjDN8/MngSeJ5RMAHD36+ILSSQ7vDh3BSs3bGFInwpG7NYl7nAKmdopkRZIJBJMsD7c/tL7TJq1lIO0WHyby8UevpXAQmAwsF/0b1SsEYlkiW2zcweonBsvtVMiLZQ668Yk1/Is7SHnevjc/WIAM9sLKHX3Oc19rJn1BaYBJwA1wG1AEpgBXOHuWjZBctaWmjqeeGcJAGfsr8WW49SadkqkUB0+pBcdSouYsXAtS9dW0bdrh7hDyis518NnZsPM7B3gDWCamc01s+HNeFwp4YTmm6KbrgOudfexQAI4s51CFsmIF+YsZ82maqxfF/bup3JunHa1nRIpZB1KizlqaG9AvXztIecSPuAPwK/cvYe7dwN+CtzYjMf9H3AzsCi6PgZ4Nrr8GHB8WwcqkkkPpS22LLHb1XZKpKCN33rWDS3P0tZyrqQL9HP321NX3P1WM/tGUw8ws4uAZe7+hJl9N7o54e7J6PI6oFtDj62srGx2YFVVVS3aPlso7sxqj7i31Nbx+Nsh4RtesbFd3he93y3S4nZKRMJp1r4HPD9nOVtq6igrycV+qeyUiwlfiZn1dPeVAGbWmzAOrymfB5JmdjzhfJZ3AH3T7u8CrG7ogSNGjGh2YJWVlS3aPlso7sxqj7iffGcxG6vnM3K3rpxw+AFtuu+UQnm/p02b1hZPuyvtlEjBG9i9I9avC75kHVPnr+TIYb3jDilv5GLC93vgZTO7O7r+GeC3TT3A3Y9JXTazycDlwK/NbLy7TwZOQac9khyWWmz59ANUzs0SLW6nRCQYP7wPvmQdE2ctVcLXhnKur9Td/wx8ESgDOgBfcvebdmFX3wR+ZGYvRfu6t+2iFMmcTVtqeboyzM49fT8ttpwN2rCdEik4x5qWZ2kPOdfDZ2YDgU+5+5fNzIBfmtk77r64OY939/FpV8e1R4wimTTZl7JxSy0H7N6NPXt1ijscofXtlEghO2ivHnTpUMLcZRv4YMVGtWttJOcSPuB24L/R5feBycDfgFPjCkgkTlvLuTqVWjZp83ZK64hKoSgtLuKYffrwyFsfMXHWEi46anDcIeWFnCvpAr3d/QYAd69y9+sBDVySgrRhcw3PzArl3FO1HEs2adN2SuuISqGZsLWsq+VZ2kouJnwlZra1K8PM+hEaPJGC88yspVRV13HQnt0Z2L1j3OHINm3dTmkdUSko460PiQS8NG8FG7fUxB1OXsjFhO864A0zu8PMbgdeB34Vc0wisXj4zW3nzpWs0mbtVPo6omk3N2sdUZFc1btzOfvv3p0tNXW8NHdF3OHkhZwbw+fufzOzqcBxhHEsv3b3GTGHJZJx66qqmTx7GYkEnKZyblZp43Zql9cRheYvHq+FtTNLce/cfj0TvLkA7nvJGcDKVu+v0N/znEr4zCwBFLv7W2b2HmHw8uaYwxKJxVMzl7Clpo5DB/ekn04ynjXaup1q7TqizV10ulAW1s4WinvnPt1lNf948wXeXFrD8OHDSSRaN3qrEN7zphaOz5mSrpmNBN4DTjazjsCrhPNTPmVmJ8QanEgMHolm556h3r2skcF2SuuISt4bNaAbvTuXs3D1JmYvWR93ODkvl3r4fg1c4+4Pm9nFhAHQ+wIDgX8BT8UZnEgmrdlYzXPvLqMoASePUsKXRdq1ndI6olJIiooSjLc+3DvtQyb5Uqx/l7hDymk508MH7Onu/4wuTwAedPc6d1+ABixLgXli5mKqa5McMbQXfbqUxx2ObKN2SqQNpZZnmThLZ91orVxK+GrTLh8JPJd2XQOYpKCkFls+TadSyzZqp0Ta0Nh9elNclGDa+6tYs7E67nByWi6VdFea2QGEGWm7Ea1BZWZHAgvjDEwkk1Zu2MILc5ZTXJTg5FH94w5Htqd2SqQNde1QysF79eCV91YyZc4yLUHVCrnUw3c18DQwkTBGZoOZfQt4BPh+rJGJZNDjMxZTW5fkqGG96VlRFnc4sj21UyJt7NjhKuu2hZxJ+Nz9ZcLA577RaYoAXgQOdfdnG32gSJ555O3UYsuarJFt1E6JtL1UwvesL6OuLrmTraUxuVTSxd23AFvSrr8YYzgiGbds3WZemruC0uIEJ41UOTcbqZ0SaVvD+nZmYPeOLFy9ibcWruHAPbrHHVJOypkePhGBx2d8RF0Sjtm7D906lcYdjohIu0skElt7+SaprLvLlPCJ5JCHUrNzVc4VkQIyYXgfACa5Er5dpYRPJEcsWVvFa/NXUlZSxAkj+8UdjohIxhwxpDflJUW89eEalq6rijucnKSETyRHPPLWRySTMH6fPnTpoHKuiBSOjmXFHDG0FxAmb0jLKeETyREPvxXNzj1A61CJSOHZOo5PZd1dooRPJAcsXL2J1z9YTYfSIo6LGj0RkUKSOs3alNnLqa6tizma3KOETyQHPBpN1jhueD8qynNqNSURkTaxR89ODOvbmXWba5g6f1Xc4eQcJXwiOWBrOVezc0WkgKXKupNV1m0xJXwiWe6DFRt588M1dCorZrypnCsihWu8heVZdJq1llPCJ5LlHo5OpXb8iH50LCuOORoRkfgcMqgnnctLeHfpehas3Bh3ODlFCZ9Ilnv4zTB+T+VcESl0pcVFjN27N6Cybksp4RPJYvOWrWfmR2vpUl7CuKiUISJSyCZE4/hU1m0ZJXwiWeyRaHbuCfv2o7xE5VwRkdQ4vhfnrqCqujbmaHJHQazvYGalwN+AQUA58FNgJnAbkARmAFe4uxb2kazycJTwnbG/FlsWEQHo26UD+w3sxtsL1/DS3BVbe/ykaYXSw3cesMLdxwInA38ArgOujW5LAGfGGJ/IDt5dsg5fso5uHUs5aljvuMMREckaE3TWjRYrlITv38D3ossJoAYYAzwb3fYYcHwMcYk06qGod++kfftRVlIoX1URkZ2bkLY8SzKZjDma3FAQvyLuvt7d15lZF+Be4Fog4e6pT8k6oFtsAYrUk0wm0xZbVjlXRCTdAbt3p1dFGR+u2sTcZevjDicnFMQYPgAz2wN4ALjR3e80s1+l3d0FWN3Q4yorK5v9HFVVVS3aPlso7sxqTtzzVm5m3rINdC0vomf1Miorl2cousbl8/stIrmlqCjBuH36cP/0hUyctZRhfbvEHVLWK4iEz8z6AU8CV7r7M9HN081svLtPBk4BJjX02BEjRjT7eSorK1u0fbZQ3JnVnLgfenwWAKcfuDuj9h2ZibB2Kp/f73TTpk1rx2hEpK1MGN53a8J32TFD4w4n6xVEwgdcDfQAvmdmqbF8XwVuMLMyoJJQ6hWJXTKZ5JG3tdiyBFplQKRhx+zdh+KiBFPnr2JtVTVdO5TGHVJWK4iEz92/Skjw6huX6VhEdmbGwrW8v2IjfbqUc9jgXnGHI/FLrTJwvpn1BN6I/l3r7pPN7GbCKgMPxBeiSOZ161TKmD178Or8lTz/7nJO3U8HyE0piEkbIrkkNVnj1FH9KS5KxByNZAGtMiDSiK3Ls+isGzulhE8ki4TZuaGce5pm5wpaZUCkKROGh+VZJvky6uq0PEtTCqKkK5Irpi9YzcLVm+jftQMH79Uj7nAkS+zqKgPQ/JUGcnU2s+LOrGyLO5lM0qeimGXrN/Pwi2+yd6/yRrfNttibq63iVsInkkUefjP07p26324UqZwrtG6VAWj+SgOFMgs7WyjutnOC13LnKx/wXlUFHxuxd6PbZWPszdGSuJtaZUAlXZEsUVeX5NHU7NwDNPhYtkpfZWCymU0mlHV/ZGYvAWVolQEpYMeaTrPWHOrhE8kS0z5YxeK1VQzs3pHRe3SPOxzJElplQKRpRw7rRVlJEW9+uJoV6zfTq3PjZd1Cph4+kSzx8JupU6ntRiKhcq6ISHN0Kivh8CG9SCZhsi+LO5yspYRPJAvU1iV5dMZiQOfOFRFpqWMtNVtXZd3GKOETyQKvvLeCZes2s2fPTowa2DXucEREckpqPb7nZi+jplYnnWmIEj6RLJBae0/lXBGRlturVwVD+lSwtqqG1z9YHXc4WUkJn0jMamrreFzlXBGRVpkQzdadqLNuNEgJn0jMXpq3gpUbtjCkTwUjdusSdzgiIjnp2KisO1nj+BqkhE8kZqnFlk/ff4DKuSIiu+iQQT2pKCtm1uJ1LFy9Ke5wso4SPpEYbamp4/F3UuVcLbYsIrKrykqKOHrv3gBMUll3B0r4RGL0wpzlrNlUzT79OrNPP5VzRURaQ2XdxinhE4nRQ2+lFlvWZA0RkdYaH03ceGHOCqqqa2OOJrso4ROJSVV1LU+9swRQOVdEpC3069qBfQd0ZVN1La+8tzLucLKKEj6RmDw3exnrNtcwcreuDOnTOe5wRETyQmp5Fo3j254SPpGYPPJ2NDv3APXuiYi0ldRZNybOWkoymYw5muyhhE8kBlXVtTw9Myrn7qfxeyIibeXAPbrTo1MpH6zcyLzlG+IOJ2so4ROJwaRZS9mwpZYDdu/Gnr06xR2OiEjeKC5KMG6fPoDKuumU8InEIHXu3NM0WUNEpM2lyrqTtDzLVkr4RDJsU3Udz8wK5dzTtByLiEibG7dPH4oS8Op7K1m/uSbucLJCSdwBiBSC91ds4JYp83hw+qKtjU/vzmXU1NbFHJmISP7p3qmMg/bswdT3V/H8u8s5eVT/uEOKnXr4RNrZJF/KyddP4V+vLtjuSHPlhi2cfP0UlRxERNrB1rKuxvEBSvhE2tX7Kzbw5X+8zqbqWmrqtl8eoC4Jm6pr+fI/Xuf9FZpJJiLSlraux+dangWU8Im0q1umzKN6J2Xb6to6/jLlvQxFJCJSGEbs1oX+XTuwdN1mXn1vJT+euJi1VdVxhxUbjeFrpfSxWRs211BR/gFnjR7AF8YOYa9eFXGH1yjF3T6qqmtZs6ma1RurWb1xC/dO+3CHnr36auqSPDB9IT85a1SGohQRyX+JRIIJw/tw16sLuO3F+by0YCPPVC7h7NG7xx1as62tqubHExfzp8HD6NqhtFX7KuiEz8yKgBuBA4DNwKXuPqe5j5/kS/nyP16nurZu64/6+s01/OvVBdw3bSE3nnfQ1i7lbKK4m1Zbl2RdVUja1myqZvWmkLytTSVym6q3JnVrN1WzetOWrdturtm1SRgbtmgWmYhIWxtvfbnr1QVMeXcZAPe89mFOJXxPz1zSZolqQSd8wFlAB3c/wswOB34DnNmcB6aPzaqvpi5JTV0Ym/X418ZmRc9TSqHEnUwmqaquY/WmLWk9btsStDVpyVsqkVsTJXbrNtewq8M9yoqL6NaplO4dS+nWsZTpC1ZTu5MePoCKskL/KoqItJ3P3fIyL8xdsfX6+s3ht2Pq+ysZ9J1Htt5+1NBe/PMLh2c8vua6Z+qC8LcNEtVC/5U5GngcwN1fNrODm/vA5ozN2lxTy7f+/SanR2utNXfQaHO2as6uGtrk0bc/YnPNjklTus01tXzjnjc4ZVT2LAr8WDPi3lRdy8d+/zxlpcWs2VTNll3sbQPo2qEkStzK6N6plK4dtyVx3aPbu0aX02/rUFpEIpHYup9rH3ybf726oMmybklRgrNHD9zlWEVEZHtXHDuM1z9YvUMnQXXttra4KAFVNXV88e9TKUokSCRCGbgokSAR3V+USED0N3V923aQIPob3Z6+XfrjGtuu/vU7X/mA+Ss2bo2xuCj8nrRFolroCV9XYE3a9VozK3H3ndbXHpy+aKdjs+qS8Nr8Vbw2f1Urw8ysuiRMe381095fHXcoLbamqgaqwn9fWUkR3dOSsm5R8tYtlbxtTdbKtt3WMSR3qS9Za31h7BDum7aQmrrGk9XS4iIuHTu4TZ5PCkdrh6SI5LMjh/bmrxcdzCW3TW2wMgSp37rs/n1OVYjSE9WOpcVceezeLd5XoSd8a4EuadeL6id7lZWVDT5wQwtW7j7Dum670sw8ojmbJXYhJ/lP5dpmb3vWiK4732gnErsSZAMemLlm5xsR3rc7PrknXcqLKC9pahJ6TfRvE9QC62HTetgELG51tNv77jF9+NmzS6ipTZL2naU4ASXFCb57TB82Lv2AyixfKqqqqqrR70M2y9W4m+EsdnFIikghOHJob/5w7mi+/M/XtxtfXVqc4PJxQ9lvYDdCPpWkLgl1yfA3mUySjK6n/02mbZeMtqtL+7vz7VK3JUmy7fnqwoO2Xl+0ahNPVi5pcDhQx9Ji/nbRIRwxtFeL349CT/heAM4A7okazLfrbzBixIgGH1hR/kGzTtfSubyE3188tpVhtp1nfvBEs+O+/sLsifupZsZdUV7C2IP3y0BEzTdiBIw7aAN/mfIeD0xfGM0uLuHs0QO5dOzgrBor2ZTKyspGvw/ZrKVxT5s2rR2jaVO7PCRFpFCsraqmpChBdSIMn6mpS1JaXMSQPhWcuG/2nn3jmcolOySq5SVF/OHc0buU7IESvgeAE8zsRULn0MXNfeBZowfk5NgsxR2PvXpV8JOzRvGTs0blbOIkWadZQ1Ka27uZqz2hijuzci3uWycvYuOWWob0LOO8/Trzj7fXM2/lFm591hneYV3c4TVq1tx1JEhSlICSIqipgwRJZs19nwGs3KV9FnTC5+51wOW78thcHZuluEXyxk6HpEDjVYr6cvVARHFnVq7F3e/VDZxx8GAuOWow7rO44KTD+evz83ht/qqsfh0/mvISm2uTjNytK+fu24k739nIzI/W8vyiOq44vfG4m6pQ6Ewbu2ivXhXceN5BdCwtpqTeAP+SogQdS4u58byDsq5cp7hF8sYLwKkAjQ1JESl0t1x4MF8YO4Si6HejuCjBZccM5ZYLsnsERJfyUq4+dQQPXXk0Bw3oxH+vPJrvnjKczh12vZ+uoHv4WmuC9eXxr43NubFZilskL+zykBQRyW63XLh9QppKVC87Ztf3qYSvlXJ1bJbiFsltrRmSIiKFRyVdERERkTyXaO7ZHwrRtGnT9OaIFKAxY8a0zQKSMVMbJlJ4Gmu/lPCJiIiI5DmVdEVERETynBI+ERERkTynhE9EREQkzynhExEREclzSvhERERE8pwSPhEREZE8p4RPREREJM8p4RMRERHJc0r4RERERPKcEj4RERGRPKeET0RERCTPKeETERERyXNK+ERERETynBI+ERERkTynhE9EREQkzynhExEREclzSvhERERE8pwSPhEREZE8p4RPREREJM+VxB2AyK4wsyQwA6hNu3mqu1+ats3ngbPd/Ywm9nMacC3QifB9eAf4hrt/2C6Bi0jeaKQdAjjL3ednKIbTgMPc/ftm9jHgeHf/Shvt+xbgZnefZmZ/Af7l7k+3xb4l85TwSS6b4O7L699oZj2BnwPnA5Mae7CZDQBuB8a4+/vRbdcA9wBHtkvEIpJvGmyHMugQoCeAu/8X+G8b7vsE4E/Rvi/dybaS5ZTwST76NPAR8C3gtCa26w2UAZ3TbrseeCN1xcy+C1wI1ADvAhe5+xoz+x5wTnT7bOBKd19sZpOBlcBw4CbgDuB3wH5AKfAM8L/uXtPaFyki2cvMLgR+AOwPJIGpwC/c/Q4zO4NQWSgDNgLfcveXzKwE+BVwOqFteRH4MnA10Nvdr4z2/UNC+/V34HKg2MzWENqoT7r76Wa2O6ENGgQkgNvd/ddmNojQDj0KHEZIFq9x97vrxf8zYADwTzO7APgl8IfodUyM/h1BaNe+BXyR0O5NBc5x9zozOzJ6XAVQB/zQ3R9u/bsru0Jj+CSXTTKzN9L+9QVw95vd/UfApqYe7O5vAbcA081sZlS+OAN4AiAqj1wEHOHuo4D3gCvN7GLgFOAQd9+fUNK5LW3Xq9x9pLv/HvgtMM3dxwCjCY30N9ro9YtI/Oq3Qw8AuPvtwEuEBO4GYEqU7O1NqECc6u6jgcuA+82sgpDcjQEOAEYBXYDPNPbE7v4KcDNwt7tfU+/ufwKT3H0/4CjgPDP7bHTfEOAJdz8U+HYUY/19XwMsAj4XPU+6wcB/3X1fQvL4O8IB8L7AWOBwM+sB3Aqc7+4HAR8DbjKzPRt/K6U9qYdPclmrSynu/k0z+zkwHhgH/Br4HzM7Bjge+Le7r4q2/QaAmd0D3OruG6Ld/A64xszKoutT0p7idOBQM7skut6xNfGKSNZpqh26HHiTcPA5JrrtBGA34BkzS21XBwwjtDl/d/fUwepnYGuPXrNFyeNRwIkAUVXiNsKB6stANaGHD+B1opJwC1QDD0WX5wIvuvva6LkXRfs7gvA6H0x7nUlCj+cHLXw+aQNK+KRgRIOOD46u3kw4eu3l7rcC9wH3mdnVwAJCb1wNoYFKPb470J0de8aLCN+lRHR9fdp9xcCn3L0ybR9JRKQQ9AM6AOWE8ug8QpvwjLtv7bkzsz0I7VH9NqcfoX1Jsq19gVAKbkpRve1Tt5VGl7e4e110uf6+m2OLu6e3Y9UNbFMMVLr7YakbonHTy1r4XNJGVNKVguHul7r7gdG/m4F1wC/MbGTaZoOBKsJR69PAx82sa3TfDwnl2CeAi6OjaICvAM+5++YGnvYJ4OtmljCzcsKA6ivb+rWJSHYxs1LgLuD7wI+Au6LbJgInmtnwaLtTgbcIieHTwLlmVm5mRYQxeOcQkqQxUTtSQdRzF6lhWyIHgLuvI/TkXRE9RzfgAuCpFr6MHfbdAi8De0fVEszsQMIYwwG7uD9pJfXwScFy90lmdiVwe9TzVkOY7HFmVMZ9NEoGX4hKEu8AXwA2AHsAr0aN8hzgc408zVcIJd+3CQ3n0zQwXkZEctYkM6u/LMvVwARgsbv/BcDMzgJ+5u5XmdllwL/MLEFodz7m7hvM7E+ESRbTCL1ukwnj/yoI5dh3gYWEsYGpXrlnCGMAt0SPS/kc8MdozHEZYUzfbcBeLXhtDwJ3m1mLZ+i6+zIz+wTwazPrQOhgOj+1IoJkXiKZVHVJREREJJ+ppCsiIiKS55TwiYiIiOQ5JXwiIiIieU4Jn4iIiEieU8InIiIikue0LEsTpk2bpinMIgVozJgxLV2INiupDRMpPI21X0r4dmLMmDE73yhSWVnJiBEj2jGa9qG4M0txZ1ZL4542bdrON8ohzW3DCuX/N1so7szL1dhbEndT7ZdKuiIiIiJ5TgmfiOzg5mfn8uLcxs4HH7w4dzk3Pzs3QxGJiEhrKOETkR3sv3s3rrxzeqNJ34tzl3PlndPZf/duGY5MRER2hRI+EdnBkUN784dzRzeY9KWSvT+cO5ojh/aOKUIRkWaqrYWHH6b3TTfBww+H67mgjePWpA0RaVB60veHc0fTAyV7IpJjamvhpJPglVfovWED3HorHHYYPPEEFBfHHV3j2iFuJXwi0qgD9+jOl8YN4ZLbprJX9xIWrvuAGz93kJK9DDKzYuAWwIAkcDlQCjwMvBttdpO73x1PhCJZ7LHH4OWXYcMGEgDr18Ozz8KJJ8Iee8QdXeMWLIDnnoOamm1xv/JKeD2nn75Lu1TCJyJbLV+/manzVzF1/kpem7+SGYvWUlsXlnKbtSyUE75y13ROGNmPk0f156hhvSkvyeKj5PxwBoC7H2Vm44GfAQ8B17n7b+IMTCTrTZ8OGzZsf1tNDUycGE88rbFhA7zxhhI+EWmZZDLJBys38tr8Vbz23kpee38l85Zt3zAWJWBw7wo+Wr2JwT1K8eWbWbWxmnumfsg9Uz+kc3kJE4b35eR9+zPe+lBRrialrbn7g2b2cHR1L2A1MAYwMzuT0Mv3NXdfF1OIItlr1Kgdbysvh8svhwMPzHg4zfbGG3DzzbB587bbKipaFbNaZ5ECUVuXpPKjtVHv3Spem7+Spes2b7dNx9JiRu/ZnYMH9eTQQT3ZUlvLt/79Fn+7+BB6bFnGqtI+fOmfr3PiyH7M/Ggt7yxay0NvLuKhNxdRVlLEMXv34eRR/Tl+RF+6dyqL6ZXmH3evMbPbgbOBTwIDgb+4+zQzuwb4AfCthh5bWVnZrOeoqqpq9rbZRHFnVq7F3eW999gdSCbCySfqOnakav/9+eDSS7N7DN/BB7PnK6/Q4a23KNq0KcQ9ahQfDBoEu/j+K+ETyVNV1bW8sWB11Hu3itffX8X6zTXbbdOzooyD9+rBIYN6csjgnuw7oCulxWHy/otzl/Otf721dYJGZeUyjhzWm5vOO2jrxI3du3fiiXcW8/g7i5n2/iqerlzC05VLKC5KcMSQXpw0qj8njexH364d4ngL8oq7X2hm3wZeAY5094XRXQ8Av2/scc1dob8QzkKQTRR3hvzv/wKQuPRSlnbsSN8TTqDilFMYkc3JXsrzz8Njj7H0qaeaHXdTZ9pQwieSJ1Zt2MLU98P4u1fnr2TGwjVU125/KtU9e3bi4EE9OHRQTw4e1JOhfSpIJHY87WJTs3Hrz979wjFD+MIxQ1i6toonZi7hiRmLeWneCp6fs5zn5yzn+/+ZwUF79uDkfftz8qj+7NGzU7u+D/nGzM4Hdnf3XwAbgTrgfjP7H3d/FTgOyK/zwYm0hY8+gscfh5IS+NnPWLF8OX1zKVktLobTT2fF0KFtErcSPpEclEwm+XDVJqa+v3LrGLx3l67fbptEAkbu1pVDB/fk4EE9OHivnvTv1ryetrc+XNPk0iuppO+tD9ds3aZv1w6cf/henH/4XqzeuIWnK5fy+IzFPPfuMqa9v4pp76/iZ49WMnK3rpw8qj+njOrPsL6dG0w4ZTv3A7ea2XOE2blfAxYAvzezamAxcFl84YlkqX/8IyxvctZZ0KcPLG/67EH5TgmfSDu6+dm57L97tyaXMXlx7nLe+nANl48b2ug2dXVJfMm6qPcu9OJ9tKZqu23KSoo4cI/uUe9dDw7aqwddO5TuUtxNxZJy5NDejb6u7p3K+OSY3fnkmN3ZsLmGyb6Mx99ZzMTKJcz8aC0zP1rLdU/NZkifiq09f/sN7KbkrwHuvgH4dAN3HZXpWERyRjIJt90WLl98cayhZAslfCLtKHWKssZ6y9JLp+mqqmt5e+EaXn1vJVPnr2Tq+6tYV7X9+LtuHUs5ZFAPDh7Uk0MG9WDUwG5ZuURKRXkJp+2/G6ftvxtV1bW8OHc5j89YzFMzlzBv2QZunDyXGyfPZUC3DpwYJX+HDOpJcZGSPxHZRVOnwsyZoWfvlFPijiYrKOETaUf1x7ulJ33pyd6+A7oxcdaSreXZtz5cw5bauu32NbB7x60J3qGDezKsT2eKciwp6lBazLHD+3Hs8H7U1Nbx6vyVPDFjMU+8s4RFa6q47cX53PbifHpVlHHCyH6cNKo/Rw7tlZWJrIhksVTv3nnnQemuVTryjRI+kXbW0CnKHnpzEd+5/y2OHNKbHz80E1+yjmTa/IpEAob378LBg8IM2oMH9WRg946xvYb2UFJctLUs/IMz9uXND1fz+DuLeXzGYt5fsZF/vbaAf722gC7lJRw7Iqz1N8760KlMzZaINKGqCu68M1y+6KJYQ8kmajlFMiCV9F1y21QS1LGxOmR3T1UuAaCsuIj9d+8W9d71YMyePenWqXCOSouKEozeswej9+zBd04eji9Zx+MzQvI3a/E6/vPGIv7zxiI6lBYxbp+w1t+xw/vRreP271FbjZkUkRz23//C6tVw0EGw//5xR5M1lPCJZMjw/l3ZVB1OT1ZWnODIYb3D+neDerL/7t3oUKqyJUAikWB4/64M79+Vrx2/D/OXb9i61t/0D1bzxDtLeOKdJZQUhffw5H37c8LIfvTpUr7LYyZFJI+kyrnq3duOEj6RDPnzc/MA6FdRTHWymMuOGdJkT5QEg3pX8MVxQ/niuKEsXlPFkzMX89jbi3nlvRU8N3sZz81exjUPvs0he/XkpFH9+eEZI3c6ZlLvu0ieWrQInngijNs755y4o8kqSvhEMuDFucv56/Mh4fvEqO4cvf8wJR+7oH+3DlxwxCAuOGIQKzds4emZS3j8ncU8/+5yXo0WnIZw/t9LbpvKT87cl30rlOyJFIy//x3q6sLae731XU+nhE+knb04dzlX/PN1EiSAJIfvUdHk7F1pnp4VZXz6kD349CF7sK6qmkm+jCdmLGaSL+W95RsA+Na9b9GzYxF1iQXc+LmD9D6L5DOtvdekorgDEMlnqZ6lS48ezJbaOkYN7EqfinCclZ70vTi3sFeAb60uHUr52AED+OPnDuL1753ALRcczCcO2p3ykiJWbqrjY/sPULInku9efRVmzYJ+/eCkk+KOJuso4RNpR6lTlC1YtQmAE0b03+7+9FOUSdvoUFrMCSP78YkxA+lUVswn9+3Gw29/pKRaJN9p7b0mKeETaUeXjxvK4YN78XTlUgBOGNlvh22OHNpbS4S0sVTP6h8/dxCXHNxLPaki+W7TJrjrrnBZs3MbpIRPpJ298eFqlq/fzMDuHRmxW5e4w8l7DU3QUPlcJM/95z+wZg0cfDCMGhV3NFlJCZ9IO3tqZlhc+YSR/UgkcutUaLmmqdm4SvpE8pjW3tspJXwi7SyV8J3YQDlX2lZqzGRjEzQ0ZlIkDy1cCE89BWVl8NnPxh1N1tKyLCLt6L3lG5izdD1dO5RwyOCecYeT95ozFjJ1/l4RyRN33BHW3vvYx6BXr7ijyVpK+ETa0VMzFwNw7PC+lBarQ11azsyKgVsAA5LA5UAVcFt0fQZwhbvXxRWjSGy09l6z6RdIpB2lyrnHq5wru+4MAHc/CrgW+BlwHXCtu48FEsCZ8YUnEqOXX4bZs6F/fzjxxLijyWpK+ETayYr1m5n2/ipKixOM26dP3OFIjnL3B4HLoqt7AauBMcCz0W2PAcdnPDCRbJDq3Tv/fChR0bIpendE2skzs5ZSl4Sjh/amSwctAiq7zt1rzOx24Gzgk8AJ7p6M7l4HdGvssZWVlc16jqqqqmZvm00Ud2ZlU9yJTZvY+847KQbmjh3Llp3ElU2xt0Rbxa2ET6SdpC/HItJa7n6hmX0beAXomHZXF0KvX4NGjBjRrP1XVlY2e9tsorgzK6vivvNOWL8eDj2UoWecsdPNsyr2FmhJ3NOmTWv0PpV0RdrBpi21THl3GQAnjFDCJ7vOzM43s+9GVzcCdcBUMxsf3XYKMCWO2ERipbX3WkQ9fCLt4Pk5y6mqrmP/3bvRv1uHuMOR3HY/cKuZPQeUAl8DKoFbzKwsunxvfOGJxGDBAnj6aa291wJK+ETawdOpcq5696SV3H0D8OkG7hqX6VhEssYdd4QlWc46C3r0iDuanKCSrkgbq61L8sysKOHbVwmfiEib0tp7u0QJn0gbe2PBKpav38IePTti/brEHY6ISH558UWYMwcGDIATTog7mpxRsCXdhlavd/cZ8UYl+eDJreXc/iQSiZijERHJM7feGv6efz4UF8cbSw4p5B6+hlavF2m1bWfX6BtzJCIieWbDBrjnnnBZs3NbpGATvkZWrxdplbnL1jNv2Qa6dSzl0EE94w5HRCS/PPAArFsHhx8Ow4fHHU1OKdiSLjS4ev0OWrK6daGv4p1p2Rj3v2esBmDMbuW8O9sb3CYb424OxS0isdPae7usoBM+2H71ejMbGS2BsFVLVuUuhFW8s0k2xv3m5BcB+OQR+zBixG4NbpONcTdHocTd1Er1IhKj99+HiROhvBw+85m4o8k5BVvSbWT1+roYQ5Ict2zdZl7/YBVlxUUcs0+fuMMREckvqbX3zj4bunePO5qcU8g9fDusXu/um2KOSXLYxFlLSCbhyGG96FxeyF8tEZE2prX3Wq1gf5WaWL1eZJc8NXMpACeM1GLLIiJt6vnnYd48GDgQjjsu7mhyUsGWdEXa0qYttTw/ZxkAx+t0aiIibSu19t4FF2jtvV2khE+kDUx5dxlV1XUcsEd3+nXtEHc4IiL5Y/16rb3XBpTwibSB1GLLJ6qcKyLStu6/Pyy4fOSRsM8+cUeTs5TwibRSbV2SibPC+D2Vc0VE2pjW3msTSvhEWun1D1axYsMW9uzZiX36dY47HBGR/PHeezBpEnToAJ/WPMvWKNhZuiJtJVXOPWFkPxKJRMzRSL4xs1Lgb8AgoBz4KbAAeBh4N9rsJne/O5YARdrTHXeEvx//OHTrFm8sOU4Jn0grJJPJ7RI+kXZwHrDC3c83s57AG8CPgevc/TexRibSnurq4Pbbw2WtvddqSvhEWmHusvW8t3wD3TuVcvBePeIOR/LTv4F7o8sJoAYYA5iZnUno5fuau6+LKT6R9jFlSijp7rEHTJgQdzQ5TwmfSCs8GfXuHTu8LyXFGhIrbc/d1wOYWRdC4nctobT7F3efZmbXAD8AvtXQ4ysrK5v1PFVVVc3eNpso7szKZNy7XX893YHlp57KstmzW72/Qn/PlfCJtMLTWo5FMsDM9gAeAG509zvNrLu7r47ufgD4fWOPHTFiRLOeo7KystnbZhPFnVkZi3v9enjqKQB6f/Ob9N5771bvshDe82nTpjV6n7okRHbRsnWbmb5gNWUlRYzdu0/c4UieMrN+wJPAt939b9HNT5jZodHl44DGW3mRXHTvvWHtvaOPhjZI9kQ9fCK77JnKJSSTcPSw3lSU66sk7eZqoAfwPTP7XnTbN4Dfmlk1sBi4LK7gRNqF1t5rc/qVEtlFmp0rmeDuXwW+2sBdR2U6FpGMmDcPnn0WOnaET30q7mjyhkq6Irtg45Yanp+zHIDjhveNORoRkTySWorlE5+Arl3jjSWPKOET2QXPzV7O5po6DtyjO327dog7HBGR/KC199qNSroiu0DlXNkVZnYG8HHAgFpgFvBvd38y1sBEssWzz8L778Oee8L48XFHk1eU8Im0UE1tHRNnaTkWaT4zM+A2YBXhlGj/AoqBIcBXzOyHwKXuPjOuGEWywq23hr8XXghFKkK2pbxK+MxsL+AnQEfgF+7+eswhSR6a9v4qVm2sZlCvTgzr2znucCQ3XAuc6+7vNXDfH8xsKOF0aZ/LbFgiWWTt2rAcC4SET9pUXiV8wC+BG4Ak8Gfg4HjDkXyUXs5NJBIxRyO5wN3Pr3+bmRUBRe5e4+5zUbInhe7ee2HTJjjmGBg6NO5o8k5O95ea2e1mlj5FsgKYD8wDNJJe2lwymeSpylTC1z/maCTXmNkEM3szujoC+NDMjogzJpGsobX32lVOJ3zALcC9ZvZNMysmlHP/TRgjc22skUlemrN0Pe+v2EjPijLG7NUj7nAk9/wauBjA3d8BTgV+G2tEItlgzhyYMgU6dYJPfjLuaPJSTid87v48MB6oAp4Furr7Ue5+iLs/GGdskp+ejMq5xw7vS3GRyrnSYmXpY4ujy+UxxiOSHVJLsXzyk9ClS7yx5KmcTvginYC/AWcCnzaze6ITjYu0OS3HIq200cxOTl0xs+OA9THGIxI/rb2XETk9acPMrgHOISxv8Bt3v8zMDgHuMLOJ7v6TeCOUfLJ0bRVvLFhNeUkRY/fuHXc4kpu+CjxgZjWEyWVJwrp8IoVr0iRYsAAGDQoTNqRd5HoP36fdfRSwP/AlAHd/zd0nAItijUzyztOVSwE4elhvOpXl9LGSxMTdXwH2JFQkTgf20fJRUvC09l5G5Po7u9rMrgKuAbZb38rd/xpPSJKvnpq5GFA5V3ZdtBTL16J/84HUhDORwrRmDdx/f7istffaVa4nfGcDmwi9eRfEHIvksQ2ba3hh7goSCThuhBI+2WW/JlQkDgUSwMlolq4Usn//O6y9N348DB4cdzR5LafrUu6+Evh93HFI/ntu9jK21NRx0J7d6dNFkypllx0HHARMc/e1ZnYi8Ea8IYnESGvvZUxOJ3wimbJtdq4WW5ZWqXb3unBqXXD3zdEEjkaZWSlhJYJBhCVcfgrMJJybNwnMAK5w97r2C1ukHcyeDS+8ABUV8IlPxB1N3sv1kq5Iu6uprWOihwkbGr8nrTTDzK4Aii34Ezvv4TsPWOHuYwkl4D8A1wHXRrclCJNARHJLaimWT30KOuu85O1NCZ/ITkx9fxWrN1YzpHcFw/qqUZJW+SqhpNsPeAHoTJjA0ZR/A9+LLieAGmAMYbF5gMeA49s6UJF2VVsLd9wRLmvtvYzIi5KumQ0Hjgb+CjxAGBR9ibtPijUwyQtabFnairuvBS4BMLMEUOLu1Tt5zPpo+y7AvYTTRv6fuyejTdYB3dotaJH2MHEifPghDBkCRx8ddzQFIS8SPuBPwJ8J61r1Bj4P/ALQScmlVZLJpBI+aTNmdjThdJC/Al4GhpvZxe5+904etwfhYPZGd7/TzH6VdncXYHVjj62srGxWbFVVVc3eNpso7sxqq7gH/O53dAOWnXoqy91bH1gzFPp7ni8JXwd3/6eZ/R64x90nRwOdRVpl9pL1fLByI70qyhi9Z4+4w5Hc92tCefYsYDHhLBv3AI0mfGbWD3gSuNLdn4lunm5m4919MnAK0Gg1Y8SIEc0KrLKystnbZhPFnVltEvfq1fBM+Cj3+eY36TNoUKvjao5CeM+nTZvW6H35MoavPGoUTwOeji53jDkmyQOpxZaPHd6X4qJEzNFIHih296eBE4AH3X0+4dSQTbka6AF8z8wmm9lkQln3R2b2ElBGKPWK5IZ77oGqKjj22HA6NcmIfOnh+xPwPqF3b6aZfQA0eR7dhpY6cPf/tnegkltUzpU2VmxmhxIOTn9mZqOAJqsR7v5VwmSP+sa1Q3wi7U9r78UiL3r43P0moJO7p862Mdrdb9nJwxpa6kBkqyVrq3jzwzV0KC1i7N594g5H8sPPgDuBv0a9ew8ReutECsOsWfDSS2EZlo9/PO5oCkpe9PCZWWfg/5nZCOBTwM/N7Jup2W2N+DfbyiCppQ5Etkr17h09rA8dy3S6U2k9d78fuD/tpmHuXhtXPCIZl1p779OfDgsuS8bkRcIH3AB8RFjbqgroSpi1e25jD2hkqYMdtGRmTKHPAMq09o77wdc+AmBUj9o2fR6935mVDXGb2X+AH7r79PTbU8memR0MfN/dPxZHfCIZobX3YpUvCd9od/+8mZ3q7hvN7HOE0w01qf5SBw1t05IZPYUwAyibtGfc6zfX8Nbi+SQScN6xB9K7c9udP1fvd2a1NO6mZrm1wpeAW8ysD/AwMIcwWWMIYZbtauCL7fHEIlnj6adh0SIYOhSOOiruaApOviR89UsixUCT55VsZKkDEQCem72MLbV1HLxXjzZN9qQwufsi4DQzOwz4JHAOoY2aDXzV3V+JMz6RjLj11vD3oosgoVUPMi1fEr7nzOyXQEczOwm4kibWpYqkL3WQOm3RKe6+qR3jlByh2bnSHqLETsmdFJ5Vq+DBB0Oid8EFO91c2l6+JHzfBr4DrCHMgnuCnSzL0sRSB1LgqmvrmDhrKaCET0SkTdx9N2zeDMcfD3vuGXc0BSlfEr4fu/t32UmSJ9Icr81fyZpN1QztU8GQPp3jDkdEJPdp7b3Y5cU6fIRz6Iq0iVQ593j17omItF5lJbzyCnTpAmefHXc0BStfevjmmdmTwPPA1rX33P26+EKSXJRMJrcmfCcq4ZN2YGafBA4Efg6c6e53xRuRSDtL9e595jPQqVOsoRSyfOnhWwksBAYD+0X/RsUakeSkWYvX8eGqTfTuXMaBe/SIOxzJM2b2HcISLZ8mnO/7B2mTxkTyT00N/P3v4bLW3otVXvTwufvFAGa2F1Dq7nNiDklyVKp377jh/Sgu0rIB0uY+CxwGvOzuK8zscOAlNP5Y8tVTT8FHH8Hee8MRR8QdTUHLix4+MxtmZu8AbwDTzGyumQ2POSzJQVqORdpZtbtvTl1x99VAdXzhiLQzrb2XNfKihw/4A/Ard78dwMwuBm4Ejo01KskpH63ZxNsL19CxtJij9+4ddziSnxaY2WlA0szKgW8B78cck0j7WLkS/vOfkOidf37c0RS8vOjhA/qlkj0Ad78V6BNjPJKDnq4Ma++N3bs3HUqLY45G8tSVwDeA/YENhNOqXRlrRCLt5V//gi1b4IQTYI894o6m4OVLD1+JmfV095UAZtYbSMYck+QYlXOlvUWnWDvOzDoBxe6+rrmPjU7L9kt3H29mownn5H03uvsmd7+77SMWaQWtvZdV8iXh+z3wspmlGrzPAL+NMR7JMeuqqnlp7nKKEnDcCCV80j7MrD9wEdAzug6Au1+1k8ddBZxP6BUEGANc5+6/aa9YRVrlnXfgtdega1c466y4oxHypKTr7n8GvgiUAR2AL7n7TfFGJbnk2dnLqK5NcvBePelZURZ3OJK//gscCiTq/duZucDH066PAU4zs+fM7K9m1qXNIxVpjVTv3mc/Cx07xhqKBHnRw2dmA4FPufuXLRwy/9LM3nH3xXHHJrlh29k1+sYcieS5Mnf/+M43256732dmg9JuehX4i7tPM7NrgB8QJoCIxE9r72WlvEj4gNsJR84QZrxNBv4GnBpXQJI7qmvrmDQrTNg4YWT/mKORPDfNzEa5+4xW7ueBaEkXgAcIw1oaVFlZ2awdVlVVNXvbbKK4M6s5cXd+9ln2WLKEzYMHM69r13BqtSyQz+95c+RLwtfb3W8AcPcq4HozuzDmmCRHvPreStZW1TCsb2cG966IOxzJby8Ab5jZR6Stv+fuQ1q4nyfM7H/c/VXgOGBaYxuOGDGiWTusrKxs9rbZRHFnVrPi/l44eUz5ZZcxYuTIDETVPHn9nkemTWu0KcibhK/EzAZEM+Aws340b1yMiGbnSib9EDiXMCavNb4E/N7MqoHFwGWt3J9I21ixAv77Xygq0tp7WSZfEr7rCEfNjxOWYzke+N94Q5JckEwmlfBJJq1093t25YHuPh84PLr8OnBUG8Yl0jbuuguqq+Hkk2HgwLijkTR5kfC5+9/MbCqhtFED/LoNxshIAZj50VoWrt5Eny7lHLh797jDkfz3iJn9H3AfkH6KtdfjC0mkDWntvayV8wmfmSUIC5i+ZWbvASeQ1pCKNOXpmWGyxvEj+lJUpFEA0u7Ojf5+Iu22JNDSMXwi2eftt2HaNOjWDc48M+5opJ6cTvjMbCTwKHClmT1DWKogCXQysy+4+1OxBihZ76nKsHKPyrmSCe4+OO4YRNpNqnfvnHOgQ4dYQ5Ed5XTCB/wauMbdHzaziwkTNfYFBgL/ApTwSaMWrd7EjIVr6VRWzJFDe8cdjuQxM7vK3X9lZjc0dL+7fyXTMYm0qepq+Mc/wmWtvZeVcj3h29Pd/xldngA86O51wAIz6xZjXJIDnq4MkzWO2bsPHUqLY45G8tya6O+KWKMQaS+PPw5Ll8KIEXDIIXFHIw3I9YSvNu3ykUD6UbL6k6VJmp0rGfRF4E/u/qO4AxFpF7feGv5edBEkNB46G+V6wrfSzA4AugC7Ac8CmNmRwMI4A5PstraqmpfnraAoAROG63Rq0u70Cyj5a9kyeOihsPbeeefFHY00ItcTvquBp4FuwFXuvsHMvgVcA5wVZ2CS3Sb7Mqprkxw6uCc9K8riDkfyXwczG00jiZ+WZZGcdtdd4fy5p54KAwbEHY00IqcTPnd/2cwGAp3Sziv5InCou78bX2SS7VLl3BNVzpXMGEJYe6+hhE/Lskhu09p7OSGnEz4Ad98CbEm7/mKM4UgO2FJTx+RZYf09jd+TDJnp7qPjDkKkzb35JkyfDj16wBlnxB2NNKEo7gBEMu2V91awbnMN+/TrzF69KuIOR0Qkd2ntvZyhhE8KjmbnSgyeizsAkTa3ZYvW3sshSvikoCSTSZ7emvD1jzkaKRTu/tW4YxBpc489BsuXw777wpgxcUcjO6GETwrKO4vWsmhNFX27lLP/QK3NLSKyy7T2Xk5RwicFJVXOPX5kP4qK1ECJiOySpUvhkUeguFhr7+UIJXxSUDR+T0SkDdx5Z1h775RToL+Gx+SCnF+WRaS5Ply1kZkfraVTWTFHDOkVdzgiLWJmhwG/dPfxZjYMuI2wht8M4IroPOIimaG193KOevikYKQma4zbpw8dSotjjkak+czsKuAvbDtH+HXAte4+lrCY85lxxSYFaPr0sP5ez55w+ulxRyPNpIRPCsZTlSrnSs6aC3w87foYonOHA48Bx2c8Iilcqd69c8+F8vJYQ5HmK/iSbnqZJO5YpP2s2VTNK/NWUlyU4NjhfeMOR6RF3P0+MxuUdlPC3ZPR5XWE84k3qLKyslnPUVVV1exts4nizqzN69ZRc8cdlADvjR9PVQ69hlx9z9sq7oJO+KIyyfnAhrhjkfY12ZdSU5fk8CE96d6pLO5wRForfbxeF2B1YxuOGDGiWTusrKxs9rbZRHFn1oe//z0lq1fDfvsx+OMfz6nlWHL1PW9J3NOmTWv0vkIv6dYvk0ieelKLLUt+mW5m46PLpwBTYoxFCkFtLTz8MH1++9tw/YILcirZkwLv4WugTLKDlnSjFnp3caY1N+7q2iQTKxcDMKRsXeyvNd/f72yTq3HvxDeBW8ysDKgE7o05HslntbVw0knw8suUbYgKYv/9L3z962EdPskJBZ3wNUdLun8Lobs4mzQ37udmL2NT9XsM79+FCYfun4HImpbv73e2aWncTZVE4uTu84HDo8uzgXGxBiSF47HH4JVXYMMGtvbpTZ8ebtcs3ZxR6CVdKQBabFlEpBVeeQXWr9/+tg0b4I03YglHdo0SPslryWSSp7Uci4jIrpk3D+64Y8fbKyrgwAMzHo7suoIv6aaXSST/zFi4lo/WVNGvazmjBjS6coWIiNQ3aRJ88pOwciV06gRActMmEhUVcNhh4bRqkjPUwyd57amZYbLG8SP6UVSkGWUiIjuVTMIf/wgnnBCSvVNOgQUL4O67WfY//wN33QVPPKEJGzmm4Hv4JL89qfF7IiLNt2ULXHkl3HJLuH7VVfDzn4fk7vTTWTF0KH1zcPKWKOGTPLZg5UZmLV5H5/ISjhjaK+5wRESy29Kl8IlPwPPPQ4cO8Je/wOc+F3dU0kaU8EneSs3OHbdPH8pLVHoQEWnU9Olw5pmhdDtgADz4IBxySNxRSRvSGD7JW1qORUSkGe6+G446KiR7hx8OU6cq2ctDSvgkL63ZWM2r81dSXJRggvWNOxwRkexTVwfXXguf/Sxs2gQXXQSTJ8Nuu8UdmbQDlXQlL03ypdTWJTlyaC+6dSqNOxwRkeyydi2cf344RVpREfzmN/DVr+r8uHlMCZ/kJZVzRUQaMXcufOxjMHMm9OgRSronnBB3VNLOlPBJ3tlcU8tkXwqE9fdERCTy9NPw6U/DqlUwYkTo4Rs2LO6oJAM0hk/yzktzV7BhSy3D+3dhj56d4g5HRCR+ySTccAOcfHJI9s44A15+WcleAVHCJ3knVc49UeVcERHYvBkuvTSM0authauvDsuudO0ad2SSQSrpSl6pq0vydGVq/F7/mKMREYnZ4sVhMeUXX4SOHeFvfwuzcqXgKOGTvPL2wjUsWbuZ3bp1YNRAHb1KfjOz14G10dX33P3iOOORLDNtGpx1Fnz4Iey+O/znP3DQQXFHJTFRwid5JVXOPX5EPxJaXkDymJl1ABLuPj7uWCQL3XUXfP7zUFUVFlW+7z7op2EuhUxj+CSvaDkWKSAHAJ3M7Ekzm2hmh8cdkGSB2lr47nfh3HNDsnfJJfDMM0r2RD18kj8+WLERX7KOLuUlHD6kV9zhiLS3jcD/AX8B9gYeMzNz95r0jSorK5u1s6qqqmZvm00U9zZF69Yx4Kqr6PLssySLi1nyne+w6txzYd68NnuOXH2/IXdjb6u4lfBJ3ngqmqwxzvpQVqLOa8l7s4E57p4EZpvZCmA3YEH6RiNGjGjWziorK5u9bTZR3JF334ULL4RZs6BnTxL//jf9jz2Wtp66lqvvN+Ru7C2Je9q0aY3ep19FyRtPzVwMqJwrBePzwG8AzGwA0BX4KNaIJB5PPgmHHhqSvX33hddeg2OPjTsqyTJK+CQvrN64hdfmr6KkKMF46xt3OCKZ8Fegu5k9D9wNfL5+OVfyXDIJ110Hp5wCq1fDmWfCSy/BkCFxRyZZSCVdyQsTZy2lti7J0cN6061jadzhiLQ7d98CnBt3HBKTqiq4/HK4/fZw/Xvfgx/+EIrUjyMNU8IneWHbcizq3RORPPfRR3D22fDKK9CpE9x2G3zqU3FHJVlOCZ/kvKrqWp6dvQyA4zV+T0Ty2WuvhcWUFy2CPfcMiykfeGDcUUkOUN+v5LyX5q5g45ZaRu7Wld17dIo7HBGR9vGPf8DYsSHZGzs2JH9K9qSZlPBJzntSiy2LSD6rrYX//V84/3zYvBm++EV4+mnoqyEs0nwq6UpOq6tL8nSlEj4RyVOrV8M558Djj0NJCdxwA3zpS3FHJTlICZ/ktDc/XM2ydZsZ2L0j+w7oGnc4IiJtxx0+9jGYPRt69Qrnwx03Lu6oJEeppCs5LdW7d/yIviQSiZijERFpI489BocdFpK9/feHqVOV7EmrKOGTnPbU1vF7bX0CIRGRGCST8Otfw2mnwZo18IlPwAsvwKBBcUcmOU4Jn+SsRWurmb1kPV06lHDYkJ5xhyMi0jqbNsEFF8BVV4XE74c/hHvugc6d445M8oDG8EnOennBBgAmWF9Ki3XsIiI5bOHCsJjya69BRQXccQd8/ONxRyV5RL+SBebmZ+fy4tzlTW7z4tzl3Pzs3AxF1DwNxf3Sgo3AtsWWszFuEZGdevllOPjgkOwNGhTOh6tkT9qYEr5dlKuJ0/67d+PKO6c3GvuLc5dz5Z3T2X/3bhmOrGn14165YQszl1ZRWpxgvPXJ2rhFRJp0++1hMsbixTB+fEj69tsv7qgkDynh20W5mjgdObQ3fzh3dIOxp2L+w7mjOXJo75gibFj9uCfOWkpdEg4f0osZC9dkbdwi0k5qa+Hhh+l9003w8MPhei5Ixf3HP4ZTpF10EWzZAldcAU8+Cb3Vhkn70Bi+XZSegNRPNLI5cYIdY+9BvDHX1SWpSyapSxL9Tbtct+3ysL6d+cmZ+/Llf7zO4N4VAAzt0zmr32uRrFdbC489Ru8nn4QTT4RTToHi4rij2lEyGRKjzZthwwb41Kdg+nR6b9oEf/1r6BW7+WYoKtq2fTK5/eX61zN5OZkM7/U114A7vauqtr22m26Cyy9vu/dKpAFK+FphVxOnZDJJbV2S6tok1XV11NQmqamto7ouSXVNHTV1dVTXJqmJ7g+3Jamujbatq2NL9JiatH1U16YeF/ZVU1u37bat20T7qatjcO8KLvzbq/TuWMyyje9h/btwwzPvcv3T7zachNU1nZAlk1Db4OOi+9Ifm7bdrpi+YDUAD05fyI3nHaRkT2RX1NbCSSfBK6/Qe8MGuPXWsPbbE09sn/QlkyHRqqra9rf+5Z1db4v7GpAA2LgRXnkFRo/OyNvWFrauGtqxI+y+e5yhSIEo6ITPzIqAG4EDgM3Ape4+pyX7OHJob/7vU/tz4d9epUtZEWs2v0f/ruVcff/b2yVaW9KSteraXcxy2slH62sAeGfR2thiKC5KUJSARCJBcSJcLkokKCradjmRSFBcFC6vr6ph3eYaLjhiLyV7UpDaov3iscdCorR+fUhA1q+HiRNht90gkdiWcG3e3Obx75LSUujQISSqGzfueH/fvuFfIhH+Qcsut+djEgmYOxfm1PsvqqqCN96A00/f5bdFpDkKOuEDzgI6uPsRZnY48BvgzJbuZK9eFVTXJlm5KYwhWbi64SPRdEUJKC0uorS4iJLiBCVFRZQWJ7ZeLy2Kbi8uoiy6vyR1f1GC0pIiSovC/aVbHx9d3mF/27YpKU5QFj3H3KUbuGXKPA4eUM60jzbzPxOGMWr3biHRipKrROpyIkFiaxJGdD0kYyFZC/enX049riiRIBE9pv52qSSvJVK9qOdYd/7xygccPrSXkj4pRGfR2vZr+vRQHk2XTMKyZTtuW1YWkq0OHaC8fNvl+td39b7mbJsq1z78cDi/7Pr12+Lr3DmUdrM5cWoo7ooKOPDA2EKSwlHoCd/RwOMA7v6ymR28KztZsraKbh1LOWxgOS9/WMW1p4/k4L16bJfMpZKsVDJXVBTvacBenLuc77/0Dn++YAw9tixjVVmfraXow4f0ijW2pqSXzHtsWcYZh5nG8Emhan37NXp0SDjSE5BOneD3v4dTT92WbJWVbUu2ssEpp4TS8yuvkNywgURFRbh+yilxR9a0XI1b8kKhJ3xdgTVp12vNrMTda1I3VFZWNrmDNz/axM+fXcLV4/phPRIcO6QLP31oBleP68cBu3Vsp7BbJz3mHluWUVVVRQ+WcdVRvbj8jteyNvZcjbu+qqqqnX6uspHizjo7bb9gJ23YoEHsOWoUHd56i6JNm6jr2JGq/ffng0MPhVWr2ifqtnL99XSeMoXiGTOoHTWK9WPHhvPOZrtcjTuSy9+nXI29zeJOJpMF+2+fffa5bp999vl02vUP0++fOnVqsikvzFmWHP3jJ5MvzFmWTCaTyZkzZzZ4ezZpKLZU3I3dnw1yNe6GpMedSwol7uh7H3v7tLN/O2u/ks1ow5LJZDJZU5NMPvRQcslXvpJMPvRQuJ5DCuVzmS1yNe5kMndjb0ncTbVfWdRHH4sXgFMBojEwbzf3gU3Nxm1qrbu4vfXhmibLn6nY3/pwTYP3xyVX4xZpR7vcfm2nuBhOP50Vl18exr9l45IsItJqhV7SfQA4wcxeJMySv7i5D2xJApJNY8suHzd0p9scObR3VsUMuRu3SDva5fZLRApPQSd87l4H7NJql0pARCROrWm/RKTwFHpJV0RERCTvJZLJ7FoEOJtMmzZNb45IARozZky86ya1EbVhIoWnsfZLCZ+IiIhInlNJV0RERCTPKeETERERyXNK+ApEdKJ1yaBcfc9zOO68GHcnDcvVz2WuytX3O4fjbvf2KyffmLiYWSLXPkypeKMlHDCzfvFG1Hy59l6nmFkxhPfczLqaWae4Y2qO1Oc77bPSIe6YmiuKWwOSm5CL7ReoDcs0tV+Zl6n2S5M2mqneB6krcDgwzd1XxBtZ80QnVv8UYe3F77v7hphDalK993sfYKC7T4o5rBYxs3MJ7/kUd78u7niay8z2Iqzv5sA/3b065pCaJWrg/wd4092fjDuebJLr7ReoDcs0tV+ZlYn2K+eOPuKS9sX9NnAv8D3ggFiDakT6UaWZFZvZDcD/AzoDA4GT4oqtuaKjy93N7A/A7cDFZjYk7rgaUv8o3syGmNlrwGHA+8BoMxsRS3A7Ue+zkjCz7wK3AcOBy4Bsfc8T9a5fAfwVOB74cixBZbFcar9AbVgmqf3KvLjaLyV8jahf/jCzIjP7KjACuAh4CzgiOprICvVLH5FewAB3P97drwCeIcQ9MI4YG9NAo9MN+D/gTeDK6OZjzKw807E1xcyK035MU7HtDTzi7l8FfgnMAs6JKcQGpRqcep+VgcAxwInufjbhvT/dzDrGEGKD0so2ybTbRgJnAT8gfFbWmdmVjeyiIORi+wVqwzJN7Vdmxd1+KeFrgJmVuHsyOkLb28z6Rx+sMcAz7r4IuIlwBHRI3IPFoxJN+lH8OWZ2t5mdBywD9jOzQ6PN3wNGAsfFEmwDzCyRFvvBUcOTAPYF7nD3aYRG/mRC7LEysw5m1hvA3WvNrIuZ3Qz83syOB2qAM6P7PwKqgQPN7IjYgo6kxuOkGhwzO8rM/mxmhwO1wHrgyGjzu4ELgf3iiDVd2rii1PdyiJmdaWY9gT2BSnef4+7vAo8BH4/uKzi51n6B2rBMUvuVednSfinhY2vWXWpmlwK4e030pbgKeBT4pZmdD/wLOD3aZgahvHA0sHtMoWNm5wCnRZd3N7PvAScC/wU+DXwO+CFwY/SF/TyhIdrfzHrEEnSIdR8zOwXCl8DMBpvZ34G/AdcBQ4H7gGuih3wI7EU4so9tMK6ZlRDGWXSPrh9NiPld4JHo8nOEo7TvmtnXCUed64GxccScEjXm10SXe5vZZYSyxwbgPMJR5uPAVy2MOTqN0EZ8JnpMLImBmZ0AjI8uF0dHv/8AvkD4Tk4BTjCzA6If2pFAGfClOOLNtFxuv0BtWIZjVvuVYdnUfinhY2vWXQ2sAjCzQcCtQB/C0cHdhNr6MmCNmf3TwhiHJ4GDgYzPYjKz0ij2u4B7zWwPYALhqP1+d/8ncAOhsfw38FPgEkIX/a+Bnu6+KtNxp0kCSwDM7GxC6WMicCgwFzgfuBM43sz+CXwLeJbwxdmc6WCjH9Vid68hNOabzWwModekH/And/8P8DDwY+AEYB4wCDib0KAuy3TcUewlAO7+tLtfY2YDCD/0XwF+4+5fJ5Q/+gGvEF7DL4DJhM/P0FSvUYbjTjXQC4BJFmZnfoYwxmWcu59OGKMzCriWcDT/MrCC8P2tzWS8ccnF9iuKU21Yhqj9UvsFBZ7w2Y7TzR81szuBhcAawpeyBpgKzAY+5u6XAQ8S/uP+CqwjZOMZlZp5ZGYfA24mfIlfBF4nfMC7u/vTwFLC0fFDhLEYowkN52vR4zN21GNpY1yiruuEmf0siqUIWOPuVcDTQAVhLMkE4AV3PwV4A6gCMnp0bNGYi6j80cndawmD3scB04AX2DbG5bvAFcAwQiP5KnAj4Yd1eobj3sfMOkeNfOq2ccA77v4gUAnsH931EuGo/2jC0eejhP+T3xF+xNLHyrS7qESWaqCLgHMJP6DzCA3oGdF93wbudvf7CInA14EHgI8TvsN5K5fbL1AblsmY1X6p/YICXpbFwpTzS939WDPrDnwf+A7hw/F3QsPzDeAGd59uZscQyiGpcsOnCV/mH7j7ExmINzVINTV2YXfgHsKX9YfAHYSjyQ2EI8jn3f3h6Ki52t0XR13LhwF3uvu89o65fvxpsY8lvH//SzgSPgo4FegP/BFYSRhYXubuf7Qw82ossAn4irsvzGTsUczlwM8Is7/uJZQOfk5oXPoS3td/uvtUMxsdfWY6EXpW+rn7LRmO92hCI/N3YC3h8/0a4Uf1H4Qj4RcIA4Uvcfel0efD3f0DMzuDcGT/V3d/IYNxpy9l0YcwiHlPwiSDvoSj9s7AKcCV7l5lZv8ilHrKCD0T5wH/z93vz1TcmZZr7VcUs9qwmNowtV8Zizur26+CS/iirt2a6PLbhO7Vj4CvufuVZnYAYdzFGOBrQEfCcgDroiOj1H4OcPc3MxRz+odoUBRvBfAUcJO7/yUaS3IZcBWha3g+YbDwlkzE2Jh6se9N6LpeSziiPAcYQDjauYgwfuRB4C5CQ7k5elxPoI+7e6bjj55/P0LjOInwg/oCYXzOx4EehMbnMGBqpn48G5P6fEcN/DcJJZmBhKPGvQlrmP2c0IsyEvgz8LK7/z6eiIP0z0nabf8DXA0McfdNFsZ2rSW83xcBM939hnqPqfAsX5+tNXKx/YqeT21YTG2Y2q/2lyvtV8ElfOmio4AfAn8iHP1e4u7LzOz/gJ6ErPtU4LZUYxmNg2j3sUHR0fCwqGyAhanlPyQcST5JKMVMJXz4T4iOFO4nNKD3ufvS9o6xuaIjxQRhzEU3d/+OmZ0G/NLdR5nZNEIjmgDWu/tzaY/d4YvUjnEmPAy+Tv0dCgyO4roB+JS7zzCznxLGXlxE6KH4f4Qyw7pMxNkcZjaYcER5KbDE3a+1sIzFXwhlg0sIn/GvAJsy9R43EOd2/79m9jngWMJir7dFn43vufujZjYe+CShfPMWsMDdVze0n0KQze1X9Fxqw8jcZ1PtVyxx5lT7VXAJn5lNIBw5bIj+/oEwsPllwriKaYRBzj8GLo7j6NLMKqKL/wM8HXWzn0YYn3A1oe7/CeACwkyeGnf/hpn1JYwhSR1Vpo8jiIWF2YEfJxz1jgYedPfJ0X3PEbrnZwGHu/uvYgqzwffKzK4mdL/fTygxDXD3b0T3bSCUaBa5++IMh5seYz+g1t2XR9dPJozDWUZ4z/sBvYFb3X22hQU+T3H3081sYKq0FEfCZGYHAfu4+7+i6z8k/BB9h9BLdSthHMtX3P2oaJtzgWfT4o79M55JudB+RXGqDctsjGq/1H7tVF4nfPWPZs2sP2Gg8nXAKnd/3cz2JwyaHGFhrMivgJ+6+ztpj8vIf4qF2UhfJ8yu+z5wPWHA71WEQbNlhPEASwlHCR8RuogvJMwAq/Owxk82NJJ7E5YhWAR8093/ZmY/JpRxbiIcvX0FOIQwY+nDmOKsf4T2JcLsv59Fr+FiQmM+i/DD9Ki7/9vM9k3/jMTFwtisjxMamS2Eaf5/d/eHovsPJqz9tZRQbioFhnpYliOuhjK9RLacMG7rF4Qf/w8IC+1+Cpjv7hea2XRC2e/PmYwzbrnWfkXPpTYsszGq/VL71Wx5PUs3rYxxkJl1JvxH9Hf3Z6LG8gjCGIZZZvZnd1/g7uekvgi2bdX3dm14zKzMwoDTy9l2FDmUcBS/kDD1/3HCLJ9/EgZen0YYEzLd3b/m7jWpD2EmG8qoga9/W2/Cl2AYYaDwqdFdfyA08D8lHMX9P8IU+r2ix2Xs82hmp0Ulj9Lo+rkWToG0CbjczAZEpaj5hC76zoQlFbpHu5gZPS7jaztZtIhn5F3C4PH7gAMJ8U+NtutMWEC1jjAOpoe7b0o1lrDDSvXtKu37VGfhzA9dCbNHT/GwwOtuhM9FB3cfB8yzMN7rdEKiU1Bypf2KnkttGJlrw9R+BWq/WiavevjM7FhC9/Cz0fWzCDPV5hPKHicTxgDc5e53mtkPCOMtfmNmvTw6kXimjhqihuZqwkm1vxh9EToQGsXhhPEuRwDnuvv5ZvYLYCOhofy3u/8mbV8ZPdKJYv9fwlHurYQTVR8JLIy63i8llBHOJyxF8HV3nxg99ljC1PRjCUdFH3f3JRmK+yDCZ6I/YRzFBsKA4LuAH7r7XWZ2HeGH9dwo1msIDf0T7r4xE3E2pH6vR1T+6kz48dzD3VPrfU0hjM25kDCg/BpCz0lNA7vNOAtjz04EfgMsJ5QjrySsP/UVwo/A4YTlK77k7muix+X1OL1ca7+i51IblsE2TO1X/HK5/cqLhM/Murj7OjO7nJBNn0s4UrgP+L27P2VmPwe6AbcQuuOXEgazXuXus6L9ZLKhPIcwaPZt4OfuvtLMPgn8zt0HmtnjhDWEZhJKJJ0Ji4++BCTSPkQZL31EsZ8fxb4K2IfQ4HyCMAPpH4TSzZ2EwcK9gavd/YDo8WMJs/HWAtd6Oy+eGh3FlhGOxkcDf4zKGqcTGvhbCCWnte7+bQuDyycSvszdgR95WA9s6/4y3AMxGlju7gui6ycSfqjKge+7+2Qzux14gnD6pi8QymjvA7/wbYPm4/ispC9lUUIoRw4kfDbWuPvTFhat/REhoSkmLFkwy9MGvuezXGy/oudTG5aBNkztl9qvtpLTCZ+Fqe4/AfYAXnT3/xcdIUwkrEP1NcJRz0fR9rMI4y3KgL3c/fWY4v52FNuhaV+CAe6+yMwmEsYqLCSMubiCUMr5NmFsztxo+1iOFszs/0Ux7e3RYF8zu5cwm+p4QoN0l4fZYL8BjnH3Q8xsmLvPSdtPF8/wrDAzm0JoLFODbH8KbHT3n5vZYYT3+xZ3f8HCSeUHEwbYpr7wcTQ4EwiLiP6fu3/PwkyvLxLGO51LKIP8L2Fc1J8Ii9P+BqjwaExRTHGX+raFdcsI47fmEBrGlwi9KqOBdwg/ZHcQllk4x33b0hXZcFTcXnK1/YpiURuW4TZM7VdG487L9itnE76owTmJMC7kUULt/A7CVP/vEj5QvwD+Q1j1/ExCaeEST5u5ZhlepsDDdPk9CScx39vCOIDfEo4WvhEdDf2bUA65D3jA3W/LRHxNSYt9MDDZ3feKYv8pYa2vKwk9EN8gDGruQhjs/KRvm9EWVwNf7GGV+bMJi1o+QhhUOxf4ibsviV7L5cAod7+gocdnOu7ouTsRPr+rCMtXrCL8KC0glMUOJxzh/5FwjtESd78x7fGZ7vU5jnBWgaq0204kfD5+QRhzdADhDBATCUnAVwjjibekHhdHI59Judh+Rc+nNizzkwTUfmUu3rxuv3Jy0oaF2WinEb6Iv/IwiHMzUOTuLxIy8WMJpY89CIOEDyB0vW+3TEF7fhGirvjtBk9HX74PgH9bWDj1HqDSo+ny7j6dUAL5KXBBekNpmZ3U0Fjs70Wxv0fo1n7f3b/g7ps9rJt1E2FG2Gx3vzrVUEb7yPgA2+h5a6O/DwCLCYvV/szdr/Ro3I27ryX8SP2s/r4y/IN6iZldattOCt+L0NvzMOHzMJPwI3SQu19KWEz1ZGCEu/85vbGMYs/ke96d8IN0ZXT9iSiGJwmfibGEI+L3CKWw7xEGZFcTFgausmhAdzY2lm0lV9qvKFa1YTG0YWq/tsau9qsN5WQPn4WTbp9GOEK+i3CC5BMIYy8GEk6p8jBhkO3LZrZn1EBlepze1m7htNvSV8p/nbBw593R9TJ332JmHYCuUeMTe5d2I7EvILy/99a/r95jMn2Elj5lvpQwCL4u7Sh5X8K4ovM8nKopa47EzKwL4XO7P/Avd/9SdPvdhPEtgwmzwlYQjpbfJgyQv8bdZ6ftJ5PLcAwijGWaT2gUSwmlsQsIg8nfdvfvmtlIwpH89winnTqPUG56KBNxZpNcab9SsaoNy+hvhtovtV/tJid6+OofFUZf4lcJg5bvBSa6+xB3PwfYnTBw8m6iE1THlOxdBdweXR5gZjeYWTcPp41JTUv/HeFoLfW6Ukfvmz2cGzBjyyrsQuw/JIzhIYqxoYYykcH3O3WezlRj+W3gNuA7ZtYj7Sj5HcI5GX8W/ThlRWMJ4GE80PcJ41jGmdmXzWwE4eTlFYTP/MmERvNm4H53/5SHGYWJtP1kqrH8NmGs1lLCeJYehEZ8HqHMcSFwkYUTts8EaglHybPd/Vu+ba2tnGiHdlUutl/R86kNy1AbpvZL7VcmZHWgaY3FDl84d19E6I5/jrCSOGZ2CSFLr3X369O74hvbTzvEXBpdvAU42MyGEQakrnX3NdFRZ+rLezvQK4o7Pc5kpuJN18LY/wrsZmYXN7a/THxxzSxR/4jQwjkMdyccqZ0IfMPCulopvyGs5F5M9qkEnicsA/E+IdZTCSWy5wljX3q5+81RiSeVCGT6B7U74T3+pLtfD/yPu/8n6tH5L2GQc0fC+lNPmdnLhFNm/cajpSHq/8jlm1xsv6I41IZF2vt7pfZL7Vcm5URJ18KCnhcQpse/7tsWJO1BWEn8ZEJNfSVwnUfLFMTNwjILnyZ8gA4HLvJtgzpL3b3awuDnRQ0dXcapmbHvRVizKpbY65Vn+hNKY7cSBl1vIBzQjCUcWf7O3VdYjAOYU2zb4PGiqFxzmLu/knb/aELPw42EMxZcD7i7n9ZQmSoOFk50f5W7T4gavkT0WvYknPB8KHCEu19mZscDy9z9zeixWVOGyoRcbb9AbVg7x6f2KyaF2n5lXcJX/wNtZt8HDiM0ltXAa542FT76cH0f+Ku7PxzdFtt/iIWZVF8inGLl+4RTxfQG3iTM7JkP/NrDINsdvjxxxJyS7bGnvpjA5R4N7jWzcuAHwN6ERTrvIaw/9UvgO+7+DzO7HviPu0+qt79Ml8jKCQuIVqfdVkw4Kv6Yb1tPrRNwDuF0TReY2aFAlbu/Fd0fe4NjZgcQZtXd5O6zop6VGsKg8QWEo/lLgV952nkjIXsHNLeFXG+/oufP6nagKdkcu9ovtV9xy5qSblr5o9bMSu3/t3fmcZvP5R5/zwzGWEMayRLRZ4wyJ4qTFDEtdsoakhHiWI7lUGrSGU2HkFGyzyCKGJLK7lDGMpZBlD45aSrbUET29fxxfW/Pb57Znhnz/O7ter9ez2vmXn73fT2/5/597u9yXZ8rkiQhkijvJpoSHwgcrUhcbXCv7W0rYlnb8rCmbxGDonfhPoQz+Fll22Ys4ZW0M1G1Nozw8AGauvXRlrGX9zpI0qhy1+5ES5t9iRnlB4lci/OBtRXeVW8Sbugze61+p3yeBxGmrgMkDZa0paR1yuDgx0SOSyOuFwi3+b9LWtX27Q2xLI/XaZo6K414vvxsWK65V0tcqwC/t32f7YMaYgkRdzuL5exoR/0q79eWOlBibbvYU79Sv5pJ01f4eo/2Fc2SzyQqeS4kPuhrAkPL/ScAZ9u+o9frNMvjbRGi3+KDhE/WkbZHlsdGEr5a44ArbY+pO77Z0a6xK3Ju9re9jqQzgGsdzvPvIsT+WWAM4db+iJvYJFzh+bWb7TGSTie+cO4m8lt2ArYi3NvH2b5DPdV4rbBaUnWZX4/Ylvln5fGRxO/wIjEj/hIxOz7E9nPlOU3/PfqTdtev8t5tqQPQnrGnftVD6teMNH2Fr/oHkfRDoi3JbsRsbDjh4zOVWAo/lVienyHHpaYtxa3LFkzj9u6E+eJ/AjcSF8KCkjYsT9mGmNlvAhxfOa72896OsUtaQVHptWy5/U5JpwHrAoMl7Ud8qf53OWQA8cU6Aviw7Wts/06RGF3rOZe0rKShDs+vkyQtQ4jKMELgTyQMSb9AnOfPwHSeW41qvVqbm0tapKyUNHzLhkm6gDjH60tasvFcR7umw4kcow2AMbb3bohl9ffoVNpJv0qcbacDlfdsq9hTv1K/Wo2mDPiqS/GSlpS0D9Fr8UWiPHpRovT8YeATxNLrgsAvbe/g+ltyLVb++yHg4LLEvQyRp7Cv7VHA/YRh41jgW5KuIcq8b7L9gu0XNJuqvYx9hrgPI7Y1FrX9ZLl7K2Axh7/T5wmhvw24scyUryJE6M9E+6m3ZnlNuHBXAcZJGkrk5kwgTDvHEIMCiLZa1wGvEAaeMwhkE7YQFgVOkLSqoifnHkSLrG2IPKPVG08ss/mnbJ9n+wDbt5b7mz6R7E/aTb9KnG2pA+0ae+pXkPrVWtQ9a3grz6XcHkQkNO8GXGT7MKJ8ex3iAzSZaHXzku3j3WOQWUs5epmhnQeMl3SQ7W8RIrIZ8cF5kJi9QyzFb0/MOHcCjrC9i0s/QKhdJNsydklbKPJW3gV8wfZxlYcHA1MkLWrbRJ7Iqbb3IwxstyZm+esAz5W4m5IPZft2ojJwMlHeP5kQndOBNSRtD6xl+z5i9WGtuuNtUBW48uW0ECHuGxFdHwYSLv4LAYdJ2qY89/WZvU6nzYobtJt+lfdqSx1o19hTv1K/Wpm6lranO5GSdpJ0PXCGo23JTcCqZXZwJeGBs5Htm4HRLg2r1VMl0+/thBQNticQy71HA5soKnvOBnYkLshVgI0lvRvYi2gT87rtaY72QrXPFto59sIawOK2D3c0Yv+wpCskvR94jCiX30TSMGJFZcnyuVgEOJTIkTrE9l11BayedjqNgcDwsgIxDnjV0eR+Yol9LeAbhLv7p8pLLAM8U2aktaEeD7DGdbmmIifqXOJc/8H2mYQJ8LcIF/3FiIrHGehUoWw3/Wq8V7vqQDvHTupXbaR+zT39XrSh6VvFDCRO/LuJGdnPiZH3pcQe+xm2b5a0G3BDY3ammsu4Ja1KNP0+wVEWP5CYgX3P9mRJPyI+PK8SF8BI4E6ikfVTdcU5M9o1dk2fYHsPITarE7Pdn9o+uzy2E9FndE2in+QVjeOBobYfrzHmjwFP2X6g3B4OfBdYDrjY9rGSTiFMX7+qMKfdHNgOWMQ9icFfJOw6Hqgr9l6/x1Di+vskcT0eD2wBjLK9saKh+ChC2E+0fXUz4mwG7ahf5T3bUgegPWNP/Ur9agf6ZcCn0k+xcntx4Bgip2FF4BlipL1t+VmZyIF5lrjIm2rgWWY8XyBm6hOJkvm1iZYwLwBHAucBezo8fFaoiHtTq3raOfYGClPM8wmBH1u5fwvCwf0fROumxhfxTHtg9mN8KwJfIwR9tKPf6WgioXk8MI3wcLqZ2GK6lcgxOht4sGznVFd8at228fQ+cdsR1hAXEfk4+xKNwI+TNIm4Vs8AbnNp1N7ptLt+QXvrQDvHXmJI/eq/2FO/3gbzfblb4W5+iaSTJf17+XCdSySr3kr8UT4NLG17V6K8++uEMelx7nEer7W6p0r5QF1HzHR+DJxje5jtrYi8hkeIZtCNXpcPl+XlpotNO8Te+NtW/h1WZpuN3+FKQmQaIr61pKuJZOFnbb/o0lC8PL8WsaxsNY0HHrD9KdsNf6zfEY3vH3TYKNxGVH4NIbosXG77lw2xLHHX7utU2bbZqGzbTCHc8B+x/RjR6mt5SesTW2e/Aq5viKVqzD9rBp2gX9AeOjArWj321K+3fs/UrzZjvq3wKfynjiESaX8IvIOoVFuY8Ol5oNw/ABhNVNMsS3EVb6UZWoMyI9vN9o7l9qGE4Ozm0qKnVWnF2BU5Hks5DFGr958C/Mb2hZIG235Z0gcI0b+FSIAfZ3tS/VFPF2djq+k42z8p9+0MvMP2qYry/xttn16e+2Via+/aymvUnZ7Q6CTQ+HdNYrtpKrEyNZbIxVnY9mGSlgD2A56wPaFZcddNJ+oXtKYO9JVWiz31K/Wr3ZmfK3zrA2fa3tf2/cSy8JlEL8MLgfcDqztcuH9BVCxNcJRDP1xZHm4ZsSRmC7+XdJWkSylbN+7px9jUWfwcaJnYJS1U/rsasJWkJSR9TT1u89cT/UQpYjmwfIZ+AFxte7uGWKq5JfN/Ib7815O0gaSfEPkst5bHvw98SdIw2w8Bx1TFEup3mW+8X+V9NwUutL0Xcf2PIpLj15W0laPl1GldKJadqF/QQjowD7RE7KlfPaR+tTfzc4VvCnCAI2n540Rl1a8J08tRwJ6EX8+J7pVY22qz4iplqf5w4HjbN5X7WjbeKq0SuyLJ+mDCoPNMIjdkEj1i8ztgJeAc4jMyoHeMrXLOFRWB4whX/71cEoAlLQ88DRwEXGX7nsoxzeztPAA4AniCmN3vQuRHvQKcRPxNfgpsSNiH/Kx6bLcIZafqF7SODswLrRB76lfqV6fwtgd8jQ+ypKOI/f/GUvHitv8laSJRUXUnkXh7vitVb61wEcyO3h+adoi5QTNjLzPZHwKTbP9YkQv1HJFT8X/EF+iyhJ3CruV5e9QR29tlFltNuwNHVQWnCXE1rsXG9semxIBlacIP7lqisnFrQiTvI0TzaNv/26y4m0mn6xekhs3j+6Z+1R9X6lc/M1cDPoV30JNE4umrkha0/Wp5bF+ibdDPXRolS9qYmJ2Ndq/eke2GelUHtRN1x165YLcgvKVGEoa0o4FriFnkow6PJCQdQZipHmr7zrrinFdKnsjBxCz5JaL/4nccScNNmVn2/iKUtDDRwmuCow/m5kRLp3uIatIdiDy17zv84jqebtYvSA2bi/dK/Ur96kj6NOCTtDLwTcJ/6i+EJcGBtp8ujy9OjLqHAPsQiZSfIZa5T7X9i8pr5TJrhzIzUZZ0FnAX4dQ+nrBa+Bzhgv4YMYtuWC2c6YozfitT2Wo6rpqf08yVE0nvJFofPUZ4xK1OXKcbShpMGKa+CXwHGGz7mXJc7fYKdZL6lfSF1K/Ur05njgmkkt5D5CbcY3szYj/9aaLP3gKSjgYuIwwczySMSRcD7ra9WUMs84/S+binZH53SeMkrQUcR7Se+jMxOzvc9sVE1ePShFiuQ3zhLtGMuOeRW2xv3Syx7J38LWk94HJiu+leIt9lEjBA0q62Xya6QEy2/VJFLAe6CfYKdZH6lfSV1K/Ur05njit8knYFhts+snLfYGLGM4rw7rndszA1bOdthGT29P4SlLQsYXI5DXgUGEr0XhxJrJZ8mxDOVWz/vfI6HwDedPg/tRVN2C4fSJyrxjlf3tHCaSTwcdtHlftPJ7YvrwIusL1iXTG2EqlfyaxI/Ur96jb6WiK+QPVGGW1fAmxp+xe2p/UesVeem2LZgRSheLPkuixY7l4GuML2V4CXCRuDjQgX9A2JHKl1e4nlQNv3t6NYQv2fb9tvlHP+PkkXAedK2oE4zwMVZqQQxrSvlBn8ptDzBdeFpH4l05H6FaR+dRd9WeHbjEiWPMf21HLSDyYugEGE6ehN/R5p0hJIGlpdDVFUNw4DrrU9oVy82wGnECapnyb8qH5v97i0J32n9yy8FBjsQeS0PE8I4itEf04TW03rE55lv64/4tYh9SupkvpVP6lfrUNfVviuI8rPt5e0clmK3YyY7VwG/FNd3q6kG1C05dmNSKRF0nBJE4hOBKcBoyV9FHicqKJ6Avg4YWlxQ4rl3NNYdarkFm1StiN/C6xl+5pSofZXYkXia8RW5Z+Bj6ZYAqlfCalfzSD1q/Xoa5Xuu4FDgFWIUug/AGNsP9Gv0SUtQZkFr2R7z1JJtQIwgpilHWJ7iqIH6ebA54FLy6G5ejIPzCS3aDmiQnApwkLhy4Rj/jTb35C0NyGg+/d6ncw/I/Wr20n9qpfUr9Zlbn34hgAr2H6w3G4bA89k7tH0PmV/I5ppb0MkMF8MbEyUyR9T8jIeAg4jvMyqS/hpZTEPSHovUTX6V+CPts8vX14LEG75jxD5RUsC33V0iZiu92RzIm9NUr+6i9Sv5pL61XrMVV8/2y+mWHY+laX4hlhuRbjMn0TksyxFVLDdV/6/dTn008DllSX8QeV18sKdA9VtxbL9tD1xrqcQdg+fKg+fB3yEWKU4HJDDXuFm6DnXec5nJPWrO0j9qp/Ur/ZgvvXSTdqfmSzFL0D0jnwFOJloK7QLYVD7WaKJ/IeI8vnzG8fm7GzeKdYQzxGu/iNsby5pOPAfwC9tXylpfyLP6DzgX8CmufWUdDupX80n9au1yQFfMgOKzgRjieX40cDJtu8oM+Wxtj8o6TzC2uI37tVMPpl7JG0EHECsul9GfEmNAG60fVWpbNuIMIF9zT39XLcA3Fi5SpJuJ/WrflK/2oMc8HU5MymZ34ToRnAnUTY/Fphq+/SyVfIKsCNxIf+jclzOivuAovPDV4mqtEdsnyhpFeBU4ly/TuQWLUVUs40AjgYGA8vZvqe8TnZ+SLqe1K96Sf1qbxaY81OSTqaSr7ItkUQ7hVhuv9f2G5JuBbaRtD7wLqJ0/grbL5bjBjhb28yWSiLyKOCLwM+Ah4nzCSBgSGNbo4jqB4hk5zWB99i+n7CMAFIokwRSv+og9atzyAFflyFpNaJ10Au2X5f0EeDrwIuEQe3ngAuBDSTdbPvyIppbEf0XHyivk0LZRyrn6P1EM/Df9nrKXcCjkja3/SvCK2yI7Rsk3eLoDJEkXU/qV/2kfnUOc1Wlm7QvklYqRqOnARcAO5eHtiS6EOxMNK3+nu2JhNv5ZpIWtf2k7fG2HygVWLn90UcaWxeS1iByWO4rtweVf1cmqgPHA9+UdDnhMv8jiDZgypZCSZeT+tUcUr86ixzwdQGShgJnAXfaHgkcA0wsD18JjJD0I6JR+AhJXwJ+SuS+PF95nZwV9wFJi0jasXpfWVn4O9G2CWCh8u/qwNa2ryMqCL9je4uyBdI4Ns930rWkftVL6lfnkkUbXYCkzwEfsj261/1LEyX0+xMJttOAswmxPD4v1LmnJIavRpzDvUt14CDgDWB7YFdg58YXkaSTgIdsn9TrddJlPklI/aqT1K/OJnP4uoPXgJUbZrPloh5ALMUvWH7GAX8E9rR9b9MibWPKCsIbwB8lXQHsA9xRSSyfSPTnPKvkFX0WeIzIOZqOFMskeYvUrxpI/ep8coWvCyiJzdsBP7N9W+X+y4icl99IWquRjFtyLhoXfzIXSFodOJJIl1gNOMH2pZIWsP1aMYNdm8iHucX2pHJc5hUlyUxI/aqP1K/OJlf4uoO7CW+k7SU9bnuqwu18EaJ0nopYNpbi8+KdA7PYtvgK8Dfb35T0eWBvSZcXsRxk+zXg9vLTeJ1s85Uksyb1qx9I/eo+coWvS5C0GHAosAawHFFtdazth5saWAdQcoyeByYDY4CLbE8qKw0TiW2RY2ZyXM6Kk6QPpH71H6lf3UMO+LoMSUOAlWy73M7ZWR+RtDDhRfUn288XS4LzgXsIJ/m7CEuCR4genu8hekg+AhyReS1J8vZI/Zp3Ur+SHPB1MSmWc0exh9ibSA6/GfgIsILtH0j6OfAMcDHwQWAdYEngG9W8oyRJ5g+pX3NH6leSA74kmQ2981wUTdd3ATYlcohOJwxfv0/MkqfZvknSirb/Vjkuv5ySJKmV1K+kShZtJMlsqFgSbAcMAc4hbCBeImbKU4CbgEeB7wHnldsPl+MG2X49xTJJkrpJ/Uqq5ApfklRotAFqJCMXc9cLCYPXqcD/AJsTzcGPBZYFtgWGAyfavrP+qJMkSVK/ktmTK3xJUqhuW1Qq0IYTTvJfqRi/3k7kv1wKnAp81/arjeMg2wklSVIvqV/JnMgVviTphaQxxLbH7UR+y1XAGrZfl3QEMVO+GviE7csrx2WeS5IkTSX1K5kVOeBLupbSoulN22+Wme2SwCnAA0SuyxSifdBehJHrZcB/AafZnlh5nfSjSpKkVlK/krklB3xJV9Jr+2N5249KWpQwHr2G6NO5NnAF8AOir+S/AeMb7YSSJEmaQepXMi/kgC/pWop7/2jCouAnwI3AQYCImfANwLeJZOYnex2bs+IkSZpG6lcytwxsdgBJUgdl+6N6e33CfuB+ojH7J4DFiW2Qa4mk5luBZ6ti2XidFMskSeoi9SuZH+QKX9LRzMSmYB3gt4TJ6NPABrYnS9oPWBG4qNy/A9FTcmoz4k6SJEn9SuYnOeBLugJJywFHARsCk4DjgJHADrY/KWkholH4ubYvqRz3VmJ0E8JOkiRJ/UrmC7mlm3Qckgb1uj0SOBn4AzCCaBZ+kO1TgWUk7Wn7FeDAXmI5wPYbKZZJktRF6lfSX+SAL+k4Ku2EPiNJwJ+AN4BnisHotcAgSVsCBwIrlOOmluPSfDRJkqaQ+pX0F7mlm7Q9klYDpgEvFHPRtYi+kP8AlgNOIyrXBgLjgb8COwMr2j62OVEnSZKkfiX1kSt8SdsiaSVJEwhBvIAQQYjekNfb3hH4OrAekffyXsKIdCBwSVUse1fBJUmS9CepX0nd5IckaUskDQXOAu60PRI4Bmjkr7wEvAZQTEbfV+47H/iL7ddtv1xep2FTkC2FkiSphdSvpBks0OwAkmQe+Rgw2fYp5fbNpcXQEsA/gfdJ2g54FlgCeH5mDvMplEmSNIHUr6R2coUvaVdeA1aubGUMkLQgsDHwHHA9sA2wB3C47bubEmWSJMmMpH4ltZMDvqRdeaz8rAsx0y0VbLsDj9u+GjjA9s7FmHRAE2NNkiSpkvqV1E4O+JJ25W7gKWB7Se8FkLQ/sAjwEIDtp8v9A9OiIEmSFiL1K6mdtGVJ2pbSPPxQYA3CvuA+4FjbDzc1sCRJkjmQ+pXUTQ74krZH0hBgJdsutwdmMnOSJO1A6ldSFzngSzqKFMskSdqV1K+kP8kBX5IkSZIkSYeTRRtJkiRJkiQdTg74kiRJkiRJOpwc8CVJkiRJknQ4OeBLkiRJkiTpcHLAlyRJkiRJ0uHkgC9JkiRJkqTDyQFfkiRJkiRJh/P/gBsYtCWyDZcAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -658,14 +760,14 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 18,
"id": "ee4824e3-47e5-44bf-9cca-7a1463619c57",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e0831cd2678f46afb4deea2a0866ad56",
+ "model_id": "f3481dd1f9d947609affe999e418cfc1",
"version_major": 2,
"version_minor": 0
},
@@ -679,7 +781,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "87aa77fd9b684feaa398836f4f2b4084",
+ "model_id": "8fa1c70595384cd2981b308e9c3929e6",
"version_major": 2,
"version_minor": 0
},
@@ -693,7 +795,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "6e88d8f96aaa4b2cac45596192e0828a",
+ "model_id": "9b08c8a5130a472daa2c4e96567e9211",
"version_major": 2,
"version_minor": 0
},
@@ -707,7 +809,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "9798e122957d44c28e7f1aea766929a5",
+ "model_id": "1780ec706f7e4e70a2019e388a1f3b97",
"version_major": 2,
"version_minor": 0
},
@@ -721,7 +823,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "1ca85dfc9bc643a8b1ead1762febd40a",
+ "model_id": "ad9ff1f2eba441ebb5f7f736fa395694",
"version_major": 2,
"version_minor": 0
},
@@ -766,13 +868,13 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 19,
"id": "206de1b6-0463-4b58-bc9a-5c0ae2963fdc",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo0AAAI0CAYAAAB4aBPwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABqr0lEQVR4nO3dd5icddXG8W8KvSOCgAgoeAgiLXQEQpUmIK9gQRQQlSoiCNKb9CZIb1IUlarSpEkXxIQmstz0IkVUegkt+/5xfkMmyyaz2d3sMzN7f64r1+60Z85Mds6c51eHdHZ2YmZmZmY2KUOrDsDMzMzMmp+LRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4aGVx2AmU1aRDwMBLCSpDvLdb8FvgGMBWaW9H65/n/A7MCnJP27F8+1APAkIEmLTOQ+OwL7AzMDpwCfAL4LfFPS7yb3OftTRNwMrFZ31QfAy8D5wM8kfdiHY68CnAUsANwnafneR9q6IuI6YG3y/Tyyy22PAAsDGwB7kP8XK0q6awDiurn++SLiKWB+YG5JL/bx2DMCW0k6qVw+EDgA2EvSEX05tlkrcUujWfP7W/m5dN11q5af09auj4jPkgXjk70pGHsiIqYGjgfmBP4OPDolnqcf3Ar8CfgrWdTuDuzbx2MeAnyefM1j+nisVnZp+blJ/ZURsQhZML4K3ADcDvyRLNqrcF15/rF9OUhEzA48BOxUd/XD5diP9OXYZq3GLY1mze8u4DvASICIWAiYBxhHnvitRBaWI8v975yCscwKTAU8J2nVEs8KU/D5emvPWutWRGxPtohuBRzUh2POWX5uIumxvoXX0i4n38/lI+JTda14Xyk/r5D0Hn0v0vtE0g/66VAzA/MBqjv274BKW9XNquCi0az51Voaa0Vhrfv1IrKLeiWy9W+Zcn2tWJoe+Hm5z+zAfWSX4s3l9nPJbuWDgB8AbwPr1z9xRGxMFgkvAV8Hbi43zRsRncDq3QVcCrVdgAWBZ4DjJJ0aEbMA/wUekFQrgh8AvgisIemmiPgBcDrZ/XdceW0bALORXeeHSfp1ozetzm3l5zx18W0EHA4sBDwG7Cfpskm8L9MDc5eHPxoRB0k6MCKWBI4k/w/eJ1s3d5P0v3KsTrKV6g7y/+EUsuXrAGAHYGPy//N+4JvAzsC2wGvAHpJ+W46zKPBLYFlgGPAAsLOk0XVDCq4Crgd+VuI9u8TSWY6xIXAoOdTh38AZkg4ttw0B9gJ2JP9W7gJ+JOkfXd9MSS9FxG0l7o2AM8pNtaLx0nLMm5mwu3h98u8xgHeAvwA7SvpPd8MiIuJn5f+o9l4PB44h/w5nB14ATpZ0dNcYy+OfonRPA9uV97yr2rFXBo4l/w4/LK9/e0mPl7jKIaOT/Jveii7d0xGxGbA3MIL8vJwFHCrpw57+H5k1O3dPmzW/B8jCZdGImJbxXdMnAG+QBQt8vKXxEmBX8kvwb2TBcX35gqy3H9nNdhfwXu3KiBgBXAC8SxY3HcCfy83vkN1z/+0abETsSRZH85DF0lzAKRGxh6TXSnxLRsTsETEbsFh5aC2uNcvPq4ADySLqVbJgnR84PyKW7e6NmogNy89/lfi+CFxWjnVLie/iiFity+Pq35crgTfL9dcDD0fE58iCdB3gwfJefBe4oXTj14wAvkr+P/697vrjyK7zV4DlgXuBLcj3+dPA2RExcynoLgPWKM/zCLACcE6XeFchx5o+BsxE/t+vVV7z4sAfgEXJ/5NpgZ9HxM7lsTuQBSXl9pWBG0vXbHcuKT83Kcefnfw7fAO4tuudI+KTZDG5CNlt/SKwWTevYVL2IE9E3if/3z4FHBURS0/yUanWnfxHxp/4ADxbxiteQX5+RgPPk2M2jy/3ub78fLM8/u2uB4+Ir5MncSPIIRHTkScdv+xy14n+H5m1AheNZk1O0gfkGLrhwOJk682bZAFyBzBPackYSRZz95fCcD2ywFhE0mrA9uUYB3d5it9IGiXp23XXzUAWGTMBW0v6m6SXgK3L7S9J2kTSg/UHiojpgH3IL/YVJa0BrFgu719uv5rMPauTxckQoBP4UimQVieLinuAz5ZD7yZpPbLF8fvl9kk5MiL+FBF3AYeV604rP39KttZtKmkdstgZShYk3b4vpavzuXL9D0r35M+AGcmWzxXJguxWYEmyNaxmCPB1SV+SdGnd9X+TtGzdfWcu79nyZFExHfA5ssA7DthO0kpk8f8KOX6w3ozAKEmrABeW62onEnuU17yDpDXJE4/bgFpxuyfwFrCYpLXI8XufBOr/JupdRv6frVGKrvXL8a+S1N0YwrnL67gd2BxYCtiNPLnoqb+Rhe0Xy/9brYWz6/vwMZJ+J2kTsnivFX1XkUXrNGSr4bfL56R2ElY7bq2b+7nyN/9SN0/x8/LzK+VvfjHy/+iHETF/3f0m9X9k1vRcNJq1hloX9VfJFrI7y0zgW8v1W5LjDUeXmdS1cYaXS3qr/H5B+dl1DGJ3YyA/TU76gOwq7alFyULzHkn/BCg/7yEL0cWAa8p91yRbXsaRX+ArkAXXJ4GrS5fdaWTBeXVEvABsAzwr6dkGcaxKdpcuCTxBdr0eU277Qvl5belurI1VW4YJNRobWnsfLyiv8wPgt11um9Sxbi4/a8XovyQ9UX5/ofycRtI7ZMveVBFxabn/bGQRVu/5uu7kh2uPLz8XLT9vLLFK0qqSjo2ImcgxezMAL5f35PRy/67vCeXxz5fXNA15crJRuenS7u4P/BO4iWzB+y/ZUjgdcPdE7g9ZbNf7C9nqe3gZ0lBrJe36PkzKvmSB+zTwHUmdZSjBZcD8EXEl+ffS4+NGxCfIYQ7/lnQ9QJmIdh35Hbtc3d0n9X9k1vRcNJq1htqSJT8sP2vF4i3l53Zd7jduEsfqOn7q9YncrzYW8OelBbAnJvW8AJ2S7icLn1rReD/ZPTgL8ONyv6sAJF1HjoHbh+y23Yws9n7U4HlWlDRE0rSSFpJ0RN24sanKz9rs2tq/O7ocY2LvS01P3+MPSuHXVa1Frnac+m7Pj44dEbOS41EPI4uvrzO+0KxX//gPys+u/28fjWMvrb4w/v14mwnfjz9SN/mjG7Uu6s2AL5fHX93dHcsJzjrApmSRPRfZOndvRMxQd9f676SuxdQJ5N/JXOR7cXK5vkd/mxGxOjnc4X2y5fflcv2C5Pu6K/k3sN7kHJce/M3X/d6T/yOzpuWi0aw11IrB2crPWtH4d7JLujbJo9aidW/5+dW6L+Utu9ynpru1C2vjuq4hl/T5Wg/jFPnFuHSZvEFEfKEc4w1yTB7k2MjPk60wt9W9ni3IL/Xry2MPAU4kJ22swfjxiWv3MJ7uPFR+nlm6LPcGngJ+3+V+jdZ0rL3HW5ZYh5OTWWDC97jXa0MWa5EtgddJ2h94HJijm/tNajJFR/n5ZfhoBv6bEXFdKZ7+TXYv71jekwvIQuqabo5VU2tV/BrZtX6NpI+N9yvPVxuDuaCkbSR9juyqno8c51grqueoGw+6XJfDbFNe41ZleMCCk4it6/N/imwFHgrsIulvdTf/H3nC8htJh/Px/69aUdjt96WkV8i/n7kiYu3yfHORRfI4xvcSwKT/j8yanotGsxYg6TnGty69S/kiKl3R9Qsn14qVW8lWyM+TkzZuAU6ljC3swVO+IenduvseHBHDehDn2+T4u6mAuyLixhLTVORM1VrrWq1Fahhwq6SHyRmntctvlNtnJQvF+yPiauA3da+vt04iv7x/U+K7jRzPOO9kHucYstjZOyLuJIvRVcmu+Iv6EF9XT5efm0bEX8rxp4GPFp3uiWPJ13x8OcbtZP6vTWw6sRzzvoi4iRxv91Mm0Yom6RnypKXWUjaxrmnIMahfBY6JiFsj4nZyPOt/yG7al8gu+dmAv0TEVWQrdL2ny3PdHRH3MX6mf0/egxPIFsp3gC9HxB/Kv58z/v3dOSKup3Th1x33FbKQXCgibouI7sZQ1sY0XlHe3wfLazmlB0MpzFqGi0az1lErDu8uBV1NrYv66dqaeZLGkcXWCeTnfHly/NhaKrvK9ISk0eQyMouQa0X2xP7keLPngC+RrVjbSTq27j43kAUsZAED4wvBq+ru9xPgCLIrbw2yFfMgsjDtFUm3k128j5T43iTXdTx5kg/8+HEeJAub68ixmnMA5wJrl2K+X0j6O9k9/19yAsmtZNcx5CSjnhzjHrJFrYMs1saSs8NrM4SPIN/XseWYHeR6lPc1OHSti/pdcob5xJ7/KbLl7RZgCXJc6Y3AupLeKkMHtiQXTl+6xLFHl8NsTc5Ar00sOaT87Ml7MFf5OR25EkDt35fKa/gl+be1BNni/FfgExGxcDmBOZIcrvB5cqmcrq/vbLKV+SFyIs075PvbdXKVWUsb0tnp1nIzMzMzmzS3NJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4aGVx2AWVUiYgHgceAfdVcPAU6QdE4/HP9g4DFJ50/iPvcBoyS92tfnMzOrFxGdwIPAh0AnMD3wOrC9pNH9/FwLAA9KmjEiDgTmkLRTfz6HVc9Fow1270hasnYhIuYFHoyI0ZIe6MuBJe3fg/ss2eg+ZmZ9sLqk/9YuRMTuwC+BFasLyVqVi0azOpKei4hHgXUi4mRgBuA1SatHxPeAHchhHf8DdpL0cETMSCbhlYEPgD8A+wC/Is+8j4mIg4CvAu+Vx24l6YXSEvBJSf+NiP2Ab5ZjPFKO/2JE3AzcWY7/GeA24LuSxg3Ee2Jm7SEihpM55OW66/YB/o/Ma08BO0h6PiI+BZwGLAKMA06TdGJErAAcBUwDzA1cL+l7A/pCrDIe02hWJyJWBBYCpgO+QHYdrx4RqwHfBVaRtBSZNC8rDzsYmBYYASxJFner1R1zPuDHwLKSlgGuA5bv8rxbA+uV+yxOdimdW3eXzwGjgC8Ca9Qf38xsEm6KiPsj4nnyZBRga4CI+A6ZU5YrvR5XA2eV+5wCPCJpEbJV8gcRsRCwC7C/pOWBRYGNImLkgL0aq5RbGm2wm66MK4T8PPwX2AKYC3hA0uvltg3IYvKvEVF77OwRMTuwFvATSR+SY4dWA4iIrcr9ngPuB+6JiGuAayTd2CWO9YBfSXqrXD4B2Ccipi6Xrygti29ExGPA7H1+5WY2GKxeejKWAq4B/irppXLbhsBywOiS14aR4x4h89oeAJJeAxYDiIjvAutHxN5kK+T0wIxkD4q1OReNNti90924wlLwvVl31TDgAkl7ltuHAvMAr5DdyZ11j50PeLt2WdK40lK5DJmIj4+ImyTtUnf8rq3+Q8nP55BanHW3ddZdb2bWkKR7I2JX4KyIuEvSU2ReO1LSqQARMQ0wW3lI17z2WfKk+nryJPjPwEVkr4nz0SDh7mmznrkO+GZEzF0ubwfUWgtvAL4bEUNL0r2ECbunlyC7mzskHQ4cDyzR5fjXAltHxAzl8o+AWyW9O0VejZkNOpJ+S46P/kW56lpg24iYuVw+GLig/H4D47uxZyHz3cLkye+eki4D5iV7YIYNRPxWPReNZj0g6VrgSOD6iHgA+BawqaRO4CBygsv9wL3A1SWh1h57P3lGPjoiRgPbALt2eYqzySR9d0R0AEuT3eRmZv1pJ2C9iPgyOX7xSuCuiPgnsDiwVd39RpR8dwdwuKQxwOHkUJvRwF7ltoUG9iVYVYZ0dnY2vpeZmZmZDWpuaTQzMzOzhjwRZiIiYnlygPCosszAueSg4AeBHcvkhgPIWbUfAD+WdHdlAZuZFc5fZjYluKWxGxGxBznWY9py1XHAvpJWIWeJbRwRS5OTHZYHvgGcXEWsZmb1nL/MbEpx0di9x4FN6y6PBG4pv19DLpvyJeA6SZ2SngGGR8QnBzZMM7OPcf4ysynC3dPdkHRp2Xy9ZkiZJQvwBjALMDMTLmZau/4/9ccaM2aMZxqZDUIjR46sZO065y8z66uJ5S8XjT1Tv8fvTMCrwOvl967Xf8zIkdXssNTR0cGIESMqee7+4Pir5fh7b8yYMZU870Q4f1XA8U++IQc17xrhnQc0Pn9q9fhrJpW/XDT2zL0RMUrSzeR2bzcBjwFHRcQxwKeBoZL+W2GMZmbdcf7qoWb90u/pF36zxg+TV7RY83LR2DO7AWeWfYA7gEskfRgRt5Gr6w8FdqwyQDOziXD+MrN+4aJxIsq+nCuU3x+hblu4uvscCBw4kHGZmTVSVf5q1pYut3KZ9Q/PnjYzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbW0PCqA2gVETEVcB6wAPAh8H3gA+BcoBN4ENhR0riKQjQz65bzl5n1B7c09tz6wHBJKwEHA4cCxwH7SloFGAJsXGF8ZmYT4/xlZn3morHnHgGGR8RQYGbgfWAkcEu5/RpgrYpiMzObFOcvM+szd0/33Jtk187DwBzAhsCqkjrL7W8As3T3wI6OjoGI72PGjh1b2XP3B8dfLcffVlouf/WnVn8NrR4/tP5rcPzJRWPP7QpcK2mviJgP+Aswdd3tMwGvdvfAESNGTPnoutHR0VHZc/cHx18tx997Y8aMqeR5J6Hl8ld/avXX0OrxQ+u/hsEU/6Tyl7une+4V4LXy+8vAVMC9ETGqXLcecFsFcZmZNeL8ZWZ95pbGnjseOCcibiPP0PcGRgNnRsTUQAdwSYXxmZlNjPOXmfWZi8YekvQmsHk3N6020LGYmU0O5y8z6w/unjYzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhoZXHcBAiIj5gUOA6YDDJd1TcUhmZj3i/GVmzWJQFI3AkcCJQCdwBrBMteGYmfWY85eZNYW27J6OiPMiYs66q2YAngKeAKatJCgzsx5w/jKzZtWuLY1nApdExB+BX5BdOxcDUwP79vagEbEXsFE5zinALcC5ZAvAg8COksb1JXAzG/Scv8ysKbVlS6Ok24FRwFgyMc4saWVJy0r6Q2+OGRGjgJWAlYHVgPmA44B9Ja0CDAE27nPwZjaoOX+ZWbNq15ZGgOmBc4DfAYdHxA+A3SQ928vjfRn4B3A5MDPwU+D7ZFIHuAZYp9w+gY6Ojl4+Zd+MHTu2sufuD46/Wo6/UoM+f/WnVn8NrR4/tP5rcPypLYvGiNgH+CYwDDhW0g8iYlng/Ij4i6RDenHYOYD5gQ2BBYE/AUMldZbb3wBm6e6BI0aM6MXT9V1HR0dlz90fHH+1HH/vjRkzptePdf7qf63+Glo9fmj91zCY4p9U/mrL7mlgc0mLAYsD2wNI+ruk1YHne3nM/wHXSnpPksiuo/okOxPwau9DNjMDnL/MrEm1a9H4akTsAewDPFl/g6Sze3nM24F1I2JIRMxDzmi8sYwVAlgPuK2XxzYzq3H+MrOm1K5F41eBd8iz8u/0xwElXQncC9wNXAHsCOwGHBQRd5IzEi/pj+cys0HN+cvMmlJbjmmU9DLwyylw3D26uXq1/n4eMxu8nL/MrFm1a0ujmZmZmfUjF41mZmZm1pCLRjMzMzNrqC3HNNZExCLAl4CzyUVrFwe+J+mmSgMzM2vA+cvMmk27tzSeTs5C3JBc3HYb4LBKIzIz6xnnLzNrKu1eNE4r6Tfk9lgXSboZmKrakMzMesT5y8yaSrsXjdNExFzABsAN5ffpKo7JzKwnnL/MrKm0e9F4OvA0cLukh4C/A7+oNCIzs55x/jKzptLWRaOkU4HpJdV2VVhK0plVxmRm1hPOX2bWbNq6aIyIGYETI+LGiJgdOKxcZ2bW1Jy/zKzZtHXRCJwIvAbMBYwFZgbOqDQiM7Oecf4ys6bS7kXjUpL2Ad6X9DawBbBktSGZmfWI85eZNZV2Lxo/7HJ5GDCuikDMzCaT85eZNZV2LxpvjYgjgeki4svAZYB3UzCzVuD8ZWZNpd2Lxj2BN8lxQYcCDwA/rTQiM7Oecf4ys6bS1ntPAwdL2gs4pOpAzMwmk/OXmTWVdm9p3LDqAMzMesn5y8yaSru3ND4REdcBt5PdPABIOq66kMzMesT5y8yaSrsXjS+XnwvWXddZRSBmZpPJ+cvMmkpbF42StgaIiPmBqSQ9VnFIZmY94vxlZs2mrYvGiFgI+CMwDzA0Iv4LbCDp4WojMzObNOcvM2s27T4R5iTgKEmzSZoF+DlwSsUxmZn1hPOXmTWVdi8a55J0Xu2CpF8Bn6wwHjOznnL+MrOm0u5F4/CImL12ISLmwAPJzaw1OH+ZWVNp6zGNwC+BuyLi9+Xy14HjK4zHzKynnL/MrKm0dUujpDOAHwJTA9MC20s6tdqozMwac/4ys2bT1kVjRMwLbCZpT+AsYOeI+FTFYZmZNeT8ZWbNpt27p88D/lR+fxq4GTgHWL+3B4yIOYExwNrAB8C55DijB4EdJY3rfbhmZh9x/jKzptLWLY3AHJJOBJA0VtIvgLl7e7CImAo4HXinXHUcsK+kVYAhwMZ9C9fM7CPOX2bWVNq9aBweEfPULkTEXGRy7K1jgNOA58vlkcAt5fdrgLX6cGwzs3rOX2bWVNq9e/o44L6I+DPZBbMW8NPeHCgitgL+I+naiNirXD1EUm0JjDeAWbp7bEdHR2+ess/Gjh1b2XP3B8dfLcdfuUGdv/pTq7+GVo8fWv81OP7U1kWjpHMiYjSwJjl+52hJD/bycNsAnRGxFrAkcD4wZ93tMwGvdvfAESNG9PIp+6ajo6Oy5+4Pjr9ajr/3xowZ0+djDPb81Z9a/TW0evzQ+q9hMMU/qfzVtkVjRAwBhkl6ICKeJAd+v9vb40late7YNwPbAUdHxChJNwPrATf1KWgzM5y/zKw5teWYxohYFHgSWDcipgPuJvdtvT4i1u7Hp9oNOCgi7iTXUrukH49tZoOQ85eZNat2bWk8GthH0pURsTU5ePwLwLzA74Dr+3JwSaPqLq7Wl2OZmXXh/GVmTaktWxqBz0j6Tfl9deAPksZJepaJDPY2M2sSzl9m1pTatWj8sO73lYBb6y5PO8CxmJlNDucvM2tK7do9/XJELEHOCJybshZZRKwEPFdlYGZmDTh/mVlTateicW/gBrIrZw9Jb0XE7sA+wCZVBmZm1oDzl5k1pbYsGiXdFRHzAtNLerVc/VdgOUmPVheZmdmkOX+ZWbNqy6IRQNJ7wHt1l/9aYThmZj3m/GVmzahdJ8KYmZmZWT9y0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysIReNZmZmZtaQi0YzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysIReNZmZmZtaQi0YzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysIReNZmZmZtbQ8KoDaBURMRVwDrAAMA3wc+Ah4FygE3gQ2FHSuIpCNDPrlvOXmfUHtzT23LeB/0laBVgXOAk4Dti3XDcE2LjC+MzMJsb5y8z6zEVjz10M7Fd+HwJ8AIwEbinXXQOsVUFcZmaNOH+ZWZ+5e7qHJL0JEBEzAZcA+wLHSOosd3kDmKW7x3Z0dAxIjF2NHTu2sufuD46/Wo6/fbRi/upPrf4aWj1+aP3X4PiTi8bJEBHzAZcDp0i6MCKOqrt5JuDV7h43YsSIAYju4zo6Oip77v7g+Kvl+HtvzJgxlTzvpLRa/upPrf4aWj1+aP3XMJjin1T+cvd0D0XEXMB1wJ6SzilX3xsRo8rv6wG3VRGbmdmkOH+ZWX9wS2PP7Q3MBuwXEbWxQbsAJ0bE1EAH2e1jZtZsnL/MrM9cNPaQpF3IJNvVagMdi5nZ5HD+MrP+4O5pMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwaGl51AK0uIoYCpwBLAO8C20p6rNqozMwac/4ys8nhlsa+2wSYVtKKwM+AY6sNx8ysxzbB+cvMeshFY999CfgzgKS7gGWqDcfMrMecv8ysx4Z0dnZWHUNLi4izgEslXVMuPwN8VtIHAGPGjPEbbDYIjRw5ckjVMTTi/GVm3ZlY/vKYxr57HZip7vLQWsKF1vjiMLNBy/nLzHrM3dN9dwewPkBErAD8o9pwzMx6zPnLzHrMLY19dzmwdkT8FRgCbF1xPGZmPeX8ZWY95jGNZmZmZtaQu6fNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrKHhVQdgVpWI6AQeBD6su3q0pG3r7rMN8FVJX5nEcTYA9gWmJz9T/wR+IulfUyRwM2sbE8lDAJtIemqAYtgAWF7S/hGxEbCWpB/107HPBE6TNCYizgJ+J+mG/ji2DTwXjTbYrS7pv12vjIjZgcOALYGbJvbgiJgHOA8YKenpct0+wEXASlMkYjNrN93moQG0LDA7gKQ/AX/qx2OvDZxejr1tg/tak3PRaNa9zYEXgN2BDSZxvzmAqYEZ6677BXBf7UJE7AV8F/gAeBTYStJrEbEf8M1y/SPATpJejIibgZeBRYBTgfOBE4AvAlMBNwI/lfRBX1+kmTWviPgucACwONAJjAYOl3R+RHyF7OGYGngb2F3SnRExHDgK2JDMLX8FdgD2BuaQtFM59oFk/roA2A4YFhGvkTnqa5I2jIhPkzloAWAIcJ6koyNiATIPXQ0sTxac+0j6fZf4DwXmAX4TEd8BjgROKq/jL+XfimRe2x34IZn3RgPflDQuIlYqj5sBGAccKOnKvr+71hse02iD3U0RcV/dvzkBJJ0m6SDgnUk9WNIDwJnAvRHxUOmK+QpwLUDp6tkKWFHSYsCTwE4RsTWwHrCspMXJ7qlz6w79iqRFJf0SOB4YI2kksBSZ6H/ST6/fzKrXNQ9dDiDpPOBOsgg8EbitFIwLkz0h60taCvgBcFlEzEAWiCOBJYDFgJmAr0/siSX9DTgN+L2kfbrc/BvgJklfBFYGvh0R3yi3fRa4VtJywJ4lxq7H3gd4HtiiPE+9BYE/SfoCWYCeQJ5EfwFYBVghImYDfgVsKWlpYCPg1Ij4zMTfSpuS3NJog12fu4Uk7RYRhwGjgNWAo4GdI2JVYC3gYkmvlPv+BCAiLgJ+JemtcpgTgH0iYupy+ba6p9gQWC4ivlcuT9eXeM2s6UwqD20H3E+ewI4s160NzA3cGBG1+40DFiJzzgWSaie8X4ePWhZ7rBSgKwPrAJTekXPJk927gPfJlkaAeyjd25PhfeCK8vvjwF8lvV6e+/lyvBXJ1/mHutfZSba8PjOZz2f9wEWj2WQoA7mXKRdPI8+iPyHpV8ClwKURsTfwLNkq+AGZ5GqPnxWYlY+38g8lP49DyuU3624bBmwmqaPuGJ2Y2WAwFzAtMA3Z1fsEmRNulPRRC2JEzEfmo645Zy4yv3QyPr9AdmtPytAu969dN1X5/T1J48rvXY/dE+9Jqs9j73dzn2FAh6Tla1eUceT/mcznsn7i7mmzySBpW0lLln+nAW8Ah0fEonV3WxAYS5493wBsGhEzl9sOJLuWrwW2LmfzAD8CbpX0bjdPey2wa0QMiYhpyEHqO/X3azOz5hIRUwG/BfYHDgJ+W677C7BORCxS7rc+8ABZXN4AfCsipomIoeSYxG+ShdbIkkdmoLQgFh8wvhgEQNIbZIvijuU5ZgG+A1w/mS/jY8eeDHcBC5deGyJiSXLM5Ty9PJ71kVsazfpA0k0RsRNwXmkB/ICcQLNx6ZK+uhSUd5TulX8C3wfeAuYD7i6J/TFgi4k8zY/I7ut/kMn3BroZP2RmLeumiOi65M7ewOrAi5LOAoiITYBDJe0RET8AfhcRQ8i8s5GktyLidHLiyhiy9e9mcjzkDGTX8qPAc+RYyVrr4I3kmMj3yuNqtgBOLmOwpybHOJ4LzD8Zr+0PwO8jYrJnTkv6T0T8H3B0RExLNnRtWVupwgbekM5O93KZmZmZ2aS5e9rMzMzMGnLRaGZmZmYNeUzjRETE8sCRkkZFxELkOI7adk87lkVHDyAXfv4A+LGkuysL2MzMzGwKcktjNyJiD+AsciYawHHAvpJWIQcObxwRS5Nr8i0PfAM4uYpYzczMzAaCWxq79ziwKbm9EuSCqreU368hlyoQcF1ZZ+qZiBgeEZ+U5PWjzKyplGVaziFn1U4D/Bx4iG56UCoK0cxagIvGbki6tOytWTOkbhHSN4BZgJmB/9Xdp3b9BEXjmDFjPD3dbBAaOXLk5C52PCV9G/ifpC0jYnZyb/T7yB6UmyPiNGBj4PL6Bzl/mQ1OE8tfLhp7pv7seybgVeD18nvX6z9m5MiR3V09xXV0dDBixIhKnrs/OP5qOf7eGzNmTOM7DayLgUvK77V1/brrQbm86wOdv3rH8VfL8ffepPKXi8aeuTciRkm6mVwc9SZyMeajIuIY4NPA0L7uYWxmNiVIehMgImYii8d9gWO66UH5mI6OjgGJsauxY8dW9tz9wfFXy/FPGS4ae2Y34MyImBroAC6R9GFE3Eauqj+UstWSmVkzKnsTXw6cIunCiKjfVWiiPSVVtXa4pahajr9abmlsMZKeAlYovz9CzpTuep8Dyb2EzcyaVkTMBVwH7CTpxnJ1dz0oZmYT5aLRzKz97Q3MBuwXEfuV63YBTqzvQakqODNrDS4azczanKRdyCKxq4/1oJiZTYwX9zYzMzOzhtzSaGZm1g6G9N/SoP0+BaPTS362A7c0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbW0PCqAzAzM2sKQ4b026FG9NuRgM7O/jyaWa+5pdHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQ54I00MRMRVwHrAA8CHwfeAD4FygE3gQ2FHSuIpCNDMzM5ti3NLYc+sDwyWtBBwMHAocB+wraRVgCLBxhfGZmZmZTTFuaey5R4DhETEUmBl4H1gBuKXcfg2wDnB51wd2dHQMVIwTGDt2bGXP3R8cf7Ucv5mZ1XPR2HNvkl3TDwNzABsCq0qqLaD1BjBLdw8cMaJfV+zqsY6Ojsqeuz84/mo5/t4bM2ZMJc9rZjYluXu653YFrpX0eWAJcnzj1HW3zwS8WkFcZmZmZlOci8aeewV4rfz+MjAVcG9EjCrXrQfcVkFcZmZmZlOcu6d77njgnIi4jWxh3BsYDZwZEVMDHcAlFcZnZmZmNsW4aOwhSW8Cm3dz02oDHYuZmZnZQHP3tJmZmZk15KLRzMzMzBpy97SZ2SAREcsDR0oaFRFLAVcCj5abT5X0++qiM7Nm56LRzGwQiIg9gC2Bt8pVI4HjJB1bXVRm1krcPW1mNjg8Dmxad3kksEFE3BoRZ0fETBXFZWYtwi2NZmaDgKRLI2KBuqvuBs6SNCYi9gEOAHbv+rjBtA1qs+5/1NP3oVnjh4H/O2r1bUSbNX4XjWZmg9Plkl6t/Q78srs7eRvU6rXD+zDQr6HV/36adRtUd0+bmQ1O10bEcuX3NQFvmG1mk+SWRjOzwWl74JcR8T7wIvCDiuMxsybnotHMbJCQ9BSwQvn9HmDlSgMys5bi7mkzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysIReNZmZmZtaQi0YzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDQ2vOgAzM+u5iPgKsCkQwIfAw8DFkq6rNDAza3suGs3MWkBEBHAu8ApwJfA7YBjwWeBHEXEgsK2kh6qK0cza26AoGiNifuAQYDrgcEn3VBySmdnk2hf4lqQnu7ntpIj4HHAwsMXAhmVmg8WgKBqBI4ETgU7gDGCZasMxM5s8krbsel1EDAWGSvpA0uO4YDSzKagtJ8JExHkRMWfdVTMATwFPANNWEpSZWT+IiNUj4v5ycQTwr4hYscqYzGxwaNeWxjOBSyLij8AvyK7pi4GpyS6eXomIvYCNynFOAW4hxxh1Ag8CO0oa15fAzcwaOBrYGkDSPyNifTIfrVBpVGbW9tqypVHS7cAoYCxZ2M0saWVJy0r6Q2+OGRGjgJWAlYHVgPmA44B9Ja0CDAE27nPwZmaTNnX9uOzy+zQVxmNmg0RbFo3F9MA5ZCG3eURcFBHz9eF4Xwb+AVwOXEHOXhxJFqUA1wBr9eH4ZmY98XZErFu7EBFrAm9WGI+ZDRJt2T0dEfsA3ySXozhW0g8iYlng/Ij4i6RDenHYOYD5gQ2BBYE/kQPQO8vtbwCzdPfAjo6OXjxd340dO7ay5+4Pjr9ajr9p7QJcHhEfkENjOsl1G83Mpqi2LBqBzSUtFhFTAXcBZ0n6O7B6RHyvl8f8H/CwpPcARcRYsou6Zibg1e4eOGLEiF4+Zd90dHRU9tz9wfFXy/H33pgxY6bYsSX9LSI+A3wR+CCv0ntT7AnNzIp27Z5+NSL2APYBJljTTNLZvTzm7cC6ETEkIuYhZ2TfWMY6AqwH3NbLY5uZ9UhZZufH5d9TwG4RMazCkMxskGjXovGrwDvA88B3+uOAkq4E7gXuJsc07gjsBhwUEXeSM6ov6Y/nMjObhKOBxYHlyAl46wLHVxqRmQ0Kbdk9Lell4JdT4Lh7dHP1av39PGZmk7AmsDQwRtLrEbEOcF+1IZnZYNCuLY1mZu3q/fr1YCW9S45tNDObotqypdHMrI09GBE7AsMiIoCf4JZGMxsAbmk0M2stu5Dd03MBdwAzkpNizMymqLZuaYyIRYAvAWeTi3IvDnxP0k2VBmZm1kuSXge+BxARQ4Dhkt6vNiozGwzavaXxdHIW9Ybk4tzbAIdVGpGZWR9ExJciYt+ImBoYA7wWEV+vOi4za3/tXjROK+k3wDrARZJuBqaqNiQzsz45mty0YBPgRWBRcvmv6g0Z0m//Riy6aP8dz8z6RbsXjdNExFzABsAN5ffpKo7JzKwvhkm6AVgb+IOkp8gtU83Mpqh2LxpPB54Gbpf0EPB34BeVRmRm1jfDImI58mT4uohYDPegmNkAaOuiUdKpwPSSarvCLCXpzCpjMjPro0OBC4GzSyvjFcC+lUZkZoNCu8+enhE4IiJGAJsBh0XEbpLerDg0M7NekXQZcFndVQtJ+rCqeMys6MfxsyP67UhFZ2e/HKatWxqBE4HXyPXMxgIzA2dUGpGZWS9ExB8jYqmu19cKxohYJiL+NPCRmdlg0dYtjWR39DYRsb6ktyNiC+DBqoMyM+uF7YEzI+KTwJXAY+QEmM8C6wGvAj+c1AEiYnngSEmjImIh4Fygk8yLO9ZvT2hm1lW7tzR27bIZBjgpmlnLkfS8pA2AnYGZgG8CXyN3hNlF0rqSnp7Y4yNiD+AsYNpy1XHAvpJWAYYAG0/J+M2s9bV7S+OtEXEkMF1EfBnYCfBuMGbWsiT9DfhbLx76OLApcEG5PBK4pfx+Dbme7eV9DtDM2la7F417Aj8jxzUeClwLHFJpRGZmFZB0aUQsUHfVEEm10fFvALN097iOjo4eP0e/D97vJz19DY5/ypmcv6P+MHbs2AF/zsHw/rd70XiwpL1woWhm1lX9UJ2ZyDGRHzNiRDN/FfZMq7+GVo8fBv41dHR0tMX71l8m570YM2bMRG9r9zGNG1YdgJlZk7o3IkaV39cDbqswFjNrAe3e0vhERFwH3A58tDajpOOqC8nMrG8i4mvAksBhwMaSftuLw+xGzsaeGugALum/CM2sHbV70fhy+blg3XX9s8KlmVkFIuJn5L7T8wHHAwdExEKSGg7DKTvIrFB+fwRYbQqGamZtpq2LRklbA0TE/MBUkh6rOCQzs776BrA8cJek/0XECsCdeOy2mU1hbT2mMSIWioh/AvcBYyLi8YhYpOKwzMz64n1J79YuSHoVeL+6cMxssGjrlkbgJOAoSecBRMTWwCnAGpVGZWbWe89GxAZAZ0RMA+wOTHRRbzOz/tLWLY3AXLWCEUDSr4BPVhiPmVlf7QT8BFgceIuc+bxTpRGZ2aDQ7i2NwyNidkkvA0TEHHgijJm1MEnPA2tGxPTAMElvVB2TmQ0O7V40/hK4KyJ+Xy5/nZxtaGbWkiLiU8BWwOzlMgCS9qguKjMbDNq6e1rSGcAPgamBaYHtJZ1abVRmZn3yJ2A5YEiXf2ZmU1RbtzRGxLzAZpJ2iDwdPzIi/inpxapjMzPrpaklbVp1EGb9bkj/nfv0+waCnR7ZBm3e0gicBzxcfn8auBk4p7JozMz6bkxELFZ1EGY2+LR1SyMwh6QTASSNBX4REd/tywEjYk5gDLkjwwfAueTkmgeBHSWN61PEZmaTdgdwX0S8QN36jJI+W11IZjYYtHtL4/CImKd2ISLmog9jfyJiKuB04J1y1XHAvpJWKcfduA+xmpn1xIHAt4BNgM3q/pmZTVHt3tJ4HHlG/meyNXAt4Kd9ON4xwGnAXuXySOCW8vs1wDrA5X04vplZIy9LuqjqIMxs8GnrolHSORExGliT7Eo+WtKDvTlWRGwF/EfStRFRKxqHSKqNjn0DmKW7x3Z0dPTmKfts7NixlT13f3D81XL8TeuqiDgGuBSo307wnupCMrPBoG2LxogYQi58+0BEPEmOQXy3wcMmZRty2661gCWB84E5626fCXi1uweOGNHv87h6pKOjo7Ln7g+Ov1qOv/fGjBkzJQ//rfLz/+qu6wQ8ptHMpqi2LBojYlHgamCniLgRuJtMqtNHxPclXT+5x5S0at3xbwa2A46OiFGSbia38rqpH8I3M5soSQtWHYOZDU5tWTQCRwP7SLoyIrYmJ6l8AZgX+B0w2UXjROwGnBkRUwMdwCX9dFwzswlExB6SjoqIE7u7XdKPBjomMxtc2rVo/Iyk35TfVwf+UJbCeTYiuh13ODkkjaq7uFpfj2dm1gOvlZ//qzQKMxu02rVo/LDu95WA+jPwaQc4FjOz/vBD4HRJB1UdiJkNTu1aNL4cEUuQk1PmpiyLExErAc9VGZiZWS95f2kzq1S7Fo17AzeQS+DsIemtiNgd2IdcENfMrNVMGxFLMZHi0UvumNmU1pZFo6S7ImJeYHpJr5ar/wosJ+nR6iIzM+u1z5JrM3ZXNHrJHTOb4tqyaASQ9B7wXt3lv1YYjplZXz0kaamqgzCzwavd9542MzMzs37gotHMrDXcWnUAZja4uWg0M2sBknapOgYzG9xcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1tDwqgMwM7PqRMQ9wOvl4pOStq4yHjNrXi4azcwGqYiYFhgiaVTVsZhZ83PRaGY2eC0BTB8R15HfB3tLuqvimMysSbloNDMbvN4GjgHOAhYGromIkPRB7Q4dHR09PtiIfg+vf/T0NTj+Kacnr8HxTzmT8zmeFBeNZmaD1yPAY5I6gUci4n/A3MCztTuMGNHMX4U90+qvodXjh9Z/DYMp/jFjxkz0Ns+eNjMbvLYBjgWIiHmAmYEXKo3IzJqWWxrNzAavs4FzI+J2oBPYpr5r2sysnotGM7NBStJ7wLeqjsPMWoOLxh6KiKmAc4AFgGmAnwMPAeeSZ+gPAjtKGldRiGZmZmZTjMc09ty3gf9JWgVYFzgJOA7Yt1w3BNi4wvjMzMzMphgXjT13MbBf+X0I8AEwErilXHcNsFYFcZmZmZlNce6e7iFJbwJExEzAJcC+wDFlqQqAN4BZuntsf62PNLnGjh1b2XP3B8dfLcdvZmb1XDROhoiYD7gcOEXShRFxVN3NMwGvdve4qtZ36ujoaOm1pRx/tRx/701qnTMzs1bl7ukeioi5gOuAPSWdU66+NyJGld/XA26rIjYzMzOzKc0tjT23NzAbsF9E1MY27gKcGBFTAx1kt7WZmZlZ23HR2EOSdiGLxK5WG+hYzMzMzAaau6fNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNTS86gBaXUQMBU4BlgDeBbaV9Fi1UZmZNeb8ZWaTwy2NfbcJMK2kFYGfAcdWG46ZWY9tgvOXmfWQWxr77kvAnwEk3RURy/TpaBcO6Y+YABgBcG8/HexbnT27n+P/iOOvM1jibz39m7/MrK0N6exs22Q4ICLiLOBSSdeUy88An5X0AcCYMWP8BpsNQiNHjuy/CngKcf4ys+5MLH+5pbHvXgdmqrs8tJZwoTW+OMxs0HL+MrMe85jGvrsDWB8gIlYA/lFtOGZmPeb8ZWY95pbGvrscWDsi/goMAbauOB4zs55y/jKzHvOYRjNrWRExRJKTmJm1nFbMX+6ebnFlnbWWFBFDImJY7feq45lcbfDet9x7Xi8ihrZawrUJtcFnyPmrIq2ew1o1f7mlsUWVP7hxVcfRWxExTNKH5fd5gf9KercVzry6xhgRqwL/kdRRYVg9Vv+3ExHzAwsDN9X+P1pJRAwHdgSekvTHVvj7MeevKrV6/oL2yWGtmL9cNLa4Mnj9e8Ahkp6pOp7JUc7StwX2Ae6StHkrfZlExP8B3wI+C5wGnCvp3Wqj6pmImA3YD1gO+Dewn6SHqo1q0rr5stsWWAOYhew12UjS+1XFZ5PP+as6rZy/oPVyWLvkr5Zunh5s6pviI2L2iDgH2Jn8w/tZZYH1QEQMrcVfuhXmBq4B5gG2AdaKiCUljWvGLodaN1Td5ZWBHcgvjPOBRYGRFYTWUNduqIiYHjgSeJH80nsLWDUiZqwgvIbK38vQLgl3QeAbwKHATsBzwK7lNue1JuT8VZ1Wzl/Q2jms3fJXUwc32NUnKYAuzdarAzNK2gJYFVgqIpYd+Cgbi4jhksZJ6oyIT5fX0Qk8Dxwn6QbgcOAs+NjrrFTpPkDShxExY0R8ody0ANkl9TBwOjAjsFo5+20aXbpxlo6IGYAPgaWB35T4LwfWAb5YXaQfV/uik9RZvozni4hNImIuYF7gSUn/lPQkcAWwQUTM06xf3ION81f1Wj1/QevmsHbNXy4am1gt+dR+RsS3IuLAiPgEMBZ4ISI+Iek54B5g3+qinVBEzBQRqwNI+iAiZouIE4CrI+JH5Jntm8Di5SF/Ar5YukwqP9uKiG9GxEy1hY4jYmPgNuCIiDgQGA0MjYjFJb0NfAAsAyxSVczw0VntvLX3sSSguSPiNODX5N7CywG/BX5aHvYE2WLypWY5Uy9/O2vVXf4B8DtgK+Ay4G/AyhGxQknOi5NLxuwAzfXFPVg5f1WnVfMXtEcOa+f85aKxSUXEjyNi7fL7khGxN7Aemay2Bz5F7uawdUSMIM8UV46IdcpjKjtTKQlzYeD9cnlV4CbgduDbwJeBccB/gM0i4gzgIPKMdx/IRDHwkU+Q7D8APoiIaSLiF8BXgc2APYC5yAR7FXB0RNwCvAxMS77uAX//u7TmfAi8VK5fAzgJeAhYgtyNeQvyS26JiDgf+AVwLTCKfN2VqXv/XwKuj4g5ImJT4CfAVyRtQo4BWg3YDdgc+Dv5t3YW8H7VX9jm/OX8NfnaIYcNhvzV1MENRhExVfn1TODW0r2wO7CKpC3JD/2MwNvkmJq5gOOA/ckzsKWgmjOV2h976cq5B3giInYiP+SLA/dLegD4C9k9dQlwAvAC8H0yif25ig9NRMxUi738vBg4mBwk/hC5EP475BntzeQX4KXkWKxfSNqLTLwTtK4MlPrnk/Qi8O+IOJF87wFeL4OsbyaT6nLAmsAdklYnvxDfIb84BlxpSZin7sv2MWBLcrzSc8CjwAbltl2BC8p+yQeTn4lfA5sAb7XKRIR25Pzl/NVbrZzDBlP+ctHYJCLiWwB1s6emA/YmE+rPgIUjYlZJT5Ef/JXJs5nTyr8vkWeSNw9o4OQXRemy+Um5/IWIWI9MWOsCnyDPwI8tDzmLPNOdD3gXEHBBefxlA/2hiYjPAPdHxMzl8k8iYmngVeCwEtuHJeb3gbvJRDAf8BqwTkSMJr9ULhjI2Eu8p0bEYeX3ERFxJPA0sCnwGeBiYLGImI9MXn8F5i3v8zQR8Qfyvd9b0qsVxD8vsBclqUbEwcDGwBvkWfkcZBGyekTMJul64IaI+CL5t/V5ckzTJZKOGej4zfkL568+aeUcNtjyl4vGJhAR0wDbRMSPy+ULybOoc8gz7yHkWe0R5SFXAHeRH/xXyCb7VYCNJf1tQINP48gP+MjyWr4BzArcSZ597y7pcGBERHxV0mvAzpL+LOlf5BfFeZK+LGn0QAUdOSNyWFnq407ygw8QwD8lHQosSH6h/Rb4OhBl4PLekh6S9ARwIrD6QH/g61p1Tge+FhHTkd1/L5WlMw4HjibH0MxF7jE8BLhU0lHlsecA+0haT9IjAxx/baD4c8B9wPwRsTgwjGyF+iPZhTmC7Ap8A9iuPGZLSf+Q9DhwLrCcpAsHMn5Lzl/OX314DS2bwwZr/vI6jRWKCReI/RL5AdmWHK9xjKTXI2IXYEnyj+0/wLKS1OU4w2sDngcw9q5rTs1Nxv4p4JPkumv/KGdhPwcuIrtIoj45RUXrmsWEM/JmJD/o95JfbF8BjpV0c0SsCZxCzsrbgexW+F953Ef/fwMc+0fvfURMJen9iDgKmJ/sippL0g7l9lvJs9yngBkk/bnuOJXEX567/jV8HniPXLpkHNl9803yy3g2svvmPnLszwt173/LrInXjpy/nL/6EH9L57DBnL9cNFYsImYFVgT+QS60+kNyPMTV5NnXtOSZ+d7Ai5IerXts5avHR8QmZNy3AA8CPybHy5wKTEXOGJudTLZHVxNl98oXxWFkN80+jB+cfDPZrXAf8CtgT+AwSY9VEuhERC4OuwU5E+8M8u/kbTK5vgHcAfyLHE/WNDNTayJiIXICwULkF9sM5ED2ILujNiHf/3HAlZKeLY+r/O/ekvNXdVo9f0Fr57DBmr/cPT2AagOkY/z6ZZuT40s2ImcUXkJ+2P9OnnH9ATiEHFB7Z33ChYEfrBzj91mtvY7vkWevp5LjTB4mP+TXkWdXL5JfIvfXJ9yoZqB418Vhh5OJ9p/kjhT/Lt0dz5Az8TYixyutKGmbWsKNimYVdhP/CuSMyB8CV5Rupl+Qa69tBpxMduXc1QzJNrosLlxsAzwqaXmy++w84H7yy+NEcreHhySdWku40NzLUbQz56+PjuP8NZlaPYc5f43nlsYBUD6oQ+qboiNXtD8bOFLSfSUJzEp+iFaVtGXkIqDTKQePV3aG0qUbampgFkn/iYidye6CI8pt2wD/K6/hUklXdDlO5c3xEbEM8CQ5APxeYI3yWuYBViLHzewqaaEuj2uG2OckuzueAL4LrCRpm5KMNybHZV1Gjle6sMtjK4+/xLEJOcPxb8ABwOWSbi237UzOrP0UcKakB+se19Jn563M+euj41T+GWrl/FXiaOkc5vyVYzRsColcXPWN8sfSWZqzdwKuJ2fcvUAu5XAf+X9xMbA1sGxEfIo8e+ys/cFVcGa+MbkJ/Ovl8g/JdaWejIgnyMT1YUTMJenf5KD33wK/JM+Aa8cZqlzGYsA+8JEzClcFLlQuDrsoeeY3Gzmz8zDgQnIM0PeAzwHfkPS1iLihPu7y/g/0jMgtyNaZJ8rlH5NrxD1ALmK7NbBdRHxG0jMR8XVy+Y8VlMtV1I4z4O99ed45gB+Qy2HcUt7/08iWkBnJLp1PkzMKnyHf/7XIrsLhyskGH2mXhNtKnL8+Oo7zV+9eQ8vmMOeviXP39BQSEYsAHXWXtyXXYvo3OTD8XHLG2waRyyPsTo4Lel7SDyS9WPtDqyDZ1row/o/sXiJygdv1ycHiJ5PLCCxLLuVwfET8iTzLvV/SGEljY/xirQP5Ya+t0TU9+Z7WtpXampxRuC5wILku3GnkjMhfAceTe7AiSfWJdiDf/8jZg5D78W5XrluEXPrjK5K2Id/ztclukJMj4g7gv2RXyIvlMQP+3pfn/WRJuO+ThcRq5aZRwI2Svk1++c1Crnf3PvnFtytwuqS3JL1WVTeaJecv56/eauUc5vzVmLun+1lEbACMlvTviLgYeELSnhFxNDlz7YFyvyvJxVXfIpPZa+SyAW+W2we8KT4iPk2uqfYymYA6yYG825If8EUk7Vy6Er5Bri91FLAhOQ7lLwMZb1eRC/F+C7iRHKf0VWAx8kO+P/B7SXeU+95EDmL+O3mW+JAGeAZnvcg9YQ8nZ5jeAfye8RMI5iDXtTtY0jsRUft9zcjZnbNK+udEDj0gIpfO2IfcLeN18u9oCLlt1lXka/iSpO3L/c8ArpV0aUTMp7oxP1Yd56/qtHL+KjG1bA5z/uo5tzT2k4hYJSIuJQdQH1yS707AlhExC7k906i6hzxMntVeBOwoaRdJb0bdrgQDGPuQiNiHTLSPAzOTZ7b/Iteb+gk5qH2ViJizxLYO2f30tqSLagk3uh8wPKXjXycibibXJPsJ+aHflVyEd2Hyy+FdYN2IWCQiViHPdJ8sZ4YPKPeXrSL26UoCOoJ8j08il2uYgdwm65vkl+Bi5Ps/N/mFdz3kGmG1ZBsVDNAvz7s5edY9XNKK5MzZfZS7ajxEtji8R3Zxblc+G4uQhQbk31klfzuWnL+cv/oQf0vnMOevyeOisY8iYljkCvCnA6dJWg14BFiojJP5HXAMsAvwk4j4SkScCiwNvFS6Ed4qx6pk7Al5JrgusJOk48lktSS5VdOZ5JIOC5PdU6dHxN/IRXk/thipBnjNrNIVsgHwjqTdJN1Fxv26cnHYU8mWhvPIVpFDyWUpjpL0dJWxF0uQXSCHSzqHTECvk198J5NjZ6Ym14kbRc5QfZXxu1N8pIKWnVoXzJLl+WszHJ8BZorc8eBRstvpE2R32mLkEhu7SrqhPK7WjVnJmnGDmfPXhJy/eqUlc5jzV++4e7oXSnLsjIgdJZ0cEQeRH/raLLw/AtMAJ0m6MiIeIgdgDyMTxHuqeLug8oEZVs5QVyCXDziSXNj2QHKQ71/JJQQeBvaXtFoZ7/FJSR214wz0mJnyvPUzIpcil224mjwr3wm4iVx24rPkuJnbJJ0UuT/o8wMdb73y3g+V9GHkOnffIcdT3UiOY5qTnKF3M3AtOUtvS0kvlpaSl8pxKptN2OX9H0KucfdzMgGvQy5bsgz5BfEmuUfs3uRODx/UPa6tBom3Aucv56++avUc5vzVey4aeyHGz0rrINeVuorsTpia/NA/SX5YdiHPpqYjm7sX6XKcqlazr99NYHpJb0fE7uTZ+rTkbgKXR8TW5DIOe5BdD8dLerg87mPLcFQhckbn4+SA60PJFpMDJb0bObj9t5QtwiT9su5xzbCTwHzk+J8FyDPyTwHflTQ6IuYHrpK0WOQ+rKfUWhZKF86Az0btTkSsI+m6yJmq55Lv/QnltgPJGbaXA4tKurnucZUvnzFYOX85f/Ux5rbJYc5fk89L7vRC3R/LvuRA6nPIAck7AyerrC8VEQuSiemCiBhTrqud5Q+p6kNfl3D3B5aMiDPJs9mR5GDrP5S7LgH8R9Ir5Jlw/TE6yYHmA6Jri0BEjCK/DF4jB4r/mdzv9i8l4a5Kftn9S9JfyVaHj1TQDfXRsiORa8UdTI6VOZ48q72AXN9udBkb80Pg9hLrnl1ir6p1sf7LYj3yzPuByG3A/lj+xp8pt28ErA6cX1oVXqo/1mBNuM3A+cv5qzdaPYc5f/UPtzT2UJfm7BnJM9fpyM3gbwJ2JGeO3UAuVbED+Uf3fUn/KI+rqitkgrPq8oE/iFzW4UByaYpzyDW0RpAfkNXJrZwOl/RCxfFPcFZXupguJJPV82TryB3kmnE/JhPxUHK255/qHlf5AqsRsTA5Huxr5NiYbciEOyPZBbg0uYzDP8mtv2qzUSuNva5YCEmKiBvJrbPuBTYlJxy8Sy7Dcis5cPwXkv5WVcw2nvOX81d/acUc5vzVf1w0TqbIzck/Sa5Yv0EZz3E3OQ5iYfLscV5yMPbxVX/Iu5xdLUpuBH9T5JIZd5KDxGcnlxfYBTiaXED2MEm3dz3GAMde3w01jBwALvJLbRfyy2FVYEyJ/7fk2e2TKuOzymMr+7Lr0rqwBjkm7E1yP9KFybifJV/TK+QSD/tKeqg8pqm6QSLiz+QizsPJL7vPk3/rx5FfersBT0s6r9x/UI77aVbOXwMae0vnr+6eu9VzmPNX37lonIiuYy4iojY25hHybPyrwCGSno+IY4DlJa0SEd8CbpH0XHlcVeN+6lsWhpFn4buT45UelLR3RKwFvCXpzoi4jdwj9nVJL9cdp4r11rqemS9GLqExBzkwfF+yO21V8v/iW8Dqkrbu8rqbYZD13MA0kp4qfxuflnRU+QKcnjwbv4hsEflr3TEqS1bdvP+rAzOXLpytgLclXRQRa5PdOQuSrQ1bSXp7YsexgeP89dFxnL96oZVzmPPXlOWisRtdPjAzSXojIk4j91b9FrmY6g/JfUp/T3YpLAFsKOmN8rhmGei7Ezkj7ENJP4zcI/Y+ct/PBcklEJYGrgSOqD8zruLLol7kLgKHkEs33Cbp5xGxPblG1rlkF9Sa5FnvoRq/8HDlyarWpUZ2+61MziD8Pbk22TrAeuQYrLXJbqgT6o7TLIPcFyNbQ9YnC45vApuQCyGfXMb97Ey2Mhwi6cmux7CB5/zl/NWHmFs6hzl/TXkuGouImIY8g3q8XJ6J7OqYnxzge0u5fCK5WfnS5DIDiwFnq8vm6gOtm3E/nyaXEHiN/LAfT64tdXVE/Aj4qqTVI2JT4AFJj1UVO3w8yUTE3sDy5Bpxnyf3VV07IqYHfkMuhXAtMJ+ke8tjKu+GKpe/Q+5b+jTZDTUb+SVxOdn1dwA5fmY+4BVJ/yuPq7Ibqv7LYhFykPiSwGXkWnErkn/znyPHwm2uXO5kftXNiPSZeTWcv5y/+qLVc5jz18Bx0chHA6t/Ro7ROINctuEk8g/uHnKQ8jzkIquzAGeUbp2pyLPx2rpNzXB2NQ85ruRz5EDfsyWdV5LARpK+Vu73O2AX5QK+zdSysDo5EPnL5BfcwsoBzFcAl0n6VfmiGCLp0rrHVdUVXf/eT0OelQd5Zvsb4D5J+5az3m3Kv6VqZ7W12GmO935qcn21Xclus0fJrrT7JP2i/G0dUO6zGdn6U3vtTrgVcf5qqs9QS+Wv8txtkcOcvwbGoC8aI2J4OeMYSQ7g/QM5MHkLMuF+iRyPcg/ZjXMW8HPlsgK1GVlVFSz1Z1e1GYUbkTPB/kh+UWwIbE/OBrsCuFzSaQMda1ddu2Ai18nahWxZGEJ+qC8BbpZ0fOlKOAAYVetCq1KX934WshXnYmBusrtpWnLA+Cjg/5Q7PRARx5H7xJ5VRdw13bQsfJ8cY3UR2XrwItmtM5x8Lb9Xrn03M9k9tYbKTiBWHeevarR6/oLWzmHOX9UZ9NsIloT7OeB75PiM9cnZhXeRK/P/mky63yKT2I8kjS6P7Sw/q2rhqn3gP0UukfEy+SUxB9k1IuA5cnut98gvjQvqjlHVXsXDNX69rwUjZ3BuSI4v2Z7cs3RbMgnvGRGzKZee+GZ9wq0l7gGKeYLnqnvvv0x+2X1K0vXktmtLA9NJ2oIcaL11ScqQCyg/NFBxT0xd/EtGRJDdaOdJuoLsNltR0rZkS8PswMKlZWpucouw2auJ3Oo5fw28Vsxf3T1fK+cw56/qDLqWxm7GnsxAjtX4EzmzcCuye+Hf5PpN48jV7q+QdOYAhzuByFlsr6nM8IqI5chE+nty6YN7yUHJ85PdUOeRH5BlyZlt75fHDfi4kzLGaklgtKR3ytieXYAVyA/87OX2ecj11b4GbEyOq7le0m0DGe/E1M5wIxeH/Ro5iBryi+JISf+NiMPI/VYhd0s4SNJLEbEs8A1yOZD/DXDcs2vCWaWzku//V8jB+KeSCyHvEhFzkV8K15Fn7XvV3v+I+BIwu+rWj7OB4/zl/NVXrZjDnL+ax6ApGrsmmvLH8zC5Ofzdkj5frt+aXK/pJvJDtBy5tdBrAx/1R7HOS+4aMA/Z3L492QVyNvCwpB1LQt6BTLTPkWM6biC3bvp3JYEXEbEduejrS+SMzf3JL4dTgCUkPRsRnyFnRB5Bdu3sApyg6gfoz0SOTXqR7NZ7q1zfAVwj6SclkW4G3Krcq/ezZKvD5ZJurTtWVd2AS5Fr2v0M+K2kf0cuV7ILcKWk00tr1ZnAzyTdHbkjxewav7uGx/1UyPmrOq2cv6D1c5jzV3Np++7pbsaejIiIi8mzwzPIrpwrIuLY8pBXyK4RgN9J2lXSaxV2hWxIDmiXpI3IRXmfJrsILiL3+kS568E65LZgN5EfrgM04UDxgY59WEScQJ6NbyHpG5J2JNfM+h3ZsrBmufsi5AbxfyMT8iYav53ZgHbjdDEV2e03P/CziFi3XH8YuQwFkv5OJuQ1ImIhSU+Uv5tbYfx7X2HCqi0cPAdwQUTMCdwI/AWYOyI+o5x1+xdy3BWSbq0l3Mh18gb11llVcf5y/uoHrZ7DnL+aSFsXjaUrp/7sfH1yGYcbJK1AduPsQ26ftVpJxj8G9pP0JzXHzKqRZFfA8eXyQhFxLTlmpgN4NCK2Kbd9l/zgbCzpJKj8w/5pYEFJW0l6ISIWjojzgJsjYh/yTHG3Et915Jnk9yVtXe4/tKKuqKHl55DSJXIN+WVwA3BsRKwi6QLg35HLf0B2hdwEPNH1OBW1LtZ/tt8ClpO0L/laziDXWPsDMA2wWrnfceT/yQRU8Xp3g5Xzl/NXb7V6DnP+al5t3z1dzvK2BR4kz6T2Bu6XdFJEfILsDjlTuVr8suWM66PHVlCwzEXuavBO5B6lvwK2LU3y65IDrseQY4BeIAcpb08Osn6l7jgDvgRC5HINI4F7JI2NXGvtMODHkl6OiM3IsT+/I3d2+Cw5nukOSQd3OVblXQmlW+dtcn/bK8hWnBuAx8llTG4mB1rPL+ndaqKcUEy4sPMnyGUlXo2IU4A/kwsKL0MuOHwy8EVyR4ff1rowq/qis49z/nL+6otWy2HOX82vrVoaI+ITEbFg3eW1yDOn5cizkxmB24E5ImJx5UDeX5NdC7Um+vrm7IFMWHOUrpCzgbMi4gfkB/xdcqwJwN8l7STpV2S31LOU1oYuCXeIpHEDHP/W5FIG3wF+HRG7kd0Jw8gPOJIulnQ6mcSuAzrJ7cGO7Xq8gUy4ETFj7f+87rqfA98qCWxqMuHuTU402Kj8+xTZDdUMyXY5+NhZ9bHAEhExGzmxYE/gMUmrkC0knyfXMDtNdWPenHCr4fz10bGcvyZTq+cw56/WMbzqAPpD3dnJ/MCWEXFhSaCjgD0l/S1yb9IfkWMedgfWioiHy9iUCQx0c3ZEBLl+2tXK2V+rk4vDnk12P10eERdo/Kr7u5Bn6o+WZDumS/wD3brwI3KpjO9KejJyRf4Tye2+3gO+HhF3SLo9cgD/fuTstneAN5Qz+aoYYD0NuVDt3MCREfEuOeN0TIn71XLXi8gEtYOkd8pjN5T07McOOsBK68dnyLNtImIJ4CfkIP1FgTslvRcRLwH/lnRyeehN5BpytYWdfXZeEecv568+xN7SOcz5q/W0dPd0ab7em9w0/e/kGl73kGNRFieXDFiH7FK4CLiQHPPzPvC4yvZN5VhVrsj/XeBzkvbvcv1D5PIGG5DLTjxKLuvwBLnP6tMDHGp9bLOQs9OejIhLyC2+no2IaUvXzlbk1k2Hk18g3ybHMH0GOFm5nlZlytnrZeSesPtHzhacDfgq2YU2Ozn4/baIWJpctmGziJhKZemPcpyqxix9huym2Y8czN5JLp/xd3KP1QWBlYAdJV0bEd8gB/Tvo7pFbaPCfW4HO+cv56++aOUc5vzVulq2e7qcofyGXI/sRvKMalayG+fv5H6YN5Gv8XxyaYoXgfckXVKfcKHymVVzkWNMPupaKi4gk/Hh5EK9N5GD3LeX9HRUNyNyFnLZiY3Kh3YcpYuM/EKDHGv1BWD60qWzIbkExbq1hFtF/BHxuYi4i2xZuAF4JyI2J7tuZlUOtv4q+QX39Yi4khznNH35Qnm//ngVFYzbkGvz3UXuA3sg8H1y1uxCkg4gJ0w8Avw8Ii4gE/H56rILgsoixQMXvYHzl/NX77V6DnP+am0tWzSSH/KzJB0l6RJyYPJUkn5JLoXwo8hBwM+RyfnbwFdUt99nFSaSaOYgm+Lr7/cN4P/IJRCWlPS8pD9Lurt2nIq6Q4aV8SM3kd1p6wKjgc9H7pTwYUR8nlxsFfL/YW5Jr0mqdUFUuQTC7OQSFFeTY8V2I7+wDwS2jVws+alyv0OBS4G7JG0gaWwF8X4kxi/dMR+53ddC5MK7X5N0ItkltXppgfgCOaB/WeBIYDNJ91QQtnXP+cv5q7daMoc5f7WHluyeLsl0N2ANckDyV8hm+YfIM/c9yT/KoeT2Wp21rpBogo3Va2pjmSJnHN5ILqY6mhw8fhm5k8Np5GzJZtpRYCS5tMHC5Pv8JpkI3pJ0RESsA5xDdqn9gRyv8nKTvOdTM34m6gXkQPCXJZ0cuWTJlcBjwHbA1rUxM+WxE+zGUZVypn4CGesuZGvDnsDdwB7Av8jXt7ik/eoe1xQzOgc7569qtXL+gtbPYc5fra0lisbu/lgiZxmuQJ5NvSnpvIiYn/ywbwAsBcxbzuInepyBUD9mpHxhHAHsIemtiNiA3LlhVmAJclbhLMDT5NZZTw50vPW6JpnyBXE+uQjvDOQm8XeRX3inkrtUBPAL1a3GX4Xa/3ft/Y+IxchdKb4LLCxpuYhYhtyb9yzyfd+n3P6uBnirv+7U/81GxIzktmT/IwuOhyUdHhEbAYdK+mJEfJ1sQfm1pOcrC9w+4vxVnVbOX9D6Ocz5q/20RNFYr8sf4XBgBo1fn2lnICTtVGWMNV1i/TS5FtYdkQvE3kGuUXYAOUPy1sgN1RcAZpE0unYMmqBlIXKbqQ5y/NIfJS1Wrt+DnLl3qHLP0jnJPUBrXzIDfmbb3XNGzjK8BLhY0vmRe6sOkbRXRPwUWEC5ndmCtS+6Cr+kh5Prk330HpLjrj4N/BS4n1wr7mpgd0l/j4jR5Fplx3Y5ls/Om4jzVzVaKX9N7HlbJYc5f7W3pi0aG5zdfpkcD/EEsAm5btaS5Lpfh0h6tJKgi+hmNlpEHEmOS9qTPJtdmdzX85lJPKaKD/wy5JnetZLejIi1yUHjY8jB1F8HfkEud3BKROxKtowcqFySonZGXEWxWJuNOh2ZmM4EDiHX8ro4IjYpsR5PLkfxG3IA9mvAnBq/zl1lyzdExHeAH5L73F4GXEXOMDxX0v2Re6r+gOze3BxYVTkjck6ye622r6yXoKiQ85fzVy/jb+kc5vzV/pquaOzh2e3+5NntbaW5fnngWeVWTlV+YCZIkhExH9lVcArwBpkMRpCD2++QdGLk4OChVSSoenXJcgOya+MgSf+MiJOASyTdHBEPk2OALiG7Qv4NfEgm3HsnevABEDkb9XvkNmRPkGfgF0cunfEzSYuU+/263H4kmWxfVDdr3Q20iJgWOJrcFutYyiQ1SR0RcRrwADl+iXK//wAHkQPdf04m3MrWi7Pk/FWNVs9f0No5zPlr8GiaorHFz26nVd2stMjV7dcjk9NXyLPG6ckZe/8lPyhBdkW9M5CxNlK6Fv4I3EZ2IexEbpc1LfBLcr2148mkECqzIasWEfsBHSpjwCLXJXtR0vMRcTkwWtKhEfEzYE1y0L6qPpuNXP5jRnKh4PMkfaVcvwjZMjKaHCe2LTnm6l/AvsAQ4KeS3qgibpuQ81dzaNX8Ba2Zw5y/Bp/Ki8b+Orut4uy8dCVsBqxZmtiHkt1QI4E7yWT7Dvlh+RO5TMKG5AdmAUm3VNwV2vW935Qcc/IAmVx/TC5J8QWydeRT5K4Uu0h6rO5xlc7Ii0nPRn2O/JL7K/nF/Rq5sHD9wshVtezU1ot7BjiJ/KIbS04iWIf8kl6J3PFhGWDp8u/nkn5ddxyfnVfE+cv5qz+0Yg5z/hqcKisaW/3sNiJWIzdM3wfYAThF0h8j4iJJm5f7LEZ2IXyHTMQ7AGdIurqisClxfWwV/chB7KcBvypje/YkV+m/mxzcviG5NMWRkjoGPOg63SWZmPRs1PXImZ1zSLpmwAPuRoxfrmRDYG1yUefnyb/x+YEblQPz9wbel3R0eY2vSXq5HMPJtiLOX9Vp9fwFrZ/DnL8GrwHfe7r+7Bbo7ux2GyY8u/0y+YHfljy7fafis9vac89PruF1N5mM9iS7RRaPiJUl3QG8Tn6Q3iLXorpZ0ntVxF1P4wfoL0guCHszGfsbwOrA7WRXzmjgGUnnRsR1KksgVP1h79K6MFTSOOV2YM9SNxsV2Ijs7nmP3GVjgscMbNQTKgl3JDkYfCGysDiD3Ebug5JwlyXHu/26PKY2I3KYpA+rfg2DkfOX81d/aPUc5vw1eA1oS2OLn93OVD/+orQs/Jnc6mhdcpbbNcAr5DIUO5ALl44lZ5O9qxyoXfkg98glEDYnz16fJAcvT0sOEj+W7FJbjNz4/iDldmYfO85AihaejQof7wKLCdeLm47szrmRHPNzJrkF2HzkPre/GfiIrSvnL+evvmjlHOb8ZTUD0tLY6me3EbECeba0UOkG2YlMrhcAwyS9GhHHkh+gtYCpyb0yr5V0Tv2xqmphqEu4w4HPkV8EV0o6JiKWJGfhTQXsRW4cD7CRpNe7O85AqTsL74wJZ6POCGwREV1noz5Lnt1eo4pno9arJdwYv17cjOTizTeW6xcl95I9lWydWhS4te5LpvLXMFg5f43n/DX52iGHOX9ZzRRtaWyDs9thdR+W28hlGq4F9pe0Q7n+WuB0SZdFxJnA25J2mdhxBjD2aYH36pLtGuT7+wT5vm9Gnp2fRH7RbQ2sBmxBLvXwQXlc5S2Ldde1xGzU8ry9XS/ugFJ81I5T+SD9wcr56+PHGcDYWzp/ledu2Rzm/GUTM8WKxtrZraSuZ7dLkWe3O5X71M5uv0qeqdzb9ey2ahER5Mbwh5CzIucHjpX0RET8H7Aj+SEaQr62F8rjqvqy+AQ5OPn35UtrKXLsz4+ALYEvAr8lB+xfQbaWzAfMJun+uuNUkaxadjZq/fNGC68XZ85f5XHOX73QyjnM+csa6feisZXPbrs+b0TMSn7YV5T0pfLB2YF8TZ8j1wG7FNgdOFXSs+VxlRYs5feLyT1KjyGXaPhhiXU7crzJ8eTyDkH+37zW7UEHSLT4bNSuooXXixvMnL+cv3qrnXKY85dNzND+PmBdwgpyNtVB5KDwzoj4bLnbGcBOEfFJMqkdUXt8jF9OYcASbkRMVRJsbVbY1BExNZm0Pk1+aVBi/W/5uR3ZtbCMpL1rCbccY6DPDmur79cS7lLkoOTPk2ezL5GDrL8maQ3gLrJ77TRg3yoTbkR8IiK2o+wWEBFDI+Io4HByjNI25PiZM8gviSOAF8nZqFuqzEatJPii9v7XXd6UTLb/Igfsf4bc8msYOeZqHDlmaS5Jr9USbuQAf6uQ85fz1+Rq9Rzm/GWTo19aGlv87HZoiedsSVdGxI/JsRkikxNkl9Q5pZn+KGAFSat2OU4VXQmfJzeGf7zuusXILrNNyaT1EplcvwGsQo63mg/4iaR/VBV7ed6WnY0KExQILbtenDl/leM4f/VCK+cw5y/rjV7Pni5/XDNIerV2dltu6u7sdvPyc9by82lJe9cfr4KE9TngZUmvRMQdwNYR8SaZmL4HrEh+wF8mV7zfBPinpD0iYqFyjI8+dAMZf0TMTm7FtDBwQInjF+QG90sBYySNjYjjybPfB8i1zO4APqky462mqnEztOhs1Jq6lpGWXS9usHL+cv7qi3bIYc5f1hu96p4uZ7cXkQO/KWe3VwHHkdsEXQXMGhFfKF0H5wKXSnpU0laqW0agz6+gF0rzewf5BQA5qPopcubjaOVMtqvID/uL5d/wiJi9JIvHygdmQJNtiX1XcozMf4BNJd1TYvgzOd5kI2CeiFi4vI4TgD2AlSU9oPFLJAx4V0Lk2mT1Sf5h8qz7cnJW3msRsQ3ZBXJyRKxEbm5f+0LvlPRes3TlRMSwiPgm2YX5FGV8FTlIfIPIGZ/bkq0l/wZwwq2e85fzVx/ib+kc5vxlfTVZ3dNdzm53J89mf0lunL4rE57dvgPMKOnQ8tiFSrL6WJP4QCgflmklvR0RnwL2Iwfznk+ewa5O7pn5beBbZZzJJWS3TuVdoQARsQl5JnuopCvLdesDHwDXK2e97U8utPosudfqeuSsvLeriTpFG81GhY8Gin8OOJ2Prxd3MTkTtbZe3F7qsl6cDTznr2q1cv6C9sphzl/WWz1uaWzls9vieGDX0hQ/lBzkuz2wCPllsSHZLP8g8NuIuJvs1rm1doDoMmC4AqPJ7o1hEbFMRJxNftn9pyTcocC8wE6Svgn8VNLY8kUztIqz21qLgKS7gBci4rvAJ4CFJZ2rnHW6cERsWu4j4GhJv5e0cy3ZVtiyMG2Xs/M1ypfxYeSA8OuAmSNiTrLV4UFyksGtwC6SdpT0ehP87Qxqzl/OX73VyjnM+cv62yRbGtvh7LYmImYjm9o/K2n7yCUdTiQ/KF8muxNuIdcsW4RcIPah8tjKt86qu25TcgHbRYAjJNVm7M0IzAHsBlwI3FXRl1u3Ilprrbjy3C29Xtxg5/zl/NWfWi2HOX/ZlNCoaDyBHM9wIfAuudjndeTq+w+RzddHkIOvv0gOIr+dXDfrzXKMpvmDi4jpyZluD5Pxry9p+3LbhcCr5FZOb5TrhpDJt/L4a+9jRExDdvG8J+mIctt2wP+RXQ2XVR1vtPBs1K7PHS24Xpwl5y/nr95q5Rzm/GVTUqOiseXObhspZ7RnAI+RsyH3Um4YP6eklyoNjo994Ltuar8eOc7nTWAJ8ox2BDmu5giVTe2reO+jbjZquVwb+L0Q2cLzkKRDImIWMll9gfGzUS9UmVxQpa4FQjkzX55sWdgAeBs4D3hc0uYRsTUwC/mZmEF1W85Z9Zy/Bl6r5q/yvC2dw5y/bCA0nAjTyme3ExMRI8hlKX5MDnavX8W/8q2nYsJN7c8ju9KeIfe33VPSrZHrZ40CTpR0TXlclYP0W3KtuPK8Lb9enHXP+WvAYmrZ/FWLnxbNYc5fNpB6NHu62c9ueysilpE0uuIYJntT+3KfWeq7Eqr4sogWno1aYphgvTjgXiZcL+5VSftFxGfI9eKOAp4gd3n42Hpx1pycv6ZoDC2bv8rztmwOc/6yKvRoRlQZ33MIuW/mDuTm5NQSbrTozCpJo6O6GXldt86aLyJOi4jFyTPCq8lxJz8l1/Z6JiKGxPiZfK+Vx9UuD3TB2NKzUaPF14uznnP+6n+tnr/Kc7dsDnP+sqpM9jaCzXB228qihTe1jzaZjRotvl6c9Z7zV9+0cv6C9shhzl9WpcneRrB2duuxD5MncvmDzYA1gc1K8jqC7Pq4k9zU/h3gVOBP5ED9DcmB/AuU5FX1+3488FIZC/YuuVbcOeRs1HFkvEcwfq242mzUCdaKa4LxYhOsF0eud/cZcsB+1/Xi7iuFxlj46EunqrX6rI+cv3qnTfIXtEcOc/6yykx2S6NNvmjhTe3rRYvORu0uyUcLrxdnNpDaJX9Ba+Yw5y9rJi05lqdV1I03qt/U/igyIUHZ1L783nVT+82bLeFKeoX88pg2cvbj+WQXzn8k/ZocgA05WLxD0kNlHNPQKhOXJlyGovY3fxUZ7wV1CXc7cg/ZZcjdEO50wrXBqt3yF7RmDnP+smbilsYpICJmUt2aV2Xcz5+BR4B1gTOBa8j1yQ4gz8p3IZdB+CHwbulmaIbunI9phdmo0cLrxZlVqd3zFzR/DnP+smblorGfRRttaj8p0YRrxXV97mjB9eLMqjRY8hc0Zw5z/rJm56Kxn8SE207dRm4xdS25NdMO5fprgdMlXRYRZwJvKze77/Y4raBZZqN2d1YdLbRenFmVBmv+gubIYc5f1ipcNPaziNba1L4/NNMkl4iYjxywfwrwBrA32XXzHHCHpBPLmfjQ+i+3VvyyM+tvgzF/QfNMcnH+smbnorEPooU3tW910eLrxZlVzfmrOs5f1qpcNE6maPFN7Vtd1K0XJ6m79eKmY8L14qYi114bQq4Xd4u/6Gywcv6qlvOXtTovuTMZygf8InLgN5Gb2l8FHAcsXX6fNSK+UMaZnAtcKulRSVvVEm7dUhY2Gcp6cbcALwAzR8TGpWtnAUlrStoX+BU5aH8suebaE8Bikp6WdAt4gLgNTs5f1XL+snbgorEHIuJzETFb+YDfAWwdEaOAVcjZd7cBiwOfJme3bQIgaQ9ypwTKWl+e1dYL7bhenNlAcf6qlvOXtRMXjQ1EC29q3+rK+mT1X1IPk+OsLgfGAK9FxDbkGfnJEbEScDRQ63LrlPSeW0ZssHL+qo7zl7Ujj2nsRrTBpvatbjCtF2fWn5y/quf8Ze3KLY3dOx7YNSIWJN+jf5Gbwi8CrEgOTH6D8Zva301260ywqf1AB90OImIYgKS7gBci4rvAJ4CFJZ1b1oVbOCI2LfcRcLSk30vauZZwa8cxG4Scvyri/GXtzi2N3YgW3NS+3QzW9eLM+sr5q3rOX9auXDRORERMT25s/zDwELC+pO3LbRcCr5JbOb1RrhtCJl+vxj+ZvF6cWf9y/ho4zl82mLhonIRo8k3tW5nXizObspy/phznLxusPG5lEiS9SXYvTE+eLX5Yrn8JPO6nt7xenNmU5/w1ZTh/2WDmlsYeiibY1L7VRcTngJclvRIRu5OD8n8J7AzsWi6PBF4md0WYUdKh5bELleU/vFac2WRy/uo75y8ztzT2mKTRPjPsPa8XZ1Yd56++cf4yS25ptCnG68WZWaty/jL7OLc02pTk9eLMrFU5f5l14T9om5IOBN4D9pD0PDlIfHrgILIbZy5yn9v9ybXjtpL0E0lv1o398RIgZlaFA3H+MpuAu6dtivJ6cWbWqpy/zCbkotGmOK8XZ2atyvnLbDx3T9sU5/XizKxVOX+ZjeeWRhtQXi/OzFqV85cNdi4abcB5n1Uza1XOXzaYuWg0MzMzs4Y8FsPMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNr6P8BJUJMDFsZOLMAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo0AAAI0CAYAAAB4aBPwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABuOElEQVR4nO3dd5icddXG8W8KvSPSFAEFD1GkhS5VEaQIyCuoIAqISlMEFKRIkQ4CgtKLFCtVqdKkK2JCE1luRIpIEZQWSqj7/nF+QybLJrPZMs/M7P25rly70545M9k5c55fHdHd3Y2ZmZmZ2dSMrDoAMzMzM2t9LhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwaGl11AGY2dRHxABDAqpL+XK77NfAlYCIwu6Q3y/X/A+YG5pf0n3481yLAI4AkLTGF++wM7A/MDpwEvA/4GvBlSb+Z1uccTBFxI7Bm3VVvAc8B5wI/kPT2AI69OnAGsAhwt6SV+h9p+4qIa4DPkO/nkT1uexBYHNgQ2JP8v1hF0u1NiOvG+ueLiEeBhYEFJD09wGPPCmwj6Wfl8oHAAcDeko4YyLHN2olbGs1a31/Kz+Xqrluj/Jyxdn1EfJgsGB/pT8HYFxExPXAcMC/wV+AfQ/E8g+Bm4FLgT2RR+z1gvwEe82Dgo+RrHj/AY7Wzi8rPTeuvjIglyILxBeA64Fbg92TRXoVryvNPHMhBImJu4H5gl7qrHyjHfnAgxzZrN25pNGt9twNfBcYCRMRiwILAO+SJ36pkYTm23P/PQxjLnMB0wBOS1ijxrDyEz9dfe9VatyJiR7JFdBvgoAEcc97yc1NJDw0svLZ2Cfl+rhQR89e14n2u/LxM0hsMvEgfEEnfHKRDzQ4sBKju2L8BKm1VN6uCi0az1ldraawVhbXu1/PJLupVyda/5cv1tWJpZuCQcp+5gbvJLsUby+1nk93KBwHfBF4FNqh/4ojYhCwSngG+CNxYbvpARHQDa/cWcCnUdgUWBf4FHCvp5IiYA/gvcK+kWhF8L/AJ4FOSboiIbwKnkt1/x5bXtiEwF9l1fpikXzR60+rcUn4uWBffxsDhwGLAQ8APJV08lfdlZmCB8vB/RMRBkg6MiGWAI8n/gzfJ1s09JP2vHKubbKW6jfx/OIls+ToA2AnYhPz/vAf4MvBtYHvgRWBPSb8ux/kY8FNgBWAUcC/wbUnj6oYUXAFcC/ygxHtmiaW7HGMj4FByqMN/gNMkHVpuGwHsDexM/q3cDnxH0t96vpmSnomIW0rcGwOnlZtqReNF5Zg3Mnl38Qbk32MArwF/BHaW9GxvwyIi4gfl/6j2Xo8Gfkz+Hc4NPAWcKOnonjGWxz9K6Z4GdijveU+1Y38SOIb8O3y7vP4dJf2zxFUOGd3k3/Q29OiejojNgX2AMeTn5QzgUElv9/X/yKzVuXvarPXdSxYuH4uIGZnUNX08MIEsWOC9LY0XAruRX4J/IQuOa8sXZL0fkt1stwNv1K6MiDHAecDrZHHTBfyh3Pwa2T33357BRsReZHG0IFkszQecFBF7SnqxxLdMRMwdEXMBS5aH1uL6dPl5BXAgWUS9QBasCwPnRsQKvb1RU7BR+fnvEt8ngIvLsW4q8V0QEWv2eFz9+3I58HK5/lrggYj4CFmQrgvcV96LrwHXlW78mjHA58n/x7/WXX8s2XX+PLAScBewFfk+fxA4MyJmLwXdxcCnyvM8CKwMnNUj3tXJsaYPAbOR//frlNe8FPA74GPk/8mMwCER8e3y2J3IgpJy+yeB60vXbG8uLD83Lcefm/w7nABc3fPOEfF+sphcguy2fhrYvJfXMDV7kicib5L/b/MDR0XEclN9VKp1J/+eSSc+AI+X8YqXkZ+fccCT5JjN48p9ri0/Xy6Pf7XnwSPii+RJ3BhySMRM5EnHT3vcdYr/R2btwEWjWYuT9BY5hm40sBTZevMyWYDcBixYWjLGksXcPaUwXJ8sMJaQtCawYznGj3o8xS8lrSXpK3XXzUIWGbMB20r6i6RngG3L7c9I2lTSffUHioiZgH3JL/ZVJH0KWKVc3r/cfiWZe9Ymi5MRQDewWimQ1iaLijuBD5dD7yFpfbLF8Rvl9qk5MiIujYjbgcPKdaeUn98nW+s2k7QuWeyMJAuSXt+X0tX5RLn+m6V78gfArGTL5ypkQXYzsAzZGlYzAviipNUkXVR3/V8krVB339nLe7YSWVTMBHyELPCOBXaQtCpZ/D9Pjh+sNyuwlqTVgV+V62onEnuW17yTpE+TJx63ALXidi/gFWBJSeuQ4/feD9T/TdS7mPw/+1QpujYox79CUm9jCBcor+NWYAtgWWAP8uSir/5CFrafKP9vtRbOnu/De0j6jaRNyeK9VvRdQRatM5Cthl8pn5PaSVjtuLVu7ifK3/wzvTzFIeXn58rf/JLk/9G3ImLhuvtN7f/IrOW5aDRrD7Uu6s+TLWR/LjOBby7Xb02ONxxXZlLXxhleIumV8vt55WfPMYi9jYH8IDnpA7KrtK8+Rhaad0r6O0D5eSdZiC4JXFXu+2my5eUd8gt8ZbLgej9wZemyO4UsOK+MiKeA7YDHJT3eII41yO7SZYCHya7XH5fbPl5+Xl26G2tj1ZZnco3Ghtbex/PK63wL+HWP26Z2rBvLz1ox+m9JD5ffnyo/Z5D0GtmyN11EXFTuPxdZhNV7sq47+YHa48vPj5Wf15dYJWkNScdExGzkmL1ZgOfKe3JquX/P94Ty+CfLa5qBPDnZuNx0UW/3B/4O3EC24P2XbCmcCbhjCveHLLbr/ZFs9T28DGmotZL2fB+mZj+ywH0M+Kqk7jKU4GJg4Yi4nPx76fNxI+J95DCH/0i6FqBMRLuG/I5dse7uU/s/Mmt5LhrN2kNtyZJvlZ+1YvGm8nOHHvd7ZyrH6jl+6qUp3K82FvCQ0gLYF1N7XoBuSfeQhU+taLyH7B6cA/huud8VAJKuIcfA7Ut2225OFnvfafA8q0gaIWlGSYtJOqJu3Nh05Wdtdm3t3209jjGl96Wmr+/xW6Xw66nWIlc7Tn2357vHjog5yfGoh5HF1xeZVGjWq3/8W+Vnz/+3d8exl1ZfmPR+vMrk78fvqZv80YtaF/XmwHrl8Vf2dsdygrMusBlZZM9Hts7dFRGz1N21/jupZzF1PPl3Mh/5XpxYru/T32ZErE0Od3iTbPl9rly/KPm+7kb+Daw/LcelD3/zdb/35f/IrGW5aDRrD7VicK7ys1Y0/pXskq5N8qi1aN1Vfn6+7kt56x73qelt7cLauK6ryCV9vtDHOEV+MS5XJm8QER8vx5hAjsmDHBv5UbIV5pa617MV+aV+bXnswcAJ5KSNTzFpfOJn+hhPb+4vP08vXZb7AI8Cv+1xv0ZrOtbe461LrKPJySww+Xvc77Uhi3XIlsBrJO0P/BOYp5f7TW0yRVf5uR68OwP/5Yi4phRP/yG7l3cu78l5ZCF1VS/Hqqm1Kn6B7Fq/StJ7xvuV56uNwVxU0naSPkJ2VS9EjnOsFdXz1I0HXbHHYbYrr3GbMjxg0anE1vP55ydbgUcCu0r6S93N/0eesPxS0uG89/+rVhT2+n0p6Xny72e+iPhMeb75yCL5HSb1EsDU/4/MWp6LRrM2IOkJJrUuvU75Iipd0fULJ9eKlZvJVsiPkpM2bgJOpowt7MNTTpD0et19fxQRo/oQ56vk+LvpgNsj4voS03TkTNVa61qtRWoUcLOkB8gZp7XLE8rtc5KF4j0RcSXwy7rX118/I7+8f1niu4Ucz/iBaTzOj8liZ5+I+DNZjK5BdsWfP4D4enqs/NwsIv5Yjj8DvLvodF8cQ77m48oxbiXzf21i0wnlmHdHxA3keLvvM5VWNEn/Ik9aai1lU+qahhyD+nngxxFxc0TcSo5nfZbspn2G7JKfC/hjRFxBtkLXe6w81x0RcTeTZvr35T04nmyhfA1YLyJ+V/4dwqT399sRcS2lC7/uuM+TheRiEXFLRPQ2hrI2pvGy8v7eV17LSX0YSmHWNlw0mrWPWnF4Rynoampd1I/V1syT9A5ZbB1Pfs5XIsePraOyq0xfSBpHLiOzBLlWZF/sT443ewJYjWzF2kHSMXX3uY4sYCELGJhUCF5Rd7/dgSPIrrxPka2YB5GFab9IupXs4n2wxPcyua7jiVN94HuPcx9Z2FxDjtWcBzgb+Ewp5geFpL+S3fP/JSeQ3Ex2HUNOMurLMe4kW9S6yGJtIjk7vDZD+AjyfZ1YjtlFrkd5d4ND17qoXydnmE/p+R8lW95uApYmx5VeD3xW0itl6MDW5MLpy5U49uxxmG3JGei1iSUHl599eQ/mKz9nIlcCqP1brbyGn5J/W0uTLc5/At4XEYuXE5gjyeEKHyWXyun5+s4kW5nvJyfSvEa+vz0nV5m1tRHd3W4tNzMzM7Opc0ujmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNraHTVAZhVJSIWAf4J/K3u6hHA8ZLOGoTj/wh4SNK5U7nP3cBakl4Y6POZmdWLiG7gPuBtoBuYGXgJ2FHSuEF+rkWA+yTNGhEHAvNI2mUwn8Oq56LRhrvXJC1TuxARHwDui4hxku4dyIEl7d+H+yzT6D5mZgOwtqT/1i5ExPeAnwKrVBeStSsXjWZ1JD0REf8A1o2IE4FZgBclrR0RXwd2Iod1/A/YRdIDETErmYQ/CbwF/A7YF/g5eeb944g4CPg88EZ57DaSniotAe+X9N+I+CHw5XKMB8vxn46IG4E/l+N/CLgF+Jqkd5rxnphZZ4iI0WQOea7uun2B/yPz2qPATpKejIj5gVOAJYB3gFMknRARKwNHATMACwDXSvp6U1+IVcZjGs3qRMQqwGLATMDHya7jtSNiTeBrwOqSliWT5sXlYT8CZgTGAMuQxd2adcdcCPgusIKk5YFrgJV6PO+2wPrlPkuRXUpn193lI8BawCeAT9Uf38xsKm6IiHsi4knyZBRgW4CI+CqZU1YsvR5XAmeU+5wEPChpCbJV8psRsRiwK7C/pJWAjwEbR8TYpr0aq5RbGm24m6mMK4T8PPwX2AqYD7hX0kvltg3JYvJPEVF77NwRMTewDrC7pLfJsUNrAkTENuV+TwD3AHdGxFXAVZKu7xHH+sDPJb1SLh8P7BsR05fLl5WWxQkR8RAw94BfuZkNB2uXnoxlgauAP0l6pty2EbAiMK7ktVHkuEfIvLYngKQXgSUBIuJrwAYRsQ/ZCjkzMCvZg2IdzkWjDXev9TausBR8L9ddNQo4T9Je5faRwILA82R3cnfdYxcCXq1dlvROaalcnkzEx0XEDZJ2rTt+z1b/keTnc0QtzrrbuuuuNzNrSNJdEbEbcEZE3C7pUTKvHSnpZICImAGYqzykZ177MHlSfS15EvwH4Hyy18T5aJhw97RZ31wDfDkiFiiXdwBqrYXXAV+LiJEl6V7I5N3TS5PdzV2SDgeOA5bucfyrgW0jYpZy+TvAzZJeH5JXY2bDjqRfk+Ojf1KuuhrYPiJmL5d/BJxXfr+OSd3Yc5D5bnHy5HcvSRcDHyB7YEY1I36rnotGsz6QdDVwJHBtRNwLbAlsJqkbOIic4HIPcBdwZUmotcfeQ56Rj4uIccB2wG49nuJMMknfERFdwHJkN7mZ2WDaBVg/ItYjxy9eDtweEX8HlgK2qbvfmJLvbgMOlzQeOJwcajMO2LvctlhzX4JVZUR3d3fje5mZmZnZsOaWRjMzMzNryBNhpiAiViIHCK9Vlhk4mxwUfB+wc5nccAA5q/Yt4LuS7qgsYDOzwvnLzIaCWxp7ERF7kmM9ZixXHQvsJ2l1cpbYJhGxHDnZYSXgS8CJVcRqZlbP+cvMhoqLxt79E9is7vJY4Kby+1XksimrAddI6pb0L2B0RLy/uWGamb2H85eZDQl3T/dC0kVl8/WaEWWWLMAEYA5gdiZfzLR2/bP1xxo/frxnGpkNQ2PHjq1k7TrnLzMbqCnlLxeNfVO/x+9swAvAS+X3nte/x9ix1eyw1NXVxZgxYyp57sHg+Kvl+Ptv/PjxlTzvFDh/VcDxV8vx99/U8pe7p/vmrohYq/y+PnALuTbVemVB5w8BIyX9t6oAzcymwPnLzAaFWxr7Zg/g9LIPcBdwoaS3I+IWcnX9kcDOVQZoZjYFzl9mNihcNE5B2Zdz5fL7g9RtC1d3nwOBA5sZl5lZI85fZjYU3D1tZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCFPhDGzljFiUJfDHrw1zrq9xLWZmVsazczMzKwxF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4a8TmOLafd16hx/Pcdf43UOzczan1sazczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZGVx1Au4iI6YBzgEWAt4FvAG8BZwPdwH3AzpLeqShEM7NeOX+Z2WBwS2PfbQCMlrQq8CPgUOBYYD9JqwMjgE0qjM/MbEqcv8xswFw09t2DwOiIGAnMDrwJjAVuKrdfBaxTUWxmZlPj/GVmA+bu6b57mezaeQCYB9gIWENSd7l9AjBHbw/s6uqahqcZM4AQh07fX4PjHwqOv1rT9hluSU3KX4Nn4sSJbf2+O/5qOf6h4aKx73YDrpa0d0QsBPwRmL7u9tmAF3p74JgxrflFOC3a/TU4/moNt/jHjx8/RJH0W9vlr66urrb+u3H81XL8/Te1/OXu6b57Hnix/P4cMB1wV0SsVa5bH7ilgrjMzBpx/jKzAXNLY98dB5wVEbeQZ+j7AOOA0yNieqALuLDC+MzMpsT5y8wGzEVjH0l6Gdiil5vWbHYsZmbTwvnLzAaDu6fNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrKHRVQfQDBGxMHAwMBNwuKQ7Kw7JzKxPnL/MrFUMi6IROBI4AegGTgOWrzYcM7M+c/4ys5bQkd3TEXFORMxbd9UswKPAw8CMlQRlZtYHzl9m1qo6taXxdODCiPg98BOya+cCYHpgv/4eNCL2BjYuxzkJuAk4m2wBuA/YWdI7AwnczIY95y8za0kd2dIo6VZgLWAimRhnl/RJSStI+l1/jhkRawGrAp8E1gQWAo4F9pO0OjAC2GTAwZvZsOb8ZWatqlNbGgFmBs4CfgMcHhHfBPaQ9Hg/j7ce8DfgEmB24PvAN8ikDnAVsG65fTJdXV3T8DRj+hne0Or7a3D8Q8HxV2vaPsODok3z1+CZOHFiZc89GBx/tRz/0OjIojEi9gW+DIwCjpH0zYhYATg3Iv4o6eB+HHYeYGFgI2BR4FJgpKTucvsEYI7eHjhmTGt+EU6Ldn8Njr9awy3+8ePH9/u5nL9SV1dXW//dOP5qOf7+m1r+6sjuaWALSUsCSwE7Akj6q6S1gSf7ecz/AVdLekOSyK6j+iQ7G/BC/0M2MwOcv8ysRXVq0fhCROwJ7As8Un+DpDP7ecxbgc9GxIiIWJCc0Xh9GSsEsD5wSz+PbWZW4/xlZi2pU4vGzwOvkWflXx2MA0q6HLgLuAO4DNgZ2AM4KCL+TM5IvHAwnsvMhjXnLzNrSR05plHSc8BPh+C4e/Zy9ZqD/TxmNnw5f5lZq+rUlkYzMzMzG0QuGs3MzMysIReNZmZmZtZQR45prImIJYDVgDPJRWuXAr4u6YZKAzMza8D5y8xaTae3NJ5KzkLciFzcdjvgsEojMjPrG+cvM2spnV40zijpl+T2WOdLuhGYrtqQzMz6xPnLzFpKpxeNM0TEfMCGwHXl95kqjsnMrC+cv8yspXR60Xgq8Bhwq6T7gb8CP6k0IjOzvnH+MrOW0tFFo6STgZkl1XZVWFbS6VXGZGbWF85fZtZqOrpojIhZgRMi4vqImBs4rFxnZtbSnL/MrNV0dNEInAC8CMwHTARmB06rNCIzs75x/jKzltLpReOykvYF3pT0KrAVsEy1IZmZ9Ynzl5m1lE4vGt/ucXkU8E4VgZiZTSPnLzNrKZ1eNN4cEUcCM0XEesDFgHdTMLN24PxlZi2l04vGvYCXyXFBhwL3At+vNCIzs75x/jKzltLRe08DP5K0N3Bw1YGYmU0j5y8zaymd3tK4UdUBmJn1k/OXmbWUTm9pfDgirgFuJbt5AJB0bHUhmZn1ifOXmbWUTi8anys/F627rruKQMzMppHzl5m1lI4uGiVtCxARCwPTSXqo4pDMzPrE+cvMWk1HF40RsRjwe2BBYGRE/BfYUNID1UZmZjZ1zl9m1mo6fSLMz4CjJM0laQ7gEOCkimMyM+sL5y8zaymdXjTOJ+mc2gVJPwfeX2E8ZmZ95fxlZi2l04vG0RExd+1CRMyDB5KbWXtw/jKzltLRYxqBnwK3R8Rvy+UvAsdVGI+ZWV85f5lZS+nolkZJpwHfAqYHZgR2lHRytVGZmTXm/GVmraaji8aI+ACwuaS9gDOAb0fE/BWHZWbWkPOXmbWaTu+ePge4tPz+GHAjcBawQX8PGBHzAuOBzwBvAWeT44zuA3aW9E7/wzUze5fzl5m1lI5uaQTmkXQCgKSJkn4CLNDfg0XEdMCpwGvlqmOB/SStDowANhlYuGZm73L+MrOW0ulF4+iIWLB2ISLmI5Njf/0YOAV4slweC9xUfr8KWGcAxzYzq+f8ZWYtpdO7p48F7o6IP5BdMOsA3+/PgSJiG+BZSVdHxN7l6hGSaktgTADm6O2xXV1d0/BMY/oT3pDr+2tw/EPB8Vdr2j7Dg6YN89fgmThxYmXPPRgcf7Uc/9Do6KJR0lkRMQ74NDl+52hJ9/XzcNsB3RGxDrAMcC4wb93tswEv9PbAMWNa84twWrT7a3D81Rpu8Y8fP37Azznc81dXV1db/904/mo5/v6bWv7q2KIxIkYAoyTdGxGPkAO/X+/v8SStUXfsG4EdgKMjYi1JNwLrAzcMKGgzM5y/zKw1deSYxoj4GPAI8NmImAm4g9y39dqI+MwgPtUewEER8WdyLbULB/HYZjYMOX+ZWavq1JbGo4F9JV0eEduSg8c/DnwA+A1w7UAOLmmtuotrDuRYZmY9OH+ZWUvqyJZG4EOSfll+Xxv4naR3JD3OFAZ7m5m1COcvM2tJnVo0vl33+6rAzXWXZ2xyLGZm08L5y8xaUqd2Tz8XEUuTMwIXoKxFFhGrAk9UGZiZWQPOX2bWkjq1aNwHuI7sytlT0isR8T1gX2DTKgMzM2vA+cvMWlJHFo2Sbo+IDwAzS3qhXP0nYEVJ/6guMjOzqXP+MrNW1ZFFI4CkN4A36i7/qcJwzMz6zPnLzFpRp06EMTMzM7NB5KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysIReNZmZmZtaQi0YzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysIReNZmZmZtaQi0YzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysodFVB9AuImI64CxgEWAG4BDgfuBsoBu4D9hZ0jsVhWhm1ivnLzMbDG5p7LuvAP+TtDrwWeBnwLHAfuW6EcAmFcZnZjYlzl9mNmAuGvvuAuCH5fcRwFvAWOCmct1VwDoVxGVm1ojzl5kNmLun+0jSywARMRtwIbAf8GNJ3eUuE4A5entsV1fXNDzTmIGEOWT6/hoc/1Bw/NWats9w62le/ho8EydObOv33fFXy/EPDReN0yAiFgIuAU6S9KuIOKru5tmAF3p73JgxrflFOC3a/TU4/moNt/jHjx8/RJH0X7vlr66urrb+u3H81XL8/Te1/OXu6T6KiPmAa4C9JJ1Vrr4rItYqv68P3FJFbGZmU+P8ZWaDwS2NfbcPMBfww4iojQ3aFTghIqYHushuHzOzVuP8ZWYD5qKxjyTtSibZntZsdixmZtPC+cvMBoO7p83MzMysIReNZmZmZtaQi0YzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysIReNZmZmZtaQi0YzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysIReNZmZmZtaQi0YzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysIReNZmZmZtaQi0YzMzMza2h01QG0u4gYCZwELA28Dmwv6aFqozIza2yw89eIg0YMVmiDqvuA7j7dz/EPnb68Bsc/dPr6N9SIWxoHblNgRkmrAD8Ajqk2HDOzPtsU5y8z6yMXjQO3GvAHAEm3A8tXG46ZWZ85f5lZn43o7h6cJsvhKiLOAC6SdFW5/C/gw5LeAhg/frzfYLNhaOzYsa3bV1U4f5lZb6aUvzymceBeAmaruzyylnChPb44zGzYcv4ysz5z9/TA3QZsABARKwN/qzYcM7M+c/4ysz5zS+PAXQJ8JiL+BIwAtq04HjOzvnL+MrM+85hGMzMzM2vI3dNmZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwhF41mZmZm1tDoqgMwq0pEdAP3AW/XXT1O0vZ199kO+Lykz03lOBsC+wEzk5+pvwO7S/r3kARuZh1jCnkIYFNJjzYphg2BlSTtHxEbA+tI+s4gHft04BRJ4yPiDOA3kq4bjGNb87lotOFubUn/7XllRMwNHAZsDdwwpQdHxILAOcBYSY+V6/YFzgdWHZKIzazT9JqHmmgFYG4ASZcClw7isT8DnFqOvX2D+1qLc9Fo1rstgKeA7wEbTuV+8wDTA7PWXfcT4O7ahYjYG/ga8BbwD2AbSS9GxA+BL5frHwR2kfR0RNwIPAcsAZwMnAscD3wCmA64Hvi+pLcG+iLNrHVFxNeAA4ClgG5gHHC4pHMj4nNkD8f0wKvA9yT9OSJGA0cBG5G55U/ATsA+wDySdinHPpDMX+cBOwCjIuJFMkd9QdJGEfFBMgctAowAzpF0dEQsQuahK4GVyIJzX0m/7RH/ocCCwC8j4qvAkcDPyuv4Y/m3CpnXvgd8i8x744AvS3onIlYtj5sFeAc4UNLlA393rT88ptGGuxsi4u66f/MCSDpF0kHAa1N7sKR7gdOBuyLi/tIV8zngaoDS1bMNsIqkJYFHgF0iYltgfWAFSUuR3VNn1x36eUkfk/RT4DhgvKSxwLJkot99kF6/mVWvZx66BEDSOcCfySLwBOCWUjAuTvaEbCBpWeCbwMURMQtZII4FlgaWBGYDvjilJ5b0F+AU4LeS9u1x8y+BGyR9Avgk8JWI+FK57cPA1ZJWBPYqMfY89r7Ak8BW5XnqLQpcKunjZAF6PHkS/XFgdWDliJgL+DmwtaTlgI2BkyPiQ1N+K20ouaXRhrsBdwtJ2iMiDgPWAtYEjga+HRFrAOsAF0h6vtx3d4CIOB/4uaRXymGOB/aNiOnL5VvqnmIjYMWI+Hq5PNNA4jWzljO1PLQDcA95Aju2XPcZYAHg+oio3e8dYDEy55wnqXbC+0V4t2Wxz0oB+klgXYDSO3I2ebJ7O/Am2dIIcCele3savAlcVn7/J/AnSS+V536yHG8V8nX+ru51dpMtr/+axuezQeCi0WwalIHcy5eLp5Bn0e+T9HPgIuCiiNgHeJxsFXyLTHK1x88JzMl7W/lHkp/HEeXyy3W3jQI2l9RVd4xuzGw4mA+YEZiB7Op9mMwJ10t6twUxIhYi81HPnDMfmV+6mZRfILu1p2Zkj/vXrpuu/P6GpHfK7z2P3RdvSKrPY2/2cp9RQJeklWpXlHHkz07jc9kgcfe02TSQtL2kZcq/U4AJwOER8bG6uy0KTCTPnq8DNouI2cttB5Jdy1cD25azeYDvADdLer2Xp70a2C0iRkTEDOQg9V0G+7WZWWuJiOmAXwP7AwcBvy7X/RFYNyKWKPfbALiXLC6vA7aMiBkiYiQ5JvHLZKE1tuSRWSgtiMVbTCoGAZA0gWxR3Lk8xxzAV4Frp/FlvOfY0+B2YPHSa0NELEOOuVywn8ezAXJLo9kASLohInYBziktgG+RE2g2KV3SV5aC8rbSvfJ34BvAK8BCwB0lsT8EbDWFp/kO2X39NzL5Xkcv44fMrG3dEBE9l9zZB1gbeFrSGQARsSlwqKQ9I+KbwG8iYgSZdzaW9EpEnEpOXBlPtv7dSI6HnIXsWv4H8AQ5VrLWOng9OSbyjfK4mq2AE8sY7OnJMY5nAwtPw2v7HfDbiJjmmdOSno2I/wOOjogZyYaurWsrVVjzjejudi+XmZmZmU2du6fNzMzMrCEXjWZmZmbWkMc0TkFErAQcKWmtiFiMHMdR2+5p57Lo6AHkws9vAd+VdEdlAZuZmZkNIbc09iIi9gTOIGeiARwL7CdpdXLg8CYRsRy5Jt9KwJeAE6uI1czMzKwZXDT27p/AZnWXxwI3ld+vIhdPXQ24RlK3pH8BoyPi/c0N08zMzKw53D3dC0kXlb01a0bULUI6AZgDmB34X919atdPtujo+PHjPT3dbBgaO3bstC523HKcv8yGpynlLxeNffNO3e+zAS8AL5Xfe17/HmPHju3t6iHX1dXFmDFjKnnuweD4q+X4+2/8+PGN79QmnL/6x/FXy/H339Tyl7un++auiFir/L4+uS/wbcB6ETGybJ4+cqB7GJuZmZm1Krc09s0ewOkRMT3QBVwo6e2IuIVcVX8kZaslMzMzs07konEKJD0KrFx+f5CcKd3zPgeSewmbmZmZdTR3T5uZmZlZQy4azczMzKwhF41mZmZm1pDHNJqZmXWCEYO3NOigL/bS7SU/O4FbGs3MzMysIReNZmZmZtaQi0YzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDXnJHTOzDhERKwFHSlorIpYFLgf+UW4+WdJv6+47E/ALYF5gAvA1Sc82O2Yzax8uGs3MOkBE7AlsDbxSrhoLHCvpmCk8ZEfgb5IOjIgvAfsBuw59pGbWrlw0mpl1hn8CmwHnlctjgYiITcjWxu9KmlB3/9WAo8rvVwE/7O2gXV1dQxNtAxMnTqzsuQdDFfEP+oLcg6jZ74X/foaGi0Yzsw4g6aKIWKTuqjuAMySNj4h9gQOA79XdPjvwYvl9AjBHb8cdM6aaUqSrq6uy5x4M7R7/YGv2e9Hu73+V8Y8fP36Kt3kijJlZZ7pEUi37XwIs2+P2l4DZyu+zAS80KS4za1MuGs3MOtPVEbFi+f3TQM/mg9uADcrv6wO3NCswM2tP7p42M+tMOwI/jYg3gaeBbwJExDXARsDJwDkRcSvwBrBlVYGaWXtw0Whm1iEkPQqsXH6/E/hkL/dZt/z6BrB504Izs7bn7mkzMzMza8gtjWZmZgAjRgzaoQZ13mt392Aezazf3NJoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwa8uLefRQR0wHnAIsAbwPfAN4Czga6gfuAnSW9U1GIZmZmZkPGLY19twEwWtKqwI+AQ4Fjgf0krQ6MADapMD4zMzOzIeOWxr57EBgdESOB2YE3gZWBm8rtVwHrApf0fGBXV1ezYpzMxIkTK3vuweD4q+X4zcysnovGvnuZ7Jp+AJgH2AhYQ1JtU9AJwBy9PXDMmEHdhbTPurq6KnvuweD4q+X4+2/8+PGVPK+Z2VBy93Tf7QZcLemjwNLk+Mbp626fDXihgrjMzMzMhpyLxr57Hnix/P4cMB1wV0SsVa5bH7ilgrjMzMzMhpy7p/vuOOCsiLiFbGHcBxgHnB4R0wNdwIUVxmdmZmY2ZFw09pGkl4EterlpzWbHYmZmZtZsLhrNzDpERKwEHClprYhYBvgpua7s68BXJf2nx/3vBF4qFx+RtG0z4zWz9uKi0cysA0TEnsDWwCvlquOBb0u6OyK+BewF7F53/xmBEZLWanasZtaePBHGzKwz/BPYrO7ylyTdXX4fDUzscf+lgZkj4pqI+GNErNyEGM2sjbml0cysA0i6KCIWqbv8FEBErArsAqzR4yGvAj8GzgAWB66KiJD0Vv2dhtPmBK26Kmlf34dWjR+a/3fU7ov7t2r8LhrNzDpURHwR2BfYUNKzPW5+EHiobFDwYET8D1gAeLz+Tt6coHqd8D40+zW0+99Pq25O4O5pM7MOFBFfIVsY15L0cC932Q44ptx3QXJ71KeaF6GZtRu3NJqZdZiIGAWcAPwLuDgiAG6SdEBEnAvsB5wJnB0RtwLdwHY9u6bNbBqMGDFohxr0Nsbu7sb36QMXjWZmHULSo0BtQsvcU7jPV+subjnUMZlZ53D3tJmZmZk15KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysIReNZmZmZtaQi0YzMzMza8hFo5mZmZk15KLRzMzMzBpy0WhmZmZmDbloNDMzM7OGXDSamZmZWUMuGs3MzMysodFVB2BmZikiPgdsBgTwNvAAcIGkayoNzMwMF41mZpWLiADOBp4HLgd+A4wCPgx8JyIOBLaXdH9VMZqZDYuiMSIWBg4GZgIOl3RnxSGZmdXbD9hS0iO93PaziPgI8CNgq+aGZWY2ybAoGoEjgROAbuA0YPlqwzEzm0TS1j2vi4iRwEhJb0n6Jy4YzaxiHTkRJiLOiYh5666aBXgUeBiYsZKgzMwaiIi1I+KecnEM8O+IWKXKmMzMajq1pfF04MKI+D3wE7Jr+gJgerIbqF8iYm9g43Kck4CbyHFI3cB9wM6S3hlI4GY2rB0NbAsg6e8RsQGZa1buy4MjYiXgSElrRcRiTCU/RcRMwC+AeYEJwNckPTuIr8XMOkxHtjRKuhVYC5hIFnazS/qkpBUk/a4/x4yItYBVgU8CawILAccC+0laHRgBbDLg4M1sOJu+fsx1+X2GvjwwIvYEzmBSb0qj/LQj8Ldy+7kM4ITazIaHjiwai5mBs8hEuUVEnB8RCw3geOsBfwMuAS4jZziOJYtSgKuAdQZwfDOzVyPis7ULEfFp4OU+Pvaf5HI9NY3y02rAH6Zyu5nZZDqyezoi9gW+TC5ZcYykb0bECsC5EfFHSQf347DzAAsDGwGLApeSg9S7y+0TgDl6e2BXV1c/nm7gJk6cWNlzDwbHXy3HX4ldgUsi4i2yW7mbyQvBKZJ0UUQsUnfViAb5aXbgxancDgyv/DWmqc/Wd319H1o1fmj+35H/fiY3WO9FRxaNwBaSloyI6YDbgTMk/RVYOyK+3s9j/g94QNIbgCJiItlFXTMb8EJvDxwzppo/pa6ursqeezA4/mo5/v4bP358vx4n6S8R8SHgE8BbeZXe6GcY9eOre8tPL5Xrp3Q74PzVCjrhfWj2a/Dfz+Sm5b2YWv7q1O7pF8r4nn2BydY9k3RmP495K/DZiBgREQuSM7KvL2MdAdYHbunnsc3MasvsfLf8exTYIyJG9fNwdzXIT7cBG0zldjOzyXRqS+PnyTXNXgCOGowDSro8ItYA7iCL7Z3JgvT0iJge6AIuHIznMrNh62jg/cAK5OSVzwILAN/px7H2oJf8FBHXkMNsTgbOiYhbgTeALQccvZl1tI4sGiU9B/x0CI67Zy9XrznYz2Nmw9angeWA8ZJeioh1gbv7+mBJj1KW55H0IL3kJ0nrll/fADYfYLxmNox0ave0mVk7erN+LUVJr5NjG83MKteRLY1mZm3qvojYGRgVEQHszjS0NJqZDSW3NJqZtY5dye7p+ciJKrOSk2LMzCrX0S2NEbEEuYDtmeSi3EsBX5d0Q6WBmZn1QtJLwNcBImIEMFrSm9VGZWaWOr2l8VTgNXKm4DzAdsBhlUZkZjYFEbFaROxXZjyPB16MiC9WHZeZGXR+0TijpF8C6wLnS7oRmK7akMzMpuhockOCTYGngY+RS+eYmVWu04vGGSJiPmBD4Lry+0wVx2RmNiWjJF0HfAb4XVlCp7+Le5uZDapOLxpPBR4DbpV0P/BX4CeVRmRmNmWjImJF8kT3mohYEveOmFmL6OiiUdLJwMySvlquWlbS6VXGZGY2FYcCvwLOLK2MlwH7VRqRmVnR6bOnZwWOiIgx5M4Hh0XEHpJerjg0M7P3kHQxcHHdVYtJeruqeMzM6nV0SyNwAvAiuebZRGB24LRKIzIz6yEifh8Ry/a8vlYwRsTyEXFp8yMzM5uko1saye7o7SJiA0mvRsRWwH1VB2Vm1sOOwOkR8X7gcuAhcgLMh4H1gReAb1UWnZkZnV809uzWGQW809sdzcyqIulJYMOIWAn4AvBlMlc9COwq6S9VxmdmBp1fNN4cEUcCM0XEesAugHeDMbOWVIpDF4hm1pI6fUzjXsDL5LjGQ4F7ge9XGpGZmZlZG+r0lsYfSdobOLjqQMzMOt6IEYN2qDGDdiSgu3swj2Y2bHV6S+NGVQdgZmZm1gk6vaXx4Yi4BriV7KYGQNKx1YVkZjZlEfEFYBngMGATSb+uNiIzs9TpReNz5eeidde5n8LMWlJE/IDcd3oh4DjggIhYTJKH2Fjna9XhDeAhDkVHF42StgWIiIWB6SQ9VHFIZmZT8yVgJeB2Sf+LiJWBP9PPcdkRsQ2wTbk4I9mCOb+kF8rtxwOrARPKfTaR9GI/YzezDtfRRWNELAb8HlgQGBkR/wU2lPRAtZGZmfXqTUmvRwQAkl6IiDf7ezBJZwNnA0TEicBZtYKxGAusJ+m//X0OMxs+On0izM+AoyTNJWkO4BDgpIpjMjObkscjYkOgOyJmiIh9gccGetCIWB74uKTT6q4bCSwOnBYRt0XEdgN9HjPrbB3d0gjMJ+mc2gVJP4+I3asMyMxsKnYBzgOWAl4Bbge2GoTj7gMc1OO6WYCfAseSu2XdEBHjJN1bf6eurq4+P8mgjyMbJH19DY5/6PTlNTj+oTMtn+Op6fSicXREzC3pOYCImAdPhDGzFlW2E/x0RMwMjJI0odFjGomIOYGQ1HM3rFeB4yW9Wu73R2BpchOEd40Z08pfhX3T7q+h3eOH9n8Nwyn+8ePHT/G2Ti8afwrcHhG/LZe/SM5INDNrORExPzlxZe5yGQBJew7gsGsA1/dy/UeB30bEsuRQpdWAc3q5n5kZ0OFjGsv4nW8B05MzB3eUdHK1UZmZTdGlwIrAiB7/BiKAh9+9ELF7RGwsqYvsCr8duAk4V9LfB/hcZtbBOrqlMSI+AGwuaafIU/YjI+Lvkp6uOjYzs15ML2mzwTygpKN7XD62x21Hv+dBZma96OiWRrKrpba8zmPAjcBZlUVjZjZ14yNiyaqDMDPrTUe3NALzSDoBQNJE4CcR8bWBHDAi5gXGk7s2vEWugdYN3AfsLOmdAUVsZsPZbcDdEfEU8O76jJI+XF1IZmap01saR0fEgrULETEfAxgfFBHTAacCr5WrjgX2k7R6Oe4mA4jVzOxAYEtgU2Dzun9mZpXr9JbGY8mz9j+QrYHrAN8fwPF+DJwC7F0ujyUHkANcBawLXDKA45vZ8PacpPOrDsLMrDcdXTRKOisixgGfJruSj5Z0X3+OVfZwfVbS1RFRKxpHSKqt+zgBmKO3xw7WoprTauLEiZU992Bw/NVy/JW4IiJ+DFwEvF67UtKd1YVkZpY6tmiMiBHk4rj3RsQj5BjE1xs8bGq2I7f2WgdYBjgXmLfu9tmAF3p7YFWLgnZ1dbX1gqSOv1qOv/+mtjhuA1uWn/9Xd1034DGNZla5jiwaI+JjwJXALhFxPXAHmXhnjohvSLp2Wo8paY26498I7AAcHRFrSboRWB/oueOCmVmfSVq06hjMzKakI4tGct2xfSVdHhHbkpNUPg58APgNMM1F4xTsAZweEdMDXcCFg3RcMxtGImJPSUdFxAm93S7pO82Oycysp04tGj8k6Zfl97WB35WlcB6PiF7HHU4LSWvVXVxzoMczs2HvxfLzf5VGYWY2FZ1aNL5d9/uqQP1Z+oxNjsXMrJFvAadKOqjqQMzMpqRTi8bnImJpcnLKApRlcSJiVeCJKgMzM+vFQPeXNjMbcp1aNO4DXEcugbOnpFci4nvAvuSiuWZmrWTGiFiWKRSPXnLHzFpBRxaNkm6PiA8AM0t6oVz9J2BFSf+oLjIzs159mFybsbei0UvumFlL6MiiEUDSG8AbdZf/VGE4ZmZTc7+kZasOwsxsajp972kzMzMzGwQuGs3Mqndz1QGYmTXiotHMrGKSdq06BjOzRlw0mpmZmVlDLhrNzMzMrKGOnT1tZmYQEXcCL5WLj0jatu62b5C70bwFHCLp8gpCNLM24aLRzKxDRcSMwAhJa/Vy2/zkFqvLk9ur3hoR10p6vblRmlm7cNFoZta5lgZmjohryHy/j6Tby20rAreVIvH1iHgIWAr4a/0Burq6+vxkYwYl5MHX19fg+IdOX16D4x860/I5nhoXjWZmnetV4MfAGcDiwFUREZLeAmYHXqy77wRy69XJjBnTyl+FfdPur6Hd44f2fw3DKf7x48dP8TYXjWZmnetB4CFJ3cCDEfE/YAHgcXKc42x1950NeKHpEZpZ23DRaGbWubYDPgHsFBELkq2LT5Xb7gAOLeMeZyB71+6rJEozawtecsfMrHOdCcwZEbcCvyWLyO9ExMaSngZOAG4B/gjsK2lidaGaWatzS6OZWYeS9AawZY+r/1R3++nA6U0NyszallsazczMzKwhF41mZmZm1pCLRjMzMzNryEWjmZmZmTXkotHMzMzMGnLRaGZmZmYNuWg0MzMzs4ZcNJqZmZlZQy4azczMzKwh7wjTRxExHXAWsAi5T+shwP3A2UA3uWfrzpLeqShEMzMzsyHjlsa++wrwP0mrA58FfgYcC+xXrhsBbFJhfGZmZmZDxkVj310A/LD8PgJ4CxgL3FSuuwpYp4K4zMzMzIacu6f7SNLLABExG3AhsB/wY0nd5S4TgDl6e2xXV1dTYuxp4sSJlT33YHD81XL8ZmZWz0XjNIiIhYBLgJMk/Soijqq7eTbghd4eN2bMmCZE915dXV2VPfdgcPzVcvz9N378+Eqe18xsKLl7uo8iYj7gGmAvSWeVq++KiLXK7+sDt1QRm5mZmdlQc0tj3+0DzAX8MCJqYxt3BU6IiOmBLrLb2szMzKzjuGjsI0m7kkViT2s2OxYzMzOzZnP3tJmZmZk15JZGM7MO1NuGBJIurbt9N2B74Nly1bckqdlxmln7cNFoZtaZahsSbB0RcwN3A5fW3T4W+KokT/U2sz5x0Whm1pkuYNLkvNqGBPXGAntHxPzAFZIOb2ZwZtZ+XDSamXWgKWxIUO83wInAS8AlEbGRpMt7HmdaFkhv1VU9+/oaHP/Q6ctrcPxDZ7A2OnDRaGbWoXpuSFB3/QjgJ5JeLJevAJYF3lM0tvMC7zXt/hraPX5o/9cwnOKf2uYELhrNzDpQ3YYEu0i6vsfNswP3RcQY4BXgU+SkGTOzKXLRaGbWmXrbkOB0YBZJp0XEPsANwOvA9ZKurChOM2sTLhrNzDrQVDYkqN1+HnBe8yIys3bnxb3NzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwactFoZmZmZg25aDQzMzOzhlw0mpmZmVlDo6sOwHr41YhBO9QYgLsG6WBbdvftfo7/XY6/znCJ38ysg7ml0czMzMwactFoZmZmZg25e3qAImIkcBKwNPA6sL2kh6qNysyscX6KiG8A3wLeAg6RdHklgZpZW3BL48BtCswoaRXgB8Ax1YZjZvauTZlCfoqI+YHvAJ8E1gMOj4gZqgjSzNqDi8aBWw34A4Ck24Hlqw3HzOxdU8tPKwK3SXpd0ovAQ8BSzQ/RzNqFu6cHbnbgxbrLb0fEaElv1a4YP358348W4wYvssHU19fg+IeG46/WtHyGW8vU8lPP2yYAc/Q8wDTlr3Ft/v/n+IdOX16D4x86g5TDXDQO3EvAbHWXR9YXjGPHjh28NUTMzKbN1PJTz9tmA16of7Dzl5nVc/f0wN0GbAAQESsDf6s2HDOzd00tP90BrB4RM0bEHOTSlvc1P0QzaxduaRy4S4DPRMSfgBHAthXHY2ZW8578FBG7Aw9JujQiTgBuIRsQ9pU0scJYzazFjeju9k4HZtaeImKEJCcxM2s77Zi/3D3d5so6bG0pIkZExKja71XHM6064L1vu/e8XkSMbLeEa5PrgM+Q81dF2j2HtWv+cktjmyp/cO9UHUd/RcQoSW+X3z8A/FfS6+1w5tUzxohYA3hWUleFYfVZ/d9ORCwMLA7cUPv/aCcRMRrYGXhU0u/b4e/HnL+q1O75Czonh7Vj/nLR2ObK4PavAwdL+lfV8UyLcpa+PbAvcLukLdrpyyQi/g/YEvgwcApwtqTXq42qbyJiLuCH5Fp9/wF+KOn+aqOaul6+7LYHPkUuEzMS2FjSm1XFZ9PO+as67Zy/oP1yWKfkr7Zunh5u6pviI2LuiDgL+Db5h/eDygLrg4gYWYu/dCssAFwFLAhsB6wTEctIeqcVuxxq3VB1lz8J7ER+YZwLfAwYW0FoDfXshoqImYEjgafJL71XgDUiYtYKwmuo/L2M7JFwFwW+BBwK7AI8AexWbnNea0HOX9Vp5/wF7Z3DOi1/tXRww119kgLo0Wy9NjCrpK2ANYBlI2KF5kfZWFlM+B1J3RHxwfI6uoEngWMlXQccDpwB73mdlSrdB0h6OyJmjYiPl5sWIbukHgBOBWYF1ixnvy2jRzfOchExC/A2sBzwyxL/JcC6wCeqi/S9al90krrLl/FCEbFpRMwHfAB4RNLfJT0CXAZsGBELtuoX93Dj/FW9ds9f0L45rFPzl4vGFlZLPrWfEbFlRBwYEe8DJgJPRcT7JD0B3AnsV120k4uI2SJibQBJb0XEXBFxPHBlRHyHPLN9mUnbll0KfKJ0mVR+thURX46I2WoLIUfEJuTSJEdExIHAOGBkRCwl6VXgLXKLtiWqihnePav9QO19LAlogYg4BfgFuffwisCvge+Xhz1Mtpis1ipn6uVvZ526y98EfgNsA1wM/AX4ZESsXJLzUuSSMjtBa31xD1fOX9Vp1/wFnZHDOjl/uWhsURHx3Yj4TPl9mYjYB1ifTFY7AvOTOzpsGxFjyDPFT0bEuuUxlZ2plIS5OPBmubwGcANwK/AVYD3gHeBZYPOIOA04iDzj3RcyUTQ/8smS/VvAWxExQ0T8BPg8sDmwJzAfmWCvAI6OiJuA54AZydfd9Pe/R2vO28Az5fpPAT8D7geWBu4CtiK/5JaOiHOBnwBXA2uRr7syde//M8C1ETFPRGwG7A58TtKm5BigNYE9gC2Av5J/a2cAb1b9hW3OX85f064TcthwyF8tHdxwFBHTlV9PB24u3QvfA1aXtDX5oZ8VeJUcUzMfcCywP3kGtixUc6ZS+2MvXTl3Ag9HxC7kh3wp4B5J9wJ/JLunLgSOB54CvkEmsT9U8aGJiNlqsZefFwA/IgeJ308uhP8aeUZ7I/kFeBE5FusnkvYmE+9krSvNUv98kp4G/hO5cPNd5eqXyiDrG8mkuiLwaeA2SWuTX4ivkV8cTVdaEhas+7J9CNiaHK/0BPAPYMNy227AeZKuIv+P9iRbIDYFXmmXiQidyPnL+au/2jmHDaf85aKxRUTElgB1s6dmAvYhE+oPgMUjYk5Jj5If/E+SZzOnlH+rkWeSNzY1cPKLonTZ7F4ufzwi1icT1meB95Fn4MeUh5xBnukuBLwOCDivPP7iZn9oIuJDwD0RMXu5vHtELEfuw3tYie3tEvOb5PZrT5T4XwTWjYhx5JfKec2MvcR7ckQcVn4fExFHAo8BmwEfAi4AloyIhcjk9SfgA+V9niEifke+9/tIeqGC+D8A7E1JqhHxI2ATYAJ5Vj4PWYSsHRFzSboWuC4iPkH+bX2UHNN0oaQfNzt+c/7C+WtA2jmHDbf85aKxBUTEDMB2EfHdcvlX5FnUWeSZ9wjyrPaI8pDLgNvJD/7zZJP96sAmkv7S1ODTO+QHfGx5LV8C5gT+TJ59f0/S4cCYiPi8pBeBb0v6g6R/k18U50haT9K4ZgUdOSNyVFnq48/kBx8ggL9LOhRYlPxC+zXwRSDKwOV9JN0v6WHgBGDtZn/g61p1TgW+EBEzkd1/z5SlMw4HjibH0MxH7kE8ArhI0lHlsWeR28etL+nBJsdfGyj+BHA3sHBELAWMIluhfk92YY4huwInADuUx2wt6W+S/gmcDawo6VfNjN+S85fz1wBeQ9vmsOGav7xOY4Vi8gViVyM/INuT4zV+LOmliNgVWIb8Y3sWWEGSehxndG3AcxNj77nm1AJk7PMD7yfXXftbOQs7BDif7CKJ+uQUFa1rFpPPyJuV/KDfRX6xfQ44RtKNEfFp4CRyVt5OZLfC/8rj3v3/a3Ls7773ETGdpDcj4ihgYbIraj5JO5XbbybPch8FZpH0h7rjVBJ/ee761/BR4A1y6ZJ3yO6bL5NfxnOR3Td3k2N/nqp7/9tmTbxO5Pzl/DWA+Ns6hw3n/OWisWIRMSewCvA3cqHVb5HjIa4kz75mJM/M9wGelvSPusdWvnp8RGxKxn0TcB/wXXK8zMnAdOSMsbnJZHt0NVH2rnxRHEZ20+zLpMHJN5LdCncDPwf2Ag6T9FAlgU5B5OKwW5Ez8U4j/05eJZPrBOA24N/keLKWmZlaExGLkRMIFiO/2GYhB7IH2R21Kfn+vwNcLunx8rjK/+4tOX9Vp93zF7R3Dhuu+cvd001UGyAdk9Yv24IcX7IxOaPwQvLD/lfyjOt3wMHkgNo/1ydcaP5g5Zi0z2rtdXydPHs9mRxn8gD5Ib+GPLt6mvwSuac+4UY1A8V7Lg47mky0fyd3pPhP6e74FzkTb2NyvNIqkrarJdyoaFZhL/GvTM6I/BZwWelm+gm59trmwIlkV87trZBso8fiwsV2wD8krUR2n50D3EN+eZxA7vZwv6STawkXWns5ik7m/PXucZy/plG75zDnr0nc0tgE5YM6or4pOnJF+zOBIyXdXZLAnOSHaA1JW0cuAjqTcvB4ZWcoPbqhpgfmkPRsRHyb7C44oty2HfC/8houknRZj+NU3hwfEcsDj5ADwO8CPlVey4LAquS4md0kLdbjca0Q+7xkd8fDwNeAVSVtV5LxJuS4rIvJ8Uq/6vHYyuMvcWxKznD8C3AAcImkm8tt3yZn1s4PnC7pvrrHtfXZeTtz/nr3OJV/hto5f5U42jqHOX/lGA0bIpGLq04ofyzdpTl7F+BacsbdU+RSDneT/xcXANsCK0TE/OTZY3ftD66CM/NNyE3gXyqXv0WuK/VIRDxMJq63I2I+Sf8hB73/GvgpeQZcO85I5TIWTfvAR84oXAP4lXJx2I+RZ35zkTM7DwN+RY4B+jrwEeBLkr4QEdfVx13e/2bPiNyKbJ15uFz+LrlG3L3kIrbbAjtExIck/Ssivkgu/7GycrmK2nGa/t6X550H+Ca5HMZN5f0/hWwJmZXs0vkgOaPwX+T7vw7ZVThaOdngXZ2ScNuJ89e7x3H+6t9raNsc5vw1Ze6eHiIRsQTQVXd5e3Itpv+QA8PPJme8bRi5PML3yHFBT0r6pqSna39oFSTbWhfG/5HdS0QucLsBOVj8RHIZgRXIpRyOi4hLybPceySNlzQxJi3W2swPe22NrpnJ97S2rdS25IzCzwIHkuvCnULOiPw5cBy5ByuSVJ9om/n+R84ehNyPd4dy3RLk0h+fk7Qd+Z5/huwGOTEibgP+S3aFPF0e0/T3vjzv+0vCfZMsJNYsN60FXC/pK+SX3xzkendvkl98uwGnSnpF0otVdaNZcv5y/uqvds5hzl+NuXt6kEXEhsA4Sf+JiAuAhyXtFRFHkzPX7i33u5xcXPUVMpm9SC4b8HK5velN8RHxQXJNtefIBNRNDuTdnvyALyHp26Ur4Uvk+lJHARuR41D+2Mx4e4pciHdL4HpynNLngSXJD/n+wG8l3VbuewM5iPmv5Fni/WryDM56kXvCHk7OML0N+C2TJhDMQ65r9yNJr0VE7fdPR87unFPS36dw6KaIXDpjX3K3jJfIv6MR5LZZV5CvYTVJO5b7nwZcLemiiFhIdWN+rDrOX9Vp5/xVYmrbHOb81XduaRwkEbF6RFxEDqD+UUm+uwBbR8Qc5PZMa9U95AHyrPZ8YGdJu0p6Oep2JWhi7CMiYl8y0f4TmJ08s/03ud7U7uSg9tUjYt4S27pk99Orks6vJdzofcDwUMe/bkTcSK5Jtjv5od+NXIR3cfLL4XXgsxGxRESsTp7pPlLODO9V7i9bRewzlQR0BPke/4xcrmEWcpusL5NfgkuS7/8C5BfetZBrhNWSbVQwQL887xbkWfdoSauQM2f3Ve6qcT/Z4vAG2cW5Q/lsLEEWGpB/Z5X87Vhy/nL+GkD8bZ3DnL+mjYvGAYqIUZErwJ8KnCJpTeBBYLEyTuY3wI+BXYHdI+JzEXEysBzwTOlGeKUcq5KxJ+SZ4GeBXSQdRyarZcitmk4nl3RYnOyeOjUi/kIuyvuexUjV5DWzSlfIhsBrkvaQdDsZ90vKxWFPJlsaziFbRQ4ll6U4StJjVcZeLE12gRwu6SwyAb1EfvGdSI6dmZ5cJ24tcobqC0zaneJdFbTs1LpglinPX5vh+C9gtsgdD/5Bdju9j+xOW5JcYmM3SdeVx9W6MStZM244c/6anPNXv7RlDnP+6h93T/dDSY7dEbGzpBMj4iDyQ1+bhfd7YAbgZ5Iuj4j7yQHYo8gE8YYq3i6ofGBGlTPUlcnlA44kF7Y9kBzk+ydyCYEHgP0lrVnGe7xfUlftOM0eM1Oet35G5LLksg1XkmfluwA3kMtOfJgcN3OLpJ9F7g/6ZLPjrVfe+5GS3o5c5+6r5Hiq68lxTPOSM/RuBK4mZ+ltLenp0lLyTDlOZbMJe7z/I8g17g4hE/C65LIly5NfEC+Te8TuQ+708Fbd4zpqkHg7cP5y/hqods9hzl/956KxH2LSrLQucl2pK8juhOnJD/0j5IdlV/JsaiayuXuJHsepajX7+t0EZpb0akR8jzxbn5HcTeCSiNiWXMZhT7Lr4ThJD5THvWcZjipEzuj8Jzng+lCyxeRASa9HDm7/NWWLMEk/rXtcK+wksBA5/mcR8ox8fuBrksZFxMLAFZKWjNyH9aRay0Lpwmn6bNTeRMS6kq6JnKl6NvneH19uO5CcYXsJ8DFJN9Y9rvLlM4Yr5y/nrwHG3DE5zPlr2nnJnX6o+2PZjxxIfRY5IPnbwIkq60tFxKJkYjovIsaX62pn+SOq+tDXJdz9gWUi4nTybHYsOdj6d+WuSwPPSnqePBOuP0Y3OdC8KXq2CETEWuSXwYvkQPE/kPvd/rEk3DXIL7t/S/oT2erwrgq6od5ddiRyrbgfkWNljiPPas8j17cbV8bGfAu4tcS6V4/Yq2pdrP+yWJ888743chuw35e/8X+V2zcG1gbOLa0Kz9Qfa7gm3Fbg/OX81R/tnsOcvwaHWxr7qEdz9qzkmetM5GbwNwA7kzPHriOXqtiJ/KP7hqS/lcdV1RUy2Vl1+cAfRC7rcCC5NMVZ5BpaY8gPyNrkVk6HS3qq4vgnO6srXUy/IpPVk2TryG3kmnHfJRPxSHK256V1j6t8gdWIWJwcD/YFcmzMdmTCnZXsAlyOXMbh7+TWX7XZqJXGXlcshCRFxPXk1ll3AZuREw5eJ5dhuZkcOP4TSX+pKmabxPnL+WuwtGMOc/4aPC4ap1Hk5uTvJ1es37CM57iDHAexOHn2+AFyMPZxVX/Ie5xdfYzcCP6GyCUz/kwOEp+bXF5gV+BocgHZwyTd2vMYTY69vhtqFDkAXOSX2q7kl8MawPgS/6/Js9tHVMZnlcdW9mXXo3XhU+SYsJfJ/UgXJ+N+nHxNz5NLPOwn6f7ymJbqBomIP5CLOI8mv+w+Sv6tH0t+6e0BPCbpnHL/YTnup1U5fzU19rbOX709d7vnMOevgXPROAU9x1xERG1szIPk2fjngYMlPRkRPwZWkrR6RGwJ3CTpifK4qsb91LcsjCLPwr9Hjle6T9I+EbEO8IqkP0fELeQesS9Jeq7uOFWst9bzzHxJcgmNeciB4fuR3WlrkP8XWwJrS9q2x+tuhUHWCwAzSHq0/G18UNJR5QtwZvJs/HyyReRPdceoLFn18v6vDcxeunC2AV6VdH5EfIbszlmUbG3YRtKrUzqONY/z17vHcf7qh3bOYc5fQ8tFYy96fGBmkzQhIk4h91bdklxM9VvkPqW/JbsUlgY2kjShPK5VBvruQs4Ie1vStyL3iL2b3PdzUXIJhOWAy4Ej6s+Mq/iyqBe5i8DB5NINt0g6JCJ2JNfIOpvsgvo0edZ7qCYtPFx5sqp1qZHdfp8kZxD+llybbF1gfXIM1mfIbqjj647TKoPclyRbQzYgC44vA5uSCyGfWMb9fJtsZThY0iM9j2HN5/zl/DWAmNs6hzl/DT0XjUVEzECeQf2zXJ6N7OpYmBzge1O5fAK5Wfly5DIDSwJnqsfm6s3Wy7ifD5JLCLxIftiPI9eWujIivgN8XtLaEbEZcK+kh6qKHd6bZCJiH2Alco24j5L7qn4mImYGfkkuhXA1sJCku8pjKu+GKpe/Su5b+hjZDTUX+SVxCdn1dwA5fmYh4HlJ/yuPq7Ibqv7LYglykPgywMXkWnGrkH/zHyHHwm2hXO5kYdXNiPSZeTWcv5y/BqLdc5jzV/O4aOTdgdU/IMdonEYu2/Az8g/uTnKQ8oLkIqtzAKeVbp3pyLPx2rpNrXB2tSA5ruQj5EDfMyWdU5LAxpK+UO73G2BX5QK+rdSysDY5EHk98gtuceUA5suAiyX9vHxRjJB0Ud3jquqKrn/vZyDPyoM8s/0lcLek/cpZ73bl37K1s9pa7LTGez89ub7abmS32T/IrrS7Jf2k/G0dUO6zOdn6U3vtTrgVcf5qqc9QW+Wv8twdkcOcv5pj2BeNETG6nHGMJQfw/o4cmLwVmXBXI8ej3El245wBHKJcVqA2I6uqgqX+7Ko2o3BjcibY78kvio2AHcnZYJcBl0g6pdmx9tSzCyZynaxdyZaFEeSH+kLgRknHla6EA4C1al1oVerx3s9BtuJcACxAdjfNSA4YXwv4P+VOD0TEseQ+sWdUEXdNLy0L3yDHWJ1Pth48TXbrjCZfy2+Va9/NTnZPfUplJxCrjvNXNdo9f0F75zDnr+oM+20ES8L9CPB1cnzGBuTswtvJlfl/QSbdLckk9h1J48pju8vPqlq4ah/4+cklMp4jvyTmIbtGBDxBbq/1BvmlcV7dMaraq3i0Jq33tWjkDM6NyPElO5J7lm5PJuG9ImIu5dITX65PuLXE3aSYJ3uuuvd+PfLLbn5J15Lbri0HzCRpK3Kg9bYlKUMuoHx/s+Kekrr4l4mIILvRzpF0Gdlttoqk7cmWhrmBxUvL1ALkFmFzVxO51XP+ar52zF+9PV875zDnr+oMu5bGXsaezEKO1biUnFm4Ddm98B9y/aZ3yNXuL5N0epPDnUzkLLYXVWZ4RcSKZCL9Lbn0wV3koOSFyW6oc8gPyArkzLY3y+OaPu6kjLFaBhgn6bUytmdXYGXyAz93uX1Bcn21LwCbkONqrpV0SzPjnZLaGW7k4rBfIAdRQ35RHCnpvxFxGLnfKuRuCQdJeiYiVgC+RC4H8r8mxz23Jp9VOif5/n+OHIx/MrkQ8q4RMR/5pXANeda+d+39j4jVgLlVt36cNY/zl/PXQLVjDnP+ah3DpmjsmWjKH88D5Obwd0j6aLl+W3K9phvID9GK5NZCLzY/6ndj/QC5a8CCZHP7jmQXyJnAA5J2Lgl5JzLRPkGO6biO3LrpP5UEXkTEDuSir8+QMzb3J78cTgKWlvR4RHyInBF5BNm1sytwvKofoD8bOTbpabJb75VyfRdwlaTdSyLdHLhZuVfvh8lWh0sk3Vx3rKq6AZcl17T7AfBrSf+JXK5kV+BySaeW1qrTgR9IuiNyR4q5NWl3DY/7qZDzV3XaOX9B++cw56/W0vHd072MPRkTEReQZ4enkV05l0XEMeUhz5NdIwC/kbSbpBcr7ArZiBzQLkkbk4vyPkZ2EZxP7vWJcteDdcltwW4gP1wHaPKB4s2OfVREHE+ejW8l6UuSdibXzPoN2bLw6XL3JcgN4v9CJuRNNWk7s6Z24/QwHdnttzDwg4j4bLn+MHIZCiT9lUzIn4qIxSQ9XP5uboZJ732FCau2cPA8wHkRMS9wPfBHYIGI+JBy1u0fyXFXSLq5lnAj18kb1ltnVcX5y/lrELR7DnP+aiEdXTSWrpz6s/MNyGUcrpO0MtmNsy+5fdaaJRl/F/ihpEvVGjOrxpJdAceVy4tFxNXkmJku4B8RsV257WvkB2cTST+Dyj/sHwQWlbSNpKciYvGIOAe4MSL2Jc8U9yjxXUOeSX5D0rbl/iMr6ooaWX6OKF0iV5FfBtcBx0TE6pLOA/4TufwHZFfIDcDDPY9TUeti/Wf7FWBFSfuRr+U0co213wEzAGuW+x1L/p9MRhWvdzdcOX85f/VXu+cw56/W1fHd0+Usb3vgPvJMah/gHkk/i4j3kd0hpytXi1+hnHG9+9gKCpb5yF0NXovco/TnwPalSf6z5IDr8eQYoKfIQco7koOsn687TtOXQIhcrmEscKekiZFrrR0GfFfScxGxOTn25zfkzg4fJscz3SbpRz2OVXlXQunWeZXc3/YyshXnOuCf5DImN5IDrReW9Ho1UU4uJl/Y+X3kshIvRMRJwB/IBYWXJxccPhH4BLmjw69rXZhVfdHZezl/OX8NRLvlMOev1tdRLY0R8b6IWLTu8jrkmdOK5NnJrMCtwDwRsZRyIO8vyK6FWhN9fXN2MxPWPKUr5EzgjIj4JvkBf50cawLwV0m7SPo52S31OKW1oUfCHSHpnSbHvy25lMFXgV9ExB5kd8Io8gOOpAsknUomsWuAbnJ7sGN6Hq+ZCTciZq39n9dddwiwZUlg05MJdx9yosHG5d/8ZDdUKyTbFeE9Z9XHAEtHxFzkxIK9gIckrU62kHyUXMPsFNWNeXPCrYbz17vHcv6aRu2ew5y/2sfoqgMYDHVnJwsDW0fEr0oCXQvYS9JfIvcm/Q455uF7wDoR8UAZmzKZZjdnR0SQ66ddqZz9tTa5OOyZZPfTJRFxniatur8reab+j5Jsx/eIv9mtC98hl8r4mqRHIlfkP4Hc7usN4IsRcZukWyMH8P+QnN32GjBBOZOvigHWM5AL1S4AHBkRr5MzTseXuF8odz2fTFA7SXqtPHYjSY+/56BNVlo/PkSebRMRSwO7k4P0Pwb8WdIbEfEM8B9JJ5aH3kCuIVdb2Nln5xVx/nL+GkDsbZ3DnL/aT1t3T5fm633ITdP/Sq7hdSc5FmUpcsmAdckuhfOBX5Fjft4E/qmyfVM5VpUr8n8N+Iik/Xtcfz+5vMGG5LIT/yCXdXiY3Gf1sSaHWh/bHOTstEci4kJyi6/HI2LG0rWzDbl10+HkF8hXyDFMHwJOVK6nVZly9noxuSfs/pGzBecCPk92oc1NDn6/JSKWI5dt2DwiplNZ+qMcp6oxSx8iu2l+SA5m7yaXz/grucfqosCqwM6Sro6IL5ED+vdV3aK2UeE+t8Od85fz10C0cw5z/mpfbds9Xc5QfkmuR3Y9eUY1J9mN81dyP8wbyNd4Lrk0xdPAG5IurE+4UPnMqvnIMSbvdi0V55HJ+HByod4byEHuO0p6LKqbETkHuezExuVD+w6li4z8QoMca/VxYObSpbMRuQTFZ2sJt4r4I+IjEXE72bJwHfBaRGxBdt3MqRxs/XnyC+6LEXE5Oc5p5vKF8mb98SoqGLcj1+a7ndwH9kDgG+Ss2cUkHUBOmHgQOCQiziMT8bnqsQuCyiLFzYvewPnL+av/2j2HOX+1t7YtGskP+RmSjpJ0ITkweTpJPyWXQvhO5CDgJ8jk/BXgc6rb77MKU0g085BN8fX3+xLwf+QSCMtIelLSHyTdUTtORd0ho8r4kRvI7rTPAuOAj0bulPB2RHyUXGwV8v9hAUkvSqp1QVS5BMLc5BIUV5JjxfYgv7APBLaPXCz50XK/Q4GLgNslbShpYgXxvismLd2xELnd12LkwrtfkHQC2SW1dmmB+Dg5oH8F4Ehgc0l3VhC29c75y/mrv9oyhzl/dYa27J4uyXQP4FPkgOTPkc3y95Nn7nuRf5Qjye21umtdIdECG6vX1MYyRc44vJ5cTHUcOXj8YnInh1PI2ZKttKPAWHJpg8XJ9/llMhG8IumIiFgXOIvsUvsdOV7luRZ5z6dn0kzU88iB4M9JOjFyyZLLgYeAHYBta2NmymMn242jKuVM/Xgy1l3J1oa9gDuAPYF/k69vKUk/rHtcS8zoHO6cv6rVzvkL2j+HOX+1t7YoGnv7Y4mcZbgyeTb1sqRzImJh8sO+IbAs8IFyFj/F4zRD/ZiR8oVxBLCnpFciYkNy54Y5gaXJWYVzAI+RW2c90ux46/VMMuUL4lxyEd5ZyE3ibye/8E4md6kI4CeqW42/CrX/79r7HxFLkrtSfA1YXNKKEbE8uTfvGeT7vm+5/XU1eau/3tT/zUbErOS2ZP8jC44HJB0eERsDh0r6RER8kWxB+YWkJysL3N7l/FWdds5f0P45zPmr87RF0Vivxx/haGAWTVqf6dtASNqlyhhresT6QXItrNsiF4i9jVyj7AByhuTNkRuqLwLMIWlc7Ri0QMtC5DZTXeT4pd9LWrJcvyc5c+9Q5Z6l85J7gNa+ZJp+Ztvbc0bOMrwQuEDSuZF7q46QtHdEfB9YRLmd2aK1L7oKv6RHk+uTvfsekuOuPgh8H7iHXCvuSuB7kv4aEePItcqO6XEsn523EOevarRT/prS87ZLDnP+6mwtWzQ2OLtdjxwP8TCwKblu1jLkul8HS/pHJUEX0ctstIg4khyXtBd5NvtJcl/Pf03lMVV84Jcnz/SulvRyRHyGHDQ+nhxM/UXgJ+RyBydFxG5ky8iByiUpamfEVRSLtdmoM5GJ6XTgYHItrwsiYtMS63HkchS/JAdgvwjMq0nr3FW2fENEfBX4FrnP7cXAFeQMw7Ml3RO5p+o3ye7NLYA1lDMi5yW712r7ynoJigo5fzl/9TP+ts5hzl+dr+WKxj6e3e5Pnt3eUprrVwIeV27lVOUHZrIkGRELkV0FJwETyGQwhhzcfpukEyIHB4+sIkHVq0uWG5JdGwdJ+ntE/Ay4UNKNEfEAOQboQrIr5D/A22TCvWuKB2+CyNmoXye3IXuYPAO/IHLpjB9IWqLc7xfl9iPJZPu0elnrrtkiYkbgaHJbrGMok9QkdUXEKcC95Pglyv2eBQ4iB7ofQibcytaLs+T8VY12z1/Q3jnM+Wv4aJmisc3PbmdU3ay0yNXt1yeT0+fIs8aZyRl7/yU/KEF2Rb3WzFgbKV0LvwduIbsQdiG3y5oR+Cm53tpxZFIIldmQVYuIHwJdKmPAItcle1rSkxFxCTBO0qER8QPg0+SgfVV9Nhu5/Mes5ELB50j6XLl+CbJlZBw5Tmx7cszVv4H9gBHA9yVNqCJum5zzV2to1/wF7ZnDnL+Gn8qLxsE6u63i7Lx0JWwOfLo0sY8ku6HGAn8mk+1r5IflUnKZhI3ID8wikm6quCu053u/GTnm5F4yuX6XXJLi42TryPzkrhS7Snqo7nGVzsiLqc9GfYL8kvsT+cX9IrmwcP3CyFW17NTWi/sX8DPyi24iOYlgXfJLelVyx4flgeXKv0Mk/aLuOD47r4jzl/PXYGjHHOb8NTxVVjS2+9ltRKxJbpi+L7ATcJKk30fE+ZK2KPdZkuxC+CqZiHcCTpN0ZUVhU+J6zyr6kYPYTwF+Xsb27EWu0n8HObh9I3JpiiMldTU96Dq9JZmY+mzU9cmZnfNIuqrpAfciJi1XshHwGXJR5yfJv/GFgeuVA/P3Ad6UdHR5jS9Keq4cw8m2Is5f1Wn3/AXtn8Ocv4avpu89XX92C/R2drsdk5/drkd+4Lcnz25fq/jstvbcC5NreN1BJqO9yG6RpSLik5JuA14iP0ivkGtR3SjpjSrirqdJA/QXJReEvZGMfQKwNnAr2ZUzDviXpLMj4hqVJRCq/rD3aF0YKekd5XZgj1M3GxXYmOzueYPcZWOyxzQ36smVhDuWHAy+GFlYnEZuI/dWSbgrkOPdflEeU5sROUrS21W/huHI+cv5azC0ew5z/hq+mtrS2OZnt7PVj78oLQt/ILc6+iw5y+0q4HlyGYqdyIVLJ5KzyV5XDtSufJB75BIIW5Bnr4+Qg5dnJAeJH0N2qS1Jbnx/kHI7s/ccp5mijWejwnu7wGLy9eJmIrtzrifH/JxObgG2ELnP7S+bH7H15Pzl/DUQ7ZzDnL+spiktje1+dhsRK5NnS4uVbpBdyOR6HjBK0gsRcQz5AVoHmJ7cK/NqSWfVH6uqFoa6hDsa+Aj5RXC5pB9HxDLkLLzpgL3JjeMBNpb0Um/HaZa6s/DumHw26qzAVhHRczbq4+TZ7VWqeDZqvVrCjUnrxc1KLt58fbn+Y+ResieTrVMfA26u+5Kp/DUMV85fkzh/TbtOyGHOX1YzpC2NHXB2O6ruw3ILuUzD1cD+knYq118NnCrp4og4HXhV0q5TOk4TY58ReKMu2X6KfH8fJt/3zcmz85+RX3TbAmsCW5FLPbxVHld5y2LddW0xG7U8b3/XizugFB+141Q+SH+4cv5673GaGHtb56/y3G2bw5y/bEqGrGisnd1K6nl2uyx5drtLuU/t7Pbz5JnKXT3PbqsWEUFuDH8wOStyYeAYSQ9HxP8BO5MfohHka3uqPK6qL4v3kYOTf1u+tJYlx/58B9ga+ATwa3LA/mVka8lCwFyS7qk7ThXJqm1no9Y/b7TxenHm/FUe5/zVD+2cw5y/rJFBLxrb+ey25/NGxJzkh30VSauVD85O5Gv6CLkO2EXA94CTJT1eHldpwVJ+v4Dco/TH5BIN3yqx7kCONzmOXN4hyP+bF3s9aJNEm89G7SnaeL244cz5y/mrvzophzl/2ZSMHOwD1iWsIGdTHUQOCu+OiA+Xu50G7BIR7yeT2hG1x8ek5RSalnAjYrqSYGuzwqaPiOnJpPVB8kuDEut/y88dyK6F5SXtU0u45RjNPjusrb5fS7jLkoOSP0qezT5DDrL+gqRPAbeT3WunAPtVmXAj4n0RsQNlt4CIGBkRRwGHk2OUtiPHz5xGfkkcATxNzkbdWmU2aiXBF7X3v+7yZmSy/Tc5YP9D5JZfo8gxV++QY5bmk/RiLeFGDvC3Cjl/OX9Nq3bPYc5fNi0GpaWxzc9uR5Z4zpR0eUR8lxybITI5QXZJnVWa6Y8CVpa0Ro/jVNGV8FFyY/h/1l23JNllthmZtJ4hk+uXgNXJ8VYLAbtL+ltVsZfnbdvZqDBZgdC268WZ81c5jvNXP7RzDnP+sv7o9+zp8sc1i6QXame35abezm63KD/nLD8fk7RP/fEqSFgfAZ6T9HxE3AZsGxEvk4np68Aq5Af8OXLF+02Bv0vaMyIWK8d490PXzPgjYm5yK6bFgQNKHD8hN7hfFhgvaWJEHEee/d5LrmV2G/B+lRlvNVWNm6FNZ6PW1LWMtO16ccOV85fz10B0Qg5z/rL+6Ff3dDm7PZ8c+E05u70COJbcJugKYM6I+HjpOjgbuEjSPyRto7plBAb8CvqhNL93kV8AkIOqHyVnPo5TzmS7gvywP13+jY6IuUuyeKh8YJqabEvsu5FjZJ4FNpN0Z4nhD+R4k42BBSNi8fI6jgf2BD4p6V5NWiKh6V0JkWuT1Sf5B8iz7kvIWXkvRsR2ZBfIiRGxKrm5fe0LvVvSG63SlRMRoyLiy2QX5qOU8VXkIPENI2d8bk+2lvwHwAm3es5fzl8DiL+tc5jzlw3UNHVP9zi7/R55NvtTcuP03Zj87PY1YFZJh5bHLlaS1XuaxJuhfFhmlPRqRMwP/JAczHsueQa7Nrln5leALcs4kwvJbp3Ku0IBImJT8kz2UEmXl+s2AN4CrlXOetufXGj1cXKv1fXJWXmvVhN1ig6ajQrvDhT/CHAq710v7gJyJmptvbi91WO9OGs+569qtXP+gs7KYc5f1l99bmls57Pb4jhgt9IUP5Ic5LsjsAT5ZbER2Sx/H/DriLiD7Na5uXaA6DFguALjyO6NURGxfEScSX7ZPVsS7kjgA8Aukr4MfF/SxPJFM7KKs9tai4Ck24GnIuJrwPuAxSWdrZx1unhEbFbuI+BoSb+V9O1asq2wZWHGHmfnnypfxoeRA8KvAWaPiHnJVof7yEkGNwO7StpZ0kst8LczrDl/OX/1VzvnMOcvG2xTbWnshLPbmoiYi2xq/7CkHSOXdDiB/KCsR3Yn3ESuWbYEuUDs/eWxlW+dVXfdZuQCtksAR0iqzdibFZgH2AP4FXB7RV9uvYpor7XiynO39Xpxw53zl/PXYGq3HOb8ZUOhUdF4PDme4VfA6+Rin9eQq+/fTzZfH0EOvv4EOYj8VnLdrJfLMVrmDy4iZiZnuj1Axr+BpB3Lbb8CXiC3cppQrhtBJt/K46+9jxExA9nF84akI8ptOwD/R3Y1XFx1vNHGs1F7Pne04Xpxlpy/nL/6q51zmPOXDaVGRWPbnd02Us5oTwMeImdD7q3cMH5eSc9UGhzv+cD33NR+fXKcz8vA0uQZ7RhyXM0RKpvaV/HeR91s1HK5NvB7MbKF535JB0fEHGSy+jiTZqP+SmVyQZV6FgjlzHwlsmVhQ+BV4Bzgn5K2iIhtgTnIz8Qsqttyzqrn/NV87Zq/yvO2dQ5z/rJmaDgRpp3PbqckIsaQy1J8lxzsXr+Kf+VbT8Xkm9qfQ3al/Yvc33YvSTdHrp+1FnCCpKvK46ocpN+Wa8WV52379eKsd85fTYupbfNXLX7aNIc5f1kz9Wn2dKuf3fZXRCwvaVzFMUzzpvblPnPUdyVU8WURbTwbtcQw2XpxwF1Mvl7cC5J+GBEfIteLOwp4mNzl4T3rxVlrcv4a0hjaNn+V523bHOb8ZVXo04yoMr7nYHLfzJ3IzcmpJdxo05lVksZFdTPyem6dtVBEnBIRS5FnhFeS406+T67t9a+IGBGTZvK9WB5Xu9zsgrGtZ6NGm68XZ33n/DX42j1/ledu2xzm/GVVmeZtBFvh7LadRRtvah8dMhs12ny9OOs/56+Baef8BZ2Rw5y/rErTvI1g7ezWYx+mTeTyB5sDnwY2L8nrCLLr48/kpvavAScDl5ID9TciB/IvUpJX1e/7ccAzZSzY6+RacWeRs1HfIeM9gklrxdVmo062VlwLjBebbL04cr27D5ED9nuuF3d3KTQmwrtfOlWt1WcD5PzVPx2Sv6Azcpjzl1VmmlsabdpFG29qXy/adDZqb0k+2ni9OLNm6pT8Be2Zw5y/rJW05ViedlE33qh+U/ujyIQEZVP78nvPTe23aLWEK+l58stjxsjZj+eSXTjPSvoFOQAbcrB4l6T7yzimkVUmLk2+DEXtb/4KMt7z6hLuDuQessuTuyH82QnXhqtOy1/QnjnM+ctaiVsah0BEzKa6Na/KuJ8/AA8CnwVOB64i1yc7gDwr35VcBuFbwOulm6EVunPeox1mo0YbrxdnVqVOz1/Q+jnM+ctalYvGQRYdtKn91EQLrhXX87mjDdeLM6vScMlf0Jo5zPnLWp2LxkESk287dQu5xdTV5NZMO5XrrwZOlXRxRJwOvKrc7L7X47SDVpmN2ttZdbTRenFmVRqu+QtaI4c5f1m7cNE4yCLaa1P7wdBKk1wiYiFywP5JwARgH7Lr5gngNkknlDPxkfVfbu34ZWc22IZj/oLWmeTi/GWtzkXjAEQbb2rf7qLN14szq5rzV3Wcv6xduWicRtHmm9q3u6hbL05Sb+vFzcTk68VNR669NoJcL+4mf9HZcOX8VS3nL2t3XnJnGpQP+PnkwG8iN7W/AjgWWK78PmdEfLyMMzkbuEjSPyRtU0u4dUtZ2DQo68XdBDwFzB4Rm5SunUUkfVrSfsDPyUH7E8k11x4GlpT0mKSbwAPEbXhy/qqW85d1AheNfRARH4mIucoH/DZg24hYC1idnH13C7AU8EFydtumAJL2JHdKoKz15Vlt/dCJ68WZNYvzV7Wcv6yTuGhsINp4U/t2V9Ynq/+SeoAcZ3UJMB54MSK2I8/IT4yIVYGjgVqXW7ekN9wyYsOV81d1nL+sE3lMYy+iAza1b3fDab04s8Hk/FU95y/rVG5p7N1xwG4RsSj5Hv2b3BR+CWAVcmDyBCZtan8H2a0z2ab2zQ66E0TEKABJtwNPRcTXgPcBi0s6u6wLt3hEbFbuI+BoSb+V9O1awq0dx2wYcv6qiPOXdTq3NPYi2nBT+04zXNeLMxso56/qOX9Zp3LROAURMTO5sf0DwP3ABpJ2LLf9CniB3MppQrluBJl8vRr/NPJ6cWaDy/mreZy/bDhx0TgV0eKb2rczrxdnNrScv4aO85cNVx63MhWSXia7F2YmzxbfLtc/Ax73019eL85s6Dl/DQ3nLxvO3NLYR9ECm9q3u4j4CPCcpOcj4nvkoPyfAt8GdiuXxwLPkbsizCrp0PLYxcryH14rzmwaOX8NnPOXmVsa+0zSOJ8Z9p/XizOrjvPXwDh/mSW3NNqQ8XpxZtaunL/M3sstjTaUvF6cmbUr5y+zHvwHbUPpQOANYE9JT5KDxGcGDiK7ceYj97ndn1w7bhtJu0t6uW7sj5cAMbMqHIjzl9lk3D1tQ8rrxZlZu3L+Mpuci0Ybcl4vzszalfOX2STunrYh5/XizKxdOX+ZTeKWRmsqrxdnZu3K+cuGOxeN1nTeZ9XM2pXzlw1nLhrNzMzMrCGPxTAzMzOzhlw0mpmZmVlDLhrNzMzMrCEXjWZmZmbWkItGMzMzM2vIRaOZmZmZNeSi0czMzMwa+n9EJ8/SGaROPAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -814,64 +916,64 @@
" \n",
" 0 | \n",
" Workflow-StandardBlocking | \n",
- " 0.197932 | \n",
- " 97.862454 | \n",
- " 0.099066 | \n",
- " 10.967764 | \n",
+ " 3.463993 | \n",
+ " 1.765799 | \n",
+ " 90.47619 | \n",
+ " 8.139925 | \n",
"
\n",
" \n",
" 1 | \n",
" Workflow-QGramsBlocking | \n",
- " 0.182086 | \n",
- " 98.884758 | \n",
- " 0.091127 | \n",
- " 17.006940 | \n",
+ " 3.463993 | \n",
+ " 1.765799 | \n",
+ " 90.47619 | \n",
+ " 14.409635 | \n",
"
\n",
" \n",
" 2 | \n",
" Workflow-ExtendedQGramsBlocking | \n",
- " 0.181989 | \n",
- " 98.791822 | \n",
- " 0.091078 | \n",
- " 19.250524 | \n",
+ " 3.463993 | \n",
+ " 1.765799 | \n",
+ " 90.47619 | \n",
+ " 15.853234 | \n",
"
\n",
" \n",
" 3 | \n",
" Workflow-SuffixArraysBlocking | \n",
- " 0.183603 | \n",
- " 99.814126 | \n",
- " 0.091886 | \n",
- " 8.559587 | \n",
+ " 3.463993 | \n",
+ " 1.765799 | \n",
+ " 90.47619 | \n",
+ " 7.863116 | \n",
"
\n",
" \n",
" 4 | \n",
" Workflow-ExtendedSuffixArraysBlocking | \n",
- " 0.183203 | \n",
- " 99.907063 | \n",
- " 0.091685 | \n",
- " 10.580076 | \n",
+ " 3.467153 | \n",
+ " 1.765799 | \n",
+ " 95.00000 | \n",
+ " 12.269665 | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " Name F1 Recall Precision \\\n",
- "0 Workflow-StandardBlocking 0.197932 97.862454 0.099066 \n",
- "1 Workflow-QGramsBlocking 0.182086 98.884758 0.091127 \n",
- "2 Workflow-ExtendedQGramsBlocking 0.181989 98.791822 0.091078 \n",
- "3 Workflow-SuffixArraysBlocking 0.183603 99.814126 0.091886 \n",
- "4 Workflow-ExtendedSuffixArraysBlocking 0.183203 99.907063 0.091685 \n",
+ " Name F1 Recall Precision \\\n",
+ "0 Workflow-StandardBlocking 3.463993 1.765799 90.47619 \n",
+ "1 Workflow-QGramsBlocking 3.463993 1.765799 90.47619 \n",
+ "2 Workflow-ExtendedQGramsBlocking 3.463993 1.765799 90.47619 \n",
+ "3 Workflow-SuffixArraysBlocking 3.463993 1.765799 90.47619 \n",
+ "4 Workflow-ExtendedSuffixArraysBlocking 3.467153 1.765799 95.00000 \n",
"\n",
" Runtime (sec) \n",
- "0 10.967764 \n",
- "1 17.006940 \n",
- "2 19.250524 \n",
- "3 8.559587 \n",
- "4 10.580076 "
+ "0 8.139925 \n",
+ "1 14.409635 \n",
+ "2 15.853234 \n",
+ "3 7.863116 \n",
+ "4 12.269665 "
]
},
- "execution_count": 22,
+ "execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
@@ -897,7 +999,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -911,12 +1013,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019, 23:11:46) [MSC v.1916 64 bit (AMD64)]"
- },
- "vscode": {
- "interpreter": {
- "hash": "cac59bda82d2eee8acda0b767173e62dfe62cb7fb40b3eb8d3fb22b85c150c43"
- }
+ "version": "3.7.6"
}
},
"nbformat": 4,
diff --git a/docs/DirtyER.ipynb b/docs/DirtyER.ipynb
index ca7cb5e..e95f974 100644
--- a/docs/DirtyER.ipynb
+++ b/docs/DirtyER.ipynb
@@ -6,9 +6,9 @@
"id": "96ec678e-b20c-4213-8616-542010f46342",
"metadata": {},
"source": [
- "# Dirty Entity Resolution\n",
+ "# Dirty ER\n",
"\n",
- "----\n",
+ "---\n",
"\n",
"In this notebook we present the pyJedAI approach in the well-known ABT-BUY dataset. Dirty ER, is the process of dedeplication of one set."
]
@@ -25,6 +25,16 @@
"For more: [pypi.org/project/pyjedai/](https://pypi.org/project/pyjedai/)"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4697d149-c1a4-4767-9ed1-14444485e409",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!python --version"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
@@ -37,7 +47,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 2,
"id": "6d2e5cf7-ff2e-4271-9242-fe3d638263e9",
"metadata": {},
"outputs": [
@@ -46,14 +56,14 @@
"output_type": "stream",
"text": [
"Name: pyjedai\n",
- "Version: 0.0.3\n",
+ "Version: 0.0.5\n",
"Summary: An open-source library that builds powerful end-to-end Entity Resolution workflows.\n",
"Home-page: \n",
"Author: \n",
"Author-email: Konstantinos Nikoletos , George Papadakis \n",
"License: Apache Software License 2.0\n",
- "Location: c:\\users\\nikol\\appdata\\local\\programs\\python\\python310\\lib\\site-packages\n",
- "Requires: faiss-cpu, gensim, matplotlib, matplotlib-inline, networkx, nltk, numpy, optuna, pandas, pandas-profiling, pandocfilters, PyYAML, rdflib, rdfpandas, regex, scipy, seaborn, sentence-transformers, strsim, strsimpy, tomli, tqdm, transformers\n",
+ "Location: c:\\users\\nikol\\anaconda3\\lib\\site-packages\n",
+ "Requires: strsim, seaborn, matplotlib, optuna, networkx, faiss-cpu, scipy, rdflib, strsimpy, rdfpandas, regex, sentence-transformers, tqdm, nltk, pandas, pandocfilters, matplotlib-inline, numpy, pandas-profiling, PyYAML, transformers, tomli, gensim\n",
"Required-by: \n"
]
}
@@ -72,7 +82,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 5,
"id": "a0890ce6-3a10-4e66-913f-78095bd786a1",
"metadata": {},
"outputs": [],
@@ -113,15 +123,15 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 7,
"id": "3d3feb89-1406-4c90-a1aa-dc2cf4707739",
"metadata": {},
"outputs": [],
"source": [
"from pyjedai.datamodel import Data\n",
"\n",
- "d1 = pd.read_csv(\"./../data/cora/cora.csv\", sep='|')\n",
- "gt = pd.read_csv(\"./../data/cora/cora_gt.csv\", sep='|', header=None)\n",
+ "d1 = pd.read_csv(\"./../data/der/cora/cora.csv\", sep='|')\n",
+ "gt = pd.read_csv(\"./../data/der/cora/cora_gt.csv\", sep='|', header=None)\n",
"attr = ['Entity Id','author', 'title']"
]
},
@@ -135,7 +145,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 9,
"id": "e257597d-ea77-4090-ba34-e1038d8f9a0d",
"metadata": {},
"outputs": [],
@@ -145,9 +155,7 @@
" id_column_name_1='Entity Id',\n",
" ground_truth=gt,\n",
" attributes_1=attr\n",
- ")\n",
- "\n",
- "data.process()"
+ ")"
]
},
{
@@ -185,7 +193,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 10,
"id": "9c1b6213-a218-40cf-bc72-801b77d28da9",
"metadata": {},
"outputs": [],
@@ -201,14 +209,14 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 11,
"id": "7ee34038-1352-440e-8c34-98c5cf036523",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "67a95b9c4a6644f0aac5b8fcf7a8bed6",
+ "model_id": "1b3d9aac0ca94663b04832c034e8c18a",
"version_major": 2,
"version_minor": 0
},
@@ -221,14 +229,13 @@
}
],
"source": [
- "blocks = SuffixArraysBlocking(\n",
- " suffix_length=2\n",
- ").build_blocks(data)"
+ "bb = SuffixArraysBlocking(suffix_length=2)\n",
+ "blocks = bb.build_blocks(data)"
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 13,
"id": "b0ac846d-0f13-4b90-b4c8-688054ed7ffe",
"metadata": {},
"outputs": [
@@ -236,24 +243,25 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Evaluation \n",
- "---\n",
- "Scores:\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Suffix Arrays Blocking\n",
+ "***************************************************************************************************************************\n",
+ "Method name: Suffix Arrays Blocking\n",
+ "Parameters: \n",
+ "\tSuffix length: 2\n",
+ "\tMaximum Block Size: 53\n",
+ "Runtime: 0.1680 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
"\tPrecision: 4.28% \n",
"\tRecall: 75.77%\n",
"\tF1-score: 8.10%\n",
- "Classification report:\n",
- "\tTrue positives: 13021\n",
- "\tFalse positives: 291336\n",
- "\tTrue negatives: 542366\n",
- "\tFalse negatives: 4163\n",
- "\tTotal comparisons: 304357\n",
- "---\n"
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "Evaluation(data).report(blocks)"
+ "_ = bb.evaluate(blocks)"
]
},
{
@@ -272,7 +280,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 14,
"id": "9c2c0e42-485a-444e-9161-975f30d21a02",
"metadata": {},
"outputs": [],
@@ -282,14 +290,14 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 16,
"id": "bf5c20ac-b16a-484d-82b0-61ecb9e7f3ea",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "167852c564c4470e84368db08adf8b60",
+ "model_id": "68ce99a10fdf438bb6703aa33d26e037",
"version_major": 2,
"version_minor": 0
},
@@ -302,14 +310,13 @@
}
],
"source": [
- "filtered_blocks = BlockFiltering(\n",
- " ratio=0.9\n",
- ").process(blocks, data)"
+ "bc = BlockFiltering(ratio=0.9)\n",
+ "blocks = bc.process(blocks, data)"
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 18,
"id": "25fd0be0-91c3-4d0b-b596-c66dccba3c79",
"metadata": {},
"outputs": [
@@ -317,24 +324,24 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Evaluation \n",
- "---\n",
- "Scores:\n",
- "\tPrecision: 5.10% \n",
- "\tRecall: 73.46%\n",
- "\tF1-score: 9.53%\n",
- "Classification report:\n",
- "\tTrue positives: 12623\n",
- "\tFalse positives: 235069\n",
- "\tTrue negatives: 598235\n",
- "\tFalse negatives: 4561\n",
- "\tTotal comparisons: 247692\n",
- "---\n"
+ "***************************************************************************************************************************\n",
+ " Μethod: Block Filtering\n",
+ "***************************************************************************************************************************\n",
+ "Method name: Block Filtering\n",
+ "Parameters: \n",
+ "\tRatio: 0.9\n",
+ "Runtime: 0.0930 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 4.90% \n",
+ "\tRecall: 75.56%\n",
+ "\tF1-score: 9.21%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "Evaluation(data).report(filtered_blocks)"
+ "_ = bc.evaluate(blocks)"
]
},
{
@@ -370,7 +377,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 20,
"id": "7248d75f-215f-4efd-97f4-a2c9b969b9fc",
"metadata": {},
"outputs": [],
@@ -380,19 +387,19 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 21,
"id": "a16bf7a0-180a-494b-8a0b-6a94d9c60deb",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "85e9ed47b5354285a3dcda827ed2d5aa",
+ "model_id": "36d831c625014c5ca38987f72b7aa360",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
- "Block Purging: 0%| | 0/3420 [00:00, ?it/s]"
+ "Block Purging: 0%| | 0/3192 [00:00, ?it/s]"
]
},
"metadata": {},
@@ -400,14 +407,13 @@
}
],
"source": [
- "cleaned_blocks = BlockPurging(\n",
- " smoothing_factor=0.008\n",
- ").process(blocks, data)"
+ "bp = BlockPurging(smoothing_factor=0.008)\n",
+ "blocks = bp.process(blocks, data)"
]
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 23,
"id": "8d408a88-9386-4d40-80f5-6b089bc6ad4b",
"metadata": {},
"outputs": [
@@ -415,24 +421,25 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Evaluation \n",
- "---\n",
- "Scores:\n",
- "\tPrecision: 7.67% \n",
- "\tRecall: 0.59%\n",
- "\tF1-score: 1.09%\n",
- "Classification report:\n",
- "\tTrue positives: 101\n",
- "\tFalse positives: 1215\n",
- "\tTrue negatives: 819567\n",
- "\tFalse negatives: 17083\n",
- "\tTotal comparisons: 1316\n",
- "---\n"
+ "***************************************************************************************************************************\n",
+ " Μethod: Block Purging\n",
+ "***************************************************************************************************************************\n",
+ "Method name: Block Purging\n",
+ "Parameters: \n",
+ "\tSmoothing factor: 0.008\n",
+ "\tMax Comparisons per Block: 6.0\n",
+ "Runtime: 0.0480 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 9.87% \n",
+ "\tRecall: 0.72%\n",
+ "\tF1-score: 1.33%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "Evaluation(data).report(cleaned_blocks)"
+ "_ = bp.evaluate(blocks)"
]
},
{
@@ -445,7 +452,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 24,
"id": "1f7d75f3-6bed-482d-a572-c3b4927236a5",
"metadata": {},
"outputs": [],
@@ -457,21 +464,20 @@
" CardinalityNodePruning,\n",
" BLAST,\n",
" ReciprocalCardinalityNodePruning,\n",
- " # ReciprocalCardinalityWeightPruning,\n",
" ComparisonPropagation\n",
")"
]
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 25,
"id": "c92e0ca3-5591-4620-b3f4-012a23637416",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "5f5bb79f41184e8fbc92d8340f95bd2e",
+ "model_id": "f24c697770c8409e95721ba534b0edcf",
"version_major": 2,
"version_minor": 0
},
@@ -484,14 +490,13 @@
}
],
"source": [
- "candidate_pairs_blocks = WeightedEdgePruning(\n",
- " weighting_scheme='CBS'\n",
- ").process(filtered_blocks, data)"
+ "mb = WeightedEdgePruning(weighting_scheme='CBS')\n",
+ "blocks = mb.process(blocks, data)"
]
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 28,
"id": "f469e387-e135-4945-b97f-da14d391c6b1",
"metadata": {},
"outputs": [
@@ -499,24 +504,25 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Evaluation \n",
- "---\n",
- "Scores:\n",
- "\tPrecision: 74.46% \n",
- "\tRecall: 48.51%\n",
- "\tF1-score: 58.75%\n",
- "Classification report:\n",
- "\tTrue positives: 8336\n",
- "\tFalse positives: 2860\n",
- "\tTrue negatives: 826157\n",
- "\tFalse negatives: 8848\n",
- "\tTotal comparisons: 11196\n",
- "---\n"
+ "***************************************************************************************************************************\n",
+ " Μethod: Weighted Edge Pruning\n",
+ "***************************************************************************************************************************\n",
+ "Method name: Weighted Edge Pruning\n",
+ "Parameters: \n",
+ "\tNode centric: False\n",
+ "\tWeighting scheme: CBS\n",
+ "Runtime: 0.0457 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 75.49% \n",
+ "\tRecall: 0.45%\n",
+ "\tF1-score: 0.89%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "Evaluation(data).report(candidate_pairs_blocks)"
+ "_ = mb.evaluate(blocks)"
]
},
{
@@ -531,7 +537,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 29,
"id": "f479d967-8bac-4870-99bd-68c01e75747b",
"metadata": {},
"outputs": [],
@@ -541,56 +547,19 @@
},
{
"cell_type": "code",
- "execution_count": 20,
- "id": "ae7b1e6a-e937-44fe-bfe5-34696ea1156c",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fbdcfffb44de41cb8733b4d75d189543",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Entity Matching (jaccard): 0%| | 0/1684 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "attr = ['author', 'title']\n",
- "# or with weights\n",
- "attr = {\n",
- " 'author' : 0.6,\n",
- " 'title' : 0.4\n",
- "}\n",
- "\n",
- "EM = EntityMatching(\n",
- " metric='jaccard', \n",
- " similarity_threshold=0.5\n",
- ")\n",
- "\n",
- "pairs_graph = EM.predict(filtered_blocks, data)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 34,
+ "execution_count": 31,
"id": "bcb37bf3-1da1-4830-9659-41cf85a536a9",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "44930d8c639944bbaad1cc9a50b66999",
+ "model_id": "020d068b0b2848fa80d4ff4e0fd41236",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
- "Entity Matching (jaccard): 0%| | 0/1294 [00:00, ?it/s]"
+ "Entity Matching (jaccard): 0%| | 0/59 [00:00, ?it/s]"
]
},
"metadata": {},
@@ -608,18 +577,18 @@
" similarity_threshold=0.5\n",
")\n",
"\n",
- "pairs_graph = EM.predict(candidate_pairs_blocks, data)"
+ "pairs_graph = EM.predict(blocks, data)"
]
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 32,
"id": "4d606bfc-3265-4042-93f3-22a1117c4886",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABavElEQVR4nO3deVxV5dbA8d/eZ0QBcQAnHHJAHLPU1Jwz00wrzUatbsNV07eyrNtg81y3snvLsrLMRM00s3LIIYdKU3PITEWcUFBABhGZzrT3+wcXcgCBM3AOnvX9fN5P74XDPg8Ie+3nedazlqLruo4QQggRJFR/D0AIIYSoShL4hBBCBBUJfEIIIYKKBD4hhBBBRQKfEEKIoCKBTwghRFCRwCeEECKoSOATQggRVCTwCSGECCoS+IQQQgQVCXxCCCGCigQ+IYQQQUUCnxBCiKAigU8IIURQkcAnhBAiqEjgE0IIEVQk8AkhhAgqEviEEEIEFQl8QgghgooEPiGEEEFFAp8QQoigIoFPCCFEUDH6ewBCiPJl5NqYtTGRNfFpZOTZAahb08LVbaO4u2dz6oZa/DxCIaoPRdd13d+DEEKUbmdSNq8t38vviVloZfylqgo0jgihRWRNDKpKuNVIbINwbu4SLQFRiFJI4BMiQMVtSuSFH/bgLCviXYDVqKID/dtEMqFfKy5tEuH18QlRXUngEyIAFQW93Tg1z66jKGA1GpgyNJYxPZp7ZWxCVHeS3CJEgNmZlM3LS/Z6HPQAdB0KHC5eXbaXuE2Jnl9QiIuABD4hAsy0dQewubwQ9c5Q4NB4dVk8fyZne/W6QlRHEviECBAZuTbeWbmPVXvSfHL9QqeLD9cd8Mm1hahO5DiDEH62MymbaesOsD4hHadLw1eb7roOa/elk5lrk2xPEdQk8AnhR3GbEnl1WTyFThdVkWamAAu3JzOub0vfv5kbMnJtLNyWTHxqDjmFTjmaIXxCAp8QflIU9PZS4PDuft6FFDo14lNOV9n7VdSZs14A2xmZPVZjKlNXJ8jRDOE1EviE8IOdSdm8uiy+SoNesZxCR4VeV1Wzr/JmvYX/C4Irdqfx094TtG8UTt1Qi8wGhdvkHJ8QfjB29lZW7U2rkuXNc43o3Jipt3Yu8/MXnn25fzC+tECab3fxc0J6SXCrLDmoL9whgU+IKpaRa6PXm2vOCihVxWpUeWRQTJl7fBXdc6zMwfgLBVJvkYP6ojJkqVOIKrZwWzKan543dWDU5dGlfq4ye45nHowHygw2VZW8U9HxCAFyjk+IKrfsrxQcrqoPfIoCA9pElrof5u6e44UOxv8dSKsmY7W88QhRTAKfEFUoblMifx075Zf3thhVJvRvVernpq07QKHT5dZ1zz0Yn5Fr47nv/uL573f7JXlHDuqL8shSpxBVpHhW5UazBY/pjkIKty6mySM9zvtcRq6N9Qnpbs/Kig/G/5yQTtzmI6xPSMfh0vzyfZ45HjmoL8oiMz4hqogns6oylROtdE1DcxRi2bOMvD9+pHnz5uzZs+es1yzcluzxMFyazr2zfmfV3jRsTv8FvWLFB/WFKI0EPiGqgKezqjIpCrquozvtZ33YYlRR0XGdzkRLT+SksTaumKuoFdWYyy67jCVLlpS8Nj41x+NMS6em49R0vxzPKE2gHtQXgUGWOoWoAt6YVZVFAcIUG2l7NqKG1qNRTAdO2TSMBhWtViTUisTYKBbNYUNRbiMqeRc3j3+MVx7Zx+TJk8kpdPpsbP5U3kF9KY8WvCTwCVEFvDGrKpOikGsIpVZEbWyRrcjK10BVcZ2TOaqaim7matPLiLytPS/O+Zy//vqL8MEP+WZcfhZuNZX6cX+VR5NAGzjkALsQPpaRa+PWT37jYHqej99Jp2j+VzGavZDstZ/T8PIB2CLb+m5YfjK4XX0+vrPrWR/zxQH98qxPOMErS/dyMD0X4Kz9T6k84x8S+ITH5Em2dMUzi7X7Tvjl3F5F6FpRso2iGvw8Eu+zGlW+HteTTtERgHtFwUNMKlOGtnUr+O1MyuaJRX8Sn1r+XqNUnqlaEviE23xV09Gb/BWUS2YWDpfP+uuJC1OUolnf9DFd2ZmUzW2fbqLAUfms2hCTgflje5QE0IqI25TICz/swVnJ9FZPAq2oOAl8wi3+WDKqjKoIymUFVdD5z0/7/XJ4W5zNYlTZ+MRVPPXtLreLgp8ZQCsiblMiLy/Zg83NWb47gVZUjgQ+UaZzb+wWo0qB3cWJ04XEp56u1FmtqnyS9XVQLg6q6/alo+n6WU/1BgUCdFUzKFmNKmP7tuDjnw95lFxUHEDLWyXwZGZZrLKBVlSeZHWK8/iimn5xDcVO0RE+fZL1RaHlc6//8tK9Zf5MJOgFlkKnxk97T3h8HZemV6hz/bR1BzwKeiCVZ6qCHGAXZ4nblMhtn24qqcDhzRR8X9dQ3JmUzctLKt/RvKKFjeM2JfLikj1+aSck3JeRZ/PKAf3fDmZe+H3+V6TAG6TyjG/JjC/InbmcuSclh4Mncn02a/H1k+wTi/7E5nLvBlcclMtaXtqZlM2LS/YEbHamKJtSiSMeF7L7+IWLiy/clozTzd+/c0nlGd+SwBekqqI5aGmKn2TLWzKqrOnrD1Qobbws5QXl15bvlaBXDVmNKnVDzaTmFHp8rYxc+wUf2n47lOHVh8biyjNyXMj7JPAFoapqDloaXzzJ7kzK5u2VCR5fp6ygnJFr4/fELI+vL6qew+lkYGwU+1JPV/powbl0LvzQtvt4jkfXP5dL0xk7e2uVV5gJBhL4gow7h3i9rbwaipU1bd0Bj29qUHZQnvVbot+7DQh36Dgyk4g6paHp3rnV7UzKLvXjGbk2svLspX7OHUYFfj2QgUsvvfB34f+C4Mo9afyckCEH3ytJkluCiLtdtr2trBqK7vBmQgHAqVKCsjeyAoU/KJjqNuGx92ajO21euWJCWumrFXN/O4iue+/vyqlToW4XZ2Ymx21K9Nr7X+xkxhdEfNIPrpKsRpXYhmFeu563ux6sWP8brdauwVq/OSZLDcJqWEjLvTi7FwQDFyqWK+/Epbu88pR/7l74li1bePrpp/mzxmXUaN/fC+/gngKHxvPf72bxH8eJrh0ie4DlkMAXJHzWD66SdGDU5dFeu55Xux7oOqbIS3CqKrkADjh5yrvLssIPVAOq4p1bncWokp+fz9SpU/nggw84ceIELVq0oNOd4zlQ4JW3cJtLh61HTrL1yEmMagrvrkpgQKzsAZZGljqDhC/7wVWUAgxoE+nVp1Cv9pJTFFDlT+JioyjeOc4AkBK/g1q1avHyyy/Tr18/EhISmDVrFrv/2Oq19/AGp6Zjd2ms2J3GLZ/8Jsug55C/8iDh035wFaQ7bfSL9M5eS7FwqyxaiKqhay4Kju3lo48+Ijc3l1mzZjF58mR69epF/vH9aA7Pf7dV78XoEjanxotL9kjwO4MEviDh7y7bBlw4tnzN/91xPe+88w6a5p0gHNsgHItRfo2F7ymqgd/nv899993He++9R82aNfnuu+9QFIWCPeu8MrP0Vfaww6Xz4pI95VYnChZyxwgS/poZ6boOLjsv3tCJ5+4YgKqqzJw5k+HDh5ORkeHx9Ud18d5+oRAXogCTJ0/GYrHw+OOP43K5uOSSS6hZsyb1a9Wg8PB2dC890PmCw6Xzf/O2k5nr3VWX6kgCX5Dwy8xI16Egm9S4J8jZvoxx48bxxRdfkJqaitls5rLLLmP9+vUevUW9UAv9YiLx4jaOEKXSnA6+3ZmCw+GgcePGdOjQgfT0dIxGI8nJyeRsWoDu8t5ZPl84mlVAzzfWMC5ua5lnEoOBBL4g4Y+Zke60k/r1i7jSD/Pwww+TlJTEddddx4oVK9iyZQvDhg3jtttu46WXXsLlcv+YxcT+rbAY5FdZ+JZiNGGObM6kSZMoLCxk79695OXlYTabMRqNaOmH6Wo4iubwvDyaL9ldGiv3pHHbp5uCdt9P7hZBoqpnRrquY89MpnadOjidTpxOJ1dddRWaptGlSxc2bNjA+vXrGT58OOvWrWPQoEEcP3680u9TXHPUG5VbhChPk0t7MX1mHJmZmZjNZu644w4yMjIwmUw899xzrP3kJU7+9BmaozCglz2D/eC7NKINIt5oklkpmobmspO95nNsu1djt9vp3Lkzv//+O0ajkZMnTzJixAjq1KlD+/btmTFjBjNnzmTIkCEVurw/a46K4KRrLnTNRT17Gp3NaXzxzovUqFGD5557jqlTp5KVlYXdbsfcoBW1+t1FjUsu9/eQyxWMHd9lxhdELm0SwZShsYSYPPtnr/CzkqqimqxEDLgXc7uBGAwG/vjjD2rVqsX8+fOpXbs2K1aswFAzgsX78ug1+RPGztlB3yc+Y9qahAtuwv9dc1SCnqg6impANZrJCmnMar0Dda64gWeeeYapU6fSq1cv7PaiPT5r/glqWMx+Hm3F+LpPZiCSGV8QituUyMtL9rrdu84dmqOQtDlP4kg7SEhICPn5+bTvO5TLRj/JlqRcnE4HLgx/f4HLgdlsZkBs1HmVJ6p85ipEGYy4yN8wh1nP3s8111wDQM2aNcnPz6fjlO845awecwuLUWXjE1cFTYmz6vGvIrxqTI/mLBjfk3Zu1Mx09zlJNZqJvuY+dF0nPz+f2GH/JPeK+/n5YDY2p3Z20AMwmLC7dFbuTj1vEz4Qao4KAeDEQMiVo7ln8gslH8vPz0fXdbLyAjvJ5UzB1vFdAl+Q6hQdwbKH+vLkkDYYK1IuQtfQdd39Q7qKijOqDQ8+9hShna8lr81gMJpRyikRpqNQ4HDxyv824QOl5qgQxVwo2Fr1A8BsNqPrOg0bNkRVqs/tNdg6vku9pyBRdhfnJlzZsh4frjvA2n3pKPzd6wuKuinoQJOIGhxIOwUGD1oKqQYWJZqoN2gseiWvU+jQeHnJHvafyHX//YXwBUUlpGU31JBw7AVFzWhTUlJo7CjAaLb6eXAV5+0+mYFM9vgucsXp/qV3cS4KasVdnKNrh7BwezLxKafJKXQQbjUR2zCMUZdH8/LSPSz+o/LHDc5V3LNMceNpWNc0apl1cpyG8l8sRBXSHDZyNi9Ed9gwRTZHtdTEHHUJxlpR/h5ahY3o3Jipt3b29zCqhMz4LmLlpfuX1sV5XN+WpV7LW7U+3Ql4JV+rqpxyaFKlRQQc1WShVq/b0TUN1fD3bdWj7YEq5O0+mYFOAl81UdZS5cDYKH6KP3Hex0HnPz/tr1C39TMPs0JR8su5AqULQuDfQkSwUhQV5ZwKQtUh6IH3+2QGusC4m4kyXWipUlWO88aP8ajK2VXdzYYU7K7Kr2AXODReXRZPp+iI8w6zFtX6TPV7ayOqUcKAENWBoni/T2agk7tIAIvblMhtn25i1d40bE7tvKBTHOzOrdblTtArVtZh1lFdor3WSkgIETisRgMT+rfy9zCqlCS3BKi/K5NUfbA59zDrkSNHeOyxx/g9pCs0bo8sOApxcVAVqFPTjNVkwGJUiakfxqXREdzcJbrMGWDZGeJlf02gkcAXgPxdmcRqVHlkUAx3dm3I86+/zexf99Ou1yAKQxtx/JT08hLiYqYqYFAVrjqnalJlMsTPrLQUiCTwBaCxs7eyam+aXw9pR6unOHL4AMYml2I0GHDoMssTIpgogNVkYMrQWIAKFYRXlKKl0ylDY0tNkgsUEvgCTEaujV5vrvF7EomuuVBQoJzKKkKIwBdiUrE7NdzZ/jeqRdmpjkp8cYhJZcrQtgEb/OSuFmAWbguMenmKapCgJ8RFotDhXtADcGpUKujB3xnifyZnu/emPiZ3tgATn5rj99meEIGguMqP8Jw/lvUCud2RnOPzk7IyozJy7f4emhABQbMXoposRasPQa66VIA5k67D2n3pZObaAi7bUwJfFbtwZlQq9irskSdEIFNNVnTNBbqG4klx9ItAdQt6xYrbHZVVCtFfJPD5SGkzuny7i58T0rG5tAvWzhRCFNVmVVQVzekApwMMxmobAIJVoLY7ksDnZRea0QkhKk81mtCcNimbUE0FYrsjCXxeVF43BCGEexSD2d9D8KvquMdXLNwaeMvUEvi8xJ8lxtylay5Q1Gr7ByWCh/yOVk+B2u5IjjN4wc6kbF5dFl9tgp6uubClHYZq/BQpRDCprn+ngdruSAKfF0xbd4BCp3/qarpDUQ2gOYtmfEII4SOB2u5IAp+HMnJtrE9Ir3Z7eiF1G6KaAu8XUghx8RjdvZm/h1AqCXweCpQSY5Xl0OWfXgjhW1sTs/w9hFLJ3c9D1bXEmGoO8fcQhBAXuZ/iT/h7CKWSwOehnEKnv4fgluq6WS6EqD4CtQSjBD4PhVvlRIgQQlQnEvg8FNsgHItRfoxCCHGuujUDs/CA3LE9NKpL4J1REUKIQHB12yh/D6FUEvg8VC/UQr+YSGTLTAgh/qYqcFfP5v4eRqkk8HnBxP6tsBqlZ5gQQhTrfkmdgDy8DhL4vOLSJhFMGRpLiEl+nEIIYVQVnrq2rb+HUSa5U3vJmB7NuTtAp/VCCFFVFOCF4e3oFB3h76GUSQKfFx3KyPP3EIQQwq9i6ocypkdzfw/jgiTweUlGro2f9qb5exhCCOFX7RrW8vcQyiWBz0ue/nYXrmpWqFoIIbytaZ3AL4cogc8LdiZly2xPCCGqCQl8XjBt3QGZ7QkhBHA0q8DfQyiXBD4PFffjE0IIATmFDn8PoVwS+DxUXfvxCSGEL4RbTf4eQrkk8HmouvbjE0IIb7MaVWIbhvl7GOWSwOeh6tqPTwhRfei6jq65/D2McunAqMsDv3C/BD4PST8+IUTVCOxK+IoCA9pEBmx9zjNJ4POQ9OMTQviaoiiAjq75dltF13WK5m2VZzUamNC/lXcH5CMyXXFDRq6NhduSiU/NITPXjsMle3xCCN/SNReK6sMuMLpGl+gwCjWVPSmnK/WlISaVKUNjA7o+55kUvSjEiwrYmZTNtHUHSo4vSFKLEKIq6ZqGovpmhclqUvl6bE86RUcwff0B3l6ZgFO7cHhQlKKZ3pShsQFfn/NMEvgqKG5TIq8ui6fQ6UJ+YkKIi0nRjK3tWcHrz+RsPlx3gLX70lGAwjMe9K1GFZ2iPb0J/VtVm5lesaAPfGcuW+YUOgm3GoltEM7NXaJLNmmLgt5eChwywxNCXFxCTBeesWXm2li4PZn4lNPkFDoIt5qIbRjGqMujq0UiS2mCNvBdaNmy+Gmmf5tIBsXW59nvd1PgCPxUYiGEqBgdk0FlYGxUyYytIpOAi0VQBj5ZthRCBCuFoof6t0ddSt1QS4UnARP6teLSJhF+GbO3BV3gk2VLIUSwaxNVg7n/vJLlf6VUaBJQXZNYyhJUgW9nUja3fbpJli2FEEFN11yoqgFFgXISN89iNak8c04STHUUVCevp607QKFTgp4QIrgpqgGdygU9gEKHxnPf72bhtiSfjKuqBE3gK24fFDzzWyGE8D5Nh3998ydxmxL9PRS3BU3gk/ZBQgjhHZoOryzdU22DX9AEPmkfJIQQ3lPo1Hl1WTx/Jmf7eyiVFjSBT9oHCSGEdxU6XXy47oC/h1FpQRP4pH2QEEJ4l67D2n3pZOba/D2USgmawCftg4QQwvsUYOH26pVDETSRYFSXwO8KLIQQ1U2hUyO+km2M/C1oAl+9UAv9YiJRAruJsRBCVDs5hQ5/D6FSgibwAUzs3wqr0YeNHIUQIgiFW03+HkKlBFXgu7RJBFOGxiKTPiGE8A4FiG0Y5u9hVEpQBT6AIR0aokrkE0IIr9Ap6uJQnVSv0XrBwm3JGA1B920LIYTPfLjuoL+HUClBFwGkgosQQnhX2mkbB9KqT2Zn0AU+qeAihBDe9+ryvf4eQoUFXeCTCi5CCOF9B07k+nsIFRZ0gU8quAghhPfl26tPr9OgiwBSwUUIIbyvhrn6nJGuNut+Gbk2Fm5LJj41h5xCJ+FWI7ENwrm5SzR1Qy0Vvk69UAu9W9bhp33pICf6hBDCK1pFhfp7CBWm6Hpg9yTfmZTNtHUHWJ+QDnBWRqbVqKID/dtEMqFfKy5tEnHBa2VmZjJt2jQ+nL+UGsOeRlOrTdwXQoiAtnpSX1rVrx4H2QN6qTNuUyK3fbqJVXvTsDm1844hFP7vYyt2pzHyow2Mnb211PYYSUlJPPLII7Ru3ZqjR4+yftGXTB7YAlWXDE8hhPBU/TBLtQl6EMCBL25TIq8u20uBw0VF5qQuHVbuSeOK11YzLm4rO5Oy2bNnD//4xz/o3LkzRqORXbt2MXXqVObNm8dzt/enk+sAVqMqhauFEMID/xrSxt9DqJSADHw7k7J5dVk8BY7KHzR36bBidxo3frCOQQ+8SExMDAcOHOC1117j+++/JyYmhoSEBGbMmEHv+jpN93+D49BWcDlQtLNngLquE+ArwUII4VfREVZuuryJv4dRKQG5xzd29lZW7U2r0EzvQqwmlSnXtkXf/zNPP/00JpOJ2rVrs2/fPpo1a0azZs2oWbMm2dnZ/LU/kcKGnTFFNUe11ERxFKLlpGFo3gVL/Rbe+caEEOIi06dVPWbf193fw6iUgAt8Gbk2er25xmtlxXRHIWlzn6K2fpqwsDByc3PJyMjAZCpqo2G323E6nRgMBqxWKwA2mw2ns2j2FzXqeUJadfPKWIQQ4mKjKjCoXf0KJRgGioBb6ly4zcst7A1mal15C2lpaSQmJpKeno7D4aCgoID8/PySAOdyucjLyyMvL6/kYwAuW/WpRiCEEFVN+19+xW2fbiJuU6K/h1MhAZfP7+0i0oqqYrmkC4o1DEdBTsnHz5zoKoqCqqoYDAZUtehZwOVy4XA4cGUcRXfYUEwVPysohBDBRNehwOHi1WVF9TrH9Gju3wGVI+ACn0+KSOs6NTtezekti0o+ZDQaMRqNqKqKy+XCbrdjMpkIDw8nIiKCevXqUbNpOzIbdifTaPb+mIQQ4iJT4NB4dVk8naIj6BQd4e/hlCngAp8vikirJguW+peQqyiYTCZCQ0NLgltkZCRRUVE0bNiQevXqUadOHerWrcu2nBrM3VOI3RVQW6BCCBHQCp0uPlx3gOljuvp7KGUKuMBXVEQ61es98xRzDQwGAwaDgcLCQo4fP05iYiKqqhISEoLZbMZoNBYte8b0w9jtFlneFEKIStJ1WLsvncxcW6XKSValgEtu8VURad2Wh9VqxWq1oigKhYWFmM1mVFUlPz8fRVGoX78+bXsNwdLzdgl6QgjhJgVYuN3LiYpeFHAzvnqhFvrFRHrlHF8xi1Hlumt6kxV6nM2bN5OUlISiKNSoUYOmTZvSuHFjVFUlMTGReEMzTLpn1Vx0XUeRcjBCCD/y532o0KkRnxK4HdkDbsYHMLF/K6xG77W4sNlsdKiZy+zZszl06BB2u53t27dz7733oqoq69at44cffuDQ8XTMzTqjqO7/WHRdR7Ple23sQghRHeUUOvw9hDIFZOC7tEkEU4bGEmLywvB0DefRnbz96gu0adOGL7/8EpfLRefOnfn3v//Ntm3bSg61j5z8psd1O3WnHefJ456PWwgh3KS7nOTtWY9mL/TbGMKtJr+9d3kCMvBB0TmQKUPbEmIyeNQ1L8RsYuo/h3D55Zdz8uRJnn/+edq0acPs2bPPOqiuW0LJqHkJuurZP5b6v71BzXF+lwghhPA1XdfJ37+ZzB/e5uSaz9Acheiad5MFy2M1qsQ2DNxuDQFXsuxcfyZn8+G6A6zeewKnVrmhhphUpgxtW3KYcu/evbz++ut899131KpVC5PJxP1PvMwha2t+3p+B3aV5ZV+x4NB2rE07oMj5PyFEVXM5SfrgLrSCHBRFwVS/JeE9byakZTcU1YCi+r5TusWosvGJqwI2qzPgA1+xzFwbT3+7i9V70yjvaJ2igNVoYMrQ2FIrCBw8eJA33niDxX9lUKP3nSiqCTzY1ztX3u61GC01MLfo5tF+oRBCVIauaeTv/42Mb18/6+OqqlKvQx+sQx71eeBTFBjcrr6c4/OGuqEWPr6za8kMcO2+dBSKsoeKFXdkH9Amkgn9W5VZOaBly5b0u28KPy/dg83p3bivOWxEmuxkJO2DFoH7Dy+EuPjoLjs5vy0o+d+qqqJpGpqmobTug6L4/kHcajQwoX8rn7+PJ6rNjO9cmbk2Fm5PJj7lNDmFDsKtJmIbhjHq8uhyp9c7k7K57dNNFDhcXh+X2aDQznWIHc5GoJpkxieEqBKavZCc9V9watsSjEYjLperpCaxWqMW0RNnoRh8O9c5d3spUFWbGd+56oZaGNe3pVtfO23dAQqd3g96uqZxOvUQ2+tGlyS5CCGEL+mahu6yc2rdTHK2Ly36mK6jqiq6rhMSEkJI7zvAh0uc5W0vBZpqG/jclZFrY31CutcOx59Fc2KJbAaGwE3jFUJcHBSXA03XsR/5g7wt31CjMIPmnTpx6NAhcnP/bqeWl5dHRItuPjnMbjYoKIpS7vZSoAm6wOf1fn//o+pOLM7TFJhr++T6QghRw2yga5Nw8rMzOJ28n/0r43CcOEaL6GjS0hT27t2LpmmYTCZ0XcdgMOAwWDGE1fXqOFQFOjWuxbUdG1ZoeynQBF3g83a/PzQNdCe1j/1GVnQvr2aHCiHEmRrVsvLl/VeW/O9Tp8by5ZdfMmfOHLKysnA6ndSsWROj0Uhubi6aptG4300enYUujabDvrTTjOpS/YIeBPABdl/xVr8/XXOhO+1E5B3ltnoptG3XvqSJrRBC+EJM/TASEhJ49913ueqqq2jSpAk//vgjd999N/v378dut7NgwQKuueYaateujcPhIN9S2yf7e8W99/5Mzvb6tX2t2mZ1umvS/B0s/sPzkmKW/BMcm/MU+Vkn0HWdxjc9jbH1leV/oRBCuEPXUHf9gO2PpQwbNoxhw4Zx1VVXYTAY2LhxI6tWrWL16tXs27eP3r17c/XVV3PFFVfw2q9Z7Dnlm8SW6nBmrzRBN0Up6vfn2betuBz0aRrCsYP7+P7774mNjcWpSpUWIXwhyJ7Ny6QqMPPZcRw9epRx48axd+9eRowYQWRkJM888wwmk4l33nmHjIwMZs6cSdOmTVmwYAEH9u7y2ZjO7L1XnQRd4PNGvz+D0UjqxsU0a9aMefPm8d5779Hvym5eGJ0Q4lzS4qtI6xqFTHv3TerXr8/o0aNJTk7m//7v/0hKSmL27Nm0aNGCWbNm0aFDB2JjY/niiy9o1KgRNw3s4fHD/oUEeu+90gTdUifA2NlbPej3pzO4fQM+HtOVjIwMvvrqK7788ktSItpjunwEmuL7OnhCiOCiO21clrmOEf26MGDAALKzs/nll19K/k/Xdfr06UPfvn3p06cPHTp0KMk5yMi10evNNd5N6jvHiM6NmXprZ59d39uCMvB5VLnFaadz5lri/vsaoaGhJdd7efF2th7PB6/nTwkhgpnFoHBHWyvW5N/55Zdf2LBhA5GRkfTp06fk/1q0aHHBmbFnD/vlGxgbxWd3V59Vr6AMfABxmxJ5ddleChwVfwoKMak8fnVLNsx6kw0bNrBgwQJ25oXx6rJ4Cp0un/1SCSGCkY7icpLz8xc0tR0pmc317t2bBg0aVOpKO5OyufXT3yisxP2uMqrbjC/ozvEVKy6rU5GgdW45nnv7fsaXX37JNRNeJrTPnTj0oNsqFUL4kq5jVexM6mrl9imzqFWrVqW+PC0tjT///JM///yTXbt28eeff3LC2ITwfneD0bvn7gK9915pgnbGV8zdbg87k7K55eON2MrrkSSEEG6oSE+7/Px89uzZUxLciv/rcrno1KkTHTt2LPlv+/btWfxXhtdXqAK9915pgj7wFatstwdfr5kLIYKb1ajyyKAYxvVtiaZpHD58+LwAd/ToUdq0aXNWgOvUqRMNGzYsc8/vQg/7lVVdz/FJ4HODV7KkdL3ot0YIIcrQsDAJ/bcv2L17N7Vr1z4ruHXq1ImYmBhMJveK4hc/7P92MJOf96ejuREJQkwG5o/tUW2KUxeTwOeG6esPMnV1gk/Tg4UQoqU1nxeuakDHjh2JiIjw2fu4m+xXHXrvlSZok1s84fVC10IIUYpOsa3p06ezz9/Hk2S/6kgCnxu8VehaCCHKUtXZkmN6NKdTdIRbyX7VjQQ+N4Rb5ccmhPAtHRh1ueclFiujU3QE08d0rXSyX3Ujd3A3FBW6TpXlTiGEzwxoE+m3IFM31MK4vi398t5VQU5eu8Ebha6FEKIsqgIT+rfy9zAuWhL43FAv1EK/mEg5jSCE8ImOjWtV6z20QCeBz00T+7fCapRODEII71KAoR0b+nsYFzUJfG66tEkEU4bGEmKSH6EQwntMBqXKk1qCjdy1PTCmR3OmDG2L1YdNHt0hNQmEqL6a16t5UWROBrLAumNXQ2N6NOfrcT2JCgucX1TpWC1E9dWoVoi/h3DRk8DnBZ2iI/j0zq4BN/MTQlQ/BlUeXH1N7tRecmmTCJ65ri1Wo/zSCiHcF251r+i0qDgJfF40pkdz+sZE+nsYQohqbHfKKXYmZft7GBc1CXxeVsMsxXCEEO5LSMvltk83Ebcp0d9DuWhJ4PMyfxew1nVdsjqFqOYKHC5eXbZXgp+PSODzskAoYC1ZnUJUfwUOjVeXxfNncra/h3LRkcDnZUUFrP33Y5WgJ8TFo9Dp4sN1B/w9jIuOBD4vG9UlWpYahQhwuuaqFn+nug5r96WTmWvz91AuKhL4vKxeqIVmdWv6exhCiHM4TqaQv38zeXt+AV2vNqsjCrBwe7K/h3FRkcDnA40ipPKCEIFEc9g4vWM56d+8jD1tP7rm8veQKqzQqRGfctrfw7ioSODzAam8IERgUQwmzA1bE959JOYGrVFNgVNisCJyCh3+HsJFxf8piBehQMjsFEL8TVFVQtv2QWt1BYqh+v19SjUX75IZnw/4O7NTCFE61WRBUatXH02rUSW2YZi/h3FRkbuzD4zqIr20hBDeoYP05/MyCXw+UC/UQr+YSKpJ0pgQIkApCgxoEyn9+bxMAp+PTOzfCquxei2pCCECi9VoYEL/Vv4exkVHAp+PXNokgilDYwkxyY9YCEHRafRKCDGpTBkaS6foCN+MJ4jJXdmHxvRozpShbQkxGWTZU4ggpes6ussJhaeKgl8FA+DVbeszpkdz3w4uSEng87ExPZozf2wPBrerj8Wontel3WpUsRhVeraoI5mgQlyMNBfZG+ejGa1Fm3YVfApevTdNujP4iKJXh4J1F4nMXBsLtycTn3KanEIH4VYTsQ3DGHV5NHVDLcRtSuSF73bhlOcRIaqcruugubx6zk/XNBzHdmNs0BrVZK3014eYDMwf20OWO71MAl+A6XvvFI7V745LVyv8ZCiE8I5IQyG9O7Ykp9DB1gMpZNsVFNX9B1HdaaN5mEJintGt6ygKDG5Xn+ljuro9BnE+mVoEmEMrZ9HpxE8Y7FKbT4iqdiR+J+qW2Xx2dzdap63HgOb2tTSHnZM/zyHxNG4HT+nO4BvVr3bPRSQj18bCbcnEp+aQU+jEqNlxxVzFhlVLqNPFhdL2WpwyHxeiytQKMfPuuy/zxRdfYDabeWHOfby37ggFjooHwKIlUycnf/oUg7UGuq7jydpNcXeGcX1benAVcSZZ6vSDnUnZTFt3gPUJ6QDYnGf8UbmKitE6kv8ipMXlOF3yzyNEVdAcNqLSfucyawYzZszAbDYTFhbGFXdM5kBYJ+yaDhcIYcW3UuPpVFK/fwdbyn5qD32Emu37ezy2EZ0bM/XWzh5fRxSRGV8Vi9uUyKvL4il0ukrPajYUFaM1Nb0Up1Mrelr0YI9BiMrQq1GfOm9TFIWd305nW142iqJgt9s5efIk8Us+JVsNx9x5GJZLuqDr+lndHYpbHDkykzj50wwKE//AHF6Xml1vxNqii1fGJt0ZvEsCXxUqCnp7K7ZsokiwE1XLmZOBoWYEVMPuBVActOFCs7Iyv1bTyD/4O868bAAMBgM1atQgJyeHw4cPo6oql5BL7dQNHLc0wRZaH90UguIsgOzjFOxey+hRNzDTlk/T0a9Aw3boKKhG73RVqGEKzocRX5GlziqyMymb2z7dRIGj8g0wg/kpXFQdZ04GroIczFGXVK/fN82Fgo4jJQFjwzbgRveFEJOBtwY35I4hvalTpw5JSUkYjUUPAGFhYWRlZdGgQQMyMjJKPgZw8uRJAEwmE3WuuIGave/EqXuWCXouzWHDtvUbnrmpB+PGjcNsNnvt2sFKphVVZNq6AxQ63ez6rOvomgtdcz/DTIjyGMPrYanfAkVRqB7Pwzra6QxuaWNh67NDmHPfFbDta8yGygXtEJPKU9e24T/PT+bJJ5/kyJEjHDt2jIkTJ5YEPVVVSU1NpUuXLsydO5ehQ4disVhQ/xfgLO2vxtzjNlyKwetbExaLhabO4zzxxBNER0czc+ZMXK7q00E+EEngqwIZuTbWJ6RXtlRfCUVVQdOwJ+5Ad9qryU1JVGfVYcanO+zcVD+LWU/dRXryYfr160fn0Fx6Wo4RYqrArE/T/lcPsy0525aSm5vLE088AUDDhg2ZOnUqmZmZbN++neHDh2MwGNi8eTO33HILx48fZ/HixaSmpvL46x9Qe+B9bh1QL4+iwMC29fn917UsX76chg0bMmHCBJo2bcqCBQvkXuAmWeqsAtPXH2Tq6oSzszcrSXPYKNj8Nabk7YQMewpXaJQXRyhENaPr3NhCYd6z93LzzTfz448/smnTJjIzM+nduzeL1m1lzo501u5Lx+l04jrjGd9qVLE7HDRSTvLhxBuw5p/gyiuvZOPGjcTExJT5lpqm8e677/L4448DRQ8HtWrVouOE90nSauOLG+m5lVt0XWfNmjU8+OCDHDp0iMaNG/PBBx8wZMiQavGwEihkxlcF4lNzPAp6UNQ5+qqb7sKk2fhy4qDzan4KEVQUnW8WLuT1119nwYIFdOrUiRtvvJHmzZtzyy238M2nU5k+pisbn7iK4c0U8navxXFkO0Pb1mPS1a1xLHyC6aO70K5BKHfddRcvvPDCBYMegKqqPPbYY5w4cYIGDRpgMpkw1ozgiL2mT4KeQeG87gyKojBw4EB2797Nt99+i6qq3HjjjXTo0IGff/7ZB6O4OMndswrkFDq9cp1ft++hT58+LPp0KqfWz0R3SDUHd8lCR3WnotaOZty4cVgsFpYuXcqePXto06YNWVlZfPzxx/zzn//krX//m0OHD6PrOi6ni6TkJH76aQ0Go5GTJ0/y0EMPoaoqQ4cOJS0tjdOnT+N0XvjvNTIykqSkJDp37oyzaTdMJu9kbp7LnnGUqJyEUj+nKArXXnstCQkJLFiwgLy8PK6++mq6devG9u3bfTKei4ksdVaBSfN3sPiP455fSNeITt3A7/OmoigKprZXUXvgfSgGs5z1qwRd03BkHcNUpxEoqiwRVVNXNA7htkbZPProozRu3Jjdu3djsVjo3r07edZ6JNZog96wHeg6mnLGnp/TDoqCKT2BY6tn0sjiwOFwUFBQQH5+PgUFBSXHGUJCQs7677kf26C1Qm/WzSffnzVlJwfnPE+vXr2YN28eDRs2LPO1uq6zcOFCJk2aRHp6Ot27d+eTTz6hbdu2PhlbdSeBrwp4Y4+vmO60kb3mM07vWI6iKIQ2bUe3fzzDwcKaaHr1SErwN81RSPq8KYSEWGl/679Icoai66AYKp8GL/ynuJrJ6dOnueeee0hISCAlJQVj7ABC+9yF3VVO8QdNw2RQeP76Dmf1vdN1HbvdXhIIi4Phmf8t/v9nHQ7hQEGI1783q1HlkUEx1M/axb333kteXh5PPPEEzz33XMkxi9K/JY25c+cyefJksrKyGDhwINOnT6d58+Zlfk0wksBXBTJybfR6c41XAh8U3bhPzHua63tditVqZe7cuZhb9SDyxicl8JVDcxSS/2scOduX0rlzZ7p3784Lr7/Nl78ksODnnRzTwlHcOAcmqprOw/2a8ciQjkX/S9d5/fXXef/HPzBfcRvKGZVVylOc2elO01evreacw6jobH56EHVDLdhsNp5++mn++9//UrduXebNm8eAAQMu+PUul4uZM2fyxBNPkJOTw/Dhw/nwww9p0KCB18daHcn6WBWoF2qhX0yk166nGMyEdb+JBQsWMHv2bFwuF2Ht+3tUCDfQeeP5TNd1bId3kLXlOxwOBzt27ODjjz/m84/+yyPXdqRtTCuUi/qneBHR4fXXX+f2229n1apV6LrOdXdOIKzP3ZUKegAFDo1Xl8XzZ3J2pYcR2yDc+w2kdY2c+N+4bcQwTp06hcVi4Z133uHQoUNccsklDBo0iKuvvpr09PQyL2EwGLj//vtJS0vjvffeY82aNTRp0oQxY8aQlZXl3fFWQxL4qkiLejW9di1FVQlp2Q01JByr1UpovYbUaH3FRd2/zxszWUVRsBoVhg0bRs2aNYmKikLTNP71r38RFtmI1XtSQPZKqwdFoU7fO2nZbQD/+te/aNGiBQ9OX0IlmiicpdDp4sN1Byr9daO6RLv3hhcQYjbx8u19+P3332nYsCFz5swBoEmTJvz2228sWrSIHTt20LhxY1566SW0CxS2MBqNTJw4kYyMDN544w2+++47GjRowLhx4zh9Onhbn8lfeRXYmZTNrN+OePWaRoOBtxb+QkFBAc98tgT1Ig56xUWAvaF1+0v5/vvvSU5O5pVXXmHAgAEYjUbUlj0l07Oasbk0MqIuZ8eOHcyct5BkV7jbxwrc7XtXvJrjrT+/omXXWMbdPITU1FRuuOEG7rrrLnr37l0yU7v++utJTU3loYce4uWXXyY6Oppffvnlgtc1Go1MnjyZzMxMnn32WeLi4qhXrx6PPvoohYWF3hl8NSKBrwp4VK6sDJpi4Eh2USZacq521gFdUba9f25jxYoVREREcM8995Sks1uiWpxVcV8EvjOD1T57bY+PFRT3vausif1bYTV6ti+sUHRY/cy9RqvVyrx581i/fj3x8fE0atSIGTNmAEW1Qd9++20SExNp3rw5/fv355prril3GdNsNvPss8+SlZXF5MmT+eijj6hduzbPPfccDkflOkBk5NqYvv4gk+bv4N5ZvzNp/g6mrz9YLZrmyt3SxzwtV3YhXy9eQkREBAsWL/H+xQOFpsGpVHSX52chdZeTvGP7GTVqFD///DPvv/8+N998M7Vq1UKx1PDCYEVVKw5W3igSUejUiE+p/PLfpU0imDI0lhBT5W+nRlVB0Zzk7dtIt5xfGd292Xmv6d27NykpKYwZM4Zx48bRrVs3Tpw4AUDjxo3ZuHEjP/zwA9u3b6dhw4a89tpr5a5eWCwWXnvtNbKyshg/fjxvvvkmtWvX5q233rrg0ikUrWCNnb2VXm+uYerqBBb/cZw18SdY/Mdx3ludwJVvrmFc3FZ2JmVX+udRVSTw+djCbZV/gqwoMw50XceEdw7IByLNZSd91Sege54Rq6oKrv0byM3NpV+/fjzyyCO4XC5ycnJQXYH/lHqxMKoKnaNrEWbxPHu2OFh5q0iEu33vxvRozpShbQkxGSq07Kkq0Dm6Fo8PbsPWZ4fw9o1tmDftTTp06FDS8eFMJpOJGTNmsGXLFpKTk2nSpAnvv/9+yeeHDh1KamoqDz/8MM8//3zJfmB5QkJCmDp1KidPnmT06NFMmTKFunXr8tFHH5UaPOM2JXLbp5tYtTcNm1M772Gj8H8fW7knjds+3UTcpsTyfxh+IIHPx7zxJFoaswoTx4wgLy+PKRPv8X5mWQDQ7IVkr/kc+5E/KDi0Dc+mzTrXtG/E17M/L1kSK65wr+s6BSkH0J12L4xalMZqVLEYVYa0r8+iB65k8cTedLukrleunVPoINzqnR6C4Vb3l0vH9GjO/LE9GNyuPhajel5ZQd1hQ3fa6d8ygsUTerF4Ym/G9W1J3VALd911FwcOHODUqVM0atSIlStXlvoeXbp0ITk5mQceeIBJkybRqVMnjh8vOk5hNBp56623SEpKolmzZvTu3Ztrr72WU6dOlTv2GjVq8PHHH5OVlcXw4cN58MEHiYqK4ssvvyx5zd/9RMtoon3m96pDgcPFq8v2BmTwu/julgHGW0+i51JUlfuv6oDJZPJJZhkAuo5BAdVZtZvfuqah6k4KNsahHtqAwWDAvuMHVDx4gHC5WPWfx7j++uvRNI26dYtuuk6nE7vdzv1XdcBq9X51/WBmUBTa1A9lROfGPDIoho1PXMX0MV1Lak96K1jVMCkUph5C0Tz7W7MaVWIbhnl0jU7RESU1Qh8ZFMOIzo0ZGBvFiM6NmTy4LeblL/H1Q4Owpew/72ubNWvG0aNHuf766xkyZAgPPvhgqbMug8HAe++9x19//UVOTg7NmjXjzTffLHltgwYN2LBhA0uXLuX3338nKiqKt956q0LJW2FhYXz55ZdkZGQwYMAA7rnnHho1asR7X37Lq8viK9ZE+wyeHBXxJTnA7mO+OOCqKDC4XX2mj+la8rGxs7eyam+aV/YSdacNo9HMZfVN7P9+Glq9VuS3HODzBBpd1zEqOg30TLRdyzmwZQ0AGRkZNG3aFCWmL/plN6EYKvdUrqLj2vIVx9Z/hcvlok6dOuTm5mK32zGbzdjtdgwGA/2fnctBW02f7McGMlUBRT87Qerc5sdGNAxGIwPaRDKoXX1W7Ulj7b50bIU2OKPLuO60YbWGMKBNJBP6tzqrwPK53vx+Ox/+kohidD+pSNWc5G3+mk5hBRzueC9O3f30SotRZeMTV1E31HdJTpqmMXToUFavXk1cXBy33XZbqa+bM2cO99xzDy1btmTDhg3UqVOn1Nfpus6zzz7LG2+8QcuWLVmxYsVZVVpcLhdPPfUU7777Lg0bNmThwoV07979gmPMyLWxcFvRvmlGTj67tm8h3WHGXLepW8d9Srtf+ZvM+HzMFwdcrUYDE/q3Outj3sgsA9BdLjrUNdD5yAK2vPtP/nXfrbw9cVSVpPorukYL20GWPTWCnWt/IDMzs2QWdvz4cZLWzCX7pxmgOSs4Hh1cTow7vyVry3eYzWbMZjNZWVk4nU6++eYb8vPzGTFiBJqm8evHz6I73dvjqc6ubFoT2+8Lyd21BnPGPlyHf8d2eDumlF3UOHmQQa1q8fi17UpmbDdd3oSPRnehR9oSaiX9gjFpG+b0fdj2/ULB5gUsf6DrWTO7sqhHtqAonv1tKKrKus/fYNUPi7iqbQO3jxUoCgxoE+nToAdFHR5+/PFHHn74Ye644w6eeeaZUl83evRoDh48SF5eHo0bN2b58uWlvk5RFF555RX27y+aQbZq1Yrnnnuu5O/DYDDw1ltvcezYMZo1a0bPnj257rrryM3NPe9apSWt/Hoom1MRMZgjm7t9xtXdoyK+JIHPx7y9DFl8zufcm4onmWVnUgwG/spwUadJKx588EFefvllRt90PY6jO33fAV41sD/lJOHh4SUBLysri9DQUFwuF7quU/fkHlJnP47t6K4LJLzooGkYMg4ywLWdlF++Lqm9aLfb6datGw899BAPPvggK1euZNGiRTz22GPUiI5F04Orc4PutLHkiw+w7VxGwdrp2Ff9l/bZm8j+7jUe7V6Lvz78Pz697++9qGJvvfUWf/6+kUWvTiDxq5e49NRv5Kx4n87WTLZtWFeh91695FsMJ/ahuHn6TlFgUPuGtG3RBPDs4a+0h0lfeuedd5gxYwavv/46N954Y6mZlE2aNCExMZERI0Zw3XXXMWHChDJ/Ny+55BLi4+N55ZVXeP3112nZsmVJMASoX78+v/76K8uXL2fz5s3UrVuXt99+u+Tz5SWteMrdoyK+IoHPx7x1wFVRzj/nc64zM8s8ei+jiR8O2nj55Zc5/L+WLrlbvsHgyR5bBemRrbjpP6tQe91DePeRuIwhuIwhhF0xgnrDHyO3yxjCut5A4eHtfDC0Ae1ch7GnHiDCDFpuJkp2EuqelTzbKZ8xjbL49rP/kJeXh91ux2Kx8OKLL7J582amTp3KnDlzGD9+PBMmTKDNsPuLumgbTRWuEqPrOrrmQndV31mirhjI++snQkJC+Oyzzzh+/Djr1q1j7ty5PPDAA6ilPOUvWLCAadOmsXDhQv7v//4PVVX54IMP6Ny5M7GxsSxbtqzc9z116hQbN24ke8N8LG7+vp4brNx9+CvrYdLX7r33XtavX8+PP/5Ip06dSj1Irqoqc+fOZe7cucyYMYPY2FgyMzNLvZ6iKDz55JMcOXKEsLAwYmNjmTx58lnBcvDgwZw4cYJJkybx5JNP0rRpU16d/3OFk1bc5e5REV+RPb4qsDMpm9s+3USBw71D7CaDwsDYqHL3TIr9nJDOP77YgubBv6zutFNj1WuMGj6EK664glq1arHgj1SWpVhxUTVFnHWnHVQjRTM4F4rR/PfnHDbMFgun4n9jaDMDi2ZMxWg08u6773LLLbdw3333sXjxYgoLCzEajdSoUYPPP/+cm2666az3yM7O5p7JL7CjTj844/qVGiMKitE3Pdl8TddcZH89BS0jEUVR6NatG5s3by464lFK0Pvtt9+44YYbWLJkCS+88AJhYWHs27ePzz77jHnz5qFpGvPmzePYsWOlfn2x+fPn89JLL3H55ZdzxejHeHv1ARRTxZOLLlRYuij7MJ5C54Vv5IpSFDynDI11q0C1tyQlJXH55Zej6zo7duygSZMmpb4uOTmZ3r17k5qayqJFixg6dOgFrztt2jQeeeQRoqKiWLZsGZ06dTrr8ydOnOC6OyeQ1vF21Er87N01MDaKz+72TQunypIZXxVw90nUoCgMblefTU8OrNCeSbE9KTmYDJ7906qqgrNpV9555x3uu+8+/vWvf5G5aTFdlERMilYlpZwVY1GfQUU1nBX0ABSTBYcGIa26s0btxCWD7iIlJYXrr7+eSy+9lK+++orCwkKaNGlCZGQkP/3003lBDyAiIoLI/mPcD1yqEZPi8vCohT8phHS9EZfLhdFoJD8/n/DwcFasWHHeKw8dOsTIkSP59NNPefHFFwkNDWXOnDk0b96cxMRErrzySvbt20d4eDh//PHHBd/1u+++w263M2rUKE5t/YFT675AcxSWu5xe0ZWPCx0rKD5aMbhdfeaP7eHXoAdFS5pJSUk0aNCA1q1b8+uvv5b6uujoaA4fPszNN9/MsGHDGD9+/AWX5SdOnEhKSgqNGzfmsssu44EHHjhrSTUqKorLxjyJoQqCHnh2VMTbZMZXharqSdRbmaT9m9fg/Tu6EhZ2dor3n8nZfLjuAGv3paNQtIzhb1aTynWNbPz3wZtLOmh36dIFu93O0qVLy3yK9k7LqOJ/zOpZL1V32glZ+Sp1Qy1s2rSJ9957j5kzZ7J169aSWVtWVhZXXnklEydOZMWKFSXltEwmE5MmTaJp06bcfvvtdOjQgTFjxhAVFcWUKVNKfT+Hw0HdunWx2+1ERkZis9nIzMwkKrYrja+5l9OhTc/7vbIaVXSoULbomTJzbUWVXVJO/++8n4nYhmGMujza54kslaVpGjfddBPff/89n3zyCffdd1+Zr12wYAGjR4+mefPmbNiwgcjIC3d/+eKLLxg/fjy1atXihx9+4IorrvB6u7QLKe4vOK5vS5+/V0XIjK8KVdWTqLfODhqsoecFPSj9rNKAmEisWoFXKqy4o9ChseCAC2NUS0wmE5deemnJeaaygh54qbKODtU16AEoKGSGt2LHjh3ExMTwySeflHT0BrDb7YwcOZIhQ4awcuVKLBZLSdADSmZ8DRs2JDw8nE6dOpW6z3f8+HHeeecd2rZtS35+Pq1bt2bp0qU0bdqU1q1bk5GwnXHt1FLPwJV2DrAi6oZaGNe3JVNv7cxnd3dj6q2dz0vUCRSqqvLtt9/y9NNP889//pNHH320zNfefPPNJCYm4nA4aNKkCT/88MMFr/2Pf/yD9PR02rZtS48ePbj77rtZ8PtRb38LZdKBUZf76LyxG7xzglRUWHHQ8OWTaFVVsSi+qRTbmRTDqI9+xeGnNQTFYKZ2r1uxbp3NgAEDePvttzGU01XdK5V1qntnDKMJc/1LyCws5OjRo1x77bUkJibyzDPPMGLECO6//34iIiI4ePAgJpOJr7766qyC0M2bN2fNmqIzlz179sTlcrFr1y6ysrIwGo0sWrSIuLg4tm/fzsiRI+nYsSN2u5233nqLjh07snv3bm6++WYOHDhAjx49zvu9CjYvv/wy7du3Z8yYMezevZvly5eXul/aqFEjDh06xD/+8Q9uuOEG7rvvPj755JNSk7Mycm0s3H6Czg9MJWRIEis2b+CnOSswRl7i8++nqo6KVIYEPj/x5R930dnBVI9u6O5Usbi0SQTPX9+BZxf9gV7JQ+beoKgqpmadmdCnIY89OL5CX+OryjrepABRYRbSTuVhMBhweXBIuyya0YqqqhiNRtavX0+nTp1ISUnhpptuIiUlhaioKMxm83lBD/6e8QFceeWVbN68mdjYWIYNG8bu3bsZMGAA48eP57rrrsNqtRIdHU1eXh5XX301Bw4cQFEUmjZtiqZpxMTEeP17q45uu+02WrduTZ8+fWjTpg07duwgNDT0vNcpisKsWbO44YYbuP3221m3bh0bNmwgKioKKEqsm7buAOsTiprWFt0TDFhj+1bZ6kxVHxWpCFnqvAh54+ygu0sTY3o0p23hXnDaizorVDGz2UzYpYMq/HpvzY59yWoy8FSfuti/fpzJg2Jo3ygc1cuxz4ILk8lEkyZNyMvLIysrC4fDwZIlRR1ATCYT8+fPx2w+P/O1WbNmJCYmsnHjRn7++WdmzZpFZmYmmqZx6NAhFi9ezKhRowgJCeGPP/7AZrMxatQoTCYTW7Zswel0kpOTQ61atbBYAmdW4G9dunTh8OHD5ObmEh0dzcGDB8t87ciRIzly5AiaptGkSRO+//778s/meVg8oCL8dVSkPBL4LkKenh30dGmijeEE9XbG0SokH1V3oTmqrmKDQ6NS54V8UVnHm4pvHGsXfsF9Y25lwoAYZt1zhcdZu2dSNAf5KQeYOXMmCQkJ3HLLLezatYucnBwA9u3bx9dff11q0EtISGDq1Knk5eVx99130759e6xWK4sWLeLw4cPUrl37rNd/9913GI1Gbr31VgBWrlxJzZo1SUhIuOBebLCqX78+R44coVWrVrRt25bVq1eX+rqMXBuL9+Ux/LWFdJgwjbHfHODZxbt8ejbvQiqSfetPgfsXLzzizyoWISEhhDmy6KPEs2XKNeT9Np+83WvpHGlAKSy/UrynKtNaxmcFvj2ml9w4RnaKIi4ujvvvvx/wftdvUKiRtouDBw/y2GOPMXv2bKxWKzabjUaNGpGcnMymTZtKXn3ixAnef/99unfvTt++fTl9+jQtW7Zk/vz5PP/883Tt2pXU1FTq1KnD9u3bz3qnr7/+msLCQgYMGADAxo0bueyyy0hISKBDhw7e+oYuKmazma1bt3LzzTczePBgPvjgg5LPlVZmLNPaEGujNuhVMKM7V6AdFSmLBL6LlLtnBzVHIbe0Nnq0NBESEoLZbCY9PR2Ds4D87d8Tk/kbG9+4i4LDO92+bkVV5ryQ94OIZ6xGFVV3ERNSUHLjmD9/Pj179qRZs7+blE7s3wpVd68gwpkUwH5kB6t+WMRHH31Eu3btMJvNFBQU0KpVK1JSUmjfvj3Dhg3jgw8+4LrrriMmJoYtW7bw0ksvkZyczNSpU2nbti1HjhwBivb5Nm7cyNChQ8/K7kxMTOTo0aPceuutGI1GHA4HiYmJDBkyhNTUVHr27Onx93MxmzNnDq+88goPPfQQ48eP93mZsYpQgPYNwz3Ovq1qEvguYpVpjlm0NKESmfQzr983tCRLzx0hISEYjUZOnDjB/v37iYyMpG3btjz88MPo2cnoTt8tfbqTlOOtAt/ualTLetaNo+/JldxUP6vkxjF9+nTGjz87WWf5nOkoO77FYvQsYmsOG1fUPEnr1q1LOgI0bNgQo9GI2Wymb9++7N69m9OnT/PUU08xYsQIkpOTmT17NoMHD8ZoLNojPTPBpWfPnvz2229ce+21ZxVX/v7777FYLCUdCXbv3o3BYKB79+4UFhbSt29fj76XYPDUU0+xePFi5v2ezLOL/vDbUmYxHYipHxbwR0XOJYHvIle5s4M92TznHXr16sW1115bZjPM8hQHvvT0dPbv309ERAR169Zl06ZNPDS8O7488+ZOUo63Cny7I8RkYPqYLnx2dzemXNcWXYf4Gu1ZeKIek+bv4Nm5P5OSdZprr7225Gvee+89ZsyYwYeP3s7Jnz5Dd9jcSyTSdXTVwG85tXjh/Zl88MEHhIWFcfz4cUaOHMmePXvYtWsXjRs3xmg00rRpUxYtWlRq38LiBBcoCnybN2/myiuvZM+ePWRkZACUlDQrDnA///wzLperJP0+Nja28t9DEGp2WV8aXDvBL5nTpXG3a70/SeALAhdqjnnu0oTRaGTlypX06NGD4cOHs3Tp0kq/X0hICIqilAS+mjVrEhYWxvr166kXaiGi4LhPUqk9Scopnh2bVaoszbs4cUXXOWufJtXalP35Vhb/cZw5f57ENOpNJszbwc6kbD766CP+85//cM899zB06FAsSVvI/+E1YsPsGCr7PKEoqAYjlhbd+PxIOCsP5VNYWFiyp/TSSy+Rk5PDww8/TK1atdi7dy+nTp1i0qRJ55XKat68eclSZ7169ahfvz4HDx6kf//+rFy5kpMnT7Jjxw5uvfXWkrOVy5cvp1mzZmzYsIHQ0FDJ6KygaesOYPekEK+XBVIpsooK/Fxu4TUVPTtoMplYtWoVAwcOZOTIkXz99dfccMMNFX6fkJAQgJKlTqPRSFpaGl26dCkqcty5D3EpGpqXN989TcoZ06M5Py2YyeGQGFKUOj4rx6ZQdERhytCiGc5tn24qs4ydphT9ia7ck8aaPakU/vYLHWJjefbZZ4mMjKR9+/Z8+umnNGnShMxcG++v3c/K3WkcP1WArlOhThNF9VCt1Op/L1p4ON+9/RiPPfYYBQUFDB06lOeee47//Oc/PPDAA+zdu5eTJ0/y3//+l4cffrjkGmcudULRrO/MfT5d1zGbzYwePbrkNTt27OCaa65hy5YtREcHapJRYMnItbE+IT1gSsN6o2u9P8iMT5TKbDazevVqunTpwq233lpSvqoiQkJCcLlcZGVlkZCQgK7r7N27l+HDh7N69Wo6RdfCvuUrcNm9Nl5vnRfavnoxbwxredbsuFVkTa+cm1PR0Z128vZt5Cr9T4AKt4PRdXDoCmrXUWw8oRIaGsobb7zB8uXLS44B1A218MLwDnw0ugtWo6HC7ZVKxme2YuhyM4NvH8uwYcOYM2cON954I+Hh4Tz22GM8++yznDx5EovFwhtvvHFWmaxzA9+VV15Zss+3YsUKZs+ejaqq9OrVC4D8/HzS09MZPnw4e/fupW3btpUaa7DySok9Lwq0UmQVJYFPlMlisbBmzRo6d+7MnXfeybx58yr0dSEhIdhsNsLDw0lISMBut7Njxw7at2+Pqqq8//77XBcTzsmfPkPRnB53NvDWeaG0tDSOHDlC165dz6rx+NXYnp53u1Dgwatas3nKNbQ/uZEZM2Yw5ZvtFDgqN6NUjBbqDPwni9Zt5Z577ik1uE1bdwCby82ZqsGEuXNRBmfbtm2ZPHkyr7zyCgaDgenTp9OtWzf27t1LbGws99xzT8lxhdq1a6NpGtnZ2cDfCS5NmzYlMjKStWvXcvPNN5eU3tq2bRuKotCvXz+OHz9O9+7d3RtvkPFKiT0vCcRSZBUlgU9ckNVqZc2aNXTs2JH77ruPL774otyvCQkJoaCggDp16gBFASUiIoL9+/fTpk0bTpw4wVdffUUzx1HyvnuZ1pEhboxMx6DAkPbeOy+0Zs0a+vXrV5KpWMwbBQGuaVefRwa1oUFETdauXcvQx94D1c29EaOJhXtySv2Up0thiqpian4ZuU6FnJwczGYzzz33HLfeeiv169cnOzsbp9NJQkICnTp1Yvjw4SQnJ6MoylkJLu3btyc1NZWMjAzatm2Lpmnce++9Je+zdOlSatasSe3atcnNzeWqq65yb8BBJpBK7AViKbKKksAnylWjRg3Wrl1Lu3btmDhxIp988skFX2+1WikoKKBmzZo0atSIjIyMkizRvXv3EhUVhaZpmM1mpjxwJ6smD+TqernoLscF+4sVUxVwHNrK59c38Op5oZ9++omBAweW+jlvFgTIyLWxJ1tBuUCj1gvRdVi7L53M3POPhXy2ZndJWyZ3mQwGLLF9SU9Pp127dmRnZ/PTTz9hs9lo2bIl0dHRZGZmcvz4cS655BKuu+46Tp8+fVaCi8Fg4IorrmDTpk1kZmai6zo9evQoeY+1a9fSvn174uPjAejYsaNHYw4WgVJiL1BLkVWUBD5RITVrFs1U2rRpw+TJk8+qHnGu4hmfyWSiXr165Ofnc+ONN7J69WrCw8PZvXs3LVq0wOl0MmHCBJ588knmPPMPrL9+iP3gZnSn/byzfsXHLoa0r8/iCb14d2Rb7rnjZrKysrzy/em6zurVq7n66qtL/by7Rx5Ku0F4Y59GARZuL7pOTk4OX3zxBVdffTX/mbUQl4d/1k5Uugy8npycHGw2Gx07diQlJYX8/PySAtQAKSkpZGZmYjAYuP3222natOl5+3wbNmxg27ZtqKpacqwBID4+nquuuoq1a9dSo0YNyeisIH+X2Av0UmQVJYFPVFhYWBhr166lRYsWTJkyhXfffbfU1xUHPk3TUBQFRVHQdR2Hw0F6elGV+OPHj/Pf//6XUaNGMXXqVHr06EHSH78StnM+S8ZexkMDWlLjxF+EnU5kWIeo845d3HrrrYwcOZI77rgDl8vzCiaHDh3CbrdfMMmi8gUBSr9BeGOfptCp8Z9ZC2ncuDF16tTh0Ucf5cCBA5hDa3l03WL1GjZhxowZ7Nu3j2bNmlGvXj2ysrKw2+2kp6cTHR2N0WjE5XJx+vRpEhIS2Llz53mZnStXrsRms9GrV6+Sru4nT54kNzeXG2+8kU2bNtGoUSOvjDkY+LLEnsWo0q5hWLXoWu8p6cAuKu3kyZP07duX5ORkHn/8cZ5++umSz2Xk2vhszW4+mPcDxjpN0FUjTlsB4eSRmbCNlko6qUcO0Lt3b3bs2MG+ffsYMmQIq1at4sorr+S7774rab9it9uZNGkS69atY/Hixee1rHE6nQwaNIhevXrxyiuvePQ9ffzxx/z666/Mnj273NdeqAN9RTqF3zvrd9bEn/BovABqym6G1Ehk0KBBNGjQgBo1avDfLaf46VDFi3SXZUTnxky9tTPr1q3jlltu4ZZbbmHevHkUFBRgt9sZMmQIK1asICYmhhYtWrBz505Onz5N06ZN2bmzqCxddnY2kZGR1KhRg3//+9+sW7eOuXPn8s0333DLLbdgs9no0qULTZs2LbeRqvjb2NlbWbU3zWtHGhSlaDl+ytBYxvRoXq261rsrMBaMRbVSu3Zt1q1bR58+fXj33Xex2+3ceN/DfLjuIGv3ncCl6Riad6X479IYCvmAtXsrjmkajsgd/LhlGQXHEhk8eDArVqzg7rvv5qOPPjqrcazZbObDDz/kk08+oXfv3nz55ZcMGTKk5PNGo5H58+fTtWtXunbtyo033uj297R69WqGDRtWodd62kzYW/s01w7sx7Q7/3XWx7plH+TXowle68XYv39/li9fzrBhwxg7diwff/wxqqqyfPlyWrduzb59+ygsLGTMmDFMnz6d3bt3s3TpUq677joiIiLQdZ1evXoxdOhQnn76aVwuF99//31JNZikpCRGjhzp0c8h2Ezs34pf9mdQ4PBspaOsh7RgaAQsMz7hthMnTtC3b19yoi4lpNdoNAxU5JdJ1zQUzUGdI+v5a/FHvPHGGzz66KMX/Jpff/2VW265hUmTJvH444+flca/ZcsWhg0bxi+//EKbNm0q/X1omkZUVBR//PFHlRyknr7+IFNXexacNIeN7F/mULjjB5o3b84NN9zA2LFjqd2wKb3eXOPZUqrLwb/a5HDv6FtKypPFx8czePBgxowZw4wZM8jPz8dsNnP69GmMRiNWq5UXXniBSZMmlVTpCQ0NJSYmhsmTJ/Pvf/+bTp068fHHH/OPf/yDdu3asWjRopLGt71793Z/vEEoblPi/86AVvzf2ahCh0a1qBtquShncZUhgU94ZNrKXfx71QEwnt+rrTyao5Db21h4858Vm2klJSUxYsQIYmJimDFjBjVq1Cj53GeffcY777zD5s2bCQurXCWJ7du3c8cdd5RkGPpaRq7N4+BkMaq8cLmLLz+ZxubNmzl58iQAqqoSfduLKE0uda/RqK6Rn7CJ7CX/xmq1MnHiRB544AGaNm3K0aNHGTRoEMOHDycuLo7s7Gw6duzI9u3bsVqt1KhTH63ZFZijmmMMCaNxVB32/76egZfU4OvZn/PEE09gsVh46623mDZtGgMHDuSSSy6hsLBQklvcUBT84sus+lPs3KVMIYFPeGBnUja3fbrJoyWXEJOB+WN7VDgtuqCggLFjx7J7924WL15M06ZNSz43btw4MjMzWbBgQaWqlrz11lscPXr0gpmq3ubJPo2iwOB29Zk+pmvJx+x2O+vXr+ejjz7i1z1JWIc9iWo6v5h0eUJMBj4aFcN/np/MDz/8gNFoRFVVBg8ezIMPPkj79u0ZOnQol112GYsWLSI7O5umnXvjiBmIsUkndF1HNf0dxBSXAx0Y3CmaHuE5vPPSFJKMjbljwmMcOHKMXdu28MIjY7m5S3DOPDzl6X5zsJLAJ9zmjU320m7i5dF1nXfffZe3336b+fPnl1T7t9ls9O3bl5EjR/LEE09U+HqDBw9m/PjxjBgxotLjd4eu63z902aeXn0Cl1L5s4EVeViY+esBXl++D3slJpVFRy/+zkI9fvw4EydOZMmSJZhMJsLDw6lduzb3338/ixcvJiIigg1pCqF970YxmCt0LlHXNNA1FMPf+5zFN+j+bSKZ0K8VlzYp+/sSpQuGhBRvksAn3OKN5bpiFqPKxieuqvQf6MqVK7nzzjt54YUXGD9+PIqikJyczBVXXMGsWbMYNGhQudew2WzUq1ePo0ePUrt2bXe/hQpJTExkzpw5xMXFYbPZ6Hb7I/yhtMTmqvif4LnB6UIquhSmaxqK7uQKYxJTbu1Hx44dS0qLASQnJ/PQQw+xZMkSjEYjLVq04NixY9TqOgw6j3Rrmbs0siQnqoqc4xNu8Wax3DMPY1fGNddcw4YNG/jggw8YN24cdrud6Oho5s6dy5133nnWmbKy/Pbbb7Rr185nQS8rK4uPP/6YPn360K1bN44fP85nn33GwYMHmf/qgzw7rJ3H5wLLUl4vRpMKqu5CT/qD1DlPsuitR7nsssswm83ExMQwbtw4Vq9eTZ06dVi0aBH79+9n8ODB7N+/H1dENMplN3kt6EFRRZoCh4tXl+0lblOi164rxLlkxifcMmn+Dhb/cdxr1ys+N+aO06dPc9ddd3HixAm++eYbGjRowNSpU4mLi+PXX38taZNUmmeeeQZN03jttdfcHPn5CgsLWbp0KXFxcaxZs4YhQ4YwZswYBg8ejNl8fqCoin2a8pbCTp06xS+//MKSJUtYtmwZx48fR1VVnE4niqLQoEEDevbsyYgRI2jdujX/nLWF7NBmbpddK09l936FqAwJfMIt3jqEXWxgbBSf3d3N7a/XNI2XXnqJzz//nEWLFtGlSxfuuOMOLBYLM2fOLEl2yci1sXBbMvGpOeQUOtm4bjXD+1zOk7f092gvRNM0fvnlF+Li4vjmm2+47LLLGDNmDCNHjqRWrYpVUwmkfZqsrCx+/vlnfvzxR5YvX87x48cxGo3YbDYMNSNoNP4zFC/O9s7lzt6vEBUlgU+4JZBmfGf69ttvGTt2LO+++y4jR46kZ8+ePPDAA1w57HamrTvA+oSikmm2UmZV7iRX/PXXX8TFxTF37lxq167NmDFjuP322y+6xqrp6emsX7+eVatW8eMRJ3qH687K3vQFd/d+hSiPBD7hFm8cwi5mNao8MijGa9Ui/vrrL2688caSQ90D/vkcoX3vwqFduPVfRZMrjh07xrx584iLiyMzM5PRo0czevTooOkw4O2HnrJ4+/dCiGKS3CLc4s1iud7u4tyhQwe2bNnCrl27uPPFj6nZ+07srvL73V4oueLMDggdO3YkPj6e9957jyNHjvDGG28ETdCDqusJV+jUiE/xvO6oEOeSWp3CLcXNWb1xjs8XXZzr1KnDG5/M4+bpG3DplesgW+DQeHVZPG3r1+T4X5uIi4tjxYoVDBgwgPHjxzNs2LCSUl7BqCp7wuUUOqrsvUTwkMAn3OaNYrm+7OI8/ZfDaKqBChUQPUeB3cENT33IJcdWM2bMGD766KOSjvLBrqgnXKpXlrnLE251s0u9EBcgS53Cbe42Zy3myy7OGbk21iekuz8bVVRqtOrG4uWrGTdunAS9M/iyJ9yZzuwSIYQ3SeATHjmrOWslvs7XXZy9ccBeVRS3DtZf7IqXuStRDtUt3t77FaKYBD7hsZIKIe3rYzIoqGXcEFUFTAaFIe1938XZW13OJbmidBP7t8JqrHyd0Yry1d6vECB7fMJLzm3OujMpm4S009icGhajSkz9MC5tElFlh7G9lXkoyRWlK17mrmxPuIry5d6vEBL4hFcFSvdmb2UeSnJF2Ypn7BUphF0Zvtz7FQJkqVNcpIoyDz379ZbkivKdWwjbWNY6dwW4U4hbCHdI5RZxUfJWl3MpmVVxxcvcy3el8OexU2gVvLMYVQWDqkjDVFFlJPCJi5a3u5yLirtQxwmDUpSxWbemmfaNatGzZV1pmCqqlAQ+cdHamZTNbZ9ucuuAvbTF8Y5A6jghRDEJfOKiVtSFvHKZh5Xpci6EqH4kq1Nc1CqTeVjR7gxCiOpNZnwiKFRFl3MhRPUggU8EFdlzEkJI4BNCCBFU5AC7EEKIoCKBTwghRFCRwCeEECKoSOATQggRVCTwCSGECCoS+IQQQgQVCXxCCCGCigQ+IYQQQUUCnxBCiKAigU8IIURQkcAnhBAiqEjgE0IIEVQk8AkhhAgqEviEEEIEFQl8QgghgooEPiGEEEFFAp8QQoigIoFPCCFEUJHAJ4QQIqhI4BNCCBFUJPAJIYQIKv8PmRsVpi5oT0oAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkuUlEQVR4nO3dX2xc150f8O+9c8dzmZXGxNo0xTXVqDUjjZhEciWlHWx2LdqJq4bAFg1AIyxKINkWoFEKWCRPLsCXoigfgj5oW0CCUKJdB2YfCPAhTwTW0lpUsnVmU0trKgtxSNNZbUlHpEmlkxFTzmiGc/swukuKoubPvefce+4938+j/9y5HHLme+45v/M7huM4DoiIiDRhhn0DREREQWLwERGRVhh8RESkFQYfERFphcFHRERaYfAREZFWGHxERKQVBh8REWmFwUdERFph8BERkVYYfEREpBUGHxERaYXBR0REWmHwERGRVhh8RESkFQYfERFphcFHRERaYfAREZFWGHxERKQVBh8REWmFwUdERFph8BERkVassG+AiJ62uVXGzK1V5NeKKJaqSNsWMkfSeOtsL144lAr79ogizXAcxwn7Joiobn6lgMtzy7i5tAEAKFdrf//vbMuEA2DgRBfGzvfh9NHOcG6SKOIYfESKmMrdw8RsHqXqDhp9Kg0DsK0ExgczGMkeC+z+iOKCwUekgHroLWC7Umv+Hz9mGsBXXn4eg1/p4RQoURsYfEQhm18pYHgyh+3Kjqf//7mEAcMwOAVK1CJWdRKF7PLcMkpVb6EHAI92HJSrNbx/dx3DkzlM5e6JuzmiGGJVJ1GINrfKuLm00XBNr1WOA2xXdjAxuwAAXP8Dq2PpYJzqJArR1Zuf4tL1pSeqN0XoSCYwPZrFqd5OodeNClbHUiOc6iQKUX6tKDz0AKBU3cGVuWXh142Cqdw9DE/mcG1hHeVq7an3t/T4n3FqWF8MPqIQFUtVKdd1HODG4gYebJWlXF9Vu9WxjbeEAE9ODTP89MLgIwpR2pa3zG4AmLm9Ku36qplfKWBiNt/WlhAA2K7UMDGbx53VgpwbI+Uw+IhClDmSRsqS8zEsVWvI338o5doq8lMdq/PUsI4YfEQhGjrbK/X6xVJF6vVV4bc6VtepYV0x+IhC9OKhFF6VWFWYtpPSrq2SmVur8FugrtvUsM64j498i9teqbj8PLZlItNzOOzbkG5+pYAf/eweHu34Cz7dpoZ1xuAjzxrvlVrDpetLkdorFcbPs7lVxscrBSHX2s8BMHRG7lRq2NzG3l7bve2ny9Sw7hh85EmzkwRKj0Pj/bvr+MnSpvInCYT188zckjO1ZhjA6ye6IvWE2i4vjb2b0WVqWHcMPmpbO184UWijFebPI2sDu20lMDbQJ/y6qvC6daERXaaGicUt1Ka47ZUK++eRsYG9I2lifDAT63Zlfht7H0SHqWGqY/BRW+K2V8rPz7Nd2cGfXl/y9foiN7AbRr1H5/jgSSWfrEUR2djbpcPUMO1i8FHL4rZXSsQX6AeLG/jjd3+OeY8FKqI2sCdMAxf6uzE9mo116AFy1kXjPjVMT2LwUcuEfOE4jjJ7pUR9gd5Y3PDc7FjEBvaEAfz5n/whro6ci/X0pkv0uqgOU8P0JAYftUzEF055x8G7H97z/IQkksgvUK/Njl88lML5410wDG+vaxjAm/3d6OvWpyhD5LqoDlPD9DQGH7VM1BfO/d+UlDgORnRhideCl4sDfbCthKfX1HGKTtS66O89b2sxNUxPY/BRy0QWYqhwHIyMkxG8FPCcPtqJ8cEMOpLtfRx1naITsS6askx89/ePaffeUR2Dj1om+iSBsLc4yDgZwWsBz0j2GMYHT6IjmWg67alL9eaziGrsza0L+mLwUctknCQQ5hYHWScjeG12PJI9hunRLC70dyNlmbD3hbJtmUhZpjbVm88iYl2UWxf0xs4t1DL3C+fawrqwPVR7n5CC/iKS8fMA/podn+rtxNWRc3iwVcbM7VXk7z9EsVRB2k4i03MYQ2ei1ShblosDffjpJ5ueenTquC5KT2LwUVv8fOE8i/uE9PZrrwi7Zqtk/DyA/2bHLxxKhfJ+RIW7Ltpur05d10XpSZzqpLZ4LcRoJMzjYGT8PACbHQeB66LkFZ/4qG3uF0dcjoMR/fOw2XFwRrL1yswrc8u4sbgBA7snaQD134WD+pre2EAfn/QIAGA4fo8tJm3dWS3g7amPcP83/luQffvVl3HpO6/6vykf7qwWcOn6Em4sbvi6Tsoy8eE7b3AtLmBcF6VWMfjIl6s3P8Wl60u+OqDYlokfvHlcmTWt7737c8x5DD/DAC70d+PqyDnBd0VEonCNj3wRsSVAteNgfvCN4+hIspMKUVwx+MiXOO6pYicVonhjcYuiNrfKmLm1ivxaEcVSFWnbQuZIGm+dVW+9Io57qvYWvJSqOw33+RlG/ecYH8ywYpAoArjGp5j5lQIuzy3j5lJ9jal8QIXawIkujJ3vw+mjneHc5AGmcvc87qlSu7z8zmqBFYNEMcPgU0g9PKL7hBH1+2+EFYNE8cHgU0Rcnpj4hEREqmPwKWB+pYDhyZynNbKOZALTo1nlQoRPSNEVpfVlIi8YfAoYfe8jz42SuW+M2tEo1Fb/73Yk15eDxEFBPDD4Qra5VcbXf/iBrw3g7BRCzTQrmqrs1OCgflpGoy+EKK7PihDVojM6GIMvZCI6n1imgRPdh9D9fAdHoPSUVouO2qHi+rIscS7a0hWDL2Tfn/5r/PjjXwm9Jkeg5PJSNNUqVdeXRYpL0Rk9iZ1bQlYsVYVfs1StoVyt4f276xiezGEqd0/4a5D65lcKj0+cEB96AFCq7uDK3LKUa6vA6/u3XalhYjaPO6sFOTdGvrFzS8jStrxfgeMA25UdTMwuAABHoJq5PLeMUlXsAbt7OQ5wY3EDD7bKsZlW31u88pfL3g8odgcFLDpTE4MvZJkjaaSsNV9rfM24I9BTvZ2xnpaiXZtbZdxc2hC2pvcsBoCZ26vKnKzhVaPiFS/iOCiIE051hkzE6QatiPu0FD1p5tZqIK9TqtaQv/8wkNeSZSp3D8OTOVxbWEf58TKBCO6ggNTD4AuZ39MNWrV3BErxl18rSp1F2KtYqgTyOjLsFq+Iq3h1xWFQEFec6lSAn9MN2lHZqeE7/+1n+MrLz3PLQ8zJKJp6lrSdDOy1RJJd/ANEe1AQZ3ziU4DX89/aVXOA5Y3f4scf/wp/en0Jv//DD/D21EeYXylIfV0Knsyiqb1sy0Sm53AgryWa7OIfILqDgrhj8CliJHsM44Mn0ZFMSJ/2BLjlIe7qRVPyP94OgKEzwaxTixRE8U+UBwVxx+BTyEj2GKZHs7jQ342UZcIO4otrz5YHhl98BFE0ZRj1kzaiOF0eRPFPVAcFOuAan2JO9Xbi6si5p043WCuWkL9fxI6kESq3PMSLWzTltfl5K2wrgbGBPjkXl0x28U+UBwU6YPAp6oVDqSf2RrnNrHckfli56TZeZBZN1dtyZSI7SJJd/BPlQYEOONUZEUFse+CWh3iRUTRlGPUenVHvRSmz+CfqgwIdMPgi5OJAH2wrIfU1uOk2XtotmjKN+mkf+9eXbctEyjJxob8b06PZSIceIKf4Jy6DAh3wdIaIkdlt3/XtV1/Gpe+8Ku36FLw7qwVcmVvGjcUNGKhX9brc0zxeP9GFsYE+vNzZ8cT6ctpOItNzGENn4rPvU8Q5mK797x+f9NTH4IsgGeer7fWNzEv479/9mvgLU+j2F03FMdRaNfreR76Kf7oOPYc/6OvS9v2LMgZfRDUawfvFJz7SwfxKAcOTOU/FPzqcRRhnDL6I2zuC/8VnBfxy87eo+fiN2paJH7x5PPLd9olawYNm9cTgixER6xYpy8SH77zBaRvSRqtLB4ZR36YwPphh6EUcqzpjxO+WB266JR0165gUt4pW4hNf7HDdgsg7Fv/ogcEXQ1y3ICJ6NrYsiyE3vLhuQUT0ND7xxVg7m5Y5vUlEumDwaYDrFkREuxh8Hm1ulTFzaxX5tSKKpSrStoXMkTTeOsswISJSGYOvTfMrBVyeW8bNpQ0AeGLPnDt9OHCiC2Pn+3D6aGc4N0lERM/E4GsDN7oSEUUfqzpb1M4WAccBtis7mJhdAACGHxFJw2WX9vGJrwXcFE5EquGyi3dsWdaCy3PLKFXbDz0AKFV3cGVuWfAdEZHOpnL3MDyZw7WFdZSrtaf685Ye/7P3765jeDKHqdy9cG5UUQy+Jja3yri5tOH5zC7HAW4sbuDBVlnsjRGRlnaXXZqfx7l32YXht4vB18TMrVXf19jZqWHmtv/rEJHe5lcKmJjNt9WOEAC2KzVMzOZxZ7Ug58YihsHXRH6t6OuYHwCoOsDsL+4LuiMi0pWfZZftyg4uXV8SfEfRxOBroliqCrnOLz77DUdbRNS2za0yrt78FP/uf97CtYV1z8suQH3Z5Y/f/TnmVwrC7i+KuJ2hibQt5i2qOcCVuWVcHTkn5HpEFG+Nqjb9uLG4gdwvf631PmMGXxOZI2mkrDUhf3RukQv31hBRI602y/BK933GnOpsYuhsr7BrGQCLXIiooXaqNv3QueCFwdfEi4dSOH+8S8i1StUa8vcfCrkWEcWP16pNr3TdZ8zga8HFgT6YhphrFUsVMRciotjxU7Xpha77jBl8LTh9tBNfffl5IddK20kh1yGiePHbLMMrHZdgGHwt+tZXemD5fOyzLROZnsOC7oiI4kREswwvdFyCYfC1aOhsLxI+g88BMHRGXLEMEcWHiGYZXum2BMPga5Fb5GJ4zD7DAF4/0cWtDER0IFHNMrzQbQmGwdeGiwN9sK2Ep//XthIYG+gTfEdEFBeimmW0S8clGAZfG04f7cT4YAYdyfbeto6kifHBDM/kI6JnqjfLCP4rWcclGAZfm0ayxzA+eBIdyUTTaU/DqB9EOz54UsvuCETUOpHNMlql6xIMg8+DkewxTI9mcaG/GynLhL1vlGZbJlKWiQv93ZgezTL0iKgpv3UEXui6BGM4TtC7RuLlwVYZM7dXkb//EMVSBWk7iUzPYQyd6dVuFEVE/syvFDA8mcN2Rf4m9voSjJ6zUQw+IiKF7PbqbH1rQ0fSxDdPduP6wudNG1sbRv1Jj6czEBGREtwwauV0hv0hdme1gCtzy7ixuAED9c3pLtsy4aC+pjc20Kd1sR2f+IiIFOQnxLgE0xiDj4hIYQwx8Rh8RESkldis8W1ulTFzaxX5tSKKpSrStoXMkTTeOstRERER7YrME9+zgq2/J42pv/o73FzaAIAnmry68+ADJ7owdr4Pp492hnPzRESkDOWDb36lgMtzywcGm2UaqNaa3z7Ld4mIyKV08NX3szQv6W2Vzhs2iYioTtmWZbubOMWEHgBsV2qYmM3jzmpBzAWJiChylAy++ZUCJmbzbXUuaFWpuoMrc8vCr0tERNGgZPBdnltGqSqnV53jADcWN/Bgqyzl+kREpDblgm9zq4ybSxvCpjcPYgCYub0q7wWIiEhZygXfzC35gVSq1pC//1D66xARkXqUC778WvGJLQuyFEsV6a9BRETqUS74iqVqIK+TtpOBvA4REalFuZZlaVv+LdmWiUzPYemvQ2pgOzsi2ku54MscSSNlrUmd7nQADJ3plXZ9UkOjrj+2tYZL15fYzo5IQ8pNdQ6dlRtIhlE/w4oj/Xibyt3D8GQO1xbWUa7WnhpIlR7/s/fvrmN4Moep3L1wbpSIAqfcE9+Lh1I4f7wL1xbWpWxpsK0Exgb6xF+YlLHb9af5rIHjANuVHUzMLgCon37dztQop1GJokfJXp3zKwUMT+awXRG7iZ29OuPPz99OyjLx6tFOfLxSAND4pA8ADaZReSoIkcqUDD6gvVF7MzydQR+j730kbbYAqP8tWaYBxwF2HKfh6/DvjkhNyk11utwvinZOZ7AMoLrnv3NH3q+f6MLYQB9O9XbKuFVSRBBdfxwHqOy09gIHTaMSRUHcp/CVfeJz3Vkt4MrcMm4sbsBAvSjBtTfY/vU/+SLurhWRv/8QxVIFaTuJTM9hDJ2Jxy+Kmrt681Ncur4USAOEdnUkE5gezXLwRUprXAkdnyl85YPP9WCrjJnbqww2eqbvT/81fvzxr8K+jQMZBnChvxtXR86FfSukuWc9zQEO/stfLDedYYvDFL6yU537vXAohbdfeyXs2yCFBdX1x4u9p4JwoEZhaPQ0Zxm/emKZqJE4TOErt4+PyKsguv74wVNBKCzN9rW2Gnp7RflgbwYfxUa964+6f9I8FYTCsFsh31qRYDuierC3ut8SRG2S3fVHBJ4KQkGaXylgYjYvZFvYQaJ6sDeDj2LD7fpjGGHfybPxVBAK0uW5erGKTFGcwmfwUaxcHOiDbSXCvo0D8VQQClIQ+1qBaE7hM/goVk4f7cT4YAYdSfX+tHkqCAVp5lZwT2FRm8JXuwyOyAMvXX9k46kgFLT8WjGwZg5Rm8JXb1hMJMBI9himR7O40N+NlGXC3lftaVsmUpaJ7D/6XaQS8j8GPBWEghbUvtYoTuHziY9i61RvJ66OnGva9UdkQ/SDJAwD44MZtiujQAW1rzWKU/gMPoq9Zl1/ZE+NfvPkS5HsbkHRVt/XuiZ1ujOqU/iR6dXZrrh3FyfxGjVE9yqZMJD799/g3xwFbnOrjK//8AOpwRfV5uuxCz5duouTPHunRv9yeQMbW488XYeNqSlsMs+ntJMmXvtSF77wXCJyDxexCr76Wk3z6ao4dBenYPg50T2qo2GKDz9/v89ioP4dagCwEmYkHy5iU9XZTj+6vd3Fp3L3Ark/iiav+wI7kiYLWih0fva1WuaTLZBsy4RlGjAMoOYAOw6emkYtPW6A/f7ddQxP5pT9fo3FE5+fUU3CAEayX8SfvPEl5R/PKTycTaAoa/fv9/vf6AMMA/MrBSytP0SpWkOpsoNfbz1COyuG9QHgSeU+C5EPvs2tMv7VZA6ffL7l+RqmASQTpvKP5xSuRsUv7hTP6ye6MDbQxyc9Uk47f7+Og2fWSrRLxSn/yAafW8Qyt/g5Hu2I+RE4WqdWNNsXSKSy1va1itvao2KRVySDT/QvZj9VH8+JiGSS1cwhZZn48J03lBkYRq64Reahiq4onyxMROSFzLP7VDu6KFLBJ/tQxb2ierIwEZEXMs/uU+3ookgFXxCHKrqierIwEVG7gji7T6WjiyITfEEdqriXao/nREQyBHF2n0pHF0Um+II8VNGl2uM5EZEMss/uU+3oosgEX5CHKu6l0uM5EZEMss/uU+3oosgEX1CHKu6n0uM5EZEMMs/uU/HoosgEX1CHKu6l2uM5EZEM9bP75MSBbSUwNtAn5dpeRSb4ZP5inkW1x3MiIhmGzsr5nlO1WXtkgk/WL+ZZVHw8JyKS4cVDKZw/3gXDaP7ftsIw6j06Ve2AFZngE/2LaUbFx3MiIlkuDvTBthK+rmFbJlKWiQv93ZgezSoZekDEenXKOFTxIOzVSUQ68tKrM2EAfS8dQn/P85Fp1h6p4AO8/WIsEzAMA9Waw7PUiBSxuVXGzK1V5NeKKJaqSNsWMkfSeOus+l+ccabD2ZORCz7A2y/mVG8nz1IjUoB7pNhBZ725n0WejRmuuJ89GcngA7z/YniWGlF4dHiaiJO4fl9GNvhccf3FEMWNl2UKrreTDJEPPiJSn5/CtI5kAtOj2UhOqZGaIrOdgYii69JfLHmuxubZmCQag4+IpJlfKeC7f/ZzzC1ueL4Gz8Yk0Rh8RCTFVO4ehidzf1+96Udlp4b/+sEnAu6KiMFHRBLsFrKIaTZRc4Cp3N9hKndPyPVIbww+IhJqfqWAidl8W9WbrdhxgInZBYYf+cbgIyKhLs8to1SV01Zwu1LDxGwed1YLUq5PemDwEZEwm1tl3FzaaLg53S9WeZJfDD4iEmbm1qr012CVJ/nF4CMiYfJrxSd6b8piAJi5LT9kKZ4YfEQkTLFUDeR1StUa8vcfBvJaFD8MPiISJm1bgb1WsVQJ7LUoXhh8RCRM5kgaKSuYr5W0nQzkdSh+ghue0YF4GCfFydDZXly6viT9dWzLRKbnsPTXoXji6Qwh4WGcFFej732EawvrUrc0pCwTH77zBgeH5AmnOkPg9jC8trCOcrX2VBVc6fE/e//uOoYnc+xUQZFycaAPtpWQdn3DqB8yzdAjrxh8Advbw7DZiNhxgO3KDts0UaScPtqJ8cEMOpJyvl5sK4GxgT4p1yY9MPgC5LWHIds0UdSMZI9hfPAkOpIJGIa469ZPZM/wUFryhcEXID89DNmmiaJmJHsM06NZXOjvRsoyYe+r9rQtEwkDMI36hvRGDKN+Evv44EmMZI9Ju2fSA4tbBGilMnNzq4yv//ADX10tuKBPUfVgq4yZ26vI33+IYqmCtJ1Epucwhs704rPCNq7MLePG4gYM1Ne4XW6h1+snujA20McnPRKCwedDO5WZP/vlA/znP89jx8e7bVsmfvDmcbz92is+75xIPY3CUefBHrc8icfg86hepJJHqdq4SMUw6ovxv/s7SXxWKPl+3W+/+jIufedV39chIrVxy5M83MC+Tyujq93KzObTlm5l5mcFMeeTsU0TUfw1G1i708Hv313HT5Y2MT6Y4dpnGxh8jzUeXa3h0vUlDJzowpuZbimnS7eKbZqI4s3LwHpidgEAGH4t4lQn2pu2NADUQnrHuMZHFG/zKwUMT+awXWl/hqgjmcD0aJYFQC3Q/omv3dFVmKMEB8DQmd4Q74CIZPK75enS9SX803/4AgthmtD6ic/P6CoM//zL3bg6ci7s2yAiCURseQKA5xIGHu0pH2chzNO03sDuZ3QVNNMA2zQRxdjMLTEnyj/at2eKvX+fpm3wbW6VcXNpQ2oHeZFOvfw85+6JYiy/VvT9tNcIe//u0jb4RI2ugmCZBr711Z6wb4OIJCqWqoG8Dnv/ahx8skdXIiVMg0UtRDGXtoOrNdS996+2wRfU6Movnj1GpIfMkTRSVjBfyY4D3FjcwIOtciCvpxptgy/I0ZUfPHuMSA9DZ3sDrTkwAMzcjs6Sj0jaBl+QoyuvePYYkT5ePJTCF1/4QmCvV6rWkL//MLDXU4na3/wSDZ0Nds2sI2nij071tHQwJ88eI9LT73Xagb6err1/ozHfJ8GLh1I4f7wL1xbWPU0vGKgHlAO0dDqD20T2zmqBZ48R0YESZrDPIrr2/tU2+ADg4kAffvrJpqfOLXYygf/0L7+Ma3fX2wqxU72duDpyjmePEdFTgqw9sC0TmZ7Dgb2eSrRuWQa016vTVV97252GZIgRkQhXb36KS9eXAtlqlbJMfPjOG1p+R2kffED7h8ry7CsikkFUv85mDAO40K9v719ti1v2Gskew/RoFhf6u5GyTNj7qj1ty0TKMnGhvxvTo1mGHhFJ4dYeNCuA80v3bVJ84tuH05ZEFCbZp8bsX6rREYOPiEgxXmoPmuFSzS6tqzqJiFTkBlOrtQfPJUy80vU7+HTjt9wm1QI+8RERKardfb9cqmkNg4+ISHEMNLEYfEREpBVuZyAiIq0w+IiISCus6gzQ5lYZM7dWkV8roliqIm1byBxJ462znKcnIgoK1/gCML9SwOW5Zdxc2gCAJ9oRuZVZAye6MHa+D6ePdoZzk0REmmDwScY+oEREauFUp0TtdF9wHGC7soOJ2QUAYPgREUnC4hZJ5lcKmJjNt91yaLtSw8RsHndWC3JujIhIc3zik+Ty3DJKVW9NZrcrO7gyt6ztkSFEKmAxWnxxjU8CEWdqmQbw7ve+hteOvyTwzoioGRajxR+DTwJRpyhbpoH/8Ef9kVzv42iZoojFaHrgVKcE+bWikBOUqzUncsUujUfLa7h0fYmjZVLG3gHa3ftFfPr5FnZaeBRgMVq08YlPgn/zo/+ND/KfC7teRzKB6dGs8seJcLRMUdFogNauqHw+aRerOiVI22IfpEvVerGLyna3bjQOPeDJ0fJU7l4g90fkmsrdw/BkDtcW1lGu1nzPzkTh80lPYvBJkDmSRsoS99Y6DnBjcQMPtsrCrikSt25QVLQzQGuV6p9PehqDT4Khs73Cr2kAmLm9Kvy6IvjZusHRMgXF6wCtFSp/PulpLG6R4MVDKZw/3oVrC+vCRpWlag35+w/FXMynvQUBD7Ye4X99uun559w7Wma1J8nkZ4DWjEqfT2qOwSfJxYE+/PSTTWxXxH3QiqWKsGt5IbIgYC93tPz2a68IuR7RfptbZdxc2hA2ED1I2J9Pah2nOiU5fbQT44MZdCTFvcVpOynsWu0SXRCwF0fLJNvMLfnTkGF+Pqk9DD6JRrLHMD54EpZp+L6WbZnI9BwWcFftk1EQsB9HyySTqL21zxLm55Pax+CTbCR7DP/ju+fgN/scAENnxBfNNCOzIGAvjpZJpmKpKvX6YX0+yRsGXwBeO/4SvnmyG16zzzCA1090hVL8IbMgwPVcwuBomaQSvbd2rzA/n+QNgy8gFwf6YCcTnv5f20pgbKBP8B01F0RBAFBvzcbRMskkem/tXmF9Psk7Bl9AvBa7dCRNjA9mQmmHFERBAFEQZOytBcL9fJJ3DL4AucUuHckEjCbznoZR7wE4PngytH6WsgsCXJZpcPMvSeXurW32uWuVCp9P8o77+AI2kj2GU72duDK3jBuLGzBQL+d3ued9vX6iC2MDfaGOJGUXBLge7TjczkDSidhbq9Lnk7xj8IXgVG8nro6cw4OtMmZuryJ//yGKpQrSdhKZnsMYOqPGmXUyCwL243YGks1dbqhvzWl9JiNhAH0vHUJ/z/NKfT7JOwZfiF44lFK6W0m9IGAtkOlObmegILjTkjw+S29c46NnklUQsB83/1KQRrLHMD2axYX+bqQsE/a+ak/bMpGyTFzo78b0aJahF0M8iJYaGn3vI6HNtg+Sskx8+M4bnD6iwKm+3EByMPioofmVAoYnc0Kbbe9lGMCF/m5cHTkn5fpERPtxqpMaktFsey9u/iWioLG4hZpqpyCgHdz8S0Rh4FQntezOaqHh/sNqzUHNcVBr8hfFajkK0t6Dk4ulKtK2hcyRNN46y3U8XTH4qG2NCgI+K2xHYnM+xV+jg5Pdv8WBE10YO9+H00c7w7lJCgWDj6RgtRyFqX6GJPfq0cEYfEQB4ZSbeAe9p//vURU/WdpAqdr6V1t9vZl9N3XB4KNIilKIcMpNvEbvqVcdyQSmR7OcgtcAg48iJWohwik38Vp9T9vFPaX6YPBRZEQtROr3215DZE65NeblPW0Huwjpgfv4SGnulObs39zH33z2m6ZbJQDAcYDtyg4mZhcAIJQQmV8pYGI23/YX9HalhonZPE71dnLKbR+v72k7DAAzt1eVbh5P/jH4SEl7pzRrjoPKTvsTE2GGyOW5Zc9t3krVHVyZWxY65dbKmqjq66aX55ZRqsppnecqVWs8G1IDDD5Sjsg1HBkh0szNpc9xfWHd8//vOMCNxQ082Cr7DpzGa6JruHR9Cf/4aCccAB+vFJ7534S9brq5VcbNpQ2pzdJdPBsy/tirk5Syu4YjpnBhb4gEYSp3D//2Rx+1NCXbiDvl5vdehidzuLawjnK19lTlY+nxP8v97a/xV3/764b/zft31zE8mcNU7p6ve/Jq5pa/96IdPBsy/hh8pAxZazgiQqQVbmhX/aYe/E+5yRhAuOumYYRffq0YyIHIPBtSDww+UoasNZwg1m1khLbXKTeZRSDuuumd1YLwazdSLFUDeR0HwNCZYA5gpvAw+EgJstdwZK/byAhtr1NusotA3HXTIKVt+eUIhlHvI6tCIQ/JxeAjJchew5G5biMjtL1OuQVRBBL0uikAZI6kkbLkfl3xbEh9MPhICTLXcGSv28gIba9TbkEVgQS1buoaOit3+pFnQ+qFwUdKkLmGI3vdRnRo+5lyC6oIJOj9bi8eSuH88S4YhtjrGka9Rye75eiF+/hICbLWcIJYtxEd2n6m3IIqAqm/VrD73S4O9OGnn2x6bgywF8+G1BuDj5RQX8NZE/60EsS6jcjQ9jvlFkQRyO5rBbvf7fTRTowPZtru1WknTZz/Uhe+8JzFsyEJAIOPFDF0theXri8JvWZQ6zaiQtsyDd9TbrIGEPuFtd/NfW+i1Kyc1MM1PlKCyDWcoNdtRBRemAbwZ9/7mu/7lV0E4gpzv9tI9himR7O40N+NlGXC3lftaVsmUpaJC/3dmB7NMvToKXziI2X4XcN5LmHAMIzA123c0L62sO5pG4EB4J/1d+MPv9QV+r20QoX9bqd6O3F15BwebJUxc3sV+fsPOY1JLeN5fKQUL+etmQZw6uXn8a2v9oT2hTe/UsDwZM5TaIs++dvPvbSCJ5VT1HGqk5Qykj2G8cGT6Egmmk57ulOa//FffBk/vvgHePu1V0Ib5buFFx3J9j5SMtYhvd5LK7jfjeKAT3ykpDurBVyZW8aNxQ0YqO8bc6lciq7SKfEij3dioQjFCYOPlBbFNRyVQruVeznzD+r3cPv/FEK/X6IgMPiIJFEptFu5F5Xul0gmBh8REWmFxS1ERKQVBh8REWmFwUdERFph8BERkVYYfEREpBUGHxERaYXBR0REWmHwERGRVhh8RESkFQYfERFphcFHRERaYfAREZFWGHxERKQVBh8REWmFwUdERFph8BERkVYYfEREpBUGHxERaYXBR0REWmHwERGRVhh8RESklf8PfV69D1uUu8kAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -634,7 +603,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 34,
"id": "00bc2e82-9bc1-4119-b8cb-4a1c18afee19",
"metadata": {},
"outputs": [
@@ -642,25 +611,26 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Evaluation \n",
- "---\n",
- "Scores:\n",
- "\tPrecision: 5.44% \n",
- "\tRecall: 6.30%\n",
- "\tF1-score: 5.84%\n",
- "Classification report:\n",
- "\tTrue positives: 1083\n",
- "\tFalse positives: 18819\n",
- "\tTrue negatives: 802945\n",
- "\tFalse negatives: 16101\n",
- "\tTotal comparisons: 19902\n",
- "---\n"
+ "***************************************************************************************************************************\n",
+ " Μethod: Entity Matching\n",
+ "***************************************************************************************************************************\n",
+ "Method name: Entity Matching\n",
+ "Parameters: \n",
+ "\tTokenizer: white_space_tokenizer\n",
+ "\tMetric: jaccard\n",
+ "\tSimilarity Threshold: 0.5\n",
+ "Runtime: 0.0726 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 97.67% \n",
+ "\tRecall: 0.24%\n",
+ "\tF1-score: 0.49%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "e = Evaluation(data)\n",
- "e.report(pairs_graph)"
+ "_ = EM.evaluate(pairs_graph)"
]
},
{
@@ -675,7 +645,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 39,
"id": "500d2ef7-7017-4dba-bbea-acdba8abf5b7",
"metadata": {},
"outputs": [],
@@ -685,17 +655,18 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 40,
"id": "aebd9329-3a4b-48c9-bd05-c7bd4aed3ca9",
"metadata": {},
"outputs": [],
"source": [
- "clusters = ConnectedComponentsClustering().process(pairs_graph)"
+ "ec = ConnectedComponentsClustering()\n",
+ "clusters = ec.process(pairs_graph, data)"
]
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 43,
"id": "3d2aa574",
"metadata": {},
"outputs": [
@@ -703,48 +674,23 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Evaluation \n",
- "---\n",
- "Scores:\n",
- "\tPrecision: 5.44% \n",
- "\tRecall: 6.30%\n",
- "\tF1-score: 5.84%\n",
- "Classification report:\n",
- "\tTrue positives: 1083\n",
- "\tFalse positives: 18819\n",
- "\tTrue negatives: 802945\n",
- "\tFalse negatives: 16101\n",
- "\tTotal comparisons: 19902\n",
- "---\n"
+ "***************************************************************************************************************************\n",
+ " Μethod: Connected Components Clustering\n",
+ "***************************************************************************************************************************\n",
+ "Method name: Connected Components Clustering\n",
+ "Parameters: \n",
+ "Runtime: 0.0000 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 97.92% \n",
+ "\tRecall: 0.27%\n",
+ "\tF1-score: 0.55%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "e = Evaluation(data)\n",
- "e.report(pairs_graph)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "id": "5458eec5-e074-4e8e-bac7-1fc7bc3e9e27",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEWCAYAAACAOivfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA45klEQVR4nO3dd5xU1fnH8c+XBRQLTREVVNAQDbGCAbvYsUJiAUtEQ+RnrNixRLAjxqhoNGIFG6IRxS4iRI1BRFEUK0FQkKLSm8Dy/P44Z2BYdmbvLjPL7s7z5nVfM/fce885s7vcM+fcU2RmOOecK0y11ncGnHPOrT9eCDjnXAHzQsA55wqYFwLOOVfAvBBwzrkC5oWAc84VMC8EXLlJ6iDpc0krJJmkTdYxvjNiPKNylMUqR1Kf+BkfXd95cS6dFwI1jKR9Jb0o6WdJSyX9T9LdkurmMJl7gd8Aw4G7gGXrGN/nMZ5n1zGejCS1iDdhkzRX0sZpx65JO/ZoOeJMXdMiwemjCZ/xjXJn3rk8kg8WqzkkdQUeB4qAT4APgBZAB6CJmc3NUTorYho7mNmkXMSZb/FG/W1a0Flm9qCkohi+TQwfaGZnJIwz9Z+npZlNznJeHTNbXu5MO1cJvCZQQ0jaCPgH4eb8ONDGzM4ys8OAnYDF8bxdJb0m6SdJP8Zaw45p8UyO3257SRonaZGkVyQ1isctpgHwv3j+qm/ZafE8GsP6xP02kt6RNF/SQkmfSfpLPLZWc5CkAyS9Hb+1/yDpCUlbpx1PfQs/T9LXkhZIejxhjWcO8Jf4/mhCATCnxM9zq5j+T5KWx5/V45Iapv0cUr6NeemQ1uzzrKQhkpYAp6Y3Byl4I+5fHuNL1UZeSZB/53LGC4GaY1+gcXx/o5mtTB0ws/+Z2TJJWwH/Bo4gNE+MA44BRqVu8mmuBcYDS4EjgYtj+F1p5zwCPJwwf/2B/QjNIU8RbrptSztR0q7Am/H814ApwCnAa5LqlDj9OuA9QsF0KvDHBHkZCLSR1I5QGCwAnitxzqZAPeBF4IGY31OBvvF4yZ/DXcDUtLDjgR2Ax4AZ6RFbqH6fGePsI6kT8FfgZ+BPCfLvXM54IVBzbJH2fkqGc/4INARGmdkxZnY48DGwJXBiiXN7m1k34J64vweAmfVMO+d6M7s+Yf5SN+9XCDfMg4H/y3Du2fH8gWbWFTgAmAXsAhxU8tzYfPNMej7L8ACwArgZOJxwo16YfoKZfQ30AL4g1KImxEMHx+M9006/3sx6mtnEtLBJQHsz62Fmr5XMgJlNA84hFDRDgbrxs8woea5z+eSFQM0xK+39dhnOaRFfv0gL+zLDNePi69z4Wt4eQEUl9i8m1CweBD4FZgMXJMlnbE9PPXvIRT5/AIYBhxD+D9xX8gRJJwMfAbcClwCd46EmCeIHGGNmK8o4ZwgwGVB8LVkbcS7vvBCoOd5jdbv2NZJW/W4lbRebUSbHoJ3Srks9DyhZe0jdwJL0HFiUllb9+HbnEueMNbPdgEaEB9V1gL6SapcS3xr5jHnfPgf5TJe68b9rZp+VcrxLfL0f2CBtX2nnpJrcSvt/9EuCPFxMKPCWxtdLElzjXE6V9h/QVUNmtkjS+cAg4DRgF0ljgK2Bw4CmhAfGVwEHSRpGaILYA5jJOnTPNLMfJU0FmgOPS1oK7F7itBdjT5z/AQ0IN9afgeJSohwAnAV0k1SP8O1/C0KTzKiK5rOEEcChrNljKN3M+HoUocA6qpRzvo95u0fS18DVSROXtAtwI+FncBjwFnCDpNfM7NOk8Ti3rrwmUIOY2ROENvNXgG2BboT+/A8Ai83sh3j8DcKD5D2Bl4GDzGz2OibfndBksz/hG/ILJY6PIhRIpxJ65HwAdLFS+iib2ceEtvr/Em6+LYHBQEczW9cxCak0zMxGZOnieh0wktD805bw/KCkKwgPgzsCFxLa98sUezA9RigILzSzcfH6DYDHcjymw7msfJyAc84VMK8JOOdcAfNCwDnnCpgXAs45l2OSLpI0IY6Mf0rShpJaSnpf0kRJT6ee/UjaIO5PjMdbpMVzZQz/StIRaeEdY9hESb3SwktNIxsvBJxzLockNSOMgdnTzHYmjJnpShhzcoeZ/YrQnbt7vKQ7MCeG3xHPQ1LreN1vCZ0P7pVUFHvZ/YMwkr81cHI8lyxpZFRlu4guXVHuft+uAKwo9j8Lt7ZNNpDKPiu7enucl/iPa8m4e8pKrzZQT9JyYCNgOmG0+Snx+ECgD2G8Sqf4HkJX7XskKYYPNrNfCPNTTQTaxfMmpnq2SRoMdJL0RZY0MvKagHPOAahW4k1SD0lj07YeqWjilCB/A74j3PznAR8Cc9NGkU8FmsX3zQhjTojH5wGbpYeXuCZT+GZZ0sioytYEnHOuUpWjMmFmAwiDGkuJRo0I3+JbEqYzeYbQnFMleSHgnHMQvuXnxqHAt2b2I4Ck5wiDMxtKqh2/qTcHpsXzpxGmM58ap1FpQBhJngpPSb+mtPCfs6SRkTcHOecchJpA0i2774C9JG0U2/YPIayeNxI4IZ7TjdWj6ofFfeLxt+JI+mFA19h7qCXQChhDGG3fKvYEqkt4eDwsXpMpjYy8JuCccwC1Sk58WzFm9r6kZwmz0K4gzHQ7gDBFy2BJN8awh+IlDxGmC5lImF23a4xngqQhhAJkBXCumRUDSDoPeJ3Q8+hhM0tNdX5FhjQyqrLTRnjvIFca7x3kSpOT3kF7XZG8d9DoW9c5varCawLOOQflejBck3gh4JxzkMsHw9WKFwLOOQdeE3DOuYLmNQHnnCtgOeodVN14IeCcc+A1AeecK2i1/JmAc84VLq8JOOdcAfPeQc45V8D8wbBzzhUwbw5yzrkC5s1BzjlXwLwm4JxzBcxrAs45V8C8JuCccwXMewflnqQXYa3FYeYBY4H7zWxpPtN3zrnECrQmkO9PPQlYCDwQt/nAAuDXcd8556qG3K0xXK3kuxDYx8xOMbMX43Ya8DszOxdok+e0nXMuOdVKvmWLRtpR0sdp23xJPSU1ljRc0jfxtVE8X5L6S5ooabykNmlxdYvnfyOpW1p4W0mfxmv6xwXtyZRGNvkuBDaRtG1qJ77fJO4uy3PazjmXXI5qAmb2lZntbma7A22BxcBQoBcwwsxaASPiPsCRQKu49QDuC9lRY6A30B5oB/ROu6nfB5yVdl3HGJ4pjYzyXQhcArwraaSkUcA7wKWSNgYG5jlt55xLLkc1gRIOAf5nZlOATqy+7w0EOsf3nYBBFowGGkraCjgCGG5ms81sDjAc6BiP1Tez0WZmwKAScZWWRkZ5fTBsZq9IagXsFIO+SnsYfGc+03bOufJQreQ3d0k9CN/aUwaY2YBSTu0KPBXfNzWz6fH9DKBpfN8M+D7tmqkxLFv41FLCs6WRUWV0EW0LtIhp7SYJMxtUCek651xiKscD33jDL+2mnx5fXeA44MpSrjdJJXtO5lTSNPLdRfQxYAfgY6A4BqeqL845V3XkvtPPkcBHZjYz7s+UtJWZTY9NOrNi+DRgm7TrmsewaUCHEuGjYnjzUs7PlkZG+X4msCewr5mdY2bnx+2CPKfpnHPlJinxltDJrG4KAhgGpHr4dANeSAs/PfYS2guYF5t0XgcOl9QoPhA+HHg9Hpsvaa/YK+j0EnGVlkZG+W4O+gzYEphe1onOObc+lac5KEFcGwOHAf+XFtwXGCKpOzAFOCmGvwIcBUwk9CQ6E8DMZku6Afggnne9mc2O788BHgXqAa/GLVsamfMaHi7nh6SRwO7AGOCXVLiZHVfWtUtXrDXS2DlWFPufhVvbJhus+x28wcmPJf7jmvfUH2vMiLF81wT65Dl+55zLjRpzWy+ffHcR/Xc+43fOuVzJZXNQdZKXQkDSu2a2n6QFrDmBnAg9l+rnI13nnKsoLwRyyMz2i6+b5iN+55zLNS8E8kRSEWHU2qq0zOy7fKfrnHPl4YVAHkg6nzAB0kxgZQw2YNd8puucc+WlWl4I5MOFwI5m9nOe03HOuXXiNYH8+J6wkphzzlVpXgjkkKSL49tJwChJL7PmYLG/5yNd55yrsMIsA/JWE0j1CvoubnXj5pxzVZLXBHLIzK7LR7zOOZcvhVoI5HUW0bjGZcO0/UaSXs9nms45VxG1atVKvNUk+X4w3MTM5qZ2zGyOpC3ynKZzzpVfYVYE8r6eQHGJhea3A58d1DlX9eRhPYFqId81gasJC83/m1DO7s+a82s751yVUNNu7knlexbR1yS1AfaKQT3N7Kd8pumccxXhhUAeSBphZocAL5US5pxzVYZPG5FDkjYENgI2j2tjpn669YFm+Uizurn2mit5+9+jaNx4M557IZSR8+bO5fJLL+KHadPYulkzbrv9Tuo3aMCCBQu46orLmDH9B1YUF9PtzD/R+ffH88MP07jogvOwlStZvmIFJ596Gid1OXk9fzJXHtddexXvxL+DIUNfBOCrL7/g5hv6sGzZLxQVFdHr6t7svMuuLFiwgL9eeRkzZkynuLiYP3Y7k+M6Hw/AeWf/mU8//YTd92jDXffcvyr+Me+P5s7b+7Fi+XJ2at2aa6+7idq18z5vZLVUqDWBfD0Y/j/gQ2Cn+JraXgDuyVOa1Uqnzn/gvvsfXCPs4QcH0K793rz46hu0a783Dz04AICnn3qC7XfYgWeGDuOhRx/j9n63snzZMpps3oTHnnyaIc+9wBNPDeGRBx9g1qyZ6+PjuAo69rjfc/d9D6wRdtcdt9Hj7HN56pnnOfvcC+h/x20APDP4Cbbf4VcMfvYFBjw0iDv+1o/ly5cBcPoZ3bnhplvXiGflypX0uaYXt/S7nSFDX2SrrZvx0rDnK+VzVUe5fDAsqaGkZyV9KekLSXtLahy7zX8TXxvFcyWpv6SJksbHJvRUPN3i+d9I6pYW3lbSp/Ga/nHBeTKlkU1eCgEzu8vMWgKXmtn2ZtYybruZmRcCQNs9f0f9Bg3WCBs5cgTHde4MwHGdOzPyrTeB8Me5eNEizIzFixfRoEEDimrXpk7dutStGwZiL1u+jJUrV+KqlzZ7/o4GJf4OJLFo0UIAFi5YwOZNtkgdYNGqv4PF1G/QgKKi8K2+3V57s9HGG68Rz7y5c6ldpw7btWgJwF577cNbb76R509UfeW4d9BdwGtmthOwG/AF0AsYYWatgBFxH+BIoFXcegD3xfw0JszC3B5oB/ROu6nfB5yVdl3HGJ4pjYzKrBdK2gwoMrNZkg4GtgaeNbOlZV1rZndL2hloDWyYFj6orGsL0eyff6ZJ/A+/+eZNmP1zmHy16ymncsG5f+HQDvuzaNEi+t1+x6oBKzOmT+e8c3rw/XffcdEll7PFFk3XW/5dblx6+VWce/afufP2fqy0lTwy6CkAupx8KhddcA5HHHIAixct4pbb/p514FLDRo0oLi7m8wmf0vq3u/Dm8NeZMWN6ZX2M6idHrUGSGgAHAGcAmNkyYJmkTkCHeNpAYBRwBdAJGGRmBoyOtYit4rnDzWx2jHc40FHSKKC+mY2O4YOAzsCrMa7S0sgoSU3gJeA6SR2AN2PEDyW4Dkm9gbvjdhDQDzguy/k9JI2VNPahBwYkSaLGkgTxG8d7777LTjv9hjdHvcOQfz3PLTddz8KF4ZvillttxbNDX+TFV99g2AtD+fkn73xV3T0z5CkuuawXrwwfxcWXXcn1va8B4L//eZcdd/wNr494m6eeGUq/m29Y9XdQGknc0u92bu/Xl9NPOZGNN96YoqKiyvoY1U55agLp96q49UiLqiXwI/CIpHGSHpS0MdDUzFKl8AzCYlsQnpN+n3b91BiWLXxqKeFkSSOjJIVAa2AscATwH+ABVlc9ynICcAgww8zOJFSLGmQ62cwGmNmeZrZn97N6ZDqtxmq82Wb8+OMsAH78cRaNGzcG4IXnn+OQww5HEttutx3NmjXn20mT1rh2iy2a8qtWrfjow7GVnm+XWy8Ne56DDz0cgMMO78iEz8YDMOyFoRx8yGFIYpttt2PrZs2Z/O2kbFGx62578NDAJxj05DPs0XZPtt2uRb6zX23VqqXEW/q9Km7p31prA22A+8xsD2ARJZpl4rf+vA6cTZpGkkKgFtAc2JdQ3XiPtKadMiwxs5XACkn1gVnANgmvLTgdDjqYYc8/D8Cw55/noINCT9ott9qK90f/F4Cff/qJyZO/pfk2zZk5YwZLl4ZWufnz5jHuo49o0bLlesm7y50mTbbgw7FjAPjg/dFss+12AGy55VaMeT/+Hfz8E1OmfEuz5tn/O6WaFJctW8bAhx/k+BO75jHn1VsOnwlMBaaa2ftx/1lCoTAzNvMQX2fF49NY877YPIZlC29eSjhZ0sj8uUNhkeUEaQShKccIg76OBY43s9+WGbl0L3AV0BW4BFgIfBxrBVktXVGzp5e44tKLGfvBGObOnUPjzTbjL+eez8GHHMplF/dkxvTpbLX11tx2+500aNiQWbNm8terr+SnH3/EzPjTn8/imGM78d/3/sPtt/VFCMPoevJpnHBSl/X90fJqRXHN+rO46vKLGTv2A+bOncNmjTfj/845n+1atORvt95EcXExdetuwJXXXMtvWu/Mj7Nm0vuv4e8AgzO6n8VRx4TW1e7dTmXy5EksWbyYBg0a8tfrbmSffffnztv78c7bo7CVKznhpJM55Y/dyshR9bTJBuvev/PXl7+W+I/r634ds6Yn6R3gz2b2laQ+QOqp/c9m1ldSL6CxmV0u6WjgPOAowkPg/mbWLj4Y/pBQgAB8BLQ1s9mSxgAXAO8DrwB3m9krkm4rLY2seU1QCDQBTgW+MbOXJR0PLDazV7NeuHY8LQgPM8YnOb+mFwKuYmpaIeByIxeFwI5XvJ74j+urW48oqxDYHXiQsI7KJOBMQqvKEGBbYApwUryhi9B1viOwGDjTzMbGeP5E+CINcJOZPRLD9wQeBeoRWmjONzOLHXnWSiNrXrMVApKKCFWbv5rZgxlPXPu6NtmOm9lHZcXhhYArjRcCrjS5KAR26pW8EPiyb/ZCoDrJ2kXUzIolfQbsUM54xwKfAamuKuk/MAMOLmd8zjmXV7V82oiMNgIul3QY8EMMMzPrlOWaiwk9g5YAg4GhZpa5L5tzzq1nXghktnd8bcPqBxRZq01mdidwp6TtCQ+FR0iaAtxsZh9XLKvOOZc/BTp1UKJCoMJ9Ds1skqQXCA8v/gj8Gvi4ovE551y+JJwOosbJWAjEh7v/AzbLcMqULNemagCdCCPeBhNqAUsqnlXnnMsfLwTW9gFwMuEGXlrzT7bx5xOB8YRZQ+cTuiv9JfVDNrO/VySzzjmXLwVaBmQtBAYBk+NrefvlXZ92zSblz5ZzzlUufzBcQtqo3jHljdTM+lQ0Q845tz54c1AGcfa7C4BdWD1nkJnZ8eVJSNJHZpZ1EJlzzq0vBVoGJOod9CDQhdC8k/oxVWTYZoH+iJ1z1UGh1gSSzCJ6KKuXhOxCmBHvmgqk9XIFrnHOuUqRWsIjyVaTJCkENiH09BFh9PAHwKXlTcjMKlJwOOdcpcjx8pLVRpLmoKmEguB/hBXFxJqr3WQk6Q/ArcAW8ToRnifUr1BunXMuT7x3UGZnE9cBAPoSngdcle2CNP2AY83siwrlzjnnKkkN+4KfWJmFgJmNkFQH2BH4M/CVmS1PGP9MLwCcc9VBTWvmSSpJF9GDgMeBLWPQdEmnmdmoBPGPlfQ08DzwSyrQzJ4rf1adcy5/CrQMSNQc9BDhmcAThAfJx8awJGsM1CeslHN4WpgBXgg456oUrwlkVgT0MrP7ACSdA1yRJPIkawk751xVUKiFQJIuos8BXSR1kHQwcBIwRFKbspaRlNRc0lBJs+L2L0nNc5Fx55zLpVq1lHgri6TJkj6V9LGk1HrBjSUNl/RNfG0UwyWpv6SJksan31cldYvnfyOpW1p42xj/xHitsqWR9XMn+NlcCOwPjACGAwcQVg77IG7ZPAIMA7aO24sxzDnnqpQ8DBY7yMx2N7M9434vYISZtSLcT3vF8COBVnHrAaRaXRoDvYH2QDugd9pN/T7grLTrOpaRRkZJmoMqMotoShMzS7/pPyqpZwXjcs65vKmE5qBOQIf4fiAwitC03gkYZGYGjJbUUNJW8dzhZjY75m840FHSKKC+mY2O4YOAzsCrWdLIKEkX0TOSfLoMfpZ0GvBU3D8Z+Hkd4nPOubzIcRlgwBuSDLjfzAYATc1sejw+A2ga3zdjzQG4U2NYtvCppYSTJY2MktQE1sWfgLuBOwg/lPcAf1jsnKtyapWjFJDUg9B0kzIg3uhT9jOzaZK2AIZL+jL9ejOzWEDkTdI08loImNkU4Lh8puGcc7lQnmkj4g1/QJbj0+LrLElDCW36MyVtZWbTY3PPrHj6NGCbtMubx7BprG7aSYWPiuHNSzmfLGlklJdCQNK1WQ6bmd2Qj3Sdc66icjV1UFyDpZaZLYjvDyestjgM6EaYfqcbYfldYvh5kgYTHgLPizfx14Gb0x4GHw5caWazJc2XtBfwPnA6ocWFLGlklGTE8LalBM81s/lZLltUStjGQHfCwvVeCDjnqpQcPhhuCgyN8dUGnjSz1yR9QOhe3x2YQuhuD/AKcBRhbfbFxCbzeLO/gdW9MK9PPSQGzgEeBeoRHgi/GsP7ZkgjI4UH0llOkFZSeu+gsUAXM5tcxvWbErqZdgeGALebWZlVlKUrKtwjydVgK4r9z8KtbZMN1v0OfvT9YxL/cb38f+1qzMiyJOME3iEUAv+NmxEKgN2A2zNdFAct3EhYi6A20MbMrkhSADjnXGVTOf7VJEkKgUWEdqj9zGw/wjTSswjrDu9f2gWSbiNUYRYAu5hZHzObk6M8O+dcztVS8q0mSfJgeD9giaSWcb99DLuDMLFcaS4hzBp6DXB1WlubLyrjnKuSfFGZzJ4HTiOMSEt5HNgF+Lq0C8wsSQ3DOeeqjPKME6hJkhQCfyY8AziI8DxgJHA/UIcwpbRzzlV7BVoGJJo2YhnQP27pluUlR845tx74VNIZSDo+Tku6XFJx3FZURuacc66y5GEW0WohSXPQfUADwkAGv/k752qkopp2d08oSSEwF7jBzO4u60TnnKuuCrU5KEkhMAr4i6TFQKqvv5nZ0LzlyjnnKlmB9hBN3DsIVs+YJ0IvoaK85Mg559YDrwlkdj0VX1nMOeeqhQItAxJ1Ee1TCflwzrn1ymsCJUgaD1wK/K2Uw2Zmu+UtV845V8mKCvShQLaawM5Ao/jqnHM1WmEWAVkKgbT5f56upLw459x643MHZSFpX6AFq3sEmZk9lq9MOedcZSvQMiDR8pJPAF3Tgwi9hbwQcM7VGIX6YDjJlM/HAB8SFpO5HLgsvjrnXI2R67mDJBVJGifppbjfUtL7kiZKelpS3Ri+QdyfGI+3SIvjyhj+laQj0sI7xrCJknqlhZeaRjZJCoFRwL/M7FYzuz21JfsxOOdc9VBUS4m3hC4EvkjbvxW4w8x+RZh9oXsM7w7MieF3xPOQ1JrQCvNboCNwbyxYioB/AEcCrYGT47nZ0sgoYyEgaZikYUBD4EZJ76TCJL2Q5CfgnHPVhaTEW4K4mgNHAw/GfQEHA8/GUwayeqGuTnGfePyQeH4nYLCZ/WJm3xIm8WwXt4lmNilO9T8Y6FRGGhlleyZwTIn9fdPe530EcfFKH6Ts1tZkr/PXdxZcFbRk3D3rHEeOl0O8k9Bsvmnc3wyYa2apmZinAs3i+2bA9wBmtkLSvHh+M2B0Wpzp13xfIrx9GWlklK0QaJnlmHPO1SjleTAsqQfQIy1ogJkNiMeOAWaZ2YeSOuQyj/mQbZzAFABJ7YEiM3sv7u8DFANTKiWHzjlXCcozYDje8AdkOLwvcJyko4ANgfrAXUBDSbXjN/XmwLR4/jRgG2CqpNqE9Vt+TgtPSb+mtPCfs6SRUZIa0DPAgWn7B8Qw55yrMXL1YNjMrjSz5mbWgvBg9y0zO5WwPvsJ8bRuQOrZ6rC4Tzz+lplZDO8aew+1BFoBY4APgFaxJ1DdmMaweE2mNDJKUghsRlhYJmU+0DjBdc45V23UUvKtgq4ALpY0kXBffSiGPwRsFsMvBnoBmNkEYAjwOfAacK6ZFcdv+ecBrxN6Hw2J52ZLI6MkI4a/BK6RZISBYlezZrcn55yr9vIxVszMRhG62WNmkwg9e0qesxQ4McP1NwE3lRL+CvBKKeGlppFNkkLgamAooV+qgF+AP5UnEeecq+p87qAMzOw1SbsAh8egN8xsYn6z5ZxzlSvHXUSrjTI/t6RJwI5mdq+Z3Qs0k/RG/rPmnHOVJ9fTRlQX2RaVqU9YT6AFsJ2kbeOhA4FD8p8155yrPL6ozNouAq4ljA6+O24p3+UzU845V9kKtAzIWgh8DbwKHAWMA34gFAhzgPvznzXnnKs8/mC4BDN7CnhKUm/gGTP7vPKy5ZxzlatAy4BEXURvALpIOo0wBBrCymKX5C9bzjlXubw5KLO7gbPj+9SPyQAvBJxzNYYKdKn5JIXAH4CngJMJiyR0Bt7JY56cc67S1S7QgQJJPnYjVt/0pxMWLOiR+XTnnKt+crmoTHWSpCYwI543g7BKTl3CJHLOOVdjFOozgSQ1gWuA/xGeASwF5gE985gn55yrdD5iOAMzezxtd3Ae8+Kcc+uNjxPIQNLuhJHDLYGiGGxmtlse8+Wcc5WqqEAfDCd5JvAssH2+M+Kcc+tTrQLtIpqk7KtPqAnUNrNaqS3P+XLOuUrlzwQyu5DwUHiqpFSvIDOzofnLlnPOVa5C7R2UpBA4FGjD6rUqRRgxXJTxCuecq2YK9cFwkmadE4EPgVuA64Hr4qtzztUYuWoOkrShpDGSPpE0QdJ1MbylpPclTZT0tKS6MXyDuD8xHm+RFteVMfwrSUekhXeMYRMl9UoLLzWNbJLUBF4DJpjZdQnOdc65aimHi8r8AhxsZgsl1QHelfQqcDFwh5kNlvRPoDtwX3ydY2a/ktQVuJUwaWdroCvwW2Br4E1Jv45p/AM4DJgKfCBpWJzp+dYMaWSUpCawG3CtpO8kjY/bJ+X5iTjnXFVXqxxbNhYsjLt14mbAwYTelgADCfOwAXSK+8TjhyjMTdEJGGxmv5jZt8BEoF3cJprZJDNbRhi/1SlekymNjJLUBFrF1+Zxc865Gqc8cwJJ6sGac6gNMLMBaceLCM3ovyJ8a/8fMNfMVsRTpgLN4vtmwPcAZrZC0jxgsxg+Oi2N9Gu+LxHePl6TKY2MkowY9u6gzrkarzyNQfGGPyDL8WJgd0kNgaHATuuWu/xJUhNwzrkaLx+9g8xsrqSRwN5AQ0m14zf15sC0eNo0YBtCN/zaQAPg57TwlPRrSgv/OUsaGfm3fOecI9QEkm5Z45GaxBoAkuoRHuB+AYwEToindQNeiO+HxX3i8bfMzGJ419h7qCWhaX4M8AHQKvYEqkt4eDwsXpMpjYy8JuCcc0Ct3PUO2goYGJ8L1AKGmNlLkj4HBku6ERjH6rFXDwGPSZoIzCbc1DGzCZKGAJ8DK4BzYzMTks4DXieM13rYzCbEuK7IkEZGCoVH1bNoWRXNmFuvNm9//vrOgquCloy7Z53v4E+Pm5b4ntNlj2Y1ZmRZxpqApPFZrks0i6ikNqUEzwOmpD3Bds659a6mrRiWVLbmoJ1zEP+9hCknxhOa0nYGJgANJP3FzN7IQRrOObfOCrMIyPJgOH3G0NK2hPH/AOxhZnuaWVtgD2AS4UFJv3XPvnPO5YavMZyFpOZAa2DDGGRm9mKCS3+d9sACM/tc0k5mNqmm/SCdc9VbUYHek5KsLNYDuIe1Zw1NMovoBEn3sXpZyi7A55I2AJaXJ6POOZdPhVkEJBsncAUwNr5/hDBc+f6E8Z9BmO+iZ9wmxbDlwEGJc+mcc3nmi8pk1gy4gzA3xbOEwQrnJonczJYAt8etpIWlhDnn3HpRqMtLJikE5gNLgSXATUA9Ek4kJ2lfoA+wXXpaZuZrFjvnqpSa9g0/qSSFwBOEZqN/AJfFsDsSxv8QcBFhNr3icufOOecqibwmUDozuyj1XtLDMeyrhPHPM7NXK5g355yrNIXaO6jMB8OS6km6TdI4YHPgXEknJYx/ZLx2b0ltUts65dg55/LAHwxndidhiTIBGxC6hl4GDElwbfv4umdaWGqFHeecqzJq2s09qSSFwB+A24DL4/6HwB+TRG5m3g3UOVct+DOBzFay5jiK3Sije6ek08zscUkXl3bczP6ePIvOOZd/uZtJunpJUgi8DKRu5o8BWwIPlnHNxvF10wrmyznnKlU+VharDpIUAj0JNYGjgTqEFewvzXaBmd0fX69bx/w551yl8OagDMxsPnBmepiknYHPyrpWUhPgLKAFaw4W+1N5M1rd9fnrVbzz9igaN96MZ4aunntv8BOPMWTwk9QqKmK/Aw6k58WXMXfuHC6/+EImfPYZx3bqTK+rr111/ucTPqPPNVey9Jdf2G//A7is19VIYvjrr3H/fffw7aT/8dhTQ2j9213Wx8d0CZ1/6kGc8ft9MDMmTPyBHr0fZ8vNG/BY3zNp3GBjxn3xHX+6ZhDLVxRzwWkHc8bv92bFipX8NGchZ1/3ON9NnwPAjRd0ouP+vwWg7wOv8ewbH62Rzu2Xn8Dpnfamyb6XAHDase25+aLO/DBrHgD/fPrfPDr0v5X4yauuQm0OytpFVNLxki6TdGDc30XSUODjhPG/QFg0+U1Cs1JqKzjHdvo999z3wBphH4wZzaiRbzH4Xy/w7PMvcXq3UDZuUHcD/nLehVx06eVrxXPLjddxTZ8beOHl1/luyhTee/cdAHZo1Yq/3dGfNm33XOsaV7Vs3aQB55x8IPue2o89T7yZolq1OPGIttx0YSfufmIkO3e6jjkLlnDG7/cG4OMvv2ffU/vRrsstDB0xjpsu7AxAx/1+y+6/2Yb2XftywB//Rs/TD2HTjTdclU6b1tvScNON1kr/X69/xF5d+7JX175eAKRROf7VJBkLAUl3EbqB3gq8Jel2wgLHnQhrVyaxkZldYWZDzOxfqW2dc10Ntd3zdzRo0GCNsGefHsyZ3c+ibt26ADTebDMA6m20EXu0absqPOXHH2exaOFCdt1tdyRxzHGdGPnWmwBsv/0OtGjps3FUF7WLiqi3QR2KimpRb8O6zPhpPgf+7tc892b4r/XEi+9zbIeweN/bY79hydIw6e6Y8ZNp1rQhAL/Zfkve/WgixcUrWbx0GZ9+M43D9/kNENbLvblnZ66+6/lK/2zVVa7GCUjaRtJISZ9LmiDpwhjeWNJwSd/E10YxXJL6S5ooaXz6WCpJ3eL530jqlhbeVtKn8Zr+inPzZ0ojm2w1gS7AaOA04GHC9A8/AJ3M7HdlRRy9JOmohOcWnClTJvPRR2M5/ZST+PMZpzHhs0+znv/jrJls0XTLVftbNN2SWbNm5jubLsd++HEedw4awdev3sC3w29i/sIljPviO+YtWEJx8UoAps2cw9ZbNFjr2jM6783r//kcgPFfh5t+vQ3rsFnDjTlwz1/TfMvwf/4vXQ7k5X9/yoyf5q8VR6dDdmfM01fy5G3daR4LFBcefCbdyrACuMTMWgN7EQbYtgZ6ASPMrBUwIu4DHAm0ilsP4D4IN3SgN2G8VTugd9pN/T5CU3vquo4xPFMaGWUrBJoA/zCzJ4GrY9gVSRaTkbRA0nzgQkJBsETS/LTwTNf1kDRW0tiHHxxQVjLVXnFxMfPnzWPgE0/T85LLueLSnpglXuvaVVMNN63HMR124TfH9Gb7w69m43p1OWyf1mVe1/Wo39Gm9bbcMXAEACNGf8lr737OyEcvYeAtZ/L++G8pLl7JVk0a8IfD9uDewf9eK45X3v6MnY7uTbsutzBi9Jc8cH2iIT8FoUhKvGVjZtPN7KP4fgHwBWE25k6EjjXE187xfSdgkAWjgYaStgKOAIab2WwzmwMMBzrGY/XNbLSFG8agEnGVlkZG2R4MC7hYUldCryADLpL0x/DZrFOWH0KFuoaa2QBgAMCiZTX/brhF06YcfOhhSGLnXXallmoxd84cGjVuXOr5TbZoyqyZM1btz5o5gy22aFpZ2XU5cnD7nZj8w8/8NCcMt3n+rU/Ye/ftabBpPYqKalFcvJJmTRutengLcFD7Hbmi+xEc/uc7WbZ8xarwfg+9Tr+HXgfg0ZvP4JvvZrHbjs3ZfpsmTBjWG4CNNqzDZy/0ZudO1zF73qJV1z4y9L1Vzxcc5VpVJi621SMtaEC8f5U8rwVhWd33gaZmNj0emgGk/vM2I6zTkjI1hmULn1pKOFnSyKis3kFt4payV3xNdIOW9HvgLTObF/cbAh3M7Pkk19d0Bx18KGPHjOF37fZiyuRvWb58OQ0bZW7Ca9JkCzbeZBPGf/Ixu+y6Gy8Ne4Gup5xWiTl2ufD9jNm026Ul9Tasw5Klyzmo3Y589Pl3vD32a/5w6B488/qHnHpse14aNR6A3XZszj1Xd+W48+7lxzmrx2nWqiUabroRs+ctYudWW7Nzq615879fUly8kpaHXbXqvB//czs7dwq9tbfcvP6qJqJjDtyFr76dgQvK88A3/QtrxvikTYB/AT3NbH76krpmZpLy+kU3aRrZCoGWOchHbzMbmpapuZJ6A8/nIO5q5crLL+bDDz5g7tw5dDzkQM4+93w6/f4P9Pnr1Zz4+2OpU6cO193Ud9Ui1kcfcTCLFi5i+fLljHprBPcOeIjtd/gVV15zLb2vuYpfli5ln/32Z9/9DwDgrRHD6XfzjcyZM5sLzjmbX++0E/fe/9D6/Mgugw8+m8LQN8fx3yevYEXxSj75cioP/es/vPrOZzzW90x6n3MMn3z1PY8+H3ru3HxRZzbeaAOe6NcdgO9nzOHEnvdTp3YRbz7cE4AFC5fyp6sHrnqmkMk5J3fg6AN3YUVxMXPmLeas3o/n9bNWJ7kcKyapDqEAeMLMnovBMyVtZWbTY5POrBg+Ddgm7fLmMWwa0KFE+KgY3ryU87OlkTmv+WyDljTezHYtEfapmZXZib0QmoNc+W3e/vz1nQVXBS0Zd88638I/mDQv8T3nd9s3yJhe7KkzEJhtZj3Twm8DfjazvpJ6AY3N7HJJRwPnAUcRHgL3N7N28cHwh6xujfkIaGtmsyWNAS4gNDO9AtxtZq9kSiPbZ0kyYnhdjJX0d8KCNBCWpfwwz2k651z55a4msC9hks1PJX0cw64C+gJDJHUHpgCpKflfIRQAE4HFxMG58WZ/A6FrPsD1ZjY7vj8HeJSw0uOrcSNLGhnluyawMfBX4FDCc4ThwI1mtrisa70m4ErjNQFXmlzUBD6cPD/xPadti/o1ZsRYvmsCR5nZGv1UJZ0IPJPndJ1zrlxqzF29nMpcWWwdXZkwzDnn1q8cjharTvJSE5B0JKGNq5mk/mmH6hNG0znnXJVS0+YESipfzUE/AGOB41jzQfACwvQTzjlXpRTocgL5KQTM7BPgE0lPmtnyfKThnHO55IVAfrSQdAvQGlg1x62Z+XSXzrkqpVCbg/L9YPgRwmx3K4CDCBMd+RBF51yVk6uppKubfBcC9cxsBGE8whQz60NYptI556qUAu0clPfmoF8k1QK+kXQeYX6LTfKcpnPOlV9Nu7snlO+awIXARoQ5LtoShlJ3y3qFc86tB4W6vGReawJmlprzYiElFqt3zrmqpFAXms/XYLFh2Y6b2XH5SNc55yrMC4Gc2puwIs5ThKlOC/TH65yrLmpaM09S+SoEtgQOA04GTgFeBp4yswl5Ss8559ZJTev6mVReHgybWbGZvWZm3QhLUk4ERsUeQs45V+V4F9Eck7QBYUzAyUALoD8wNNs1zjm33tS0u3tC+XowPAjYmbBiznVm9lk+0nHOuVypVaDtQfmqCZwGLCKME7hAq3+4AszM6ucpXeecq5DCLALy90yglpltGrf6adumXgA456qkHD4UkPSwpFmSPksLayxpuKRv4mujGC5J/SVNlDReUpu0a7rF87+R1C0tvK2kT+M1/ePi9hnTyCbfI4adc65ayPGI4UeBjiXCegEjzKwVMCLuAxwJtIpbD8Kkm0hqDPQG2gPtgN5pN/X7gLPSrutYRhoZeSHgnHPkdhZRM3sbmF0iuBMwML4fCHROCx9kwWigoaStgCOA4WY228zmAMOBjvFYfTMbbWZGmJ25cxlpZOSFgHPOUb5CQFIPSWPTth4JkmhqZtPj+xlA0/i+GWFwbcrUGJYtfGop4dnSyCjfs4g651y1UJ4Rw2Y2ABhQ0bTMzCRZRa/PZRpeE3DOOSplUZmZsSmH+Dorhk8Dtkk7r3kMyxbevJTwbGlk5IWAc85RKSOGh7F6Kv1uwAtp4afHXkJ7AfNik87rwOGSGsUHwocDr8dj8yXtFXsFnV4irtLSyMibg5xzjtzOHSTpKaADsLmkqYRePn2BIZK6A1OAk+LprwBHEabXWUycdt/MZku6AUhNyX+9maUeNp9D6IFUD3g1bmRJI3New8PlqmfRsiqaMbdebd7+/PWdBVcFLRl3zzrfwqfOWZb4ntO8Ud0aM7bMawLOOYcvKuOccwWtQKcO8kLAOefAF5VxzrnCVphlgBcCzjkHBVsGeCHgnHPgzwScc66gqUBLAS8EnHMObw5yzrmCVqAVAS8EnHMOvIuoc84VNK8JOOdcAfNCwDnnCpg3BznnXAHzmoBzzhWwAi0DvBBwzjmgYEsBLwSccw5/JuCccwXNF5VxzrlC5oWAc84VLm8Ocs65AlaoXURlZus7D64MknqY2YD1nQ9XtfjfhcuFWus7Ay6RHus7A65K8r8Lt868EHDOuQLmhYBzzhUwLwSqB2/3daXxvwu3zvzBsHPOFTCvCTjnXAHzQsA55wqYFwJZSDJJt6ftXyqpT47i7hPj/1VaWM8YtmcZ1/aUtFGC+C/NcOy9iuXaVUT8nT6etl9b0o+SXirjut0lHZUg/oUZws+WdHr5c+wKiRcC2f0C/EHS5nmK/1Oga9r+icCEBNf1BLIWAtmY2T4VvdZVyCJgZ0n14v5hwLQE1+0OlFkIZGJm/zSzQRW93hUGLwSyW0HogXFRyQOSWkh6S9J4SSMkbRvDH5XUX9J7kiZJOiFL/M8DneJ1OwDzgJ/S0rhP0lhJEyRdF8MuALYGRkoaGcM6SvpI0ieSRqTF31rSqJiPC9LiXRhfO8Tjz0r6UtITUhg8L+moGPZh/DxZv7W6Mr0CHB3fnww8lTogqZ2k/0oaF/9udpRUF7ge6CLpY0ldJG0i6RFJn8a/u+PT4rgp/v5HS2oaw1bVBuPv+VZJYyR9LWn/GL6RpCGSPpc0VNL7ZdVEXc3ihUDZ/gGcKqlBifC7gYFmtivwBNA/7dhWwH7AMUDfLHHPB76XtDOhRvB0ieNXm9mewK7AgZJ2NbP+wA/AQWZ2kKQmwAPA8Wa2G6E2kbITcATQDugtqU4pediDULNoDWwP7CtpQ+B+4Egzaws0yfIZXDKDga7xZ7sr8H7asS+B/c1sD+Ba4GYzWxbfP21mu5vZ08BfgXlmtkv8u3srXr8xMDr+/t8GzsqQh9pm1o7w++4dw84B5phZ6xh/29x8XFddeCFQBjObDwwCLihxaG/gyfj+McJNP+V5M1tpZp8DTctIYjChAOgMDC1x7CRJHwHjgN8SbtQl7QW8bWbfxvzOTjv2spn9YmY/AbMy5GWMmU01s5XAx0ALQuExKRUnad9aXcWY2XjCz/ZkQq0gXQPgGUmfAXcQftelOZTwpSQV55z4dhmQqql9GNMpzXOlnLMf4W8QM/sMGF/WZ3E1ixcCydwJdCd840ril7T3qeaVm2K1/uMS574E/BH4LhY4xPNbApcCh8RvfS8DG5Yz3+n5KKb0WWOTnONyYxjwN9YuVG8ARprZzsCxlP/3vNxWD/jJ9jv8JcE5rsB4IZBA/HY9hFAQpLzH6oe6pwLvlBHH1bFav3uJ8MXAFcBNJS6pT3igOC+28R6ZdmwBsGl8Pxo4IBYaSGqc8GNl8xWwvaQWcb9LDuJ08DBwnZl9WiK8AasfFJ+RFp7+ewYYDpyb2pHUKAd5+g9wUoyvNbBLDuJ01YgXAsndDqT3EjofOFPSeMI3+QsrGrGZDTazj0qEfUJoBvqS0Oz0n7TDA4DXJI00sx8Js0k+J+kT1n6uUJH8LCG0Fb8m6UPCzWjeusZb6GKzW/9SDvUDbpE0jjW/oY8kPNz/WFIX4EagkaTP4u/6oBxk616giaTPY/wT8N91QfFpI1ypJG1iZgtjb6F/AN+Y2R3rO18utyQVAXXMbGnsofYmsGN8MO0KgLcLukzOktQNqEuokdy/nvPj8mMjQnfjOoTnV+d4AVBYvCbgnHMFzJ8JOOdcAfNCwDnnCpgXAs45V8C8EHCpeZAsbZstabCkzXIQ96UxzjPi/uRMs16mXbNPnPdm9wqkd0JMr0+FMlx6nB1inPfkKk7nqgrvHeTSjQNuA04gDBBbxJoD5IDQrdDMiiuYxvmEHkfZ7EOY22YyYSqL9e1zwnQPX5d2UFJtM1tRuVlyLje8JuDS/WBmTwHXxP32sOrb+yJJ90qaB+wiae848+XCOCvlyalI4rf/n+IApJIjUO8GBsbz6kq6RdIUSUskvS2pA6EgAngkfgNvIek3koZLmh/PvygtvVMkTZc0hSwDqNK+0b8o6V1JcyT9PY6FIM7AOV/SYoXZU/ePl7YmTPXwp3jeqBjPXZJ+Ao6JNZeZkpZKmijplHL/9J1bD7wQcOnqxFlJO8f979KObUSYwvpSwmR0LwENCdNdTAYeV1gEZTfCTXwGYc6lQ7Ok1ytuE4DzgI8I37qfiMf/SfgGPgd4gXAz7keYgfPvko6NU2o8BKyMeTkwwec8kDBp2njCNOHHxvDhwMVAH2BLwjQP2exBmPJjJqHmMoEwevtx/P+Wqya8OcilO5xwg4cwl81VJY53M7N5ko4GGsft5rTjBxMmJwO4w8wekrQNq2sWJR0LGNDFzBakAuMke6cC75vZYEm/BVrFwzekXX8Y4Wa7IfCwmQ2QVAw8WMbnfMHM7pH0BWGEbAdJbwFtgCuBorS81MsQB8B5ZjY+DrSaAexImJVzDKtn7HSuSvNCwKV7H7gamA18bmbpM4wuMrOSc8oMIkyjnTKZ1QunqMRreWQawfg6YRbOlBnADhVIr7RzTyOs4vUkobnqZsLc+htkiecHADNbHmtAxxNqB/8EOsQ4navSvBBw6X4ysxFln8Z/CQVFR+ADwt/RMYRv6aPiOT0l1QLOzBLPi8CewNOSngV2NbOehOYfgCMlLSZ8q/6G8C17BLCY0Mw0lFAwLCVM5vcda6/7UJrjJJ1LnD0z5nnr+L4+YdGXxLNpStqU0AT2HjAWOCUtPueqNG+3dOUWp9Y+BphIWDntasKNeXKc/fQyQpv6+cC/s0TVN247E2azbBPDhxEWPjkeeDL2vOlEmEn1GkJhsynwqZnNJPRgqkVonx+d4CO8RXjWsBthEZcXCc8h3iQULgcSVuhKagWwXfws/QkFVqYmMOeqFJ87yBWM2PNoJPAPMztv/ebGuarBawLOOVfAvCbgnHMFzGsCzjlXwLwQcM65AuaFgHPOFTAvBJxzroB5IeCccwXs/wHp+c4bKEYH+QAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "e.confusion_matrix()"
+ "_ = ec.evaluate(clusters)"
]
},
{
@@ -780,7 +726,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 44,
"id": "3006b051-8348-4922-a627-56441a1db7b7",
"metadata": {
"tags": []
@@ -788,17 +734,15 @@
"outputs": [],
"source": [
"from pyjedai.datamodel import Data\n",
- "d1 = pd.read_csv(\"./../data/cora/cora.csv\", sep='|')\n",
- "gt = pd.read_csv(\"./../data/cora/cora_gt.csv\", sep='|', header=None)\n",
+ "d1 = pd.read_csv(\"./../data/der/cora/cora.csv\", sep='|')\n",
+ "gt = pd.read_csv(\"./../data/der/cora/cora_gt.csv\", sep='|', header=None)\n",
"attr = ['Entity Id','author', 'title']\n",
"data = Data(\n",
" dataset_1=d1,\n",
" id_column_name_1='Entity Id',\n",
" ground_truth=gt,\n",
" attributes_1=attr\n",
- ")\n",
- "\n",
- "data.process()"
+ ")"
]
},
{
@@ -811,29 +755,29 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 45,
"id": "afd97b7e-4bf8-4256-b9fc-a301e413e834",
"metadata": {},
"outputs": [],
"source": [
- "from pyjedai.joins import SchemaAgnosticΕJoin, TopKSchemaAgnosticJoin"
+ "from pyjedai.joins import ΕJoin, TopKJoin"
]
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 47,
"id": "7bc8ba43-b059-4839-8958-0b31fab95e46",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "723b8f837cf94a42bb1430e2e57eb598",
+ "model_id": "d86c40bfd439456a8cce134c648a89f2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
- "Schema Agnostic Join (jaccard): 0%| | 0/2590 [00:00, ?it/s]"
+ "EJoin (jaccard): 0%| | 0/2590 [00:00, ?it/s]"
]
},
"metadata": {},
@@ -841,17 +785,17 @@
}
],
"source": [
- "g = SchemaAgnosticΕJoin(\n",
- " threshold = 0.5,\n",
- " metric = 'jaccard',\n",
- " tokenization = 'qgrams_multiset',\n",
- " qgrams = 2\n",
- ").fit(data)"
+ "join = ΕJoin(similarity_threshold = 0.5,\n",
+ " metric = 'jaccard',\n",
+ " tokenization = 'qgrams_multiset',\n",
+ " qgrams = 2)\n",
+ "\n",
+ "g = join.fit(data)"
]
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 48,
"id": "8fe34c67-4679-4279-8e7e-35437783ecf3",
"metadata": {},
"outputs": [
@@ -859,30 +803,48 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Evaluation \n",
- "---\n",
- "Scores:\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: EJoin\n",
+ "***************************************************************************************************************************\n",
+ "Method name: EJoin\n",
+ "Parameters: \n",
+ "\tsimilarity_threshold: 0.5\n",
+ "\tmetric: jaccard\n",
+ "\ttokenization: qgrams_multiset\n",
+ "\tqgrams: 2\n",
+ "Runtime: 61.2715 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
"\tPrecision: 65.80% \n",
"\tRecall: 93.03%\n",
"\tF1-score: 77.08%\n",
- "Classification report:\n",
- "\tTrue positives: 15987\n",
- "\tFalse positives: 8311\n",
- "\tTrue negatives: 828357\n",
- "\tFalse negatives: 1197\n",
- "\tTotal comparisons: 24298\n",
- "---\n"
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "{'Precision %': 65.79553872746729,\n",
+ " 'Recall %': 93.03421787709497,\n",
+ " 'F1 %': 77.07921508124006,\n",
+ " 'True Positives': 15987,\n",
+ " 'False Positives': 8311,\n",
+ " 'True Negatives': 828357.0,\n",
+ " 'False Negatives': 1197}"
+ ]
+ },
+ "execution_count": 48,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
- "e = Evaluation(data)\n",
- "e.report(g)"
+ "_ = join.evaluate(g)"
]
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 49,
"id": "27c7bc36-c39b-4bab-a728-971195763728",
"metadata": {
"tags": []
@@ -891,12 +853,12 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "50d8be87d8324be8b152bf47f53be99a",
+ "model_id": "62b551bae8764a019b65d4ff58bda29c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
- "Top-K Schema Agnostic Join (jaccard): 0%| | 0/2590 [00:00, ?it/s]"
+ "Top-K Join (jaccard): 0%| | 0/2590 [00:00, ?it/s]"
]
},
"metadata": {},
@@ -904,23 +866,23 @@
}
],
"source": [
- "g = TopKSchemaAgnosticJoin(\n",
- " K=20,\n",
- " metric = 'jaccard',\n",
- " tokenization = 'qgrams',\n",
- " qgrams = 3\n",
- ").fit(data)"
+ "topk_join = TopKJoin(K=20,\n",
+ " metric = 'jaccard',\n",
+ " tokenization = 'qgrams',\n",
+ " qgrams = 3)\n",
+ "\n",
+ "g = topk_join.fit(data)"
]
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 50,
"id": "e1061a7a-9ccb-41ec-8bdf-42412d4d249c",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACyr0lEQVR4nOyddZxU1fvH3/dOb3fvsksu3d0NSooooJSKlCgKKsZPRUURRSwEOwALARXpVrq7YWGDZQO2Y/L8/ljnfll26Q3ivl+vUXZunXtn5nzOec4TkhBCoKKioqKico8gl3cDVFRUVFRUyhJV+FRUVFRU7ilU4VNRUVFRuadQhU9FRUVF5Z5CFT4VFRUVlXsKVfhUVFRUVO4pVOFTUVFRUbmnUIVPRUVFReWeQhU+FRUVFZV7ClX4VFRUVFTuKVThU1FRUVG5p1CFT0VFRUXlnkIVPhUVFRWVewpV+FRUVFRU7ilU4VNRUVFRuadQhU9FRUVF5Z5CFT4VFRUVlXsKVfhUVFRUVO4ptOXdABUVFZWkpCROnz5NTEwMMTExJCUlkZ+fz1dffcXIkSMxGo2EhoYSFRVFVFQUlSpVwsvLq7ybrXKHIgkhRHk3QkVF5d4iNzeXNWvWsHz5cpYuXcqFCxfw8PBAlguMUBkZGciyTHp6OmFhYZhMJvR6PRqNhtzcXM6fP0/lypXp2rUr3bp1o1WrVmi16jhe5fpQhU9FRaXMuHDhAlOnTuWLL75Ao9GQlZWFw+FACIEsyzgcjhs6n4eHBwaDAaPRyKRJkxg+fDgmk6mUWq9yt6AKn4qKSqnjcDiYMGECM2fOxGazURrdjiRJGAwG3nrrLSZOnFji51e5e1CFT0VFpVTZu3cvbdu2JTMzEygQqNLudtzc3Jg7dy69evVCkqRSvZbKnYcqfCoqKqXGpEmTeO+99wDQarU4HI5C5sziRFCj0eDv709oaCguLi74+/sDcPLkSTIzM0lKSiIvL6/ItYo7V6VKldi4cSNBQUElfWsqdzCq8KmoqJQ4+fn5dO7cmY0bN6LRaNBoNFgsFqB4gYqIiGDUqFH069ePKlWqXNcsbevWrYwcOZL9+/dfc9/vv/+eoUOH3tzNqNx1qMKnoqJSoiQnJ9OkSRPOnj2LwWDAbDYDFPq3k2rVqvHTTz/RoEGDm77e8ePH6datG2fOnLmqCfW5555j+vTpN30dlbsHNYBdRUWlxMjMzKRTp06cPXsWWZYVoTOZTMq/JUlClmU+++wzjh49ekuiB1C1alVOnDhBv379cHd3L7RNp9Mp//7www95+eWXb+laKncH6oxPRUWlxOjbty/btm0jLS2N/Px8ACVMwWni1Ov1/PXXX3Tt2rXQsQ6Hg9OnT7N161b27t1LUlISiYmJxMTE0LRpU9zd3alRowZNmjShfv36GI3GQsdbrVZ69+7N0aNHldlfcWbVRYsW0adPn1J9Diq3N6rw3WHk5ORw9uxZMjIyuHjxIlarlYCAALRaLQaDAZ1Ox8WLF/Hx8UGv1xMcHIyrq2t5N1vlHmDNmjU8/vjjnD17ttD7Op1OidUzmUx89tlnDBs2DJvNxh9//MFXX33Fpk2byMnJAVDW94rrmi4VMo1GQ+XKlRk0aBBjxozBz8+PlJQUqlevjo+PDydOnAAoFB/oDHk4f/48np6epfYsVG5vVOG7jUlPT2f16tUsWbKErVu3kpCQQF5eHgaDASEEubm5VzxWq9Wi0+mwWCy4u7tTpUoVKlWqRJs2bejatSsVK1YswztRuRdo0aIFQUFB/PXXX9jtdmVNT6PRYLfb0el01K9fn8WLFzNy5Ej++usvZSYYGRlJjx49aNy4MZUqVSIqKgp/f38lG4vD4SA3N5ezZ88SExPDwYMHWbFiBVu3bsVsNiOEIDIykq+++oqdO3eyZ88e5s+fjxBCub6HhweZmZloNBqeffZZ3n///XJ+YirlhSp8txnnzp1j/PjxLFmy5KrCdjNIkoRerwfA09OT7t27M3HiRGrVqlWi11G590hNTaVSpUpUqlSJPXv2KLM2jUaDVqvFbDYTEhJCaGgoO3bsAKBhw4a8+eabtGvX7qazrQghOH78OF9//TWffvopZrMZX19f7HY7NWvWZPPmzcoM0SnEkiTh6upKeno6Go2mZB6Ayp2FUCl3bDabeP3114Wbm5sAyuyl0WgEIHx8fMTIkSPFihUrhNVqLe/HoXIHsnDhQtGtWzfh6+tb6Dvm5eUl9Hq9kCRJea9Lly7i9OnTJd4Gi8UiPv30U2EwGAQgOnXqJIBCbfL29la+8zt37izxNqjcGaheneXMiy++iIuLC2+++SbZ2dlAgZnSOTMrTex2O1AQc/Xjjz/y9NNPU7VqVT7//PNiA4RVVK5EZmYmAQEBmM1mdDqdMuMLDg7GYrEojiZLly5lxYoVREVFlXgbdDodTz31FCkpKbi5ubF69Wrgf99zgMDAQAB8fHzYt29fibdB5c5ATWdeTiQmJtK6dWtiYmIQQhTyQLPZbNd9HoPBgMlkQqfTIYQgIyMDu91+Xcl+tVotNptNManGxsYyfPhwVq5cyVtvvcXs2bPp3bv3Td+jyr2Fw+HAaDSSk5ODRqPBZrMpQetQYNrs3r37Nc+Tmm3m913xHD2fSWa+DQ+jluggD/o3DMPXzXDN493d3alTpw75+fns3r2bjIwMZZvzu67RaEo9bZrK7Ys64ysH9u3bR0REBElJSYrowf/imy7Hx8en0FqEn58f06dPJzs7m/z8fNLS0khOTiYlJQWz2cyePXuYNm0a9erVK3K+QYMGKf92CqyLiwsAeXl5fPHFF3Tv3p3ff/+d8ePHM3r0aMUtXUXlSlStWpUDBw4QERGBJEnKLOvUqVNAwXc7LS3tqufYF5fOsO+30/TdNUxbcZQ/9p5j7dFk/th7jqnLj9JwympqvbGcFxfs40K2+YrnsdlsHD58WPleXypwiYmJQIHwOber3Huozi1lzNmzZ6lWrRparRar1aqMiF1cXNBoNOTn52O1WgHQ6/U0bNiQLVu2IMsyRqORTz75hMcff/y6r3fixAlefPFFFi1apLz3ww8/8OSTTwIUCiq+9KuwceNGatasydChQ5Flmfnz56v1zlSuiM1mw8/Pj6effpq33noLjUaDLMtYrVa0Wi12ux29Xs+ZM2eKzZv52p8HmbP1LDfSGdUJ9eSt3rWoG+5V6P0tW7bw+OOPc+TIkULv6/V6Jaje3d2dgwcPEh4efhN3q3KnowpfGRMaGkpaWhomk4mLFy8iyzJ+fn60b9+eBQsWKLMwb29vPD09OXPmDC1btiQ2NpZ3332XRx555Kaue/LkSZo0aaKMuv/44w/69euHq6srWVlZiug5Y560Wi0WiwWr1UqPHj2Iioriiy++uK5rnTt3jn379inVtM+cOUNmZiZr1qzBbrfTuXNn3N3diYyMJCoqisjISGrXrk2FChVu6t5Ubg/GjBmDTqfjk08+wWg0KpYC56BKo9HwwQcfMH78eOWYfXHpDP9+OxdzrTd93Qfqh/DhQ/WVv3v16sW2bdtITk4GUMIZnAKs0+moVKkShw8fvulrqtzZqMJXhsycOZNx48YRGRlJTEwMAO3bt+fLL7+kWrVq6HQ6zGYzWq2WihUrcvz4cSZPnszhw4epUqUKb7311i1d3263U716dU6cOIHRaGTkyJHMnDmTqKgoTp8+rZinnB1Vw4YN2blzJ9nZ2dSpU4evv/6aDh06FDmvEIINGzawZMkSli9fzrlz52jYsCFRUVGKsHl5eSlC6ubmRkZGBmfOnFHEcffu3fj4+NC1a1fuu+8+OnfuXKzZV+X2JTk5mRo1ahAZGcnu3buLXUPT6/WkpKTg4eHB3K1neO3PQ9xY6dniqezvwurn2rNy5Up69eqlWDKc69hQ8L2WJAk/Pz8+/vhjBgwYUAJXVrkTUYWvDPHx8SE7O1txPqlXrx7bt29nyJAhLFq0SPmxNmvWTMk8P3z4cPr168exY8dKJAOLw+HAZDJhsVjo1KkT27Ztw2w28+OPPzJgwAB0Op1iagXYtGkTLVq04LfffmPq1Kns3LlTESSbzcb8+fN57733sFqtPPTQQ3Tr1o1GjRrdcHyUw+Fg7969LF++nAULFpCTk8MLL7zAI488gsFwbYcGlduD7777jsmTJxMbG6sIn7u7O1lZWco+VapU4dUfVvDm30ewOUqu+/HX29n9dl8cDgcajUbJFuOc8UGB8NavX58tW7aodfruYVThKyPS0tLw8fHB29tbMTdmZ2fj4uKCq6urEj7gNDW6u7uTmZnJmDFjqFChAi+++GKJtWXLli20aNECrVZLy5Yt2bFjB3PnzuWTTz5h/fr1VKhQQUk7VaFCBSXvYZUqVViwYAF169Zl//79DBo0CG9vbyZNmsR9991XYh2JEIJ169bx3nvvcfLkSebNm0ezZs1K5Nx3AhcvXmTr1q3s2rWL+Ph40tPT2b9/Py1atMDNzY3o6GiaNGlC3bp1b8t113feeYfp06dz8eJF5T2TyaR8x/VBVQh69D0kbcmG7AghyN6/moyVnxWxXjgJDAxk9+7dhISElOi1Ve4sbr9fzV3KL7/8giRJyo/f29sbV1dXDh8+rGSTEEIoTi9TpkwBCvIf/vrrryXalubNmwMFM7aLFy+Sl5dHfn4+c+bMITw8nPj4ePR6PRaLhbNnzyq5P7t06cLq1av5999/mTx5MtOnT2fw4MElPnKWJIkOHTrQoUMHFi1aRO/evXn66ad5+eWX76pRut1uZ/v27fzwww+sXr2auLi4Qu7/l3P69GlkWcZut2Oz2RBCYDAYiI6Opm/fvowZM0Yp2lqevPTSSyQnJ/Pxxx8r3+u8vDzFmuDRvD9odNc+0Q0iSRJudTqSvWcJ9vMnAYokqv7nn39U0VNRwxnKCmfogtOM6OHhAcCBAwcQQijlU5zBvo899piSjqlOnTol3h6nK/eRI0cQQiDLMmFhYRiNRux2Oy1atAAK4gS//vprAOrWrcvvv//OZ599xtatWxkyZEipC1Hfvn3ZvXs3Cxcu5LXXXivVa5UWVquV06dPs2bNGr788ksGDhxIlSpV0Gq1tGjRgi+++IKEhAS8vLwIDg7Gy8urUAID578tFotiJnd25DqdjsTERN5//30CAgKoUqUKf//9d7ncpxNJkvjggw8ACiWCtlqtyC6euFRqVIrfGwmPNoOL3dKjRw+qVq1aStdVuZNQZ3xljCzLCCE4f/48VquV3NxchBBUqFBBySZvMplwdXUt5GlZGu2A/2W1qFevHlDQUeXn5yuZ8j08PJQMF7t37+bAgQMcPnyYiIiIEm/TlQgNDWXZsmW0atWK0NBQRo0aVWbXvhmEEBw+fJjly5ezYsUKNm3ahKurKw6HQ0kwcPkKQ35+/hXjJW02myIUl66/QoG53JnxR5ZlUlJS6NWrF0FBQSxcuLDcTMRarRZ3d3dCQkJ46623mDBhAhaLBbfaHUEqvfG2JEmYIushmzyQLAXf4SFDhihrjyoqoApfmdG1a1cmT56srN/Z7XY2btyozPQuTUh96WjY3d2d1NRU/Pz8lPeulNmiY3QAa44mXzPjhcPhUDpL52zPORJ2tuPkyQJTkdMjLiMjg59++onevXuXqeg5CQgIYMmSJTRr1ow+ffoUGwtW3jgcDv7880/ee+89zpw5g4eHB6mpqeTm5pKbm4ssy0XWnGRZRqPRFBG0y89bHJefSwhBZmYmQghSUlJo0aIFzz33HO+//365mIjHjRvHO++8Q8eOHcnLy+PTTz9l6oZEJE3pdjsSEu51O9M1QsPs2bOJjo7G1dX1lgveqtw9qM4tZYjTnbpSpUrExsbStGlTvv32W8Xs5eLiQmZmJpIkYbPZkGWZnj17MnjwYOq17c6khfs5nJhJvvX6HcA1EmhkifbRAYxpW5m64V78+eef9OnTR3H1rly5MidOnODixYv4+fkVyiRjMpl44okncHd359tvv+WLL76gZ8+epfWIrsmECRPIyclh9uzZ5daG4nAGTVssFjIzM0lNTSU0NJTatWuzbds2hgwZwqeffnpFpwsnGo2GkJAQoqOj8fDw4PDhwxw7dkxZqwoLC0OSJM6dO1dILJ0xapfHYwI0adKErVu3lrn4CSFwc3PDZDKRlJSERqPhsR92sPZocqlfu2etQD59pBFvvPEGkydPZsGCBTzwwAOlfl2VOwN1ja8McYpKRkYGDoeDY8eOsWXLFsX12jmrE0KwbNkyAMLbPMhL2wVdPvqH3bHpNyR6AHYBFrtgxaEk+n6+iSfn7GDMsy8UMp/+/PPPALzwwguFOkeNRkNubi5PPPEE33//PTk5ObRt2/ZWH8MtMWHCBH799ddCiYfLE7vdzttvv02PHj1ITU0lJiaG6Ohodu/ezYIFC9i5cydvvPEGH3/8sdJmrVarPH9JktDpdPTo0YP9+/djs9mIjY1l5cqV/P777xw+fJgLFy7w+uuvYzKZiI+PJzs7m927d3PhwgXee+89AgMDFXOo8/NzOBx4eXkBsH37dmrVqnXVWWVpIEkSixcv5sKFC9SuXRsAD2PZGJlybYKvv/6ayZMn06JFC1X0VAqhzvjKkCVLltCjRw8kSWLEiBF8++23eHp6EhQUxKFDh3B1dVXW1ry9vRn02Sr+PnAehIASG60LhN2OPXYvKRvmwcWzmM1m9u/fT/369ZVZgtOr02QyceDAAWrVqsULL7xwW6yT1KpVi2+++YamTZuWazuEEIwYMYK1a9eSkJCAr68vS5cupV69eiQlJVGvXj1effVVnnrqKeWYoKAgzp8/jyRJBAYG0rBhQz7//HNcXFzIysoiKysLV1dXXF1dCQgIKDRAycvLY8KECXzzzTfYbDYWLlyoJBFft24do0aN4uTJkxiNRsVk7enpid1uJzs7m+joaPbt21cmlT8u5fvvv2f48OGEhYXx9KzFfLHlXInG7xVHiCWeLR+OokqVKhw+fPi2DPtQKT9U4StjvL29SU9PJzo6GpvNRnJyMrIsk56ejpubG9nZ2ciyjPf9z+FWo20JCl5hhMOBsFtopj/Hh2P6Ur16dcxmszIrqF+/Pnv27GHq1Kmkp6czY8YMUlNTcXNzK5X23AgPP/wwffv2LffMG6+++irff/89aWlpdOjQgV9//VXxlh05ciQA33zzjZImS6/Xk5OTg1arVcyAFouF/Pz8q1YKcM7iJEnC4XAUMmOGhYVRt25dmjdvzogRI/jyyy95/fXXCQkJIT4+Hij4zuXk5GCxWGjfvj2rV68u86w48+bNY+jQoUgmDyKe+gF7KRqbhMNO2vofqKtPZtWqVRiNxlK7lsqdiWrqLGM2bdoEwNGjR6lZsyYmkwlJkjAajWRnZ1OhQgVM1dvhWoqiByDJMrLOyB4pirr9niI3N1cRvUGDBrFnzx48PT2pXbs2s2fPpl69ereF6AHl4qhxOdu3b2fmzJmkpaXRunVrFi1apIjeqVOnWLRoEatWrcJut+Pq6ordbldm8zabjerVqzN8+HBmzZrFoUOH2L17N+3atStUMUCn0+Hq6oq3tzd+fn7KrEWSJMWMGR8fz6pVq3j11VcJDAzk7bffJjo6moSEBJo0aQIUeH46najWr1/PSy+9VFaPSeGRRx4hPj6eMD9PMo9tLd2SQEIweWg3/v33X1X0VIpFFb4ypkaNGrz//vsA/Pnnn2i1WkJCQrBYLGg0Gs6ePYt3x+uvvnCrWB0Srq0How2oCEDPnj2ZP38+ACNGjOCxxx5jxowZZGZmllmbrkVCQgI+Pj7ldn0hBOPGjSMvL4+AgAAWLVpUyJS2dOlSqlevruRjzcnJweFw4O/vT3BwMB9//DEHDhxgxowZBAQE0KFDBxo0aMDmzZupUaMG8+bNU2rZZWdnc+HCBZKTkzGbzaSlpfH2228XGoQ4TdQrVqygefPmSo3H7du34+7ujtVqxdXVVclTOX36dFJSUsr8uQUFBXH69GmmPNIGyXH9NSdvCCFoU8WfZ8eMKJ3zq9wVqKbOcmLkyJF8+eWXyt/h4eEkJCQge4cS8sTnZTqrEQ4HuSe28FBwBrNnz8bhcFC7dm0CAgL48ccfCQwMxN/fn0OHDhEcHFxm7SqO7OxsgoKCSEpKKpHcpTfDoUOHaNq0KUajkW+++aZIsd6+ffuyZMmSQs4ktWrVIi4ujqioKHbt2kVubi6NGzfm6NGjeHt789FHHzFkyJAbasfKlSu57777sNvtjB8/nhkzZijb1q5dS+/evZWwFZPJpCRQ8Pf3p0WLFixYsOAWnsKtMXfrGV776xAlvdQnS/DHmJbUCfMq2ROr3FWoM75y4osvviiUiSQ+Ph6Hw4Fv57IPzpZkGdfKTZj93VwcDgdRUVGMHz+elStXEhISgkaj4f777+e77767qfOnZpuZveEU43/dw2M/7GD8r3uYveHUVYuJXol58+bRpk2bchM9gGXLlpGfn4+Xlxe9evUqsn3Lli1YrVYCAwOV9x544AF0Oh1Tpkxh/fr1eHt7c/z4cX788UcuXrx4w6IH0KVLF6ZMmYJGo+Gjjz6iX79+yrYOHTqQkZGhOLLk5eVhNpux2+088cQTLF++/CbuvOR4tFkkb/aqWeLnHdm6oip6KtdEnfGVM1u2bKFLly7KyDzsmZ/QmDzKvB0Oq5m87fOZ+VRf+vXrV6S6wsmTJ2nWrBmHDx8mICDgus65Ly6dmetPsuF4gVnNbPtfKIZRKyOAdtX8lfjCa5GVlUXVqlVZsmRJuQYjd+/ene3btzNw4EA+++yzQttmzZrFmDFjAHjqqaf47LPP0Ov1PPDAAyxatIh169bRsmVL/Pz8OHr06BVNts50dfv27VPKNznrGm7evBkoyLlqNBpZt24drq6u5Obm8sADDzB//nzFYnD//fezbNmyQmtqK1eupGvXrpw+fZrIyMhSeELXT7VXl2G2l0RhIuhZJ5hPB6pB6irXRvXxLWeaN29OcnIyb731Fh9++CGStnxK8Mg6A4+OfZGHHqpX7PbKlSszYsQIBg4cyNKlS69ZKmju1jNMWXqUfJud4oZW+f+J4MrDSfxzPJVX7ovm0WaRVzyfzWZj6NCh9OzZs9wzcKSlpWEwGKhZs/CMZf/+/YwdO1ZJxnz69GmgIC9qcnIyoaGhtG7dGi8vLyUR+KXY7XaWLl3K33//zYoVK7Db7TRu3JioqChq1qzJ/fffj5eXl5KvU6fTkZaWxrp168jJyaF58+YsWLAAX19fHnjgAe6//37q1avH0qVLC1VH+Pfff5FlmR07dpS78IV6GzmdmnvtHa+Bp1Gjip7KdaOaOm8DTCYT77zzDmlpaYr3XXmw8O9lDB8+nJ9//pljx44VSZX19ttv4+PjwyOPPHLVKgIFoneEPGvxoncpQkCe1c6UpUeYu/VMsfvY7XZGjRpFVlYWn3766Y3eVomj1+uVTCqX8vDDD9OgQQNMJhMAiYmJQMFMVZIkEhISADh79mwh0cvPz+eLL76gWrVqTJkyhfAqNRg+7Sc6v7WAM/VHsdS1M58nV+adgya+PqEnNLoB7du3p1WrVrRs2VJJe/bPP//w+OOPYzabqVWrFh9++CEff/wxQKEZ/IcffogkSbdFEoB3HyiZBOzfDGlcIudRuTdQhe82wmQy4etuKrfr56Sl8v333zNo0CCio6PRaDS4u7vTtGlTZsyYwYEDB/j222+x2+00b96cY8eOFTnHvrh0piw9St4NZpjJszqYsvQo++PTC70fGxtLu3btiImJYeHChbdFUdrq1auTnZ3N+fPnlfc2btzIsWPHmD9/vhKiEhcXp6QSM5vNmM1mXn31Vdzd3ZXjnJ6cf/31F/8342vqjP2M79Iq892eNNYeS+FirpU8q51cq51zGfmsP55Cp4/+odGUVfy+M45169ah1WoxmUzIsszs2bMRQpCens6CBQsUcXaGUkiSRE5ODgaDoVwHWU6aRvmi19xaN2TQyDSK8i2hFqncC6hrfLcZby05zDcbY8r8ug6rmfR/55G1feE195UkCTc3N8xmMw8//DBvvfUWFSpUAODJOTtZdSTpmjO94s8LXWsEMvvRRmRkFHiYTp8+nQkTJjBx4sQbrupeWmzbto3mzZsrOTChIPZx27ZtnDp1iubNm3Pw4EFycnLw8/MjJSVFCTpPS0vDpjXx+644fl+1hWMxsTSpXwffwCD+OZ6qmICvF1NmHLHfT6BTp078+eefQEH5nbNnz9K8eXP27t3Ljh07lP0lSVJqPsbFxREWFlZyD+Ym+XDlMT5Zd/Kmjx/fsTLjO1UrwRap3O2ownebkZptptGU1WV+XclhQ7d0MslxpwsFs98IWjdvQkZ/i3QLRUZ1MnS3bmbeN7Pp3r07kyZNolatWjd9vtJACIGXlxd5eXns37+f6OhoIiIi6Nq1K1999RXvv/8+r7/+Onl5eej1eqVKgz6oCnUGPk+GSxhWuw1RAgYXIQTCnMPjFfN4fdwwoCD36uDBg4mKiiI+Pp78/HxCQ0NJSkpCr9eTl5eHEAKHw3FbJAMA6PnZvxxIuPFY0dqhHix+qnUptEjlbkY1dd5m+LkZqOxftq76kgRda4dy/MBu0tPTlWK4zrivI0eOMHv2bB5++GFq1KiBh4dHsbMvl5rtEVcooXO9WC0WzkiB7Nq1i7lz5952ogcFs6b33nsPu93O8OHDgYJwgfDwcABGjx6N1WqladOmSrUGt3rdCXz0PZL1wVjsjhIRPWdbZIMr35/zZ+7WMwghOHjwIHa7ndDQUPLz8wkMDOTcuXPYbDaqVaumiJ3ZfOPhJKXF4qdaUzv0xryZVdFTuVnUGd9tyL64dHp/vqnMrmfSafj1yWa3FP+UmZnJsC/WsfvirTsKV9Gl8WwzH2rVqkVAQMBtmXbK4XBQs2ZNjh07xsSJE/nuu+8YO3Ysb7zxBgDPPPMMX3zxBT4+PmQF1sOn85O3NBO+HjQShCdvJWbVj8TGxgIFlSAMBgNmsxkvLy/8/f1JT08nMTGR06dPExUVVaptulE+Wn2MWetPXzXEwaCRGd2uomreVLlpVOG7TXnutz0s3HOu1K9j0sm8cl/1q4YSXC8lVWst98Q2Uha8Veg9WZbR6XQYjUbc3d3x8fEhKCiIyMhIoqOjiY6OJjg4GD8/P3x9fRXPytIkMTGR2rVrc/HiRby9vWnUqBErVqwACoQxLCwMTUBF5C4TS130nAi7jfNzJmI5X7BmFhISolSDqFChAtnZ2fTs2ZNvvvlGSWp9O7Iz5gIvLtxPYqaZ7Nw89FqZCn4evPdAHdWRReWWUYXvNqbjh+s5lZJTauc36TTXjJ+7Ecb/uoc/9t66WPtlncK+6Tvi4uJIS0tTwip0Ol2hKuYOh0OJabscZ507p1D6+voSHBxMZGQklStXJiwsDD8/P+V1s2LpDOy/cOECkiSxb98+pfZcWloatZ75Gm1I9TJbSxNCkH92P8m/vEKLFi3YunUrDoeDevXqER8fz/Lly+nfvz9paWlIkkRKSspt4zR0JXQ6HY899hhffPFFeTdF5S5BDWC/jVnzXDs6fbiOkym3HuB7Od1qBjKmXeUSTe8UHeSBQXu+UIaWG8WolRnx0P2M/Oxp5b3c3Fz+/fdftmzZwt69ezlx4gSJiYlkZmbicDjQ6/V4eXnh6+uLt7c3bm5uaLVasrOzSUpKIi0tjVOnTnHo0KFCsWvOwq3Ocj/OivNOoQwJCSE8PJywsDACAgLw9fUtJJR+fn5K9foBAwawcuVK6tatS9OmTZk6dSrR9RqjD61BWY4sJUnCGFGbkKiqbN68GUmSiI6ORq/Xs3XrVjw8PDhz5gxDhgxhx44d7N69m8aNb+8YOI1GUy5JtVXuXtQZ3x3Ac7/tZeGehBI5V7CHgb/HtcbXreTj4VKzzbR8b+0tCZ9BK7P5xQ7X3b7U1FQ2bNjA1q1bOXDgAKdPn+b8+fNkZ2cjhMBkMuHn50dERAQ1atSgSZMmNG7cGI1Gw7Fjxzh16hRnzpwhLi6OxMREUlJSyMjIIC8vD6vVqqT6kiQJjUZTaMZps9nQaDS4ubnh4+NDSkoKmZmZiph6tnoEj+YPlWp5qeIQQpCx8Sc4uBRZlnn22WeZNGkSOp2Ohg0bsm/fPnJychg0aBADBw7kwQcfLNP23Shubm40btyYdevWlXdTVO4S1BnfHcCHD9VjWItIpi0/yqbTF24qRs7XVcfL91WnX4Pwkm/gf/i5GWhb1f+W4vjaV/O/IVH28/OjX79+hRI0O4mNjWX9+vVs27aNQ4cOsXLlSubNm0dubi6SJClVzp0pwQYNGkT79u0JCgpSzpGbm0tCQgLHjx/n5MmTxMTEEB8fr4hkWloa2dnZnD59WhFJp0esoWLDMhc9KBBpj+oteaZvQ5588kklYP6tt95i9+7dvP766xgMhtsmlOFa6PV60tPTy7sZKncR6ozvDuNCtpnfd8dzNDGLzHwrHkYd0cHuPNggjLQcC1OWHeFkcja5Fjsueg2VA9x4pXt1Kge6X/vkJcC+uHQGfLWVPOuNp8MqCe/S68HhcHDkyBE2bNjAjh07OHr0KLGxsVy8eJH8/HxkWcbd3Z3g4GAqVqxI3bp1adGiBW3atMHD48ou93l5eRw8eJA2bdrg5eWFx+BPMWvKJxNPkIeBrS91Uv7+4osvGDVqFJ07d2blypUANG3alGnTptG2bdtyaeP1EhISgpubG8ePHy/vpqjcJajCp1Li/C9X5/WbPEvSu/RWsNls7Nixg40bN7J7926OHTtGQkICaWlpWK1WtFotnp6ehISEULVqVerVq0erVq1o0aKFkn8zJiaGli1bonngXTTufuVyH0EeRra+1BGbzUaXLl1Yt24dTZo0Ydu2bUCB401ERASpqam3RRq4q1G5cmXy8vKUXKcqKreKKnwqpcK1qjM4kSQwakvWu7S0yM3NZdOmTWzatIl9+/Zx4sQJzp07R2ZmJna7Hb1ej4+PD2FhYVSpUoVtXu2xe4aUS1trBrvTKmcTb775Jvn5+bz22mtMnjxZ2f7hhx+yceNGFi68doq68qZevXrExcVx4cKF8m6Kyl2CKnwqpcb++HQ+X3+SdcdSkKBQHkpnPb721fxL3Lu0PLh48SLr1q1j27Zt7N+/n9OnT5Me0RJTo35lv5YmBNl7lnBh5WyqVKnCkiVLqFKlSqG2VqtWjQ0bNlCjRo2ybdtN0KZNG/bs2UNWVlZ5N0XlLkEVPpVS52rrkqXhXXq7kJptpvGU1WUazgAFzjW6i6dY938PKGnUnFgsFu6//35q167Nhx9+WMYtuzn69OnD8uXLyc/PL++mqNwlqF6dKqWOr5uBkW0qlXczyhw/NwNNonzYFnOxTK8rSRK+kTWLFb0hQ4bg7u7OtGnTyrRNt4Kfn99tUTtQ5e5BTVKtolKKvNy9OppyiBq4mFu4UPCxY8do1qwZZrOZn376Ca32zhnzBgYGFpudR0XlZlGFT0WlFKkb7sXkXjUpa+2z2gUXss0kJyfz6quv0qpVK5588kkWLlx4Wyb9vhqhoaGq8KmUKKrwqaiUMo82i+St3jXLdOYnAYNe/YRq1apx4cIFtm3bxqhRo+6YoPVLudxkq6Jyq9w59g4VlTuYR5tFUifMi3eXHWHL6dJf8xOA3S2QI0eOFMpEcydSsWLF8m6Cyl2GOuNTUSkj6oR58fOI5rzRo2xCCCpUqX7Hix5AhQoVAFSvTpUSQxU+FZUyZljLKHrWCS7163gYy6YGYGnj6uoKwNmzZ8u5JSp3C6rwqaiUA58ObFCq4mfUykQHl01+1tLGuS55+vTpcm6Jyt2CKnwqKuXEpwMbML1/HQLdSz6IXwAPNggr8fOWJ3FxceXdBJW7BNW5RUWlHOnXIJx+DcI5mZRVqLJGjsVG/g0k+b4U4XBgPbuPAX0/pH79+jRs2JC9e/eyYsUKYmNjyc7OxmKxUFzSJo1Gg4uLC0FBQTRr1owHHniAjh07KqWNygtJkoiPjy/XNqjcPagpy1RUbkNupbyTw5pPys+vkH/uWIm1x8PDgwcffJB3332XgICAEjvv9aLT6Rg+fDhffvllmV9b5e5DNXWqqNyG1AnzpFtgLsJqvqHjHJZ80tZ8U6KiB5CZmcm3335LYGAgVatWZdWqVSV6/muh0WjU6gwqJYYqfCq3HXa7HZvNVqwp7l5gx44d+Pn58dFT/bi49muE1Yy4RuYS4XDgsOaTtvYbsvcuK9X2nThxgq5du1K3bl127dpVqtdyotVqVeFTKTFU4VMpc/Lz8/nnn3947rnnaNOmDZUqVcJkMqHVapEkCa1Wi06nQ5ZlXFxcqF69Or169WL8+PF8++23d/VazzPPPEOTJk1IT09HlmWMcTvoqj2MX34CwmbBcdkM0GE147BZyD2xhaR5k25I9JzrdpIkIUkSslzQHQQEBDB48GC8vLyueKwQgoMHD9K6dWumTZtW6inF9Ho9mZmZpXoNlXsHdY1PpdTJyMhg9erVzJ0795bKy2i1Wry8vMjLyyMiIoKePXsyevRoIiMjS7bB5YDD4aBz586sXbtWEf7/+7//Y+vWrfz99984HA50bt4Ya7RH7x+JbHTFkZ+DJeUMOQdW48i7dVHQaDTo9Xry8/MRQvDGG2/Qu3dvxo0bx65du8jLy0OW5UIiJ8syISEhNGvWjF9++QWNRnPL7SiOkJAQXF1dOXHiRKmcX+XeQhU+lVIhLi6O7777ju+++44zZ85ccT9JkhSTpizLmEwmQkNDqVatGmazmZiYGM6fP19sEVI/Pz8sFgs9evTg5ZdfpmbNmqV1O6WKEIK+ffvy119/IUkSgYGBPPHEE0yZMgWHw4HBYMBsLpjpXS48V8M5i7uekj6yLKPVarHZbDgcDuU6rVu3ZsOGDXz77bc8//zzaLVaLl68WOickiRRo0YNWrRowRdffFEq+UArV65MXl4eCQkJJX5ulXsQoaJSQuTl5YlZs2aJqlWrCq1WKygIJyv2pdfrhZubm/Dx8RGAMJlMQqfTFdlPkiTh7+8vKlWqJGrVqiXCwsKEJEmF9tFqtcJkMomxY8cKi8VS3o/hhpkxY4aQZVlIkiR8fHxEgwYNlHu/2jMs7iVJkpgxY4Zo3ry5AETfvn1Fhw4dhL+/v4iKihJVqlS56mdTu3Zt8cADD4iaNWsq73Xq1EkIIcTu3buFv7+/uO+++4QkScJoNBb6DOrUqSO+/fbbUnlGdevWFT4+PqVybpV7D1X4VG4Zq9UqPvjgAxEYGCgqVqwoNBpNoc5VkiRRqVIl0b59e9G+fXsRHR0tfH19C3W4siwLvV4vtFrtDXf4siwLQLnuhAkTxIULF8r7sVwXqampioBUrlxZBAUFKffv6+srNBpNoXtt2rSpcr/Ol6urq/JvT09PkZqaKoQQwsPDQ3h4eAiHwyHsdrvYtWuXeOedd0STJk1EWFiY8Pb2LvZ5enl5iaNHj4p9+/YJvV4vADFmzBghhBDr168X/v7+YuTIkQIQDRs2VI5r2bKlCA0NFdnZ2SX+nFq3bi3c3NxK/Lwq9yaq8KncEmfOnBEtW7YUTZo0EQEBAUU6ap1OJ7y9vYWvr69wdXVVZjY3OpO53pdTcGVZFm3atBG7du0q70d0VSZOnChkWRahoaGKyAAiJCSkkMAZjUZx4sQJReTq1q1b6Bk7791gMIhnn31WCCHEgQMHBCAeeeSRItf9999/xf333y+8vLyKfGaAGDx4sBBCCLvdrpx/yZIlQgghXn75ZTF06FDRsGFDodFoRFBQkDLA6dWrl5g1a1aJP6fevXsLg8FQ4udVuTdRhU/lptm5c6fw9/cX999/v3B3dy/UcTvFx2QyCU9PT9GuXTsxevRo0aVLl2JnGP369RPt27cXBoNBeHt7CxcXF8WcVqVKFeHl5SW6d+8uKlWqpAinwWAoVkRlWRaVKlUSUVFRQqfTiVatWol169YJh8NR3o+sCE7RaNy4sdL+ChUqFLqfgIAAsXr1atGkSRMBCH9/f0WMnP+vVq2aWL58uSKAZ8+eFWazWfTr108AYtasWeKrr74S69atE5s3bxZnz54VNptNrFq1Svj5+RWZRUqSJE6fPi2EKBjcON/bs2ePyMjIEAEBAWLLli0CEA899JByXIcOHcQDDzxwxftNTk4W8+bNE88//7zo37+/aNasmQgODi40a3VxcRGBgYGiadOmYsCAAeKll14S7dq1ExqNpqw+FpW7HFX4VG6K48ePi6CgING/f39Rq1atIrOGgIAA8e6774oDBw4Ih8Mh9u/fL1xcXJTtGo1GTJgwQVitVvHNN98IX19fMWLECHHs2DHlGvHx8eK1114TAQEBQq/Xi4CAAOHr6yuqVasmNBqN8PPzE66urmLBggXC09OzSMcdEBAgxo8fL9zd3UVERIS47777RFJSUjk+tcLExcUJnU4n9Hq98vxCQkKKDAruu+8+sWTJEgGIbt26ifr16yuDDKdgffTRR2L9+vUiICBAeb6yLBdah3O+LjUpe3h4iKpVqyprrZe+QkNDRV5enhBCCHd3dwGIsLAwIYQQjz32mPj000+Fr6+vcHd3V9rh5uYmXFxcRPXq1YWXl1cRQb3Wyyl67dq1E48//rgYPXq0GDFihKhcubIARKNGjcTrr78uEhISyvOjU7nDUYVP5YaxWq2iVq1aYsCAAaJKlSpFRKdLly7CZrMp+7/77ruFtvfs2VOYzWaRmZkp+vfvL2rXri0OHjx4xevZ7XaxcOFCERERIdzd3UVgYKBwc3MTer1eRERECB8fH5GUlFRkzUqj0QgvLy8xbNgwERwcLEaNGiWCg4PFqlWryuIxXZPdu3cLjUYjDAaDIkhO0XYKRtWqVcX8+fNFUFCQcHNzE++8844ICQkpEXOxLMtCp9Nd0dlFo9GIN998UwghRPfu3ZVjvvrqKzF37lzRr18/Ubt27WKPvbR9kiQJg8FQrPPS9by0Wq3yPJ5++mkxbNgw4e3tLZ544glx4sSJcv4UVe5E1AB2lRvm22+/xdXVlRUrVqDT6cjIyAAK4uxkWWbevHlKPNeUKVN46aWXlGO/+uor/vrrL8WF32QysX379quGIiQlJZGVlUWfPn0ICAggJSVFSbQcGxvLxYsXCQwMJD8/X3HLh4IMMFarlWXLltG2bVv27t3L3LlzGTRoEOvXry+9B3QD2O12LBYLgPJ/o9GoBI/Hxsbi5+dHUlISHh4e+Pv7K8HtxXH5+56ennh4eCh/Xxpn53A4sFqt2Gw2JElCr9cXadvbb79NTk4OISEhSJJE5cqVmTZtGn5+fpw/f55jx4pPjVajRg3l+yCEwGw2Y7Var/gcJElCp9MVGwfoDLEA+OSTT/jhhx8ICQlBo9HQvHlzPvvss3s2y4/KTVLOwqtyh+FwOERkZKTo3r17IZd3/pshOE1hQgjxyy+/FBr9f/bZZ8q2gQMHigceeKDQzPBSYmNjxcsvvyzq1q0rvL29xYMPPijee+898dtvv4k333xT+Pj4KOa8559/XkiSJH799VdlbfDS9Uanya9ChQri119/FWvWrBH+/v5XnWWWBSkpKcXOsoxGo3j99deV2c6oUaNESEiICAoKuuIMy2g0ipo1awpfX98is0Fvb+9Cs+HAwEBh8g4Qnq0GiaChM0TomO9F6JjvRdCwj4Rny4FCNnkUOt7f31+0bdtWSJIk6tevL2RZFh06dLjlGef1vi4Nnbjc6zcwMFDUrVtX9OzZU+Tm5pbr56ly56AGsKvcEMePH6d9+/ZcuHBByalZs2ZNTpw4gcVioXPnzqxcuRK73Y7JZFJybrZt21aZZS1fvpxnnnmGffv2YTQaC53/2LFjTJ06lT///JOhQ4fy0EMP0bhxY2UW5+TTTz/l3XffJTExkaioKNzd3fHy8uLkyZMkJSVRvXp1Tp48SX5+Pq6urkiSRG5uLj4+Pvzzzz+sXbuWBQsWsGbNmlIJuL4ehBBotdoimVCEEMTGxlKxYkVsNhsNGjQgOTm5SD062cUT9wb3Y6raHJ1HAOj0ICSEzYwtI4m841vI2r2kUFYXY2R9fLqORutVUAT38nt3dge29EQuLv+c/LN7C1/zBgLoNRrNFYPnNRqNElxvMpnw9PREpyuoGJ+dnU16ejpCCGRZxmazFTk+Ojqa06dPK7Pk8PBw6tevz4IFC4p8V1RULkf9hqjcEJs3b6ZSpUokJycjyzJ6vR4XFxe8vLxITk5WTFVjxozBarUSEhLCuXPn+PHHH4EC89rEiROZNm1aIdETQvDJJ5/w9ttv88wzz3Dy5El8fHyu2I5x48axdOlSLly4QExMDK+99hozZszA398fd3d3rFYrer0eo9FIRkYGlStXJj8/n3PnztG6dWtefPFFEhMTWbp0Kffff3/pPrQrIEkS0dHRHD58uND7QgjCwsKoUqUKhw8f5sCBA0oHr9frwacCXu2HYwyvBf/l2SyEVovGWBFDQBSerQaBEAiHFSQNkqxRrn2lNgFovYIJGPAWluTTBJ5dw761fwE3JnxXyxhjt9uV7Tk5OeTk5BS7nxACLy8v0tPTlfc0Gg1Hjx5VBjsGg4G4uDjOnz/PU089xezZs6+rfSr3Luoan8oNYTabiYuLQ6fTYbVaqVy5cqG1m0OHDiGE4Mcff0SWZZKTk/H39yciIgKAAwcOkJ+fT69evZRj8vLy6NWrFz/99BNbt27l1VdfvaroOfnggw+UztPhcJCVlUV2djZQsC5kNpt57733EEKQk5ODTqfDx8eHTz/9lEWLFqHRaJgzZ05JPp4bZuzYsYX+doqKEEJZG3WKnslkQl+jI4GD38cYURtJlq8+W/1PFCVZRtYakGSNkpD6Wjj30wdUJK3BcNzqdQcodvZ1PdzsrFoIUUj0oEA0ZVnGarWSnJxMTk4OnTp1wmq18sUXX7Bz586bupbKvYNq6lS5Ib766ismTJhATk4Obm5utGzZkr179yqmT51OR9euXfnzzz8VcXRzc6NNmzYEBweTkJCAxWJhypQp1K9fH41GQ79+/XB1deXDmV/yx/4kjp7PJDPfhodRS3SQB/0bhuHrZii2PS4uLlitVho1asTWrVsJCwsjKSkJvV6Pw+EgMzMTg8GAJEkYDAZsNhtLly6lbdu2PPTQQyxZsoSsrKwijh1lhc1mw2AwFJlFfffdd7z77rucOHFCMT+61euOT5eRSHLZG2ocVgtpa74qVP3hWrO/mjVrcurUqUJJyQ0GA5GRkVStWpVq1arh4uJCUlISGzdu5Pz587Rp0waNRsOff/55VWcYJx07dmTt2rUYjUbat2/P0qVL0ev1Sm5TFZXiUIVP5YbYsmULLVu2VExQJpOJxMREoKDMjRCCChUqcOjQISpWrMj58+dxc3Ojbdu2nDlzhmPHjpGZmal4H+rdfXFrOwTXaq1A1oIE//2nYLtGRpKgXTV/xrStTN1wL2VbZmYmvr6+APj6+pKUlESPHj1YsmQJQggGDRrEvHnzCA0NJSUlhYiICE6fPs369etp06YNVqsVo9HIk08+yaxZs8rqERahffv2RbxMZVmmZs2aHDhwAAB9UBWCHn0fqRzXrxzWfJLmTcJy/uRV93Mm2j5//rzyNxRUWOjevTvdunWjc+fOhbxNoSCx+YoVK/jqq69IT09n/PjxvP/++8TExFzxWrIsM2rUKL766itq1KjB6dOnycrKYvTo0Xz++ee3eMe3TmJiItu3bycmJkZ5JScnk5SUxJkzZ2jUqBEmk4nw8HCioqKIioqiSpUqNG3aFIOh+MGeyq2jCp/KDbF3717q168PQGhoKPn5+Tz22GN88sknhIWFcerUqavOBGQXT9xqd8QQURtDaHVkgytwPaYwgVGr4dX7q/Nos0gAFi5cyLPPPsv58+eRZRmz2Uy9evU4dOgQNpuNpKQk/Pz8iIyM5Ny5c4SHhysdo5ubG1AQOuDp6cmaNWuoVatWiTyjG2XHjh00bdq0WJd8Z/WKgIHvFJg3y8kRB0A4HOSe2ELqoneL3X75524ymXB3d8fNzQ0vLy/S0tJ48skn2bBhA9u3b+exxx5j/PjxhIaGFr6OEGzYsIG33nqLjIwMXn/99UKmcShc1aNWrVokJSWRmppK+/bt2bx5M2azmfz8/HKZye/YsYMFCxawfPlyzp49S4sWLQgLC8PHxwd3d3cMBgMuLi5otVqioqLQarXExcUpwnjo0CGOHj1KmzZt6NatGwMGDMDPz6/M7+NuRhU+levCarXy5ptvMnPmTMXjzsfHh4sXLxbqhK6EPqgKHs3741KpEQIJWau7qXZIwkGrip5MH9CYTq2aAnD27FmysrLw9fUlNTUVgEmTJvHuuwUdtJ+fHxkZGYpJMTc3F4DU1FQqVqzIm2++yYYNG1i0aNFNtakkqFatWiGz5qXILp6EPTUH6Qqxe2WJw2YhYeawIvX/3N3dyc3NVdZcO3XqxKpVq5SCtX///Tdvv/02RqORJ554gszMTFauXElsbCw2m42QkBD8/f0JCAggIiKCWrVq0bhxY3bv3q187x5++GHleuHh4djtds6dOwcUfMZarVYRu+TkZKZOncqLL75YJs9FCMGKFSt49913OX78OKGhocTGxpKZmXldZldZlvHw8KB+/fo888wzNG7cmI0bN7J48WKWLFnC4MGDee6556hQoUIZ3M3djyp8KtckNjaWPn36cP78edLS0m64kKxbve54d3wcSaMvkc5bCIEk7OhTT5Cw8lss509gs9mUenKNGjVix44dQIEjhFarxWAwYLFY6N27tyJw8+fP54cffmDu3LmEh4eTkpJSJLyirDh69Cg1atQotn6eZ6tBeLYcWK6zPScOq5n0f+eRtX2h8p63tzeZmZlKuz09PQHYs2cPsbGxzJkzh4ULF5KWlnbN88v/Oew4HA5lEGAymbBYLIXeAxg2bBjff/+98rdWq8XX15f09HS0Wi0RERFFPGZLgyNHjjBgwACOHTtWROQuHxTKsqzco9VqveqgUaPRUKdOHTp27Mi5c+dYtmwZL730EhMmTLhiAgOV60MVPpWrsmfPHpo2bXpdjgbF4RQ9WVfygiKEAOEg98RWLi6fiSMvk+joaA4dOqR0DB9++CETJkzA29ubjIwMtm3bRqNGjQDo3r07ffv25cknn6Rp06ZMmzaNtm3blng7r5c33niDt99+u4jwBQ37CENQ5XJqVVGyD6zlwpIPlU67YsWKnD59GoA///yTXbt2MWvWrCIFa3U6HUajEaPRSHBwMHFxcTzxxBNYLBZWrVrF0aNH0Wq1WK3WImJQnEBUqVKFc+fOFQqFcA5wnNuKK2B8KzgcDnbt2sWKFStYsWIFO3fuvOGBoCRJaLVaAgICCAsLIzIyEoPBQEJCAidOnCA1NVWxSlyKcwAXHBzMunXrCAsLK6nbuudQhU+lWC5evEjLli05evToTZ9DH1SFwEfeLRXRuxQhBMJhxzf/HN89P4B64d5Agcekq6ur0pF269aNZcsKvBJXrlzJ2LFjOXToEHq9nr59+zJkyBD69u1bqm291n0MHTqUuXPnFurkQ8d8j9bj9lnjyT2xjZQFbwEFsxK9Xk9eXh4Azz33HDNmzFDaHxwczOuvv86IESOQZZmNGzfStWtXQkNDOX36dEFown/rvjr/SGSDK8KSiyX5DJajGzBnXrjijMhkMgEo174UnU6H3W5n6dKldOnS5ZZnyxcvXmTmzJnMnDkTT09PDAYDR48evekB4c2i1+uVaz766KN88sknSno7letHFT6VQqSmpjJgwADWrFlzU8f7+vpiMpmIj4/Hr+/LuFRpVqZrUyadhlfui+aRphVo2rSpYvJ0dXXl2LFjhIaGcvbsWVq1asXs2bOV4PU+ffowdOjQchU+KDDN+vn5kZubq8Tv3W7C55zxAco67+U4c2+mp6ez4+xFnpm7nYv5DoSkKYgvFCBhQyCBrEMrg/2SsGKjVkZQ4M07uGEgjpQYunTpct1hCtWrVyc2NpbIyEhcXV358ccfqVat2g3fa35+PpMnT+aLL76gU6dOxMTEXDVO0M3NDVmWyczMvOI+14NWq6V69eq0atWKnTt3Kt/jy9FoNHzyySeMGTPmlq53r6EailUUfvnlFwIDA29a9AAuXLhAfHw8sosnLpUalblDRp7VzpSlR2jw0DPs2LFD6YA3bdpEaGgo58+fp2vXrkycOLFQxpbDhw8TFRVVpm0tDo1Gw6BBgwol7bbnXHttrKwQDjuWlDPK38WJ3q+//oqvry/uLQZQ881VDP5+DxdtOiSdEVmrQ9ZoC8IytEYkrQFJlguJHkC+zYHZ5mDl4SRG/HyIWH0E0dHR1722derUKVq3bs3+/fsZNmwYrVq14ptvvrmhez18+DBNmzbl2LFj9O/fn/nz5xcRPWd7wsPD0Wq1ZGdnFxI9V1dXPDw8lBmnl5cXw4YNY+/evVgsFj777LMiDivh4eFoNBoOHDjArFmzOHHiBJ988gmBgYHKPs70bna7nbFjx1KlSpWbTi5wL6IKnwpWq5W6desycODAYsMQbsZM5Fa7I+VlSsizOrhQoS36oMoYjUb++ecf6taty9KlS6lfvz5Dhw7lmWeeUfY/e/Ys6enp1KlTp5xaXJgePXqQlJSkdKp5p3bcVtUHcg6svur2SpUqobv/FVyb9scu5OvOFlMcQvxvMGOPao7D4biuc1ksFl599VVkWWb06NFs2LCBadOmMWPGjOu67ubNm2nbti0jR45k7969fPnll8iyXKh6hDN8w9XVlcTERGw2m+K48uqrr/Lbb78hhCAzM5Pg4GAeeeQROnbsyJIlS+jfvz/PPfccdevWJSYmhqysLOrWrQsUxDN6eXkRExPDgw8+SEZGBk8//TQ2m00Jw7HZbISFheHh4YFer+fkyZN4enqSkpJyE0/53kM1dd7jrFu3ji5dupT4aNG3x3O41epQoue8EYTDgT75CLs+HkVCQgJTp05l3bp1zJkzp4gDy7hx45BlmY8//hgoyB3pjKlyhkrs2LEDd3d3qlevjqenJ5GRkURFRVGhQgVlranE2i4EjRo1Yvfu3cB/4Qzj5iBJ5TtOFUJgSTlD/sL/K5JGDAocS8xmM4FDPsQQXKXEvVCvN4AeUOIGLyU2NpZWrVoxdepUBg0adMVjDx06RIcOHfj222954oknlDhRo9GoOJ3UrFlTWR+2WCzIskxERARnzpyhbdu2ZGdns2vXLqBgBpeTk1Noduwc1MiyjIuLC02aNKFTp05kZ2fz9ttvAwXreTt37iQ6OpqnnnqKL7/8Ujleq9UqSSR+++033nvvPVauXIksy8TExCgpAlWKRxW+e5inn36aTz/99IrbjUbjDXusOfF/aDIuFRvebNNKBGG3UfnQdxzcuYWnnnqKcePGFXEEOHz4MG3atOGDDz5g8+bNrFy5kuTkZCIjI4mMjKRChQro9XoOHjyIwWAgLCyM7OxskpKSiIuLIzY2lgoVKtCxY0fCw8Nxc3Pj3LlzxMTEEB8fT35+Prt27aJixYr4+/vj7++vZOiIioqiWbNmBAUFFWn7jh07aNKkifJ36FNz0Lp5l/YjuypCCMwJx7Cln8Oacobs/auLxPN5thiIZ+tBpRJ6IYQg9/hmJYDe39+/0AzHKUJQIAzHjh2jYsWKhc5x4MABOnTowJEjR4oNCk9ISKBBgwb4+flx8uRJ5XzXwul1qtFoEELgcDjQ6XTUqFGD7OxsEhMTCQsLo1u3bnTr1o127dopIjV37lx++OEHoOA3l5iYSH5+Pna7HY1Gw969e6lVqxZHjx6lQYMGijOP04Fn/PjxTJ8+nddff50333wTk8lEXFycktVIpSiq8N2jPPPMM3zyySclcq7iMrUEDZ2BIbhKiZz/ZhFCkHd8C58Pqs+DDz5YZPvGjRu57777sFqttG3blo4dO+Lr68vRo0c5fPgwMTExnDlzBqPRiLu7O2fPngUgIiKCixcvIssybm5u5OfnKwHyzjjChx9+mHr16mEymcjJycHd3R2LxUJSUpIymzx16hSbN28mMjKSrl278uCDDyqhFgDNmjVj27ZtDBgwgBWpHrg37FmuJZQuvbbDagZJIu/UTjK3zMdy/gQA4RMWIGn1pdZOIRyc+2wItpz0It8750BNo9FQrVo1LBYLJ06cKHKOcePGAQWlrTZs2MDzzz/P3r17b9pD02QyKWLk6elJRkYGGo0Gg8FAs2bNGDBgAI888ghHjx5l+fLlLF++nCNHjjB69GjGjRuHv78/NpuNd955h5kzZ/Lee+/xyiuvkJSUhN1ux93dnYMHDxIREYHZbMbf35+srCx0Oh1CCKWKB0DVqlU5ceIE1atXL5MYxjsVVfjuQWbOnMlTTz1VJDbKmVTaiTMg/HKcAcV2ux0XF5diY45ul9gz4bBz4ZeX+PPbT+jYsSNQ4IDz+OOP8/fff9O6dWtGjRrFvHnzWL9+PTVr1qRr167Ur1+fqKgoIiMji+SUPH36NO+//z4//fQTbdq0oWrVquTn57NhwwYSEhKUZNyDBw/mvffew9XV9Yrts9lsbNu2jeXLl/Pjjz9SqVIlXnzxRVq3bs2aNWuUVF23i7nzcoTDgbBbSFvzDZaUswQ9+l6pirMQgvzTu0me/zpQfM0/FxcX5syZQ//+/fn555956KGHEEIoSQ527NhB8+bNr7u80o3g/M34+fnRoEED2rVrx6ZNm9i1axfPPPMM48aNw9XVlePHj/PBBx8wf/58nnvuOV566SW0Wi3//vsv/fr147nnnmPRokVs374dKEgPeODAASVZgDNJgJ+fH2azWXGoOXLkCDVq1ABg6dKldO/evcTv8W5AFb57jMzMTLy9C0xmzg66OK6UUaJq1ap8//33PPDAA0oS4uIIePhNTFENSqbRt4DTPJaz/CN2795NYmIiDz74IHl5efTu3ZvDhw/jcDiYMGECvXr1umo5JLvdztSpU5kxYwYjR47k6aefLuRpBwWOCb/++isffljg7q/T6Vi0aBENGlz7WVitVj7//HMlR2WDBg24ePGi4rjg8uAUdH4VbosMLpfjsOTjMOeicfMu9fYJh53Yab2VYraXz9SaNWtGQkIC2dnZSgB7eXg81qtXj5SUFHr37s2wYcN4//332bdvHz/99BMNGxYsA8THxzN8+HDy8vKYN28eFSpUYM2aNQwcOJCcnBw6duzI4sWLMZlMeHh4sGrVKmrXrk14eDjx8fG4uLiQl5dXSMSdFUsCAwOJj48v8/u+E7i9ho8qpU7//v1xOBy8++67JCQkFOseLklSIe81J9OnTycxMZELFy4oOTEvPeZSHPnFFxYtayRJwlSpMWZ0StJfg8FA69at2bdvH++8847i8n410UtKSqJDhw6sWbOGvXv3MmXKlCKiBwWODBMnTiQmJkYRsNatW7Nhw4artjMnJ4fnnnuOyZMnM2jQIMaMGUNsbCyfffYZer2ejIwMMtZ/d8vPo7SQ9cYyET0AJBlDaDR2u72I6Gk0GkJDQ0lNTeWpp55S6vk99thjN3cpSaJixYqEh4cX2Xat0Iq9e/dy7tw5Nm/ezLBhw5g2bRrPv/omPV/4mB5vz+exH3bwwaYUHnhlFp3u70Pr1q2JjY2lY8eOvPDCCxgMBoYMGQJAVFQU1apVo3v37pw5cwZ/f38AcnNziwxQg4KCqFy5MgkJCaUyq70bUGd89xDOennBwcHodDrOnj1baH3CyeUmTyfDhg3j5MmTnDt3jvj4+EIL/7/++isPP/zw/5JRV24C/xU+LW+EzUzaPwX5JZ0xUt27d+eDDz7AxcXlmsdnZGTQtm1bunfvzttvv13soOBKnD9/nh49erB//342btxYyGHFyZ49exg4cCBNmjRhxowZilPC+vXr6d+/P8HBwUp5oqBhH6MPrHhbPNfLuXwdsDSvY02NI/GbMUqcpvO76Fxj8/LyonPnzsyfP/+K5vjLca6ZOWeHfn5+VKhQgaFDh3L48OEild2HDx9Ou3btWLVqFfPmzbtqyElwzWYYGvRCF1EQsmCx/29fZ7B+mCaTuOVfs2XJL7i5ueHt7c3bb7/NhAkTlL8nTpzIrFmzSE1NVQafztymTipXrkzt2rX5448/WL16tWLiV/kfqvDdQ3z00Uc8++yzDBkyhLlz5yqeZ8WJ3OWdhSRJuLi48Pzzz/PWW28VWVcJCwsjI6QJXm0HI8na265jzj6wluzVM7Hb7TRu3JhNmzZdVxvtdjudOnWiVq1afPLJJzd1Xw6Hg3bt2rF3716Sk5MLJcJes2YN/fv3Z8yYMbRu3ZrDhw9To0YNEhISWLJkCYsXL8ZqtVKhQgXOnj2LMbQa/gOn3nR1i7sFuzmX+BkPleo1nHF7AQEBZGZmFpv3U6vVYrfbEUIoJsZLxROuP0m7JIHssFEl+yDLP3uFyMhIGjZsyMKFCzEYDMiyTFJSEv3792fFihXKcR4eHmRkZCh/+/j48NhjjzF9+nR+/PFHBg8eXEJP5O6h/KpaqpQ5v//+O1CwAO70TLxSaqXLhU+n05GTk8PMmTOVkitOjJH1ET0n4O3iedsJnhPZ6IrZbMZoNJKWlsann37K008/fc3j5syZg9ls5uOPP77pe5NlmTVr1hAYGEjr1q3p3Lkz//zzD4cPHyYtLQ1PT09+/PFHFixYwNGjR/Hy8iI7Oxu73Y4kSbi7u5OZmUm7du1Yv349eRt/xKXNMCT5+meedxuS5n/C7/TudHd3v+Gk1M5crsWFLTgcDhwOxxXXwaHw2qHz92I0GpVjPdsMxbPZA9f1WQkBdknLEdfa9P9kFSlZ+Rw8eFC5R6elwVlj0LkOf6kZNjExkYyMDAYNGsT06dPRlmPh4tsZ9ancIzgcDvbu3QvAwYMHGTRoELGxsaxatarY/S+f0VksFjQaDSkpKQVFNN288Wj1KK412yFp//dDvF25dM0xOzub5557jry8PJ588knF2edyzGYzr776Kr///vstlYE5fPgwY8eOJS0tjZ07dxZJe5WRkVFoxH5pcLgQgpycHCRJIjExsaASwtZFBFZphTH0xnNP3jVI4NH0AXRxu7hwriDM5GYqMVxa2eFmCQkJITExEcnkgVvtjuiDqqDzi0Dj7otscL3h34Uka9hxzoz/E1+QcXon+sxfCTRaSUpKIjY2lsWLFwMoVe6bN2+uHPvaa69hMBgUwWvTps0t39/diGrqvEewWCy4uLgoQbEvvvgi+fn5ivfhpUiShNFoLLT2FxkZyZkzZ9AHVcGr/XCMEbWVfW93hM1C2j9zydq+EFmWadu2Lbm5uWRlZZGQkECvXr0YMWIErVq1KnQ/a9eu5eWXX2br1q03dL3c3Fzmzp3LZ599pqzNlTQ+LR/GtfnDyNqyrzB+u6CTwWyxFIklLGv+V2S5Mchyic7EhRBgtxGeshXL4bXs2bMHm82m/B4BZR0vLi6OihUrMnnyZLZv386SJUvKvHrEnYLq1XmPIUkSdrudvLw8kpKSit1HCFFoQVySJL777jt8WvQnaPAHGCNq31L+xbJGlmUlv2T9+vUZNmwY586d4+zZs8yaNYu6devy5JNPUqNGDaZPn65kA1m9ejWdO3e+7uv8+++/1KlTB1dXV0aOHFlE9FxcXJTkwk5uxFHmUtL3LOfOePqlh9UBslaPS5VmBD7yLm71yj5mza1edwIfebegColWV+LmZ0mSkLQ64oNaccq/JTabjQYNGpCYmAgUfLc7dOhAdnY2rVu3xsfHh3HjxrF48eJCM0GVwqjCd4+g0+nw8fEhODgYKMjRaTablaS3lyJJEsuWLVPWEnSBlRnzVxzubYYgaW4PT83rRTgcZJ/YhiMvEzc3Nzp16sSQIUM4evQoNpuNt99+m3nz5vH666/zzjvvsGXLFipWrEjPnj3ZtGkTlSpVuuY19uzZQ0REBG3atCkidhqNhnHjxjF27FhsNluREfjlJuXrwWAw4MjNIPfUztsqeXV5Ickyss6IX5cnCWrVv8yue2mR5VKvQiJJuNXuSMXHP+T06dPKmuR9991HdnY2LVu2JCUlhS1bttC7d28cDgd//vln6bbpDkY1dd5DDBw4EH9/fz799FNkWeb+++/nzJkznDt3jgsXLhTat1WrVmzcuLHgx91p5B0neE4uT2y8fPlyKlWqxPLly5k4cSJ169bl1KlTXLhwoVAKrEu9XZ1xjbIsKx1OUFAQer2e7OzsK9ajCwkJITg4+Kr1226FgkK/U5F1hlI5/53IjSSyvhXKqsjy5QghsJ3cStIfU3E4HKxcuZKHHnqI/Px8/v33X+bMmcPHH3/M008/rSRdVymKOuO7h+jfvz8bN24kICAAh8PBwYMHCQ4OJj09HXd390L7bty4kUrdhuPdZRSy9vYLT7geNMJOe8+0Qp1gt27dqF+/Prt27UKj0dCsWTOaNm1aqGYaUGhm5nRPv9Tz7/z588TGxhYrelAgfAkJCaUmegCW8ydIW/O1Ouu7BEmjx6P59c/6LvV61Ov1NGjQ4LpiOz2a90fSlP36qiRJaCs3wxhdkCqve/fuREREcPz4cWbOnMnHH39M586dVdG7BuqM7x5CCEGLFi144IEHeOGFF4CC8i1CCFq2bMnSpUuVffVBVQga8sEd6TLvzB85MNrIwvfGc/Jk0dG/c3bn4eFBVlZWIfG4NMO+7OKJW+2O6PwjkQ2uOMw5V6xMUOQa13msyWQqZAYNCAhQBiQpKSnXDL72e+BlXKo0vyMHJ6WBw2YhYeawK34+fn5+pKamotPp6NixI/379+fxxx8HCtZho6OjOXDgAO7u7mRnZ2PTmgp9jgL+K7JcPr8NIQT23AyyfxzL66+/TqdOnejatSuJiYl06NCB1atXq9+Fa6AK3z3Grl276N69O4888ggfffQRUBB8npCQQPPmzdm8eTMAIaO+QesZcEf9gBy2ghlZ3qkd5O5YhK+UQ1xcHFAwUl68eDF9+vQpNm/j5Zn+/+ep1wghRCFzonDYQQjyYnaTsfHnIt6EVzv20qoGeTv/QJ+dSHp6Os2aNeOVV17hoYce4sKFC0qQ+9ixY4mIiOC3334jOjqa33//vdiYs9KuinAn4bCaSf+3IFPPzaD3r4BXhycwhFRD0hkLIssRhRKEl1WWmisiBO+0dmXaK88q68qffvopY8aMKb823UGowncPsnjxYkaMGEGHDh347bfflBAHIUSBQ0tQdQIefvOO6kSFENjSEjk/Z2KRkf7s2bOZNGkSWVlZuLq6FpnhQYHJq0GDBjz00EN8umwvjnp9rplpQwgBwkHG1oVk/FNQT+16s3RcWtXAfmw9derUwc/Pj1WrVmGz2a6aY7G4maQkaXGp0fqO+sxKk+wDa7mwpGioztVwrdkB7w6PI7sUVOO4nZ+lEIL8M3tJ+e01unXrxtdff01ISEh5N+uOQQ1gvwfp2bMnM2fOZNSoUbRq1YpNmzYps6D8/HyCOo0s5xbeOJIkofUOxrVWR7J2LAIKTJbfffcddrtdebm5uZGXl1fEu9Jms7F//34OW3wVT73ruSaSBs/mD6L19Mccd+j6j5VlJNmId4fHSQO2bVt2zWOuOZMUDgTybd1hlxWy8X+loC4fKPh7uZEVd5ScA2tw10tcuHCBoAdewhJcB7i9Bc+JJEm4R9TgSGrqVZOrqxSPOuO7hzl9+jSPPvooqampxMTEIIRAGNwIe2pO6btnlxLCbuXiqi/h5L989913GAwGHn74YSXo11mYNDw8nIMHD5KXl0fVqlXJzMy8JU89IQTCbke+iRRRxXkiyrJMUFAQ586dQ6PRYKrd5fpmkuVtgrtNyD6wlqxdi684UJAdNrQ6Hba4/ThkLSIw+o57bgatzLG31Hp7N8Od2buplAgVK1bk33//5Z133qFGjRoYDAbcanf8b03jzkTS6PDp9AS/r91Bp06dGDhwILIs07x5c0X0ZFnGx8eH48ePYzAYyM7OBm7NU0+SJKSbDEZ3eiLKsozBUNA5OxwOzp07R2RkJPUeHIdPxyeuK17sTuu8SwOH1YykM1wSWK4vEvLhkLVY7AJ7UM07UvSAez6Bwa2gCt89jkaj4cEHH2Tv3r38/fffVGzQ5o7sBC5F1hr49UAaI0eOxG63o9fr+eeff4ACL9ZZs2Zx8uRJWrdujbe3t+K9WeCpd/M/iZt9bpIsY6rUGAxuuLm50axZM+Vc5/J1JIe1QlJj9a4bSaPDpWqz6xsoyHeuadjTdG9X6LgVVFOnSiEe+2EHa48ml3czbplrubRfjkfTB/Bs9Ui5BYMLuw1Lcgz27IuE+vsw/IEuvD64K9oWQwpmLXeo6bmsuZdMvSNaRfHK/TXKuxl3JKpzi0ohPIx3yVdCCFxrd7pul3adf2S5ZkCRNFoMwVUASAOmrzmFx9CZgKSK3g1wr4gewKi2106np1I86i9KpRDRQR7o7oJvhawzoPePvP79Da7X3qkMkaT/svzfQx25yvVTO9QDXzfV/H2z3AVdnEpJ8mDDsFuqPXc7of0vHut6cJhvvS5baXAvzWBUrg9Zgil9apd3M+5o7o4eTqXE8HMz0Laqf3k3o0Sw/be+ZzQaCQgIUP7tLORZv359ZV9rypmCjCwqKrcxsgRv9qpJnTCv8m7KHY0qfCpFGNuuMibdnZejsxA2C1J6AlBQxic/Px8oyIv50EMPAQVxjM7Zbd6pnepamsptjU4j8WavmjzaLLK8m3LHo/7SVYpQN9yLV+6LxqC9c78eQpLIPrgWADc3NyW/ZZ06dZQCvBaLhQr12+DX92WCh30EV0kTpqJSHkiATpboVjOQBaNaqKJXQtwlLnwqJY3zBzb578NY7XdYxIvDgVduPLlaQT6QkJCgbNqzZw9Tp04FwLtxT+QWj+LiQJ3tqZQ7srBjjtlNg7q18A+tgKdRR3SwOw82CFMdWUoYNY5P5arsj09n0sL9HE7MKu+mXDfCmo+09mNi925U4rqEEISGhpKbm0tubi666h2uO6+mikqpIgTCZqGBfJbPnnmI0NDQ8m7RXY8qfCrXxb8nUnh7yWGOJ2VzO39hdLLAP+5fts59Hx8fH7KyshQzp8lkomnTpqQ6XMlsPLyg5IyKSjnjLluZ/WhDWlYPL++m3DOo9h2V66J1FX9WjG/Lzlc6Max5BUI8jbdVrkDhcKDBzsSOFdn843ts3boVo9Go5L4EyMvL48CBAyT714dyqJ6tolIcTaqGqqJXxqjCp3JD+LoZeKNXLTZP6sjOVzrxUvdo+tYLpX64F+7/ZX0RpeUkIgQ4CheRdVjNCJuFvBNbufDrq4zrVo9u3bohyzLHjh3joYceQntJxYS0PBvGqAbqmp7KbYOHUc25Wdaozi0qN42vm4GRbQqnTRr8xGjyguoSXrsZmflWPIw6EjPy2Bpz8RavJnDXOqhkj2PjwRgaNmuFl6uBQIOWXfNnsnXDanQ6HfXr1+fw4cM0adIEHx8fXnnlFbZu3Urv3r1JSEjArXbHgnW/W2yNikpJYNTKRAe7l3cz7jlU4VMpMc6dO8ffC37h5Mm38fX1BcBsNrNx40YSTiURJwXccAou5xK0lHuRqDO/8++mTVy8eBFv1wQuXLjArpgY4uPjCQgIQK/Xs2fPHoxGI35+fri7u/PCCy9gMBh46qmnmDNnDuZyzsmpcvPcjQmoBfBgg7DybsY9h+rcolJivPDCC+Tn5/PJJ59w8eJFZs6cyWeffUZUVBTdunXjYlgr/j5txnEd3zjn11KWJBp65eNy6E+WL19OrVq12LhxI2azGYCTJ0+ye/du9u3bx86dOzl48CBJSUk4rmBu9e/3f7hUaVpi96xS+giHAyHs4BBIWt1dI36SBF1rBDL70Ubl3ZR7DnXGp1IiZGRk8M0337B9+3beeecdPvjgA/r06cP69eupXr26st8T8el8tPo464+lYHfYCxIx/4cSeuBw4DBnk/rXB+Se2vlfR9cPi8XC7NmzWb9+PYGBgej1ehwOB02bNiUqKopOnTrh7e3NX3/9pQijEAKj0Yjdbsdqtd62OTlViuKwWf5L1C0jSVokzd0heE6MWg1j2lUu72bck6jCp1IizJ49m9atWzN8+HC0Wi179uyhQoUKRfarE+bFhMau/Plyf1xqdSC4eiPOJCTh42Yi8ehOTq/+ib73dcZisRAfs5upU6fy0ksvYTabmTt3Lp988gkajYZ27dqxatUqJk+ezJgxY5gyZQqvvfYaDoeDXr160axZM3788UcyMzNJSkrCarUCBTk5HVazau68DREOB7asVKzJMcgmTwwhVf4TvbtL8ABMOplX7otWc26WE6qpU+WWyc/PJyIiAlmWGT9+PM8//zwaTfG5Pq1WKxUrViQjI4Mvv/ySAQMG4O7uTmhoKCdPnsRms7FkyRLGjx/PyZMn8fDwYM2aNQwaNIioqCiGDRvGCy+8QFxcHCdOnKBPnz5cuHCBjIwM+vTpQ7du3XjxxRexWq1kZmZisxX2ApVdPAkb8x2SVg1nuN1wWPNJmjcJfVAVvDs9iay9+7wdJalgpvfKfdFq+rFyRPXpVrllZs2aRW5uLi+99BKTJk26ougBvPzyyyQlJbF8+XIGDBgAgIuLC9nZ2cpx9913HwaDATc3NzIzM7nvvvt4++23WbFiBQ0bNsRoLAg81+v1JCYmkpycTLNmzdi8eTPDhw8nKyuLixcvFhE9AEduBrmndpZeyIXKTeGwWUlb8w0g4d3pibtO9IxaGYNWpmuNQH59spkqeuWMauq8R7FYLOTn55Ofn49Op0Ov1+Pi4nLDZiW73c4bb7xBly5deOaZZ666b05ODjNmzGDatGm0aNFCed/FxYXMzExF+CRJYtKkScr5WrRooVRUMJvNGAwGUlJSaNWqFfn5+YSGhrJhwwZ0Oh1CCHJzc6/ajswt8zFVbIAkq5lbbhecXzuP5v2R7pLkAnqtTOvKfnioOTdvO1Thu4M5f/4827dvJyYmhpiYGI4dO0ZiYiIJCQmkpqbi7+9PXl4eZrMZm83G9Vi1NRoNWq0Ws9lMREQEoaGhVK9enaZNm1KxYkUqVapEZGSkIpAff/wxeXl5fPfdd9c896uvvopOp+PZZ58t9L6Liwupqano9f/r8BwOBxkZGQAsW7ZMeT8/Px+DwcCoUaNITEzExcWFnJwchBBKarJrYTl/grQ13+Dd4XFkvSp+twOSRodP19GAdNes6QW6G/hmaOPyboZKMahrfHcY27ZtY9GiRfz555/ExMSg1+uxWCxKp19aH6ckSXh6egLg6upKt27d6NKlC2PHjqVr167MnTv3qsfb7Xa8vLxo1apVISEDaNy4MQcOHMDDw4Pk5GQyMjKoVq0aQ4YM4auvviI9PZ3Y2FjCw8PZuHEjo0eP5vDhw0iSRO3atdm3b9913bdWq8VmsyHLMiaTCalKmwKzmkZ/w/GFKipXQwiBJukIQyNzefjhh4mOji7vJqlcgrrGdwcghGDJkiU0atSI9u3bM336dI4ePYqHhweNGjUiKCgIIUSpiZ6zDenp6aSnp5OQkMCqVat49913SU1NxWg0kpycfNXj9+zZg4eHB4GBgUW2ubi4YLfbcXFxAWDatGncd999vPHGG8rov1+/fgDk5uZy9OhRHA4Hzz33HAcOHLju+9ZqtUiSRK1atcjJySF77zIeDUyhRojHjTwKFZXrIu6vj3nzzTdp0KABXbp0YdOmTeXdJJX/UIXvNicuLo4mTZrw4IMPsmvXLoKDg5k6dSonT56kYsWKrFu3jrNnz5Z5u2JjY9m7d6/yd3R0NNOmTbti4Pi2bduoWrWqUgn9UlxcXHA4HLi5uQHwyy+/MH78eFxcXBg/fjyyLLNz504AJk+ejM1mIzo6mi+++AK73V7oXJIk4e3tXcTBplq1algsFoQQHDhwACio1tCrVV2WPt2GSd2q3fSzuFNRjT2lgxACe/YFbBcTcHcvSEe2Zs0aunXrRq9evUhNTS3nFqqowncd2O124uLi2LdvH9u2bWPVqlXs3buX48ePF9uRlxR//PEH1apVY9euXVSqVIldu3axcuVK9u7dS+XKldm2bdsVjzUYDKWyVlLcOb/55hsaNmzI4sWL6dKlC4mJiUX2sdlshIeHs3nz5iIdrouLC0IIPDw8OHPmDDk5OYSEhBATE0Pbtm2VenqNGjVi8+bNABw9epTMzMxC59HpdBiNRtLS0hRB9PLyAgoqrzuvq9Fo0Gg0mM1m6tSpA8CotpX5a2xLNFLZC0Jpz9avhPO5qgJY8qSv/wEoSOwQFhbGlClTsFqtrF69mlq1arFhw4ZybuG9zT21xpeens65c+ewWCwkJycr+R1DQkKUDtJisbB582ZWrFjBzp07iYmJIS4uDl9fX3x9fTl16hR5eXnUqVOH7Oxs4uPj8fHxISoqiurVq9O5c2c6d+6s5Kq8WebMmcPw4cMB+Oijj3j88cd58cUX+eabb4r1WpRlWXHpvxru7u4EBwcDBYJz/vx5Ll68eN2OIU4MBoOSHeVSPDw8yM3NVUIJIiMj8fPzw263Y7fbiY2NZfbs2fTv3x9ZlklLS6N9+/bs27cPg8FwVScV2cUTt9od0flHojG6Yc/Pxppyhuz9q9ELixL+YLPZlJmnTqfDarXSqFEjZdbYrVs3Vq5cibu7O+np6cr5z5w5Q+NuD2Lq+X/I2rLx+xL/FSGVtPpyc+q4G3NglhdCCHIOb+DC4g8Kvd+wYUPmz59P7969OXToEO7u7ixZsoSWLVuWU0vvbe544UtISGDhwoVs3LiRgwcPkpCQQE5ODg6Ho1izmyQVeI05HA4kSUKWZRwOB7IsK84PISEh9OjRgx49elCpUiUiIiIwmUzFXt9ut3Pu3DnOnDnDvn37WLFiBRs2bKBGjRqMHj2agQMHFvJWvB7Wr19Px44d0el0bNiwATc3NwYMGIBGo2Hfvn1F9vfw8Cgy+7kUk8nERx99xIgRI67awa1cuZLevXvf8iy2TZs2ZGRkMH/+fDQaDcnJyaxevZpPP/2UyMhIDh48iBACh8OB2WxWnnt0dDRVq1Zl1apVBAYG0qZNG/z8/DiVZmNTuhsulRohhCiUdcVhNYMkkXdqJ5lb5mM5f6JQW4xGY5H76dChA2vXrsXDw4OEhAT++usvfvnlF5YuXYoQgkGvz+LfnCCQrxyPeKs4f3aW8yfQ+YYj64v/fqncKQhAIvvQ+iKiB+Dm5kanTp347bff6NOnDytXrsTDw4NNmzapji/lwB0pfHv27GHChAls3LhRSUVVGuj1ejp16sTMmTOJjIy87uPMZjNr1qxh+vTpnDhxghdeeIHRo0dfNbDbidVqxdvbG6vVyt9//014eDjt2rVj4MCBfPTRR9c8PiAgQHE0iY6Oxm638/fff1O1atXravvy5ct55JFHSE9Px93dnby8vCvOwCIiIoiLi0MIocysboTACpXxqNOZTK0HDlmPZMvHnBRD1r6VmGQ7OTk5eDbsgWe74aDRXbWGnnA4EHYLaWu+IXvvMgYMGMAvv/xS7L6XDn5cXV1p2bIlrq6uLFmyhOAWfXDU7onk4qXsW5I4f27CZiFzy3w6BVvZHvXoXRewfa+gfJ75mYxpFsT+v77m559/LnbfFi1a0LNnT1544QUaN27M8ePHadGiBStWrCjLJqtwBwlfZmYmU6dO5YMPPihVsXOi0WiUWQkUdPJ//vkn9erVu6Hz7Nixg4kTJyLLMnPmzCEs7OolSEaNGsW3337L0KFDmTx5Ms2bN+fNN9/k8ccfL+LIcTnff/89w4YNA+D+++9n//79bNy4kYiIiBtq83vvvcecOXM4dOgQAwYM4PDhw+zfv7/YfZ3rRJcjyzKyLNOnTx+ysrJwOBysXr0aIQSmsGhcGz9Q7AxOchSYKau4WUmLPUaqT60bSi/msOSTd3o3Jr2MXdZjzk7HlhpL1r6VOPIykV08cW9wP6bKTdC4eiFLEvbcDKxndiM8Q3Ct1hwhSlbwlM7RYceemYp53WwuHN+pPLvw5+arM77bmYIvRJG3JaCin4l/3hmC7WICjRo14o033mDixIkcPXq0yP6TJ0/mk08+4fDhwxiNRnx8fPD29mbevHl06dKlDG5ExcltLXwWi4V58+bx5ZdfsnXrVuV9p3myNNBqtURFRXHmzBlFYC/t3Js1a8batWuvaPosDrvdznvvvcfHH3/M0qVLadiwYbH75ebm4uPjgxCCs2fPMnHiRMLCwrDb7XzwQVHziRNJknj88cf5+uuvgYJ1tdzcXJYvX079+vWvu51O8vPziY6OJikpCYvFQsOGDRkzZoyy5ng5ERERxMbGotVqsdvtCCHQarVoNBreffddrFYrkyZNokOHDuzL8cCl5aNIGh1cYwYnSdJNxdddvmZVYA6VEeZcZBd3iguSVorTloDgOc9ly75I/pl9WFLOkHNgNY68wubosLAwEhMTCXxsJlqfUHWd7TZFI4E9MwU3bz+02Mk7H8Pfbz1GlaCCMJjDhw9Ts2ZNABYvXsyQIUOQZZkLFy4UOk+XLl2oVKkSQUFBvPbaa4wePZo5c+bQv3//60oAoVJy3JZenRaLhRkzZlCpUiXeeecdRfTk/zpKh8NxVbOhVqulXbt2vP7664wYMYKPPvqI119/nbZt2you81fCZrNx4sQJXnrpJZKSkujbt2+hDmnr1q34+PiwY8eO674fjUbDyy+/zJdffkmPHj04fvx4sfutW7cOm81G48aNiY+PZ+3atbz66qt89tlnxe4vSRJeXl6YTCblnJIkUalSJXr16nVTogcF62LDhw/HbrdjMBiwWq0MGTKE3r17F7v/jh07kGUZm82mBLnbbDbq16/PtGnTmDRpEsOHD+ewxRe31kOQdIarih5QYNa8SSG4XEBknQFZq0N28UC6Qrb/mxXZK15fktC4+YAsk7V9YRHRA0hMTMRut5O69JMSua5K6eCel0hX6xYOvtWDXW/0wLzqIywX4pTtNWrUUBI49OnTpyB4XaOhcuXCJYecSdVXrVoFFGQyysnJYcWKFapnbRlz26UsO3HiBIMGDcLPz4+wsLBCMz2Hw4GLiwu5ubnFmv1MJhNffPEFgwcPvuL5J02axM6dO/H19eWPP/5QznP5+d58800MBgMLFy7EbrczdOhQ5s2bBxTMiJo2bcr69etp06bNdd9b7969SUlJoVevXhw4cACdrvC6jvMH0LVrV3744QfGjRuHyWS6orOJEIKWLVuydOlS/vnnH6BgFrF3715mzZp13e26HIfDwd9//624/GdlZVGrVi2OHDlS7P5jxoxBr9ej0+lIT09X1vtyc3M5f/489erVY92+07h1m4jl6tbaUqWsZ1SSJOFaoy35p3eRc2hdke3O75wl4TDCZoFy9OxUuRKC7A3f8eG/K4GCQWyXLl1YvXq1MssDeOSRR5g3bx7Lli0jIyODmjVrFvl9nz9/nlatWrFt2zYcDgehoaGYTCalbNaNOsGp3Dy31Yxv+fLltGjRgkcffZTk5ORCohceHo4kSZjNZh566CFkWS70xWrfvj3p6elXFb0zZ87w1VdfMWfOHH799VdWr15NYGAgwcHBVKxYUZlFav9zZX/llVdYuHAhGo2GuXPnsmnTJqUygBCCDh06cPDgwRu6xyeeeIIKFSowe/bsItvi4+ORJAl3d3dWr15N165di/XihIJwgurVqysekk7c3NzQ6XRFRps3wq+//ordble8XTMzMzly5Ahubm7FZl5ZsGABDoeDadOmASgmYue6oKenJ+3GvovFfm+Oar3aDS32fa1vOP4Pvk7IqK9xOMpxRKByRYQA7X0v88CXO/hw1TEuZJtp2LChkgThUp588klcXV0RQnDhwgXOnDlTaHteXh7JycnKcgAUONCpg52y57YRvi1btjB48GAWLlzInDlz2L17t7KtTp06xMXFUa9ePVJTU1m9ejWyLCsd7IsvvsjatWuvOWJ6//33GTt2rBLH1rp1a/bv34+7uzsVK1YkPDycWrVqYbPZFFF98MEHlS9pixYt2Lp1q2IutdvtdOvW7YbXG99//33efvvtIsdpNBokSSIjI4OjR49St27dKzq0mM1mKlWqhMViKfTDMRgMhIWF3fSPyW638/LLL/POO+/gcDiw2+2kpKQQHBxM3bp18fAoPr2Xh4cH4eHhGI3GQmZoSZJ4YOBQ/j15gQJ3gHsLSZLQuPkS+tSPeLUbjmzywLVmB0LH/kDIE59jqtQInVcQWsONV8ZQKX0kSSLfDseSc/hk7UkaTlnNvPP+ZGi8iuybnZ2Nq6srsiyTmJhIWlpaofMAREVFFfqcLRYLOp1OGWyrlA23hfClpKTQt29ffvzxR77//nv27NmjbKtVqxb79+/nscceY/fu3fz+++9cvHhRWe8bNGgQU6dOva7rLF++XClv48TX15eVK1dy/PhxWrVqhVarpVWrVlitVsWppUGDBsr+devW5ddff1VSESUkJPDtt9/e0P3WqVMHHx+fQim/AIKCgvDz82P58uVAwZqmM3/l5Wg0Gvbu3av8iCRJQnbxxLNZP1Iq389jP+xg/K97mL3hFBeyiwaap2abmb3hFON/3VNo33VbduLq6qp4nwohCAkJwWw28+KLLyoVEy5Fr9fj4+OjiPClM1CdTsfrPywrNtj9XkGSJLRuPng0fYCwp+fh2+NZNG4+SliFyp1FbL6eHd5tmbv1TKH3f/rpJ3JycujYsaPSPznx8fGhSZMmSJKE3W4nJiaG+Ph4Zdnk8v1VSpfbwqvzqaeeQpZlevTowcMPP0xGRgZCCFxdXcnJyaFnz5789ddfAAQHB5OXl0dGRgaurq5cvHjxumzj586do06dOqSkpBTb2SxevJgXXniBBg0aEBQUxNy5c0lOTlY6cmd1ACfdunVj1apVOBwO/P39r5mk+XJGjx5NdHR0oRp2ixYt4sUXXyQmJgYXFxdOnjyJn59fsT8KnU5HvXr1sFgsHEvJw71Zf0wVGyJptCD9b3/nnWpksF1jYipL4BACvcOMh8gh9vRJHOYc6kT4sv+PL0mOO12sU5Esy1SvXp2MjAzi4+OLbPfvNRGXGu2u67moqNxJaGUJH1cd1YxZ/PTqcDBnKxmELkev16PX68nOzgbg0Ucf5aeffmLWrFk8+eSTZd30e5pyH2acO3eOn3/+mVdeeYWJEycquQOdo2Gj0ciff/4JFJgFzp8/rwjBzJkzr3tBOC8vD09PzyuOsHv06EFQUBAtWrTghx9+UMIHnOOCPn36FNr/pZdeUkyeKSkpxc6EroaXl1eR1GMdOnTgwoUL6PV6PD09Wbt2LZIkKabZS7FarUyfPp1zrpXwHzQVU5VmBfFuUuGPVPz3upboATgEgIRFNpCq8cWlSlPcanXglEs0HoM/oee0xeiDqhQ9zuHg0KFDyhrl5Uj64metKip3OjaHIDnLwj/JesKenkfA4OnkuxRdB4eCwapT9ADmzp2Lw+FgypQpfP7556pnZxlS7sK3atUqOnbsyKlTp8jPz1dyPEqSRE5ODm+++abSmW7dulVZA4P/laq5HiRJUs59pe2DBg1iy5YtDBkyhFOnTinmTIDdu3cXOr558+aFzHdr16697rZAgbv/5SLh6enJ888/T9WqVYmPj+fjjz8GCvJ2FsemJBnX1kORS9wbsPC5JK0Bh6ThYJpM4CPv4lav+xWPLO7Ha8/PLmZPFZW7B+dAXR9UmaAhHyi/kUv7kB49ejBx4kQcDgctWrRQ3o+Pj2fs2LFotVoljAgKfkvHjx/no48+4uGHH6Zu3bpERkbi5eWFRqMhIiKCqlWr0rlzZyZNmsSaNWvu6SWFG6HchW/Dhg20b9+e1atXU7duXcWU5nA4EEIwevRoZd9jx44p20wm0zVj8i4lIiKCjIyMq5okO3TowPr16+nWrRtr1qwplOZLkiQWLFig/K3X6/H391fae6PenTt27KBu3bpF3h8/fjxms5latWqxZcsWvv76azp27FjkXvVBVZi1PQUhlV4+ycuRZBlZZ8S7w+NXFb/LsaacKQgiV1G5y5EkCUnW4NNlFAEt+mG325Ulkt9++4033niD4cOHs3nzZvr27YtGo8HhcDB06FCMRiPff/89Wq0Wo9GILMtUq1aNZ599lkWLFinpAQ0GAxqNBlmWycrKYtOmTbz//vt06tQJo9GIi4sLLVq04K+//rpizuJ7nXJ3JcrKysLPz49169ZRuXJlFi9erGxzdXUt0uFrNJpiZ0vXwhnUvmLFiiuGPPj5+ZGVlaW4Kzdt2lTZZvTy55vNZ9nCHjLzbXgYtdiqtEefs4K8tOQbMlOkp6ezc+dOWrduXWSb0Whk+fLltGrVitDQUEaMGEFSUhJbt26lVq1ayn5e7YeDXD4fn6w34t3xcSznT2A5f7LwtksqKMgGVxzmHGzp51UnDpV7CknWYGzxKPrsRHq0rMsvv/xCWloanp6e2O12PD09WbZsGT4+PqSkpPDDDz8UygZlNptxdXWlYcOGxMfHEx8fj5eXF507d6Zbt2506NBBSRaRlJTEypUr2bNnD9u2bWPfvn1s2bKlSMIJDw8PKlSoQFRUFFFRUdSqVYsuXbrccErDu4FyFz743+zOy8tLqZrgzH5wKZ6enri7u5OWlkZubq4SZ3Y5qdlmft8Vz9HzmYpIRQd5MGj4k/zf/71GZmhTTqTkFNrWv2EY0n8mBq1WixCC8+fPow+qgkfz/rhUasRJjczxveeU6+ga9MG/YV9yT+1EH1x07etKTJ06lYceeuiKM9aIiAhWrFhBz549CQgI4NVXX+W3336jc+fOrFq1CtnFE2N4rXIVE0mjx6N5f1IXvQtQ6DkVW0FB1qjlb1TuKSSNFn29npw/v53WrVvz119/YbfbcXFx4bfffqNFixaKdef8+fPk5eXx1ltvMXHiRNq2bcv27dvJysri5MmT2O12jh49ysqVK5k9ezZDhgyhYsWKWCwWEhMT6dixI02aNOGZZ54hKiqKyMhI8vLy6NevHzt37kSj0TBlyhRatmxJTEwMMTExrF27lpdeegl/f3/uu+8+Ro8eTaVKlcr7sZUJ5e7V+dprr2G1Wjl37hwtWrRg7Nixio3bObtzkpSURMWKFRWnkGXLltGtWzdl+4Zjybzx9yFiUovWq1MQjv9SU122jgVEe0Py6m9Y8OWHNG/enLzQRni0G4ak0V+zMoBRp+H/etTg0WaRV73fo0eP0rJlS/bv309oaOhV983OzmbcuHHMnz+fvLw85X33FgPwbDmw3EVE2KzEzxyKS7WWeHd8/NrPSRU+lXsNu424z4bgyMvEzc0Nk8lESkoKY8aMoUGDBowYMQKdTsdvv/1G//79sVqt7Nixg0aNGtG+fXvWr19Pr169+PPPP7FarXz00Ud89dVXnDp1Cp1Oh9lsLpS72Gg0otfr8fX1JSwsjEqVKtG8eXM+++wzDhw4QKtWrfjnn3+U36Hdbmf37t0sWLCAr7/+mk6dOvHyyy8rBZrvVspd+P755x+eeeYZxo4dy7p16zh48CAHDx5UPshDhw5Ro0YNZf9GjRqxd+9e7HY7gYGBHDhxhk/XnmTB7nhybjUflhAgQR33fE5uXUV21S7IOuN1H27SybxyX/Uril9CQgItW7bkjTfeUKooXA8bNmxg/PjxSrFWrwFTMQTdfGaWkkI47OQe34qpUsMbek4qKvcKwmHHsmM+M568X8k45eLiogxk69Wrx44dO9BqtWRnZ+Pj44PVamXbtm00btyYiIgI4uPjCQoK4vz58wB4e3sTHR1NeHg43t7eHDhwgN27d9OhQwdq1aqF2WwmOTmZhIQExUxqtVrx8vIiLS2NSpUqcfLkySJtzcrK4ssvv2TatGk8/fTTTJo06bpKqd2JlLvw2Ww2atasySuvvMJzzz3H9OnTC4mC88Ny4qwXl633xaN5f9yqNUOUtI+OM6TiJoJKTToNvz7ZjDphXoXeP3jwIA8++CCPP/44zz///FXPkZ+fz6ZNm9i0aRP79u3jxIkTnDt3jrS0tIIcf2O+R+vhd8NtKw2E3VYQO6iiolIsfeuFMOPh/yWMX7x4Mb169QIKaoteWuosNzcXb29vLBYLzZs3V/J6SpKEr68v1atXJzY2lsTERIKCgqhQoQJubm4sW7YMrVZL1apVcXV1JSYmhpycHKKiomjQoAEVK1bkyJEjLF++nKysLLy9vdm/f3+xZdLi4+MZPHgwQgj++uuvK2ZrupMpd+ED+PPPP3n55Zdp1KgRgYGB/Pzzz4UCoTt06MDq1auV6XnzwS9wLrApXMO0divcrFlOkqBrjUBmP9oIKDAlzJo1i8mTJzNt2jSltI/VamX79u1s3LiRPXv2cPz4cRISEkhLS8NqtaLRaPD09CQ4OJjKlStTt25dWrRoQcuWLWn/0SZScq4cmlGW3Kr5UqIgzlBF5W6lY3QA3wxtDBT8XkwmEwEBAcTFFVR4cKY6c/LGG28wefLkgmM7dmTt2rUIIahbty7h4eHo9XoSExNp3rw5Li4uBAYGkpOTw+7du1m4cKGSTzc3N5e0tDR0Oh16vZ78/Hx8fHzw9PTk5MmTSJLElClTeOmll4q02W6389RTT3Hs2DGWLl2q5Ci+W7gthE8IweDBg0lJSWH37t288847jBo1qpAbbmBgIHv37mX1mXzeXnKE/OuJyC4nDFqZdeNbsvj3n3nnnXfQaDTUqVOHc+fOERcXR1pammKbd3d3x9/fn+DgYMLCwggNDcVgMHDq1CliYmJITEwkPT2dvLw8bDYbQgiChs7AcAPONLczJVkHT0XldqRvvVBmPFwPgLFjx/L555+TmJhIcnIydevWRZIkHA4HVquV5s2bs3v3bvR6/S3F5Lm5uSGEID8/H0mSMJlM6HQ68vLyCvkLQEHfumDBAlq0aFFoEGu32xk4cCCurq53Xb3A20L4oCArS+/evcnLy+PQoUOMHDmSd999V8nkAgWeg6FD3sdRTm7814vDaib933lkbV8IoIy4ZFlGCIHNZsNisdx0fI1nq0G3hXNLSeD8bO+Ge1FRuRxZghe7RTOyTYG3pIuLC7Vr12bbtm0A/PDDDze03l+ahIaGMm7cOJ577jklSX9OTg5Vq1Zl0aJFNGnSpJxbWHKUewC7E71ez4IFC6hSpQoajYaZM2cWyczi0bw/9tunyVdE1hnQ+0cqf1utVnJycsjKyiI7O5v8/Pwrip4kSUqS6KZNmzJ8+HBmzpzJgQMHlHImJ5d9i3yXCIWaqFnlbkYrSzzYoGAdzWw2k5eXx8svvwzA6tWrr7neX5YkJCTw0ksvYTQa6d69Oz///DN6vZ633nqLV199tbybV6LcViri4uLCV199xcyZM5EkieXLl1OnTh1kWUZ28cSlUqNSW9MraWSja+G/ZVmx7deuXZtevXrx8ssvs3jxYiUptxACh8NBdnY2cXFxbN26lW+//ZYxY8ZQq1YtJWbRz81Akyif8rgtFRWVG6BDdAC+bgUxrc60hhUqVMDf35/OnTuTkpJS5JiwsDDuu+8+JEmiQ4cOTJgwQdk2YcIEtm7dSqdOndBoNMrrenH2ITqdrtgBp7MPWr58OSNHjiQ4OJjU1FQ2bdpUbOLtO5XbxtR5Obm5ucyePZs333yT7OxsPJr2w635w4UCo29narpk817fmlSvXr1UXIL3xaXT9/NN3L4rnSoq9zjCQavKvuh1OjyMWhwX45g5YTCOvOIFxGg0kp+fT8eOHdm3bx96vZ7PP/+cvn37lmgCa19fXxo2bMg///yD3W7HYDCQl5enpIK81CLl5+dHTk4ONpuNt99+mxdeeKHE2lGe3LbC58RqtbJ8+XIm/XWUHL8a1z7gNsColXm2c1XFrl9azN16hlf/PFSq17gSwuEABJJ8d8b5qKjcCk4LzqWZpYTDgXDYyDu1k8wt87GcP6Fsc3FxITg4mFOnTgEFzimXJu0HaNKkCdu3bwcKRFKr1WIwGJQwp6CgILp160ZwcDBz5swp5Bnv5uZWqDJEv379WLZsGVAwCwwKClJi+z7//HNOnjzJhx9+CBQ4v5jNZjIzMxk/fjzTp08v6cdV5tz2wufksR92sPbojdW8Ky8MWpnNL3ZQTBylydRlR5j9z+lSv87lOKxmJElG0urK/Np3Cpf/tNS1zHsEIa7qpSyEQNht2Lb9zP8NbMeYMWM4fvw4Qgjq16+vZKZyOsM50zfa7XbCwsKKrXl5M0iSRO/evQkPD2fz5s0cOHAAi8Vyxf31ej0Wi4UqVarwxx9/FEoscqdxe7tHXoKH8c5oqiRB+2r+ZSJ6AJO6V0eS4It/Tv9XT6/0cVjySVv7DS7VW2OMqK126BQE8ttz0hCAhIQ9J428k9vJ2r0ErWcAHs37Y6rUGGQNsjpLvjtxCt41fg+SJCFpdehbDmHh/l1oNBoyMjLo2LEjFSpU4Ouvv6Zly5aFHODsdjuGsBrYu40j3MMPZA047NgyU0lb9gnmc0cBlPRlztnm1TzHhRD88ccf1317TlE8ceIENWvWRJIkwsPDefrppxkxYsQdFeh+x8z4Zm84xYzVxzHfxvF7cOXMLaXN3K1nSj2+UTgcCLuFtDXfAODdaQSSpvhF8nsNh81CwsxhV1y/AXBv3BfvdkOQNOosucxwOBDCgUYGh/S/wbOwmjEYjUT6uRLiaUIjS9gdgri0XGJScwoOvaRnFMKBJMkYtTLW/Bysjv8ETgiwm5FNnjfdvpSfXsBF5OOIbErlRm2IT7qANTcTc9Jpsvevxr3+/Xg0f7Cg0DSFLQfO7lvYLOTsWIR51yJsNhtWjRG32h3RB0QhG1yx52djTTlD9v7VV/2OOnEWCrgWl4prr169+Oijj4iKirqZJ1Gm3DHCl5ptpuV7a29r4btWrs7SZn98Op+vP8m6YylIUGIiKIQAh4Pck1vJ3DIffVAVvDs+rubn/A/hcJB7YotSqaI49EFVCHzkXfWZlTHCZuHCT8/jV6cddvcgKlevDZY8HGnxLPzg+WItMxeyzfy+O56jiVlk5ls5eeQAe9YtwXJ0A2uW/knLli2x2WzUq1ePQ4cOEfTE5+h9w29qACiEwGHJ/f/27jy8pmt//Ph7n/nknERkECEhYkhECTG3BA0RVFo1ldIaerU13KvDj7ZabW9Rndyva6hqUb3uRbSqVUMENc9CzBGEBmlmMk/n7N8fuTlXyCxz1ut5+jzOOTt77ZNm789ea6/1+aBQqguvavLAjWVx+8+/jOcm3CY7IaroKimSVOgzxooUGBjIunXrChThrWlqTeADmPKvU+y6FFPl7ebf2BX3uU6lZM5gz2oLeg/KP3H3nr7C8TvpoNL/txhF6U/M/D8LU0YyaRf3kXxkI+aMZHEBL4Q5J5OYf7/zSG3CBzkMew+r1j1qzXKcuiD/hiRt5/9hNpvJyspCrVaTk5PD7NmzmT9/fqlnXG/ZsoXhw4djNpvp1q0b27dvx97ensjoePouPvZYox4VWbVElmUoIc/wgyM3qWd3FLu/h3t+Go0Gs9lsmXSTX8P04SwzarWaRYsWMW3atBo5IlSrAl9Y1D1e+PYYGTmPWYWhDGb6teLKnymF9qJ0KgUyec/0pvZtVeXDm0XJyMjg7bffZtu2bfzjH//A5NqF+dsvkpie+9/HD4UMlcgyclY6ck5mgedTDw+LiAt4QfnPO4u7gCisGuAydY1lqEqoGg/fkORXLc+vSq7X65k/fz5TpkzBysqqxP0lJSXRt29fzp07B0CLFi1wHfY2t9TNamXKvdL87T7IxsYGpVJZoGiASqXC1taW1NRUsrKysLKyIj093XJd6dixI9u2baNJkyaV8h3Kq1YFPsh7lvXJb5fIMlX+YQ/t4MySMT7Ao8MfNjo1ns7WjPBxqbKJLKWRmJiIn58fnp6efP3119ja2nLz5k1mzJjBziNnaNhvMmoHVyS1Djknk5z4KJJ+X0Vu4p0S9y0u4P9T1F2zUqm0pKiTZZmsrCz0PoE06DVW/N4eUpn1GYu7qEuShIODA4mJiVhbW6NWq1mwYAGTJ08u1fHExsYycuRIDhw4gMvMDSh1hReUrg1KM1rxoFatWpGQkECPHj3YuXMnsixjZ2eHLMu0bt2aEydO4OzsTExMjOXZn42NDevXr2fw4MGV+VXKpNYFPsgLfh9tvURuJU5jfDDo1RZpaWkMGDCAJ598ki+++IJz587x97//nZ9//rlCFsDadH+eBr1erDVJBCqDbDYhm01kXD9J8tFN+HVqzY4dO1AqlRiNRuzt7UlLSyM9PZ3s7Gyys7NxGPEhVi27VPeh1zgP/k1W7FCfmcRdK4rsyeQvDTAYDGRkZODh4YFaraZVq1Z8++232NmVLivSihUrWBjZJG+GZS1VmufTD9PpdHzxxReWnJ7NmzcnPDwcg8HAxIkT+ec//2lZdpG/jtFoNLJp0yb8/f0r66uUSa0crxrXw43Nrz+Jl3PFPzy1s1Lz1cgOtS7oAfztb3/D3d2duXPn8pe//AVfX182b95cIUFPZe+KdefAeh30AHJTE7mzbALxP3+K8v4dzpw5Y7mQ3r9/nxs3bhATE2N57mHwDkDfolPJO66H8vO0VmSvT5KkvIt5+OEitzGZTJYbFBsbGy5fvoy7uztNmzald+/eJCYmlqqt4OBgqOVD/pJCgb5lVxT60i9FyMzMZPXq1ZYe+7Fjx3jvvfdISUnh22+/5Y033uD27du4urpiNpstz1VHjRrF2bNnK+/LlEGt7PE96ODVOD7ZfomrMaklb/wAxX/PNQmw0ijp4GLLx0Pb0cqp5s5EKk5YWBj+/v789NNPvPTSS6SmplryAOYvPC0PQ7unse37Mkpj3l1wTXxQXZWyoiP4c+0bltcqlQqdTmfp3el0OpRKJa+88grOvUeyJiyZzJyaOxO5Lnq4OkpR8nslTk5OxMTEsGrVKi5dusSRI0fYvXt3ic/9HBwcsH11LTV4onmplPb39TC9Xo9OpyMuLg6lUsm///1vxo0bR5MmTZAkidTUVO7fv4/RaMTGxobk5GTatm3L8ePHq/06UusDX76E1CyW7I1g2/lo4lILv8grJHjS3Z5ZAZ41ZiJKRRk9ejQtW7bk66+/xmw2k5KSUiDjA4CdnV2p72YB7Ie+jcGrDyACXr70G6eJC/qwwHsajQatVktmZiY5OTkAWLm0xWHMArFmr5qkXtgLR9eSkJBQ7Hb5k13yy/AcOnSIzz77DC8vLz755JNif9bKyorOH24l6l5mhR13tUlLwubcRs7v/63Ehe8PGjp0KL/++qvl9eeff87s2bMZNmwYO3fuJDs72zLiNHHiRH755RdWrFjxSOWdqlZnAt+DastElIqSP3SjUqkwmUxYW1tbqjvny0+AW1r5QU8EvIJSz+8lacf/WS6W06ZNIygoiCVLltCrVy92797N+PHjcX5tFUprB/H7qyY2Kbc4+8/XmDhxIj/88EOR2z04XV+lUtG+fXt+/vlnfHx8CAsLw8XFpcifNRgMbD1+mUn/Pl/hx1/l8pcvXdjB7W3LS72A3cfHh9OnTxd4r3HjxmRkZJCcnMwTTzzBhQsXUCgUbNy4kfHjxzNw4MAyZYypDLV7gLoI9kYtr/q25B+jO7Lq5a78Y3RHXvVtWSeDHsDly5fJyckhPT2dL774gqioKCRJKpAgNzMzk549e5Zqf8b2fhjb9RUX7YeYc7PJjrtpuRvOycnBZDKxZs0a3n33XYYOHYper2fSmqOoqjro1b3718fSslkTFAoF7dq1s/TmgEcWg8uyjMGQV0LMbDZz7949jh8/zosvvsjq1auLbaN9+/ZIcddRK+rAefLfVGvK9oNxG/NxkUFPoVAU+LsODQ0lIqLgQvh169aRnJyMSqXCwcEByLupSE1NxcfHhz179lhGoapLnQx89U1YWBjp6eksXLiQqVOnAnnDMA8OV7z55pscPXq02P1IksTIkSNp4PtSpR5vbZZ2fjeA5fnPkiVLOHjwIJcuXWL27NnMXbONXZdiq2xdlyzLyLm5tGuQw+u+7ujVtXeGYUWRc7MY2P0JAFJTU8nNzaVx48YAuLq65m3zwIW9QYO8dGNms5m0tDT+85//MHjwYPbs2VNsO/3792fHjh283qdyq7BUNXMzH+z6TSz8s//mAX2Qn58f0dHRltf9+/dHkiTMZjPR0dEoFApMJhM6nY6nn36anJycaq/tJwJfHbBs2TLUajVff/01OTk5SJLEoEGDLJ8PGzaMxYsXl7gfX19fXnnrA8tEFuF/ZLOZzOunUOTkZc7Pz6APMG/ePMuFNdv7+Urr6cmyjNmUi9mUgykrnbQbp0j6fQ2p//4ra//Sm9mD2rJxSg/aNKq968oqgkajZWTnvAD3888/Fxi2a9q06SPb3717F71eD+RVSQ8ODqZLly6cOXOm2HYmTJjA6tWrGdexIe2b1p4EzSWRJAljt2E4jV2I/TNv0qDHiEdmfTo6Olr+PXjwYF544YUCAVGtVmM2m7lx4wZ6vR6TyUSnTp1KlSigKojAVwecO3eO3NxcOnXKmzavVqstvTtJkti1a1eBYc/CuLu7c/78ecZ9+VOlH29tJJuykS7vIjc3t8DQWb74+HgmLvqpUmdwyrKZqC+eI+qLYcR//RLxQR9hG32SN6b+xTKk1MHFlv/8pQcaZX09tWX82jphb9QSHx/PhQsXeOKJJyzZRi5dulTgxiT/3/kpuDIzM8nKyuL27dslTvBo1aoV48ePZ9asWfw6rVepg19tmFYhSQp0zZ7A+MTTNOjzMi4z1uH8ynJ0bh0BCuThnDRpEklJSZbndiaTyTLJK7+wrUqlok2bNty/fx+z2VztAbC+nh11RmJiIunp6SgUCpo3bw7k3dXevXsXyFs4mp2dbflDLIzCqgEvL1zH+OW7sfXoJp7tPcScnYn+8g6Sb15Ao9EUKA6aT9O4NbZPvVC5vb30FMvrrKwsNBoNOp2ON998s8C2DkYtfT0ca2MWrcemUymZ2rcVsiwzYMAAFAoFtra2lr//tLS0AhljbG1tASyf9+jRA4VCwbp169DpSs5H+9FHH3HmzBkWLFjA1um9menXCm0JNx217fySJAlJoUBt70qj0Z/gMnMjJu9hll5gy5YtWbhwIfPmzQPynvvlB3cnJydMJhNdu3ZFkiR27NiBl5cXWm31zreoHUXuhCJFREQgSRL+/v5s2rQJoMAU4pSUFMtQw8N3sJrGrbHpORKrll3419lEavpyM9lsQiLvJKySe+b/piW79/tqsu+eRq1Wo1AoyM3NfeSu3abnyEp/rpewLa8itlqtRqvVotFoilxvNq1vKw5GxFdpXtuaINtkZlHIVbJObyYsLAwfHx8OHz5sCXb5s5vzb15yc3MLLPkZMmQIBw8eJDg4mKeeeqrE9ho0aMDOnTt56qmnyMnJ4f3332dmfw9ORSYwe/M5opOzyMo1Yarh51Zp5Adspc6A3KYvLq16k37tBLfTlQwYMIAxY8YQFxfHzJkzgbxlPvk97W+//ZbExEQuXrzIggULqusrWIgeXx0gyzLDhw+33EXduVMw7+bMmTMfCXrGjoNwevHTvITTKk2NDnqy2YynjYn3hrTj9Af+/DLtKQLaOaGqpL9enUqBRimRc/M0ST9+iCl8H7GxsXh4eNCoUSM6depkGe6UJAmFVQOsWnev1N4eskxmZCiSJFl6eocOHaJZs2aF/oy3qy1zBnuiV9evU9wsw77wWI4Ye9F0ygqua9xp0KgpCoUCpVJJenq6JWGyJEmkpKSg0fwvh6rJZEKv1xMeHs7AgQNL1aazszMHDx7k4MGD9OvXj8jISLq0sGfPW/249HEAfp5Oda73LUkSklKFVZsevPDtMTaevsOTTz7J3LlzOXLkCABPPPEE8fHxNG/enHbt2vHqq69iZWXFX//612o++jq6jq8+uXTpEu3atWP+/PkMGjQIH5+8VGsPPtA/dOgQvXr1svyMseOg2lNPz5TLnMGe/KWvxyMf5a/XDIu6x9WYFLJyzWhVChrZ6IhPzeJmfBq5ZrlUlekdDBpaOBhwaWhlWfO5ef0PzJ49mwYNGnDz5k10Oh1t2rRBo9EwefJkPvjgA+Lj42n0wnx0zTtU6hBWdvxtor97DUmS6N69OyEhIRiNJU9iWXfsJvO3XyEz11QvVzzIZjOy2UTWjVPcOxKENu1PUlLyhoxVKhW5ubmWrCKOjo54eHhw5coVEhISSElJsSx1KA2z2cxXX33Fp59+yrPPPsusWbNwdHWv8XVEK4JerUA+s5nw377Le63Xk5GRYZlv8OeffxIYGMiqVauYMGFC9R4sIvDVemazGaVSScuWLbly5QpWVlaPPM/z8fEhNDQUAK1zGxqNXVDjg54sm1FJMh8Obc9LT5avovODiQziU7OIS80kKS0HWQaFQsLBqMHPsxEv9XQrco3nBx98wOLFi3F2dubq1atYW1tbetbff/89N5Nlvgij0oc50yOOk/TLp6xcuZKJEwufal6U4goUq5QSuVVQ6aS6Wapp7F1F6pkdlhtDW1tb7t27B0CHDh2IiYkhOTkZSZJIS0srV1tJSUksX76cJUuW0KjPWNLc+2GqB4NrD1Z6kCQJo9HI2LFjeemll+jTpw9jx45l7dq11X2YgAh8dYJKpcLFxYV3332XXbt2sXlz0Tn3ano9vbxq7ya6NtUzd3i3ak8tJ8syf//735k/fz6NGzcmKioKlUqFWp1XMbvZSwvJsmtV6cehjQ7j/Mq3CwzLlVVxGY2S0rJ54btjxBeR7q+uKKpcUf6FWqvV0qBBA1q3zqu68TgyMzN5ecVejsfUj0tsfqWHhC0LadmyJW3btqVnz568//77PPPMM2zZsqXGTOwRga8O8PX15fTp0+j1ejZs2IC/v3+hU6ZVxoY0eW1Vza4LZ8rh1AcBOFjXrB7pgQMHCAwMJD093fK8VGmwpfGrq5CUlT1HTOadgLa8VskLpSuy0LNOJWHUqolPq3mB9OEadAaDgfT0dOzt7UlPT6dPnz74+fnx1ltvPXZbk9aeZO+V2MfeT20h52aj3v4xro0aEhcXx+XLl/n000+ZNWtWdR9aATXztl8ok+HDh+Pq6kqzZs0YP348w4YNK3Q7q3b9kKkZd1yFkWWZxtbqGhf0IO/mIjY2lhkzZqBUKpFlGV3bPlWSoUWBxMjOReeMrCgVNSFGr1by/hAvVr3ctUZO6pCUGmx6jkSpzMtyk7/EoUuXLnTr1o3Tp08zadKkCmnLRlffJs7LZDh7s3//fpRKJVeuXKlxQQ9E4KsTJk+ezP379zEYDLRo0YJ9+/YVWGCaP7ygbdYeharmVguQgKXjelT3YRRJo9Hw1VdfkZ6ezieffIJNs7ZIVVCEtLWTscryzI7r4cacwW3Rq5VlDloKCQLaObFxSg/G9XDD29WWTwLb1bjgJykUWLXsiqzJm7hiNBrx9PTk5MmTpKSkMGfOHBo2bFghbXk2tkFTj7LISSotDZp7ce7cOcLCwmjdunV1H1KhxFBnHbFmzRq++uorGjVqxP3790lOTubatWsFtmn613+jsmpQTUdYMgVw49Mh1X0YpVZVw1j/mtSN3q0dS96wAhU3IeZBWqVEtxb29GrtUGT1k3XHbvLR1kvklmZ6bRUx52SRfPg/WN06gtlsJisrCy8vL5o2bcr69estvcHyys7OZvPmzfxz5RrudHm9XpWn8vNsxKqXu1b3YRSrvvXD66wJEyYQGhpKWFgYzz33HEuWLGHAgAGEhIQAedlZlPqaXWT3yVb21X0IZVIVw1htnIxVHvQgL/XZinFdKqTE17gebnRwsWX5vmsEX4ypmuQDJVCotdg0a4tjdiQXLlzAy8sLKysr/vWvfz1W0Lt79y4rV65k5cqVeHh48Nb06exMa8ruK7H1ZjmJja7mB3kR+OoISZJYvHgxEyZMYPPmzXzzzTesW7fOUnzW2mcI1ODnewCLR3eq7kMoE8/GNiiku6VaJ1heX47wrrydl0J+ia/H9WAgHbfqOJf/TCn5hyqZpLHiwoULNGjQgICAAD7++ONyzZqVZZmDBw+ybNkydu3axZgxYwgJCaFdu3YAtIq6x6FrCfUii45CAk/nmn2DDeIZX52iUChYu3Ytr7/+OlOmTKFnz56EhIQwYcIE9K1qdg7OgHZOta5e4ojOLpX6O329j3u1L+eoaPZGLTv+5svQDs7VfShk3E+gVatWbNy4kU8//bTMQS8tLY2VK1fi7e3NlClT6NWrFzdv3mT58uWWoAf1K4uOJEmM8Kn8iViPq+7/n6hnJEliypQpHDx4kBMnTjBw4ECaNWuGc4tHM5/UFHp1XmLh2sbBqKV3a4dK2ffQDs7MDmhbKfuuCZaM8eFvT1fj/3NTLi8+048LFy7Qr1+/Mv1oREQEb7zxBs2aNWP79u0sWrSIy5cvM2PGDEttv4eN6+HGZJ+GKDFBCVUfJCmv51Qb+bZ2qBU3sGKos47y9PQkKCiIiIgIFi1aRII+BUlbM2phPUivVjBnsGet7dm84deGA1fjKmy4UwJe83Vn9qDaEfRyc3OJiooiMjKSP/74g4yMDA4dOkSHDh1o2LAh9vb2tGjRghYtWjwyU/KNAR44Wmt5/5eLVX7cCpWK98f2L3WP3WQysWPHDpYuXUpoaCiTJ08mNDTUUhGlKOHh4QQFBREUFERSUhL9R00iza0X5+JMj0wa0qnykq/383AkOS2TIzfvP8Y3rHoKCd7o36a6D6NUROCr41q3bs3XX3+N98fB3M98tJxOddKrlcwZ7Mm4Hm7VfSjl5u1qy5Te7qw4cOOx99W2sZHPhnvX6JuA1NRUfv/9d3bu3MmePXuIjIzEycmJFi1a0KxZMwwGA/v377fkwIyLiyMyMpLIyEgUCgXdunVj4MCBBAQE4OXlxbgebsSkZLFk77WSG69A9gZNqXomCQkJrF69muXLl+Po6Mj06dPZsmVLsSWLIiIi2LRpE0FBQcTGxjJy5EhWrFhBz549LXUxH540ZK1VYpWdhOnaEfYv3cYNrTuGHqOQFTV/oki+V31rz9C8CHz1REODpsYEPqUEA7ycmNq3Va05UYrzzqC23LmXwdZz0eXeh79XI1aOr7lTwC9dusTnn3/OTz/9ZAleGzZswMvLq1TPxmRZJiEhgUOHDrFz506WLFmCRqPhrbfeYtrLL7Pu2C2S0ouuGVnR2jUpfllPaGgoS5cuZfPmzTz77LNs3LiRbt26Fbn99evXLcEuOjqaESNGsGTJEp566qlCi0DbG7UMclOjCD9JcHAwm/fswcXFBQ8PD1xdXUm7eZNks4xUSx5G1bahebGOr554fd0pdlyMqe7DoHNzW1aO61IrngOU1Wc7LvPNwRtlHvYc2sGZJWN8KuegHtOdO3eYMWMGhw8fZsaMGUydOhU7O7vH3m/+TMjPPvuM0NBQhr/9Bb/F2VZNJhwJZgd4PjJbNSsrix9//JGlS5dy9+5dXn/9dSZPnoyjY+HLSW7evMmmTZvYuHEjUVFRDB8+nFGjRtG7d+9Cl0Skp6ezf/9+goODCQ4OJj4+no4dO2IwGIiOjubixYt06dIFPz8//Pz8WHNNze7LsTVi+UdRFBK82rv2DM3nE4Gvnlix/zqf7bxSrSeRRqng6DtP18mgl+/c7Xv83+6r/B4eV+Lv2slay6wAD4b7uFbJsZXVli1bePXVV5k6dSqzZs1Cr9dXSjtnz55lxIgRpLQfjt7Tt1LaeNDDf4dRUVF88803fPfdd7Rv355p06bxzDPPoFI9OiD2xx9/WHp2kZGRPP/884waNQpfX99HtpdlmfPnz7Nr1y6Cg4M5duwYrVu3xsnJifv373P+/Hk8PDwsga5Xr14FigpXZO7UiqQg7/6kTxtHZvZvUytHbcRQZz0xorMLX4WEk1ONJWie9nSs00EP8tarrZ7QzfIM50RkImf/SCLjv5MYbK3UeDhZM2dQW1o51dz1TkuXLuXLL79ky5Yt9OzZs1LbcnV1JSMjA1/VDU7esoLmXSq1vac9HbEzaPj9999ZunQpv//+O+PGjWPfvn14eno+sv3t27ctwS4iIoJhw4Yxb948+vXr90iwi4+PJyQkhODgYHbt2oVKpcLNzQ2TyYRarSY9PR13d3f8/Pzo27dvsb3n/GUQn2y7XO31/HQqBV3d7HAwasucwKAmEj2+emTKv06x61L1DHdqVQo2vdqzVt4d1jcbNmzg7bff5tChQ7i5uVVqW7IsM2LECNzc3Pjqq6/46KOP2HTyFlKXUaRmV/zFXqOUGO1wl83f/gOAadOmMX78+AK5bSEvA8uPP/5IUFAQly9f5rnnnmPUqFE8/fTTqNX/m3CSk5PDsWPHLMOX4eHhtGrVCo1Gw61bt1AqlZYenZ+fH02bNi3zMa87dpOPf7tUbTeterWSjVN61KlzVwS+eqS6hk7USokPn/Gq1bM364s7d+7QoUMH9u3bR/v27Su9ve+//55FixZx4sQJdDodsiwzadIk9Ho9rYf9jcUVONtTks2kH1xLb2eYPn06ffr0KbCcITo6mp9++omgoCAuXLhAYGAgo0ePxs/Pr8AEnsjISEug27t3L/b29jRsmFeGJzU1lX79+lkCXZs2bSokycG52/d4Z/M5LkVXbcabvOVGbevcuSsCXz2z7thN5m+/TEZO1QydKBXw8dB2de7EqasmTpyIs7MzCxYsqPS2bty4Qffu3dmzZw8dOnSwvJ+YmIinpyf79+8nx9qZN4LOcj2ufNXQAZBlZLOJ7qo/WDR1GC4u/8ssEhMTw+bNm9m4cSNhYWEMHTqUUaNGMWDAALTavKG8/CUcD05Kadq0Kenp6cTExNCrVy9LoOvYseNjJ7guzsGIOOZtu0REbCpAgYlUElTYM3xJAp2q9i83KooIfPVQXvC7QmauqVIT57awt2LxC53q1BBJXZaQkIC7uztRUVHY2NhUalu5ubn07duX559/njfffPORz+fNm0d0dDTLli0DYMX+a3y562qZKjzIsoyEjLvRzOdjn6SLe97szLi4ODZv3kxQUBChoaEMGTKEUaNG4e/vj06nw2w2ExYWRnBwMDt37uTkyZM4OTkhSRJ3796lU6dO9O/fHz8/P3r06GEJkFWpqOThfh6N2BMeS1jUPa7GpJCSmUtKZo7lRrek396Di+jrynKjwojAV0+VtuxMeUjA7AAPXutT+9KQ1Wc//vgja9asYdu2bZXe1vz589m7dy8hISGFrnM7e/Yso0ePJjw83PJeaW/Y8gIe+Dhr+XayL/ZGLQkJCfz8889s3LiRkydPMmjQIEaNGkVAQAB6vZ7Y2FjL7Mvt27ejVCoxGAzExsbi7u6Ov78/fn5+9O7d+5HngbVBYYGymV3eLN0/EjPKXXmjthKBr54r7ITQqiR2X44lPi27TPuSgB7udrw7qG2dvVOsy9555x2MRiPvv/9+pbZz8uRJhgwZQmhoaIFhxweZzWasra2Jjo4u0Pss9oYtNxulSoVva3ve8PfCxcrMli1bCAoK4ujRowQEBDBq1CgGDRqESqXiyJEjBAcHs3XrVm7cuIGdnR3Jyck0bNiQgIAA/Pz86NevX5Hr+ITaSyxnqOeKKzuT/zzhakxqkUMkWpWCprY6hnZowks93er8nWJdZjKZKn3YLi0tjXHjxrF06dIigx7kVRrRaDSYTAUnYuWXNwq7cp2532/n1LVoGjZqQttWbjzt056BbRpwYNc23pkyj8OHDzNgwAAmTZrETz/9RHR0NMHBwQwbNoyDBw9iMBjIyclBoVDw7LPPMmDAAPz8/ErMvynUfqLHJ5SoIoqRCjXfe++9h1ar5cMPP6y0Nl5//XXS0tL44Ycfit3OZDJhbW1NbGwsRqMRyBvC3L17N8uWLePgwYO89NJLTJ06lUaNGvHrr78SFBTEgQMH8PPzsywqP3HiBFu3bmX79u2kpKSgVqvJysrC19eXwYMH4+fnh5eXV40u2SVUPBH4BEEA4Ndff2XJkiWEhIRUyv5/++03pk+fTlhYWJHle/KdOHGCyZMnc/78ee7fv8/atWtZvnw5Go2G6dOnM3ToUPbu3UtQUBD79u2jb9++jBw5EhcXF/bv38/mzZu5cuUKer2ejIwMOnbsSGBgIP3796dz586FZmUR6g8R+ARBACA5ORkXFxeuX79eruda8alZ/Hj6Nlf+TCY5MxcbnQrPxjaM7OyCKf0+3t7ebNy4EV/fktOSvffee9y5cweDwcD69evx9/dn0qRJJCYmsmnTJvbs2YOvry/+/v4oFAq2bt3KoUOHAMjOzqZFixYEBgYSEBDAk08+WWnp1oTaSQQ+QRAs/vrXv2I2m1m6dGmpfyYs6h7L9l1j/9U4gALptfKnx2sTr9PD5j4rP51T7L5ycnJYs2YN06ZNo2HDhrzyyis0a9aM3bt3ExISQs+ePenQoQN3795l3759xMbGAuDg4MDAgQN57rnn6NOnD7a2tmX+7kL9IQKfIAgW8fHxtG3blp9//plevXqVuH2p14Sazei0Kt4vIgtITEwM3377LV9//TUZGRm0bNkSNzc3QkJCaN++PXZ2dly7do2IiAgA9Ho9vXr1YvTo0QwYMABnZ+dyfmOhPhKBTxCEAnbt2sX48ePZvXt3sWnLypMF6MEUWLIsc+zYMZYuXcq2bdvo0qULV69e5e7du7Rp0wZZlomKiiIrKwulUkmnTp0YOXIkgYGBtGzZUkxIEcpNBD5BEB6xYcMGZs6cycqVKwkMDHzk88fJ+6pTKxjXOI4fVy4iJiYGZ2dnwsPDMZvN5OTkYDKZUCqVtG7dmmeeeYaxY8fi7e1d6EJ3QSgPEfgEQSjU4cOHGTduHAEBAXz88cc0atTI8tmUf50i5HJMuVLeyWYz5j/OEPPTPFQqFZmZmciyjMFgYOjQobzyyiv07t27VJXdBaE8xC2UIAiFeuqppzhz5gySJOHp6cm0adO4du0a8alZ7L8aV+48r5JCgeTSHrW1HSqViiZNmhAUFERqairr169/pBqCIFQ00eMTBKFEf/75J4sXL+a7776jQY8RmNsNwiyVvwqBnJOF7e0jzHuxD0OGDBHDmEKVEoFPEIRSM5vNvLxiLwejsh57X8M6NuUfozs+/kEJQhmJ2yxBEEpNoVCgNhSfdaW0kjNzKmQ/glBWIvAJglAmNrqKSfdlo1NXyH4EoaxE4BMEoUw8G9ugVT3epUOnUuDpXPvq2gl1gwh8giCUyYjOLmRnl61W48NkYIRP0WWJBKEyicAnCEKpnTt3DkdrHakRJ5DNpc/Y8iBJgn4ejqKklVBtROATBKFEsizTrl07vL29AUg+ugmtunyXD51KydS+rSry8AShTERRKkGoRtnZ2ezfv58lS5YQGhrK/fv3ycjIeKTyOIAkSeSvPrK2tsbR0ZHOnTvj7u5OixYt6Nq1Kx07dqzwNXEbNmxgzJgxltdNmzbl+vXzbDoTXc5cnZ50cLGt0GMUhLIQ6/gEoQqlp6czb948vv/+e6KjoytknzqdjsaNG6NSqUhOTsbf35/nnnuOZ5999rEKrqanp9O8eXPi4+Mt7y1cuJDZs2dbXpe2OoMk5fX05gz2LLQ6gyBUJRH4BKEKHD9+nOHDh3Pnzp1S/0x+D+/Bnl5x2wHY2dkxYMAAbt26RWxsLG+//TYTJkwocyHWd999l4ULF1pe63Q6Lly4QMuWLR/Z9tzteyzfd43fw+OQgMxC6vH183Bkat9Woqcn1Agi8AlCJbp16xZdunQp0GsqiSRJGAwGGjduTMeOHRkzZgwDBw7EYDBgNpvZu3cvc+fO5dixYwUCYoMGDUhOTkaWZfR6PePGjePWrVvcvHmT9evX4+PjU2LbkZGReHl5kZmZaXlv8ODB/PrrryiVxacoS0jN4sfQ21yJTiE5MwcbnRpPZ2tG+LiIiSxCjSICnyBUgujoaIYPH87Ro0crdL8ajQYvLy/GjBnD2LFjuXXrFs8//7ylEjmAh4cH4eHhaLVarK2tGTt2LP/5z3+YO3cuM2bMKHS/siwzdOhQtm3bZnlPkiSCgoIYMWJEhX4HQahuIvAJQgU6d+4cU6ZM4fjx41XSnk6nY8KECVhZWbFo0SLL+40bN7b0Mp2dnenZsycnT55k1qxZvPbaawX2sXPnTgYPHlyg9+jq6srp06dxdHSsku8hCFVJBD5BqABJSUlMnDiR3377rdAZmWUlSRJGoxGDwUBKSgppaWmPbKPT6SxDkkqlEhcXF27fvm1p32AwkJmZiUqlolevXqjVas6ePcvq1asZNGgQWVlZeHt7Ex4eXmC/M2bMYPHixaLCuVBnicAnCI/p4MGDjBgxgoSEhFIHPUdHR8aMGcPQoUNxdXVFpVKRnZ3NnTt3iIiI4OTJkxw7dozr16+TnZ2NJElYWVmRnp5eoGemUCjo1q0bx44dAwoGQ4CGDRuSlJSEi4sL7u7u2Nvbc/78eSZOnMicOXMKHJNOp2Pnzp306dOnAn4rglBzicAnCI9h165dvPDCC9y/fx9zMZlMHBwciI+Px8HBgR07dtClS5dS7V+WZa5cucJnn33G+vXrMZvNSJJETs7/KhtIkkS3bt2Ij4/n+vXrKJXKAgHY0dGRrKwspk2bxurVq4mPj38kQHfr1o2QkBBsbGzK+BsQhNpHBD5BKKdTp04xaNAgkpKSMJlMhS47UKlU6HQ60tLSUCgUZGRkoFaXryqByWRi7ty5fP7551hZWZGcnGz5TJIk7Ozs6N69O9u3by90KYRGo3kkx6ZCoWDBggXMmjVLDG0K9YYIfIJQDrm5uXh7eyNJEhcvXiw0qAB4enoSHh6Ok5MTXl5e7Nmz57HbvnPnDr6+vkRFRRXo+Wk0GhwdHWnWrFmpZpM2bNiQffv20aFDh8c+JkGoTUSuTkEoh1WrVmFjY8PFixeBvNRjD2dJUalUXLlyhddee42EhAS6d+9eIW03bdqUS5cu0a5duwLpybKzs0lMTMRoNJaYsUWtVnPixAkR9IR6SQQ+QSiHb775hpiYGCBvRqVeryc3NxcArTZvsbYsyygUCqZMmYLBYLC8XxG0Wi0HDhx4ZLmBm5sbx44dKzKgSZLE4MGD0el0Zc7mIgh1hQh8glBG8fHxXLt2jcjISCDv2ZvRaLR8nj9xxGQyodfrkWUZpVLJjRs3KvQ4rK2tWbt2bYFnc1evXiUlJYXQ0NBHtjcajfj7++Pp6UlmZiZ2dnYVejyCUFuI6gyCUEYXL17E3t6elJQUy3sZGRkoFArMZrOl5wd5w5JxcXFkZmYSEhJimXBSkqsxKSzYfplrcalkZJvQqhTo1ArcHAyAhI1OhWdjG0Y+1RdbW1uSkpIAil1O8eKLL2IwGDhz5gzu7u6ixyfUWyLwCUIZybLMvXv3gLyhQ51OR05ODs7Ozo8koc7KyuL48eN4enpy7949fvnlF5577rlC97vr0p/M3HCG9GLK/NyIT7f8W6uM5h+7r2L7zP8jLWQN2X9GFHvcBw4c4Msvv2TZsmW8++67pfuyglAHiVmdglBGx48fp3fv3pYZlUqlEoVCwRNPPMGZM2ce2d7JyYkpU6Zw9OhRbt26xYULF9BoNJbPZ/8YRtDp25T3RJTNZmRTNkl7VpF6dkeBzx5czmBra8v06dP5/PPPSU5OrtBnjoJQm4hnfIJQRp06dSownJk/vOjg4PDIMGaTJk1ISEggOTmZCxcu0Lx5cyZMmIDZbCY+NYv2H+1k42MEPQBJoUCh1tHw6ckYOw4q8NmD97WDBw9m4cKFvPvuuyLoCfWa6PEJQjnY2NgUeMbn6elJamoqMTExBdbWATRq1Ij4+HgmT57Mvn37MLTsTM4TgaSqKj5Lijknk5h/v0P2n9cs77Vu3ZqIiAiMRiNubm6cO3dOLFYX6jXR4xOEcujfvz+AZb2cVqslMTGRgIAAFAoFVlZWlm1jY2NxcHBg7dZ9mP1nk+T9IqlK60o5LkmpwabnSMtrhUJBVFQUkLdg/fDhwyLoCfWeCHyCUA7jxo3DysrKMuQZFhaGLMtkZWVZEk4/OGsyvUlnnF/6ghyjE0hS3n+VQFIo0LfsikKf15vUarVkZmbSpEkTTp06JXJxCgIi8AlCuQQGBtK4ceMCvaeMjAwOHz7MzJkzMZlMODg4oFQqMXYcRMP+fwGFqmp6W7KMoX1/FAoFWVlZ2NjYcPPmTRo1alT5bQtCLSACnyCUg0qlYtmyZRiNRpRKpeX9tLQ0/vnPfzJjxgyioqKwb+1DQ7/JKFSaYvZWsRRqLdpGbjRo0ACVSkVoaGi5E2MLQl0kAp8glFNAQACvvfYaSqUSnU5neT8zM5MlS5YQGBiI7OWPpKy6oJdPZ2NHWloahw4domXLllXeviDUZCLwCcJj+Oyzzxg1ahS5ubk0a9bM8r4sy/y2ez969y5Iimo4zXIyOHXqFF27dq36tgWhhhOBTxAegyRJ/PDDD8ydO5c7d+7g6upqeY5nbO8H1RH0ZDPvvDqe9u3bV33bglALiMAnCI9JkiQ++OADTp8+jUKhQJIkbG1t0TX1RFIoS95BBVMqFLzQ3a3K2xWE2kIEPkGoIN7e3ty8eZOgoCBsbW1RNmxaLcfRp40j9kaRmUUQiiIytwhCJek+bycxaUVXS6gMCgm2TH2KDi62VdquINQmoscnCJXEaKUreaMK9mpvdxH0BKEEIvAJQiVp41Q5acmKMrSDM7MHta3SNgWhNhKBTxAqiXcV9rxGd3FhyRifKmtPEGozEfgEoZKM6OyCqgrOMDsrNZ8N9678hgShjhCBTxAqiYNRy9OeTpXezpwhYnhTEMpCBD5BqETT+rZCq6y802xoB2eG+7hW2v4FoS4SgU8QKpG3qy0fPNO2UoY8h3ZwFs/1BKEcVNV9AIJQ143r4QbAR1svkWt+/GWzTtZaZgV4iJ6eIJSTWMAuCFXk3O17fLrjMscjEylN/FNIoFZIKJUKbK3UeDhZM2dQW1pV8TIJQahrROAThCqWkJrFD0dvsvtyLHEpWaTnmFBK0NCgwcvZBm9XW0b4uIi0Y4JQSUTgEwRBEOoVMblFEARBqFdE4BMEQRDqFRH4BEEQhHpFBD5BEAShXhGBTxAEQahXROATBEEQ6hUR+ARBEIR6RQQ+QRAEoV4RgU8QBEGoV0TgEwRBEOoVEfgEQRCEekUEPkEQBKFeEYFPEARBqFdE4BMEQRDqFRH4BEEQhHpFBD5BEAShXhGBTxAEQahXROATBEEQ6hUR+ARBEIR6RQQ+QRAEoV4RgU8QBEGoV/4/LNDvL3k9Bl8AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACaBklEQVR4nOydd3QU1fuHn5kt2fSQDgQChBKqJPTeO6J0BJSidH+KXYpfu9iwoYioCAjSQUGq9CIgvYYSIAkhCel9s23m90fMSgydNMx9zuEcMjsz953JZj5z3/sWSVVVFYFAIBAIyghySRsgEAgEAkFxIoRPIBAIBGUKIXwCgUAgKFMI4RMIBAJBmUIIn0AgEAjKFEL4BAKBQFCmEMInEAgEgjKFED6BQCAQlCmE8AkEAoGgTCGETyAQCARlCiF8AoFAIChTCOETCAQCQZlCCJ9AIBAIyhRC+AQCgUBQphDCJxAIBIIyhRA+gUAgEJQphPAJBAKBoEwhhE8gEAgEZQptSRsgEJRG4uLi+P333zl48CDXr19n3bp1jBs3jipVqhASEkKjRo3w9vYuaTMFAsF9IKmqqpa0EQJBaSAqKorXX3+ddevWkZmZiU6nw2KxAODs7IzJZMLFxQVHR0cyMzNp164dzz77LF27dkWSpBK2XiAQ3C1C+ARlnqtXr/L4449z7NgxVFXFzc0Ng8FAfHw8kiTx7z+RPEF0cnLC0dGRRx55hF9++QU/P78SugKBQHAvCOETlFkURWHy5Ml8/fXXyLJM48aNSUhI4PLlywBotVpUVcVms93yHHkzPa1Wy9q1a+nevXux2C4QCO4fIXyCMklSUhK9evXiyJEjODs74+3tzaVLl+77fA4ODphMJrp27cqPP/5IQEBAIVorEAgKEyF8gjJHZmYm7du3JywsDD8/PyIjI1EU5ab7urm50aFDB4xGI4cPHyY5ORnInelJkpTvOI1Gg6IouLu7M2fOHAYPHlws1yMQCO4NIXyCMsfAgQM5ceIEbm5uHDlyxL5dlmX0ej05OTkPdH69Xk/58uWZNGkSr7zyyoOaKxAIChmRxycoU2zYsIFDhw6RmJiYT/TyZm85OTloNBpat26Ni4vLfY1hNpvR6XR88803LFiwoLBMFwgEhYSY8QnKFA0bNiQoKIjVq1ff9PMaNWqQkJBAamqqfZtOp0Or1WI0Gu9prOrVq5OcnMypU6eoUKHCg5gtEAgKETHjE5QZzp8/T3x8PBs3bizwmSzLdO3alYsXL+YTPQCLxYLJZCIwMBBvb28CAwNxdna+43jh4eHYbDZeeOGFwroEgUBQCIgZn6DM8N5777Fv3z42bdqUb7uHhweSJJGSklLgGEdHR/r160dcXBynTp1i2LBhNGvWjJCQECpUqEBYWBht2rTBZDLdclxJkoiMjKRSpUqFfk0CgeDeEcInKDO0bduWrKwsjh49at+WF50J5IvQdHR0xM/Pj2rVqnH27Fk+/PBDhgwZgoODQ4Hz7ty5kw4dOtx0TFmWURSFWrVqcebMGTQaTSFflUAguFeEq1NQZsjJyeHEiRP2nw0GA6qqoigKiqIgy7l/Djqdjqeeesr+2bFjxxgxYsRNRQ+gffv2eHl53fSzPDGNiIhgzpw5hXxFAoHgfhDCJygzpKWl5fu5QoUK+Wps5onU6tWrWbhwIX5+fqxfvx5/f/87nrtNmza3/dxsNvPWW28VsEEgEBQ/QvgEZQaz2ZzPnZk344N/So/5+Piwfv16JEli48aNODk53dW5g4ODb/u5qqqEhoaydu3a+7ReIBAUFqItkaDM8O+C07Gxsfb/u7q6kp6ezoYNG2jXrh1j/u9Flp9K4UT0FS5cz8BkVXDQytT0c+GRgHIMbBSAl8s/rk+r1XrLsfL+n5KSwvLly3nyySeL+EoFAsHtEMEtgjJDx44d2bFjh/3nvMAT+KfW5pfLtvDhlgs4+FThdn8YsgTtavowuVNNHqnkQYsWLTh48KBd7FxdXcnIyMh3TMWKFUlPTycmJua+k+MFAsGDI1ydgjJDSEgIgD2yMt87n2cg/qO+5LOjJnTegbcVPQBFhR3nE3hs9j76fr2Tc1ei853Pzc3N/n+9Xg9AQkICTk5OBQRRIBAUL0L4BGWGli1bAtjbDOUJlUvDHvgN/wi9bzW4Ib3hbjl2LRP3EbPx7jsVvX8NALKysuxRonnjVKhQ4YHrgAoEggdHCJ+gzNCjRw/7/x0dHYFc0SvXeQySRvcAXdQlkGWcajTHb9gMXBr2IDs72+5Gzevi7ubmdssuEAKBoPgQwicoMzg5OVGlShXg704M/jUo1+lpZK2+UM4vyTKyzkC5jk/j1KCbfbtOpwOgVq1ahTKOQCB4MITwCcoUEyZMAHJdkZ5tnkDSFI7o3YisN+DWbgR6/+rAP65ODw8PLBYLnp6ehT6mQCC4e4TwCcoUL774IjqdDtnJHX1gQyS5iP4ENHrcWgxEkiSsViuenp5cvHiROnXq3LICjEAgKB6E8AnKFFqtlgkTJuDaoDNFmckjyTKO1Zvh5pPbjujnn3/m+PHjdOnSpcjGFAgEd4cQPkGZY8aMGbhWCkbWFe3MS5I16Fo+hUajwWQykZaWxmuvvVakYwoEgjsjEtgFZZLHP9/E8XhbkY+jKjY6Wo+wecn3VKtWjb179xb5mAKB4PaIGZ+gTFKlgl/xDCTJHMryJD09nXfffbd4xhQIBLdFCJ+gTBLs73bnnQoBSZLIdAukS+++t+zZJxAIihchfIIyyYBGAcU3mKrSavhLxTeeQCC4LUL4BGUSbxcH5Pst1HKvaPVcyyqmsQQCwR0Rwicos9Sv6F5sY6XnWIptLIFAcHuE8AnKLD3qlS+2sdwMumIbSyAQ3B4hfIIyy4BGAWiKwd0pSxBc3rXoBxIIBHeFED5BmcXbxYFOtYsnrWFAaDEG0wgEgtsihE9QppnUvjqOOk2RjlHd1wUvF1GfUyAoLQjhE5RpHqnkwbSewTjqiu5P4Y2edYrs3AKB4N4Rwico8wxvXoVpPWsX/sxPValT3pU2NX0K97wCgeCBEMInEJArfsvGNqd7XT8KK95FsVnxDN9USGcTCASFhShSLRD8i6RME8N/PEhYXMZ9n0OxmEjZ9gOZxzcydepU3n///UK0UCAQPAhC+ASCW/DRpjC+230Z5Z7+QtS/Re9HMo9vtG/9+OOPeeWVV+7blpSUFDZs2MDRo0c5duwYZ86cIT4+npCQEGrUqEFoaCitWrWiVatWSFJxlaQRCB5OhPAJBLfhZHQqn2+9wO6Lidhuo4B6jYQkSXSo5YNf0gnemfxMgX3mzJnDuHHj7mn8y5cv89FHH7F8+XLatWtH8+bNCQkJoXz58uTk5CDLMufOnePo0aNs3rwZVVV57rnneOaZZ9Bqtfd8vQJBWUAIn0BwFyRlmlh5NJpzsRkkZppIyTajquDprMfbxYHg8q4MCA2wpy1s3LiR3r17oyhKvvMsWbKEIUOG3HE8VVX56aefeO2115g4cSITJkzA39//jsfs2rWLt99+G7PZzKJFi6hater9X7RA8B9FCJ9AUEScOHGCZs2aYTKZ8m1ft24dvXv3vu2xU6dOZe3atSxdupR69erd07iKovDFF1/w8ccfs337durUEekUAsGNCOETCIqQa9euUb9+fVJSUvJt37VrF23btr3pMV9++SVz5sxhz549eHt73/fYixcvZsqUKfz5558EBIjKMQJBHkL4BIIiJisriwYNGnD58uV8248ePUpISEi+bRcuXKBly5YcOXKEwMDABx77rbfe4sSJE6xZs+aBzyUQ/FcQwicQFAM2m402bdqwf/9++zZJkjh37hw1a9a0b+vVqxedOnXixRdfLJRxc3JyqF+/Pt988w1du3YtlHMKBA87QvgEgmLkiSeeYOnSpfafZVkmIiKCSpUq2d2isbGxODgUXm3P77//nj/++IPly5cX2jkFgocZIXwCQTEzZcoUPvzwQ/vPGo2GmJgYlixZwrFjx5g/f36hjpeYmEhQUBAxMTE4OzsX6rkFgocRUbJMIChmZsyYwZw5c+w/22w2AgICWLZsGQMHDiz08by9vWnatCkbN268884CQRlACJ9AUAKMGzeODRs22H+2WCzs37+fatWqFcl4devWJTo6ukjOLRA8bAjhEwhKiB49enDixAk0mn+6QoSEhGA2m0vQKoHgv48QPoGgBGnQoAFRUVH2YBaTyYS3tzc2m62ELRMI/rsI4RMISpgKFSqQlJSELOf+OWZkZODt7Y2IOxMIigZRxVYgKAU4OzvTpEkToqKiiI2NJTU1FT8/P65fv56v20JipomVR6I5F5dOeo4VN4OWYH83Bjb6p07ozQgPD6dZs2bFcSkCQalHpDMIBKWEjz/+mEuXLhEWFsaePXuA3NngtWvXOHE1lW92hrPrQgIAJus/xa8NWhkVaF/Lh4ntqvNIJY98501NTaVy5cpER0fj5uZWXJcjEJRahPAJBKWEK1eu0KxZM2JiYnj66adZuHAhAJU6DMW59ZPkWG3c7q9VksCg1TCtZzDDm1exb1+4cCGrVq3it99+K+IrEAgeDoSrUyAoJVStWpW6desyb948FixYQLVq1fj014MQ2g+j5c7BLqoKRouN9zeEATC8eRWsViuffvop77zzTlGbLxA8NIgZn0BQijhx4gRdunTh1KlTxJkdGPDtXizqvXdUd9RpWDa2OVuXz2Pjxo1s2bJFdGa/RxISEvjll184ePAgx44d48qVK5hMJjQaDQEBAYSGhtKoUSOeeOKJIsu/FBQNIqpTIChFPPLII0ycOJFevXrx1dZzWLk/scqx2nhjyV4+/vhjvv32WyF698C1a9cYOXIkNWvW5OjRo3Tr1o3ly5eTnJyMzWYjMzOTP/74g8GDB3P9+nWaNm1Knz59OHnyZEmbLrhLxIxPIChlqKrKqAnPsdOtM2jufzVCtZr5sU95OrdpXojW/bdZvXo1EyZMYMyYMbzwwgskJCSwcuVK/vzzTy5evEh4eDiQW1xcURRcXV0JCgrC1dWVkydP8sYbb/Diiy+KF41SjhA+gaAU8u3OcD7dHIbtAZwyeg281DWYcW2DCtGy/y4LFizgjTfeoFmzZmzZsoX09PRb7ivLMh4eHiQnJ6PRaNBqtZhMJiRJIjg4mP379+Pu7l6M1gvuBeHqFAhKIeevZzyQ6AGYbXAuNqOQLPrvkp2dzcyZM3nmmWe4evUqK1euJD093T5r0+l0BY5RFIXk5GRkWWbatGm8/fbb+Pj40K5dOy5cuICnpyeffPKJKEJQShEzPoGgFDJ6wSG2n4t/4PN0CvblxxFNCsGi/xZnzpzhxRdf5MCBA7ed2eXh6+tL+/btqVatGlWrVuXw4cOsWrWK5ORkILcAwbp163jvvfdQVZX9+/djNpvp1q0ba9asKdT+ioIHR8z4BIJSiJuhcDKN3AwFZytlmdjYWOrVq0f9+vUJDw8nODjY/tm/1+U0Go29gHhKSgqrVq3io48+4rPPPqNly5aEh4cTFhaGn58fWVlZdOzYkQ4dOuDo6EitWrVo3LgxO3fuZMCAAaL2ailDCJ9AUAoJ9nfDQftgf54GrUxweddCsujhZ8mSJQQGBmIymVixYgUajYZDhw7ddF+tNvfFI0+wLBYLNpsNVVU5f/48o0aNwtPTk9q1a3P9+nX7cW+88QZWqxWLxcKpU6eYOHEi+/fv57333iv6CxTcNUL4BIJSyIBGAQ98DkVVGRD64Of5L/Dbb78xfPhwxo0bx7JlyxgzZgyRkZH51uBu/L/Var2rWZrBYMjXVgpgy5YtREdHY7VaqVGjBi4uLsycOZNLly4V3gUJHgghfAJBKcTbxYF2NX2436h4VVFIPbuP58aNJi4urnCNe8i4cuUK/fv3Z9y4cbz++ut07NiR9PT0e+p7KEkS1apVs3fQyCMnJwdFURgwYEC+dby8dcNp06bx4osvUqVKFWbMmFE4FyR4YERwi0BQSjlxNZUh3x+4q3Jl/0a15JC0/A0s1y+hqirDhg1jxowZ+Pv7F4GlpZv69eujKApnzpyhfv36nD59+r7PJUkSWq0Wi8Vi36bValFVFS8vLzIzM8nOzkaSJBwcHFBVlaZNm3L8+HF0Oh1xcXE3jRIVFC9ixicQlFIeqeTB8LpOqBbTPR3nqJOZ0j2YxtV8gdwOD3nrW2PHjiU2NrYozC2V7N69mzNnzrB69Wq6d+9+z6InSZI9yMXFxSWfO1Sr1SJJElarFVmW8fPzw2TK/V2pqkpOTg5msxkvLy+cnJzw9vZm+/bthXp9gvtDCJ9AUEo5e/Yss54fxKCaWhx1mju6PSUpt0bntJ61Gd+5Ljt27OC7774jISEBWZZp0qQJCxcupFq1akyYMKFMCOCMGTMICgpiyJAhbN68ucDn/3ZdQq6gOTk52WdsNpuN0NBQNBoNOp0Oq9WKJEn4+vrStm1bNBoNFosFT09P2rdvn+9cqqry6KOPYjQacXd3F8JXShDCJxCUQi5fvkzXrl359NNP+WRsH5aNbU63On44aGUM/4r2NGhlHLQy3er4sWxsc3tLIkmSGDlyJBcuXCAkJITjx49To0YN2rdvz8KFCwkKCmLSpElcu3atBK6w6FFVlZ07d5KUlMTx48eB/CkLkiTh4eGR7xhZlgkJCcHV1RWDwUCLFi2QJIlDhw7RqlUrunXrhizLqKpKTEwM0dHRvPLKKwDs2rWLp556qoAdM2bMoHXr1oSFheVzkQpKDtGWSCAoZVy7do3OnTszffp0hg8fDkCDAA/mDG9MUqaJlUejORebQXqOBTeDjuDyrgwIvXUH9ooVK7J3716+/fZbXnnlFa5cucKIESMIDw9n0aJFzJ8/n5EjRzJ16lQqVqxYnJdapJw+fZqcnBxycnLs21RVRaPRYLPZqFevHpcvX7Z/5urqaq/BOXv2bNq1a8fXX3/N+fPnMUl69iYZeKRdT0Jq9SXiwlnM8VfQZEeQkpKCg4MDJpOJCRMmoNPpsFgsSJKEqqr2yE9FUUhISCiJWyH4FyK4RSAoRSQkJNC2bVtGjRrFq6++WujnDw8PZ8iQIURERFCuXDleeOEFFixYwOXLl8nJyeGpp55iypQpBAQ8/GkQ06dP5/3337+rfStWrEhSUhK+vr4kJycTHx+Po6MjJ66m8sFvRzgYlYGiKMi6f14uFEtubU7l2mlS/1xGZuQZ9Ho9Fosl31rga6+9xtq1a7FarXh4ePDXX38V+rUK7g3h6hQISglpaWl069aN/v37F4noAVSvXp2DBw/yyiuvcP36daZNm0ZISAhfffUVFSpUYO3atdSpU4dJkyZx9erVIrGhONi8efNNRe/GNb26deva/5+YmEhOTg7x8fE0aNAAR0dHFh2IYMj3B/grJgc0unyiByDrHJC0euTKDfEc8A5ezR7HbDYXWDds0qQJ4eHhBAYG5pthCkoOMeMTCEoBWVlZdOvWjdDQUL788stiaWtz6tQpnnjiCTIyMrBYLMyaNYuMjAymT5+Oo6MjCQkJDB06lClTplCpUqUit6cwCAsLY/jw4Rw9erTAZ05OThiNxpsWjq5cuTJpaWn24tT/+/kPFoeZMFuVux9cVUjdv4q03QuAf1oXrV+/nt69e1O3bl3i4uKEu7MUIGZ8AkEJYzKZ6NevH9WrV+eLL74otl5u9evX5+jRowwfPpycnByee+451q5dy65duxg/fjw6nY69e/dSv359JkyYQFRUVLHYdT/YbDY++OADGjVqxMWLF3FyciqwT0BAgP3e/lvIk5OTcXR0xNHREY8uE5l3MvveRA9AknFvMQDPHpNzXaBK7vF79uzBwcGByMhIUay6lCCETyAoQaxWK0888QSurq788MMPNw2vL0r0ej3vv/8+69evx9HRkfDwcJo1a4aTkxPnz5+nd+/eyLLMsWPHeOSRRxg/fjyRkZHFauOdMJlMPProoyxcuBAXFxe8vLxuGj154cIFuxjd6MbVelXCsftLyI+/h9fExbg07Haffe9zI0VdGnSi+lP/uFl/+eUXZFmmVatWokFtKUEIn0BQQiiKwujRo8nOzmbx4sX2wsglQYsWLThx4gRt27ZFq9Uya9Ys+vTpw/Dhwzl9+jSPPPIIGo2G8+fPExISwrhx44iIiCgxe/NQFMWeQpCQkIDRaERRlLtKG3Cu25GKkxZQ4ZnZOAY1Rufhj6zV5YrTAwiUJEmY/evj3jbXLl9fX4xGI08++eR9n1NQuAjhEwhKAFVVee6554iIiGD16tWlwgXm7OzM119/zc8//0xGRgYajYa2bdsyd+5cvvrqK/bt24eXlxcGg4GrV68SGhrKmDFjuHLlSonZ/MMPPxAREYGXlxdpaWlkZmbelUvW69GX8er9AhoXTyRJKvyZmCTh3rw/ev/qODg4oNPpMBqN1KlTp3DHEdwXQvgEghJg2rRp7N+/n3Xr1t10Paok6dKlC6dOnSIwMBBXV1e2b99Ow4YNSUhIYOXKlfz6668YjUa8vLxISUmhUaNGPPPMM8UugElJSUybNo2goCAWLVp01z3vvB59Gec67YpG8G5EknFr/QRms5nGjRuzadMmBg0aVHTjCe4aIXwCQTHz4Ycf8ttvv7F582bc3d1L2pyb4uHhwcKFC5k5cybnz5+ndu3aDB48mPHjx1OrVi22b9/OrFmzCA8Pp1q1apjNZpo0acLTTz9dbCH7v/zyC4qisGTJklvuc2MJMa1Wi1+zPnbRK2okScKpaiOq1m5Anz592LJlC48//niRjyu4MyKdQSAoRmbPns3MmTPZs2cPFSpUKGlz7orr168zbtw4wsPDqV27Nvv37+err76iX79+duF54403CAoKomrVqqxevZo+ffrYZ2P3OtaxY8c4ceIEJ06cIDw8nF69elG7dm1CQ0PztQYqV64caWlp+dITJEnCz8+PuLg43NzcSEtLsyeVA9R8dSU5kkMxBpmo5BxYSr/abmRlZbFgwYJiGldwO8SMTyAoJn7++WdmzJjBH3/88dCIHoCfnx9r1qzh5ZdfZufOnfTq1Ytp06bRt29fYmNjGTZsGOfOnaNPnz6sXbuWTp064ebmRrNmzRg1ahTh4eG3Pb/JZOLnn3+mWbNm1K5dm08++YT4+Hj8/PyoUqUKFouFJUuW0KlTJwIDA3n//fd58803SU1NLZCT16FDB65du4a7uzvp6elYrVbatm0LgMGvSjGLHoBEhYbtWbFiBR999FExjiu4HWLGJxAUA2vWrGHixIls27btoQ5wiIyMZNSoURiNRho3bszSpUt5++23GT9+PLIsk5GRwcyZM5k1axaDBg3C1dWVefPm0bt3b6ZNm0aNGjXyne/QoUMMGzaMwMBAnnvuOXr27Fmgo/mNHD9+nFmzZjFv3rwCnwUFBXHhwgVkWWbIkCEsW7aMefPmERwcTMuWLfEZ8CZOQY0fKGLzfrBmJlPv4mL69etHo0aNCAkJKfa0FUF+hPAJBEXMH3/8wbBhw9i0aROhoaElbc4dURSF8PBwYmNjuXz5MjVq1KBatWqUL1/enpg9a9Ys3n33XSZMmGBvtTN37lx7GbDr16/z3nvvsWTJEsaNG2f/vEePHkyfPp2aNWvy448/MnXqVLtI3i2zZs3i+eefLzDbmzlzJm5ubkRFRTFnzhwSEhLQ6/Xs3buXrl274vzUN2idSmBNVVUZ7xfB+ZNH2L9/P4qiMGnSJJ5++mlcXFyK3x6BED6BoCjZt28fffv2ZfXq1bRu3bqkzbklWVlZLF68mMWLF3Ps2DE8PT3x9fXl0KFDtGjRggsXLqDVamnevDlPP/00PXv25OLFizz11FN4eHjQvn17Pv/8cyZMmMC0adPs6RmXLl3ijTfeYMeOHbz00ktkZGQwe/Zsateuzfnz59m3bx/Vq1e/J1vr1KlDWFhYge1BQUG0atWKatWq8ccff3DkyBFycnLw8vLC6OiL97CPSySBXFIVnm7iw/T+zVFVlT///JPPP/+c48ePs2jRIpo3b17sNpV1hPAJBEXEsWPH6NatGz///DPdunUraXNuiqIofPXVV7z33nu0bt2aMWPG0KJFCzw9PfPtp6oq0dHRbNu2jdmzZ5OUlMTs2bPp1KkTM2bMYNasWbzxxhts376dsLAwvv/+e9q0aWM//tixY0yZMoXw8HDGjh3L22+/jV6vp1evXkyfPp3g4OC7stdiseDg4IAsy/nSF7RaLQsXLuSJJ56wb/viiy946aWXUBQFvxGf4+BfvcQqp1gu7GVMfQemT59uL1SwevVqJk6cyGeffcbQoUNLxK6yihA+gaAICAsLo2PHjnzzzTf069evpM25KcnJyQwZMoTMzEwWLFhgX39LSEggMjKSqKgoKlWqRMWKFe1uzjz++OMPRo8ezcCBA/n00085fvw4Tz75JHXq1LGLWa9evfjoo4/yNXvdvn07/fv3x8nJiW+++YYzZ87wxRdf0LVrV9544407CuC5c+eoXbu2vQD0jXTt2jVfl3WLxUKlSpXIqtgEzy7jSrRcmDXyGMHxO7FYLGzYsAFnZ2cAzpw5Q6dOnfjpp5/o0aNHidlX1hArrAJBIXPlyhW6du3KRx99VGpFLysri969e1OrVi127NjBwYMHadWqFe7u7gQEBNC0aVP69+9Pv379qFOnDn5+fvTq1YulS5disVjo0qULJ06c4MiRIzz//POEhIRw5MgRAgMDmTp1Kp9++imyLFO3bl1WrVplX48LCAjAYDDwySef8Oqrr7Jjxw5WrFhB3bp1adu2LUOHDr2pGzOPvKostWvXBv7pqO7m5saOHTvIyMiw7xsZGYnS6mk8u4wrqtt41+Skp7B3717KlStH//79MZvNAPb7M3LkSJKTk0vYyrKDED6BoBCJiYmhc+fOvP766/YakqWR0aNHU716ddzd3fHw8GDkyJEkJSXRsGFDGjRogLu7O7IsEx0dTVpaGgkJCezbt4/nn3+e8uXLs3DhQsqVK8fatWvZu3cv33zzDQaDgU8//ZSlS5cydepUzGYz8+bNY/r06Tz++ONER0ezYsUKBgwYwNChQzlz5oz9/ydOnGDz5s00aNCAdu3a8cQTT3D27NkCdr/55ptAbo87wC6ozZs3x2azMWHCBGbOnMljo5+j/ed7cazRougrtNwBxWLCnBCByWRi3bp1JCYm5usV2KpVKwYOHMj06dNLzMayhnB1CgSFRGJiIu3atWP48OFMmTKlpM25JZs2bWLMmDFkZmaSlpaGTqezz0D+jaOjIzVq1KBGjRokJydz+PBhIDf3rnHjxvzxxx9ERUXRpk0bTp48Sfny5QHIyMjgpZde4o8//uC7775j//79fP311zg4OLBo0aJ8FVWysrL44osv+Pzzzxk0aBAvvvgiq1at4rPPPqN9+/b873//o27dumzYsIExY8YQExPDyJEjmT9/PgAajYYKFSpw9epVJEmi3dPTuVKuEaqsKRXdEBSrmWvfjEQxpgO565HOzs4cOXLEnuCfmJhIUFAQ165dE5GexYCY8Qn+M2RlZfH7778zbdo0Jk2aRJUqVXjjjTeYM2cOBw8exGg0FtnY6enpdO/enUcffbRUix7AE088QXR0NKmpqeh0Omw22y3zyoxGIydPnmT16tXs3LmTzMxMJEnCzc2NkydPUqNGDXx8fBg5cmS+BG1XV1fmzp3L119/zahRo0hLS2P9+vVcu3aNKVOmcPr0afu+zs7OTJs2jXPnzuHo6EizZs3IzMzk2LFjNGrUiI4dOzJo0CDefPNNJk6cCJBv3dBmsxEdHU3jxo3xaz2AS+6PgEZbKkRPVRSMlw7ZRQ9y7TWZTHz55Zf2bd7e3rRo0YL169eXhJllDiF8goeaY8eO0bt3b9zc3HBxceHRRx/lgw8+YM6cOURFRfHBBx8wceJEWrRogbOzM8HBwXz++eeFup6SnZ3No48+StOmTZkxY0ahnbewSU9Px9vbm9TUVBwcHBgzZgxmsxlJktDr9fTr18+eZ6aqKqqqkpmZSd++fVFVFUmScHBwQKPRkJ6ejtlsxmq1Ur9+fYYNG8by5csLBJz06tWLkydPcu3aNUaMGIFGo2HEiBF06NCBN954g5ycHPu+3t7ezJw5k6NHj3L16lVCQkLQ6/WcPXuW4OBgjhw5wq5duwBISUkpcH3Zjj4YWgxF1hmK9kbeA6rNTPr+Ffm3qSo2m40FCxbky0UcOHAgy5cvL24TyyRC+AQPJdu2baNy5cqEhoayYcMGvLy86NixI05OTvaIP1VV7Q/ivLf/8PBwXnzxRby9vWnSpAm//vrrXVf1vxlms5n+/fsTGBjI119/XSpmGTcjKysLb29vkpKSkCQJnU7H999/D4BOp+PRRx+lR48elCtXzl6dpVatWpQvX57ff/8dyE19yMnJITs7G61Wi9VqJTk5mcTERJ577jm8vb3Zt29fgbG9vLxYtmwZ06ZNw2azERcXx6FDhzhz5gwNGzZk9+7d+fYPDAxk/vz5bN26lW3bttGoUSMiIyMZOHCgPUVi8eLFBcZJ8AlF4dZVX4obxWIiZduPmOPC81WjMRgMWCwW0tPT2blzp31706ZNOX/+fAlYWvYQa3yChwqr1crAgQP57bffcHJyomHDhlSuXJnly5ffUsAkSSpQ5UOv12M2m/Hx8aFy5cr88ssv1KxZ855teeKJJ7BaraxYsaJEG8nejk2bNtGrV68CszHA/kC+V/F3c3MjPf2fNSutVkv37t2pV68e77777k2PsVgsODk50blzZxISEli4cCHnz5/n//7v/+jZsycff/xxPhdmHnv27KF///7o9Xq+++47nnnmGeLi4vLt4+pTgXKjvkWSS174VFVFtVlJ3/kjaYd/p06dOpw9e9b+PXR0dMRoNOLg4MDw4cP54YcfADh9+jRDhgzJ5wYWFA1ixid4aMjKyqJu3bps2rSJgIAA/Pz8OHDgAEuWLEFVVcqVK4ePj0+B4272bmc2m/H39ychIYELFy7QvHnze1pfURSFMWPGkJaWxtKlS0ul6GVlZdG2bVt69OiBoig4OOQWaJZlGVmWkSQJm812XzPe9PR02rVrh8FgwGq1kpOTw+bNm8nOzr7lMbIso9FoWLZsGWPGjKFt27ZERERw6tQptFotdevWZcWKFQV+X23atKFnz57069ePV155xZ6y4OXlZd/HuderIJXs4yzPPWy+fonri14h/Uju9ykvcCjPG2A0Gu2zviNHjpSYvWUZMeMTPBSYzWZatWrFmTNnCAwM5PLly2i1WrKzswkODiYuLo7U1FQg9wHr7e1NfHw8LVu25Nq1a1y9ehXgprMeyJ21GAwG1q9fb6/mfytUVWXy5MkcPnyYLVu22JORSxORkZE0bNgQVVVJS0vD0dERk8mEoig3nQFD7ix41KhRZGVl8euvv+bram61WoGCs2cnJyeys7Pt2/v168eqVatuaVfv3r0ZOnQoQ4cO5dKlS4wYMQKtVsv8+fO5du0aY8aMoUqterQd+RpxOTLpOVbcDFpO7t5I/5CKDBvwGP7+/phMJrvLVlejNV69XygxN3Pe/bBlJpG6cRZZl3PFrEqVKkRERNj3u/He+fr6Eh8fj6urq33mLGZ8xYeY8QkeCt555x3CwsIIDg7m0qVLaLVajEYjTZs25dy5c6SmpuLr68uZM2ew2Wxcv37dLlBmsxlFUewP/ZthtVrJzMykU6dOnDt37ra2vPnmm+zevZv169eXStFLSUmhfv36ODk52YNHOnTogJubG1BwBixJElWrVmXkyJEcPHiQc+fO8dNPP2E2m6lVqxZ9+/YlJSUFb2/vAsdmZ2cjy7I9BD9vPfBWDBw4kBUrcoM9goKC2LVrF7169aJJkyZsPx5Oy9fmcz74Sb7dG8mvx2PYfi6eX4/HEOFSl88vezFszi6a9xzM5MmTgdwXonKdxz7wPbsf8mZ4qsVE5onNxM57jqzLR+wRsnnfjbzZ9Y33zmKx2GfcecTGxpbaxsT/NYTwCUo94eHhfPHFF3h5eXHlyhWcnZ2xWCxUqFCBv/76C4Bnn32W69ev21v+GI1GatWqxaBBg7BYLHz33XdYrVYURbEHoej1evtDKk8QrVYrtWvXZubMmTe15ZNPPmH58uVs3rz5putRJY2qqrRs2RKr1YqHhwc6nQ5PT0+2bNlinxHnodfrCQoKolKlSowfP57r168TERGBk5MTY8eO5ZVXXuHSpUucPHmS33//nYSEBGbNmpXvHM7OziiKQnZ2No6OjpjNZj777LNb2vfYY4+xc+dOewUWjUbDK6+8wstzfuPHCDe2hl3Hhoykdch3nCJrsaoSZ1JlrgUPJGTQc/j7+6P1qoRscC7W2V6e4OUlxst6A851O1Bx0nx8+01DX74GspM7V11q4fPoy3j1m4ZPn5dxa9YP2TH35SPvheRGu1etWkWfPn2K7TrKMsLVKSj1vPDCCyxduhSj0UhWVhYGgwGj0YhGo8FsNjN48GAWL17MhQsXOHbsGCdPnuTjjz8GYMqUKUyePLnA2t/UqVP58MMPkSSJgIAAoqKi0Ov1lC9fnsjISCA3FP/GGcx3333Hhx9+yJ49ewgICCi+G3APzJkzh4kTJ9KkSRPeeustevbsSdu2bTlz5gxJSUn59l2wYIG9UWzVqlUBiI6O5uOvvmX5oUikcgEEVg8m+spFsmPC8U6/SHpCDAEBAfnWpvKiaPMChhwcHMjMzLzluuc777zDyZMnWblyJQCLDkTw/oYwjJabu6FvhqRYSNwyF6fabTFUrldqomntj1NVQbVZkXX/CLhiMYEkYbx0GOORX8mKOouHhwcpKSlYrVYqVKjAgQMHqFatWglZX3YQwico1SiKQkBAAPHx8Tz++OP89ttvODg4oNPpSE1NxWAwMGDAAH799Vf8/f2pV68ea9euRVVVRo8ezeXLlzl27Bje3t6MHTuW0aNH4+XlhdlsxtPTE41GY1+jylv/UxQFNzc30tLSAAgODkav13P58mU++eQTRo8ejV6vL8nbclNsNhuurq5oNBp+/PFHJkyYQHJyMlartYAIvfjii2zfvh0PDw927NgBwImrqXyzM5wd5+OxmE2g+ecab3xop+9fgTnu4i3t0Ov1zJo1i7Fjb+6CzMnJISQkhIkTJ9L28ScZ8v0BjJZ7D7BRLDkgycja0ve7uB2qoqDazKRun4dz7FFiY2P5+eef+fbbb/nzzz9L2rwygXB1Cko1Bw8exGazodPpiIqKws3NDaPRaA8IMBgMNGjQgCtXrnDx4kVOnTqFLMvEx8fzww8/sH37dpKTk1m8eDGnT5+mRo0azJkzB51Ox6BBg9DpdFitVjw9PbHZbHbR8/DwoHPnzgB06dKFyMhInnrqKZYtW0ZgYCBvvvlmvoLIpYENGzaQk5PDqFGjePbZZ/n5558B8rlt82ZGbdu25cSJE8THx1O+fHlcQ3ry6Jfb2Hw6FotNzSd6ALLOAVmrx6VWS6o+8yWTv7l1AEuzZs347rvvbvm5wWBg48aNfPzxx7wyfys51vvLo5Q0eiS59EXT3glJlpF1Bjw6jqZWr2dIS0vjtddeu62LWFC4iBmfoFQza9YsZs6ciaurK1evXiU9PT1fkEBERASBgYEALF++nMGDB/Pzzz8zfPjwm54vLCyMYcOGUbVqVV599VV7E1AHBwdMJhMODg54eXmRkJBAdna2XWgPHjxI06ZNATh79iwffvgh+/btY9GiRbRo0eK+ri0lJYXY2Fji4+Px8/OjcuXKDxQs06RJE44ePUr16tX54IMPaNWqFeXLl8fT0/OWlWqaNWuGT4t+nNbXRJV1dz1Wnqsx8/jGAp8tWrSIESNG2AM4bsWBY6cZsiQcNHc/7r/JW2t7WNHL4HvqFxpV9c5XwkxQtDx8r0uCMkdiYiLVqlXjypUrdtHTarU4OjraRQ/g+eefx9fXl+HDh2MymTh79iyxsbFER0dTq1YtvLy8iIqK4sknn2T58uWMGDEC+CckX6/XYzKZSEpKwmKxsHfvXruL8MbZXZ06dVi4cCFr1qzhscceY8GCBXfVS81ms7Fu3ToWLVrEkSNHSExMxNPTk6ioKKpWrcr169epXLkyzZo14+mnn6Z169b39FA/ceIEbm5uVK9enX79+nH9+nWAm4peuXLlsNlsfLdiE4O++xPVdm/vv6qso1ynpzHHXcQcF57vs//7v/+z5wfeLr/xeLpj7guH9e7X9v5rmG0KmZVb8tln40valDKFED5BqcdsNqPVavMVUlYUBScnJ/vP2dnZxMXFUadOHXx9fUlKSkJRFHQ6HRaLpcA5bwwvNxqN9p8lScLLy4uYmBgGDhzIkiVLePzxx3nzzTfp1KlTvnP07dsXf39/+vTpw++//06zZs1ueQ3Lli3j5ZdfxmQy2ctVKYpCZmYmgD3f6/r16xw7dowRI0bg6urKN998Q+vWre94jyIiIrBarWRnZzN16lQkSbpl1KlOp6Nt27asW7eOVxdsI8eiR7pFkerbIWn0uLUYSOKa/PVJb1ZH82aci0t/YNF7mGd7AEgy2eWqkWq04uVS8lVnygpijU/wUKAoCkaj0S5+eSHlGRkZfP755/YqHrGxsZhMJvt+VqsVjUaDm5sbOp0OZ2dn+ywk7xiNRoOqqnbXXF6o+cyZM+nVqxctW7bk4MGDN036btGiBbNnz2b06NE3FVij0cjQoUMZNWoU0dHRyLLMkCFDWLduHVlZWfbrSE5OZsOGDQwdOpS4uDgiIyNJS0ujX79+/O9//7vp2Dfy119/odFoUBTF7no1GAz5Xg7ysFgsHD58mHIdRnEu0+G+RA9y16ocg5rYQ/QhvxBt3779tsen51jva9z/GjKw8mh0SZtRphBrfIJSy969e3njjTfyFfL9N3kluFRVBYMrbZ56hWs5WrK1brh7+eDv40Utf1ceCShH2wAdKxfPZ8aMGXh6epKZmUl6ero9/0ySJHuFEsgty+Xq6sqyZcsYMmQImZmZN12DU1WVHj160KNHD55//nn7dqvVSps2bTh06BCurq4MGDCAlJQUwsLC7E1WGzduzCOPPEJoaCi9e/emcuXKqKrKjh07GD58OImJiVSqVIn+/fvbUzRuxrJlyxg6dCgeHh750hZq1arFhQsXCuzv99RnOJSvYb+H94tqtZKyeyEZf60Gct3GeW13fH197e7W2NhYjh49SkxMDNu2baNr165syajAgbj7LxD+X6Jvw4p8PrhhSZtRZhCuTkGpwmaz8eabbzJ79uy7cpmpqorGpxrurYfiWC2UK5KM5CGhA7KBy4nZXE7MZuPp63wI+Lq0wL3jM1S3XObKuVNkZ2fb+/TpdPmDLEwmE66urjg6Ot7WBkmSmDZtGhMnTswnfIMGDeLAgQO4urri4+ODh4cHISEhmM1m0tPTiY+P5/Dhwxw+fJh58+YxadIk3Nzc6N+/P19++SURERGMGDGCFStWsGTJEoKCghg3btxtbTEajVgsFnQ6HWlpaVy+fLnAPhVGz0LrU6VQ3ISSVouhcn278Hl5eWG1Wu1BOy+99BJLly7FZDIREhJCxYoVWblyJQaDgbNGL9RKrZB0DncY5b9Pek5Bb4Gg6BDCJyg1nDlzho4dO5KcnGwv8+Tu7k5mZiYGg8E+48rKyrIf49lhFC5NHgdJvqsHeXymGUP9bkRJElaPv5D3LMGQepWcnBwsFgtardbezqhLly4cO3bsrmxv1aoVycnJnDt3juDgYHvwi7u7OytXrsTR0ZFBgwYRExMD5CZ9Ozo6YjAY7HVCY2JiyMzM5KeffuKnn34iNDSUtWvXArBy5Upef/11Hn/8cfz8/G5qg16vx9XVle3bt9OtWze++OKLfPfErUp9nLs+i7ZchUJdG9P7V7f/Pzk5meDgYGJjY4Hczgrbt2+nZs2a9jHzOqcnZppo+t5mym5oyz+4Ge4/slVw74g1PkGpYOvWrTRo0ABvb29sNhuSJLF48WKSkpLo2bOnfVaWV2EEwPvRl3Fp2g9J1tzbg1ySUAFdtSb4Df8QXe2O+T622WyMGjWKkydPsmjRors6pSzL9O/fn1WrVhEVFcXIkSNxdHTk4sWLPP/887Ru3douepC7ZpmVlUV6ejrJycn2zxRFwdXVFUmSOHr0KAEBAVSpUoWqVauiKArvv//+TcfX6/U4Ojqi1+vttTDnzJljrwXp3nYEHoPeQ1fIogegcXK3r/NVq1aNI0eO2DtAJCYmUqtWrQJjHjx4kOoBfmRcOAhq2ZY+g1YmuLxrSZtRphBrfIIS5/jx4zRp0oTu3buzfv16/Pz8iIiIwMEh1wV27tw5ateuja+vL4mJiSiKgnvbEbi3GFAoD3HFaiFl6z85aZIkcfbsWWbMmMHvv//O//73PyZPnozJZLptxZbZs2dz5MgRNm3aRExMDM899xxfffWV/fN69eqRlpZGuXLlMBgMXLp0ibZt22KxWLh06RIXLlywC5UkSWi1WnvATJUqVbh69SouLi4kJSWh0WiIjo5m5cqVHDlyhMOHD9uLa0uSRHBwMGFhYXh5eeHQfjza6s2LLAIyrxVP3PzJODo6kpOTQ7Vq1bh06RIVK1YkOvqfwA2z2Uz79u3Zv38/Li4utO83gtN+nVHvI5fvYc/hy8NBK/Pnax3xchEu3+JCzPgEJYqqqnTv3p1GjRqxY8cOnJyciIqKsose/FMyLC0tDUVRMFSoiXvz/oX20JO1Osp1HmsP9qhVqxbBwcF8/vnnJCcn89lnn+Hu7n5XZcoOHjxojz7NE7169eqxaNEiYmNjCQoKIjU1lccee4xBgwaxc+dO0tLS6N69Oz/88ANTpkzBwcEhd+1So7FHp0ZERKAoCmazmZ9//pmBAwfSoEEDzpw5Q4sWLZgxYwYVKlTAy8uL0NBQ+wzSv9u4IhU9yBVavV8QznU7YDQa8fLywsnJCUmS7L3oAD788EMMBgP79+/H1dWVvn370imkOk8E69HJ9/b+rVhM/4mZoiRBh1o+QvSKGbHGJyhR3n77bZKTk2nbti0HDx5k7969BYJMbDYber3envPm1uHp3CdGISJptPg9+Slpe5eSdHErUVFRVK5cmcqVKxMVFcWYMWPueI7o6GguX75sd8tCbjugN998k379+uHv74+/vz89evTgk08+YezYsZw4cYJKlSphNptZs2YNYWFhBAUFcfbsWXJycnB0dLSLYFZWFkajkQkTJvDkk0/SuXNntm3bxsKFC/Pdn7yoTr1/DTICmhXbrMij/QiMYbvsrXU0Gg0mk4mwsDDatGlDUlISjo6OzJ07l8GDB+f7Pdc5EMH7G86RY7VxWx+UoqDYzKRs+xH3lgPRuvkW8VUVLQathontq995R0GhIlydghLF19eXTp06sXr1aipVqkR4eP4qIH/88Qe9e/e2zxxkJ3cCnv35vnPPbkfen4KUFInj3q/Zs2cPPXv25NChQyQkJODt7X3b4zt27MipU6dITEwEcvPo4uLiCA4Opnz58lSoUIGYmBiioqIICAjgxIkTeHt7k5SUdMc8vX9TsWJFe5UZyF3js1qt+fq7eQ94E6egxsUmfKqqEvP9eALLGdDpdFy8eNGeIiJJEoMHD2b+/Pn5ZvM3cjI6ldk7w9lxPgGzyZTP/alYTEiyTHb4X38XyQ7Hb+iHGCrXK5ZrKwocdTLTetZmePMqJW1KmUPM+AQlxuXLl+2CoihKgVD9d999lzfffDOfKLg1frTQZ3t55AmE6hWI2uc9Okydz/XK3fH2b8eK06mElosnOjyMtWvXotVqMZlMdOvWjRYtWlClShX++uuvfBGnv/zyC1OnTkWn0xEWFkZkZCQ2mw0nJyd7bl2eSN4MPz8/ex7cv7l27do/+Yvkpl7ciOzkjlPVkGJdA5MkKNfhadRji7hw4YK924W3tzcvv/wyr7322m2PbxDgwZzhjUnKNDH5q6WExaQRm5SGq4OWmLDDZJ3aimJMt+9vy04tysspQlQcdVqm9QwWoldCiBmfoMQYPXo0mzZtQpZlrl27Zm9mCrkNX19//XX7w9Pd3Z20tDQqPfM1sneVYrf1Xtry5LFjxw46duyIVqvlscceY82aNfZ1uRvXvnQ6HX5+fkRHR+Pr60tCQsI9zwAhd4aZV3XGrVk/PNqPRJKKdxnfkhJL3Pfj7L+3+vXr06xZM+bOnXtPInzt2jXq16/PI488wunTp/O9IOj9a+DRajCGao3hXiN6SxyVxoHl+F/vujQI8ChpY8osYsYnKDHOnj1LYGAg4eHhODg42EVv48aNTJ8+HUVRkCSJL7/8kjp16tC5c2f07t6URKGrvIaizjWa41qjKZUSD9GlqoGLFy+yd+/eAoniBoOBPn364O/vj5eXF7/++ivly5fPlxfYtm1bli9fXiAvT1VVfvzxRyZPnozZbL5pKbQb8fX1JT4+Pl/VGb1/jWIXPQBJZ0BRFHtZuIiICHbv3n3P4lSxYkVCQkJITEzMJ3ouDXvg2fkZkHVF4u4uajSSRJc6/kL0ShghfIISxWKx4Ovra3cR5uTkMHr0aHsJsd27d9OsWTMaNmyILMvkGHPQ6lxKzmBZRkEmvmIrqnSuzfTpVVBVleDg4HylwXJycuzCbbPZUFU1X1j/R1/Oxu2RrszYGUN6ThRuBi3B/m4MbBSAl4sDTz/9NJs2bWLNmjV3NCk+Ph4gn/DpvCsX4kXfPaolx76up9frGTFixC2LZd+Jrl278vrrr9t/dmnYg/I9J2F+iIM5bSqciy1dfRzLIkL4BKWKuXPnEhcXB8B3331H69atWbp0KZ6enqiqii0rBa3b7YNMigOjRWHqyiNMfqo/mrRou/jc2A3CbDZjNpsxmUzYbDYcHR2xuQcQ+uTrfB/vj3XzuXwRjLIUw2d/nKdDsC+VMsI4f/483t7e9nPfCyVSBkxVwZYrvh4eHmRkZOQr4XYv7NmzJ5/o6f1r5LZBeohFLw9Rnqzkefh8BYL/JHlrWjNm5La4MRgMPPPMM0Bug9nq1asjSRLGS4fua/2rKJA0eqR63fIJ083cknndIjS12uP/5MfEavyw2NQCYfuKCmabyuYz1/n+iit9XvrkvkQPQLWa77xTIaMCGndfZFmmUaNG+Pj4UL36vYfqnzt3jrZt29p/lmWZyt2fQdLcOY/yYUCUJyt5hPAJSgw3NzeSk5NxcHDAZrOxZs0a+2xv7NixSJJEZmYm27Zt49SpUzi4e/8d0VlKhO8mbXluhXfzvnh2HY90lxVKJI2OxecsuITcucHtzbAkRt3XcQ+CJElIWj0fzF3CoUOH6NChwz2fIzY2ltq1a9t/LleuHGP/70WsvsEP5ZrevxHlyUoHwtUpKDEmTJjAgAEDUBQFVVWZPn06siyjKAoTJkwA4PDhwwS27sv1oC74dnZHpZQ1H1VVnOt3tncnuBl6/xoYWj+FJN9jo1FJxrPLeMyxBbuc3wlz7AWcarUs9gAXSZKYfSSd/v3759uemGli5ZFozsWlk55jLbCmCbld7itX/mdtsmnTpuh0OvTBbbGFW5Dv9f6VQlRgQGhASZtR5hHCJygxHn/8cTQaDdnZ2dStW5fTp0/bw+AdHBxYefgqU//Iwlx/QK5rQpIoRZIH5EZ76n2q3HYf775T4H4FSJLx7DqRuIUv3tNhmae24dFuBCVxw7Su3rRu1Jq9e/dy4moq3+wMZ9eFBIB8HdcN2jg+33qBJhWdaOgQz+tjnrAn4JcvX56WLVsyb948Ug6FIfvWLf4LKWREebLSw8PvOxA8tEiSRPv27TGZTHh5eeWrOvLutqu8vOpkbjCDJJWuWd6/6N6nL7Vq1brpZ65N+6F187lv+yVJQl++xl25U29EyU7DePloiayH5rlzox2rMuT7A/wRdh2TVcknegA5f2/bcyWdr87IONbvav8sNjaWr776ivT0dBLSMovV/qJClCcrPYgZn6BEWbRoEeXLl2f//v32iEivR19m+6WHJ+TbUaPeNGRf718Dj3ZPFopouzXrR+rO+Tf9THZyx6V+J3Q+VZAdnFFMWVgSIsg49BuO1UJBKmYXoQRhVm8uOnuiWu7cYV2SZSTZgGfX8Xg3602bQFc0kX+xYtFPZGVloZiy7niO0k5uebJgkb9XShCVWwQlzttvv81bb72Fg4MD2uqt8Or9Qqme4eXDZiF51883XePz7jsVp5otCuVabKZsoj8flG+b3r8Gbi0G4hTUGFVV7Un28E+lGWtaPDrPisV6Px21EqokkWO5v9wD5e+I1LwqOYbA+vh1Gv3QpjJoZYm3Hq0jypOVIoSrU1DivPnmm3Ts2BGTyYRH+xElbc49oagqWae2FihgLTu5F2qBaFnviEvDfyI8XRr2wG/YDJxqNEfS6vOJHuSuPcpaPQ5exR9IkZmeRs5dzPRuhazVI2v1ONVojt+wGagqmMzFn57xwKgqoPJBB08GhpQvaWsENyCET1AqeO+99/AOqofGxfOhme2pikLOpcMoxvQCxaZd6ne6/4CWmyBJEuW6jEPvXx2Xhj0o13kMss5wxxD/koiClQ3OFEZUjSTLyDoDHq2HYk68iqo8XFM+FUhc9xnjB/XEw8ODnj17smHDBnsAl6DkEMInKBUEBgaibzq41EVt3g5JteJ45eZ1KHU+VZA0hbuELskavB+fgmfnscja0pnMLQFaTeGuKcp6AzrvSqjKw1PxRFVVss7uIuvMDlJSUlBVFXd3d9544w0aN27M2bNnS9rEMo0QPkGpoEKFChh8qxZZy6HCRlVVkLWoXV6iwsT5eLQfibPXP8Wmte7+hT6mJElo3X2hkAW1MJGk3HqUhX5eWYslMRrFnFP4Jy9EVFUFVcUnO5K0jV/Yt5tMJrZs2YKfnx/PPPMMbdu2ZcmSJSVnaBmn9P4FCcoceicXjKU81EpV1dwKJZIESMgaGdnVC/dm/VGb9cclLpyUzbPR+QQWyfil2Q0soeKilUgvgomZJMvovCuRuutnPNoOyy0XV4yVXPJ+77f7HMCWmUTqzgWkRh+ldu3anD59Gi8vLxITE0lOTubAgQPodDq2bt1K9+7dcXV1pXfv3sV1GYK/ETM+QanBw9WppE2wUzDY+e/u7Ld6+P0thg7+1fF/8hM0BseiNbAUYrOYiDt3qOgGUFWQJK4vfp3si/tRFFvx5SkqCqbrl1FM2dgsOSg2K4rVgmIyYkm9jjH8EJlLXyVm9iiyzuwgPT2dFi1aoNfrSUxMpGvX3BzFlJQUdu7cybp161i7di0jR44kMjKyeK5BYEekMwiKFYvFwtmzZzl48CDh4eFkZWVRvnx56tevz+JoN/6KzqJEyo3cBJsxA43B5b7cr3eaIfznsJrRnVlHQkoGbq2eKBBlWlhkntpO0vrPAJAd3fB/4j20PlWBop0N35hOIknSLQVXo9HYS/A5OTmxbt06OnXqRGhoKOHh4aSnp6PRaNBoNFy4cIGFCxdy7NgxVq++dck7QeEjXJ2CIufq1atMmTKFdevWkZ6eftN95L9dWX6jvi41y3zyfYoelG6XZGGiqiqq1UTq9nlkHNuA7OSOe+uhRTZebsRoLooxnZh5z+Ec0hOvruMpqhcmVVWxpf8TtVutWjW+/fZbnnzySbKzszEajfZeiHnVh1q3zi3Z9sMPP1C3bl2OHj3Ka6+9xkcffYSrqyvp6em8+eabzJkzh6CgIM6ePUudOnWKxH5BQYSrU1BkpKam0qpVKypXrszixYtJT09HlmXkv9dmNBqNvVO3oijYkq9hy0wuPW2Hyoh43Q/q3zlq2Rf+5Pri13mmfW7JNiU7jexLh4ss9UDJKVjFJfv4RkyXDkERpgmY/1xAgwYNkCSJS5cu8d5779G2bVsGDBiAr68vzs7O9u81wKlTp/D29mbp0qX873//A2D9+vVA7t+Fi4sLS5cuxcHBgUGDBrFixYois11QECF8giJh+/bt+Pj48OeffwK5Iufp6Um5cuXseUw2my1f13Cr1UrqzgUlYq/gzqiqmvtPsUHsWbpkbkd/cAHmuHA+//xz+37p+1eg2go/4VyxmDAnRNzUrrQ/l6HaiiCqRlVRbWY+fnksp06dYuHCheh0Onbv3k3VqlW5fPkyvXr1olq1ari6/tNuKC0tjQ4dOqCqKitWrECSJBITE/H09ASgSZMmmEwmdu7cycCBA4XwFTNC+ASFzp49e+jUqZNd1Nzd3enatSsmk4mkpKTbHpt1ZjtZZ3eVmllfWSVP5BSLCQ0KNlM2lsSrxP38Mtdm9iNn00x+mfcdaWlpBY41x10kZduPhZ96IElkndp6048s1y+RvO0HFEvhjqkCHtEHqVmzJrVq1eLFF19k7dq1AHz++eecOHGC119/HZvNhr9//hSW3bt3A7B582YkScLHxwfz3xVosrOz0Wg0zJ8/n+bNmxMZGUlqamqh2i64NUL4BIXK9evX7d2zJUliyJAhKIrCxo0bycq6u2LDSes+xZqReOcdBYVO7oxOISfyJHELXuDqzP5EftKX2K+eIPbHiZhjzqMoCvHx8Tg7O6O5RbJ65vGNpGz/EcWSUyhuT1VRMF46hGIsuEYsSRI2m43sk5t5+/FHcNRpCmedWFUxJ0TSxCkRRVHw8fHhrbfe4v3336dPnz5YLBaqVKnCyZMnWb58OQkJCfncnaGhoUiSREZGbsF1f39/srKy7C50WZY5efJk7vq2TicquhQjQvgEhUrdurl909zd3alevTrLli2z/+HfC6aoU4VtmuAukCSJ7PN7iV86jUrOf+em2Wz5WkblzcYTEhJuGawEueJnTz2wmu3Fp+8X44WDBWqi5tnj6emJh4cH6794nV+eaYq/JS53TIvpvsZSVRVnycz1n/6PVatWMWvWLBRFYdy4cRiNRrp37w7A2bNnUVWVunXr8tFHH9nXrAG2bt2KwWAActewDQaD/WdJktBoNPlc/YLiQ0R1CgqNlStXkpSUhJubG+np6Td1g90tloQIFIupyMLiBbdG0ube80uXLt3081u1Qco8uRWtLcfuzgMwx4WTuGYGsqMbzvU741yrFXr/6kj3WtZMkvDqNZm0A6tgd/51YJ1OxwsvvMDBgwdJTU2lc0gNkpOT7WPqfaqg96uKzrsy0p26uKsqKpB98S/GNTIwHZg+fTrr1q3j2LFjbNp/As++0/nsYjYB/7cIxZLDnDCZ+i0zePrpp3n99dft7nyLxYK7uztGoxEnJyd0Op1w4ZcSRB6foNDQ6XRYrVZ7Xz2tVntXb7SSJNmPzXP3yE7uBEz8CamU1qT8L3NjrtyN6P1r4NZ6KE5VQ0CS81VOUW1WUBWy/24lZI67eMvze/acnFvEm3uPnM2rgZm07tN82x0cHKhXrx4nTpzAarXi6+tLfHx8vn3+OHKelWfT2XjiaoE2Tnlrmi7ZMVxa+SnmuHBeeuklZi1cSfNxH5IkuZJhsuVetwT5Uif+TqyXAG3CBS7/8pbdJevn58f169cJDAykRYsWLF26FGdnZ0JCQjh06BC1atXiyJEjuLu7Exsbi5vbvTUcFtwfYsYneGBsNhtPPPEEVqsVT09PkpOT8ff3Jy4u7rbH6XQ6WrduzZ9//omTkxM5ObmzhQoVKnD16lWyLx3ObbtThKWp8t77ROpCLreKnHRvOwL35v3+fvAXvFd5BbmdarbAMagxKVu/J/P4xnz7aL0q4TfsYzSOLg/Ukd65Tjs0zuVI/O0jFGM6lSpV4vr16xw5cgQAZ2fnAqI3efJkOofWpHMoGCZ1Rx/cLncm6OKONTudnOtXMMQeJz7+GmaTCee6HVlmboj/6PZEWgCJW88W/74WFbB41yDgucWoVhPm6xFYU2NwS4gg+dJ++0udoig0bdqUffv24e/vz44dO6hXr54QvWJECJ/ggVBVlfHjx7NlyxYAkpOTkSSJhISEAvs6OzvbA1y0Wi1RUVF88MEHpKSkcPz4cQwGAw0bNkSr1fLZZ5/xztcLSLWFIsmGIr0Gc0IkDr5VinSMh4abRE56PfoyznXa3ZVYSZKEpNXj2WUskLvO51y3Ix7tR6Bx8bTv82AmShgCGxDw7EKMV45yfe8SzGYzer2eMWPG8M033xQ4xtHxnxJydasHcvTvxsEajYaqVauSFJNAlxc+ZNeJi3hXDUXj5H5/tv4985N0BgwBwRAQnLu22WY42y8dRu9fA2PcRYxGI5Ik0adPH5YvX86gQYPueGpB4SFcnYIH4uuvv2b+/Pl2FxOAk5MT2dnZ+fZ79NFH2bp1K0ajEYAvv/ySSZMm4erqitls5tNPP2X69Om4u7tz5coV9Ho9NpsN7+Z9cW07AllfBOKnqliSojGf34Vj04Flfj1RVVXMCRHEzfs/+zb3tiNwbzHgvsRKtVowRp7EsVooUDSz6txuCAppB1ZTLmoXEREReHp6kpGRgcXyT16fi4sLgwcP5vjx45w+fRqTKTfoRe9fA98OTyJXrIcsy6hy0c0FVEVBtZlJ2fajfTa8YcMGnnzySY4cOUJgYNEUNhcURER1Cu6buLg43n77bT799FN71J9Wq80neo6Ojjg6OtKkSRO76AEMHTqUKVOmYDQa+fbbb/nwww9ZtmwZNWvWZO7cuUDu2/jXkwcXalh8Hqqq4qa1ET13HM/2aiJcneQKk3JDGonevwbuzfvf/73RaHGsFnpDN4vCR5IkJFmDe4sBZNQfAEDLli3ziR5AZmYmx44d46uvvrIH7eR1sZcrNUTS6otU9OCfxrrlOj6NS8MeAPTq1YsGDRoI0StmxIxPcN+8/vrrGI1Ghg8fTvPmzVEUhYoVK3Lt2jX7PpIk8fzzz7NgwQJSUlIAqFKlCmfOnMHDwwNvb298fX35v//7P55++mlOnTpFly5duHbtGhqNBovFgl6vR+9fHbcWA3EMagL/DkzIE8S/gw7upn1M80ouLJvU3r69+SvziNX4ljoBLO41yOyLB0lY9S4APgPexDGocam7J7dCVVUMV/ZwYfnH9m2yLKMoCnXr1uXKlSu0bNmStLQ0wqzelOs0psQa+iqWHK4vfh1zXDgA77zzDm+88UaJ2FIWEcInuC9UVSUoKIhVq1ZhtVpp1qwZqqri6Ohon9l5e3uTmJjI2LFjSUpKYtWqVUBuYm+jRo1YunQpXl5eVKtWja1bt9ofsI0aNeLTTz+lQ4cOQO7DK+9remOIumxwRjVloaZeI+XIRrTuvri1GIhTUBNUSUa+oWGrqqpIqGRHnuaHST3o07phvus5fCWB/nMOFGuPt9th7+9mzEBjcL5zGH4hYUlPwBR1Cjk7GcfGfYtt3MJCVWzELXzJLig3o98zL3DcpyM2teQEXVUUsi/uJ3HNDPu2559/ns8++yxfErygaBDCJ7gvjhw5wuDBg7l48SKHDx+madOmBfbJy13SaDRs2LCB5s2bo/WqROBjkzE7eqJxcsdms+Hh4kSTaj40qeJJp2Bfpn+7jKsZNoIbhOJm0LLgyxmkH99806odrq6u1KxZ0x7RB6B39cShdnv0PlXQOrnipIXES6dwTTiNq17i3LlzWK1Wjh49ysKFCzl16hSHDh3Ct+NI1Ho9S9UMR7GYkLQ67jSTLWxUmxVkTam6F3eDqqpkX/oL85YvycrKypd4v3LlSgYNGoTfiC/Q+VYt8WtTrGaufTMy3/f6kUce4ejRo0L8ihghfIL74rPPPuPy5ct8/fXXHDp0yD7juxGdToeHhwdBQUG8NGs5kxfsRONc7m+P5K0fOhJ5bV9zUSwmkCSMN8kR0+v1eHl5ERsba9/m7OyM0WhEURQ2b97M6dOnefnll9HpdEiShJ+fH1FRUUDubNJgMJCdnY2DgwM+E39G1juW+ENRcP+oNitvNTQzYfSTWK1WHB0dyczMRKPRUKlJN5R2E0rF71exmEjds5iMv/L34nNxcSEmJiZf0WtB4SJeKwT3hc1ms4eIly9f/qb7WK1WsrOz0XaezMurTuaKniTdscfdv9/EZJ0DslaPU80W+D/1KX5Pfopbs37Ijm507NiRoKCgfPtnZWXh7p4bjl6vXj1iY2PRarW4uLhgMpmIioqiVatWXLt2DZvNRlZWFmazmUceeYSsXT/d3w0RlB4kmee/XIrJZMJms5GZmQnkfmctoaUnbUDWOaD3qVJge2ZmJm5ubrzwwguifmcRIYRP8MAEBATYaxDeiKqquA14l6vW3OahhZG/JckaDBWDcW/zJBUnzSeyclcup9oK7JvnKvLz82Pnzp1YLBZSUlKoWrUqUVFRpKen89NP/4jcW2+9hdVqJeXoRnLO7xGlpR5iJFm+qaAYqoSgcfUqFbO9PG5srJtHnn1ffPEFOp2Ojz/+uMA+ggdDCJ+gUKhQoUKBbZ49J6Pzr0FRdMaWtTpkrZ4sj+roe7xqDw/PI68w9rVr1zh8+DAAhw8fJiUlBV9fXzZv3sy8efNYtmwZO3bsYM6cORw9ehS9Xk+FuP2Yr1+2l7ESPHzcTFDKdXq6BCy5PTdrrKvX6+1dLyRJ4rXXXiMkJKRAiobg/hHCJ7gvNBpNvry8Z599Nt/nev8auNTvVORv15Iso2p0+XKj4J8ZX0hICAA1a9YkNDSU+vXrs2XLFry9vZk6dSpjxoyhR48eJCcno/evgddjr5Pc+gV0XgH58s+EAD5c/FtQZCd3dF6VStVs71bl4UwmE8HBwciyjM1mw8nJiePHj9OwYUPh+iwkRHCL4L64MapTkiT7ukTe18nvqZk4lK9ZrA+aG3OjKlSrRaZPXXsHAR93F/7vqf5c27OStSt+ITExEW9vby5cuEBOTg5+rfrj1OpJbMi3TWkQtT1LP6rNSkvnRJa8+c8Mb86uS3y0KQy1CLwP94tqNRP9r6jOG3FxcSEzM5N69epx5coVsrKy6N+/PytXrixmS/97iFqdgvsiNDQURVE4fvw4ISEhuLi40KJFC/78809kJ/diFz0AWavHo8MolJwstEGNcb8h0T0L+HDjWVS1NpYmYyl3ZTtxp/eSk5ODS8Me6Js/gSJr7/hY/GcGqJDnwhUiWLqQUPn8+SH5toXFpJUq0ZMA+XrYLUVPlmUyMzPtxR5++eUXRo4cyerVqzly5AiNGjUqXoP/YwhXp+C+kCSJQYMGsWDBP73R5s+fjyRJePWYXEJGyRgqN8jt6KDVF6y9KclIsgaddyCZTUYh95yGc92OlOv0NLLu3mqBSn93KRCiV7pQVZV6fgZ83Rw5evQor732GvXr12fp6rUlbVo+DDoNS94YdcsO9jVr1gRg6tSpqKpKWFgY3bp1Q1VVhg8fXpym/icRrk7BfRMXF0f9+vXZvXs3tWvXBqDn8zM4Y6hXaiqg3I7cAsd/uy4fAnsFd0ZVVSRVwRj+F2l/53yqqopX7xdxqdexpM0DwEEr8UavOgxvXoXAwEB7TumNjBkzhu+//55atWpx/vx5KleuzO7du6lWrRoAsbGx+Pr6Frfp/xnEX7vgvvH39+d///sfTz31FJmZmZy4mspl94YPjYjkpkfcfk1P8HAhSRLIGgzVm+E79AOcH+kOgCUhIrcQQgmSFyWcnZrE9bDcSOMbK8vcyC+//IIkSZw/fx7Ize0zGo1Ur14dRVFYuHBhsdn9X0TM+AQPhKqqjBkzhsjISCoPe4/tFxIR3yhBaUEx55Cy/UesqXH4Dnq7VLzk5D1y67uZ2fjGwFtGamo0Grsw9u7dm+bNm6PRaJgyZQoNGzbk2LFjxWbzf42S/xYIHmokSWLOnDn4B9Zg29lYIXqCUoWsN1Cu81h8Brxxx4pBxUXe2vCpdD0V/m8xev8aN91PVVX7GqCfnx/Xr1+3F27/d7/LB+Xw4cNMnTqV7t274+/vb7fRxcWFRo0a8cwzz7BgwYJ8KUwPM0L4BA+MVqul1ZMvodWKIGFB6UPSaJG1+lIXiCRJErLBBf+nZuLSsAeOjvlrxFasWNE+48tr8lzYf2MbN26kefPmDBw4EI1Gw6RJkzh8+DBmsxmr1UpMTAzffPMNjRo1Yvny5VSuXJkpU6aQlVUw8f5hQgifoFA4F5eOtQTbvAgEt6K0Cd6N5K0ze3abiFvv1yhXrpz9M61Wa7d93bp1pKWlFdq4RqORiRMnMmHCBF5//XXCw8N59913efTRRwkICLB3VXFzc6N58+ZMmDCB9evXc/DgQa5evUpoaGi+jigPG+IVXVAopOdYS9oEgaBIKI6iBZIkYQhqjOz+LvwwCYDIyEhUVcXT05OKFSvaZ1wPitlspm/fvjg7O3P8+HE8PDzu+thq1aqxaNEili5dSo8ePfj9999v2pKstCOET1AouBnEV0nw30JVVVSbDVP0GQAcAmrDDUURigKdV2UqTFpA3Lz/sye3N2jQALPZzIQJE/j222+B3K4j/7b10KFDHDx4kKNHjxIZGcmOHTto27YtFStWJCQkhMaNG9OmTRvGjBmDg4MDy5Ytu2vXqaqq7Nu3j/Xr17Nnzx7Cw8NJSEigWbNmVKhQgaZNm9KmTRt69epFrVq1CvemFAEiqlNQKMzZdYnPt17AZBW1BAX/DVRVxZJ0ldgfJgIgO7rhEtobj9ZPFOnsL++RbI4LJ2XLt/hosklNTeXkyZO0atWKuLg4fHx8WLlyJc2bN2fevHnMmjULq9VK+/btCQkJISgoiLS0NMqVK8fVq1c5evQo+/btIyoqCkVROHv27F3lAaqqymeffcbbb79NZmZmgZq1eTVx8wRUo9EQGhrK+++/T7t27Qr5zhQeQvgEhUJipolWH20Xwif4T6EqNqJnPWmffbm3Hop7q6IVPvvYqgqqgnHvAsxnthEWFkaFChUwGAwsXbqUZ555Bp1OR506dZg6dSodOnTIZ5eqqphMubmLsbGxxMfH07dvX6pWrUpcXByLFi0iNDSUixcvEhERwZYtW/jrr7+4du0asbGxSJKEzWazi11ej8vMzExkWb5pt4i8Hp2SJDF69Gg+/fRTHByKboZ8vwj/lKBQ8HZxoF1NH/4Iuy5SGgT/KZzrd7Z3SXes3rTYgmVymzZrcGw9AsWm2FMZnn32Wfz8/FAUBQ8PD9LT06lcuTJJSUn8/PPP7N+/nwMHDnD16lX7uWRZtucLpqamAtCqVSv7OHfT9eHG4JpbJd7npTs4ODjwww8/cPz4cbZt24Zer7/3G1CEiKhOQaExqX11DNqb1x4UCB5GJFmTr6mtxt2vRGxwbTeKK2k2XFxcGDp0KI8//jg///wzZ86coU+fPtSrV4/AwED27NnDuXPnyM7OZurUqezdu5f09HSuXbtGjx498PHxwWQy4ezsjIODA6qqoijKfadJ3PgSUKFCBZydc/sgmkwmcnJyOHDgAIMHDy51bb2Eq1NQqCw6EMH7G8IwWoTLU/DfwJqRSPb5P3Gu1QrZxbNE0iNUVSX7wp9UvLwBBwcHRo0axfjx41m/fj3PPPMMPXv2ZMOGDSQnJ/Pmm2/y0ksv5XMx7tixgy5duvDUU0/Rvn17RowYke/8kiTh7OxMaGgou3fvRpKkO4qVk5MTFSpU4OrVq3aXql6vx9/fP1/9UVmWWbRoEU888UQh3pEHQ8z4BIXK8OZVmNazNo46TWkplCEQPBBaV29cGz2KpoRED/4WphrNMEt6rl27xtixY1m9ejVjxoxh+fLltG7dGr1ez8CBA5kzZw5//vmn/dh9+/YxaNAgHBwccHZ2ZsSIEfbr0Gg0lC9fnhdffJHBgwezZ88eIH/jZXd3d7RaLRqNho8//pjmzZsDudVjAgMDycnJ4fHHH6dVq1aoqkp0dDS1a9fGy8sLAEVRGDFiRKmq+iKET1DoDG9ehWVjm9Otjh8OWhmDVnzNBA83uettJf0mJ5PpU5ecnBy++OIL+4zParUydepUtmzZwqJFi5g7dy7Dhg3j9ddf5/Lly/Tr14958+ZhNpuZPXu2fTbXrFkzrly5gpeXF7NmzWLfvn0FZnnTpk3DycnJnvf3/vvvs3btWr777jsAtm3bxqxZs3B1dWXs2LFcunSJ+vXrc+HCBRRFwWDIbfdlsViYNGlSsd+xWyFcnYIiJSnTxMqj0ZyLzSA9x4JNUQmPzyA6NaekTRM8ZCgWE8iav2crUqkoOF3cZJ7ezjs9gnjuueeYNWsWTz/9NA0aNODjjz+mT58+9v3i4+N5+umn2bt3L0OGDCE5OZkVK1bYhU2j0djX925FnkDKssxjjz1G3759GT9+PM2bN2fbtm188MEHTJs2DVmWGTJkCN26deOpp55CURQGDBjAunXrcHd3JykpyT5mREQEAQEBRXuT7gIhfIISISnTxML9EWw7F098uolsiw2NBJ7OemqXd8PXzYGwmHT+ikjh319QWQJFfGvLFKqqYMtKw3T1NLasZDSelXCqGlKqy5EVBY7J4ST/+gGurq74+PgwfPhw1q9fz4YNGwrse/ToUTp37kxOTg46nY709Jt3e78Vefc2r1i1u7s75cqV4+TJk+zcuZN27dpRpUoVIiMjqVOnDq+99hpPPfUUkDvDa9u2LX/99ReAXWDHjx9vT8IvSYTwCUo1/54xuhl0VPJ0ZM6uy5htIoCmLKIqCqqqoBgz0Dh7lCnxq+2YwdFvnqd+/foYDAaOHz/OnDlzaNKkCUePHiUiIoLff/+dnj17sm3bNpKTk9m1a9ddn192cselfid0PlWQHZyRrSZIu4bu6hFirlzgkUce4eTJk1SsWJHIyEj2799Py5YtkSSJ3bt307p1a/u5IiMjqVWrFmaz2T7TdHZ2JiMjo8R/ZyKPT1Cq8XJxYFzboHzbMjMz2XTgFBeyHEAqe+6uso4ky0jISM4eJW1K8aKquFjSsFqtREdH07dvXzZs2MCoUaOw2WyEhoZSvXp19u7dS0BAAGvXrr1lvt2/0fvXwK3FQJyCGue6N28oy6ZYTEiN+1Mj9QrnN/1AjRo1OHfuHKtWraJfv37odDosFgsNGjTId87AwEAmTZrE559/bt+WlZXFzp077TmJJYV4aggeGoxGI1OmTCEwMBApbAs6uey86QsKktczrqw4rSRUrBf30rNnT5o0acKHH36Im5sbJpOJP/74g61btzJnzhzS0tLIyMi4pehpNBq6devGpUuXUBSFn/dfwX/YhzjVaI6k1ReoRSrrHJC0eoyeNfAbOoMYpyAkSWLEiBGkpKRQvXp1AGbPnl1grJEjR9rLmgH4+Pjw448/FuJduT+Eq1PwUHD69GmGDBlCnTp1+OSTTwgMDBQ5gwI7d9tBQVXVXMGEAmvHpR1DcjjXl79FWloaDg4OyLJMdnY2AQEBxMTEUKlSJZo0aZLrEdm06abnkGUZDw8PGjVqRHx8PMPenMO8Yyn39Dekxcb1TXPQXPmTvn37smzZMoxGI02bNuXgwYP59lVVFTc3NzIzMwHsBazPnTt3n3ehcBDCJyj1hIWF0aFDB2bMmMHIkSPzPdwWHYjgvQ1h5Jitwu1ZxrnxUfZvASyO1kJFiaoqGHbPIvrEPoKCglizZg3fffedvT3QiRMnOHnyJEajscA6nWLKwpIQQebJrfaaowBuVerj3v9NZJ3hnu1RbBZyIo4jAS56mcTwE1RR4jjx174C+zZo0IBTp04BEBoaSmRkJImJifd9LwoDIXyCUk1SUhKhoaG8++679oixf3MyOpXPtpxn54WEUpBrJShpVFVFAhSbFUmTG8bwsAoeAKqK5eR60vcsIjMzE41GQ0BAAJGRkTg6OtoTw++0TockYbx0mPT9KzDHXcS779Rc9+Z9pIXkzZztP9usSEC3BhWZ2K46j1TysH8WGBhor+TSuHFjrly5UuLCJ16RBaWaadOm0adPn1uKHkCDAA+aB3kjS+IdTvBPsrmk0drXAR9aVJWssN2k7FxATk5u7mvDhg05d+4cEydOtIueS8Me+A2bcdt1Olmrx6lGc/yGzcC1aT+cghrfdy7kv++ppNGCRsvmM9cZNHc/iw5EALk1O69du2bfz2QylYrfh4jqFJRawsLC+PXXX+9qPeBcXDqKeI8T3EBpeMDeN6qKqqqkHVyJ5dDKfOW+jhw5Ym//A7miV67T03flspRkGUk2UK79CFRFoSjukMmq8PbvZwEol3Qmnws6IiLinjq+FxVC+ASlliVLljBs2LC7+kNJz7EWvUECQZGjoioqxitHSN+3BHPsRXx9fcnOzsbZ2Rmj0Ziv2orev8Zdi96NSLIGSS66TioWm8rbv59Fu+Mru71OTk5Uq1atVLQoEq/IglKJqqqsWLGCgQMH3na/DRs20KlTJzb+tqqYLHswcpuLCpes4CYoNjwyIrk+ZxTJq9+jkpNCpUqVSE1NtTeMrVKlSr6ZrEerwUiakheSm2GxKaQE/tOF3dvbG3d3d/r161eCVuUihE9QKgkPDyc9PZ1mzZrl275792569eqFp2dupfxevXrx559/4kE2qtVcQtbeHtVmQ0mJwRi2i6yzu7FmpZSZ3DPB7TFoZbQyWK8cZlJNI7ZdczClJ+Hi4sKLL77IlStX6NKlCxcuXKBTp06EhobavzuykzuO1RqV4pqlEg6VGyA7ugGg0+kICwu748tscSBcnYJSSUZGBn5+fhw/fpx3332XPXv2kJSUhKqq6PV6atasyWuvvcYLL7yAXq8nMdNEo7cL1iu8HxSLKdcNJEmF4g6SNBqyos+RtP4z+zZ9hWD8h39cih9agqKkSWA5Aso54WxN5bvXR7NmyUJmzZpFREQEWq2Wffv2UbduXQAqV66Mv78/MTExaDT/fB+rdxmGUVEoQo9loeDddyrZa9+jX79+/PnnnwQFBd35oCJGCJ+gVHH+/HneeecdNm3aRHJyMqGhoeh0OqpWrcqECRN49dVXcXFxKXCct4sD5sjj6KveX6SaqqrYslLIiTiONTESXcIFnPq+TWE9VbROrvl+NsecI/vykdzIuoc5COM/SpEVQlcU3utbn+HNq2CxWAgJCWHWJx+QnJzMwYMHyczMZMaMGXbRA0hJSSEuLo7u3buzcuXKXPtkmSydB9p/RW+WNiRJwlCpLiOnf8iCz9/l999/L2mTAOHqFJQwUVFRPPPMMwQEBKDRaAgODmb58uUYDAZ8fX1JSkrCbDbbBfFmopdH+v4VqLb7c3eqVhPZG2dSM2k/UZvncXDLr0hxYfd7WQV4ov/jKIqCu7s7GmcP/NoP/1vwhMuzNFKnvBt9G1Yk0NOpkM6ogqJQOeEAw5tXAWDOnDlUrFiRgQMH8sILL9irsQwaNCjfkWFhYbRs2dJeAFqWZapUqYLW0fXfg5RKJAl+vWRhxIgRNG7cuKTNAYTwCYqZhIQEnnvuudw/XK2WwMBA5s+fjyzLjB07lpiYGCwWC+vWraN8+fJ4enre9bmN186Rsu1HHHX39rVWzDmk7fgJd1sa33zzDW5ublgsFvQXd6AthHqgqmLjWFQST/14AMf+7xMwaT6GJn/nUYlqM6UOxWJi35KvOPbtZN5voWPtpFbU9r/1C9fdIJuzaZK6k0BLlH3bDz/8wLRp0/jrr7+w2WwkJyfj4uKSPzFcVbl06RK1a9dm8+bN9m1paWlkpZZsEvjdI2HyDOLl6W+VtCF2xF+doEhJT0/n9ddfp0aNGuh0Onx9ffnmm28wm80MHz6c8PBwrFYrUVFRfPvtt5QvXx6AatWqcfny5Tv2EEvMNDFn1yWeW3IU737TcaxclzY1vDFo5TsWcVEVBcWSQ9rOeVTIvoRWq6Vhw4YAmM1mHLLieLlrzQcORJFkDRHJOey5lIzeJxBkLZTSSDwBIEmkH9/Crl27aNOmDY9UKsfFX94hUJfJvb4HOetlXu9clcTvnyE94jQ9evQA4MKFCyQkJNC6dWtWrFiBt7c3devWzbeGB7k5e66urhw7dozDhw8D4OrqmusJib+Cqtxd94WSRpZlVh+LKWkz7JSZNb59+/axePFiTpw4QWxsLM2bN6dz5860b9+eqlWrinWWQsJoNDJz5kwWL17M5cuXMZvNSJKEt7c3/fr1Y/r06dSvX/+O5/Hw8KBt27asW7eOYcOGFfj8xNVUvtkZzq4LCUBu0qxTjdwI0N0XErGpKj4uDqRkmzHl5BRssyJJZF86hPXEBjKunMRSrRr9+/e3fw8sFgs6nY7Ha7nw9vzLOPhVK5RyaOJ7VrpRFQXjpUP2mpayLOP8SHcsbUYTYdLfVTlYnSzRIMCdj/o1oLqfK/PmzaN169bs3bvXvka3atUq+vfvjyzL/Pbbb6SmpjJgwABOnTqFxWKxnysyMpLGjRuze/due9UTWZaRJInMU9vwaDeiSO5DYaOocC42o6TNsPPQCZ/VamX//v2sXbuW/fv3c/HiRRITEwkJCaFOnTp0796dRx99FBcXF7744gveffddUlJSgNx2HHmtOqKioliyZIl9e58+ffjggw8IDg4usWt7GLFYLHz99dfMnz+f8+fPYzKZAPD09KR79+5MmTKF5s2b39e5Bw4cyNKlSwsIX25XhnPkWG03TYnLseYmzCZkmnDQyORcOYJiykHj6ILNmIktOYrMk1uxZqXaK2DYbDb8/PzyXZder+fChQskb/qagJEzsRVJnQtBaUK1mUnfv8L+s1ODbnh0HI10DwniFkXl5LU0DlxJoryLzNtvv02vXr1wcnLC1TV3XS46Opo6deoAufVofXx88PDwICAggJ07d1KzZk37+bRaLY8++ihLly4FwCTpcW3aF51PFVRVQaKUh3X+TXqO5c47FRMPhfCpqsrq1auZPn0658+fv6nr6ciRIxw5coSff/453/ZKlSrx4YcfMnr0aLTa/Jebnp7Ob7/9xkcffcSaNWtYu3Yt/fv358cff7xtEEVZxmazMW/ePObOncuZM2fspZTc3d1p164dL7/8Ml26dCmUsfr378+0adPYt28frVq1ArinVkSqmiuChiqhGP9cTMLBX+3FdVVVpUaNGly8ePGmszCz2YxOp8v9f9xFuvlksiPVQ7RA+g+jmHNI2f4j5rhw4P6rokBu5ZJ3fj/LsuWnCQ0NZcWKFezZs+eW++e9gNWrV4/ly5czbNgwoqKiOHbsGFeuXKFevXpIXlXwukUR6ocBN4OupE2wU+qFb/ny5UyePJnY2Fg0Gg0ODg72Yq13Q2xsLDExMfnK/OTh5ubGk08+yZNPPklMTAydOnVixYoV7Ny5s9Tkm5Q0qqqyfPlyvvrqK06cOEFWVhYALi4uNGnShMmTJ9O3b98iGdvFxYVPP/2U8ePHs3//fi6lWHl/w7l7Fh9Zb8Cp9XCMMefJijqLqqo4ODgwZcoURo8ebQ8WgNw1w5VHotl5PIukugOZc8KIe+uhZFgllLQ4VIO3vQiy4L+DarOSsv1HMo9vtG9zazHwgaqimG0qJ+QgLBdW0b59e/z9/XPHUlWMRiNRUVGsWbMGk8lETEwMa9eu5dKlS1gslgIv3hdVf/yGzUDS6P/uQP9w4aCRCC5feqJQS21borS0NAYMGMCuXbvy+bzvFkmSMBgMGI1GJEmiTp06rFq1yt4I8WaoqsqLL77Il19+iY+PD8ePH7cHW5Ql1q9fz8yZMzly5Ig9uMTJyYkGDRowceJEhg4dWmARvqhQVZUxY8Zw9epVKg99l63nE+6r4peqKOSEHyRhzQeoqkrVqlU5deoUrq6uqKqKe7UG1BnwAkn6XHenyfqPuOa1uRFi999EVWxcX/Y/TJEn7Nv0bl74j/0eSftgQUiqomC8eADjH1/l9sqTZaxW6z0FTN1LEerSioNW5s/XOuLlUjpmqaVyxrdr1y569uyJxWK5L9GDf96q8v5/5swZmjdvzoEDB24pfpIk8fnnn5OZmcm8efN47LHHOHjw4H8+IGHXrl189NFH7N+/n9TUVAAMBgO1a9dmzJgxjB07ttiE7t9IksScOXMYMHwUf5yJBc39fWUlWcZQrRGSwRXVmI6rqyvOzs488sgjhFMe985jiJF0YC04m/yv//7LMqqikH3xQD7RAzDUbvfPC88DIMkyhqDGJG2SUWw2e4zBnZBlmZo1axLcoR9HXZra+wo+rHSo5VNqRA9KWTqDqqp88MEHdOvWjfLly+cTvX+vz90L8t+VPFJTU2nTpg0JCQm33X/u3LkEBgZy5swZFi1adN/jllaOHj1Kv3798Pb2RpZl2rdvz7Zt2wgICOCjjz7CZDJhNBo5evQoEyZMKDHRy0Or1dJt/JtoNA/2dZUA1wa56495YlZ39Id4dpuY+2YvBK7M8e9gljx0PlUKbw1NVXGu3/mmH5UvX57AwEAAvLy86NSpE56ennz60woyGj7BMfcWRdpFoThw1GmY2L56SZuRj1IlfO+//z5z586lfPnyXLp0CciNuJQkCas1t+2Mk1NuJYV27dpx5MgRrFYrr732GhqNhhkzZtCrV68CD2pFUezbEhISGDly5G3tkCSJNWvWYDQamT59+kNfUDgsLIyhQ4fi5+eHLMs0atSI33//HW9vb6ZPn05mZiYmk4lTp07x6quvloq2If/m/PUMbA/6ddXq0XrnPmRSUlJ48scD7I2xihldGUWx5JC+az7ecnaBz2QH50IbR9Y54FyxOnXr1qVv37688847zJ8/Hw8PD8xms707ubu7O15eXmiC2/P5SRVN5RDg4V5PdtTJTOsZTIMAj5I2JR+lZo1v+fLlTJkyBbPZTFZWFikpKRgMBnsgiyRJeHl5kZOTw+7duwkJCbEfW6lSJa5fv050dDQ+Pj5MmjSJjRs3EhERgYODAyaTCVmW8wW4bNu2jY4dO97WpsqVK5OUlMT+/ftp0KBB0Vx4ERAVFcU777zDxo0biYuLQ1EUtFotlSpVom/fvkybNu2eKqKUBkYvOMT2c/EPfJ6cS4e4vuJtvB59GZe67R/cMMFDh6ooqDYzKdvyB7PciFfvF3Gpd/vnw72QffEgCaveveN+/4X1vDwcdRqm9Qy2l2grTZSKGV96ejovvPACL730EjabzZ53d6Mm57k+w8LC8olefHw80dHRhISE4OvriyRJfPnll7i4uPDEE09gsVjQarUoimLPoYHcUPmbRXreyODBg7HZbCxfvryQr7hwySsDFhgYmK8MmEajYdy4cfYyYJcvX2bmzJkPnegBuBkKZ43DlpOBc92OONdpd+edBf85VFUFScKWGEX7AA3t2t38e2BJiECxmApvXFPWHfd5kPSJ0oRGgu51/Vg2tnmpFD0oJcL31Vdf0aVLF06fPk1iYm79uSpVqtiToYOCguw5dwEBAfmOXbhwYW6Fjccft2/T6XR89dVXHDp0iK5du9rXB7Oz/3FppKamMm/evNva9cILL2AymdixY0dhXGahkZ6ezmuvvUb16tXzlQGzWCwFyoDNnj37PxGZGuzvhoP2Ab+uVjPm+Ag82j8c1S4EhY8kSUiShNa/BkcrPsauXbtuul/mqW2F5gJXrSYczSn079+f9957jx9++IG3336b9u3b4+7ubt/vQdMnShpvZz0jWwby19TOzBneuNS5N2+kVIQKLV26lLlz59K7d297QMuNgS3p6el07979pm9neSHCDg75F6Lbt28PwMsvv8yOHTuQZRmbzWZ3fQK8+uqrjBo16pbBG+XKlQO460isoiInJ4ePP/6YJUuW2PN88sqA5SV5300ZsIeZAY0C+HzrhQc6hwo4ZMSicfEsc+t6eYn7D/sYhYUkSWg9/Kkw9nti5o4p8LlszsJ69SS6wFB44J6JEuql/RxTzZw5cwa9Xm//17BhQ9LS0jh35RrO1ZsUwlhFT3k3B/LiXb1d9HQK9uWpFlVKVdTmnShx4QsLCyM1NZXmzZvbk4gBrl27BuQGs7i7uzN+/Ph7Oq8kSQwcOJA//viDxx57jBUrciO38urdqaqKLMvs2bPHLpKlBYvFwldffcWCBQu4cOGC3eZy5crRo0cPpk6dWqAz+X8dbxcH2tX04Y+w6/eVx4eiYI44irZBj4ci+VdVVTSSxL2k6uctDaiqDcnuzFFx1WswWiWsf39edOKkotqsSJrSU6HjdkiShLacPwGTl2GKOYeSnYYlIQJb+D6smakk712CT0A9ZPkBXI+qQkUplV6jhlOuXDlcXV1xcHBAr9fj4OBgX4aZtz+KA1kPnj5R1PQPqcjMQQ1L2owHpsSFb/PmzTz66KPYbLZbrrmlpqbe0hd/O/r06cP48eP54IMPWLVqFaqqoigKHh4e9uCZ5cuXl7jw2Ww2fvzxR+bOncvZs2cLlAF79dVX6dSpU4naWBqY1L46ey4mYrTc+wxcr5XJPLEe567PleooOVVRQLHQSBdHQKUAzE4+mFUNly5f4VJsEhqP8mg0GhTpHy9FXtFtx9TLSGe34Elmvio7eXg/PgWnWi3IXeYq3Hugqiqm6DCef6wlc/5KQNLqoNQ/xnPvg8bgjFO1Rn9vUdF0epo21b0ZWNuJLYfPsTbaiird36NSsZo5svgD9v9dBi1vzDzyXlZ8Hn0Zp7oV7vs6ioOqXk7/CdGDUiB8OTk5uLu7c/To0Xzb86IwAwMDadKkyS3z+PLclJmZmQU+8/DwICcnh86dO+cT1bzUCEVR2LJlyy1tM5tzm5rm1WwsLBRFYfny5cyaNSvfA8rV1ZWmTZsyefLkfGuWglweqeTBtJ7Bd12rM4/ckOraxLgPYVa0rlSW9FWsud8146VDTO5ah+yr1zi6dh0HDhzAw8MDo9FIQkICLdp34WSmM3qfKji6e2FMT8IcH0HWqa32jgJ55Hk28kj8dQZar0pUeGZ24V+AqpK5ZwGjPn2KDYu+JdIlGG2lhsgaDdYiaWVeVEjYFJUd5+PZcU5BPr8XspJRG/YDjfaeXhgUcw7GPxfjkHUdrZMTtr8T2BVFQVXV/GlSesciuJbCpWGlciVtQqFR4sKXR966Wx5arRaz2Yy/vz9ubm63PC6v1c2aNWv43//+d9N99Ho9ep/KuHd4Br1/dSStAx6qgmrOwhx5mKRM00390z/++CMajYaePXs+2MUBv//+u70MWEZGbnuOvDJgkyZNYujQofZEe8GtyYsSu113hjwkCQzaG0Kqm7/K/CmrKJi1VXKoNhvWzCQUYzpKdjqqxUS2awAvThmIl4sDb7/9Nl988YW9os6+7bnNSCVJwsHBAU9PT9ITElBuUuHoxjW3vIesNekqtpxMNAaXwgveUFXSDqwkpLInr7zyCsZr50m7+DvnI2P47WQciw5EcjXFWChjFRe59Vg1KMGdyblyDNPqN3Fu/wxan6r/fH4L7OkS239EurQXBwcHjEYjiqJgs9nyCZ4sy7m5yta7rz9cUpSm7goPSqkRPiBfrl1eQMm/BTGviPBfEckcv5qC0Wwj4KXVJClWHnl7I42qeNO0iicDG+VGf1orNSbk3S34jfoa+NcXVm9ArdOVRu9vpV4FN95/vD6PVPKwf/zDDz8gyzKDBg2652vZtWsXH374IQcOHMhXBqxOnTo888wzJVoG7GFnePMqNAjwYPbOcLaejcNsNuersmHQyqjklkma2L56vugyf29PLidmURrccKqiACoaJ3d07r727T8fS2bR8Q04JF8icsNizH9/f/Idq6rk5OQQE3Pr5p7Ozs54enqSmppKjx49+P333zGbzaRu/R6v3i8U2nVknd1F2u6F7AVOnz6Nn58fDRs2ZNv6Xxk3bBgHryQ/dMKXhyRJOFYNQaPREPvT8+grN6BcpzHovSvlfi7ndzkjSRgvHSJ9/wp7l4fs7GxcXFzw9vbGx8eHgIAAAgIC8Pb2xsvLCy8vLw5levB7hIK5FDf/KE3dFR6UEk9g/+ijj0hISKBPnz507doVk8mUr29epUqVeOyxx3jm1Xf5Zmc428/F35XrRCODh4NMUrbtrtd0JODdx+oyvHkVEhMT8fX1JSgoiIsXL97x2CNHjvDee++xZ88ekpOT7R0AatSowVNPPcVzzz1XIPJU8OC07tQ91/XnW4XHBgzBzaAjuLwrA0IDbjqLL6xE+Acl989ORbpNZ9N/J1r7+flhMBiIjIy87blr1qzJqFGjUFWVb7/9lqtXryLLMv369ePo0aOkpKQgt34a5zrt7n/W9/djo2+wC1+M6mDfLEkSVatWZdasWbzyyivs2bOHobO2cC6n9FTmvx9UVSX90FpSt38PgOzohneTXvjUCMFog7SEOCyJEWSe3MqjXTuwfft2MjIycHNz48CBA9SuXfu250/MNNHqo+35iqOXJjQSvNo9mHFt/xsda0p8xtekSRNeffVVHnvsMVxdXTGZTPlcATExMYRL5Rk8d7+9wejdYFMgyXj3oge54e5v/HYGgG9fGoYsy3z55Zc33ffcuXO88847bNu2jYSEBFRVRafTUa1aNZ599lleffVVe3k1QdFx7MAesrOzcXBw4Md1M++4/52KFhQXuYJz+++mJMtIsoFyHZ8GIP7Eprsqn3fhwgWmTZtGdHQ0Dg4ObNq0ia1bt7Jy5UqGDBnCypUrcd79PUZZxjG4zQ323D2+bg709Yrns1dGAblLE3ldBxRFYfv27Vy/fh0fHx9cmjyOe+thD13/uBuRJAm3Jn0wVKpD8ubZWK6Hc2XjDzg5OdGrVy82bNiAo6MjitFIv3792LRpE5A7684ryHE7HjhquYjRyBIDQgPuvONDQokLX9u2bbl69Spubm5kZGQgSRKKouDj40NCQgIurYZz1rEe0n29Cd3726wK/O+3U1y7HE/r1q3t63sRERG88847bN68uUAZsKeeeoqpU6fa8/4EhUNKSgorVqzgr7/+4tixY0RFRZGYmIi3tzcVK1YkNDTUXpTgxqo8tyMrJYHS4Oa8F2S9gXKdnsYcd9HuPsujatWqmM1mcnJy0Gg0xMfnzmYVRaFChQo4OjoydepUUlJSSEpKYtmyZaiqypw5c3jiiSdwDj+EZ5fx4JD7knZbAfx7llo/wAObAr8m++E5eg7a61epW05lx3dvoRjTiYiIYObMf15C1MsHkNoML/T7UtxIkoTevzr+wz/B4/IWnJycMJvNbN++HQAfHx+ioqLQ6/X3Vd/3QaKWi5qOwb4PVZ7enSjxaAqtVku/fv1Yu3YtrVq1skdvZmVl4d52BO4tBhR7dXKbKuHb/klq1qxpLwNWtWpVFi5ciEajYfz48cTGxtrLgH3yySdC9AqRmJgYxo0bR7Vq1di2bRuhoaF88803nDlzhuTkZM6cOcPcuXNp2rSp/RhFUe7oAgSIO3cUVSl9D5Y7IWn0uLUYiLNz/uLJ169fZ9GiRcTHx/Paa6/h4eGBLMsYDLm5Z0ajkbfeeos2bdpw6tSpfMXaJUnCGLaLkMuLse6cgy0zGVVVUNX8L5mylOvqyi27JXHqWjpnY9O5nm7CJBtwKF+Diw41CPi/n/F94gP0/jWAf6KhMxJiyL50+O81zYcbSZKQtFrSavbgu13h/PDDD/boby8vLwB71Oa9khe17Kgr8cdyPhw0cqnrrvCglIo7PHnyZL788kv69u2LwWBAlmXkmu3waN6/RCpBSJKEFFCfn35ZgcVi4cknn+TSpUv2MmDffPONvZuyoHD59ddfCQkJwcPDg7CwMJYtW8bYsWMxmUx89dVXDB48mIEDB/Lpp5/mW3utVKkSjRs35pdffrnt+U/8+t1DNt/LRZJlHIOaYNPmD3s3Go307duXY8eO8eKLL/LHH3/g4uJiL+4OuYFis2fP5q+//qJhw4ZA7tq6o6Mjqqoyffp00s/s4to3I4j+ajgpO+aTeWo72RcPknlqOxlh+7BaLeDgfMulA0mSkGQNhsr18Rv+MS4Ne+SvvrR/BarNXPg3psSQmLHpPO/uy0DrG4QkSZjNZiRJ4ujRoyiKkpsgf4/t1IY3r8K0nrVx1JWOwDcZeKN37VJdfux+KPHgljymTJnCyZMn2b9/P941G5HTekKJrwlM6fHfWcx9GJg3bx5vvfUWS5cupXnz5nzxxRd89tln9io+t8PR0ZHu3btz7NgxXnjhBZ577rmb7qfT6ag3aTYpjqU7WfhmKBYTqXsWk/HXamRZply5ctSpU4fIyEji4+M5cuQIderUYffu3XTs2NEeIObk5ITRaMTR0RFnZ2cSExNRVZW+ffuyZs0avv32WyZMmJBvrBo1amA2mwnuPYbzzvVR79HrolgtpGyda+9+IEkSzo90x6/7BKyl4327UFBVFdVmIWXb98iX9mGz2QgICOD8+fNArgv+/Pnz91wv92R0KrN3hvPH2XhsJfiIfu/vYL//GqXmG/j2229jtVoJDQ0lrWIzZG3Jh86ei80oaRPKDBs2bGDatGls3bqVxMREXFxceOWVV24Zrv/vnEej0ciaNWuIiIjgtddeu20D4SoZZ5AfwmmfrHNA71MFyK0zm52dTUxMDOfPn6datWq0bNkSk8lE27ZtqVGjhv24vIINRqOR5ORk+73LmzH/W/TyPktUnDnvXO+eRQ9A1uoo1zk3bxZyBWJMh2De6F0HvQZyV9NvjXqf7sLiRpIkZK0ez87jUIJa0bZtW8LDw3PTIBwdCQkJua8i8Q0CPJgzvDF/Te3EyBaB+LndfBLgoJVx0MrUKe+KthC/1F5OOtZOavWfFD0oRTM+yK2+0uPxQUSFjMntiF3CdAr25ccRTUrajP88GRkZ1KlTh8WLFzN37lwWL178QOeTZRlVVdm6dWuBnos6nY7BgwdzRludFP/Gpbp82c3I6+tmsVho2bIlJ06cYOvWrVSqUYdmQ57Dv3Zj3Lz8CDt5FEv8FTJP5lZ0qVGjxl2l5cA/FV98+0/HsXqz+75HqqqSfeFPEtfMAHID2fbv34/kFYhbi4E4BjUBVc3n2bkxF07j5ouDf/WHpvC1qtjwObaAI3+sRq/XU758eV5++WWeffbZQjl/UqaJlUejORebQXqOpUDqzqIDEbz9+1kstvt/pDvrNbzarRYjWlYtFJtLK6VK+ABm7/j/9u48PqryauD4797ZkskeJpsEAUlCIBAiQmURhBhaFoNozatR0IoLKlLQlgrFpR+XYq0L/ai12BcU0CpuFVH6tmwqIiiKgiCLUNCERQIYIMtMMnPv+8cwIyFknZnMJHO+f8HM5LmXkMyZZznnfMuT/9npe7dtP7gyrzNPX5MX7Nvo8O677z5KSko4ceIEy5Yta/B1ycnJWCwWqqqqOHbsWKNjemY133zzDT179vQ+bjKZ6NOnD4mJiWRPfpz3tx32zz+ijVR8vYZj7z/F5s2bmfqbWRyx9cd1Xh8Ua7w7VeOMvEDd5XT3nqs6QYzzBAe/XOsNhGeLjIzE4XB496YiE5KxTX7e5w+gmrOGA8/9yntN1RpHdN/LMCV1Q7XGYYh0V2XSqk+iVZ+k9sh+jKVfUHnsMFp8F1Kun9tu+tPpuk7t8QMc+ru7oH5iYiK7du3CZrO12T1sLS1n7r928Om+4zS3UlykSaV3Wix/uiqXjJT2nW/ZXEFPZzjb7iMVIRH0FCA7LTx+CIJJ0zQWLVrEyJEjGw164G46bDAYSEpKYtSoUaxcudL7nMlkqnOYwpOvd+GFF/Ljjz96iwf06NGDLVu2sHPnTrKysjj//3Yw/6P/NvtNIpi0Wgc1Zfsxp2Zy19KtHBw41R3oFMWdaXBWMrxicP96G6MTqSaRuGHpxA+bSNXez09XFnHPAG02G06n01scXdd1ovsW1BuvVRSVqL4FOL7/mtjBRVh7DHB3RjljlqdoTgwGA7GVpRwr+YwDh0tQFAXn4W/5cfUCEvJvRjWHfvBTFAVTYmciul9IXNVBHnjggTYNeuBeIn311sEcq3CweMN+Vu88wtGKGjRNR1EgIcpEUnQEtmhLo4UeOrqQm/GFSmUNkwobZxeE5Q9FW9qwYQPFxcWNpiLExcV5k9RNJhMnTpyol4jucrkoLCxkxYoV9b6+sLCQd999F4Bx48axatUq1q1b502H2FpaztOrdvPh7rImA6Dn1yUYy2+as4byD5cQP/x6FIMZpZW1XXVdR9eclH+wGPtX73HLLbewdOlSjh8/7n1Np8vvIbpPfiOjNJ+9dCfmlG5N3rOuaai4GBn3I7eOzCYuLg5N05j2l9fZl3AhumJs1r85MzmaJ4v6YTUZKJj3kV/+Dc2l6zqu46XkHXyPZcuWSVnCEBX8qdVZYiNCYxJ6Wa8UCXpt4I033mjwAMsNN9zAwoULyc/Pp3v37lRUVHDy5EnvctyZunfvzlNPPcWoUaPqjbN8+XLv0uiBAwdQFIVFixZ5n89Nj+ey7GTUZgSzYO036ZpG7dES4odfj2qKaHXQg9MHMgwmEvInkzTpKb787nidoAegWqIa+OqWs5yX2ax7VlQVXTWxwZ7KXiWN3r17ExMTw9a3n+NvRdmM7puG7qxx7wOeQdc0dM1FD1skS276GSvvvpTc9HgyUmL4dX7b5p8pioIxsTPzX3pFgl4IC7nAl50ai8UY3NsyqUqHS9gMVWvWrKmzRBkZ6c5TS0xM5LXXXmPy5Mn885//ZPdud/d1zxH9sxcqvv/+e7Kzs9m2bVudNlKeQFVUVMT333/PgQMHGDZsGC+99BJ79riroHgOBTS3fU4wgp+uOTHZ0v2636UoCsakbhzofQ3ReWPqPKc5Khv4qlZcp4WnQqtrNR5dsZMvvzvGlClTmD59OqMH9mL+xAHM7l1J+bpX6uQZ1mx6nQPP3kDfkncZlpVUZ6x7RvVs4CoBpKi8983Rtr+uaLbQmF6d4eqL0nl61e6gXV8BHizs3eESNoOturqalStXsnLlSjZv3sy+ffvIyMhgy5Yt9V4H1JuBNNfhw4frNfpUFIUPPviAvXv3kpOTwwsvvECfPn0oLi7mr0vf5+H3d7T6JNyZrX8CRdd10PWAnHR2VyIxe+uBevLunOWH0TXNp5kltP77Y3e6uPXpN0lWVWbNmuV9PNaicuqzt+u9XlVV/vGPfzBv3rx6zxVkJ7OqjbdPJBUqtIXcjM9TrDUYC0pndmcQvqutrWX+/Pl07doVq9XKVVddxcKFC9mwYQOHDh1i3bp1zR5LVVXMZjMZGRmMHz++wdd5iiSfyWKxoOs6u3fv9nYPmD9/Ptu3b2fyE0t9rohfr6mon3mCUyADrKceaFROPrYrf0/coKv9kurR2nvWdThqSWX+S69gNtcP+J6SbJ4SbhaLhaNHj7J37956r/3fGwdiMbTtO0pH6l3XEYVc4AN3sdaINi7Z07dzLMs6cMJmW1u3bh2pqalMnTqVyspKjEYjLpeLqqqqVgUJT/3D7t27s23btjrPDR8+vNH9FE8j4zPzAydOnMh9j/yJk1G+VZz3vLEHetbXFsurisFMp3HTsWYO8k+g9fHDgMVsZsXOujP/EydOANC5c2fAXetXVVWqq6vRdZ2PP/74nGOtn3WZT/fSUh2pd11HFJKBz1OsNVB7fSaDQoRRJSXGwq2XdOeLOQUsv2uYLG/6ydy5c8nPz6eiogJN0ygvL8fpdPrUpskUk0hk/0I2W/pS0X8SnS6/h9iLr0KNjOW6665j165dWK1Wb/7emW/anoMtW7durTNm4kVjMZiCXyghVLjbIBl8Xt78aUDfAqfDqfHSJ/vZUlLufWzx4sUAFBcXn76EUueDVENtp2zRFn7eO8Wn+2kuSYUKfSG3x+fhmXn9YXnzDx00xWJQuP/y3jKrC6Cnn36aBx54ADh9evB0FRXA20LIM/trzswvrnsuprzLz5n/pdU6iBs2kdcP1TDI3IlNmzaRl5dXrzq+583Q5XJRUlLi3Xf6an/T6QvN0V4qi7Qlf+wPAhw6Yefqv33Cg4W9mdDHxqeffgrg3RuuqKhAVVXvoafGtFXbH7WD9a7riEJyxucxcVA33r5jCKkN1KlrCaMqQS/Q1q9fz8yZMzEajWiahsPhwOVy1fsU7mlY2pTovDHEXvUAUaeX3s4uWq6aLKhGM3uqrVzzwgY2n7TyxBNP1BsnKcl90s/T69FTyPrt9+rn/Anf6LqO5qzFcbh55dGao1bTuX/ZdmY8+xa6rpOWlsaKFSvqfKjyaKzpa1u1/RmeaZNUqBAX0oEP3DlWG2cX8KvBXVs9Ru+0GN6+Y4gEvQByuVyMGzcOl8uF3W73BjtP0GmJlStXknpJEZ0KbnUf329G/pfdqfHoih3EDyysVy2jrKwMcM/8cnNzGTx4MPPmzUOz++/IfrhzJ8W7sH+3lR9enkn1rvX18u18Gh/4z/F4zKkZpKSkoGnaOQ+9VFRUNDpOoNv+qArcXZAVkLGF/4R84PP4w/g+vDt1KAO6Nr/h6/mJ7oTWFb8eLvt3ATZlyhTvwQPPPpvRaKSysrJFibwmk4mkngOIGjYJWnh8v7pW4+H3d5A7orDO455ZQWVlJcuWLfM2Do2uPUEbH/brkHRNo3rfl5Q+M4kjr82h5vAeKr5e7fclYEU1kHLtI3xzuJJp06Z5P1ydGQAvuuiiJseZOKgbS28bRA+b/5L0PaYMv0Dea9qBdhP4wD37e/P2IXwxp4Dp+Rlkp0YTZTFgVBUMCkSZVbJTopmen8EXcwr4aGZ+vYRW4X9r165lwYIFABgMBnRdx2AwUFRURFVVlXf/5cxWQg016KytreWmP7/a6nqttS6d3SmXNvm6vn37UrbpPZy1fmiOGlpV/9qcoqpoleV1il9rVSfoaq70a9d1RVFQLFGkTfozvQpv836A8bRdUlWV5OTkZo2Vmx7P6t+MIDs12m/3V5ibxr2je/ltPBE4IVerU7QvpaWldO3aFU3TiIiIwOFwL2+ZzWYcDkedU3cTJ07k5ZdfRlVV8vLy2Lx5c73xVGsc6Xe+6GOytk7Fzk849s7ces8kJydTVlbmvafk4j8ScX7f1s9OdB20WjCE9+lQT7ukMw2bMJH9PSYEpruCrnHs38+j7f4QXde9jXY//PBDBg5sWSuxwmfX8fWB+h0rWuKO4Rdw7xgJeu1Fu5rxidAzfvx4NE3DaDRit9uJj4/HZDLhcDgwGAzeZc6uXbt6c6ymTZvmbc559jJodN/LoBWNT+tSiOo5hKickfWeOXLkSJ1C0w3NPJtN1ym6QAn7Wd+59ks///db/Lh6QWCS+xWVhFFT0OK7UF1d7f3gkpqa2uKhlt81jBmXZWAxtPztcEDXeN6dOlSCXjsjgU+02tq1a/nqq6+IiIjw7reUl5dTU1PD4MGDcblcZGW5N/offPBBbweGhx9+mMceewygTl1NAMv5uS2u7diQhFG3nfPxqKgoMjMzieqUijHFt0anmq7x1D03omnNS8/oiHRdB0P9DxCaprlLoAXo+6KoBuILpgBgtVrJzMykS5curRprRkFPdj0yhjdvG0QPmxWr2YDJoBBpUomPNNLdZiU1NoLU2Ahy0mK92ylv3j5U9vTaoZDN4xOh7/HHH3fvu5yeOdXU1KDrOn369CErK4sNGzZ4Dx5069YNXdeJiooiJibG+8n87OVQS3pvv9yboiiolmgis4ZQvfsT72M5OTmUlpZy8OBBOhfciGY2U+vLNpTmolt+MT2c+9htyfTLvbdH1syLObs1sMPhIDU1NWB5joqiYE7LIL1HNhXHDjNp0iSfxxzQvROrf1N/pUB0LDLjE63icDhYvXo1sbGxOBwOb1cFgEmTJnHypHvPxFM15bPPPgOot8Sp67o3OKrWOFTzT+P4Q+LPb/f+2WKx8N1335GcnMzrr7/OmOJbfAt6uHMJx0+6nf88NYO+nWN9vNv2yVNL1DZhdr3nxo0b55ean41cnciLxlNbW+ut5iJEUyTwiVZZtWoVAEOHDq3ziV5RFCwWizfgHTnirop/6NAh4Ke2QgkJCSQkuFNTHA4HqjWO5Ose8+s9KoqCISoBNdIdkGw2GwsXLmTHjh2MHTuWk3anX67jKUi8/K5hYR38rD2H0Knwt3Uez8rKwqQGLvApikJ1Ug4zZ8701u8Uoimy1Cla5eDBg6iqysmTJ7FardjtdsA9k8vPz+ehhx4Cfkph2LFjB6o1jhPnD2PsXz7iWFUNtltewGp3oBiM7pmeogZkWSyqbwHqrtXs378fg8GApmksXbqUVSu2o15wsc/jn1mQePldw5i3ahfPrd1LrZ9K7bUXiqIQ1ftS7P/9gsrtawHYvn07heNG8faX52427A+GyGjuvffegI0vOh6Z8QmfVFRUkJaW5l26dLlc9OnTx9s2RtM0zKmZbEv7Bel3LSF6UBHfHD7FDycd1BgiMUbFY4iIdhdHDkDQUxQFc1I3Xn31VebOnUtSUhIGg4Frr72WE99t97m6SIRRrVeQeEZBT759dCy3XNLNp7Hbq/gRN3r/XFZWxu/H+mfftiFGk8X78yZEc0jgEz4bMGCAN4lY13XWrl3LyJEjMZlMWAdfS+oNT2JMzXJX/w9CQWc1IoqxY8dy//33c/ToT52xlf2fnbPsVUvo0GBB4vvG5fDIFTkBK48VihRFwRDdCYvtfADsdju2aAvnxQUuMIXXvFr4gwQ+4ROXy0X//v2pqanx5sTNmjWLm2++mdjR04m5+OqgBTyPs3PMhgwZQklJCeWHS8jvldrqsxeKAiN7JjVakNhTHmt0TgqtSBNrt5J/MaXO35+/vulSYq1lDKdvrPAL+YkRrZKWlobFYuHQoUPExcURGRnpXW7atGkTa47HEtX70qC37NF1ndryw0RGRvLwww9jt9tZv3496enuWdrUERlEGFs3I4swGrhzREaTr8tNj+dvEwfw2ewCZo/JZmDXBALUajIkKIqC9Tz398XTg7Ffl3i621rfj7Ex4TSjFv7RgX/9RCAVFBTgdDo5evQo27dvJy4ujqqqKqZPn445NZPFnx0MetADd1PQyZNvorKykvvuuw+Lpe7srLWtaiJNKnPGZrcoeblTtIUpw3vwxu1D2PPoOL6Y4w6E/dLjCODBx6DQFHcwGj16tPex+RMHBORaMRFyRk+0jAQ+0SoRERFMmDABgEWLFtGrl7tk0zvvvEPaNX8IcO5WCygKRNkaDcJntqpp6rYVxT3DmDO2l89trjyBcNnUS3jnzqGMzknBYlQxN9IyQgXMBoXROSksmfwzZo/J5sq8zlyYYsR1qsyvRaF9Ya88BbiXlT2yUmKIC0CQykj2X6FpER6kSLVotTVr1lBYWIjdbuf5559nypQpDLz7BY6Y00In8AGXZSez4MamCxdvLS3nrx/sYe2uMhTA7vwpiEQYVXTce3p3jsgIWJmqYxUO3txcys5Dpzha4eDHqhp0HRKjzNiiLWSnxXB1//R6+4obN27k2jt/h54/A8UU5Caouk7Vnk2UvzvXW5nH483PS/jtW1v9erlVM4aTkRLT9AuFOE0Cn/DJFVdcwXvvvYfNZsOe1o+E0b8OqaAHcGVeZ56+Jq/Zrz8z+Jy01xIbYWow4ISKqqoqUlNTMWaPIPbSm1rcy9CvdJ0Df7+da8eOZMmSJfWenrRgI+v2nF3grHVSYix8+vsCv4wlwocEPuGT0tJS+vXrx/Hjx+kybQmKNT4k9vY8FGDWmGymDO8R7FsJuGuuuYYDBw6wz9AZ06BidMUYlP8LrdZByZO/ZMeOHWRnZ5/zNf5oBQTwZFEuv+zfusLUInzJHp/wSXp6Oh999BHRnTNDLugBqKrSYJ5dR1NUVITT6aT665U4tq0hWP8TNT/sZcKECQ0GPXBXuPllf99KjBXmpknQE60igU/4LCcnh9Gz5gf7Ns5peKYtZJcn/e2KK67g1KlTTJ06FSUiKihLzrquo5ftZfHixU2+9smiPN6dOpShPTq1+DqFuWk8U9y/NbcohAQ+4R+HqvTQm+0pcHdBVrBvo82YTCaee+45XnzxRTL7Bi8o/Gz0/xAT07zDJrnp8bxyyyC+mFPA5bmpTTaDTYmx8GRRrgQ94RNJgBF+UV3jCvYt1DNl+AVh1yR0xIgR3H333Tz77XFICEzCeGMURWF/eU2Lv65TtIVni93VXfb8cIpH/7WDPUcqqKpxYTUbyEiOZs6YXnJ6U/iFHG4RfnHJ42so/bE62LfhNSyzE0smDwr2bQRN3uw3KKftAx+4Z9r//eO4oFxbiOaQpU7hFxlJoZNEPCwjvIMeQHwnW7BvQYiQJYFP+MXvx/YK9i2gAHcMv4AlN4d30ANwBrEXoBSNFqFO9viEX2SlxJAcY+HIKd/627WUivvw4qVZScwoyAq7Pb2GWIJYBfv8IOwtCtESEviE3/zu5z39Xo6qMSOykhjco1NIV1QJlqzkaPaWVTb9wgAY1zc1KNcVorkk8Am/uXpAFz78tozlWw8F9DqqAg+Nz/G5SHRH1q9LAv/+5gfaesVTAW4Y3K1tLypEC8livPCrZ4r7U5ibFrDxTQZFgl4zXH1ROoYg9DoadEGizL5FyJPAJ/zumeL+PFmUi7WFPe4aovBTK563bh8iQa8ZbNEWRvZMbtNrmgwKs8cE/5CTEE2RPD4RUO9vPci0175s0ZKbxaiQkRTTZCse0bgtJeVc+/eNVNcGvriAyaDw4OW95UOJaBck8Ik28ccV37Dg4324GvlpsxhU7hhxATMKerbdjXVwL2/cz6MrdlBdG7gGtRajyv3jfG/MK0RbkcAn2tTn+45x79tbOXTSQa1Lw2RQSYu18KerchnQveXFikXT3MFvJ3anC3/9tiuAyaCSnx3YxrxCBIIEPiHCQGPd5c0GBaem43kjaOgdQQFs0WZyzouTNBLRrkngEyKMNNZdHuDNzaVsKSln9w+ncDg1LEaVrJQY+nWJl0AnOgwJfEIIIcKKpDMIIYQIKxL4hBBChBUJfEIIIcKKBD4hhBBhRQKfEEKIsCKBTwghRFiRwCeEECKsSOATQggRViTwCSGECCsS+IQQQoQVCXxCCCHCigQ+IYQQYUUCnxBCiLAigU8IIURYkcAnhBAirEjgE0IIEVYk8AkhhAgrEviEEEKEFQl8QgghwooEPiGEEGFFAp8QQoiw8v8EHzv5wOVuWAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -935,7 +897,7 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 51,
"id": "a4c57244-0c98-4598-8ae2-06cdd0c48385",
"metadata": {},
"outputs": [
@@ -943,25 +905,44 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Evaluation \n",
- "---\n",
- "Scores:\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Top-K Join\n",
+ "***************************************************************************************************************************\n",
+ "Method name: Top-K Join\n",
+ "Parameters: \n",
+ "\tsimilarity_threshold: 0.25547445255474455\n",
+ "\tK: 20\n",
+ "\tmetric: jaccard\n",
+ "\ttokenization: qgrams\n",
+ "\tqgrams: 3\n",
+ "Runtime: 41.0031 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
"\tPrecision: 58.34% \n",
"\tRecall: 63.75%\n",
"\tF1-score: 60.92%\n",
- "Classification report:\n",
- "\tTrue positives: 10954\n",
- "\tFalse positives: 7822\n",
- "\tTrue negatives: 823813\n",
- "\tFalse negatives: 6230\n",
- "\tTotal comparisons: 18776\n",
- "---\n"
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "{'Precision %': 58.340434597358325,\n",
+ " 'Recall %': 63.74534450651769,\n",
+ " 'F1 %': 60.923248053392655,\n",
+ " 'True Positives': 10954,\n",
+ " 'False Positives': 7822,\n",
+ " 'True Negatives': 823813.0,\n",
+ " 'False Negatives': 6230}"
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
- "e = Evaluation(data)\n",
- "e.report(g)"
+ "topk_join.evaluate(g)"
]
},
{
@@ -974,7 +955,7 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 52,
"id": "e48627ef-0be6-45dd-b3ba-863818eadbfb",
"metadata": {},
"outputs": [],
@@ -984,17 +965,19 @@
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 54,
"id": "a9d5a28d-79f0-479f-b154-f5f7e3661897",
"metadata": {},
"outputs": [],
"source": [
- "clusters = ConnectedComponentsClustering().process(g)"
+ "ccc = ConnectedComponentsClustering()\n",
+ "\n",
+ "clusters = ccc.process(g, data)"
]
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 56,
"id": "f95539fe-2569-4569-8929-2f4220f14157",
"metadata": {},
"outputs": [
@@ -1002,48 +985,23 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Evaluation \n",
- "---\n",
- "Scores:\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Connected Components Clustering\n",
+ "***************************************************************************************************************************\n",
+ "Method name: Connected Components Clustering\n",
+ "Parameters: \n",
+ "Runtime: 0.0630 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
"\tPrecision: 2.05% \n",
"\tRecall: 100.00%\n",
"\tF1-score: 4.02%\n",
- "Classification report:\n",
- "\tTrue positives: 17184\n",
- "\tFalse positives: 820681\n",
- "\tTrue negatives: 17184\n",
- "\tFalse negatives: 0\n",
- "\tTotal comparisons: 837865\n",
- "---\n"
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
"source": [
- "e = Evaluation(data)\n",
- "e.report(clusters)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 35,
- "id": "336e161f-911f-4d75-ab13-f38ed893fd7a",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEWCAYAAACAOivfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4D0lEQVR4nO3dd7xUxfnH8c+XKhaaAhZQUFF/RCxIlEQTsSEoih2NRjRGkthb7BF7jRoxxoiKggVEExQbBBE0UVGxIWBDBAUpKk2acuH5/TGzsFx395572b1tn7ev87p75syZmb1cz5yZM2dGZoZzzrniVKeqC+Ccc67qeCXgnHNFzCsB55wrYl4JOOdcEfNKwDnniphXAs45V8S8EnDlJqmrpCmSSiSZpI3XM71TYjrj8lTEakfS1fE7PlzVZXEunVcCtYykvSU9K+k7SSskfS7pbkkN8pjNP4D/A0YDdwE/rmd6U2I6T61nOllJahsvwiZpoaSN0o5dmXbs4XKkmTqnbYLo4wnf8T/lLrxzBSR/Waz2kHQ88ChQF/gAeBtoC3QFWpjZwjzlUxLz2M7MpuUjzUKLF+ov0oJON7MHJNWN4W1i+CAzOyVhmqn/edqZ2fQc8eqb2cpyF9q5SuAtgVpC0obAPYSL86NAJzM73cwOAnYClsV4u0gaKelbSd/EVsOOaelMj3e3l0p6T9JSSS9IahaPW8wD4PMYf81ddlo6D8ewq+N+J0n/lbRY0hJJkyT9KR77SXeQpF9LejXetX8t6TFJW6YdT92FnyXpU0nfS3o0YYtnAfCn+PlQQgWwoNTvc4uY/7eSVsbf1aOSmqb9HlK+iGXpmtbt85SkYZKWAyemdwcp+E/cvziml2qNvJCg/M7ljVcCtcfeQPP4+XozW506YGafm9mPkrYAXgEOJnRPvAf0BMalLvJprgImAiuAHsAFMfyutDgPAQMTlq8/sA+hO2QI4aK7R6aIknYBXorxRwIzgN8AIyXVLxX9GuB1QsV0IvDbBGUZBHSStCehMvge+HepOJsAjYBngftjeU8Ebo7HS/8e7gJmpoUdDWwHPALMSU/YQvP71Jjm1ZJ6AX8BvgN+l6D8zuWNVwK1R8u0zzOyxPkt0BQYZ2Y9zawb8D6wOXBsqbj9zKwP8Pe4vzuAmZ2XFudaM7s2YflSF+8XCBfM/YE/ZIn7xxh/kJkdD/wamAd0BPYrHTd23zyZXs4y3A+UADcC3QgX6iXpEczsU6Av8BGhFTU5Hto/Hj8vLfq1ZnaemU1NC5sG7GVmfc1sZOkCmNks4AxCRTMcaBC/y5zScZ0rJK8Eao95aZ+3yRKnbfz5UVrYx1nOeS/+XBh/lncEUN1S+xcQWhYPAB8C84FzkpQz9qennj3ko5xfAyOAAwj/D9xbOoKkE4B3gVuAC4Ej4qEWCdIHeMvMSsqIMwyYDij+LN0aca7gvBKoPV5nbb/2lZLW/NtK2iZ2o0yPQTulnZd6HlC69ZC6gCUZObA0La/G8ePOpeJMMLNdgWaEB9X1gZsl1cuQ3jrljGXfNg/lTJe68P/PzCZlON47/rwPaJi2r7Q4qS63TP8f/ZCgDBcQKrwV8eeFCc5xLq8y/Q/oaiAzWyrpbGAwcBLQUdJbwJbAQUArwgPjy4H9JI0gdEHsDsxlPYZnmtk3kmYCrYFHJa0AdisV7dk4EudzoAnhwvodsCpDkgOA04E+khoR7v5bErpkxlW0nKWMAQ5k3RFD6ebGn4cQKqxDMsT5Kpbt75I+Ba5ImrmkjsD1hN/BQcDLwHWSRprZh0nTcW59eUugFjGzxwh95i8AWwN9COP57weWmdnX8fh/CA+SOwPPA/uZ2fz1zP40QpfNrwh3yM+UOj6OUCGdSBiR8zbQ2zKMUTaz9wl99W8QLr7tgKFAdzNb33cSUnmYmY3JMcT1GmAsoftnD8Lzg9IuITwM7g6cS+jfL1McwfQIoSI818zei+c3BB7J8zsdzuXk7wk451wR85aAc84VMa8EnHOuiHkl4JxzRcwrAeecK2LVdojokh/8ibX7qRZdzq7qIrhqaPl7f1fZsXJrtPtZia85+civuqi2lYBzzlUqFWfHiFcCzjkHoFpzc18uxVn1OedcaaqTfCsrKel8SZPjlOlDJG0gqZ2kNyVNlfRE6qVASQ3j/tR4vG1aOpfF8E8kHZwW3j2GTZV0aVp4xjxy8UrAOecgtASSbjmT0VaEyRE7m9nOhMkUjydMRninmW1PmOfrtHjKacCCGH5njIekDvG8nxHeSv+HpLpx+pV7CFO8dwBOiHHJkUdWXgk45xxAnbrJt7LVAxrFCRI3BGYTpiFPzdE1iLUz0/aK+8TjB0hSDB9qZj+Y2RfAVGDPuE01s2lxGpWhQK94TrY8sn/tJN/GOedqvXJ0B0nqK2lC2tY3lUxcK+KvwJeEi/8i4B1gYdr04jOBreLnrQiTERKPLwI2TQ8vdU628E1z5JGVPxh2zjko14NhMxtAmO02QzJqRriLb0dY5+JJQndOteSVgHPOQT6HiB4IfGFm3wBI+jdh1t6mkurFO/XWwKwYfxZhneuZsfuoCWGK8VR4Svo5mcK/y5FHVt4d5JxzkLcHw4RuoC6SNoz99AcAUwhTkx8T4/Rh7XTrI+I+8fjLcYr1EcDxcfRQO6A98BZhGvb2cSRQA8LD4xHxnGx5ZOUtAeecg7y1BMzsTUlPEZYnLSEsgTqAsHbHUEnXx7AH4ykPEtaRmEpYdvX4mM5kScMIFUgJcKaZrQKQdBYwijDyaKCZpdbAviRLHllV2/UEfNoIl4lPG+Eyycu0Eb++Ovm0Ea9eXWveLPOWgHPOgU8b4ZxzRa1Orbm5LxevBJxzDrwl4JxzRa1IJ5DzSsA55yDpdBC1jlcCzjkH3h3knHNFzbuDnHOuiHlLwDnnipi3BJxzroh5S8A554qYjw7KP0nPAqXn41gETADuM7MVhczfOecSK9KWQKG/9TRgCXB/3BYD3wM7xH3nnKse8jeVdI1S6O6gX5rZz9P2n5X0tpn9XNLkrGc551xl85ZAQWwsaevUTvy8cdz9scB5O+dcct4SKIgLgf9J+hwQYc3NMyRtBAwqcN7OOZdckbYECloJmNkLktoDO8WgT9IeBv+tkHk751x5qE5xVgKV8a33AH4G7AocJ+nkSsjTOefKRVLirYx0dpT0ftq2WNJ5kppLGi3ps/izWYwvSf0lTZU0UVKntLT6xPifSeqTFr6HpA/jOf3jWsZkyyOXglYCkh4B/grsA/w8bp0LmadzzlWIyrHlYGafmNluZrYb4SZ4GTAcuBQYY2btgTFxH6AHYRH59kBf4F4IF3SgH7AXsCfQL+2ifi9wetp53WN4tjyyKvQzgc5AB6uuCxk751xU1h1+BR0AfG5mMyT1ArrG8EHAOMLC8L2AwfE6OV5SU0lbxLijzWx+LN9ooLukcUBjMxsfwwcDRwAvxrQy5ZFVobuDJgGbFzgP55xbb+XpDpLUV9KEtK1vlmSPB4bEz63MbHb8PAdoFT9vBXyVds7MGJYrfGaG8Fx5ZFXolsBmwBRJbwE/pALN7PAC5+ucc+VSpxwPhs1sADAgVxxJDYDDgcsynG+SCtpDkjSPQlcCVxc4feecy4/89wb1AN41s7lxf66kLcxsduzumRfDZwFt0s5rHcNmsbZrJxU+Loa3zhA/Vx5ZFbQ7yMxeybQVMk/nnKuIfI0OSnMCa7uCAEYAqRE+fYBn0sJPjqOEugCLYpfOKKCbpGbxgXA3YFQ8tlhSlzgq6ORSaWXKI6uCtAQk/c/M9pH0PetOICdCK6VxIfJ1zrmKyueD4fhC7EHAH9KCbwaGSToNmAEcF8NfAA4BphJGEp0KYGbzJV0HvB3jXZt6SAycATwMNCI8EH6xjDyyKkglYGb7xJ+bFCJ955zLt3xWAma2FNi0VNh3hNFCpeMacGaWdAYCAzOETwB2zhCeMY9cCr6egKS6hCfUa/Iysy8Lna9zzpVHgYaIVnuFXk/gbMLLDnOB1THYgF0Kma9zzpWX6nglUAjnAjvGJopzzlVb3hIojK8IK4k551y15pVAHkm6IH6cBoyT9Dzrvix2RyHydc65CivOOqBgLYHUqKAv49Ygbs45Vy15SyCPzOyaQqTrnHOFUqyVQKGnkh4tqWnafjNJowqZp3POVUSdOnUSb7VJoR8MtzCzhakdM1sgqWWB83TOufIrzoZAwaeSXqV1F5rfhnWnkXDOuWqhAHMH1QiFbglcQVho/hVCPfsr1p1LwznnqoXadnFPqtALzY+M62V2iUHnmdm3hczTOecqwiuBApA0xswOAJ7LEOacc9WGTxuRR5I2ADYENovzYKd+u41ZuwxaUbnmqsv57yvjaN58U4YNfxaAS/98PjOmfwHA998vZpNNGjPkyadZuHABF194LlMmTeKwXkdwyeVXrUln5AvPMfCB+5BEixYtue6m22jWrNma448MGsjfbr+Vl155Y51wV72cfeJ+nHLkLzEzJk/9mr79HuWf/U6kU4etWVmyigmTZnDWDUMoKQlTbt1+8TEcvPfPWLbiR/r2e4T3Pw6rC7bZvBn/uOo3tG7VDMM44qx7+XL2fLruuQM3nnckdeqIpct+4PR+jzDtq2/Zu9N23HbRMXRsvyUnX/YQw196vwp/C9VLsbYECvVg+A/AO8BO8Wdqewb4e4HyrNYOO/xI7r73/nXCbr7tToY8+TRDnnya/Q/sxn4HHARAwwYN+dOZ53LehRevE7+kpIS/3nIj9z04mCf+NYL2O+zIsCGPrjk+Z85sxr/xGptvsWXhv5CrsC1bNOGME/Zl7xNvpfOxN1K3Th2OPXgPhr74NrseeR2dj72RRhvU59QjfwnAwft0YLutW7Bzr2s46/oh9L/8+DVpPXDdydw5aAy7H309vzrpNr5Z8D0A/S8/nlOveJgux9/MEy9O4NLfdwfgq9kL6NvvEZ4YOaHyv3g1V6wPhgtSCZjZXWbWDrjIzLY1s3Zx29XMirIS6NT55zRp0iTjMTPjpVEj6d7jUAAabbghu3fagwYNG/wknmGsWL4MM2Pp0iW0aLl2xO0dt97Euef/mVr2N1or1atbl0YN61O3bh0abdCA2d8sYtT/pqw5PmHSDLZqGVpyPffdhcefewuAtz6cTpNNGrH5Zo3ZadvNqVe3Di+/+TEAS5f/yPIVK4Hwt9J4ow0AaLxJI2Z/E6bw+nL2fCZ99jWrV/sgvdKKtRIosztI0qZAXTObJ2l/YEvgKTNbUda5Zna3pJ2BDsAGaeGD16PMtc5770yg+aabsvU2bXPGq1+/Ppdd0Y/eRx/OBo02ZOutt1nTVTRu7BhatGzFDjvuVAklduvj628W8bfBY/j0xetY/sOPjHnjY8aM/3jN8Xr16nDCoXvy59ueAmDLlk2ZOWfBmuOz5i5ky5ZN2aplUxZ+v5yhf/0922y1KWPf/IQr+z/D6tXGGdc+zvC7z2DFDz+yeOkK9j359kr/njVO7bq2J5akJfAccI2krsBLwCDgwSSJS+oH3B23/YBbgcNzxO8raYKkCQMfGJAki1ph5IvPc3BsBeSycuVKnho2lMeGDWfUmFdpv8MOPPTgAJYvX87A++/jj2eeUwmldeur6SaN6Nm1I//Xsx/bdruCjRo14PhDfr7m+F2X9ea1d6fy2nuf50ynXr067L37dlx653D2Oek22rXejN8eHgbinX3ifhx59j/YvvtfeOSZ8dxy4VEF/U61QbG2BJJUAh2ACcDBwGvA/UD3hOkfQ1jqbI6ZnQrsCmTuEwHMbICZdTazzr/7fd+EWdRsJSUljB0zmm4HH1Jm3E8/CXeLbdpsjSQO6taDie+/x8yvvuTrWTM54dhe9Oy+P/PmzuXE3kfx7bffFLr4rgL232snpn/9Hd8uWEJJyWqefvkDuuzaDoDL+/agRbONufj2f6+J//W8hbTefO1D/q1aNeXreQuZNXchEz+dyfRZ37Fq1WpGjP2A3XZqw2bNNqbjDlvx9qQZADz1n3fXpO+yq1NHibeySGoq6SlJH0v6SNIvJDWPU+l8Fn82i3Elqb+kqZImxmH1qXT6xPifSeqTFr6HpA/jOf3jgvNkyyPn907yuwFaA3sTFjN+nbSunTIsN7PVQImkxsA8oE3Cc4vCW+PfoG27drTafPMy47Zs2ZJp0z5nwfyw1vT48a/Tdtttab/Djrz0yus8N/Jlnhv5Mi1bteKxJ/7NZpu1KHTxXQV8NWc+e3ZsR6MN6gOw35478skXcznlyF9w0C//j5Mve5iw7Gzw/Csf8pueewKwZ8e2LF6ynDnfLmbC5Bk02aQRmzXbGICuP9+Rj6fNYcHiZTTeuBHbbx2eF+3fZSc++WJuJX/LmifPLYG7gJFmthPh5vcj4FJgjJm1B8bEfYAeQPu49QXujeVpTliZcS9gT6Bf2kX9XuD0tPNSN+bZ8sgqyRDRt2JBDLgQOAyYnuA8gAlxArn7CaODlgBvJDy3Vrn84guYMOFtFi5cQI8D9+UPZ5zNEUcdw6iRz3Nwj54/id+z+/4sXbKUlStXMu7lMdxz34Nsu9329P3jmfz+1JOoV68eW2yxJVdff1MVfBu3Pt6eNIPhL73HG49fQsmq1Xzw8Uwe/NdrfPf67Xw5ez7jBl0IwDMvv89NA0Yy8n+TOXifnzF5RD+WrVjJH64OI8JWrzYuu+NpXvjn2UjivY++ZOC/X2PVqtWced3jDPnr71ltq1m4ePmac/bosDVP3HE6TRtvyCG/7siVfzyUPY65ocp+F9VJvnp5JDUBfg2cAmBmPwI/SuoFdI3RBgHjgEuAXsDguOD8+NiK2CLGHW1m82O6o4HuksYBjc1sfAwfDBxBuEnPlkf28qbfcWT5Qi2AE4HPzOx5SUcDy8zsxTJ+F6XTaRsLPjFJ/CU/lFEwV5RadDm7qovgqqHl7/19vS/hO14yKvE159Nbu/+BcNeeMsDMBgBI2g0YAEwhtALeISy1O8vMmsY4AhaYWVNJzwE3m9n/4rExhAt3V2ADM7s+hv8FWE64sN9sZgfG8F8Bl5hZT0kLM+WR67vkbAlIqgtMBP5iZs8DmNm/cv96IL1PK9MxM3u3rDScc64ylaclEC/42Uav1AM6AWeb2ZuS7qJUt4yZmaSC3ugmzSNnJWBmqyRNArYrZ/4TgElAap6g9F+vAfuXMz3nnCuoJA98E5oJzDSzN+P+U4RKYK6kLcxsduzumRePz2LdZ6WtY9gs1nbtpMLHxfDWGeKTI4+skjwY3hC4OA7dHBG3Z8o45wJgMaHp8hBwmJntFzevAJxz1U6+RgeZ2RzgK0k7xqADCF1DI4DUCJ8+hBkUiOEnx1FCXYBFZjYbGAV0U1iMqxnQDRgVjy2W1CV2+ZxcKq1MeWSV5MHwL+LPTnGDMtYEMLO/AX+TtC1wPDBG0gzgRjN7P0GezjlXqfI8/P9s4DFJDYBpwKmEm+5hkk4DZgDHxbgvAIcAU4FlMS5mNl/SdcDbMd61qYfEwBnAw0AjwgPh1DPam7PkkVWSSqDCA4zNbFpsNTQCfgvsALxf0fScc65Q8vkSWLzZ7Zzh0E9mUI6jgs7Mks5AYGCG8AnAzhnCv8uURy5ZK4H4cPdzYNMsUWbkODfVAugFfAUMJbQClpencM45V1lq25vASeVqCbwNnEC4gGfq/qmb49yphFFFzxCeDWwN/Cn1SzazOypSWOecK5QirQNyVgKDCS+FDab86wJfm3bOxuUvlnPOVa48jg6qUbJWAnGuHwhvDJeLmV1d0QI551xV8O6gLCRtBJwDdGTtnEFmZkeXJyNJ75pZ1pfInHOuKhVpHZBodNADQG9C907q11SRN92K9FfsnKsJirUlkORlsQNZuyRkb8Lbb1dWIK/nK3COc85VCin5VpskqQQ2Joz0EeHt4beBi8qbkZlVpOJwzrlKUayLyiTpDppJqAg+J6woJsLY/zJJOgq4BWgZzxPheULjCpXWOecKxEcHZfdHwjoA7xNeSTbg8oTp30qYN+ijCpXOOecqSS27wU+szErAzMZIqg/sCPwe+MTMViZMf65XAM65mqC2dfMklWSI6H7Ao0Bq/cPZkk4ys3EJ0p8g6QngaeCHVKCZ/TvrGc45VwWKtA5I1B30IOGZwGOEB8mHxbAkaww0JsyK1y0tzACvBJxz1Yq3BLKrC1xqZqnFj8+gjDUrU9LeOnbOuWrNK4Hs/g30lvQRoSVwHGG+6k4AuZaKlNQauBvYOwb9FzjXzGauV6mdcy7PfHRQducSunDGxH0BvyKsHga5ZxN9CHgcODbunxTDDip3SZ1zroCKtCGQqBKoyCyiKS3M7KG0/YclnVfBtJxzrmC8OygLMztlPdL/TtJJwJC4fwLw3Xqk55xzBZHPOkDSdOB7YBVQYmadJTUHngDaEqbpP87MFsR1gu8iLDG5DDgl1c0uqQ9rp+m53swGxfA9WLu85AuEbnbLlkeusiaZNmJ9/I7wDGEOMBs4hrh+pnPOVSd1pMRbQvuZ2W5mllpm8lJgjJm1J3SvXxrDewDt49YXSA3CaQ70A/YC9gT6xQXniXFOTzuvexl5ZP/eSb9NRZjZDDM73MxamFlLMzvCzL4sZJ7OOVcRdeoo8VZBvYBB8fMg4Ii08MEWjAeaStoCOBgYbWbz4938aKB7PNbYzMbH9YkHl0orUx5ZJXkmUG6Srspx2MzsukLk65xzFVWea7ukvoS79pQBZjYgbd+A/0gy4L54rJWZzY7H5wCt4uetWHc+tpkxLFf4zAzh5MgjqyRvDG+dIXihmS3OcdrSDGEbAacRFq73SsA5V62U58FwvKgPyBFlHzObJaklMFrSx6XOt1hBFEzSPJK0BKaTYXSQpAlAbzObniHz29PibUIYZnoqYdH620vHd865qpbPB8NmNiv+nCdpOKFPf66kLcxsduzSmRejzwLapJ3eOobNArqWCh8Xw1tniE+OPLJK8kzgv4RK4I24GTAB2JUcF3RJzSVdT1iLoB7QycwuMbMyC+Wcc5VN5fgvZzrSRvHmN7U8bzdgEjAC6BOj9QGeiZ9HACcr6AIsil06o4BukprFB8LdgFHx2GJJXeLIopNLpZUpj6yStASWApeZ2W3xS11MeFnsHOD6LL+E24CjCM2ljma2JEE+zjlXZfL4wnArYHjsXqoHPG5mIyW9TZht4TRgBmHkJIQhnocAUwlDRE8FMLP5kq4jLOQFcK2ZzY+fz2DtENEX4wZhuv9MeWSVpBLYB1guqV3c3yuG3UmYWC6TCwmzhl4JXJHW1+aLyjjnqqV8TRthZtMIPSWlw78DDsgQbsCZWdIaCAzMED4B2DlpHrkkqQSeJkz3cERa2KNAR+DTTCeYWaHfP3DOubwqx/j/WiVJJfB7wjOA/QjPA8YC9wH1CVNKO+dcjVekdUCiaSN+BPrHLd2PBSmRc85VgWKdO6jMbhtJR0v6TNJKSaviVlIZhXPOucoiJd9qkyTdQfcCTQhPrv3i75yrlerWtqt7QkkqgYXAdWZ2d4HL4pxzVaZYu4OSVALjgD9JWgakpiQ1MxtesFI551wlK9KFxRKPDoK182SIMEoo14pizjlXo3hLILtrqfjKYs45VyMUaR2QaIjo1ZVQDuecq1LeEihF0kTgIuCvGQ6bmf3ktWjnnKup6hbpQ4FcLYGdgWZkmJ/COedqm+KsAnJUAmnz/zxRSWVxzrkq43MH5SBpb8Lq9akRQWZmjxSqUM45V9mKtA5ItLzkY8Dx6UGE0UJeCTjnag1/MJxdT+Ad4F/4tBHOuVqqSOuAxG8Mv25mtxS4LM45V2V8dFApkkbEj02A6yX1ZN1pI3oVunDOOVdZvDvop3qW2t877XPB3yCuV7c4/0Fcbt+M93kMXWHkezlESXUJC3LNMrOecYneocCmhC7235rZj5IaAoOBPYDvgN5mNj2mcRlwGrAKOMfMRsXw7sBdhME6D5jZzTE8Yx65ypnre7fLsW1brt+Gc85Vc5ISbwmdC3yUtn8LcKeZbU/oVTkthp8GLIjhd8Z4SOpAGJTzM6A78A9JdWPlcg/QA+gAnBDj5sojq6yVgJnNMLMZwObAVmn7W8Uw55yrNeoo+VYWSa2BQ4EH4r6A/YGnYpRBrF23vVfcJx4/IMbvBQw1sx/M7AvCmi57xm2qmU2Ld/lDgV5l5JH9e5f9dXgS2Ddt/9cxzDnnao26dZR4k9RX0oS0rW+p5P4GXAysjvubAgvNLDXCcibhhpr48yuAeHxRjL8mvNQ52cJz5ZFVktFBmxIWlklZDDRPcJ5zztUY5RkcZGYDWDu9/jriIJp5ZvaOpK75KFshJakEPgaulGSEF8WuYN1+Luecq/HyODhob+BwSYcAGwCNCQ9xm0qqF+/UWwOzYvxZQBtgpqR6hBGZ36WFp6Sfkyn8uxx5ZJWkO+gKwp3/PXFrDlyZ4DznnKsx6kiJt1zM7DIza21mbQkPdl82sxOBscAxMVof4Jn4eUTcJx5/2cwshh8vqWEc9dMeeAt4G2gvqZ2kBjGPEfGcbHlklWQ9gZGSOgLdYtB/zGxqWec551xNku8hohlcAgyVdD3wHvBgDH8QeETSVGA+cZoeM5ssaRgwhTBbw5lmtgpA0lnAKMIQ0YFmNrmMPLJSqDxyRJCmAWeb2fNxf1/gCjPrlvPE9bSixFczcz9Vssr/LNxPbdxw/Ttzrnjx08R/XDf02KHWvMiU643hxoT1BNoC20jaOh7aFzig8EVzzrnK49NG/NT5wFWEt4PvjlvKl4UslHPOVbYirQNyVgKfAi8ChxD6lr4mVAgLgPsKXzTnnKs8vqhMKWY2BBgiqR/wpJlNqbxiOedc5SrSOiDRewLXAb0lnUQY8wphFtELC1cs55yrXN4dlN3dwB/j59SvyQCvBJxztYaKdKn5JJXAUcAQ4ATCrHhHAP8tYJmcc67S1auEFwWqoyRfuxlrL/qzCTPUlZ4syTnnarQCTCVdIyRpCcyJ8eYQpkVtQJhEzjnnao1ifSaQpCVwJfA54RnACsI0p+cVsEzOOVfppORbbZJk7qBH03aHFrAszjlXZfw9gSwk7UZ4c7gdYbIiCENEdy1guZxzrlLVLdIHw0meCTyFrynsnKvl6hTpENEkdV9jQkugnpnVSW0FLpdzzlUqfyaQ3bmEh8IzJaVGBZmZDS9csZxzrnIV6+igJJXAgUAn1i5OIMIbw3WznuGcczWMPxjO7ljgHcIqNisLWxznnKsaRVoHJKoERgKTzeyaQhfGOeeqSr4WlZG0AfAq0JBwjX3KzPrFdYKHApsSbqx/a2Y/SmoIDAb2ICwW39vMpse0LgNOA1YB55jZqBjenbB4fV3gATO7OYZnzCNXeZM84N0VuErSl5Imxu2DxL8R55yrAeqUYyvDD8D+cRj9bkB3SV2AW4A7zWx7wrosp8X4pwELYvidMR6SOhDWG/4Z0B34h6S6kuoC9wA9gA7ACTEuOfLI+b3L0p7wHKA1sHPcOiY4zznnaox8zR1kwZK4Wz9uBuxPGHIPMIgwGSdAr7hPPH6AQia9gKFm9oOZfQFMBfaM21Qzmxbv8ocCveI52fLIqsxKIH1YqA8Rdc7VVirPJvWVNCFtW2dSzXjH/j4wDxhNmHpnoZmVxCgzga3i562ArwDi8UWE7pw14aXOyRa+aY48skryTMA552q98owOMrMBwIAcx1cBu0lqCgwHdlrf8hWK39E75xzlawkkZWYLgbHAL4CmklI33q2BWfHzLKANQDzehPCAeE14qXOyhX+XI4+svBJwzjmgTh0l3nKR1CK2AJDUCDgI+IhQGRwTo/UBnomfR8R94vGXzcxi+PGSGsZRP+2Bt4C3gfaS2klqQHh4PCKeky2PrLw7yDnnyOsd8RbAoDiKpw4wzMyekzQFGCrpeuA91r6A+yDwiKSpwHzCRR0zmyxpGDAFKAHOjN1MSDqL8O5WXWCgmU2OaV2SJY+sFCqPDAekiTnOSzSLqKROGYIXATPSHl5ktKKEzAVzRa1klf9ZuJ/auOH6v+o17P2vE/9xHbfblrXm1bJcLYGd85D+PwhTTkwkdKXtDEwGmkj6k5n9Jw95OOfceqs1V/VyytoCyjY0tJxDRL8Gdjezzma2B7A7MI3QR3br+hffOefyw9cYzkFSa8KbaRvEIDOzZxOcukNaXxVmNkXSTmY2rbb9Ip1zNVvdIr0mJVlZrC/wd346a2iSWUQnS7qXtctS9gamxLkyfDI651y1UZxVQLIH4pcAE+Lnhwhvqt2XMP1TCK86nxe3aTFsJbBf4lI651yB+aIy2W1FmNRoL8KcFG8BZyZJ3MyWA7fHrbQlGcKcc65KFOvykkkqgcXACmA5cAPQiPAmWpkk7Q1cDWyTnpeZ+ZrFzrlqpbbd4SeVpBJ4jNBtdA/w5xh2Z8L0HwTOJ8xrvarcpXPOuUoibwlkZmbnpz5LGhjDPkmY/iIze7GCZXPOuUpTrKODynwwLKmRpNskvQdsBpwp6biE6Y+N5/5CUqfUtl4lds65AvAHw9n9jbA6jQjLpdUldAsNS3DuXvFn57Sw1OIKzjlXbdS2i3tSSSqBo4DbgIvj/jvAb5MkbmY+DNQ5VyP4M4HsVrPuexS7UsbwTkknmdmjki7IdNzM7kheROecK7w8rTNf4ySpBJ4HUhfzR4DNgQfKOGej+HOTCpbLOecqVXlWFqtNklQC5xFaAocSFkweBFyU6wQzuy/+vGY9y+ecc5XCu4OyMLPFwKnpYZJ2BiaVda6kFsDpQFvWfVnsd+UtaLF67b+vcsvNN7B61WqOPPpYTju9b9knuRrjmqsu57+vjKN5800ZNjzMyXjpn89nxvQvAPj++8Vsskljhjz5NAsXLuDiC89lyqRJHNbrCC65/Ko16Yx84TkGPnAfkmjRoiXX3XQbzZo1W3P8kUED+dvtt/LSK2+sE+7W8u6gDCQdDWwLvGVmr0jqCFwLHFbWudEzwH+Bl/CXxcpt1apV3HjDtdx3/0O0atWK3/Q+hq777c92229f1UVzeXLY4Udy3PEn0u+KS9eE3Xzb2ncx7/jrzWy8cehVbdigIX8681w+n/oZn0/9dE2ckpIS/nrLjTz59PM0a9aMu+64jWFDHuUPZ5wNwJw5sxn/xmtsvsWWlfStaqZibQlkfU9A0l2EYaC3AC9Lup2wtmUvwrJlSWxoZpeY2TAz+1dqW+9SF4lJH06kTZttaN2mDfUbNKD7IYcybuyYqi6Wy6NOnX9OkyZNMh4zM14aNZLuPQ4FoNGGG7J7pz1o0LDBT+IZxorlyzAzli5dQouWLdccv+PWmzj3/D8X7RDIpIr1PYFcL4v1BsYDJwEDCdM/fA30MrOfJ0z/OUmHrF8Ri9e8uXPZfIvN1+y3bNWKuXPnVmGJXGV6750JNN90U7bepm3OePXr1+eyK/rR++jDOfiAXzPt88/pdWRYa3zc2DG0aNmKHXbcqRJKXLOpHFvOdKQ2ksZKmiJpsqRzY3hzSaMlfRZ/NovhktRf0lRJE9NfqJXUJ8b/TFKftPA9JH0Yz+mvuEBLtjxyyVUJtADuMbPHgSti2CVJFpOR9L2kxcC5hIpguaTFaeHZzusraYKkCQ/eP6CsbJyr1Ua++DwHx1ZALitXruSpYUN5bNhwRo15lfY77MBDDw5g+fLlDLz/Pv545jmVUNqar66UeCtDCXChmXUAuhBmWegAXAqMMbP2wJi4D9ADaB+3vsC9EC7oQD/CS7d7Av3SLur3Ep63ps7rHsOz5ZFVrkpAwAWSRhBGBBlwvqQRkp7JlaiZbWJmjePPOmbWKG2/cY7zBsSlKDv7A9Bw5z9n9pw1+/PmzqVVq1ZVWCJXWUpKShg7ZjTdDi67If3pJx8D0KbN1kjioG49mPj+e8z86ku+njWTE47tRc/u+zNv7lxO7H0U3377TaGLXzPlqSlgZrPN7N34+XvgI8KU/L0I11LizyPi517AYAvGA00lbQEcDIw2s/lmtgAYDXSPxxqb2XgzM2BwqbQy5ZFVWQ93O8UtpUvqe5aVMICkI4GXzWxR3G8KdDWzp5OcX+x+tnNHvvxyOjNnfkWrlq0Y+cLz3HRbpqUZXG3z1vg3aNuuHa0237zMuC1btmTatM9ZMH8+zZo3Z/z412m77ba032FHXnrl9TXxenbfn0eG/MtHB2VRngfDccXF9DvVAWb2k+4LSW0Ja6u/CbQys9nx0BwgdUe3FWGxrpSZMSxX+MwM4eTII6tclUC7sk5OoJ+ZDU/tmNlCSf2Ap/OQdq1Xr149LrviKv7U9/esXr2KI448mu23b1/VxXJ5dPnFFzBhwtssXLiAHgfuyx/OOJsjjjqGUSOf5+AePX8Sv2f3/Vm6ZCkrV65k3MtjuOe+B9l2u+3p+8cz+f2pJ1GvXj222GJLrr7+pir4NjVbeR74xgt+zj5rSRsD/wLOM7PF6euqm5lJSnQzXVFJ81BoTRSGpIlmtkupsA/NrGNZ564oSdbacMWlZJX/Wbif2rjh+o/ZeXvaosR/XD/ftknO/CTVB54DRqWmyZH0CaEnZHbs0hlnZjtKui9+HpIeL7WZ2R9i+H3AuLiNNbOdYvgJqXjZ8shV1iRrDK+PCZLukLRd3O4gTEDnnHPVS56eCcSROg8CH5WaJ20EkBrh04fwHlUq/OQ4SqgLYR2W2cAooJukZvGBcDdCpTIbWCypS8zr5FJpZcoje3kL3BLYCPgLcCDhOcJo4HozW1bWud4ScJl4S8Blko+WwDvTFyf+49qjbeOs+Unah/CS7IeECTgBLic8FxgGbA3MAI4zs/nxQv53wgifZcCpZjYhpvW7eC7ADWb2UAzvDDxMWO73ReDs2P2zaaY8cn2XQlcCx5rZk2WFZeKVgMvEKwGXST4qgXfLUQl0ylEJ1DSF7g66LGGYc85VrXy9LVbDJJn/p9wk9QAOAbaS1D/tUGPCixTOOVetFOvcQQWpBAjTS0wADmfdB8HfE6afcM65aqW2zQmUVEEqATP7APhA0uNmtrIQeTjnXD55JVAYbSXdBHQANkgFmtm2Bc7XOefKpVi7gwr9YPghwkRHJcB+hDkuHi1wns45V24+lXRhNDKzMYShqDPM7GrCMpXOOVetFOngoIJ3B/0gqQ7wmaSzgFnAxgXO0znnyq+2Xd0TKnRL4FxgQ+AcYA/gt6x9pdk556oNleO/2qSgLQEzezt+XEKpxeqdc6468YXm8yguRJOVmR1eiHydc67CvBLIq18QFkMYQpg0qUh/vc65mqK2dfMkVahKYHPgIOAE4DfA88AQM5tcoPycc2691Lahn0kV5MGwma0ys5Fm1oewJOVUYFwcIeScc9WODxHNM0kNCe8EnAC0BfoDw3Od45xzVaa2Xd0TKtSD4cHAzsALwDVmNqkQ+TjnXL7UKdL+oIIsKiNpNbA07qZnIML6x43LSsMXlXGZ+KIyLpN8LCrz+bzlif+4tmvZqNbUGIV6JlDHzDaJW+O0bZMkFYBzzlW6PD4UkDRQ0jxJk9LCmksaLemz+LNZDJek/pKmSpooqVPaOX1i/M8k9UkL30PSh/Gc/nGJyqx55FLoN4adc65GyPMbww8T1gxOdykwxszaA2PiPkAPoH3c+hIm3URSc6AfsBewJ9Av7aJ+L3B62nndy8gjK68EnHOO/M4iamavAqUXeO8FDIqfBwFHpIUPtmA80FTSFsDBwGgzm29mC4DRQPd4rLGZjbfQnz+4VFqZ8sjKKwHnnKN8lYCkvpImpG19E2TRysxmx89zgFbx81aEl2tTZsawXOEzM4TnyiOrQs8i6pxzNUJ53hg2swHAgIrmZWYmqaCjHJLm4S0B55yjUhaVmRu7cog/58XwWUCbtHitY1iu8NYZwnPlkZVXAs45R6W8MTyCtVPp9wGeSQs/OY4S6gIsil06o4BukprFB8LdgFHx2GJJXeKooJNLpZUpj6y8O8g558jv3EGShgBdgc0kzSSM8rkZGCbpNGAGcFyM/gJwCGF6nWXEaffNbL6k64DUlPzXmlnqYfMZhBFIjYAX40aOPLKXtRAvi+WDvyzmMvGXxVwm+XhZbOaCHxP/cbVu1qDWvCzmLQHnnMMXlXHOuaJWpFMHeSXgnHPgi8o451xxK846wCsB55yDoq0DvBJwzjnwZwLOOVfUVKS1gFcCzjmHdwc551xRK9KGgFcCzjkHPkTUOeeKmrcEnHOuiHkl4JxzRcy7g5xzroh5S8A554pYkdYBXgk45xxQtLWAVwLOOYc/E3DOuaJWrIvK+ELzzjkHeV1pXlJ3SZ9Imirp0kIVOR+8EnDOOUJ3UNL/cqYj1QXuAXoAHYATJHWohK9QIV4JOOccYYho0q0MewJTzWyamf0IDAV6Fbr8FVVtnwlsUK9In9JkIKmvmQ2o6nJUC/X8zyLF/y7yqzzXHEl9gb5pQQPS/i22Ar5KOzYT2Gv9S1gY3hKoGfqWHcUVIf+7qCJmNsDMOqdtNbYy9krAOefyaxbQJm2/dQyrlrwScM65/HobaC+pnaQGwPHAiCouU1bV9pmAW0eNbWq6gvK/i2rIzEoknQWMAuoCA81schUXKyuZWVWXwTnnXBXx7iDnnCtiXgk451wR80ogB0km6fa0/YskXZ2ntK+O6W+fFnZeDOtcxrnnSdowQfoXZTn2esVK7Soi/ps+mrZfT9I3kp4r47zdJB2SIP0lWcL/KOnk8pfYFROvBHL7AThK0mYFSv9DwsiBlGOBJA+QzgNyVgK5mNkvK3quq5ClwM6SGsX9g0g2ZHA3oMxKIBsz+6eZDa7o+a44eCWQWwlhBMb5pQ9IaivpZUkTJY2RtHUMf1hSf0mvS5om6Zgc6T9NfJ1c0nbAIuDbtDzulTRB0mRJ18Swc4AtgbGSxsaw7pLelfSBpDFp6XeQNC6W45y0dJfEn13j8ackfSzpMSm8FC/pkBj2Tvw+Oe9aXZleAA6Nn08AhqQOSNpT0huS3ot/NzvGoYXXAr0lvS+pt6SNJT0k6cP4d3d0Who3xH//8ZJaxbA1rcH473yLpLckfSrpVzF8Q0nDJE2RNFzSm2W1RF3t4pVA2e4BTpTUpFT43cAgM9sFeAzon3ZsC2AfoCdwc460FwNfSdqZ0CJ4otTxK8ysM7ALsK+kXcysP/A1sJ+Z7SepBXA/cLSZ7UpoTaTsBBxMmMukn6T6GcqwO6Fl0QHYFthb0gbAfUAPM9sDaJHjO7hkhgLHx9/tLsCbacc+Bn5lZrsDVwE3xjlnrgKeMLPdzOwJ4C/AIjPrGP/uXo7nbwSMj//+rwKnZylDPTPbk/Dv3S+GnQEsMLMOMf098vN1XU3hlUAZzGwxMBg4p9ShXwCPx8+PEC76KU+b2WozmwK0KiOLoYQK4AhgeKljx0l6F3gP+BnhQl1aF+BVM/silnd+2rHnzewHM/sWmJelLG+Z2UwzWw28D7QlVB7TUmmSdtfqKsbMJhJ+tycQWgXpmgBPSpoE3En4t87kQMJNSSrNBfHjj0CqpfZOzCeTf2eIsw/hbxAzmwRMLOu7uNrFK4Fk/gacRrjjSuKHtM+p7pUbYrP+/VJxnwN+C3wZKxxi/HbARcAB8a7veWCDcpY7vRyryPxyYJI4Lj9GAH/lp5XqdcBYM9sZOIzy/zuvtLUv/OT6N/whQRxXZLwSSCDeXQ8jVAQpr7P2oe6JwH/LSOOK2KzfrVT4MuAS4IZSpzQmPFBcFPt4e6Qd+x7YJH4eD/w6VhpIap7wa+XyCbCtpLZxv3ce0nQwELjGzD4sFd6EtQ+KT0kLT/93BhgNnJnakdQsD2V6DTguptcB6JiHNF0N4pVAcrcD6aOEzgZOlTSRcCd/bkUTNrOhZvZuqbAPCN1AHxO6nV5LOzwAGClprJl9Q5hN8t+SPuCnzxUqUp7lhL7ikZLeIVyMFq1vusUudrv1z3DoVuAmSe+x7h36WMLD/fcl9QauB5pJmhT/rffLQ7H+AbSQNCWmPxn/ty4qPm2Ey0jSxma2JI4Wugf4zMzurOpyufxSWAWrvpmtiCPUXgJ2jA+mXRHwfkGXzemS+gANCC2S+6q4PK4wNiQMN65PeH51hlcAxcVbAs45V8T8mYBzzhUxrwScc66IeSXgnHNFzCsBl5oHydK2+ZKGSto0D2lfFNM8Je5PzzbrZdo5v4zz3uxWgfyOifldXaECZ06za0zz7/lK07nqwkcHuXTvAbcBxxBeEFvKui/IAWFYoZmtqmAeZxNGHOXyS8LcNtMJU1lUtSmE6R4+zXRQUj0zK6ncIjmXH94ScOm+NrMhwJVxfy9Yc/e+VNI/JC0COkr6RZz5ckmclfKEVCLx7v/b+AJS6TdQ7wYGxXgNJN0kaYak5ZJeldSVUBEBPBTvwNtK+j9JoyUtjvHPT8vvN5JmS5pBjheo0u7on5X0P0kLJN0R34UgzsC5WNIyhdlTfxVP7UCY6uF3Md64mM5dkr4FesaWy1xJKyRNlfSbcv/2nasCXgm4dPXjrKRHxP0v045tSJjC+iLCZHTPAU0J011MBx5VWARlV8JFfA5hzqUDc+R3adwmA2cB7xLuuh+Lx/9JuANfADxDuBjfSpiB8w5Jh8UpNR4EVsey7Jvge+5LmDRtImGa8MNi+GjgAuBqYHPCNA+57E6Y8mMuoeUymfD29qP4/1uuhvDuIJeuG+ECD2Eum8tLHe9jZoskHQo0j9uNacf3J0xOBnCnmT0oqQ1rWxalHQYY0NvMvk8Fxkn2TgTeNLOhkn4GtI+Hr0s7/yDCxXYDYKCZDZC0CnigjO/5jJn9XdJHhDdku0p6GegEXAbUTStLoyxpAJxlZhPji1ZzgB0Js3K+xdoZO52r1rwScOneBK4A5gNTzCx9htGlZlZ6TpnBhGm0U6azduEUlfpZHtneYBxFmIUzZQ6wXQXyyxT3JMIqXo8TuqtuJMyt3zBHOl8DmNnK2AI6mtA6+CfQNabpXLXmlYBL962ZjSk7Gm8QKoruwNuEv6OehLv0cTHOeZLqAKfmSOdZoDPwhKSngF3M7DxC9w9AD0nLCHfVnxHusscAywjdTMMJFcMKwmR+X/LTdR8yOVzSmcTZM2OZt4yfGxMWfUk8m6akTQhdYK8DE4DfpKXnXLXm/Zau3OLU2j2BqYSV064gXJinx9lP/0zoUz8beCVHUjfHbWfCbJadYvgIwsInRwOPx5E3vQgzqV5JqGw2AT40s7mEEUx1CP3z4xN8hZcJzxp2JSzi8izhOcRLhMplX8IKXUmVANvE79KfUGFl6wJzrlrxuYNc0Ygjj8YC95jZWVVbGueqB28JOOdcEfOWgHPOFTFvCTjnXBHzSsA554qYVwLOOVfEvBJwzrki5pWAc84Vsf8HmArKxcVtesUAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "e.confusion_matrix()"
+ "_ = ccc.evaluate(clusters)"
]
},
{
@@ -1063,7 +1021,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -1077,12 +1035,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019, 23:11:46) [MSC v.1916 64 bit (AMD64)]"
- },
- "vscode": {
- "interpreter": {
- "hash": "cac59bda82d2eee8acda0b767173e62dfe62cb7fb40b3eb8d3fb22b85c150c43"
- }
+ "version": "3.7.6"
}
},
"nbformat": 4,
diff --git a/docs/Optuna.ipynb b/docs/Optuna.ipynb
new file mode 100644
index 0000000..a96e036
--- /dev/null
+++ b/docs/Optuna.ipynb
@@ -0,0 +1,16869 @@
+{
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "ad9c08d0-f1cb-4ee6-809b-3fd65500ff03",
+ "metadata": {
+ "jp-MarkdownHeadingCollapsed": true,
+ "tags": []
+ },
+ "source": [
+ "# Hyper-Parameter Tuning with Optuna\n",
+ "\n",
+ "\n",
+ "---\n",
+ "\n",
+ "\n",
+ "Optimization and fine-tuning for the hyper-parameters using a novel framework named Optuna."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4d49a3e6-1f30-4a3e-8e04-e1b511ae2dcd",
+ "metadata": {},
+ "source": [
+ "# Instalation\n",
+ "\n",
+ "pyJedAI is an open-source library that can be installed from PyPI.\n",
+ "\n",
+ "For more: [pypi.org/project/pyjedai/](https://pypi.org/project/pyjedai/)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6a0d30aa-e7f1-4bfd-844b-a739d5783015",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install pyjedai -U"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "962e9d9e-306b-4f4e-a1d3-776a26b77815",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Name: pyjedai\n",
+ "Version: 0.0.3\n",
+ "Summary: An open-source library that builds powerful end-to-end Entity Resolution workflows.\n",
+ "Home-page: \n",
+ "Author: \n",
+ "Author-email: Konstantinos Nikoletos , George Papadakis \n",
+ "License: Apache Software License 2.0\n",
+ "Location: c:\\users\\nikol\\appdata\\local\\programs\\python\\python310\\lib\\site-packages\n",
+ "Requires: faiss-cpu, gensim, matplotlib, matplotlib-inline, networkx, nltk, numpy, optuna, pandas, pandas-profiling, pandocfilters, PyYAML, rdflib, rdfpandas, regex, scipy, seaborn, sentence-transformers, strsim, strsimpy, tomli, tqdm, transformers\n",
+ "Required-by: \n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip show pyjedai"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5b1085d9-4773-485e-9bd6-a974beec2615",
+ "metadata": {},
+ "source": [
+ "Imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "a716763f-c7ab-42a9-9a68-01c6aea0e33f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import plotly.express as px\n",
+ "import logging\n",
+ "import sys\n",
+ "import optuna\n",
+ "import plotly\n",
+ "import os\n",
+ "import sys\n",
+ "import pandas as pd\n",
+ "from optuna.visualization import *\n",
+ "import plotly.io as pio\n",
+ "import plotly.express as px\n",
+ "pio.templates.default = \"plotly_white\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c1574ad5-d9f6-464c-aff7-4f7b4dc4bc91",
+ "metadata": {},
+ "source": [
+ "## Data Reading"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "79fc339f-ee27-4d37-93c5-827789c6fc48",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyjedai.datamodel import Data\n",
+ "\n",
+ "data = Data(\n",
+ " dataset_1=pd.read_csv(\"./../data/ccer/D2/abt.csv\", sep='|', engine='python', na_filter=False).astype(str),\n",
+ " attributes_1=['id','name','description'],\n",
+ " id_column_name_1='id',\n",
+ " dataset_2=pd.read_csv(\"./../data/ccer/D2/buy.csv\", sep='|', engine='python', na_filter=False).astype(str),\n",
+ " attributes_2=['id','name','description'],\n",
+ " id_column_name_2='id',\n",
+ " ground_truth=pd.read_csv(\"./../data/ccer/D2/gt.csv\", sep='|', engine='python'),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "747702f2-f730-45a7-a920-d0670696f818",
+ "metadata": {},
+ "source": [
+ "## WorkFlow"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "9df60410-c0ba-41aa-ae4b-61ec21262173",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyjedai.workflow import WorkFlow, compare_workflows\n",
+ "from pyjedai.block_building import StandardBlocking, QGramsBlocking, ExtendedQGramsBlocking, SuffixArraysBlocking, ExtendedSuffixArraysBlocking\n",
+ "from pyjedai.block_cleaning import BlockFiltering, BlockPurging\n",
+ "from pyjedai.comparison_cleaning import WeightedEdgePruning, WeightedNodePruning, CardinalityEdgePruning, CardinalityNodePruning, BLAST, ReciprocalCardinalityNodePruning, ReciprocalWeightedNodePruning, ComparisonPropagation\n",
+ "from pyjedai.matching import EntityMatching\n",
+ "from pyjedai.clustering import ConnectedComponentsClustering"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "f2c3b71f-3ad7-43d2-b2ed-bd30fe6741ce",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "db_name = \"pyjedai\"\n",
+ "title = \"Test\"\n",
+ "storage_name = \"sqlite:///{}.db\".format(db_name)\n",
+ "study_name = title # Unique identifier of the study."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eb7fe417-f81e-45ba-9572-6c71b0055598",
+ "metadata": {},
+ "source": [
+ "## Objective function\n",
+ "\n",
+ "\n",
+ "In the bellow cell, we define which parameters we want to be fine-tuned and the boundaries that we suggest. Also we set as the goal score to be maximized the F1-Score.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "55542ebe-5644-4241-879e-2a5e554be641",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "'''\n",
+ " OPTUNA objective function\n",
+ "'''\n",
+ "def objective(trial):\n",
+ " \n",
+ " w = WorkFlow(\n",
+ " block_building = dict(\n",
+ " method=QGramsBlocking, \n",
+ " params=dict(qgrams=trial.suggest_int(\"qgrams\", 3, 10)),\n",
+ " attributes_1=['name'],\n",
+ " attributes_2=['name']\n",
+ " ),\n",
+ " block_cleaning = [\n",
+ " dict(\n",
+ " method=BlockPurging,\n",
+ " params=dict(smoothing_factor=1.025)\n",
+ " ),\n",
+ " dict(\n",
+ " method=BlockFiltering, \n",
+ " params=dict(\n",
+ " ratio = trial.suggest_float(\"ratio\", 0.7, 0.95)\n",
+ " )\n",
+ " )\n",
+ " ],\n",
+ " comparison_cleaning = dict(method=CardinalityEdgePruning),\n",
+ " entity_matching = dict(\n",
+ " method=EntityMatching, \n",
+ " metric='sorensen_dice',\n",
+ " similarity_threshold= trial.suggest_float(\"similarity_threshold\", 0.05, 0.9),\n",
+ " attributes = ['description', 'name']\n",
+ " ),\n",
+ " clustering = dict(method=ConnectedComponentsClustering),\n",
+ " name=\"Worflow-Test\"\n",
+ " )\n",
+ " w.run(data, workflow_step_tqdm_disable=True, verbose=False)\n",
+ " f1, precision, recall = w.get_final_scores()\n",
+ " \n",
+ " return f1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "0b09050d-941a-49e0-8474-5842a8102f36",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\u001b[32m[I 2022-09-26 17:11:56,515]\u001b[0m A new study created in RDB with name: Test\u001b[0m\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Optuna trials starting\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\nikol\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\optuna\\progress_bar.py:49: ExperimentalWarning: Progress bar is experimental (supported from v1.2.0). The interface can change in the future.\n",
+ " self._init_valid()\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "bff0a0d2a2344dfb84d9fad438fba646",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/30 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[32m[I 2022-09-26 17:12:08,614]\u001b[0m Trial 0 finished with value: 0.30337436666113177 and parameters: {'qgrams': 8, 'ratio': 0.8380947452182991, 'similarity_threshold': 0.34701140984689427}. Best is trial 0 with value: 0.30337436666113177.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:12:30,648]\u001b[0m Trial 1 finished with value: 0.20307681243216183 and parameters: {'qgrams': 5, 'ratio': 0.7929630924927731, 'similarity_threshold': 0.3138589895822442}. Best is trial 0 with value: 0.30337436666113177.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:12:53,415]\u001b[0m Trial 2 finished with value: 0.19103604207409036 and parameters: {'qgrams': 4, 'ratio': 0.8038691888459086, 'similarity_threshold': 0.1331382386125572}. Best is trial 0 with value: 0.30337436666113177.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:12:58,756]\u001b[0m Trial 3 finished with value: 0.28333512688101153 and parameters: {'qgrams': 7, 'ratio': 0.7144467000567123, 'similarity_threshold': 0.38959392590704467}. Best is trial 0 with value: 0.30337436666113177.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:13:03,935]\u001b[0m Trial 4 finished with value: 0.4633111426794054 and parameters: {'qgrams': 10, 'ratio': 0.8517624194151302, 'similarity_threshold': 0.1658021229910926}. Best is trial 4 with value: 0.4633111426794054.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:13:26,462]\u001b[0m Trial 5 finished with value: 0.18531875170393172 and parameters: {'qgrams': 3, 'ratio': 0.9174470432736699, 'similarity_threshold': 0.8777133320453102}. Best is trial 4 with value: 0.4633111426794054.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:13:38,772]\u001b[0m Trial 6 finished with value: 0.1907552827778649 and parameters: {'qgrams': 4, 'ratio': 0.7808721328696897, 'similarity_threshold': 0.10683080190597335}. Best is trial 4 with value: 0.4633111426794054.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:13:43,365]\u001b[0m Trial 7 finished with value: 0.33330840997266736 and parameters: {'qgrams': 9, 'ratio': 0.800827464931477, 'similarity_threshold': 0.40948711496314116}. Best is trial 4 with value: 0.4633111426794054.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:13:47,298]\u001b[0m Trial 8 finished with value: 0.39784787794552795 and parameters: {'qgrams': 9, 'ratio': 0.7395142458665667, 'similarity_threshold': 0.830695162394687}. Best is trial 4 with value: 0.4633111426794054.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:04,391]\u001b[0m Trial 9 finished with value: 0.1862693152521443 and parameters: {'qgrams': 3, 'ratio': 0.8596838078185782, 'similarity_threshold': 0.056875572246384}. Best is trial 4 with value: 0.4633111426794054.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:08,972]\u001b[0m Trial 10 finished with value: 0.6482633708392243 and parameters: {'qgrams': 10, 'ratio': 0.8957263433574094, 'similarity_threshold': 0.630359849425508}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:13,289]\u001b[0m Trial 11 finished with value: 0.5274133516352982 and parameters: {'qgrams': 10, 'ratio': 0.9045625386867897, 'similarity_threshold': 0.6392297322807924}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:18,068]\u001b[0m Trial 12 finished with value: 0.42621654591235925 and parameters: {'qgrams': 10, 'ratio': 0.9483018131894073, 'similarity_threshold': 0.669716499745008}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:23,897]\u001b[0m Trial 13 finished with value: 0.22112929238626436 and parameters: {'qgrams': 7, 'ratio': 0.8961116303610029, 'similarity_threshold': 0.6036793964995847}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:28,293]\u001b[0m Trial 14 finished with value: 0.4070833316320489 and parameters: {'qgrams': 9, 'ratio': 0.8983635553727757, 'similarity_threshold': 0.5808143891387648}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:33,109]\u001b[0m Trial 15 finished with value: 0.42621654591235925 and parameters: {'qgrams': 10, 'ratio': 0.9488029595469605, 'similarity_threshold': 0.7454617001392468}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:40,257]\u001b[0m Trial 16 finished with value: 0.2123846817548284 and parameters: {'qgrams': 6, 'ratio': 0.8777239752940389, 'similarity_threshold': 0.5114877692227677}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:45,396]\u001b[0m Trial 17 finished with value: 0.3258435026582389 and parameters: {'qgrams': 8, 'ratio': 0.9204153410113451, 'similarity_threshold': 0.7435281257384602}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:50,167]\u001b[0m Trial 18 finished with value: 0.3480318083295157 and parameters: {'qgrams': 8, 'ratio': 0.875183707875409, 'similarity_threshold': 0.5035164496571632}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:14:54,146]\u001b[0m Trial 19 finished with value: 0.36391860524716446 and parameters: {'qgrams': 10, 'ratio': 0.8294161917860436, 'similarity_threshold': 0.6808222011656786}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:15:01,379]\u001b[0m Trial 20 finished with value: 0.20993148042255388 and parameters: {'qgrams': 6, 'ratio': 0.9196762030928591, 'similarity_threshold': 0.5795471650862246}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:15:05,584]\u001b[0m Trial 21 finished with value: 0.46330684097155167 and parameters: {'qgrams': 10, 'ratio': 0.8563838420348091, 'similarity_threshold': 0.23323189289645876}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:15:09,902]\u001b[0m Trial 22 finished with value: 0.4070833316320489 and parameters: {'qgrams': 9, 'ratio': 0.8948541483847852, 'similarity_threshold': 0.2644175908762265}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:15:14,091]\u001b[0m Trial 23 finished with value: 0.42745701777773953 and parameters: {'qgrams': 10, 'ratio': 0.8429055971815752, 'similarity_threshold': 0.4726717116974519}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:15:18,489]\u001b[0m Trial 24 finished with value: 0.40750648259180683 and parameters: {'qgrams': 9, 'ratio': 0.876132015812083, 'similarity_threshold': 0.6726766450815258}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:15:23,589]\u001b[0m Trial 25 finished with value: 0.3258414249026382 and parameters: {'qgrams': 8, 'ratio': 0.9275690010126776, 'similarity_threshold': 0.16506027753408292}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:15:27,909]\u001b[0m Trial 26 finished with value: 0.46330684097155167 and parameters: {'qgrams': 10, 'ratio': 0.8601034741266624, 'similarity_threshold': 0.7695051840189288}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:15:31,804]\u001b[0m Trial 27 finished with value: 0.4037641499510466 and parameters: {'qgrams': 9, 'ratio': 0.7662074140900922, 'similarity_threshold': 0.44798780615040656}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:15:36,144]\u001b[0m Trial 28 finished with value: 0.3639219361818585 and parameters: {'qgrams': 10, 'ratio': 0.8174855005418883, 'similarity_threshold': 0.6110684353074003}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "\u001b[32m[I 2022-09-26 17:15:43,271]\u001b[0m Trial 29 finished with value: 0.24080227825457184 and parameters: {'qgrams': 7, 'ratio': 0.8389446905059951, 'similarity_threshold': 0.35743796412615136}. Best is trial 10 with value: 0.6482633708392243.\u001b[0m\n",
+ "Optuna trials finished\n"
+ ]
+ }
+ ],
+ "source": [
+ "study_name = title # Unique identifier of the study.\n",
+ "num_of_trials = 30\n",
+ "study = optuna.create_study(\n",
+ " directions=[\"maximize\"],\n",
+ " study_name=study_name,\n",
+ " storage=storage_name,\n",
+ " load_if_exists=True\n",
+ ")\n",
+ "print(\"Optuna trials starting\")\n",
+ "study.optimize(\n",
+ " objective, \n",
+ " n_trials=num_of_trials, \n",
+ " show_progress_bar=True\n",
+ ")\n",
+ "print(\"Optuna trials finished\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fcf454a7-6ec1-443e-8516-b96f2cfb0518",
+ "metadata": {},
+ "source": [
+ "# Optuna Visualizations"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "3227e81f-d039-4996-ac0c-310fee943a32",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " number | \n",
+ " value | \n",
+ " params_qgrams | \n",
+ " params_ratio | \n",
+ " params_similarity_threshold | \n",
+ " state | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.303374 | \n",
+ " 8 | \n",
+ " 0.838095 | \n",
+ " 0.347011 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.203077 | \n",
+ " 5 | \n",
+ " 0.792963 | \n",
+ " 0.313859 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0.191036 | \n",
+ " 4 | \n",
+ " 0.803869 | \n",
+ " 0.133138 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0.283335 | \n",
+ " 7 | \n",
+ " 0.714447 | \n",
+ " 0.389594 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 0.463311 | \n",
+ " 10 | \n",
+ " 0.851762 | \n",
+ " 0.165802 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 0.185319 | \n",
+ " 3 | \n",
+ " 0.917447 | \n",
+ " 0.877713 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 6 | \n",
+ " 0.190755 | \n",
+ " 4 | \n",
+ " 0.780872 | \n",
+ " 0.106831 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 7 | \n",
+ " 0.333308 | \n",
+ " 9 | \n",
+ " 0.800827 | \n",
+ " 0.409487 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 8 | \n",
+ " 0.397848 | \n",
+ " 9 | \n",
+ " 0.739514 | \n",
+ " 0.830695 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 9 | \n",
+ " 0.186269 | \n",
+ " 3 | \n",
+ " 0.859684 | \n",
+ " 0.056876 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 10 | \n",
+ " 0.648263 | \n",
+ " 10 | \n",
+ " 0.895726 | \n",
+ " 0.630360 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 0.527413 | \n",
+ " 10 | \n",
+ " 0.904563 | \n",
+ " 0.639230 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 12 | \n",
+ " 0.426217 | \n",
+ " 10 | \n",
+ " 0.948302 | \n",
+ " 0.669716 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 13 | \n",
+ " 0.221129 | \n",
+ " 7 | \n",
+ " 0.896112 | \n",
+ " 0.603679 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 14 | \n",
+ " 0.407083 | \n",
+ " 9 | \n",
+ " 0.898364 | \n",
+ " 0.580814 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 15 | \n",
+ " 0.426217 | \n",
+ " 10 | \n",
+ " 0.948803 | \n",
+ " 0.745462 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 16 | \n",
+ " 0.212385 | \n",
+ " 6 | \n",
+ " 0.877724 | \n",
+ " 0.511488 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 17 | \n",
+ " 0.325844 | \n",
+ " 8 | \n",
+ " 0.920415 | \n",
+ " 0.743528 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 18 | \n",
+ " 0.348032 | \n",
+ " 8 | \n",
+ " 0.875184 | \n",
+ " 0.503516 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 19 | \n",
+ " 0.363919 | \n",
+ " 10 | \n",
+ " 0.829416 | \n",
+ " 0.680822 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 20 | \n",
+ " 0.209931 | \n",
+ " 6 | \n",
+ " 0.919676 | \n",
+ " 0.579547 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 21 | \n",
+ " 0.463307 | \n",
+ " 10 | \n",
+ " 0.856384 | \n",
+ " 0.233232 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 22 | \n",
+ " 0.407083 | \n",
+ " 9 | \n",
+ " 0.894854 | \n",
+ " 0.264418 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 23 | \n",
+ " 0.427457 | \n",
+ " 10 | \n",
+ " 0.842906 | \n",
+ " 0.472672 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 24 | \n",
+ " 0.407506 | \n",
+ " 9 | \n",
+ " 0.876132 | \n",
+ " 0.672677 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 25 | \n",
+ " 0.325841 | \n",
+ " 8 | \n",
+ " 0.927569 | \n",
+ " 0.165060 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 26 | \n",
+ " 0.463307 | \n",
+ " 10 | \n",
+ " 0.860103 | \n",
+ " 0.769505 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 27 | \n",
+ " 0.403764 | \n",
+ " 9 | \n",
+ " 0.766207 | \n",
+ " 0.447988 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 28 | \n",
+ " 0.363922 | \n",
+ " 10 | \n",
+ " 0.817486 | \n",
+ " 0.611068 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 29 | \n",
+ " 0.240802 | \n",
+ " 7 | \n",
+ " 0.838945 | \n",
+ " 0.357438 | \n",
+ " COMPLETE | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " number value params_qgrams params_ratio \\\n",
+ "0 0 0.303374 8 0.838095 \n",
+ "1 1 0.203077 5 0.792963 \n",
+ "2 2 0.191036 4 0.803869 \n",
+ "3 3 0.283335 7 0.714447 \n",
+ "4 4 0.463311 10 0.851762 \n",
+ "5 5 0.185319 3 0.917447 \n",
+ "6 6 0.190755 4 0.780872 \n",
+ "7 7 0.333308 9 0.800827 \n",
+ "8 8 0.397848 9 0.739514 \n",
+ "9 9 0.186269 3 0.859684 \n",
+ "10 10 0.648263 10 0.895726 \n",
+ "11 11 0.527413 10 0.904563 \n",
+ "12 12 0.426217 10 0.948302 \n",
+ "13 13 0.221129 7 0.896112 \n",
+ "14 14 0.407083 9 0.898364 \n",
+ "15 15 0.426217 10 0.948803 \n",
+ "16 16 0.212385 6 0.877724 \n",
+ "17 17 0.325844 8 0.920415 \n",
+ "18 18 0.348032 8 0.875184 \n",
+ "19 19 0.363919 10 0.829416 \n",
+ "20 20 0.209931 6 0.919676 \n",
+ "21 21 0.463307 10 0.856384 \n",
+ "22 22 0.407083 9 0.894854 \n",
+ "23 23 0.427457 10 0.842906 \n",
+ "24 24 0.407506 9 0.876132 \n",
+ "25 25 0.325841 8 0.927569 \n",
+ "26 26 0.463307 10 0.860103 \n",
+ "27 27 0.403764 9 0.766207 \n",
+ "28 28 0.363922 10 0.817486 \n",
+ "29 29 0.240802 7 0.838945 \n",
+ "\n",
+ " params_similarity_threshold state \n",
+ "0 0.347011 COMPLETE \n",
+ "1 0.313859 COMPLETE \n",
+ "2 0.133138 COMPLETE \n",
+ "3 0.389594 COMPLETE \n",
+ "4 0.165802 COMPLETE \n",
+ "5 0.877713 COMPLETE \n",
+ "6 0.106831 COMPLETE \n",
+ "7 0.409487 COMPLETE \n",
+ "8 0.830695 COMPLETE \n",
+ "9 0.056876 COMPLETE \n",
+ "10 0.630360 COMPLETE \n",
+ "11 0.639230 COMPLETE \n",
+ "12 0.669716 COMPLETE \n",
+ "13 0.603679 COMPLETE \n",
+ "14 0.580814 COMPLETE \n",
+ "15 0.745462 COMPLETE \n",
+ "16 0.511488 COMPLETE \n",
+ "17 0.743528 COMPLETE \n",
+ "18 0.503516 COMPLETE \n",
+ "19 0.680822 COMPLETE \n",
+ "20 0.579547 COMPLETE \n",
+ "21 0.233232 COMPLETE \n",
+ "22 0.264418 COMPLETE \n",
+ "23 0.472672 COMPLETE \n",
+ "24 0.672677 COMPLETE \n",
+ "25 0.165060 COMPLETE \n",
+ "26 0.769505 COMPLETE \n",
+ "27 0.447988 COMPLETE \n",
+ "28 0.611068 COMPLETE \n",
+ "29 0.357438 COMPLETE "
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "study.trials_dataframe(attrs=(\"number\", \"value\", \"params\", \"state\"))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "44f26a57-6e7f-4b1a-b0ec-8e736cc70479",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "mode": "markers",
+ "name": "Objective Value",
+ "type": "scatter",
+ "x": [
+ 0,
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14,
+ 15,
+ 16,
+ 17,
+ 18,
+ 19,
+ 20,
+ 21,
+ 22,
+ 23,
+ 24,
+ 25,
+ 26,
+ 27,
+ 28,
+ 29
+ ],
+ "y": [
+ 0.30337436666113177,
+ 0.20307681243216183,
+ 0.19103604207409036,
+ 0.28333512688101153,
+ 0.4633111426794054,
+ 0.18531875170393172,
+ 0.1907552827778649,
+ 0.33330840997266736,
+ 0.39784787794552795,
+ 0.1862693152521443,
+ 0.6482633708392243,
+ 0.5274133516352982,
+ 0.42621654591235925,
+ 0.22112929238626436,
+ 0.4070833316320489,
+ 0.42621654591235925,
+ 0.2123846817548284,
+ 0.3258435026582389,
+ 0.3480318083295157,
+ 0.36391860524716446,
+ 0.20993148042255388,
+ 0.46330684097155167,
+ 0.4070833316320489,
+ 0.42745701777773953,
+ 0.40750648259180683,
+ 0.3258414249026382,
+ 0.46330684097155167,
+ 0.4037641499510466,
+ 0.3639219361818585,
+ 0.24080227825457184
+ ]
+ },
+ {
+ "name": "Best Value",
+ "type": "scatter",
+ "x": [
+ 0,
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14,
+ 15,
+ 16,
+ 17,
+ 18,
+ 19,
+ 20,
+ 21,
+ 22,
+ 23,
+ 24,
+ 25,
+ 26,
+ 27,
+ 28,
+ 29
+ ],
+ "y": [
+ 0.30337436666113177,
+ 0.30337436666113177,
+ 0.30337436666113177,
+ 0.30337436666113177,
+ 0.4633111426794054,
+ 0.4633111426794054,
+ 0.4633111426794054,
+ 0.4633111426794054,
+ 0.4633111426794054,
+ 0.4633111426794054,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243,
+ 0.6482633708392243
+ ]
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "white",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#C8D4E3"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "white",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "radialaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "yaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "zaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "caxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Optimization History Plot"
+ },
+ "xaxis": {
+ "autorange": true,
+ "range": [
+ -1.7402479427166828,
+ 30.74024794271668
+ ],
+ "title": {
+ "text": "Trial"
+ },
+ "type": "linear"
+ },
+ "yaxis": {
+ "autorange": true,
+ "range": [
+ 0.14711458410538816,
+ 0.6864675384377679
+ ],
+ "title": {
+ "text": "Objective Value"
+ },
+ "type": "linear"
+ }
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAFoCAYAAAAmSXdBAAAAAXNSR0IArs4c6QAAIABJREFUeF7snXmcU9XZx58kM8OwDIsoIC4IVAU3FEulttQN2wp1KZWWotYFUcEFCkgBK1ZUnIJQrQoCYqmtiqV1qWLVWqW1C760qFgUWxfcKKiIMMKsSd7PCWZIMsnkJrnLufd88/7RV+bec57n+zuTzHzn3HtD8Xg8LrwgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCFggEEIoWqDEIRCAAAQgAAEIQAACEIAABCAAAQhAAAIQgECCAEKRhQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhYJoBQtIyKAyEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAGEImsAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQsEwAoWgZFQdCAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACCEXWAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIGCZAELRMioOhAAEIAABCEAAAhCAAAQgAAEIQAACEIAABBCKrAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEDAMgGEomVUHAgBCEAAAhCAAAQgAAEIQAACEIAABCAAAQggFFkDEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgGUCCEXLqDgQAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQCiyBiAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAHLBBCKllFxIAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIIBQZA1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAClgkgFC2j4kAIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAocgagAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCwTQChaRsWBEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAEKRNQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhYJoBQtIyKAyEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAGEImsAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQsEwAoWgZFQdCAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACCEXWAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIGCZAELRMioOhAAEIAABCEAAAhCAAAQgAAEIQAACEIAABBCKrAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEDAMgGEomVUHAgBCEAAAhCAAAQgAAEIQAACEIAABCAAAQggFFkDEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgGUCCEXLqDgQAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQCiyBiAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAHLBBCKllFxIAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIIBQZA1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAClgkgFC2j4kAIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAocgagAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCwTQChaRsWBEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAEKRNQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhYJoBQtIyKAyEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAGEImsAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQsEwAoWgZFQdCIJgEHnrieVn4y0dk0ZzJ0qdXz2A2SVcQgAAEIAABCEAAAhCAAAQgAAEI2EYAoZiBctv2Ghk/7VZZ99qbaV9Zdts0GTSgX9HgW5M28xevkD/8abWtQseJMVObV+OveXGDLKieKF06VTV/KcnvgP32kVlTLpLKyoqimRVz4pqXN8gFE6olV17ZciiGVbLPQcf0k0mXjCymVMfPUb1eO2dpi3nGjB6eVnMpQrGUcx0HwAQQgAAEIAABCEAAAhCAAAQgAAEIOEIAoZiCNSlgMoVLUlINHzq4aEmGUHRk/bYYFKG4B0m2NffWO5vk0qnz5JgjD25ey6VIwVLOdWdFMAsEIAABCEAAAhCAAAQgAAEIQAACdhNAKH5ONClaTjtlcNYdZ/m+ni+YoImXXDsU83Fw+uvFCMViavLLDsVslzJnMiplbZZybjHcOQcCEIAABCAAAQhAAAIQgAAEIAAB7wkgFD/PwIogyzwmVSoNOe7IxKW2ydcNU8fIiGFDEv+Z69LT5GW5meMm5eXsGWPl+RdekaX3r2weV51z5KF9ZOYt98jKZ1an/XvqJdmZY6r/Th0ndekld2TW1TW0GFcdl7kzM9tYPbt3TVyy3aVzVeKS8cxLgbNdSp55WXKy73Hnn5UoL/VyXauXnBcjFLNln6xl05atLTLNdVl8Kicr/aaun7O+8ZXEzkE1nxrn2CMPlbvvfzzrZfBWJV6u41I5qzWa67jMdZu5DvKta+/f3qgAAhCAAAQgAAEIQAACEIAABCAAAScIIBRFxOp9/5ICJSm3UqVR6mXSmcImKRVzPfgil1BUcilVpKWKvMx/z7yfoVVBmnrvRiUU5y5cLueMGNr8cI6kZFQ9pN4TMd89FFOFYjYeSfGXKl5TJV6mkLX60BA7hGJr9WZmn+0eilb7TV0/mbIu1w7IZB49unXNe+/GUoRiZr7Jed/74KO0+2ZalZtOvHkxJgQgAAEIQAACEIAABCAAAQhAAALeEEAopgjFfA/YyJRgrV32milk8t1DMVUIpu5QTN11WMi/5xOKSTmaKu5yLUHV94zZS9J2y1kVirmEZDbJmk3EqeOSnEeefmLzrs/Wak3dKZrtuORuyuQTja1mpeqrrauXww/t3VxT5poppN98l02rjFY8tipN4OUTpqn95tt5mJSjmcflmiNbvQhFb964mRUCEIAABCAAAQhAAAIQgAAEIOAlAYSiQ0IxU7ToJBSTwijz4TPJhZjtUtZ8Ei55bqZ0ak0GZoqrfEIxn/BVNeQTbrme8pwqdJNjHNW/b4unWOfqM/Pfs8nPzNryCcVsPJT83PzhVksPB8rWa7bss63VTJGp+ssmSxGKXr59MzcEIAABCEAAAhCAAAQgAAEIQMAbAghFGy55zia6Mnf16SIUW7u8O/m1jz/5NG03Yik7FHNJQrXcM7+mi1BMFZOp35apAjaXDCyk33xCUc2dKhA3bfk4cZ9FdW/N1J2rud46rN7jMHNttra71epuTm/ezpgVAhCAAAQgAAEIQAACEIAABCAAATcIIBQ/p5zvEuGk3EndydaaENJxh2Jyh9mLr/y3oId9lCIU/bhDMds3XvL+lclLxHNlX0i/VoRi6mXu6v6Fq9eut7Q7UfVgdfcgOxTdeKtlDghAAAIQgAAEIAABCEAAAhCAQHAIIBQ/zzIpbk47ZXDWh11k23mW7x6KqZemZpNyyWXU2lOe7byHYlKK5Xpici6pmq32bPf3U/1kMinknoK67FD8y+p1cmT/3tKlU1Xzd3quvjIfjlJIv1aEYup4SihauY9ksuhihWIh91BsbV0H522STiAAAQhAAAIQgAAEIAABCEAAAhBIJYBQTKGRvEQ0896CScFi9Um8mU+DVlO0dimsG0Ix21OVM78Vsomk5L9l3kOxEOmUTda29pTnceeflfbwFSviLdmLHfdQbO3eg/merp2adaqcztav1b6s3NMx29tasUJRjaXWZOYTwGfeco9kPuW5tXXNWy0EIAABCEAAAhCAAAQgAAEIQAACwSSAUMzINSl51r32ZtpXsu3qy3VspnzLlF3J/06O6bRQbNumjSgZtPKZ1VlXcaooTcqr5IFKrg457sgWT3lWX0+9R1+y5y6dq2T8tFsl876S2VhlMtVlh2JSqC29f2Uzr2yZJncPJrmmcrTSr1WhWMhTrlMDLkUoZuar/jtTqOdb18F8y6QrCEAAAhCAAAQgAAEIQAACEIAABBCKJawBq0KohCk4FQKW74UIKghAAAIQgAAEIAABCEAAAhCAAAQg4AYBhGIJlBGKJcDjVEsEWGOWMHEQBCAAAQhAAAIQgAAEIAABCEAAAi4SQCiWABvZUwI8TrVEwOply5YG4yAIQAACEIAABCAAAQhAAAIQgAAEIGADAYSiDRAZAgIQgAAEIAABCEAAAhCAAAQgAAEIQAACphBAKJqSNH1CAAIQgAAEIAABCEAAAhCAAAQgAAEIQMAGAghFGyAyBAQgAAEIQAACEIAABCAAAQhAAAIQgAAETCGAUDQlafqEAAQgAAEIQAACEIAABCAAAQhAAAIQgIANBBCKNkBkCAhAAAIQgAAEIAABCEAAAhCAAAQgAAEImEIAoWhK0vQJAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEbCCAUbYDIEBCAAAQgAAEIQAACEIAABCAAAQhAAAIQMIUAQtGUpOkTAhCAAAQgAAEIQAACEIAABCAAAQhAAAI2EEAo2gCRISAAAQhAAAIQgAAEIAABCEAAAhCAAAQgYAoBhKIpSdMnBCAAAQhAAAIQgAAEIAABCEAAAhCAAARsIIBQtAEiQ0AAAhCAAAQgAAEIQAACEIAABCAAAQhAwBQCCEVTkqZPCEAAAhCAAAQgAAEIQAACEIAABCAAAQjYQAChaANEhoAABCAAAQhAAAIQgAAEIAABCEAAAhCAgCkEEIqmJE2fEIAABCAAAQhAAAIQgAAEIAABCEAAAhCwgQBC0QaIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAVMIIBRNSZo+IQABCEAAAhCAAAQgAAEIQAACEIAABCBgAwGEog0QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAqYQQCiakjR9QgACEIAABCAAAQhAAAIQgAAEIAABCEDABgIIRRsgMgQEIAABCEAAAhCAAAQgAAEIQAACEIAABEwhgFA0JWn6hAAEIAABCEAAAhCAAAQgAAEIQAACEICADQQQijZAZAgIQAACEIAABCAAAQhAAAIQgAAEIAABCJhCAKFoStL0CQEIQAACEIAABCAAAQhAAAIQgAAEIAABGwggFG2AyBAQgAAEIAABCEAAAhCAAAQgAAEIQAACEDCFAELRlKTpEwIQgAAEIAABCEAAAhCAAAQgAAEIQAACNhBAKNoAkSEgAAEIQAACEIAABCAAAQhAAAIQgAAEIGAKAYSiKUnTJwQgAAEIQAACEIAABCAAAQhAAAIQgAAEbCCAULQBIkNAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMAUAghFU5KmTwhAAAIQgAAEIAABCEAAAhCAAAQgAAEI2EAAoWgDRIaAAAQgAAEIQAACEIAABCAAAQhAAAIQgIApBBCKpiRNnxCAAAQgAAEIQAACEIAABCAAAQhAAAIQsIEAQtEGiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAFTCCAUTUmaPiEAAQhAAAIQgAAEIAABCEAAAhCAAAQgYAMBhKINEBkCAhCAAAQgAAEIQAACEIAABCAAAQhAAAKmEEAompI0fUIAAhCAAAQgAAEIQAACEIAABCAAAQhAwAYCCEUbIDIEBCAAAQhAAAIQgAAEIAABCEAAAhCAAARMIYBQNCVp+oQABCAAAQhAAAIQgAAEIAABCEAAAhCAgA0EEIo2QGQICEAAAhCAAAQgAAEIQAACEIAABCAAAQiYQgChaErS9AkBCEAAAhCAAAQgAAEIQAACEIAABCAAARsIIBRtgMgQEIAABCAAAQhAAAIQgAAEIAABCEAAAhAwhQBC0ZSk6RMCEIAABCAAAQhAAAIQgAAEIAABCEAAAjYQQCjaAJEhIAABCEAAAhCAAAQgAAEIQAACEIAABCBgCgGEoilJ0ycEIAABCEAAAhCAAAQgAAEIQAACEIAABGwggFC0ASJDQAACEIAABCAAAQhAAAIQgAAEIAABCEDAFAIIRVOSpk8IQAACEIAABCAAAQhAAAIQgAAEIAABCNhAAKFoA0SGgAAEIAABCEAAAhCAAAQgAAEIQAACEICAKQQQiqYkTZ8QgAAEIAABCEAAAhCAAAQgAAEIQAACELCBAELRBogMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABUwggFE1Juog+t9U0SDQWly5VFRIJh4oYgVMgUDqBj7fXy96d2pQ+ECNAoEgCO3Y1SmV5RCrKw0WOwGkQKI1AfUNUGqJxqWpbVtpAnA2BIgnE4yKf1NRL1458HheJkNNsILBjZ6NUtolIRRmfxzbgZIgiCNQ1RKUpGpcOfB4XQY9TgkgAoRjEVG3qCaFoE0iGKYkAQrEkfJxsAwGEog0QGaIkAgjFkvBxsg0EEIo2QGSIkgkgFEtGyAAlEkAolgiQ0wNHAKEYuEjtawihaB9LRiqeAEKxeHacaQ8BhKI9HBmleAIIxeLZcaY9BBCK9nBklNIIIBRL48fZpRNAKJbOkBGCRQChGKw8be0GoWgrTgYrkgBCsUhwnGYbAYSibSgZqEgCCMUiwXGabQQQirahZKASCCAUS4DHqbYQQCjagpFBAkQAoRigMO1uBaFoN1HGK4YAQrEYapxjJwGEop00GasYAgjFYqhxjp0EEIp20mSsYgkgFIslx3l2EUAo2kWScYJCAKEYlCQd6AOh6ABUhiyYAEKxYGScYDMBhKLNQBmuYAIIxYKRcYLNBBCKNgNluKIIIBSLwsZJNhJAKNoIk6ECQQChGIgYnWkCoegMV0YtjABCsTBeHG0/AYSi/UwZsTACCMXCeHG0/QQQivYzZcTCCSAUC2fGGfYSQCjay5PR/E8Aoej/DB3rAKHoGFoGLoAAQrEAWBzqCAGEoiNYGbQAAgjFAmBxqCMEEIqOYGXQAgkgFAsExuG2E0Ao2o6UAX1OAKHo8wCdLB+h6CRdxrZKAKFolRTHOUUAoegUWca1SgChaJUUxzlFAKHoFFnGLYQAQrEQWhzrBAGEohNUGdPPBBCKfk7P4doRig4DZnhLBBCKljBxkEMEdtSIvPluo7SvDMshfSMOzcKwEGidAEKRFeI1AYSi1wkwvyKAUGQdeE0AoehtAg898bysXrteZk25SCorK1oUs+blDTJj9hJZNGey9OnV05Zi6+oaZOYt98jggYfLiGFDbBmz1EHmL16RGGLSJSNLHark8xGKJSMM7gAIxeBm66fOEIp+SitYtT71bExWPBptbqr7PiG5/OKI9OwRClajdKM9AYSi9hEFvkCEYuAj9kWDCEVfxBToIhGKzsarhOAFE6qbJxk+dHCaPHRDKGbO4YRQbG1MNf/G9ze3KgsRis6uQ0a3iQBC0SaQDFMSAYRiSfg4uUgCdXUiV/yoMXF234aXmkc5/NCwDPt6uMhROQ0CxRFobIxJYywu7dqwS7Y4gpxVKgElFGt2NUrH9uWlDsX5ECiawK7aJqkoj0hZGX/YKxpiAE4sO+wYz7owXSiu3xCXje/GJRQS6ds7JId+wb7vxWy7C5U4W/PiBllQPVG6dKqSfELRjoXhxhyqzmzzJEXjyNNPlEED+uVsB6FoR9KM4TgBhKLjiJnAAgGEogVIHGI7gXffj8usuU2yT9N78qOPfmD7+AwIAQhAAAIQgAAEIFAYgbLDj5EO191e2Ek2Hm2yUPz9H6Ly+ydjaTRHfTsiQ08s/Q/tuXbsZf67knB//MuaRA1/Wb0u8b/LbpuWkG/J3Y1H9e/bLCCT5698ZnXi2Bumjkm7bFmNd+2cpYmvqfOmXjFKps66SzZt2dr8b/OvHy8/W7wiccnzSV85WsZPu1UmXTayWfi99c4mmVF9t8yednHiMuvUXZaptWQuw8zz1NfVv81duFxmTx+bOFzNte61NxP/f+puzVShuG17TYua1NcP2r9Hc69WayrmW4VLnouhZsg5CEVDgta8TYSi5gEFtLwtH8blmpua5Nxts+TouufkzYqjE522bSty4P72/TU2oPhoy2YCsVhc1A6xSIS1ZzNahrNKIC7SGI1JeVnpvzhanZLjIJBJoCkal3A4JGHeCo1eHAhFb+K/anqj7NqVPne3fUIy+8dlJReUTa4lB029BFj9/wt/+UjzPRKVKJt/14pmgZgq5Nq2aZO492GPbl0Tlw8r8Tbj5iVy9bhRCfGnxlrx2Krmc9e//ra0rWwjL61/M+0+jdmkZuolyan1Ze6ybO3y5WwSNXMsxUDJ0qQ0VDsX1X0cCxGKhdRUTJAIxWKoGXIOQtGQoDVvE6GoeUABLu/um16Ts1/e/RfCG7s9KJ9Gusn3vh2RU234S2yAsdGaAwS4h6IDUBmyIALcQ7EgXBzsEAHuoegQWIa1TMDUHYq1dSJXfn4roFRYFRUiC+aWfiuMVBGoLm1OfaVeGvzEsy+kyb7M3Xmp42z7tCZt56AaM7lzb9jJx+V80Eq+eyhmk5bJS5QzL0VurS9Vj5J9Smqqh8yolxKguS53Th27EKFYaE2Wvxk+PxChWCgxg45HKBoUtsatIhQ1DifgpW2/carE1/1d1u97pqzp/0MZcERYTvoqu3MCHruW7SEUtYzFqKIQikbFrW2zCEVtozGmMFOFogpYlx2KqU95zrznYKZQvHTqvObLl5OLVF32nBSK2eRdPqGYOmfXzh2bL1FWIlTJu6X3r0z7fmjtsufUXZPqpPseeiaxgzL5BOvM8caMHp7YbVmoUCykpkK/mRGKhRIz6HiEokFha9wqQlHjcAJcWtOGdfLZzPGJDsN3PCqVXbpIRTkyMcCRa90aQlHreIwoDqFoRMzaN4lQ1D6iwBdoslDU5R6KqUIx3w7F5P0IM3c95nvKcjZpqe6hqC43Vq/kpcnqPoXqlfz3zHsXWvmGSJ6TPDZ1rM0fbm1+ynUpOxRT76dopaZCjkEoFkLLsGMRioYFrmm7CEVNgwl4WZ9df6U0rX9R2pwxWhpHjJXK8ghCMeCZ69weQlHndMyoDaFoRs66d4lQ1D2h4NdnslBU6er2lOfM3YSt3UNR1a++/t+3P5BvnDioxT0Un1q1Rg7uvZ9s/XRH2n0Zs8nH5M5CdY/rH13+/cQ9GdUr25Oq1a7DYaccl3hKdbaXOueeB56Qqg7t5LLzzmgeK1UgJmtI3g8y29eSwlP1qHZmjjv/rIToLKamQr6TEYqF0DLsWISiYYFr2i5CUdNgAlxW00svyGezJyc67Hzfs7KjMYRQDHDefmgNoeiHlIJdI0Ix2Pn6pTuEol+SCm6dpgtFp5NNfRqxmiv1ycbqv1Ofyqz+O/Ny4sx7FmY+5bln967ND3RR56deUpwcK/kwF/VkaPVvqU95Tu4eTJ6buoMwySazh+RlyrnYJXdZHrDfPs27EZPyM3nJtqq7616d5EvH9G9xyXPmsYpZVft2cvihvbM+5Vkdn6+mQnJGKBZCy7BjEYqGBa5puwhFTYMJcFk1M8ZK9I3XpPK7Y6Ty7Atlx65GhGKA8/ZDawhFP6QU7BoRisHO1y/dIRT9klRw60Qo6p1t5lOf9a42GNUhFIORoyNdIBQdwcqgBRJAKBYIjMNLItD4wp9l57xrJFTRRjr9+k+JsRCKJSHlZBsIIBRtgMgQJRFAKJaEj5NtIoBQtAkkwxRNAKFYNDpHT0zdFbjstmkyaEA/R+dj8D0EEIqshpwEEIosDh0IIBR1SMGcGmomnSvR9zdK2/Mulzanfx+haE70WneKUNQ6HiOKQygaEbP2TSIUtY8o8AUiFAMfMQ0WSAChWCAwkw5HKJqUtr69IhT1zSZolTX85UnZdceNEqrqLJ2WPt7cHjsUg5a0//pBKPovs6BVjFAMWqL+7Aeh6M/cglQ1QjFIadKLHQQQinZQDOgYCMWABuuzthCKPgvMx+XuuPxsiX20WdpePEXafP0shKKPswxa6QjFoCXqv34Qiv7LLIgVIxSDmKq/ekIo+isvqnWegJFCMfUa+8wnA2VDnvl0oBumjml+Yo7zEXk3A0LRO/bMvIcAQpHV4AaB+qcfltq750l4nx7S8c7fpk3JDkU3EmCO1gggFFkfXhNAKHqdAPMrAghF1oHXBBCKXifA/LoRME4oqkeJz6i+W2ZPu1j69OqZePT46rXr0x7RnRpSUiYOHni4ERIxtXeEom7frmbWg1A0M3e3u94+ZrjEa7ZLuyt+LBVf+yZC0e0AmK9VAghFFojXBBCKXifA/AhF1oAOBBCKOqRADToRME4oKoG48f3NMumSkYkcMgVjZjiZx+sUntO1IBSdJsz4VgggFK1Q4phSCNQ/9oDU/upOiezfW6rm/6rFUOxQLIUu59pBAKFoB0XGKIUAQrEUepxrFwF2KNpFknGKJYBQLJYc5wWVgHFCcf7iFYksk0Jx2/YaGT/tVpl02cisjxdXxy+9f2Vz/j27d5VFcyYndjcG/YVQDHrC/ugPoeiPnPxc5fZzT5F4Q720n3yTlB93AkLRz2EGtHaEYkCD9VFbCEUfhRXgUhGKAQ7XJ60hFH0SFGW6RsBIoXjQ/j2aL19uTSgmL3ceefqJzbJR7Vhc8dgqWVA9Ubp0qpKaXU2uheX2RA1NUVE/QFaURSQUcnt25oPAbgL1jVFpUx4BBwQcIRB/ZJnEHlkmoT79JDzzrqxzNEZjEgmHJMwboSMZMGh+ArFYTGJxkbJIOP/BHAEBhwjweewQWIa1TKCxKSaRCJ/HloFxoO0EorFY4vdjJz+Pq9qV2V43A9pPwORb46XSNFIoKgBWdihmE4qZAlL9cBXU187aqMTicWnfNsIv0kEN2Qd9KWnPB6sPgvJjiY0NUnvBqYnKK340VyJHfSlrF7X1USmPhKWsjL+s+DHmINTc2BSXplhc2lYgFIOQpx97UL9A76xrkg5t+UXXj/kFpebE53FZWMoifB4HJVO/9aE+j6OxuFQ6+Hls4kaKzIfgqnVhx5Wh+Z6Xkev2d9k8UOZaRSjuJmKcUCz0HorqkufMHY0zbl4iV48bFfjLnrnk2W8fccGsl0ueg5mrDl3V/nqB1P/+fik7fKB0uO7nOUviHoo6pGV2DVzybHY0OrPiAAAgAElEQVT+OnTPJc86pEANXPLMGvCaAJc8O5NANjmXTwZaqSTfGLmkoBKNcxcul9nTxyauSs32QigaKhTzPeU585LmNS9vkBmzlzTfNzHforSysP1yDELRL0kFu06EYrDz9ao79URn9WRn9eowa4GU9TsKoehVGMyblwBCMS8iDnCYAELRYcAMb4kAQtESJg5ykABC0Rm42eSc8jDz71rRfKs5NbNyMdfOWZooYvjQwTJrykVSWVmReNDupVPnyaYtWxNfGzN6uJz1ja+k/dtR/fumjZXsJJvfSd2Elm1sdbVrZs2ZninX7fOy1e8MVXdGNW6HosKqFucFE6oThDMXVqZQzFy4uRaiO3G5OwtC0V3ezJadAEKRleEEgdql86T+qYelfODx0n7anFanYIeiEwkwZiEEEIqF0OJYJwggFJ2gypiFEkAoFkqM4+0mEBShGK+vS1yl48WrcuRFLabNtUNx4/ubm29Vl+lpkleSDjv5OJl5yz2SfO6FGuu3K/8sZw8/QZ549gVZvXZ9s3jM1m8+EfjUqjVycO/9ElenJuXi7Blj5chD+yTmHTzw8MTzOfKNk6t+da6fX0YKRT8H5mbtCEU3aTNXLgIIRdaG3QRiH2+RHeO/kxi26qf3SKT3IQhFuyEznq0EEIq24mSwIgggFIuAxim2E0Ao2o6UAQskECShuP28oQV2X/rhoTaV0ulXz+QUiiufWZ32NbXTMNtuQHWQ2iSmHpY76ZLvyg+vuzMhFDPlnNWrS1Nvc9fa5c6p4jMpMq0IxUz5mFp/cpdl6XS9GQGh6A13X8yKUPRFTIEvEqEY+Ihdb3DXnTdJw5//IOXHnyLtJ16fd352KOZFxAEOE0AoOgyY4fMSQCjmRcQBLhBAKLoAmSlaJRAkoaj7DsVs8i5TOCYve9605eO0y5uX3TZNBg3ol7hEOt8OxUy5p3Y1qldSTmZ7YMwNU8dIMUIxV/3qsm2/vhCKfk3OhboRii5AZoq8BBCKeRFxQAEEoh9slJofnps4o+NtD0h43wPyno1QzIuIAxwmgFB0GDDD5yWAUMyLiANcIIBQdAEyUxghFHWLOdcDTpL3Mhz/gzPTLmturf7Uey8+97eXLAnFbdtrRD1494oLv52QkOeMGJq4xDlZV49uXVvslCxGKCYvy9aNfyn1IBRLoRfwcxGKAQ/YJ+0hFH0SlE/K3Dn/x9K4epVUnDRc2o2bbqlqhKIlTBzkIAGEooNwGdoSAYSiJUwc5DABhKLDgBk+L4Gg7FDM26jLB2QTipn/lnkPwuS9EocOOVb+9Ne1CQmoXqlC8Y2NH7R4sEuu1tRlzzt31ia+fPW4UYmHvWTWoMTj+Gm3Ji6vzhSKya9NumxkYndk8rkdqbsl1SXaC6onJp4cnXqvR3YoWlxwqdtFe3bvmnhycs/ue6fdzNLiUBzmAgGEoguQmSIvAYRiXkQcYJFA9M0NUjP94sTRHe96WMJ77WPpTISiJUwc5CABhKKDcBnaEgGEoiVMHOQwAYSiw4AZPi8BhGJeREUdkO2yYjWQurQ49b6IqU95Tn49KfaSlxMnPVPqDkP1tXwP100KwMw5Ux/oq8buulcn+e7pJ7UQiqqe1GNHnXmy1Ozc1fywGPX1bPXzUJYClkzqk3jmLlzevJU0eUNNv9+QsgAUvjgUoeiLmAJfJEIx8BG71uDO2VOk8aXV0ua0s6XthRMtz4tQtIyKAx0igFB0CCzDWiaAULSMigMdJIBQdBAuQ1sigFC0hImDDCLg2iXPyevS1fZRtSsxVSi29iQdg7LQrlWEonaRGFkQQtHI2G1vuunVF+Wzn1yZGLfTsicl1K6D5TkQipZRcaBDBBCKDoFlWMsEEIqWUXGggwQQig7CZWhLBBCKljBxkEEEtBCK7FDUc8UhFPXMxbSqEIqmJe5Mv59dd7k0vfayVJ51rlSOvqygSRCKBeHiYAcIIBQdgMqQBRFAKBaEi4MdIoBQdAgsw1omgFC0jIoDDSHgmlBUPJOP7Z5+5Tlyxz0PJy557tK5qvnGln6/fjxoawahGLRE/dkPQtGfuelUdePaf8jO6qtFQiHpfP8qkUikoPIQigXh4mAHCCAUHYDKkAURQCgWhIuDHSKAUHQILMNaJoBQtIyKAw0h4KpQVExTb1SZZJx88o0hzH3TJkLRN1EFulCEYqDjdaW5mmljJPrW61I5aqxUjji/4DkRigUj4wSbCSAUbQbKcAUTQCgWjIwTHCCAUHQAKkMWRAChWBAuDjaAgOtC0QCmgWkRoRiYKH3dCELR1/F5XnzjP56VnT+bKaHKttLp3j8WVQ9CsShsnGQjAYSijTAZqigCCMWisHGSzQQQijYDZbiCCSAUC0bGCQEngFAMeMCltIdQLIUe59pFAKFoF0kzx9kxcbTENr0rbc+/UtoM/15REBCKRWHjJBsJIBRthMlQRRFAKBaFjZNsJoBQtBkowxVMAKFYMDJOCDgB14Siesrz+Gm3yrrX3syK9Kj+fWVB9UTp0qkq4Mj90x5C0T9ZBblShGKQ03W2t4ZVT8iuBbMl1Gkv6bTk90VPhlAsGh0n2kQAoWgTSIYpmgBCsWh0nGgjAYSijTAZqigCCMWisHFSgAm4JhRzMayra5C5C5cnHtDSp1fPAKP2X2sIRf9lFsSKEYpBTNWdnnaMGyGxrR9Ku0umSsXQM4qeFKFYNDpOtIkAQtEmkAxTNAGEYtHoONFGAghFG2EyVFEEEIpFYeOkABPwXCgqturpzxvf3yyTLhkZYNT+aw2h6L/MglgxQjGIqTrfU/2Tv5Pae34m4e49pePtvylpQoRiSfg42QYCCEUbIDJESQQQiiXh42SbCCAUbQLJMEUTQCgWjY4TA0pAC6H41jubErsUZ08fyyXPGi00hKJGYRhcCkLR4PBLaH37hadJfGeNtLvqOqn46qkljCSCUCwJHyfbQAChaANEhiiJAEKxJHycbBMBhKJNIBmmaAIIxaLRcWJACSAUAxqsHW0hFO2gyBilEkAolkrQvPPrH71Pau9bKJED+0rVLb8sGQBCsWSEDFAiAYRiiQA5vWQCCMWSETKADQQQijZAZIiSCCAUS8LHyQEkoIVQnL94RQItlzzrtcIQinrlYWo1CEVTky++709HnyjS1CTtr75ZygcNKX6gz8/0Sig2NIjc99uorN8Ql2g0Lgf3CcvZZ4al296hkntiAH8RQCj6K68gVotQDGKq/usJoei/zIJWMUIxaInST6kEXBOKrT3lefjQwTJrykVSWVlRaj+cbyMBhKKNMBmqaAIIxaLRGXli3YN3S93vlknZIYdLhxsX2cLAK6F4z31R+fv/xdJ6OPQLIbn6yjJb+mIQ/xBAKPonq6BWilAMarL+6guh6K+8glgtQjGIqdJTKQRcE4qlFMm53hBAKHrDnVnTCSAUWRFWCcTr62T7eUMTh3e49lYpO/KLVk9t9TivhOLkaxtl+46Wpd3+03JpW2lLawziEwIIRZ8EFeAyEYoBDtdHrSEUfRRWQEtFKAY0WNoqmgBCsWh0wT8RoRj8jP3QIULRDynpUWPtvXdI/ePLEyJRCUW7Xl4JxQnTG2XnrpZd3HZzubRvZ1d3jOMHAghFP6QU7BoRisHO1y/dIRT9klRw60QoBjdbOiuOAEKxOG5GnIVQNCJm7ZtEKGofkRYFxrdvk+1jT0/U0uHGu6TskCNsq8sroXjH3VF56ZX0S5737xmSn/yIS55tC9cnAyEUfRJUgMtEKAY4XB+1hlD0UVgBLRWhGNBgaatoAo4Kxdbum5hZ8VH9+8qC6onSpVNV0c1wor0EEIr28mS04gggFIvjZtpZu5bMlYY/Ppp4CIt6GIudL6+E4pYP47Lsgaj89614op399g3J6O9E5NCDeSiLnfn6YSyEoh9SCnaNCMVg5+uX7hCKfkkquHUiFIObLZ0VR8BRoVhcSZylCwGEoi5JmF0HQtHs/K10H/vwf7LjipGJQ6vm/lIivfpaOc3yMV4JxWSBu3aJxOIiHdpbLpkDA0YAoRiwQH3YDkLRh6EFsGSEYgBD9VlLCEWfBUa5jhMwUiiueXmDXDChOgE3387It97ZJJdOnSebtmxtDiPfOY6n5tIECEWXQDNNqwQQiiyQfAR23T5LGp5/Wiq+eqq0u+q6fIcX/HWvhWLBBXNC4AggFAMXqe8aQij6LrJAFoxQDGSsvmoKoeiruCjWBQKuCsVsci7Zo1uSTtUwo/pumT3tYunTq6c89MTzsnrtepk15SKprKxogTzzeBcy0WYKhKI2URhdCELR6PjzNh997y2pmfyDxHEdb39Qwt33y3tOoQcgFAslxvF2E0Ao2k2U8QolgFAslBjHO0EAoegEVcYshABCsRBaHGsCAdeEYl1dg8y85R4ZPPBwOfrwvnLfQ8/I1eNGJSTe/MUrZMhxR8qgAf0cZ64E4sb3N8ukS3ZfHpdPGOb7uuMFezgBQtFD+EzdTAChyGJojcDOW2ZI4//9RSpOOUPaXTrVEVgIRUewMmgBBBCKBcDiUEcIIBQdwcqgBRJAKBYIjMNtJ4BQtB0pA/qcgGtCUT2gZcbNSxISUb3mLlwus6ePTTyERV2CvOKxVTl3CdrJWMlL9UoKxeSDYyZdNjKr0MzcVenWTko7ey52LIRiseQ4z04CCEU7aQZrrOh/X5Waay5JNNVp8e8l1HkvRxpEKDqClUELIIBQLAAWhzpCAKHoCFYGLZAAQrFAYBxuOwGEou1IGdDnBDwRil06V8nNt98n0688JyEUlbRLFYxOMlVC8aD9e8iIYUMS0+QTipm1qPM3f7i1WX42NsWcLNfTsWtqmyQWi0tV2zIJh3mqqKdhGDz59p2N0ql9ucEEaD0XgbqbJ0v0lTVSftpIqTjvSsdA7axvkopIRMrLeB90DDIDt0pA/azRGI1LuzYRSEHAEwJKKNbUNkrHdnweexIAkyYI7KxrkoryiJRH+DxmSXhDoKEpJtFoXNo6+HlcXhb2pjlmhUARBFwTiqmXPCuZlyr28t3HsIi+cp5S6A7FzIEy5aeSHUF9NUVjon6ALIuEJcTndlBj1r4v9Ys0H6zax+R+ga+tlficyYl5QwufEKls61gN6gfHcFgkxBuhY4wZuHUC8Vhc1J8vI/xxj6XiIQE+jz2Ez9QJAnwesxC8JqA228Qd/jxmI4XXKTN/IQRcE4qZRSV3Bq577U3p2b2rLJozOfGQFKdfhd5DMZ9QdLpeL8fnkmcv6TN3kgCXPLMWshH47Npx0vT6K1I54nypHDXWUUhc8uwoXga3QIBLni1A4hBHCXDJs6N4GdwiAS55tgiKwxwjwCXPjqFlYJ8ScFwoJsWh4rOgemLiEmcvX/me8qyEo7qfY7LWp1atkYN779csOzN3OHrZi9NzIxSdJsz4VgggFK1QMuuYxn/+VXbOmSYSiUjn+1eprYOOAkAoOoqXwS0QQChagMQhjhJAKDqKl8EtEkAoWgTFYY4RQCg6hpaBfUrAcaGouKTuRlT/vey2aa480TlXJuohMBdMqE58OfMhK5lCMfVYdfzwoYNdeXiMDusJoahDCtSAUGQNZBKoufoCib7zhlSOvlQqzzrPcUAIRccRM0EeAghFlojXBBCKXifA/IoAQpF14DUBhKLXCTC/bgRcEYqpTasdfkvvX5n4pzGjhzc/bVk3MNQjglBkFehAAKGoQwr61NDwt2dk120/kVC7DtJp2ZOuFIZQdAUzk7RCAKHI8vCaAELR6wSYH6HIGtCBAEJRhxSoQScCrgvFZPOt7RLUCZDJtSAUTU5fn94RivpkoUMlO64aJbHN70vbCydKm9POdqUkhKIrmJkEocga0JgAQlHjcAwqjR2KBoWtaasIRU2DoSzPCHgmFJMdJ5/+/N4HH2lxj0XPktBwYoSihqEYWBJC0cDQc7Tc8Oxjsuuun0p4r72l412PuAYGoegaaibKQYAdiiwNrwkgFL1OgPkVAYQi68BrAghFrxNgft0IeC4UdXtoi24BeVkPQtFL+sydJIBQZC0kCey49EyJbdsq7S6bJhUnf8s1MAhF11AzEUKRNaApAYSipsEYVhZC0bDANWwXoahhKJTkKQHPhCKXPHuau6XJEYqWMHGQwwQQig4D9snw9U+skNplt0l43wOk420PuFo1QtFV3EyWhQA7FFkWXhNAKHqdAPMrAghF1oHXBBCKXifA/LoRcFUoJi9vXvnM6gQHHsqi23JIrwehqHc+Tlf39jtxefX1uNQ3xKVnj5AM/mLY6Smzjo9Q9AS7dpNuP/8bEq/dKe0nXi/lx5/ian0IRVdxMxlCkTWgIQGvheI/1sRky4dxqawMyZGHhWS/fUMaUqIkpwl4KRRf+09c3ng7LvFYXHodGJYBh7MGnc5bx/ERijqmQk1eEnBFKL71zia5dOo82bRla6LXZbdNk0ED+nnZN3NbIIBQtAApoIe8+EpM7rw7mtbdoIFhufT8iOsdIxRdR67dhHUP3yt1DyyWyEEHS9WcX7heH0LRdeRMmEGAHYosCa8JeCkUb18SlZf/HUtDMOWKMul3MELH63Xh9vxeCcU/rorJgw+n/1w87NSwjPiW+z8Xu82c+dIJIBRZERBIJ+C4UOQeif5dcghF/2ZXauV33B2Vl16JySH1/5SDGtc3D3fKCWFp37bU0Qs7f1d9VNq14Qe2wqgF6+i63y0TicWk/Y9+KuXHfsX15hCKriNnQoQia0AzAl4Jxfc+iMv1c5pa0PjyoLCMOZefDTRbJo6X45VQvOampsQO2dRXZRuRO+aUO94zE+hFAKGoVx5U4z0Bx4Wi9y1SQbEEEIrFkvP/eTfNbxJ1yfPkj8bIvk1v+b8hOvA9gbJ+R0mHWQs86QOh6Al2Jk0hwA5FloPXBLwSius3xOVnC1sKxcMODcmk8WVeY2F+lwl4JRSvmNoodfUtm73t5nJp385lCEznKQGEoqf4mVxDAghFDUPRpSSEoi5JuF/Hgnui0vlvv5ZhNUvkP22+KBsrjkgUceoJYWnLDkX3A2FGKTvsaCk7fKAnJBCKnmBnUoQia0AjAl4Jxfc3xeUnP20pFL9yXFguHM0ORY2WiCuleCUUr53dJP/bkr5DUf08fHs1OxRdCV6jSRCKGoVBKVoQQChqEYOeRSAU9czFjape+8f/ZN+fjUxMNW+fpfK/sj7i1Q/v3EPRjcSZozUCCEXWh9cE2KHodQLM75VQVOQX/iIq/3ppzz0UQyGRqVeVycF9uIeiaSvTK6H43PMxue+36fdQPOObETnjNG8eWGha7jr1i1DUKQ1q0YEAQlGHFDStAaGoaTAulLVz/o+lcfUq2XLsaHn7i5fJvt1FBhzhzQ9NCEUXAmeKVgkgFFkgXhNAKHqdAPN7KRQVfSUUt3wkou5bd8RhIem2NzLRxFXplVBUrN98+/OnPMdFeh0Qkv6HsAZNXIMIRRNTp+fWCCAUWR85CSAUzVwcjS/8WXbOu0bCe+0jHe962HMICEXPIzC+AISi8UvAcwAIRc8jML4Ar4Wi8QEAIEHAS6FIBBBQBBCKrAMIpBNAKLIiEIqsgTQCO64YKbEP/yftJl4vFcef4jkdhKLnERhfAELR+CXgOQCEoucRGF8AQtH4JaAFAISiFjEYXQRC0ej4aT4LAVeFYl1dg8y85R5Z+cxq6dm9qyyaM1l6dt878W+DBx4uI4YNISSNCLBDUaMwXCqlbvliqXvoXik/9ivS/kc/dWnW1qdBKGoRg9FFIBSNjl+L5hGKWsRgdBEIRaPj16Z5hKI2URhbCELR2OhpPAcBV4Xi/MUr5KD9e8iwk4+TuQuXyzkjhkqfXj1lzcsbZMVjq2TWlIuksrKCsDQhgFDUJAiXyoi+97bUTD4vMVvHW++XcM8DXZoZoagFaIrISQChyOLwmgBC0esEmB+hyBrQgQBCUYcUzK4BoWh2/nTfkoBrQnHb9hqZcfMSuXrcqMSuxFSh+NY7mxL/PXv6WOnSqYqcNCGAUNQkCJfK+Gz2ZGl66QWp/M4FUvm9i12aNf807FDMz4gjnCWAUHSWL6PnJ4BQzM+II5wlgFB0li+jWyOAULTGiaOcI4BQdI4tI/uTgBZCkR2Kei4ehKKeuThRVcOfn5Rdd94o4e49pePtv3FiiqLHRCgWjY4TbSJgulDcvkOktjYue+0Vkopym6AyTEEENm2JSl1DXPocUFbQeRwMAbsIIBTtIlncOG+/E5dXXo1JXb1Ij24h+drx4eIG8vlZCEWfBxiA8hGKAQiRFmwl4JpQVFU/9MTzsnrtepl+5Tlyxz0PJy557tK5SsZPu1VGnn4i91C0NdrSB0Mols7QFyNEo7L90jMlvuNTaT9ltpR/6WtalY1Q1CoOI4sxWSjeuTQqL66LJXIPhUTOPC0i3/qGmb/IerH4N38Yl7vvjcrG9+KJ6as6iIz+TkQGDSQDL/IweU6Eonfp//u1uNx6V1NaAUf0D8nEy8z7AwNC0bt1yMy7CSAUWQkQSCfgqlBUU6vdiBdMqE6rYtlt02TQgH5koxkBhKJmgThUTu2y26T+iRVSftyJ0n7yjQ7NUvywCMXi2XGmPQRMFYpP/ikmv/19tAXEG6aXyb49QvbAZZRWCSxaFpU1L+4WuslXp44i825gqyhLx10CCEV3eafOtuTeqLzwr/T3AfX166aWyQH7mfVejFD0bh0y824CCEVWAgTSCbguFAnAPwQQiv7JqthKo/99VWquuSRxesc7Vki4277FDuXYeQhFx9AysEUCpgrFXL/EXnZhRL54NDvkLC6fkg6bNqtJPt66e3di6qt6Zpns3dUskVASSE4umQBCsWSERQ8w784mee0/Ld8HJo0vk8MONet9AKFY9DLiRJsIIBRtAskwgSGAUAxMlPY3glC0n6luI342c7w0bVgnlaPGSuWI83UrL1EPQlHLWIwqylSh+Iv7o/K3F1ruirlibESOPgKh6MY3wcybm2TT5pYi4ZZZZdK5k1kiwQ3ezJGbAELRu9WR673YxN3iCEXv1iEz7yaAUGQlQCCdgGtCUT3lWd0rcdAx/WTSJSPJwQcEEIo+CKmEEuufflhq754nkf16SdXP7ithJGdPRSg6y5fR8xMwVSiqS+zULsXUV2UbkTnXl0u7tvm5cUTpBFY8GpWnnk2Xul/oHZJpE827d1rpNBmhFAIIxVLolXbumxvjcssdTdLYuGecwV8My8XnRUob2IdnIxR9GFrASkYoBixQ2imZgGtCUVWaef/E4UMHy6wpF0llZUXJjTCA/QQQivYz1WXE+M7PZId6EEtDvbSfNlfKB35Zl9Ja1IFQ1DYaYwozVSiqgJ/5c0z+b21Mdu4S6b6PyNdPiki/g9kZ5+bi/91jUVm3PiaNTSJ9DwrLmcPCsvdeZOBmBswlglD0dhVs+zQu/94Ql/p69V4ckiMPM/M9AKHo7TpkdnYosgYgkEnAVaGYObl66vO1c5Ym/vmo/n1lQfVE6dKpipQ0IYBQ1CQIB8rYdVe1NDz7uFR89VRpd9V1Dsxg35AIRftYMlJxBEwWisURC85ZtXUijz25+ynL5WUihx0alm+c7P7l3vUNUWmIxqWqLTsTg7O6/NWJ6ULx0Sei8t+34iIhkUP6huWMb7r/PuDlilG3v1j1t5hs+1REPRjqhOPD8rXj3WeAUPRyFTC3IsAORdYBBNIJeCoU5y9eIUvvX+m6UEzdKVmIyEyeZ8pTqRGKwXy7aHrlX/LZDRMSzXVc9IiEu+ytdaMIRa3jMaI4hKIRMWdt8mcLm2T9hvR7GCqRcMZp7l5qiFA0dw3q0rnJQjHbPQyVTPvB99x9H/BqLWx8Ny43zmtqMf3Uq8rkkL7u7pQ0WSi++npcXnwlJrs+v2LgpCERqerg1aowd16EornZ03l2Aq4KxdQdiaocLy55fuudTTKj+m6ZPe1i6dOrp6iaVq9dn/fS61QJiVDk28nPBGqmXijRjf+VtueOlzZnjNa+FYSi9hEFvkCEYuAjztrg9h0ik69NuWnZ50ft3zMkP/mRuzsFEYpmrkGdujZZKI6b0ph2/0KVS9tKkdt/Wq5TRI7V8vRzMfnNI+n301WTnTU8It/6uru7FE0Viupy91sXpkvdA/YLyXVT3f0scmyR+WhghKKPwqJUVwi4JhR1eSiLEogb39/c/GCYTMGYjbo6Zu7C5TJ1/Pdlxs13y6TLRsqgAf1cCcjLSdih6CV9Z+au//39UvvrBRLp9QWpmrvMmUlsHhWhaDPQAoZ7cV1MXvp3XNRln/t2Fzn1xIh0aF/AAAE5FKEYkCALbOOjj+My/YaWu3L27hqS6pnu/hKHUCwwPA63nYCpQrGpSeSyyS3/sBAOiyyaXy4hdzfo2Z6rlQH/8ExM1L1cM1+nfzMsZ7q8W9tUofjL5VF5/h/pD+hSeUy5ooz7GltZxDYeg1C0ESZDBYKAa0JRF1rqMmv1Sj5pOik6c0nCVOHYpXNV4knVCEVd0qSOQgjEtn4oO8aNSJzS4dpbpezILxZyumfHIhS9Qb/mxZgsWpb+C8RBB4bkx5PdFSnedJ8+K0JRhxS8qeHKaY1SW5s+99FHhuWKi9291BGh6E3+zLqHgKlCURG4rrpJPvhf+q0Peu0fkmuvNuPzUN32Qd3+IfN1+ZiIHHMUOxTdeJ9YsDQqa9e1FIrjL4rIwAHuZuBGvzrPgVDUOR1q84KAkULxoP17yIhhQxK8WxOK6mszbl4iV48blbg8Otuxn9Q0eJGbK3PGYrt/eAqHDfjzqytEvZ0kdNcNElrznMS/8g2JX/Qjb4spYHa1DlmDBQCz6dBfLw/Jun+3HOyKy+Jy4P42TeKTYeLqN2kJGbETxSeRuFbm6jUiDz265zOwS2eRc0fF5QCXvwd2r0GRkAnboVxLl4kKIhAXicXN/Dz+96siv/ldSOrqdxNr21Zk1Hfi0j/4Fys1L5GVT4XkL3/d/bRv9e9/d6UAACAASURBVPrql0XOGJ4uWQtaT0UeHFe/m4TM+zxW/P/8fEtoE8bHZb+eRcLktKIIuPF5vFdVRVG1cRIEvCBgpFBUoK3sUFS7Ey+dOk82bdnaIpvkfRST0s2L8Jyec/vORonG4tKpfblEkIpO43Z0/KZ//lV23TJdJFImVXc9IqGqTo7OZ+fgStrzwWonUWtj3XpXVNQNwDNfEy+LyGGHmvVHhpq6Jqksi0h5mVl9W1spwT9qV63Ips1xKYuIqF26XrwaGmOJpzx3qHR3Z6QXvTKnngTUp8GnnzVIlw5m/qKrLn1+9/3dn4m9DghJxMBvxaaoyI4aSTwIRD313otXTW2TVFZEpDzizXuxFz2rObd+Epf5C2OibsWRfB3/pbBc8H12J7qdSX1jTJqicWnv4OcxGyncTpX5SiHguFBM7uq74HvflGUPPinrXnsza72FPG25lIaLuYdicr58l0eXUpeO53IPRR1TKa6mHVeNktjm96XtBROkzbCRxQ3i0Vlc8uwN+Pt+G5Xnnm95ec3sH5dJt33M+kGeS569WYPMuocAlzyzGrwmYPIlz16zZ/49BEy9h6IioL4HX3ktLrW1cdmna0j6HGTWz2K6fB9wybMuSVCHLgQcF4q6NJqsI99TnpVwXPHYKllQPVG6dKpKKx+hqFua1GOFQN1vlkrdb38hkS/0l6rZS6ycotUxCEVv4tjykXqiYFQ+2rrnr+FDTwjLqBHmbctAKHqzBpkVocga0IcAQlGfLEyuxGShaHLuOvWOUNQpDWrRgYBrQjHzfoSpza95eUNC4s2acpFUVjp/KYWa74IJ1YkSMndGIhT3JMMORR2+RUurIfrBO1Lzw3MSg3S4/k4p6z+gtAE9OBuh6AH0lCnVZc919XHptndI9u9p5l/DEYrerkFmF2GHIqvAawIIRa8TYH5FAKHIOvCaAELR6wSYXzcCWghFtWtw7sLlMnv62Ba7AnUDZlI9CEX/p72zeqo0rv27VAw9U9pdcrUvG0Io+jK2QBWNUAxUnL5sBqHoy9gCVTRCMVBx+rYZhKJvowtM4QjFwERJIzYR0EIoql2Bq9eud22Hok3sAj8MQtHfETf89WnZ9fNZEqpsKx0XPSqhtu182RBC0ZexBapohGKg4vRlMwhFX8YWqKIRioGK07fNIBR9G11gCkcoBiZKGrGJgONCsbUnJSd76Nm9qyyaM1n69OK59zblasswCEVbMHozSDwuOy49S2KfbpW2Y6dIm1PP8qYOG2ZFKNoAkSFKIoBQLAkfJ9tAAKFoA0SGKIkAQrEkfJxsEwGEok0gGaZoAgjFotFxYkAJOC4Uk9xau4diQNn6vi2Eon8jrL33dql//EEp63eUdJi1wL+NiAhC0dfxBaJ4hGIgYvR1EwhFX8cXiOIRioGI0fdNIBR9H6HvG0Ao+j5CGrCZgGtC0ea6Gc4FAghFFyA7MEX0zQ1SM/3ixMhVNy2WyMGHOTCLe0MiFN1jzUzZCSAUWRleE0Aoep2At/PX1oq8/kZMGhpF9u0ekgP2c/8BWQhFb9cAs+8mgFD0diW8/kZctn0alw7tQ3JEf/ffh7ztfvfsCEUdUqAGnQi4KhTnL14hmz/cmnavxLq6Bpl5yz0yeODhMmLYEJ3YGF8LQtGfS+Czn1whTa++JG1OO1vaXjjRn02kVI1Q9H2Evm8Aoej7CH3fAELR9xEW3cAbb8fl54uaZFftniGGnRqWEd+KFD1mMSciFIuhxjl2E0Ao2k3U+ni3L4nKy/+ONZ/Q64CQTL2yTNq0sT5GEI5EKAYhRXqwk4BrQjEpDkeefqIMGtAvrYc1L2+QFY+t4qEsdiZrw1gIRRsgujxEwzOPyq7FcyXUoaN0WvyoSFm5yxXYPx1C0X6mjFgYAYRiYbw42n4CCEX7mfplxLt+EZV/vrTnl/hk3bfOLpcO7d3rAqHoHmtmyk0AoejN6li3Pi4/X9zUYvLvfTsip54Y9qYoj2ZFKHoEnmm1JeCaUGztHorqwS1zFy6X2dPHSpdOVdrCMq0whKK/Eo/X7ko8iCVet0vajZsuFScN91cDOapFKAYiRl83gVD0dXyBKB6hGIgYi2pi1twmeff9eItzr51SJmqHkFsvhKJbpJmnNQIIRW/Wx7PPx+T+30ZbTH7ykLCMPtvd3dLeENgzK0LR6wSYXzcCrglFdijqFn3+ehCK+RnpdMSuxXOk4ZnfS9kRx0qHmbfpVFpJtSAUS8LHyTYQQCjaAJEhSiKAUCwJn69Pnndnk7z2n5ZC8eZry2SfvRGKvg6X4gsmgFAsGJktJ7zwr5gsubelUDz9m2E58zSEoi2QGQQCPiXgmlBUfNSlzTNmL5FFcyZLn149E8jU7sRLp86TceefxT0UNVtECEXNAmmlnKZXX5TPfnJl4oiqOb+QyEEH+6f4PJUiFAMTpW8bQSj6NrrAFI5Q9D7KujqRcFikosLdWp7/R0x+uTz9F/kjDwvJhEvLXC2EHYqu4mayHAQQit4sjbp6kWtnNyUeyJL6um5qmScPifKGwu5Z2aHoJX3m1pGAq0IxVSBu2rK1mcey26a1uK+ijrBMqwmh6J/Ea6aNkehbr0ub078vbc+73D+FW6gUoWgBEoc4SgCh6CheBrdAAKFoAZJDh7zxVlweeCgq77y3+xfp/oeE5PxREdm7q3u7A//1ckzWb4hLQ4PI/j1D8o2TwxJyb/pE3whFhxYYwxZEAKFYEC5bD/54a1yeXx2TrZ+IVHUQ+dLAsPTu5fIbka0dFTcYQrE4bpwVXAKuC8XgogxeZwhFf2Ra//hyqb33Dgl37iod1YNYAvZCKAYsUB+2g1D0YWgBKxmh6F2g2e5hOPCosIwfY9ZlfghF79YgM+8hgFBkNXhNAKHodQLMrxsBhKJuiWhUD0JRozBylBLbtlV2XHpm4qvtrpwpFUO+rn/RBVaIUCwQGIfbTgChaDtSBiyQAEKxQGA2Hb5zl8iE6Y0tRlNPV1ZPWTbphVA0KW19e0Uo6puNKZUhFE1Jmj6tEnBVKCYfzLLymdXSs3vXxL0Ue3bfW2beco8MHng491C0mppLxyEUXQJdwjS7fn69NPz1j1J+zGBpP/2WEkbS91SEor7ZmFIZQtGUpPXtE6HoTTa1tSJXTmspFDtWicy/EaHoTSrMajIBhKLJ6evRO0JRjxyoQh8CrgrF+YtXyEH795BhJx8ncxcul3NGDE08nEU9rGXFY6tk1pSLpLLS5btd65OFdpUgFLWLJK2gxrV/l53VUxP/VjX/1xLZ/yC9Cy6yOtOForpnjXq5eb+uIqMK7GkIxcBG65vGEIreRfXT25rkv2+lP4jgy4PCMuZcLnn2LhVmNpUAQtHU5PXpG6GoTxZUogcB14Titu01MuPmJXL1uFGJXYmpQlE96Vn99+zpY6VLpyo9yFCFIBT1XgQ7Jo6W2KZ3pfLbP5DK71+id7ElVGeqUFS/wP7ygahs/nD3L7Ld9gnJ+d+LyKEHm3cD7BKWjy2nIhRtwcggJRBAKJYAr8RT/7clLisejcp/3ohLJCJyRP+wnDsyIm3bljiwz07nkmefBRbQchGKAQ3WR20hFH0UFqW6QkALocgORVeyLngShGLByFw7oe63v5C63yyV8D49pOOdv3VtXi8mMlUoVt/aJG+8nb4rpveBIblmcpkXMRg9J0LR6Pi1aB6hqEUMRheBUDQ6fm2aRyhqE4WxhSAUjY2exnMQcE0oqvkfeuJ5Wb12vUy/8hy5456HE5c8d+lcJeOn3SojTz+ReyhqtkwRipoF8nk5sc3vy46rRiX+q/2kG6R88El6FmpTVaYKxUt+2CixWEuIi+aXJ3bJ8HKPAELRPdbMlJ2AyUJxR43Ic89H5cOPRdq3Exk4ICz92Knt+rcKQtF15EyYQiAaFXn6uZhsfC8qbStDMuDwsBxzVBhGEHCdAELRdeRMqDkBV4WiYqF2I14woToNy7LbpsmgAf00R2VeeQhFPTPfOWeaNP7zr1I+aIi0v/pmPYu0sSpTheL4qxuloSEdZCQssuhnZj0IwMalVPRQCMWi0XGiTQRMFoozb26STZvTd2tPvrxM+h/C7R9sWl6WhkEoWsLEQQ4RmL+gSV59Pf194KJzInL8l5CKDiFn2BwEEIosDQikE3BdKBKAfwggFPXLqvHvf5Kdt16XKKzjzx+UcI/99CvS5opMFYpL7o3KC/9K36J47NFhGXch2xNtXmJ5h0Mo5kXEAQ4TMFUort8Ql58tbGpB98Sv7r6PIS/3CCAU3WPNTOkE1L2kf3xTy/eBI/qHZOJl3AaG9eIuAYSiu7yZTX8CCEX9M/KsQoSiZ+hzTrzjsm9L7JOPpPK7Y6Ty7Av1K9CBikwVig2NIr95JCqv/zcu6m/yh/YNycgzI1JZ6QBkhmyVAEKRBeI1AVOF4poXY7JoWbQF/kHHhOXSCxCKbq5LhKKbtJkrlcBb78Rl9vyWQrF3r5BcMwmhyGpxlwBC0V3ezKY/AceFonq6s7pH4gXf+6Yse/BJWffam61SOap/X1lQPZGnPWuwdhCKGoSQUkLtrxdI/e/vl/C+B0jH2x7QqzgHqzFVKDqIlKELJIBQLBAYh9tOwFShmEskDD81LN/+FkLR9oXWyoAIRTdpM1cqge07RCZf29gCynHHhmXsD3gfYLW4SwCh6C5vZtOfgONCMYlAicUZNy+Rq8eNkj69euYkk3xwy6wpF0llZYX+BANcIUJRn3CjG/8rNVN370hsP7Vayr/4VX2Kc7gShKLDgBk+LwGEYl5EHOAwAVOFosK69NdR+ceaPbd/6NEtJJMvj0iXztxD0eFllzY8QtFN2syVSWDFo1F56tk97wMd2otMuLRM1C5FXhBwkwBC0U3azOUHAtoJxbfe2SRzFy6X2dPHskvR4xWEUPQ4gJTpP5s1QZr+/S8p//LJ0v6Hs/QpzIVKEIouQGaKVgkgFFkgXhMwWSgq9m++HZePP4lLu7YhOfIwBIIX6xGh6AV15kwl8O77cXn7vSZp3y4sR/SLSGUb+EDAfQIIRfeZM6PeBFwTilYxqKdAr3hslTi5QzH1SdP5LrFWgvPSqfNk05atiRaGDx3saG1WOblx3FvvNUhDY1wOPqhCImF+gHeDebY5Gp59XHbdtfvJ6B0XPiThrt28KsWTeRGKnmBn0hQCCEWWg9cETBeKXvNnfhGEIqtABwI7djZKZZuIVJTxdGcd8jCxBoSiianTc2sEtBOKTselBOGM6rtl9rSLE5de57vEWn39gP32kUED+iVKm794ReJ/J10y0ulSPRv/w4/jop4w+/Y76lEQIuqyglEjIjL4i3x4ux1KvKFedlxypsR3fSaVoy+TyrPOdbsEz+dDKHoegfEFIBSNXwKeA0Aoeh6B8QUgFI1fAloAQChqEYPRRSAUjY6f5rMQcF0oKkF37ZylzaX07N5VFs2Z3Op9Fe1MTs2/8f3NzUIwUzDmmyufgMx3vh++fvevorL6n7vvU9K34aXE/7atFLliLE9Sczu/xr8/K/VPPyyRA/pI1bx73Z5ei/kQilrEYHQRCEWj49eieYSiFjEYXQRC0ej4tWkeoahNFMYWglA0Nnoaz0HAVaGoZJy6nDn1Kc7JS4pnzxjbvAvQybQydxgmn0I96bKReeevq2uQmbfcIz26dQ30DsVrbmqSLR/u3p04busPm6Wik7kwdusEOsyYJ2VHH2ckJoSikbFr1TRCUas4jCwGoWhk7Fo1jVDUKg5ji0EoGhu9No0jFLWJgkI0IeCaUGxN3Llx38QkbyUUD9q/h4wYNiTxT1aFojpv6f0rW9xDcVddkyZR2lfGT2+Nywf/2z2eEorJ10EHipSV2zcPI1kjENqrm5RdOsPawQE8ald9VNq1iQSwM1ryC4H6xpiURULcS9YvgQWwzqZoXKLxuLThvmEBTNcfLak/M9fyeeyPsAJcJZ/HAQ7XJ62pz+NYPO7ofTzbVXJVoE+WA2WKiKtCccbNS+TqcaNaXN7s5pOdS9mhqFZM5iXPSnYE7fXYk3H547O7dygmX70OEJl8JfdQDFrWfuhHSXs+WP2QVHBrrG+MSlk4LJEID6cKbsp6dxaNxiQaE6ko53NY76QCXF1cpLahSdq24RfdAKesfWtqt3ZZWZg/8GmfVHALbIrGJObw5zEbKYK7foLYmWtCMXm58MjTT2xxabGbQrHUeyi6WauXC+6hx6Py0isxaWgU6XtQSM4cFpFue/PLtJeZmDo3lzybmrw+fXPJsz5ZmFoJlzybmrw+fXPJsz5ZmFwJlzybnL4evXPJsx45UIU+BFwTiqrlXJc2Z0o+J/Hke8pz5n0eF//6MRk65NjmXZVqh+PmD7fKrCkXSWVlhZOlej72tpoGicbi0qWqgr8EepDGf96MyzvvxSUUEunbOyS9DzRT6CIUPVh8TJlGAKHIgvCaAELR6wSYH6HIGtCBAEJRhxTMrgGhaHb+dN+SgKNCMXl/wnWvvZmX/VH9+6Y9rCXvCSUcoMTmBROqEyNkzpspFFOPVccPHzrYCJmoekUolrDISjz18adi8sgT6ZfTn/fdiJzwFfMud0MolriYOL1kAgjFkhEyQIkEEIolAuT0kgkgFEtGyAA2EEAo2gCRIUoigFAsCR8nB5CAo0IxgLyMagmh6F3cV01rlF216fP37BGSWdPNu3cRQtG7dcjMuwkgFFkJXhNAKHqdAPMjFFkDOhBAKOqQgtk1IBTNzp/uWxJAKLIqchJAKHqzOHbtErlqemOLySvbiNwxx7zHbCMUvVmHzLqHAEKR1eA1AYSi1wkwP0KRNaADAYSiDimYXQNC0ez86d5joajuP7j0/pVpVYwZPVwmXTKSbDQkgFD0LpTLr26U+ob0+bvvE5KbfswORe9SYWZTCSAUTU1en74RivpkYWolCEVTk9erb4SiXnmYWA1C0cTU6bk1Aq7sUEzeS/GA/fZJu/9g8snP733wkWv3T2Q5WCeAULTOyu4jf/f7qPzhT7G0Yb97VkS+fhL3ULSbNeNBIB8BhGI+QnzdaQIIRacJM34+AgjFfIT4uhsEEIpuUGaO1gggFFkfEEgn4IpQVDsT1SvXTsR8Xyc0bwggFL3hnpz1xXUx2fhuXEJhkS/0DssR/XnKs7eJMLupBBCKpiavT98IRX2yMLUShKKpyevVN0JRrzxMrAahaGLq9NwaAceFYnIX4sjTT5RBA/plrUU9SXnFY6uMeXqyX5YkQtEvSQW7Tu6hGOx8/dAdQtEPKQW7RoRisPP1Q3cIRT+kFPwaEYrBz1j3DhGKuidEfW4TcFwoqsudZ9y8RK4eN0r69OqZtb+33tkkcxcul9nTx0qXTlVuM2C+HAQQiiwNHQggFHVIwewaEIpm569D9whFHVIwuwaEotn569I9QlGXJMytA6FobvZ0np2A40KRHYr+XXoIRf9mF6TKEYpBStOfvSAU/ZlbkKpGKAYpTX/2glD0Z25BqxqhGLRE/dcPQtF/mVGxswQcF4qq/Hz3SMz3dWcRMHouAghF1oYOBBCKOqRgdg0IRbPz16F7hKIOKZhdA0LR7Px16R6hqEsS5taBUDQ3ezrPTsAVochTnv25/BCK/swtaFUjFIOWqP/6QSj6L7OgVYxQDFqi/usHoei/zIJYMUIxiKn6qyeEor/yolrnCbgiFJNtPPTE83LtnKVpXY0ZPTzn05+db58ZWiOAUGR96EAAoahDCmbXgFA0O38dukco6pCC2TUgFM3OX5fuEYq6JGFuHQhFc7On8+wEXBWKhOAvAghFf+UV1GoRikFN1j99IRT9k1VQK0UoBjVZ//SFUPRPVkGuFKEY5HT90RtC0R85UaV7BBCK7rH23UwIRd9FFsiCEYqBjNVXTSEUfRVXIItFKAYyVl81hVD0VVyBLRahGNhoLTW2fYfIps1xKSsTObhPyNI5dh+EULSbKOP5nQBC0e8JOlg/QtFBuAxtmQBC0TIqDnSIAELRIbAMa5kAQtEyKg50iABC0SGwDFsQAYRiQbgCdfAfV8XkwYejzT116RyS8RdFpHcvd8UiQjFQy4pmbCCAULQBYlCHQCgGNVl/9YVQ9FdeQawWoRjEVP3VE0LRX3kFsVqEYhBT9V9PCEX/ZWZHxdGoyBVTG6WxKX20Y44Ky+VjInZMYXkMhKJlVBxoCAGEoiFBF9MmQrEYapxjNwGEot1EGa9QAgjFQolxvN0EEIp2E2W8QgkgFAslxvFOEEAoOkFV/zE3fxiXH9+UYRNFpHu3kNx0TZmrDSAUXcXNZD4ggFD0QUhelYhQ9Io886YSQCiyHrwmgFD0OgHmRyiyBrwmgFD0OgHmVwQQimaug22fxuXq61oKxYMODMmPJyMUzVwVdK0LAYSiLkloWAdCUcNQDCwJoWhg6Jq1jFDULBADy0EoGhi6Zi0jFDULxNByEIqGBi8iP1vYJOs3xNMAfOf0iJw2NOwqFHYouoqbyXxAAKHog5C8KhGh6BV55k0lgFBkPXhNAKHodQLMj1BkDXhNAKHodQLMrwggFM1dB/UNIiufiso778elvDwkh/cLyUlfdVcmKvoIRXPXIJ1nJ4BQZGXkJIBQZHHoQAChqEMKZteAUPQu/02b4/Lnv8Xk40/iUtU+JIMGhhO/RJj2Qiialrh+/SIU9cvExIoQiiamrlfPCEW98qAa7wkgFL3PQNsKEIraRmNUYQhFo+LWslmEojex1NaJXHNjo+yoSZ//RxPK5OA+ZklFhKI3a5BZ9xBAKLIadCCAUNQhBbNrQCianT/dtySAUGRV5CSAUGRx6EAAoahDCmbXgFD0Jv81L8Zk0bJoi8m/eUpYzj4j4k1RHs2KUPQIPNM2E0Aoshh0IIBQ1CEFs2tAKJqdP90jFFkDBRBAKBYAi0MdI4BQdAwtA1skgFC0CMrmw/7yj5jcu7ylUDzh+LCc9z2Eos24cw73f2tj8sK/YlLzmcjee4XkpCFh43aIusVa53kQijqnY05tCEVzsta1U4SirslQl1cE2KHoFXkfzItQ9EFIBpSIUDQgZM1bRCh6E9CG/8TlljubWkz+3bMi8vWT3L8RuzcUds/q1Q7FV1+Py/wF6RlUVIhUzyyXjlVeEmFuNwk8+adY4l6mn+6IS9cuITnlhLAnD0Nws2fm0pMAQlHPXEyqCqFoUtr0aoUAQtEKJUOPQSgaGrxmbSMUNQvEwHIQit6FfvevorL6n7HmAvr2DsmUy8ukvNy7mryY2Suh+JtHovL0c3v4J3sf+4OIHHesWVLXi9x1mPPfr8Xl1rtaiv1rJpVJ715m3ctUhzxMrwGhaPoK8L5/hKL3GVCBXgSMFIprXt4gF0yoTiRxVP++sqB6onTplP1P7anHquOHDx0ss6ZcJJWVFXol6UA1XgrF/7wRlxfWxqSmRqTrXiJDvhyWnj34wdWBmLUfEqGofUSBLxCh6G3E774fl22fxqV9+5B8obeZnwNeCcVf/Saa2JmW+Tp/VCTxucwr+AQeeSIqjz/Vcg2MGhGRoSewBoK/AvTqEKGoVx4mVoNQNDF1em6NgHFC8a13NsmM6rtl9rSLpU+vnvLQE8/L6rXrc0pC9fUD9ttHBg3oJ3V1DTLzlnukR7euMumSkYFfWV4JxY3vxuXGeel/Da/qIHLjNeXSvl3gsdNgBgGEIkvCawIIRa8TYH6vhOKf/hKTB37X8j6WJj5p29RV+PDKqKx8uqVQ/N63I3LqiQhFU9eFV30jFL0iz7xJAghF1gIE0gkYJxSVINz4/uZmIZgpGPMtkHwCMt/5fvq6V0Ix11/DLz4vIoO/yA+vflpDdtSKULSDImOUQgChWAo9zrWDgFdCUdX+80VNsu7VeHMbJw8Jy+izzXoojh0Z+nWMF1+JyZ13Z5HKV5XJwX3N3DHs1yyDUDdCMQgp+rsHhKK/86N6+wkYJxTnL16RoJjcYbhte42Mn3arTLpsZGIXYr5X5vnR2J4fsvOd67evqw9t1V/H9uUSCbv3Q+Pyh2Ly3PMt/xr+/e+E5cSvIhT9to5KrVeJ7S5Vwb/FQKmcON85Ap/VNkmb8rCUl/H+4xxlRm6NQENjVBqjIu0rvRF5Wz6My85dIl06h6RLZ7IyjcAjK2Py3F9jUlcn0qG9JC51Pu1U3g9NWwc69PvZriZpU8HnsQ5ZmFpDfWNUolGRdg5+Hrv5e7epOdK3fQSMFIoH7d9DRgwbkqBYiFBU91Ocf9eKtHsuKtkR1FdSlrr9pvbXf4g8urKlwBzzg7j0O8Qd2jWfifx9dUg+2irStq3Ikf3jcsjB7szNLOkE1Dp0ew0mK1i9RuSjj0PSpo1Iv0PicuD+pGMigVg8LiH1f+79XcVEzPTcCoF4XCQucQmzCFknHhLYWRuX9m15I/QwAuOnTnweh9QnMi8IeEPAjc9jNlJ4ky2zFkfASKGoUBW6Q1HJxBmzl8iiOZMT91404eXVJc9NTSJz72iSN9/es/vz2KPDMu5C93ZmXPfTJvlgU/ru04mXlckR/fkRxu2179Ulz+qplurplqkv1oDb6e+eTwl+tSvGK5fCJc/e5M6sewh4eckzOUBAEVC/RH9SUy9dO7YBCAQ8I8Alz56hZ+LPCXDJM0sBAukEjBOKxdxD0USZqJaJV0IxuUTVk54/2xlPXGLVu5d7Im/Df+Jyy53pD4VRNaknWqonW/Jyh8D6DXH52//F5ONPYtKta1i+Ojgs/Q52Zx2890Fcrp/Tcg0cd2xYxv6ANeDOChB59A9Refq5mNTXi5RFRE7+Wli+e5b7/BGKbiXOPLkIIBRZG14TQCh6nQDzKwIIRdaB1wQQil4nwPy6ETBOKOZ7yrMSjiseW9V8WXO2y5x1C9GperwWik71lW/ctS/HZME9LW9APvCosIwf477MyFdvEL+eS+jddE2ZdO/mvFR89fW4zF/QUij2PyQkky8vCyJy7Xp6/Y24zL29ZQbjL4rIwAHu3rsLruBzSwAAEd9JREFUoajd8jCuIISicZFr1zBCUbtIjCwIoWhk7Fo1jVDUKg6K0YCAcUJRMVeS8IIJ1Qn8R/Xvm3ZPxEyhqB7CsvT+lWlR9eze1YhLn00Viu++H5dZc1uKjG+eEpazz0AouvG+9YdnYvK7x1pK3e9/JyKnfM15mfS/zXG59uaWa+Arx4XlwtGsATfWwB9XxeTBh1uugeGnhuXb33I3A4SiG4kzR2sEEIqsD68JIBS9ToD5FQGEIuvAawIIRa8TYH7dCBgpFHULQdd6TBWKKo9lD0Tlr6v3PGla7YqbPD4ie3VxfnecruvBzboeWRmVx59u+aTvEd+KyDCXnix596+isvqfe2ooLxeZckWZ9D2INeDGWvjTn2PywEMtheLp3wjLmcMQim5kwBz6EEAo6pOFqZUgFE1NXq++EYp65WFiNQhFE1On59YIIBRZHzkJmCwUFZS3343Lx1vj0rYyxMNYXP4+USJPCb3Ml9uXu77yaly2fBRPPOX5iH6hxP08eblDYON7cbnxlpa7RH84rkwO7+duDuxQdCdzZslNAKHI6vCaAELR6wSYXxFAKLIOvCaAUPQ6AebXjQBCUbdENKrHdKGoURRGlrJgaVTWrtuzQ/BLA8Nyyfnu7kwzErxGTT//j5g8+3xMPtkWl04dQ/K148My9ATnL3nPRIBQ1GhRGFoKQtHQ4DVqG6GoURgGl4JQNDh8TVpHKGoSBGVoQwChqE0U+hWCUNQvE9Mq2rQ5Lu9tbpQD9y2Xfbu7uyvNNNb0m5sAQpHV4TUBhKLXCTA/QpE1oAMBhKIOKZhdA0LR7PzpviUBhCKrIicBhCKLQwcCH2+vl707tdGhFGowlABC0dDgNWoboahRGIaWglA0NHjN2kYoahaIgeUgFA0MnZZbJYBQZIEgFFkDWhNAKGodjxHFIRSNiFnrJhGKWsdjRHEIRSNi1r5JhKL2EQW+QIRi4COmwQIJIBQLBGbS4exQNCltfXtFKOqbjSmVIRRNSVrfPhGK+mZjSmUIRVOS1rtPhKLe+ZhQHULRhJTpsRACCMVCaBl2LELRsMA1bRehqGkwBpWFUDQobE1bRShqGoxBZSEUDQpb41YRihqHY0hpCEVDgqZNywQQipZRmXcgQtG8zHXsGKGoYypm1YRQNCtvHbtFKOqYilk1IRTNylvXbhGKuiZjTl0IRXOyplNrBBCK1jgZeRRC0cjYtWsaoahdJMYVhFA0LnLtGkYoaheJcQUhFI2LXMuGEYpaxmJUUQhFo+KmWQsEEIoWIJl6CELR1OT16huhqFceJlaDUDQxdb16RijqlYeJ1SAUTUxdv54RivplYlpFCEXTEqfffAQQivkIGfx1hKLB4WvUOkJRozAMLQWhaGjwGrWNUNQoDENLQSgaGrxmbSMUNQvEwHIQigaGTsutEkAoskByEkAosjh0IIBQ1CEFs2tAKJqdvw7dIxR1SMHsGhCKZuevS/cIRV2SMLcOhKK52dN5dgIIRVYGBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgYJkAQtEyKg6EAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEEIqsAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMAyAYSiZVQcCAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCAUWQNZCTz0xPNy7Zylia8NHzpYZk25SCorK6AFAdcIzF+8QpbevzJtvhumjpERw4a4VgMTmUngrXc2ydyFy2X29LHSpVNVM4Rt22tk/LRbZd1rbyb+bdlt02TQgH5mQqJrRwmotTbj5iVy9bhR0qdXz+a51Nq8dOo82bRla/O/HdW/ryyonpi2Vh0tjsEDTaCurkFm3nKPrHxmdXOfme91a17eIBdMqE58nfUX6OXgWXOpayzb7yL8jOhZNMZMnPkzX+Z7XeZ7Jb+jGLM0aDSDAEKRJdGCgPoQn3/XiuZfUNSHtnpNumQktCDgGgHWnWuomehzAqk/POb6wXHwwMMTUluJnRnVd8vsaRenCR9gQqAUAqm/oPTs3lUWzZncQiiy7kohzLn5CKj3wV88+KSM/8GZiT8kq58JZ8xe0rwWM9/71B+gV69dzx+e84Hl6wURUOvqgP32SfzRLvm+2KNb1+bfRfgZsSCcHFwEAfXe994HHzVvZMh8r0tdg8mfHyddNpI/NBfBmlP8TQCh6O/8HKlevUEetH+P5jfQTMHoyKQMCoEMAvywyJLwikC2HYqZ/5b8BScpGL2qlXmDSaC1HYoIxWBmrmtXmb8oq1+qN76/uVns8McVXZMLVl2tyZxgdUo3uhJI/X1Y1Zh5FQG/t+iaHHU5TQCh6DRhn42f7Zdkflj0WYgBKTfzchYuJQhIsD5oI5tQzPaHFX549EGYPi3R6iXPXG7q04B9VHbmz4CZ73vszPFRmD4uNXPd8TOij8P0aelqzW3+cGtiN/amLR+3uEqF3do+DZaySyaAUCwZYbAGSArFkaef2LxlG6EYrIz92E3yvmGzZ4zlUgI/BuizmnMJxRWPrUq7rA+h6LNgfVRuLqGY2ULqLzjc59hHAfuk1Gx/ZM68igWh6JMwfVxmviul+BnRx+H6oPTkcwVS/4CX7edEhKIPwqRERwggFB3B6t9B2aHo3+yCXnnmLzFB75f+vCPADkXv2DPzbgJWhWKuBwjBEQKlEsh23zo1JjsUSyXL+YUQyLyHZ65z+RmxEKocWwyBVLG97dMadigWA5FzAkkAoRjIWEtrinsolsaPs50hwA+LznBl1JYEuIciq8JrAghFrxMwe/5cMlFR4R6KZq8NN7u3KhOTojv1/u9u1slcZhBI/Vzu0rmKeyiaETtdWiCAULQAybRDeMqzaYnr16/60H7iTy/IOSOGJorjsnv9MgpyRdmEYububdZkkFeA973lEopPrVojB/fer/nJz1x2731WQasg3wOneMpz0BLXs5/WLnPmZ0Q9MwtaValPGk/+MUXd+mZB9UTp0qkqbbc2t34IWvr0UwgBhGIhtAw6Nnm/CNXy8KGD0+4bZhAGWvWIQPIXmpXPrG6uYNlt07h/okd5mDJt8gfCda+92dzymNHDm59mmvl11qQpK8O9PrO996V+Bqtfsi+YUN1cEJ/P7mVjykzJ+9Ft2rI1reXU98LUdciDgUxZGe72mfnQFTV7z+5dZdGcydKz+94y85Z7hJ8R3c3EtNky3wsz3+syP695eKRpK4R+kwQQiqwFCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAwDIBhKJlVBwIAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIIBRZAxCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIBlAghFy6g4EAIQgAAEIACB/2/v7kGqisMADv+ncIloCKIPiiTQIaVBaAkampIIApeGiIQKl8JCJKihIERKaokyrKYghDajoa1FCIKEsMUoCLFAIhrSprgHjlRovpf75fE+bsrrPec8551+nHsvAQIECBAgQIAAAQIECAiKdoAAAQIECBAgQIAAAQIECBAgQIAAgbCAoBimMkiAAAECBAgQIECAAAECBAgQIECAgKBoBwgQIECAAAECBAgQIECAAAECBAgQCAsIimEqgwQIECBAgAABAgQIECBAgAABAgQICIp2gAABAgQIECBAgAABAgQIECBAgACBsICgGKYySIAAAQIECBAgQIAAAQIECBAgQICAoGgHCBAgQIAAAQIECBAgQIAAAQIECBAICwiKYSqDBAgQIECAAAECBAgQIECAAAECBAgIinaAAAECBAgQIECAAAECBAgQIECAAIGwgKAYpjJIgAABAgQIECBAgAABAgQIECBAgICgaAcIECBAgAABAgQIECBAgAABAgQIEAgLCIphKoMECBAgQIAAAQIECBAgQIAAAQIECAiKdoAAAQIECBAgQIAAAQIECBAgQIAAgbCAoBimMkiAAAECBAgQqL3At+8/Ut/g7dR/rid1dbbV/oCOQIAAAQIECBAgQKBMAUGxTDDjBAgQIECAQHMKjIyOp7EnEytefEd7a7o7dCFt3rTxr5nXb9+nyzcepPvDF9OeXdtWxRMUVyUyQIAAAQIECBAg0GABQbHBN8DhCRAgQIAAgeIJ1DL61fK1iyftjAkQIECAAAECBNaigKC4Fu+KcyJAgAABAgTWtMBy0a/0JOLIvfHsrcqlJxJnv8yn6wO9aef2Ldnf86cX8/+dmp5ZusbeE92p/0xP9ruguKZvvZMjQIAAAQIECBBIKQmK1oAAAQIECBAgUKbASkHx1Pmh1H34QLp26XRqadmQvWoeGv8Mio+evkh9J49lM/lr9Rw9lI4fOSgolnkvjBMgQIAAAQIECNRfQFCsv7kjEiBAgAABAgUX+N8Tiv9+juK/QXG5S3/2/FX6+Hkue0rRE4oFXw6nT4AAAQIECBBoAgFBsQluskskQIAAAQIEqitQaVD88Gk2nR24lb0tOv/Jn2z8ubjoW56re7u8GgECBAgQIECAQJUFBMUqg3o5AgQIECBAYP0LVBIUS08jXhkeS4/vDKauzrYMq/S3yTfvsrdKC4rrf39cIQECBAgQIECg6AKCYtHvoPMnQIAAAQIE6i5QSVAcGR1Pu3dszT4vMf8RFOt+Cx2QAAECBAgQIECgAgFBsQI8/0qAAAECBAg0p0ClQXHu6/zSF7fkb3/ev2+vJxSbc51cNQECBAgQIECgcAKCYuFumRMmQIAAAQIEGi1QSVBcWPiVrt58mCZeTmaXUfrsxI721jQ1PSMoNvrGOj4BAgQIECBAgEBIQFAMMRkiQIAAAQIECBAgQIAAAQIECBAgQKAkICjaAwIECBAgQIAAAQIECBAgQIAAAQIEwgKCYpjKIAECBAgQIECAAAECBAgQIECAAAECgqIdIECAAAECBAgQIECAAAECBAgQIEAgLCAohqkMEiBAgAABAgQIECBAgAABAgQIECAgKNoBAgQIECBAgAABAgQIECBAgAABAgTCAoJimMogAQIECBAgQIAAAQIECBAgQIAAAQKCoh0gQIAAAQIECBAgQIAAAQIECBAgQCAsICiGqQwSIECAAAECBAgQIECAAAECBAgQICAo2gECBAgQIECAAAECBAgQIECAAAECBMICgmKYyiABAgQIECBAgAABAgQIECBAgAABAoKiHSBAgAABAgQIECBAgAABAgQIECBAICwgKIapDBIgQIAAAQIECBAgQIAAAQIECBAgICjaAQIECBAgQIAAAQIECBAgQIAAAQIEwgKCYpjKIAECBAgQIECAAAECBAgQIECAAAECgqIdIECAAAECBAgQIECAAAECBAgQIEAgLCAohqkMEiBAgAABAgQIECBAgAABAgQIECAgKNoBAgQIECBAgAABAgQIECBAgAABAgTCAoJimMogAQIECBAgQIAAAQIECBAgQIAAAQKCoh0gQIAAAQIECBAgQIAAAQIECBAgQCAsICiGqQwSIECAAAECBAgQIECAAAECBAgQICAo2gECBAgQIECAAAECBAgQIECAAAECBMICgmKYyiABAgQIECBAgAABAgQIECBAgAABAoKiHSBAgAABAgQIECBAgAABAgQIECBAICwgKIapDBIgQIAAAQIECBAgQIAAAQIECBAgICjaAQIECBAgQIAAAQIECBAgQIAAAQIEwgKCYpjKIAECBAgQIECAAAECBAgQIECAAAECgqIdIECAAAECBAgQIECAAAECBAgQIEAgLCAohqkMEiBAgAABAgQIECBAgAABAgQIECAgKNoBAgQIECBAgAABAgQIECBAgAABAgTCAoJimMogAQIECBAgQIAAAQIECBAgQIAAAQKCoh0gQIAAAQIECBAgQIAAAQIECBAgQCAsICiGqQwSIECAAAECBAgQIECAAAECBAgQICAo2gECBAgQIECAAAECBAgQIECAAAECBMICgmKYyiABAgQIECBAgAABAgQIECBAgAABAoKiHSBAgAABAgQIECBAgAABAgQIECBAICwgKIapDBIgQIAAAQIECBAgQIAAAQIECBAgICjaAQIECBAgQIAAAQIECBAgQIAAAQIEwgKCYpjKIAECBAgQIECAAAECBAgQIECAAAECvwGwC+M+JuuXDQAAAABJRU5ErkJggg==",
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = plot_optimization_history(study)\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "58d82f65-7658-4b48-bc49-d4d627d92cc4",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "dimensions": [
+ {
+ "label": "Objective Value",
+ "range": [
+ 0.18531875170393172,
+ 0.6482633708392243
+ ],
+ "values": [
+ 0.30337436666113177,
+ 0.20307681243216183,
+ 0.19103604207409036,
+ 0.28333512688101153,
+ 0.4633111426794054,
+ 0.18531875170393172,
+ 0.1907552827778649,
+ 0.33330840997266736,
+ 0.39784787794552795,
+ 0.1862693152521443,
+ 0.6482633708392243,
+ 0.5274133516352982,
+ 0.42621654591235925,
+ 0.22112929238626436,
+ 0.4070833316320489,
+ 0.42621654591235925,
+ 0.2123846817548284,
+ 0.3258435026582389,
+ 0.3480318083295157,
+ 0.36391860524716446,
+ 0.20993148042255388,
+ 0.46330684097155167,
+ 0.4070833316320489,
+ 0.42745701777773953,
+ 0.40750648259180683,
+ 0.3258414249026382,
+ 0.46330684097155167,
+ 0.4037641499510466,
+ 0.3639219361818585,
+ 0.24080227825457184
+ ]
+ },
+ {
+ "label": "qgrams",
+ "range": [
+ 3,
+ 10
+ ],
+ "values": [
+ 8,
+ 5,
+ 4,
+ 7,
+ 10,
+ 3,
+ 4,
+ 9,
+ 9,
+ 3,
+ 10,
+ 10,
+ 10,
+ 7,
+ 9,
+ 10,
+ 6,
+ 8,
+ 8,
+ 10,
+ 6,
+ 10,
+ 9,
+ 10,
+ 9,
+ 8,
+ 10,
+ 9,
+ 10,
+ 7
+ ]
+ },
+ {
+ "label": "ratio",
+ "range": [
+ 0.7144467000567123,
+ 0.9488029595469605
+ ],
+ "values": [
+ 0.8380947452182991,
+ 0.7929630924927731,
+ 0.8038691888459086,
+ 0.7144467000567123,
+ 0.8517624194151302,
+ 0.9174470432736699,
+ 0.7808721328696897,
+ 0.800827464931477,
+ 0.7395142458665667,
+ 0.8596838078185782,
+ 0.8957263433574094,
+ 0.9045625386867897,
+ 0.9483018131894073,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9488029595469605,
+ 0.8777239752940389,
+ 0.9204153410113451,
+ 0.875183707875409,
+ 0.8294161917860436,
+ 0.9196762030928591,
+ 0.8563838420348091,
+ 0.8948541483847852,
+ 0.8429055971815752,
+ 0.876132015812083,
+ 0.9275690010126776,
+ 0.8601034741266624,
+ 0.7662074140900922,
+ 0.8174855005418883,
+ 0.8389446905059951
+ ]
+ },
+ {
+ "label": "similarity_thresh...",
+ "range": [
+ 0.056875572246384,
+ 0.8777133320453102
+ ],
+ "values": [
+ 0.34701140984689427,
+ 0.3138589895822442,
+ 0.1331382386125572,
+ 0.38959392590704467,
+ 0.1658021229910926,
+ 0.8777133320453102,
+ 0.10683080190597335,
+ 0.40948711496314116,
+ 0.830695162394687,
+ 0.056875572246384,
+ 0.630359849425508,
+ 0.6392297322807924,
+ 0.669716499745008,
+ 0.6036793964995847,
+ 0.5808143891387648,
+ 0.7454617001392468,
+ 0.5114877692227677,
+ 0.7435281257384602,
+ 0.5035164496571632,
+ 0.6808222011656786,
+ 0.5795471650862246,
+ 0.23323189289645876,
+ 0.2644175908762265,
+ 0.4726717116974519,
+ 0.6726766450815258,
+ 0.16506027753408292,
+ 0.7695051840189288,
+ 0.44798780615040656,
+ 0.6110684353074003,
+ 0.35743796412615136
+ ]
+ }
+ ],
+ "labelangle": 30,
+ "labelside": "bottom",
+ "line": {
+ "color": [
+ 0.30337436666113177,
+ 0.20307681243216183,
+ 0.19103604207409036,
+ 0.28333512688101153,
+ 0.4633111426794054,
+ 0.18531875170393172,
+ 0.1907552827778649,
+ 0.33330840997266736,
+ 0.39784787794552795,
+ 0.1862693152521443,
+ 0.6482633708392243,
+ 0.5274133516352982,
+ 0.42621654591235925,
+ 0.22112929238626436,
+ 0.4070833316320489,
+ 0.42621654591235925,
+ 0.2123846817548284,
+ 0.3258435026582389,
+ 0.3480318083295157,
+ 0.36391860524716446,
+ 0.20993148042255388,
+ 0.46330684097155167,
+ 0.4070833316320489,
+ 0.42745701777773953,
+ 0.40750648259180683,
+ 0.3258414249026382,
+ 0.46330684097155167,
+ 0.4037641499510466,
+ 0.3639219361818585,
+ 0.24080227825457184
+ ],
+ "colorbar": {
+ "title": {
+ "text": "Objective Value"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "reversescale": false,
+ "showscale": true
+ },
+ "type": "parcoords"
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "white",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#C8D4E3"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "white",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "radialaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "yaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "zaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "caxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Parallel Coordinate Plot"
+ }
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAFoCAYAAAAmSXdBAAAAAXNSR0IArs4c6QAAIABJREFUeF7svQuUJGd5pvnm/Z5ZWfeu6upqdatb3RKtCwIkgwFh4zFG63N2mMH2GO8uBmNjbGMGMAOaNTODZ4SObFjAs9iA8cGzxsdesaxnWRl7DTYgsCUkpNa9pb6oq+t+r7zfM/d8f1akoqIiKyMrM6uyst7QadUlI/744/kj/op44/u+11apVCrgQgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIWCNgoKFqgxFVIgARIgARIgARIgARIgARIgARIgARIgARIgAQUAQqKPBFIgARIgARIgARIgARIgARIgARIgARIgARIgAQsE6CgaBkVVyQBEiABEiABEiABEiABEiABEiABEiABEiABEqCgyHOABEiABEiABEiABEiABEiABEiABEiABEiABEjAMgEKipZRcUUSIAESIAESIAESIAESIAESIAESIAESIAESIAEKijwHSIAESIAESIAESIAESIAESIAESIAESIAESIAELBOgoGgZFVckARIgARIgARIgARIgARIgARIgARIgARIgARKgoMhzgARIgARIgARIgARIgARIgARIgARIgARIgARIwDIBCoqWUXFFEiABEiABEiABEiABEiABEiABEiABEiABEiABCoo8B0iABEiABEiABEiABEiABEiABEiABEiABEiABCwToKBoGRVXJAESIAESIAESIAESIAESIAESIAESIAESIAESoKDIc4AESIAESIAESIAESIAESIAESIAESIAESIAESMAyAQqKllFxRRIgARIgARIgARIgARIgARIgARIgARIgARIgAQqKPAdIgARIgARIgARIgARIgARIgARIgARIgARIgAQsE6CgaBkVVyQBEiABEiABEiABEiABEiABEiABEiABEiABEqCgyHOABEiABEiABEiABEiABEiABEiABEiABEiABEjAMgEKipZRcUUSIAESIAESIAESIAESIAESIAESIAESIAESIAEKijwHSIAESIAESIAESIAESIAESIAESIAESIAESIAELBOgoGgZFVckARIgARIgARIgARIgARIgARIgARIgARIgARKgoMhzgARIgARIgARIgARIgARIgARIgARIgARIgARIwDIBCoqWUXFFEiABEiABEiABEiABEiABEiABEiABEiABEiABCoo8B0iABEiABEiABEiABEiABEiABEiABEiABEiABCwToKBoGRVXJAESIAESIAESIAESIAESIAESIAESIAESIAESoKDIc4AESIAESIAESIAESIAESIAESIAESIAESIAESMAyAQqKllFxRRIgARIgARIgARIgARIgARIgARIgARIgARIgAQqKPAdIgARIgARIgARIgARIgARIgARIgARIgARIgAQsE6CgaBkVVyQBEiABEiABEiABEiABEiABEiABEiABEiABEqCgyHOABEiABEiABEiABEiABEiABEiABEiABEiABEjAMgEKipZRcUUSIAESIAESIAESIAESIAESIAESIAESIAESIAEKijwHSIAESIAESIAESIAESIAESIAESIAESIAESIAELBOgoGgZFVckARIgARIgARIgARIgARIgARIgARIgARIgARKgoMhzgARIgARIgARIgARIgARIgARIgARIgARIgARIwDIBCoqWUXFFEiABEiABEiABEiABEiABEiABEiABEiABEiABCoo8B0iABEiABEiABEiABEiABEiABEiABEiABEiABCwToKBoGRVXJAESIAESIAESIAESIAESIAESIAESIAESIAESoKDIc4AESIAESIAESIAESIAESIAESIAESIAESIAESMAyAQqKllHt/YpXpubwax/5FH79f/kf8ba3vl514Ot/8xD+6M/+Gl+4/0M4MTnWVKc+/cUH8OgTF/D5+z6AaCTU1LYHYWVh88A3vtOzx7fTGJidKwdhzNhHEiABEiABEiABEiABEiABEiABEiCBg0eAguLmmD365AW887fv2zaCd7/5Tnziw++C1+ve89HtBkFRRLrfvf/LW459bGRgV4JmpwGaCYoion7z2w93tL+dFPOsnpet9KGVbTs9pmyfBEiABEiABEiABEiABEiABEiABEig+whQUDQIil/57Efx6lvOqN+uxxJ430c/o77fj6i+/RQUtWNfWdvYJsZpIuPvfeTdtcjJbji1e1lQbHRetiIKtrJtN4w7+0ACJEACJEACJEACJEACJEACJEACJLC3BCgo7iAoykf7Kbbsl6CYzebx8T/4U0zPLtcVUqVvF1+axU/f9eq9PWN32Nt+pTx38hzRIhT1gqLZedlKH1rZtmsGnx0hARIgARIgARIgARIgARIgARIgARLYMwIUFBsIilqk3qtvO4MP/urbVQ1DKynA+lqHf/13P8CX/+JBtScRhmQxS69uJBrJdvVqKBpTY28+e3KbGGi1hqLWVrMRiNK+dpzS13f/4t2KmXExMjRLK9f6+un/+D78b196AA9+62HoU621cXnq+cu15n/8NecQT6S3HLfxmPXimWyoH0sj/3rpxvr1tPbmFle3HKb+2DWBVo5BW6yyrScoGs/LeqKgGadm+79nsxF3RAIkQAIkQAIkQAIkQAIkQAIkQAIkcCAIUFDchaAom2gmKfVEPr1oZiZUPfTI01vENjPhyGqEolmdQDPh0aqg2GzdQU0wExZavUlNyJoYH9pSg9LYh3rRkJo4aVavUePyMz955xaGZsdXT1AUAVAv6pnxkjHZ7ThpV79ZX41i4E4zRSuCotn5YyYWM0LxQMzV7CQJkAAJkAAJkAAJkAAJkAAJkAAJdA0BCooNBEUr0XqaQPT2n71r127MmrA2OjxQE8msCIraOvfe855a7Uc5JDPRqhlBsRk36HpRk8b+WxXHpP879VU+W1ha3WaWU6+Gov5YGkXy6cfQ7Cq1Ok7atjv11Ypbdz1mxvPSeFxmIq/WJ+N4UVDsmvmYHSEBEiABEiABEiABEiABEiABEiCBA0GAguIOgqImtNx27tQW8apemmujiDf9GWGWiiqf61NlrQiKO9UNNIpZnRIU64lmZuniD3zjO9tSsc3Er3p93Sm6rx2Copbaro3VbsdJL+qaiZT1hGDjrLFT5Kr+vDSeK2Yit9a2sU0KigdirmYnSYAESIAESIAESIAESIAESIAESKBrCFBQNAiKxpEx1rrTUnH1v282QlFLhzars9dshKKxbqGx//r6hM0Iit/89sPb3J3NztqdIuGMn33+v/131It8NPatXl93Er/aLSi2Mk7Cqp7wrOdoTIevJyg2Oi+NXHbi1My6XTNTsSMkQAIkQAIkQAIkQAIkQAIkQAIkQAJdQ4CCokFQ3EngaSZdtl4acL0IO6uptMZ2m3E2tiooWknz1p/B+xGhaBb1105BsdVxEj47RQlanQHqpTwbt2eEolWiXI8ESIAESIAESIAESIAESIAESIAESKBVAhQUmxAUG9UAtFJDsZ4ouVtB0argJIdpVVCsZ5SiP9lELHv6+Zfwhjtvrus83Ykaio1qAxpTqndyedYb61h1TTYbp3rC4U59tXrhWh3fVmootkP4tHo8XI8ESIAESIAESIAESIAESIAESIAESODgE6Cg2ISgaBa1pq+xZ6WGopnIpP3uwW893HQNRU0o/PJfPIhGbtJWBUVpUzuulbWNbanPWiqwdrxmAuROLs/6dOqdXJ7rpUebiWza724+e3JLjcbdCorNjNNOwmG9Opyyze//0V/iHW97M05MjtWdSXYrKEqDZg7TZtGn7RA+D/5UyCMgARIgARIgARIgARIgARIgARIgARKwSoCCYhOCol5oe+r5y2pLEbDu/div4J5P/gmsRCjKNnoBUX4eGxnAZz7xm/izB/4OzdZQ1AZaE4r0Ay/tfuH+D9UEq2YERa0dTTzcqV3tM2M9R32NSP32xjb1dR71be3kNG08XtnX8aOjaFeEYjPjZHZemNXHFMFYv9Tjo1+nFUHRrF/yO7O0fqP5jJW+WZ1kuB4JkAAJkAAJkAAJkAAJkAAJkAAJkEBvEaCg2FvjyaMhARIgARIgARIgARIgARIgARIgARIgARIggY4SoKDYUbxsnARIgARIgARIgARIgARIgARIgARIgARIgAR6iwAFxd4aTx4NCZAACZAACZAACZAACZAACZAACZAACZAACXSUAAXFjuJl4yRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTQWwQoKPbWePJoSIAESIAESIAESIAESIAESIAESIAESIAESKCjBCgodhQvGycBEiABEiABEiABEiABEiABEiABEiABEiCB3iJAQbG3xpNHQwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIdJUBBsaN42TgJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ9BYBCoq9NZ48GhIgARIgARIgARIgARIgARIgARIgARIgARLoKAEKih3Fy8ZJgARIgARIgARIgARIgARIgARIgARIgARIoLcIUFDsrfHk0ZAACZAACZAACZAACZAACZAACZAACZAACZBARwlQUOwoXjZOAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAr1FgIJib40nj4YESIAESIAESIAESIAESIAESIAESIAESIAEOkqAgmJH8bJxEiABEiABEiABEiABEiABEiABEiABEiABEugtAhQUe2s8eTQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk0FECFBQ7ipeNkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEBvEaCg2FvjyaMhARIgARIgARIgARIgARIgARIgARIgARIggY4SoKDYUbxsnARIgARIgARIgARIgARIgARIgARIgARIgAR6iwAFxd4aTx4NCZAACZAACZAACZAACZAACZAACZAACZAACXSUAAXFjuJl4yRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTQWwQoKPbWePJoSIAESIAESIAESIAESIAESIAESIAESIAESKCjBCgodhQvGycBEiABEiABEiABEiABEiABEiABEiABEiCB3iJAQbG3xpNHQwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIdJUBBsaN42TgJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ9BYBCoq9NZ48GhIgARIgARIgARIgARIgARIgARIgARIgARLoKAEKih3Fy8ZJgARIgARIgARIgARIgARIgARIgARIgARIoLcIUFDsrfHk0ZAACZAACZAACZAACZAACZAACZAACZAACZBARwlQUOwoXjZOAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAr1FgIJib40nj4YESIAESIAESIAESIAESIAESIAESIAESIAEOkqAgmJH8bJxEiABEiABEiABEiABEiABEiABEiABEiABEugtAhQUe2s8eTQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk0FECFBQ7ipeNkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEBvEaCg2FvjyaMhARIgARIgARIgARIgARIgARIgARIgARIggY4SOHSC4qNPXsA7f/s+BfXuN9+JT3z4XfB63dsgZ7N5fPwP/hQPfuthjI0M4Av3fwgnJsdq612ZmsOvfeRTuPee9+DVt5xRv//0Fx/Al//iwW1tf/1vHsLv3v9l9XtjW/r+vPsX78YHf/XtHR1wNk4CJEACB5WAzLtf/fq38Du//gu1eXs9lsD7PvoZPPX8ZdO5+qAeK/tNAiRAAp0kYPV+WH9va3afKu3cc++XttwnW7kfvvnsSXz+vg8gGgl18jDZNgmQAAl0BQGrc65eN9DmSZ/HU9Ml9Afzlc9+FNOzyzWdQftM5upf/vm31O6Ptd8bdQiZq19/x7maltEVoNiJA0fgUAmK8uD5yT/8Kj72W+9QNzA7XUTymSxmAp+0c88nv4T1WBIfeu/PqYtQJomHHnm6tr6+bXkAfutP3qH2KZPE1ZkFtZ48HN9z35/g3o/+yhax8sCdRewwCZAACXSYgPaAanwRpJ9rjfNwh7vE5kmABEjgQBKwej9sdm97/Ogo3vbW16vj1u5jI6EA/t1v/Bt1L1vvfnigL7zlhZDcD8uitXUgQbLTJEACJGCBgNU51/jivN48Kev9/h/9Je792Hu2vJTRAqLe/rN3bRMJZW5+4BvfUcFUc4srKjBqbnEVIkpqwVEWDoWrkMA2AodKUDTe5NR7+Kx3kQo9/YUqAqKm6uu3kbcIcpG/421v3iYU6vcpD8L6GzOenyRAAiRAAvUJGG+0jDdoxp/JkgRIgARIYDsBq/fDO62nvVz/zV/+l+pluXbPW+9+ONoXUi/jJcJchEdGxvDMJAESOCwErM652rzaaJ6spyHoRUN9BmY9oZHz8GE5Azt7nBQUdVGFGmp9SLL8TgsPHhsZVOHGd77yJvVG1XgRNkoL0T/smoUuM+W5syc7WycBEjjYBCgoHuzxY+9JgAS6g4DVh1t9+R+t5/pUug++9+04d8OJbS/R690P61P5dio71B2U2AsSIAESaA8Bq3Ou7K3RPGlW/ke2k/naSkCT/ogoKLZnfA97KxQU6wiK+vRlTe3/5Z/7Gbz/dz+nwoP1i1a/QH6npW4YQ5SNUY/Gi36nEOXDfpLy+EmABEhACFBQ5HlAAiRAAq0TaObhVr837d52YnyoVo9c+1x7+X7+2cvqV8b7YdnGeG+t/7n1o2ILJEACJNCdBKzOuVbWqycC1su83ElopKDYnefLQevVoRIUd6pfIBfhp//4AVUgWhZ9rcV6F6j+ItTXRpTt9aHI8tnDjz+7zQBGLzrudLEftJOK/SUBEiCBThAweyvLGoqdIM02SYAEepnATvfD9e5Z69X9Nt6/1rsfFkFRq98lqXjG9XqZN4+NBEjgcBOwqkFcujq74zxZL6XZmCptfBGk+TcYR4GC4uE+L9t19IdKUBRo9RyW9IKimKfo16vnRKe/CI1pIVoqh+xTc4vWBq2eY9PvfeTdLE7drjOb7ZAACfQUAX0KnRyYVkSaLs89Ncw8GBIggT0iUO9+WC8o6u9hje6gWjfrZdw8+K2H1Sr61Gb9PE6X5z0aaO6GBEigKwhY1SDqzZPa/a6UmjCaqNQzk633Ikh+r5myGOfproDFThwoAodOUDxQo8POkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECXEaCg2GUDwu6QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQDcToKDYzaPDvpEACZAACZAACZAACZAACZAACZAACZAACZBAlxGgoNhlA8LukAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEA3E6Cg2M2jw76RAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQJcRoKDYZQPC7pAACZAACZAACZAACZAACZAACZAACZAACZBANxOgoNjNo8O+kQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECXEaCg2GUDwu6QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQDcToKDYzaPDvpEACZBAjxL49BcfwOvvOIdX33KmdoSPPnkB7/zt+9TPd7/5Tnziw++C1+vuUQI8LBIgARIgARIgARIgARIgARI4uAQoKB7csWPPSYAESODAEbgyNYdf+8inMLe4iq989qM1QXE9lsAn//Cr+NhvvQPRSAhmguOBO1h2mARIgARIgARIgARIgARIgAR6lAAFxR4dWB4WCZAACXQzAaNgKNGJDz3yND74q29X3Tb+3M3Hwr6RAAmQAAmQAAmQAAmQAAmQwGEjQEGxxRH/4l/9Y4stcHMSIAESOBwEHHY7+vuCeONrzuAzX3wAb3rdbRgZHkSxVMbqyiq+9f0n8OH3/hxWY0lMTc/hO/90Hu9/97/C3//gWSTT2RqkQqGAVCqFybF+LCbzCIQCCETC8Lhd+wbSbrdD/nHpDQIcz94YR+NRuFz7N0f0GlGfqzrfjYR9CHicCHpcCPlYoqLXxpnHQwIksP8EisUSyuUyypUKSqUyKpUyggH//neMPSABABQUd3kafOc731FbvrhY2WUL3IwESIAEDheBqqAYwF2vOYvP/MnX8KbX3oYjo0NIZ/KIra/j77//BP7db/wCUpk8Hj5/AT98/DncffdP4Xe+9F1MraRRWbsEh8MGZ2wKUXcZP/G6V+O5NQ+ureUQz5RQyOZgt9ng8vvhC/jgDQQwEHJifDSKUMCDidEogh47xvt8hwt8g6NNF0rIFMpk0kMEYjnem/TQcKpDyZYqyBa7Y1ynnnkMQbcN7pOvQr5sU/+0JeSqwOe0q39RrwM+tx1+lwNDQY9aZTDoViKkLEf6Ar02TDweEiABEjAlYCYKyoxeLlfndW12t9sdqFQqsNlsta/lckmtIzPt9x96CDa7DW99y0+TNAl0BQEKii0Mg4iKd911VwstcFMSIAESOJwEPvWF/xOvv+Nm3HTmJBY2MliPJ/Fnf/5/46O/+Q709QXxuS99DafOnEZg9Cj+n2cW4LPlcToCvOa6Ybzy9DEFTZuD07kCXphexPdfnMfl9SJW806sbKSwurCCYj6PUjIOpFMI2QqYX88iW3HA5nQh6HNjdCCAiSNRDAz04cTEEPojQRzt92NyKIi+gAfRoPdwDhCPmgRIgAR2IKC/B57fSCGVK+LqagqpfBHTMs+WKljLFFUL8r3XYYOKaqxAfZWf5fflShm5EuB12uBzVKMeBwIu+N0OBNxOta4WBUkBkqckCZDAfhPI5wtbIgWtioIiEkpkofb6xW63qe9tNjscDrt6IS7ZEU6no+EhUoNoiIgr7CEBCootwObF3AI8bkoCJNDTBF5ajGFqOYmZtTSmV9O4uJCEy+WEt5DEE9/6f7G6uq6O/9ytr8Ar3nAX3nB2DN9+/BK+9qU/Vb9/1R234f2/9nNwO4CA24UTRwa38ao3B4vA+PTUIp6ZWcOVpA3xgg0ryTxSuRKcxQyG3CUMeu0I2CsI2AF3uYjzF6axEU9jZiWBxY0cllMlOH1+OLw+jA4EVYTjsfFB9IV8ODbSh4mBaqoJxceePo15cCRAAnUINHMPXE9wzBTLNSFRRESJYpSHboloDHid1Xk7X0Q6X8JqqqB6kimVVaSmxwHYbVVhUh8FKQKkpGCLCMk0bJ6+JEACZgTMRMFKuVKLEhSRUB8pWC6VYHdUIwfriYKyH5fTYVkUbGVkmpl/W9kPtyUBKwQoKFqh1IabqRZ2w01JgARIoOsIrCezePLqKmLpPJ6bjSOeKeDFxRRGw24sxPM4PRJA2OfCjeNhRPxuLCwvI18u4/bTExiJhhDwuFCpAOvpPKaW49jI5HDr8WGE3XZ4nA6V6uHcjFapd/BWb6heWorh0sIarm1kMZ9zYiNdUA+q8WwJ+WIJ9lIBA64Cjvf7cON4P37s9BEc7Q/i0tQC1uNpPPHcFNbjKUzNrWE9lsKFa6tI5spYydpgd7mU6Cjio0Q8Rgf7MNYfwPhgACGvSzEQ8THkdWJyKISI34XrRiJdN57sEAmQAAk0Q8Dq/GulTb3guJzMKfFQohdFcJTUaRENNcHx+EBACYZatKJsK8tiPKPmdVmkDVXKIV/GerYEjxMqClLUAknDlkUfBSlp2CI+6tu10m+uQwIksH8EDroo2Aq5ds6/rfSD25KAEKCg2MJ5wIu5BXjclARIoOsJnH9pBRupHJ6d2cDMWgbzsRwS2SKCHidsNuCG0aASy7QoPU0o+8Y/PY1nZ1YxtZ7FRh7IukLw2UpwhyPos+Ux6C5hvM8Lj8cLr9sOe6WCyagfp44OI+ir1tmysuxmDpboxRcXNjC1EsdC1oZkoaKERXkQXZOH2EIJhVIZjnIRIUcJR8NOnBmL4syRPpwdjyLi39o/M9Exlsjg+akV2J0uLMQLyFQcCIcDiESCcPp86uv4cFVUlPQWVdcx6kfY51TiK6MerYw+1yEBEthPAruZf3fb31YER+M+E5k8krmCStEWEVLqx+qjIEXIlP9UvUpderZEQQ4G3NvSsBkFudtR5XYkABxmUbCV8d/L+beVfnLbw0GAgmIL48yLuQV43JQESGDfCRjTkl9YSKqowWSuqCLqjkQ8ONrvw01H+1Q9wVuv2552bBQP5aC8bhckuFDqFPokZdlRwu0TffB7PUgWJWUNCLmAU8MRnDsxvmsO7ZiD59aTuLaawNR6BsmiTfVNBEYRTpclijFTRK5YQklSYSpAwF7EibANp0cjODYYwqtPDG8TGY0HJKLjleklXJ1drUU6Ti+sq9SZRCqHVNGGvr6QinSUiMeJ8UGkS3ZVS3I+Vo24kUXGRBMfGfW469OGG5IACbSBQDvm3zZ0QzXRTsHRrE9WoyBl21yxGgVJM5p2jS7b6XYCelFQ+ip1UeulD8t9j9xMdVP6cLfzNetfN82/B5Ef+9xeAhQUW+DJi7kFeNyUBEig4wSaTUu+5fjAjiYkZuLhsYgLNonnsDuQKVfrywx4yrhlYgBnjg5hJZFRqcayjARdOHdsBCP94bYce7vnYIleXIylcXEphvlUCfmKHcVyRdXvkmiW5WQRsbSk0lVUFGOxVPXkc6GE60I2jPb5cHokjFefGFIp01aX1Y2ESqXWRMersysqvTqeyiKerLI7OtKHSMgHp9enhNqBof7NdGs/ZtfTKgVbRFBtORJxq5RrEYT1UY/yOVOurY4M1yMBEqhHoN3zbydJd1pwNPa9XhTkSiqv0rBVOnehrCxbxYxG/tPSus3MaBgF2cmzg20LAYqCB+s8OEjz78Eiy97uhgAFxd1Q29yGF3ML8LgpCZBAWwjsNi250c7NxMPr+5wY6/OjbLNhLVPAUlqi9ioYCdjxmuMDuOPsCeTyBTx9bRGziQKcNuBYnxenxwbbJiLq+93pOXgtmcHFxZgSRBMFoAQbHKiouovxXAm5fAkLiRxBAzN7AAAgAElEQVTWshUUimXki2UVySiL21ZG1GPDDUNeJTKeGetT7Iwp043GQftcEx1/9OxVSEq1UXQMB70IB7xKdJwc60d/fwRRFfXoR6pkU7UuJW09kS3Uoh4Dkm7OlGurQ8D1SIAEdAQ6Pf/uJWwRHLUajFoNR838RavhOBH1qnRnYw3HdvVTEz0lHdvMjEZqQYoAKWY0jIJsF/XeaoeiYG+N505H00vz7+EZtd49UgqKLYwtL+YW4HFTEiABSwTakZbcaEf1xEMRwUaiYWwkU3h8JoZUyYFyuYzTUQfOHh3Em195RjX99JVZFdWXKQIuO3BiMIhXnT7WaLctf76Xc7AWvXh5JYHlVFGlRssi9f0dNkmTLioDgfV0EdOxAlKFMnKFMmzlEuQ5UFvCrgpO97tUyrQIjadHxbTGet3InaCJ6HhlellFOpqJjrKtRDqK4Hh8fFCJj7ffdBzxXBl2lxtTywkV5Siu3GKyI+JjIltWKfBSNzPktdNopuWzlg2QQG8Q2Mv5d7+JdYPgaGSgRUGKECoR9BLxqDejkShIST0VMxqJgvRtmpzRjGa/z6ad99+0KLhZi9nMfVj2JE7osuyV+3B30+2d3h2m+bd3Rq13j4SCYgtjy4u5BXjclARIQBFod1pyI6w7iYe3X38UmUIRz15bwvm5BAoVO5wo4WS/B7dfN4I7bjxRa/6xF6/hykoSkrXlc7ZeD7FRv80+3885WDN3mYtlsJErQ+r3u2yqhj/6PHak8iXkShVspIuYSeRVunQiV4bPXlJfc2Vb7ZAibmAsYMep4SBOjYSU2NhMynQz7DQTmWp6dTW1WsTHmcUN1YwW6WgUHaORgDKZEZOeqeUkZtbSKupRakxqKdciNqsHmM2oR7OUa6nFGQ16m+ky1yUBEuhCAvs5/3Ybjm4UHM0YNYqC1KIyJQpShChJw9bXgvS57MoJeyTsU67YIZ+724aiK/pDUbArhqGnO/HN/+9b+Jl/8eaePkYe3MEhQEGxhbHizVQL8LgpCRwSAiIYigCzG7fkVhE1Eg/PTI7iH5+8iBfm1nBpNYt0xYmIPY+zIyHcODGEV90wWevC4locL86tqPRfEc/GQ+2th7ibY+2mOfilpRim11NYSxeQKYpHKBBw2VWkogiMboddpUmvZwqYixewki6q1GlJoZbU6dVMaYvI6LFXMBa043h/tS6jCI1nx6K7wdT0NvWcq+uJjsfHB3BiYhgiOg70hdT+JLJWlqem1lTUo1nKtXxOo5mmh4cbkEBXEOim+bcrgOzQiWYFRxHsukGss2pGI1GQ8kdPzGhk6YUoSIqC3X5VHc7+PTe7hsem13Hh8Udw7/t+8XBC4FF3HQEKii0MCW+mWoDHTUmghwjsRVryTriWNxJ4+LmreHZmFReWs8hVA8UgNQ8lbVkiD0U8lBSpx16cwuMvLWEqXoLNZoPfXlT1D285MYYTR7a6OIuIKPUQF5MF1V4n6yHu5nTo1jnYGL0ogiJsNhRKFRTKFfidNkR8LmX4spEp4uJKRqWruRxALFOEo1LGQjyP9VxlS7q0iIz9XjuO9blx/XAIp4YlmrF9KdPNjEEj52qJdJwYjar06mg4gNtunEQ07Mf1k6PbdiPXTyxd2JJybcVoRsTImyf7VXs0mmlm9LguCbROoFvn39aPbO9bEOHuynKilra8mipAq5koNRyjPgcGA+5aDcduERyNpOqZ0YixmRyTpGHLf1l5K1kBJOJRi4LUjk9+J8cnkZCtRkGKKChLoVitO1LPfVh9pouwN6YPSz6BzW5j+vDeXxrcI4AlZRYYx/n5BIb9Lrzx1DCee+KHuOuuuw4Mn6//zUN4+PFn8YkPvwteLyObrQzco09ewKf/+AF8/r4PIBqpvqzv1oWCYgsjw5upFuBxUxI4QASMackidszH8hgNu5Xwc3okgLDPhRvHRdxxo5FbciuHblU8lH3Izf0/nH8Rz87HMJ8oKgFxyAe8YqwPb7rlFPqCvm1d0eohigmJzwGcHY3g3InxVrrcsW0Pyhw8t57E9FoS8/GcYhGUfLIKkC+VkS5W0OeVh0UPIj43Lq+kMLWeVlGM8mDlQFmJjBLNKGnTc6lNtVhHVVKmzwx6lMg4GvZ0NGXa6mA241xtRXSU/cp1aEy51oxmNJdrGs1YHSGuRwKtETgo829rR9kdW/eK4GhGs1EUZKyqCcJtryCZySPsklrNZch7uhEpxWG3Yyjsw3DID4fDrv6eyu+siIKqXberOwaZvSABA4FsoYhvPjOnMl/ODAfwulMvv5DtpvlXxMLfvf/Ltd6PjQzgC/d/CCcmx2q/syIorscSeN9HP4O3/+xdeNtbX9/y+WC2z3bvw6yTn/7iA1hYWjUVT69MzeGe+/4E9370V7bwMWuHgmLLp8DBaKCbLuaDQYy9JIHuJLCfack7EWlGPJR2ppbWcf7yLB67to61ggP2UgHHQnbcdnwIrzo9aSogJtJZvDCztO/1EHdzZhzEOVhv7rKUKmI44FTp0LKI+YnUY5TficA4Fg1gPpbBc/NxlZIuS8RjV5GN4qAtacQvrOaxnt0uMkrm2fVRF0YjXpwcDOCVk/0dq8u4m7GTbRo5V8s6YiKjOVeLkYxKra4T6ajvh1nUI41mdjtS3I4EthM4iPNvr45jtwuOViIFbTa7eunZKFIwlS8gky8hkc1jI1uCRD/mKzaspPLI5MsqClIi/sURW8xo5D+JgtSnYbczCrJXzykeV/sI6AW3d//i3fjgr77dtHERor78Fw+qz+648zZ8+Ld+CePRoKlxXzfMv9lsHh//gz/F9Ozylig6EcLe+dv34fc+8u6aMGhFUGwf8WpL+7FP2a8c/z33fmmbqNpsnygotvuM6NL2uuFi7lI07BYJdB2B/U5LbgSkWfFQ2hPzlCcuzeCphZSqfygC4pkBF04fidYcmM32a6yHeCLqxemxQYz0hxt1s6s+74U5eC2ZwcXFGKZjOSUS9vtdCHmcKnpxNZWvRTCOR3yYHAxjbiOtIk6n17NYz5UQ9TgQ9TvhsttQLFVwZSWFCyu5uiLjgM+BsyN+JTJKXcaxPn/bXKY7cXLUEx13MpER0fHExFCtnuNO/TKLejQazaTy5VqtRxrNdGKU2eZBJNAL8+9B5L6bPlsVHCXtWNKNzVKqi8WSEvt2Sh82EwWlv+VySfQ9tZilD8vvOxkp2MiMRksvr2dGI/0bDFbZyHKkL7CbYeA2h5CARKR99evfwu/8+i+oo//9P/pLvONtb94WnfbIExfw3YefxIfe+3OQV8wiLr7hzpvx6lvOmFLrhvm3kXD2wDe+UxMaNXHv5rMn8ck//Ko6JvleS+fVi65f+exHtxy3XmitF/2oj5AU0fb1d5xToqZ+EYHzTa+7VUVBfvC9b1f7MBMdNaH0zlfeVBNEG/VBvx+z7eVzY3Rko8hOo6Bo1lcz0dHYrpFnJy7DQ5PybPXtgDbYTz1/ecuJbga/Gy7mTpwUbJMEDiKBbkpLbsRvN+KhtPmD56fw/MwKLiwmkYELPhRw/YAXrzoxusVAxWz/l+eW8dLSxpZ6iLeeGEPIf3Add3ttDtZHL0rkhdRaHIv4EPa6sJzMYiGRVzUYJaXr5GAIIxE/SuUKnppZw4WlJNbSRTX0/X4nJvp8yBfKEBfqq2tZXIu9HMm4WTe/Vp8x6rWrlOkTIjLuY13GRtdNvc9bca7WTGSs7JtGM1YocZ1eJhBLZVXaqSzf+9538S//h7fAy5TRAzPkZqJgKldEOl/GXLKAos2JmY0sMoUSri2twW0vIxAIYTjsVxF+YZcN8vei3+dQNQ7FCVoWSTW222wdFQX3ErJWC3IxnoHwkYjH5WQO6UKpFgUp9RjFjEaiIH2bWQa9YEazl5wPw75Ef5BFS+E1/vz83JqqlxooZvBHX/4aPnnPe+DzeOoKjxqzbrj/FZFNFrOIS01P0Qt3IvrpoxaNqcHGbaRt4z6MIqbw1AuXIuZ97cHv4l/f/Ub8zT88sq1uo3EfZinIxt816oPZeVxP/NNHLso6E+NDNfHUeCy7ERSN+5Vj+bWPfAr33vOeuuJ0O67DQyEoWn07UE9Rrge6Gy7mdpwEbIMEDgKBbk1LbsTOKB5q60+EnXjNyRGcOTaKU0eHTJsRB+Ynr63iynq+ZqBy05EIXjE5gltPNq5reJDqITbiaPZ5r8/BenMXrdaiCIkel0PVZBSBUepESU1GTWD0e1y4tBjbFsU4EfWiz+tU9RilTuNSIo/peKGaGgYpjm9DpvCyCYw8NB6LuDEUdOGW8XBX1GXczTmibdMO5+pm9k+jmWZocd39JqAJhVKrVVJIC6WyEpVEMBHf3qqlBSARXD6XAy6HHU899s+YuOnVag46ORREf8hLcXEPBtJMFJTdlssVtXf5vzFSUFKJq+nE9SMF64mCmrimmcZIjV9JLRYRxOOEEhU105idIhz3AM2+7aKRGY10LFMqm5rR+F0ODAU9qmayiLQSBdmqGc2+geCOtxEwExRFjP6Ju+7EN59fULXKf+amcfjcTiWeaSnPZqnRcs+rLefPn8cHPvCBfSOuaSajwwM7CopaPUQzgc0o3JmJfRLRee/H3lMzJdFrNcZoQyOMnWooakKn2XHIdldnFtRxSR936kO9Wo9mQt5OAqz0XY7/nk9+SUWzSv3JZgVFaUO/vcaj0X7bcRIdCkGx0dsBDaQMnKjcVh2Iev1hth0nGNsggWYIdHtacqNjaSQe3nnjcQz1mTt1yQ3pQ8++hPPXVrCYKqMAO0bcBdx8tB+3nz6GY0N9jXYPs3qItxwbwskxc8GyYYNdvsJhm4NfWpJU55Qq0C0mmRMRD06NRFQtxaVEZkva9EQ0oCIYRWCUdK9n52I1sxcZVolsvfFIGB6HHS8uJmoi42q6iNVMVT4wiowS2TgRcWEyWq3LKCnTZ8eiXX6WWO+emeg4vbCOeDKLUMCjHsj1ztXHxwdUTUcz52qre6XRjFVSXK9ZAtl8QRlz5QslZepkJhTKOS05qB6HDS6HTQkafrdT7SrocyMSqB/Brs2/sp/LCzE1L4U8DgyHfRgb6G5HymZZtnv9vRYF291/fXsUHHdHt5EZjSbYiqgvKnF0M7VAoiBFgJSFadi7Y7+XW+k1iGK5jK/8X/8At9OOt9/9BiUiaotVrUJbf7/vf9shKBoFROPPWi1Gs/GSSMdbbzq5TezTr2tFUJT19cKd/KxPiW7Uh3qCopGPWfSl7EsvImt911KUmxUU1zcSKhpxbnF1G7Kdane243qgoKijaMw51+f26y9g7fv9fjvQjhOAbZDAXhI4SGnJjbi0Ih5K23Iz+cPnX6oZqDgrJQx6K0pAfOO5k6YGKmZ90uohXlmvmnYc1HqIjXibfb7fN1S76XO7ttGiF1dSOWjmLlqU4mIsrQRGzVVa6jLqBUZ5ALyyksDV1RQurmRUlOJYWIRCP24ai2AjncfFxQSemo1hJV1NhxORUSIoBv0OrKRLtRqNEskoqdnH+twHNmW6mTER0fHK9BKuzq7i6uwKpubWEE9lVZRWIpXbYiITDQdw242TlkxkrPSBRjNWKPX+OnqhMJ0vqpTMQqmCXKmihIfqlwqcdts2odDtciDkc7clktBs/p1bTWB2PY1ssazqwZ4cjbRlX904qkZRsFIpq+hA00jBUknCBtVLid1GCnYjAyt92klwlO3l74o+wvHEUIgReiZgG0VBihmN/JeVt42VKlea0Vg5Qzu7jkSq/bev/T0++N6flykAn/7jv8L/9K9+CmMjg8rQRKvTp4+K04Sm40dH67odd8P9b7Mpzw8//uyWoC0rguKn//iBLYYv+tEyix7Uf25VUNT3Q7HX7bMVYxT9tpeuzm5pV9unpDxrgWxmgqq+L41qKIqgaNVBut1nPQVFg6AoP+rrHGghr3yYbfepx/Z6kcBBTUtuNBatiofSvhioPDO1iCenVxGveJSBymTYgVuODdR1YK7XL309RJcdOBL24qDXQ2w0BpyDdyY0t55UadCaiHgk7MFEfxB9fg9EYNQiG6UV+Ww45MN1w5Fao8YoRnkYOTXow/GBAAaDHsytZ3BxKaFMX0RQlGgnv9uuxEb5Oh0rqLZkOxEopcbW5KbIOBr2HPiUaavnZyedq632gUYzVkl113r6+oSaUChpx6WKTQkEIlpLsJI+7djvdsDtdKCdQqFVKjs90OqjFr1OO8aj/q6MWqQoaHW0O7eeXnAUp2bNrVkZpaAamedz2yHp1PKPgqP1sagXBbmaqv691pvR5Iovs9bSsGUdRkFa561fczmWxtRGCn6PG9//3g/x2c9XjUi0SDFjmTXt5we/9bBa7+4337ljxmQ3CIq7MWXRZ4FaSXneSSCrF/WnjYNZ5ulOkYL68dPqQprVWLR6Ruj39dAjT6vN9O0aU6lbFRSlfX10pdV+tmO9QyEo1quhaHw7oF/P63Ur5x9Z6oWzdsPF3I6TgG2QQDMEDnpacqNjbYd4KPvQDFReXE4jDg+C5YxKM71hrB9vuuVUo25s+1zqIT6/EINko0rNlbOjEZw70biOYtM7OkAbcA42Hyy9uYsWvTgYEFGvmjYvAuPllQSSuVItddooMGpRjM/Nx3FptRr9qo9ilLTIFxfiW0RGv8uuitb7nHZkimWIO7J8rfp6VtTvh1S6lkulTL9ysh9H+4MH6IxrT1c77VzdTC81o5mp5SRm1tIqfX5mLYNEtoD5WNV8Q5aQ14mgpyoMTQz41c+TQyFE/C5cN/KyMN3Mvg/Luo3qE0rEWrFSMRUKG6Ud7ydDq/PvciyF2bUUxGhKDKXOjEfbGrVIUXA/z4LO75uCY+cZa3uwYkaj6i7bqmY08h+jILeOz3Oza3hseh35EvD6E/244UhnysJYnX87efZoIuj07PKWKEItTVjvLmyMrjNLmTYKavXa15uZSJTko09cqO1fb8ry9AtXoDdBERb1BEWt5qGs84X7P1Rz4bbSh50YS/9++MTzapV7P/ortXbr1ViUGpr1Up6NAq52LNK25pYt+/vmtx/ecgyynYxRPT2rHefIoRAUBZSZy7OZCYt+vYPwdqAdJwHbIAE9gV5KS240su0SD2U/IiA+emkeV2NFFG0OeCt53DoWsmygYuyrvh6iiIiD4sQ7PtCz9RAbjZXZ591wQ7Wbfu/1NmvJDC4uxrbVWJQIRb34KAKjiBujIbeKbhyLbhX7VJr+1VVMr2exnish6nFAzF7EKOh6Vcsxhx9dXcGl5ZRylhZxUSId5Ougv1oraGojvykvVmVGiW6UReoyjoQ8uO1YFGN9fkT81RpRh3UR0fHK9PJmenU1tTqWyKj0aqnpGA56EQ54MTnWj+Pjg4iEfLj9puOIRgJoxrm6Gb6tGM30mvhoVp9QonalRpZmZNJKfcJmxqWd6xqjJPPF8haDFqfNplKqnU4Xzj/yEF752jeiWK6gXCxCUn499qoxSL4sV/fLi12lYAOJgg1F2IF8WkVVSs1GWST6Uv6Vy1WTKCfK6vuSpAqLi7DTCbvdgaDPA7vdDqfTqX7ncIhlDOAoF1W6JzbbkL07HTYVvSlmI87N9WRdMbWiM3U7z5r9bYuC4/7yl/sCKbuQzBWwkswjlZcyKSVoUZCaGY1EVouBjwiQEnHaS2Y0yWweT06v4fx8AiG3HW85ewTDEX9HB6ab7n+NJePGRga2CFoCwriO/M5Y189qnUFjSTpjHUJ9u/rPpO5iPSMXTROSfpl5aRj3YVYWz2zANXHVTFMy1mf89H/8DXzlr/4WmmGMWbq1nqP04Z0//xa1jSYomrE2G492n5yHRlBsNzhpr5su5k4cH9vsTQK9mpbcaLTaKR5qBipPz65jLl5Aye5ExJ7H2ZEQ3nDuhCUDFbP+HuZ6iI3Gz+xzzsG7oQaIuYtEKErEkNQ/HIv4VPSiGLjoBUb53GWvLzDKdfDUzBouLCWxli6qzvT7nTgzHFS1QKVW28xaEo9PrdVMXyRiUYmLNhsCbod6ENFSqEWKyBQrqk6jyI3y9YSYvwyHcHo0fOhFRuNo77VztdWzrZHRjCYaiTCkRT2GfU5E/G4c7fdjciiIvoAH0WB9QxCrfWl2vUb1CbW0407XJ2y232bry7HkCiUkM9VIUy2NWr7XHJxFINQfk8NWqbk4a+nUQFlFIjkdIv6LiYsNdpTxo0cexmt+7LVV4U9ZC9vVC4lSqYxSsaAchcvFghL/nE4HXC63EgBlHTGKmdnIYjGZx8RgCEF7EbJvEQRlkXXsNhtyhQKKpYrazuVy1Q5TjsVskfnEbJHjNVuU4cXmIiykDxJULUesLZoYKqnnEkmqLSKQmC3igm22aOKp8TPNBEf/exFbRQw1W3YyymnHedNrbZgJjuuZkirNIYuWUi01hKVkB1OqO3sGWImCFBdkuTYlCtKn5h1AzGhkTgq4nSoNW5yw5Zo60hfobId3aH0plsbfPj+v1jg5EMDrTo3uWV8e/Lu/x90//VN7tr+92FGjFOa96AP3sTsCFBR3x01txYfZFuBx044S6PW05Ebw2ikeyr40A5UnZuNYrmZ/YtRTxCvG+iw7MNfrs9RDvDC7ipVsWaUynxgM4oajwwj59/5huhHXbvucc3DrI6KZu8zFMkgXKyolUTN30QTGqZU4ZmOZmgA5EHArd+n+oG9bBy4txvDsvLhRm0cxygZGkVF+F5BIRYPIqArHbVlskLRqSZm+ZTx8aOoytjLK++Fc3Ux/98popl59Qnlo1YtqZvUJJe24G6La9AKhuDZLZKBmyKJFRnrsUIKY6GR60dPlsKuHcSv1FhOptBL8VO1GFT1YVtt5XE74fdXIYVnnu9/9Ht7wxruUIGk0GhGRUf7lC4WqRmgXIdGuogo3G1XbiVawkSliIVFEpVzE0T4vjvQHD1QEoTYuxvNexkg4Gpd6YqgWDWpcvxkxVLY1Roe6N6NGc1X9TC1ybigB17A47Xbl9m1c5PwRZ9rt61ejQI2LXDNmSzeKoSJwLcYz6p9Ww1EERyVq6eoKUnBsZmZv37q7NaPpZBTkDy4u1KIR33j9ECYHw+074M2W5D5pbj2tIj8vL6ewmMgpkzytpEzi8hP48sfe1fb97meDrdQr3M9+c98ABcUWzgI+zLYAj5u2ROAwpSU3AtVu8VD2J6LIj168hmfmNrBc9Kj0ZXFgvvPEUNMGKmb9Zz3ERqPa+PO1eBJ//eDf4o1veAM8nupDbl/Qh6DX/EGmcYtcQwhI9KJm4CJmkRMRzxbx0Ogu3eexYyeBUW/2IlGM4kAptURvPBLGicGQimKU5fm59S3O0pIO5XdJFKMTAY8DS4mcSpdWwuPmoqVTyw32cMit6jKeGgnh7Fhnahb16hmyn87VVpkaox5lu+nVNK6sZLCWLsGGMtK5IuzlAgb9Nrg9XgxGAnB7PIiGvJiIODEYcGIg6KkJa/tdn9CYNq0XCMWxWX7WpBrNjEUTfCQyR0QhKwLhToyzuTykHyJm6aMPlYDqccOlCYAAcrKeCISwK94P//M/4afe/GarQ7htPdl3oVhUEYglSRUvlDC7lkQyX1ECrjj/Stqgwy6Rj1Aio6Qv6/u0651zQ0Wgnhgqn2mRrXpUmpBtxFdPDBX3cRG7jYuK9izroj03p/VWxFDZh1l0aLNiqDE6VASdpXgG8VwJG5mCEh0pOHb3BVTPjEbKr2TyZWVGI9UWVIRypRqlKotEQQ4Fq/eTRjMaiUa8uBRXQuKtR0I4NRxuKa1ZEwwX4lksyr9NwVAyOEQ4lK9SBubkUEBFY45F/VtqTveSBmFMS+5krb/uPnMPbu8oKLYwdr10MbeAgZt2gMBhTUtuhLIT4qHsUxyYH708DzGgSFecyoH5uj4Xbp0c3JWBivE4pB7i+StzmI9nIVk2I0EXrhvuYz3ERgO++fmPXriK2dU4rq0lsZIpw+0LoJDPozT1JDLH7wScbjgk4sJuQz6XQ8VRTY1zlXK1PThRgmcz8kLSaOR7VeNMHkLcTmWIIEvQ41ZpT5KOKf/ks6DXpb4PeCTlZjPCBsBIh2vkWMTTsdWM4uFwwLklelF2rF9Hn0J9bCBoGsGomb1cXU3h4kpGpZ3pzV609CWpx2hm+nK834ugx6EMZURklBtvERZVXwplFcEoDw3qgcDvZMp0G86OZp2ro+EAbrtxEtGwH9dPNp8CZkw7FrFCanLpRbZ69QlFDCiVK8jkS9hroxmJgtSi0uSr9LlQkhqElW1910xY9AKhNrd0MiLSSvSh8ZQRITGTzcMu6cooIxSo1gbr5D3w3GoC06tJFOBE2CMvDFwqBVqiHW12Oyrl8ub8XYFM6zI/SwSl3W5TQiiXw0FArjmzpRkxVLY3S5WvJ4bK+vpUeYm0jWWL6l8iL2ZkRdWerVxQ176I/1I6JOp3w+2w40jYU434NUR8djJVvhsirLv5jNwpCvLJxQwShQr6bDnkbG6MBJ2WzGhm1lNIZAowCoZahKHUjQ66HXUFw0a8Ojn/Nto3PycBIwEKii2cE7yYW4DHTXHY05IbnQKdEg9lv2Kg8sTVZVxZzyMNZ82B+caJIbzhFScadc3S56yHaAnTtpVEPJxbS+DCQgzreRvcwT54PF5E7DmM+h04N9GPU+NDtQfaV935Wjx2cQaPTCeQsPkw5LXjSMCOkZAXEZ9T1fZK5asP95liCWupvKofJpEQsVwZ+c3giULFBr+9rIRFeVhw2crQguGCzqphQLJYFSBlm0KlGlIh24nJgJgIuHQpZNo2InxImyJgagYCEa9DPQDLIgKmvrZWf+Dlh+Gh0NaU4v0WMOfWk5heS2I+XhVq5cHIaN4iBjDXVpPQp1BrDtOSQm226KMYpSapCLqnBn04PhDYEsVoJjJKncXhkKcmMspYT61nVVqQsJdxk+jF5WShJji+4kgQo2FxvY4cSpfp3V2ZO29lxbk65Pcg6HfjppOj8HrdiKvz5zwAACAASURBVPb3YWh4AC6fT0WJ7Ed9wp2MZlZS1Xp8ITcQdIlLuQ3DYQ9cbhc8bhcGwj71dSzi3eLSLNvINa0XCPcj1dMs+hAqfdmOgM/TMNJPxEeJRiyXSvB53epY9cte3AOLuHx5IYa1dAFeZ9VlfGwgVJ17i0VVr1HWEaFRohxLYkArL4rk36bRi6RVS5SjmLRIdCMFx07MAGyzHoF6KdWJfLWsgETHRb3VSH95IXYk5FXio3Hp5rqh9VLl69UN1aKrjcfYTany+rRmM5OV7zw/p4TjR2fimEsUsJKu3j8GbEU4UFKicdbmUrVn5d7x3LAHA35nzYxGjt0YBdnMVbQX828z/eG6h5sABcUWxp8XcwvwDsGmTEu2PshG8dDnFHMGYCLsxGtOjuDOG49jqK/6ENHsIjdzj704pdxpF5IlZG1uhJDFzaMB3HJiDOeONx9BU68PUg/xyWvLqu8uO+sh7jRWkrJ8/tI0rizGMC/OgPDA7nIjHAoj7HEi5CzjaMiFyYEABkQcDGyv12ecg8Vp7++fncHllTQ2ym5EfU6M+J0Y8jswJOkjER8GQj7T+lyLsfSmaUFBiY6aALmeLqjoIknOykkOMKqFwkUgjPpd8DkdKoXSK1FyFYlGcGEw5K21JetLe+JWKjXF1jIF1YZE5mU3I+lE4JRUYHkQlhtPrSaZiJXyz2wR8VO/RDx21b60IXUQZZHvJcJSBDptGdA9qEifpe/aohcw5UFgp/RxvXnLUqoISX3Wm7tobeoFxo1cGRLl2Ehg1KIYJWL40mo1AsUsilF+b+YsrUUmiumLMLi8kqqJjNtrNVZFI4kWkJTpV072U2RscpLV6hPqo/LMTD8KmQzWV9awvLyGpZUNzC7FkcoUVGrlXjhXW3UwVoHMNqgacxI1JCmTuUIRKFcwv5bAUrKIdKGCeKaIWVXjqlovUJb9NJoxRh9Kf9QxeNy12oeNhtaY1ux2VcVTs2Wv74Fl/F5aiqtarjLHnRmPNqy1KKJquVxR4ydjJJndNcFRsh3VnCmcoNKp3U4nXDLmulTvRsz4OQm0QkATHCVqX6IbtZRqMTDT0nG1VFzNNGY/jUjkWPerbmgnUuX1Ymgql8fTc+vYKDqVGczpqBPTayl1PzgdFyd5G1Jlp4ou7fc5MCQp0gF5eeTArceiCJmU3NGiQ62Y0SijICnv4BQbLJtyxNab0cj4j4R96oXVE4/8M97607svOdHKOcttScBIgIJiC+fEXt9MtdBVbtoBAvXSkqsP9dWaPzeMBjExIHUvqs6V141EOtCTg9VkPfHwzJAXNx0daEk8FBIS7fTEpRmcv7aC2XQ1rbXPUVDOs604MNejrK+HGHIBp4YjOHdi/GANSod7O728jovTC3hmZlWlLBedXhVRIlF8I5EA/D4fBoJedfMkkWP9QS+GIo2d+3aag6Um31Mz63huraCiAOTN/0TIiX6fEwFxDnQ51HVZT2BshMSqAOlRN4bVCEW9ACmRiFoKtZXIQ9mftiwnMupbucnVREn5eTVddXOVm9JMvqiEyWyx6pYo3yeqWqZaqlGW5mKl2bEHX870Vm/hJVpIFk1cFUOXtbw8mNsQRA4hZwX9AS/6wy+PowiYhVIJ1zaySkAVJ9URnw1jYS/OjA8ol+l6izJGurq6zexFohhvmRjYspmZs7QmGPrddqTz5ZrrtGwoEYw1/xcbsJTIQx7mZBupYXTbsSjG+vyHzmV6J6FQ+XDbqq63mpGJvq7fbusTWnWunhjtw8RoFAGfCzeePgaHOAhv1lJtxsFYq5fWzgjCZoxm5PyTqDu5Twh5nZgcCiHidzW8V5DovFQmV619aNt8YdBE9KHxOtPSmiWd2G6r1NKad5oH9/MeWFKiX1xKqu6dHg7WohYbzdvGz4VjQSLWN6MdJaJdS6tW6ypHGaZVN8uV67ePwEEUHNt39J1paWY1rgxPpG7hYiKvarfOJ0tIlYA+Vxlep0PV3BXBsN/vQsTnVvel+nuUTtcNlfvWlUwJ2VJFpc4nC9XyGQUx48qXcPWpR/Cnv/OOzgBiqyTQJAEKik0C06++nzdTLXSbmzZB4PxLK9hI5TCzllYF4F9YSKr7y2SuqG7+j0Q8ONrvw01H+9AX8ODW6wabaL33V+20eCgENQOV5xcTWMy74KgUlQPzufEo3njupDLqaOei1UMUUUQW1kPcSldSlmdWYnhhMY6Ngh0FTwjOYhZhtw3XRb0YCAcQCfqRyJYhmlTI48Bw2Iujg82L7VbmYIlalDfM3764jLmUpC4DkyE7Il4nTvb7lPgmz+RBtx1DIQ/GOuQwutcCZDPnfCOxUovWlDb1kZUSuSnCoNQ4k7f3soi4FM9XlFgpdaNKlYoEdsFnK9VSvvV9E6FTXsKIiFG0udS6EmDZ57Gp72WR9mVfEiGqCZiy3yuxAjLFCuyVMvqcJQz5bDje70fQ74PT4YA+fVxuxJ+c3sDV9SyWUwWE3S8buYxGvFiIZWsioyYmSoSjLHLzrqVMS4r1icGAEr5vPz544ERGY31CzSXYan1CMdERc4x2L804GM8triGdzuDa1Rlk0hnML20gnS1iZjmBUFBMPGzoD3kxOdaP4+ODOD4+gBMTw7uq59ju49S3V89oRot6TGSr15Qsw0EHXCjh6GBIifRHhyI4ErKjP+DCxPDuTYhS6awyx5BIPa/H1VQ6sJX5t5P8pG05by7MrmM1XcKA31rUYrN9MprH7JRWTfOYZuly/VYJUHDcTlAyF16YjymH5IW4iIa5zb/hpVrN5T6fA2vZMuwOG1477setxwZxtANuza2Or3F7rW7o9x/6Hu5+y79od/OW2/O98v2W123nipnHP9fO5thWmwhQUGwBZDfcTLXQfW4KoF5asqTFpfJlnB4JKMFQIpkifjduOT6AaNBLdiYE9kI8lN1qBiovLKWwXnQqB+aRgF05MN928mjbBUTZp74eotMGHOvz4vTYIEb6w4f2XBCh7pFnL6mU5fVssSoeBgbgzicRdgHHo17cNDmqIg/j6RyWEzlVz1BSy8b6fG0R7pqdg6XP//jCAq7FclhKV2skDnjtOCHXeMSrzBykVpcmMPb5XZgcCndEQGl04jQSIEVQk6VdEZCN+rPbz+U4JN17aiWOqfU0VvJ2SDxVv9eu3vxLpqjUtpRFxMpUNo98XlLOi0jZfEpclEMVcVLEvHhuu2OoiIyKR7mItUwJq3m7EiPtKnUImAw61AsgEc0Us01znrlYVu0vmxf3ziIqdoeqe3Qk7EK+4sBypoRcvoxKuQh3pYgRHxD2OpEou7CcrSBVqMBVKWLQAwyJ0VK/D9cNh+H3utFM+vhu2eq30xuCKHa5Ys0MxKw+oaRoSS09qfMnUXrtFgr328FY71y9Hk/hqRdmEU9lq5G6qRzCQa+KcBTRsVUTmXaMn76NbdGHlYqaQzP5AhY2xA20gFg6j5m1DBLZAuZj1chkWeQ8D3qqtQaNUY/y0lO7f9HqI1bKJSUi1ktr3unYmp1/283J2J5ELU6tJtX8fbTPiyMdejlk3K8xrbo6zWyWrqgZyDCtutPjz/bNCRgFx+n1rIp6kxdn8rdTUnu1lGqtpt9+p1Q3GkszwVBfO1m2v67fq1KDrx8KIuRz4exY9cXLc7NreGx6XRno3HksgtuPDzfaXVd+vt/zr+/2D6j0bJXdsYdfM499pivH47B3ioJiC2fAfl/MLXT90GyqpSVPLSdUlKHcgL+4mIIIhkxL3v1psFfiofRQ3JcfeXFWGahkbC64i1mcHXSjnQYqZiQklfniUoz1EKUGYDyJJy5eU+LhdKKALFyoBKLwFlKQ2n0SeXjD0SEcHwpDim2vxNOYXc+odFvRbiTyb1RSRk3qIO7+LGzNZVRSop+Zj2ExVYDbblP/pL9iNHJqOITxiA/XVhKIZQpIFSvo8zggAuNoXwDtTI9s5fj122oC5HIiq9KgjTUgu0mAfGkphun1VFW8rQATEQ9OjURMXaFl3aVEBtOxHETMF4fnk4Mh5bAtYoq2mKWBq+iEtQQSuQJWssBG0YGKzQGp0SpF8EcCzppAKVGQ88kCUrkyFlNFZAtlOMsFDLgrGA05EfLLw4kDl9YKWBKDlyKUiOly2jHsA46HHaiUSip6fSpRQbZih83uhMdtx3iwmjolqUqyyL40YVSCICV1WB99qR2TpIiLOZAIsm5xskVFpRgXyjZ1HB6nEyWb1Im0K+MQjx2qALyIKSKM7jbt2OycbNXBWCvC30kH42auJc1E5sr0Eq7OruLq7Aqm5taU6Cj1HGU5OtKHSMjXcdExncmpGn9Sg1LGUhapfaiE3k1H5WaOTZ9ynRI39HgOq8msikCc3cgjkUjDH/DBjaJysA/7XDg+FEA04MbkYAghvxNHN41Pdtpvt94D72Tk0gzHdq1b1zxm05iL5jHtIs12dkNAyonICyithmM3CI5StkRSkuVv+OXlFJI6szURQqVOspQjGQl7MRr2bhEM6zEQk5Xnl1KQv7lmJiu7Ybef2+z3/Ot7zYf25fAzP/zUvuyXO92ZAAXFFs6Q/b6YW+h6T23KtOTODudeiofyJvWpq/N4+MoyZjZyNQOV6we8eM31Y7j1ZGdrE7IeIvDYhZcwuxrHpZVUtd6hNwyb0w1fKYOwx4aTA34VnXlsIFgz7ZAU56V4FuuZaqTZcFCEN7+lOoitnL3tmIO1lOh/uLSiujIR9igX6KlYHpMRN86N9+HGsShEUFnYSKlISwmSE/GmKpR2p8DYiGszAqTUtpTFWANSi8KzUgOyXn/E3EWiF2djGYi5i5i2aIKhWU1FTWDUnKYlynEiGlAC4041GGX/mtmLPDhdXMlgLVPEyX4PJqN+3DQWgT4qQ0sDzxeKeG5mFbMbGVxdy2AqUUbB5sSgz4HhoBOjAQfWkzlspDLKnGM+54DT5cKA14ZM2a6EIZRK2MgDAeQx7K2ofop4IzztdpsSCkVw04RCJdjDjoCzAlu5BBvKGNksYilisVMZR7hqorHGVgyEtEVLR5cIVonKy1cvzVr6eCZfgtsu9Q9tNcOgoAuqD2XYVXq6y+lC0eZQfZH6sJp/z2jQpWqQyiKC1Hh/YF+ieBud461+Xs+5WhMdJcoxHPDWREdJr5bU6hMTQxioYyIm4pJEtOUKJcVZq9En0aKSSt4JB2JxQpYIErvk427WvpSvWsr1zGpKmcmcHA3D63IqkVwiIBdjGfz3R6cxvZaGz2VTUY9hn1Nla0jWxvzF87jztT/esN5jq+PQyvYStSgp5PKySOaKk6ORrjxXd0yr3jSP0dyqmVbdyhnBbZsl0AnB0SgYSkrySrqohELtq14wHItKLfpgs13HUiyNv31+Xv39OzscwOtOtc+EsenOtHmDdtz/ttIl3x0f2dPIRC0SMvPw/a10m9t2iAAFxRbA7vfF3ELXD9SmTEveu+HaS/FQjkozUHl6dh0zKTGJsGPQkVUGKu12YDajqKUy6+shnjs2cmhSmR96+hKuLicwt55QKcslbxjYFA+jPgdODPhx/Wj/FvFQOC7HUlhLZlVtGlnEoGM86ttVHcRWzu52z8FaSvRCIo8+nxMeh0g9wAsrmZq4eKw/oIRUTWDcSBdUsWwRGCM+F44NhroygrEVzrLtXgmQ4gp9UZy/N88tiRid6A9iLLr9YUJzmtaiHaWfmsB43bC1mpwyBz07F1Pp2HPxgnLEPjXog5i9nJBoLZ97GzrNWVrO/2fmk0gXSupB6Hi/D2eGA8ok47mFJOaSJczE8sjnsoi4yhjuC8LpcsNezKJcyGEhkcN8zomK3YmJkEOlU58Y9CPsddXSwM1EQn2Eo/a9RDJKCr8sDsj31dqUsDngcDiVAY7d6YbDXhUCo16bOmfLUn9SjIrcVdcdmwibm2Y99Ux/ZD19LU35ObaZiq7vm/xe/7NEM2uLRF9acR/XjIu07Rq5j7d6nje7vYiOV6aXIZGOsURmW6SjRJeODgRxZCiMUycm0B+N4MbrRHD0Y3JsqNndNbV+Mp2BuDSvrsfxb//Df8XTz1/B2MgAvnD/h3BicmxbW48+eQHv/O371O9vPnsSn7/vA4hGQupnM6OZK888Cs/4TepzSbsOepwqQleW0bAbC/E8jkRevn5EkJRFUrG1RYRJWcS0ThZ9WnZTB9tgZYlanF9LYmYju/n3yr9rI5d29stqWzuZx1Sdqqs5h/LuR8Rhj8upXlZ0QqC22meudzgImAmO0/E8krmSqp0s/0rlsnqplqk41TuU6/vdKsLw5FAAQY8LuxUM6xH+0dUlPHwthpDbjldNRHHjeH/PDUa773+bBeR77cea3aQt62f+6ZNtaYeNtJcABcUWeO73xdxC17tqU6Yl789waOLh41OreGktq9IAM0WgXW7LZkclBipPvTSPp2bWsJLbjHpyFvGqY1Hcdv1RHBvq6zgMERGfvraI2URBpVAehnqI+pTla/E8cjY3Kv6ociIXR95Bnx2T/QFcN9y3TTyUAYmlMlhNZDG3kVGOwWK80a46iK0MeCfnYC0lWmrriVAkdXiemq0KXSKgvuJICGeO9NWiNOWBdWo5DhEYN3Il5SQtAuNeRGq2wrBT27ZDgAx5XFiMZxDPFVT0Yp/HjrGID6dH+0yjEY0Co5ZOPRyS2obWBEZ9FONT8ymFR2q0HpHIyaEQXE6naX3CtXQea8m0quEmJe3SZReOhFw4OeDFa08OYDDkw4+urigRvipCStpW1eBlJOxR+1mM53BlJYWFZBF+l01FOUot0smBYC2qyuhgrIQEWzVFVsQEEQhdjmpkpJhtSKRhIr/pbrPpDK7VrNSLlZogKFGI+mhGSc3WjHCkj3oh0Od0QGoxar/XvtfXjzRGr4poL+l12qKlqsvPa6mXawHKz5pruXyv76uak0wEzEbp45qAqe+3se9GAbOZ6Nt60Ydz8ytIiznUwnpNcBTxcWZxQ2HQIh01ExlJs779puOIRgJ1Ix3rXbfKrTmXh93ugES0BXxefPqLD+D1d5zDq285AxENH3rkaXzwV9++pYn1WAKf/MOv4mO/9Q4lIsp6D3zjO/jEh98Fr3e7qC4bW51/RYzUlqnlqjOzlKBR45jOIy43HoCKJJRFIn3FkEYTJeV3mlipCZShzVRt+UwTKKV+pERPiigpTtmymAmUmpHLRraEPm9njFzqjU+nfl83rVrNDzYVCSuRylqUo9NhU3MZBcdOjUhvtyv3R4mMGJ5ksRjPqmcIWeQc00zNgm6HEgzlPVI06MFcPI/lZA6rqUKthqNPIrMdtloNR3mRJy+NdlPDUaIRLy7FcX4+gVuPhHBqOIzhyMsvL3ptRKzOv506bt/r/n2nmt6x3cwP/su+7Jc73ZkABcUWzpD9vphb6Pqeb8q05D1HvmWHmnj4w8uLNTdWWaGT4qG0LwLi95+7qtILxShBM1ARB+Yfv/F4RwxUzEib1UN81elj+zsoHdr7U1dmlcvyxflVLOUcKDq9qLj9qmZyADlIuuLxwTCORv07vrWVNqQOYjJfdWMWV9tO1EFsBcNezMHGlOifuH4QE/0B/NOlJVxZyyBfBm4bC+G2Y/01cVGOSR5a59aSKkVaYyjRc4dVYNxpnDWRScxE9DUg1zIFVQ9SS99NF6uO0RW7Hf5yFv0eG/oDXuV6K47OxhRsTWC8vJJQ0RKawKhFPEqUaTKTV7XrJBqvUCqrdHcRzZ22aqqwZArnCwWsxFOYjeexUXYh6HbieJ8LNx4J45aJgbqHJmldj0+t4YXFhBIJbZWSEu8nwi6M9Ydgszvw0noeC8kSVpIZJBIJuP1hjEe86PfaMOgFJMpsPlVU5QfSRbsSIc+MBHDbsSjGpC6pvypGdnrRC4FV05dqerVeBKwnAIr4Z0y9lp+NdSP1YuWA/2URS35vRaw0Y6B3MNf32xh9qXcyl3aspY87oLhk8xgI+uD1B1QXyiURv1/ujVHA1LuPa+esRDiux1KYmVmCmMhIPUdNdAwFPCoCTdKr6zlXi1tzYdPcyOV0IOCvmscZhULjz1ovra6nZ7wX86/ZmGoCZUxe3qRySpTUHLE1gTKeKdRqrIpAKVFRlUpZme1ppnsiQEot0gLsGPZWxcUhKWGxee6ZCZTXjVh7MdHp63E37dczj1GC42ZatXwrLyYcDjvcqrSClD6oRi9zOTwENMHw0nJSvQDSBEOJxpdlMupVEYZyXygRhjcciez6b5E+wnE3gqOUTPnupWVlsiJCYi+lNe90xu3X/Kv1yff6j9deVmgvLfbia+Z7/+nwXIgH6EgpKLYwWPt9MbfQ9bZvyrTktiPddYP7JR5Kh8VARVyYn1nMIA4PfIUkjkecuP3ECG4+fmTPBETpy2MvXsOVlSQKZajoy1PDEZw70dkajLsetF1uKPUOpabcFYmME5dlTwh2l0eJhyFbHiNBFyYHQg3FQ9m9pDEvbKSV4YQsUgdR6rwdHezeB6i9noONKdGvOBKpiYsXVjIq5VQco197/fAWcVF4isC4KlFJa2klWpUqNsW4P+jB+MDhdQvfzamviVvzqzG8sJTAeq6MeEkco8sIuaqOzyJC2lBRxhMeW0l95nB7VdqvlPqUCB2JoPA5bJgMO1WErixWjEzEdOiHV1dxYVmiJ0twVIoIO0sYiwQwFParlOdq3B6UICn1EaVWocthw3oyg4VYGtdieVyLiwmH1CX14pbxME6PRiCRVy8uxHFxKaGiFVfSJfhdEhEbrD68eV1IZgt4cjaOZTGH0UU6yue3Hx/c9YPdbsaiHdt0Sqysl2KtFys1ca9RZKKV2ofG6MudBEy9+Go1fTy+EceFmRgSG3HksjnE1xPqe1cpi5DPp4x5hvqqomN/JIjbbr0BNxwdxH3/+1/g37//l+Dx+1DM5vBfPvfn6ueAiKCul8Wir//NQ/jd+79cG1Jj2rN8IHOutpw/fx4f+MAH2nEK7FsbWh1JSU1/5MUFxAp2JXT7nVCRUtOr1ahJvUDZ7endu4Wpj3KUupviVi1CrM1gHiMvGJlWvVvK+7+dlOyY20irCEMRDKV+ofwtkUUEQ7/LgaGgqyYYHunz7+nLKyOheoLjfCIPJ0pIw42z/U6cHgqqUiW7jXDc/5Fprgd7ff9r7J3vjfsj7GW++x+aA8W194QABcUWMO/3xdxC15velGnJTSPbkw32UzyU1MALc6v43oVZVXssYfPCX0zhxiEPzowP4A2vOLEnDLSd6OshSiTSeMiFXqmHqE9Zns9UkCrZUfb1qZeBUmhfxMPRkFulK4s7sZV6MZLGLAKisQ7iYNjflUXrzU6m/ZyDjSnRP3aiWg/tiWtruLySqjlG/9h1g6ZpN5rAKMYH8Ww15U9q6I1EfBgI+Q7MGOzVRS68ZM7JKwdriZArolCqCoeS2iuBE+lcFplcFnmHD06nC+N+G8b7vPA4qyYjsq4+AnIllUMyk0MstxmJWKrAgyICzuoDswh5bpdbPVj7PR5IxJKkAw/57XDa7UoglIcXEQyl9uPVjayaCzfyZUQ9DkxEvbjpSATX7xDVpD3cPXFtfZuAKG7jp0erYrNeZJzayCvXaHnoEyFyNOKDuPkaRUj5/ORgAK+c7N9VQfu9GttO7mfXYqXNgWTJDqetjHw2q+pK+t1O2J1OlVIs6ffaUi+y0kysbEcNSElrzuXyymlczneP263O7+nFNaSlPMXSCl6aWVFpzz/14+dw7+e+inve/0tYT+XRH/biP3/2z/Hxf/s/o2hz4tJSDDeMD8LusGMo6IbP7YTX6cDlqVl89evfwvve/a/xvStriGdyVf8YXdr7xSd+iDtf9+Pqd3KsmijbjmPs5DnRqG29kYuI9BODIcvzcbeldzc61mY/39E8xpBWTfOYZum2Z33tb8r85v2dJhhqYqHsRRMMpZRLyOfaV8GwmaPWTFb00YitRjg2s/9uWnc/73+Fg+9N/3l/TFn+4X/tpmFgXzYJUFBs4VTY74u5ha6bbsq05HYTbW97+ykeypHIH+1nphZV/cOrsSKKcCBsyymX1B+7YQLnju+9e5pWD3Fx8+1qL9RDvDCzjCtzy3hpOQYxB8nbPUo8tKtSSDYMOPJKJJFIKKvioYyfloIrdRBFIJG0pqpLsR+RgK+9J+setdYNc7BZSvTZsahKhby2lsLTsxvKMfqGQR9EIBLHaLPFTGAUJ10xLehlgVFLOxYmRqFQHHG0tGOp2yk8pD6gpL+6nQ64XQ5lmiLuuPpF2ry8FFMpynGpH1jMYsAD+Lx+ZVCiagtuut0WK+J0XG27KCnP2TTWsyUs5qQOYfV+WcQ7ERD1KdjlTedkSd3Vu2Br0W9upw1Ta1nMxnMoSZ62Moxxqnqx9cxetGOQB0JjlKJWb1EvMkqUyctCpNRdrEaWiIh4/XBQzRcXFxNK4J5alzq5dgyH3OrzUyOhA/MQ2enpZFv0oeywUoY4L0vap99nnlbejFhpFoWoTwPX13/UR1aKE7i2RNx25ApFRPr64UNeuTHrIyvrCXlbaiiev4Dv/POTeNe/uRvLazH824//V/zyL7wVA4ODODoSVXUb5W/NJz/3f+D0yUn8zE/cgfV4GgGfG6G+lyOp5Vp9+Affx8mbX6XKEmgp41qquKS5a/U45TjlOpIoXe14tOvErFRBp8fbavsyJ19eiGEtXdg3I5d2pncHN0VwzRxHc+wWHu1K766XVi3zuEQ6Vg1kmFZt9Rw0W0/+PrwwH0MyJzUMcyrCUOZ3WeRvgCzX9XvVyy5NMJR7koO8iMnKE7MJNac0a7Iizy5Si3kl+XINx0yprDIZtBqO8vJPjMkOUoTjft//+n7yXrmLUmZQe/k18+39MYM5yNfPXvSdgmILlPf7Ym6260xLbpbY/q2/3+KhHLlmoPLsfAyL6bISEIecOdw4GsYrJkf2RUCUfmn1EBMFwOcAzo4e3FRmSVmeXY3j4nJS1UgresOw6DaXagAAIABJREFUOT018XDIVcSRsLuWtjw52FxqrNRBXIpnkZCicJsOuL1Uw6/b5mCzlGjtRv65ufWauDgZ+f/ZexMoydK6TvQXN+LGvueeWXtVV1d32QuNQMui6MCgMLxRFB6jxzcKiNs8hwFhXA466lF5iD7f+FxxOz458nSGpyKIiIgsbQO90lR37VVZVblnxr4vN975/W98UTejIjJjy4zMrPhO1cnMiLt+97vf/e7v+y1OPDAXbgsuqp6HbSOWKYoMnSEbBL0IAs9Gb4d0DK+X2nrPW/kT8pXHbJFmwE8zUNgsO24GHUsVo+F3SOk4x7MKJLcChAQfBRSy27CRzmItX8VGoYZJBqyMB8DADa9rMxhpPSt6MF5cToBMRgY4eB02CYUhEzjqvw3Ct/KApKRVgUhkRvL3jXwVqTJQqVKKXcacB5Io7fd6MBPx3eEBaT2W5mTptWwZR8NOCXVRfopcvhlktIKIZCqy0NeRIKMpmTYTqrkdBVbuli/jsNpuLl9EqVIB2xHl6SySjK3bJaRiL3jGWb0fOXar2HTkcxmkixU46p52SjbdDqxkSv3DhyNYT6Txe7/1J7h46TomJ6J497vfgftOHkatVMRP/rffwo+/7btx/ORRfOLTX8KH/+gvpT7+0zv/V3zbK16Mm8sx/O0/fw0Lq0mUiiXEE2mUS0VJrQ45MohMn8Sh6YgAsCwhvxvhoAlK8mc07JffyfitOXREQn4kC+WG92bzfcJXU0qOFRipwFUCkcqLUnlq0n9yt9iQVtYivXBPToc6Zi0Oq50371fJu/m5Csex+k/upLyb+6T/ZNvwmCZZ9d0cHmMFDK+sZZEpVRsTQmaatwkYTgXdmA66hWG43wHDVvfIboWs7FfAcdjjX89rPziUri3/j+/btN9CoYSf+9Af4xOfeVw+/6X3vR1vev2rtjy2q/OL+OH3/ToWVzYwOzWG3//ge3Di6OxQzueg7HQEKPZxJYd9M7caLHCQML+WFp+uW7E8Lq5kxYDaZuN/4N5pvyTikfVydMIvD/hRGW4N7AXwkDVAAPHxi7fwwnIasbJdfMHmvDUwQOXB4zO7ksDc6kqkcwVcuLW6r/0QCTh8+dxl3NjIYjFdRNrQUXWH5J7k8FDTbJh2m0DHkahfPA+7BQ9Zd8oHkYwKloDLjsmge0/7IPZz9+21Pth6Lq0k0f56WirBRcpT5xNFTPkcAi4eifru8F1srhvr9SUW4ndquwowWmXHrYJMFOuPjVp5BvKFn1JRFgUUtmIl8vutEowV6EiAkNsj+EOWYshnhk90UyhPvrRiJnazzFDWGPVjNuLfcjNc78ZGBovJPBgQowDGdqnT7TamAMhYOouLSwncTBZwM00fSId4O7rtwIzPLgxDFiuoYmV2UfJNxvHF1QxW06VGumazzJltsR1TUYGMF5eTwnax+jbypZUpnfR2PBTdum66qf/dXFaxDymVF/CZYTtGVdqOS2/PPtzNY2y1L8qaGQZUgwabgJ06XE1M3F6PkfcuWYUE3NdSeQS9TuRLRuO+YqvLlSu4sZ7G129tiO8nAcEKNJQMm8iiry0lELv8NPTxUzgccAC5DAi00auU/68vrMtPlhtLcflJllqKQUi5EgI+t4SkpDIFaedzU2EsrCTk95nxgOyPxeVxweP1iF1BuaYhGDa/S5VrcHvccLld8p3T7ULQ55LJAx7O9FSkkUhuvWf6lWWzD1yKZXArUZCwMiawz44Fer0U+3q9nZJ3+90OAfpnwh5hNZKFTu9YMiz9LjuMShlBj46xgFvGUGSoM0RmL0wEdHJBGda1GM8Jw5CAIRmG67mKsOWYkMwJHgaeHHTAsF1d7bWQlb0KOA57/Ot53Yc6ae4DXyb/Dz+5aZtk4LO8+51vlhCyH/up38S7f+TNeMlDZ1rum2Diz3zgD/ErP/WOEYg4wKszAhT7qMxh3MwjWXIfF2wPrLpXwENWxTM31vHMlQWcWy0gWXPCV81h0mvDw0fGRcIctjBwdrvqmv0QT0TcOD07jqlodwy93T5u7u/mWhwXbyzhPF/Q0yUUbU7UvJG636EpWyZ4OO13CnDYK3jIfSkfRCYJK4bWbNizLxhsg7g2w+iDuz3udpJotR3Owv/rtXUBt9wOTeSozYnR7fapAMZkvoxspYawy46wV8fRiWBX7Jmt/AkV+6+G2qZwEStQSOllmQhnk2y5Yhh3JCZbA0qa5cu9AoTdXhPr8tYk6NUs03k1YSF2AhJaAcZE0ZAJgXGfq6N1Wx0zPSKvrqdxfSOLS+t5YTXOBnVM+Jw4PkbAWW94QDYzu5QEmy+mK9kKiiUDNaOCiLMm4CTb1UtPTmIiZALXVpCRYCRLsxx6s+zafOFVy+xVX8ZW7EMNBlx7iH24VXslkJgvlKDZ7QIkBnzerps3ZaelckWk9pTxU3BcrdXEU9GokRtsJpgTsiMg47Br8t8EZTpP9WX/+42PvhxPzW/g8noWlDkzCOxQyI1Hjo5tO0HS6sQUgy2ezGB1IymLkNF7/dYq2MZ57AQrFdieypaQyuTh0J3yM5Mvi58kC//mf0q11e/8nH/fWo6ZbT5iMo19dgMBrwtM1A46bXCTNVwH0ckIPXV0SpbTdR0nDk/K78VyVYCgoubCpE/DmblIV/1u1xf2gK/Qqbw7lS8JWM2Ub4blcFKJ6d0M32Pat1urIuC2C/DMkKsIWbM+J8YYmDVAeXe7y6EAw+VUASv8XwcMCRSyvSjAkJM1TEie5Thwn07YDLJJfunSMq5sZGWT337fTEvv6UHub1DbagU40jaFE6utJNVTQY+A5P2Wf/jHz+B1r31Nv5vpeX3Pd/yfuyp1VtLq/N/fDgIjgPgzv/phvPdH39oAB60AY/PJKTbjm9/46raAY88VcpevOAIU+2gAO/EyO5Il93FB9tiqewk8VAEqfGDfjBcaASrHwzpedGxi1xOYW12qK/QNXE3A6of48IlZBLzdM5B2qylYJcuxIkSyXNP0umQZkvpL77ZBgIc8JwI/TJhdiOcl9IOFpvH72Qexn2u1E31wP8ez3bpbSaK5Lr9/7PIqrsbyKBnAmfHWidHt9kPmH1lFBBiLBqDDQNAJ8cis1GwSZKISptv5ExIcpE8bCxlcZCupABQFELZLMFYBJVv5G25XR8P+XrEXORlA0IWsq8MRH45Pbs/mV+tuZEtQACN9Tsk23kpavdU582Xl3GIS51cyWMyUMevn8bjF66mdF2OzBHslnsGNjTTW0wXMp2vCkI64yBjVBQSd9DuFzZUqlLGUKuNmsgSNALINuGfMJVJoei5SVtcMRCpGjVV6vZuS6XQ2J0E9wj4UFhy9D/c2+7DV9c5kczCgwahW4XE7W7IRm4FC4mviz2nT5LwVyMZ0c4Z1ke2qgEKn7hg4g6tV/0upNoOpFgmkZCs4Gnbh1LgP98+GewIY++kPWF8sVcOApBYbNbmnWQhSmt/VcGNx3XQBs2lIZgpIZ00/uli2glKhiGShgmKlirX1pPzks3ctkUWxUJJ7hiWVSMvPsaATuXROQE0yJukfWSqUEAp4ELSwqZnErQq/iwTNlHmWY3Njjd8VeMkP6G85Fr472ZDdtAOC0rFUHqvJLAyjJvJuMh3ThSryVRscugtLibx53XJFCfuityM/87scyBTN59900InlVAkzodvgD/0nS6WSsCW9ug2rmRKyhiZAYc2uyyTQkbAT90z6hN09Agy3vnLNISsPHY7uej/RTdvqZVk+w6+upaVtrGWK2MiWxadZAY4Rjx3jDLWqezhaAcfFeAaFUgVr7JeKFQHOy0YNumbD1594HD/7jrf0ckgDWcfz+v8+kO10u5H8J3+isUortuHHPvkFPP7UOfziT74N7roqSK2gGIxfe+FKYxtveM2jLZft9rju9uVHgGIfLaCXl9lRWnIfFb6HV91L4CGryRqgMp+qomBzIlLLSoDK2SOTeMV9R/dEbdIP8fxKSuSDe9kPkS/oT1+6getraSzG04iXbKj6J2RAYLI8bOIFR/CQ8skTY16M+909yZabLwx9EJnOSR89lkm/LgAimUZ3e+mlD94rdbaVJJrHKG3uRgxPL6YFmD4RvQ0ubudPyPZIL0EHDFTKfOGxo6o5xcbAbSsj5HGhZjNTj1VACeV7BCHZjpsTjAnQUK4sLK8ByS73ynXY7jiurSZxZT2NTLEqcspO2YvcrhWc5EtA2G2XIKV+AEa+/DIY6/xqBjHG/NbDXs5M+vHgoWhHzIfmZOlbqTLsmg3HIi4JzZgJuVFiQE3ZQDJbxI14DumiIYwsMt6mPEDE58R02Ie5qE+Og2EcS6mSMISI1agQGU54vPjYOAYBMhIg4qSKeB+y87XZCMHtG/Zhc1urVKrIF4swYEe1YvbvLAS7FFBIVoYEWtDrsWbIdSKrkPciC4FC+j4Oo3TS/yqA8ZpMgtWEwfjQXEikwsoCYhjH3s0+FTDJdRTz0wpM5sgqLVVlsiZbLONWPIt8zYGSjX6cGmBUJSWcbOiltRSq1QrsRlk8KYuFovTvWqWMdLaIsIcp2xrWN1IiQffoGuYXTTalKrdWEgj6KRmvyTosZFay36eE/NBUeNPyVvDy2Nx44zsTyDRZe/S2VL/z71NHdz9kr5tr0u+yW4XHMOAkncvLOJqWAAsZ+t8SuLfBrdUw6bFJUJdO4F7TUKjakOHDE8BCPCc/+Tf7QgVK8jMFViqAkuxJSrdZaEUl19HtQMjrRNjnQqgeyMTfybI8SOX5hRgeux7vKWTlINUD+4QLS3Gco9VUwcBGsSZjjXK5ImM0t67BY68h6gIiLg0nxjxw6DrKVeCZrzyGn/j+7x5adXje+NtD2Xf+4z/e2C8BxV/73Y/iV376hxAJmZMtWwGKzcsrxuL05JhIpkel9xoYAYq91x3aDaZGsuQ+KnUfrLrXwENWGf0Pn7+5hmdvbmCtAPEaCmklPDTjH2qASvPlbOWH+NCRCZycndgzVz6Wygh4eGU5gYVsVSTLm/wO6+AhH/CDBg9ZCUrGTD8z5ZM3F/EcWB/Efi58Jy+0/Wx/N9ZVkuhPX1yHrVbFo3N+TAR9kprK/2QFpoo1mZ1eTKRR1Dzw6zYcCzrgdzrkJZLgIQvlxO0SjPk92TLFYlHAobThgM9hk+ThEUDd2ZVWIS3KQ5EAYSfhLmrrZBvcjGXECoFgAP3Aulm/3VGy/2d4Ftnn8WIVEZddWIxnZ0I41aFPcifJ0goUnF9L4olr67i8lpFgl8W8pG7Iy8/hoA5dkq81rKRL2CgYKJQNVCsVzLoNSaEma+2e2SiOToS2DNXY7+xDMqUEgKoaAsQSKKRsV36vmGAwgUKCggooFEahZhsqUNjZ3YC2Y+Ct1j+3EMPNWA4vrOVk8mIm4MLpqcC+Ahg7rZ/mIJejEwHpo1nYLtbTeWkLG5mCAJEEJPPligCviVwJNs2OVLEKl0MTz0tJy2Z7sRkIe52k4yLCn4BMYI753dJ2JoJeZHIFJFImuMX2dfXmauOwry9sNH6Pp7JIpk22HosVvKTfJQHKZvDy0FQIt1ZMOboVvCRAGQ7cDqvai+ClmkxJ58vSf5F9fy1mMlIZUMWUZPZRBAw5eUuW/4mpEDxOndUtTEcpNRPoJ15MUJFsfnphdwrudyrvTtcZsAqgpCc+WWrqJwFIld6tAMqdSO/utM1vtZw1ZOX0uAcPzUX3nKzZGobFc1mz3BvSRkqm/6wqKt1e/d0ckMVJWy5Dib7JHAcYKKnVDOg2QxjkdbGRsJojHrYjs41RNcAJBfYVBMD5HOHzI1msYa1Qw9XnnsBfvv9tg7g0PW3D87/87nAkz3/7I43j7Zah2AqA/Oqz5/Ebv/dX+J0PvKsBSvZUIXf5SiNAsY8GwJfZf41HZEZqKVlqdPCnp3w4FPVI8Alnmh46NnbgZpf6qLZ9terVpRieuHQTz82v4WbKfAFgOTPhxtlDY3j0/mOYGIIERQWoXFjNYr1ogwNVRPWqvEA+eu+hoQWotLq4yg/xatwctO0lP8Tzt9ZwdXENDMmwSpbJAOGDX5iHGmR2cCfAQ9YHGTeLNOlO5MVvji9Z9EGk4TilqqPSvgb2A6C4nT8hB5zFmh22miE+ZwupAjIVwI2K+PGR0UMPNLsNAhyyfaRyBSwkslgqOXEoYAI09F3sNqBEtT16cGZKhrwcUeI7Ahg7u+vIXrwZz4IhSJUacDjkwj1ToU0J0FttSQGMN5NFkRcPCmBsx2L8xiORtjLpVsfZSbK0AhnpG8Zgl2cXUgIyWlOoZ0Nu8YoleE7LhhVKwDZyuJ4ykDPsklocdTNkyGQAjdHvLBIRFp7fVhbWDuX0u5nqu9V1awcU1sQgwAwfEUYhanLfKp9CvhCSXULGmtuldww+dNYad3+pQfS/BBgvrqSxlDaZdieiXhyOenF27rYkePfPbLB7ZD97ZTkp/QTZh5TN9hPkQtCjXC4L2EEbA4IVylO1JInyVQEjqzaHgJGGpiPk1iWdO+h2yDNEt/FZYgPDrghKep12eJ26yORZOPYhOElfTbsCONowYTcSacSTpvcdSyfgZSKd3wRkknXJYgUrybpkajjBS4KaVsm4Fby0Ssar1SrmJoPgz6sbeeR1r/RHhWoNusuFoN8jgCFDT8iengl7MRvmu5qr64tOkId9gckopqTerDe54euAo0qr3snwmJ1O77YClHyvZWGopyrbhXs2y5pfcU9r9qsVzMuVKgKyW0ssa1oYqKJS7tXfrcA8gvMsQQ7kKXGvM0n5t4y96t+7HVQZmW2fRYF51v2pcCf1Pe8ZlkK5Il6eVHJw4jdHZn/RQNStybiA4W0BlwPjflog2IXZ36sFivV4BtH/dt3oLSt4vvPDZqqkKqbF7Y7/nf//fqixj249FFstT0Dxrz7+uZHsuZ/GwEtfU7z9Pjd0N67Omxnj94zSkg/IxT8/v4wnL9/C+cUELicqMkvE2clhg4es3uYAFWe1IAnMDFChhPnIxGaJy7AvidUPUdcIxrkxbD/ELzx3ebNk2RMC7M6G3yE9p8Tz0G3DdMA5UNly8/WgjJk+iArEuZt9EK11Q6nC+z/4R/LRg/ed3HbGcJgDqlZJxSbDxBBAoQqHpKI2FwKHTq0GvmiQrWK31eSljgEl1gRjgk0XN/JI5Cs4FvXgm05MtJQIEgx/biGB+WQJR0NOSYy+fzbSUxdgBRiV1yJZGlG/C3Njez8QqaeTHtBKZC8ynXIhmUeiUBV5c7fsQwKUq+l8I31a+TdOhbx9vYA0h73E8hXxYjwz5cfZ2RBmwp3bJ1iBw62SpVmtalmyrb++lJEXLSWFngs4cGzcD4/TidVMEc/Or2E+lkOiCKzkDGEHhTwO6YutEmyyQ/iyVn+XQ6lqpmCrF0C+9PF3vuz1AkA2+xSK7568JTHIpDefQjItGYFiGFV4XK39EQfUDHd1M4Pufwk4z29k8OxCEgn6wFaB+ya8uHc6iOMTB6P/aWYtnpwO7YqNhNVXlUCNAmfozUYGVbFigCBOqaYJGK7ZHZLm7aYfqUOT/wQlWQJO0+KF4AhxGoKklOOzmJOxpiyfgCQLWVgsZEqy9JPI/NT5m1hM5LCaLuLCYgJXV9PYyBmolEoYt5fAgOgxjx22fFYCdAjwMahHScOlX2oDXirJeDN42avfpc/jEg9HehIT9DVtO+uAI6cbyFpjPfG/PP8d0DkWcJj1tFtFtQ21vxduxSRtmuXmhslyfWHZBIzpQ5kpVUEHnlzBJFkwkI3/x30asnkTBAw4qshk83DpNpS9Y3JdGJrD4vc6JS2erHZaAkTcGsZ99bbltmPc7xRmnioeh9mfq6L6d2v9sK+3Fj4zB1n4fF+mb2qlivVMEXyGyrnX/QzJGCVoOOF3w+10YDZyG3Ad5HFYtzXo/rfb4/S8yRyr73bJf+ztm3a5Vcqz8kxkCMubXv8qWY/LL69uCIDI8nMf+mM8+sjZxve7fT4HZX8jQLGPKznsm7mPQ7/rV20GD1khHBjtBfCQL39X1lL43PM3sZAsIW7zIVhJSQLzy09N7YkAlVYNiH6ILywnka9iqH6IHBx9+dxlkSwvFyAMGEqWWRTrkD93CzzkflUar9UHkR5kh8a3D3q4W25WShE+8rHPSFobjZQJLrKoQUCretiJPtjqT0g5FEE2gmt8uSUoUIEdNWEfmYUAIRnCTGQ1U4sd0O22+u92mbV26ubPbhmE3P52KdHWeiG4eGk1LYAUpTMEF49EzVTfXgrPfSOdx61YTuqAhQyXqRAZtJ5deRHu5bj3wjrKP5HXgoUM58NRf1cvGlYGJLfRTUDMdnWgwl7m4zkspsryAnfPuGfLsJd22yRw+NR8DFfWs2hOjGYaNA3nlfdhtlzDczdjWIolcTleQQl2THjtYKgLw19OTweFLWRlR15dz2I9RzmihuNRt4QdnJ4ONZJR1QsxGVtKkmZNwSYAyeASvqPmCkVJ9OXvfDEdC/jgdbvgc5vpvhwH+Jz2vgNNBpHWvN01HPb3O9H/Ws+J1/V5TvCuZyWsjcDxbNAtbOxBAwa7XZe8H5ZiGdxKFAT0Yvvvh7W4U8evWGPWe0vJPOmbysL7i4Ajn5H0mWWaONlefFbIM8NlgpT8qUDJEBFJxeYlA9Iw79FsoYRrG2lkC2UsJ7NYy5SwlDUQ8LhhJ7sXwJGgLoowelVHA24Ji9qJcnl+ubHZeCoHJo+z8HerTJyp46p0KhlPZYsSAHRoKgLNoUudsRyeiYo9RKVSxnjIJaBjIZ+Di36LoaCwTh0eLzxeC4Dm2wxeSX9XL6xzhghx4oWYHMFfKzOP95S10EPXWroF8/KlCj5/ZQ3pkoGHZwJgyMpa0pTUM5U7wfPOmV675mclpPImw2/Y8u6tAlD4vNgJlmE/7Xan+9/tjs33PX+y3SI78n32f/zgpu0qH8RPfOZx+fyX3vf2xntDK0Cxefm3f+8bRv6JA7hSI0Cxj0oc9s3cx6HfVavuZfCQF4IvdheX4nh6fg1X4yUJUPFVczgWcuAbT07vmQCV5kZj9UMkiDjpdeD0TGRX/RCVZPnaWlKMs8t2N+DywV6ryuw4PW3E38ZuslgmffqOMg9VHVl9EPmZKXPyYDzoHYEwbXqfZikCZxFf9bIH8JKHzrTtrzrtg5XsuFAsi0clwyXIJFShJLCZ8jBodtiqZQl6UAAhrx0BQoKBZBQOM8F4u5Roa0VRZvTMzZgkRvMcTo775EW8V3CR21YA40oyj1T9hYDsSsqgRgBj+8cq2Q18MWe4y2q2gjCBkZAHp6fDHTMP1TaaJdaTAU9HCdTbPfSbWYy8P2aDOo5GvF2zGMnIO7+cxkIWuLi4juvrWXh8fsz57Xh4zr8JDDRfKou4uJwSMNwKHn7DjF9kiSrU5c7lKvA4NIRdwJGQE8fGAzg5GWqRfEwJohloQkknA2fIGkoWq8IAZrkDgCSjyo6uGZDZXAHligm+6w47fN6DFaZgbUed9r/btb1Ov2f/99T8Bm4lC5hPFDHlc0iC9L3ToX0NMLJfPb8Qx2rWwKRPw5m5yL4fJ1iBSMWG5D22ninhUqyIfLkmXnQ2o4pKmaFQQKJCYM0mQP+U14ZZvx1Rj477ZkIIe3Rh8jvrbEcJLVJFpZxrWp31Z9oNiOkhGZENpuRtPSZZk/FsQXzr5F7V9a798rieAlX5O8cTSmJLv0uCqkpiq8A89TeXV2BeIVdAIV8UVrtscyMuPzkpuLq0KvLtQqGAXLGKTL4ix+z1B7C4loLDYQKAqUxe/vuUtDdjgnid+F02p4z3EtbDkJUnbprH/Y2HI7h/hywL+pF303KAjMIpvwMbqbwwJh0OOyqaDq/fZDSGXDbMBXRRi7zoiAlUdyPv7rQvG8Ryu93/Nh+z/y1/OojT6Hobmb/8ga7XGa2w8zUwAhT7qONh38x9HPqBXXWvg4eseBWg8vXFhEi78tARRQ6nxty479D4ngUQeezD9EN84vw1XF1JSOLoet5AtS5ZJngIu73hd8iB226Ch6wXqw8iZS2UsEzQo4fePCMfxI77G6vk+Q2veXRbT5NP/cOncf9Dj4BAIeVamUIZ5WpNEjV5HWqayczTaiaTgibYut0u3mz0ZKP8kKnF+zHBeLuUaGul80X8scurAi6WDODM+O3E6I4vTpsFFzZSiGWKkkKu5Nts+7NR/75/Ke63btqtb01/pjy+F+ahFaRkKqTycOyWBbnVOSoW4/mVDBYzZUQ9jjtYjK2Slwne8YWMkj8l32tOllaMQ4KGVmaiOp5YOo9zCwlci+VxK21gKZ6GvVrE/bNhTAU9OD4RwISPwRQGOKF0dTWFW+ky4gXTk3TcY7K+Wm272+tqZUBawRHl2WUygmwmA8jtgWaUZRKLrE8lwZ4IuIW9zH6nH1C/22PfyeWHPQZWACMZjLwG9Js9FHLjkaNj+7aOKYm+uGoy4U5P+vcka3GrNkW28mI8h0yxjCtrWayki1jPmcA/ZbTjXof4F5LNLz6GYY94GJIBKYqAMsPIKogXKlihmXCdAUmwjs91FgfVALaaKAPINqbahN8xjJBsT/F/tNuRqdhgs9sRcAB+HRJ0Q+kxi99hhqrwP9mVBDHtDnO84NCdAmBS9q2Yg1zflHXTAKEGd91/UoGV9Mv3ufS+5Ny93Kv0cCyXqyhVzPAnGffUw2NMSTXrzPRy5eT6raUNqRuqJlj68bsMhgO4sRyXOiVjcirsRSqR7tjvkvs/NjfWOO0Thycbv0dCPoz14E9vZRmWKoZIk5UsmRvnM0zCa9y6JGknLb6M82vmfUdFhrS7OnuSv6v0bv7OzIRe07u5vgIo+03vHnb/G3zrn/XSZPteJ/XR/63vbYw2MPgaGAGKfdTpsG/mPg79QKy6H8BDVrQ1QGWjZMoLgrYiHjkUEgDxgWOtDYr3ykWiH+L5hQ2sFwyRMp8Y9+PeQ5MI7BDzgi8JTFm+vpbG1ViK9yZVAAAgAElEQVQO2aqGmtecKXTVSoBdF5NwjpP40kZJx24xD63XhD6Iq6kC0nyZNyCeX6Mwi95bLY2Rv/Dl5xrSg+a/Ly+u4ZOf/BQ20lkUDPM+irgdOPbgS+BweWHXnajVZUPWo+DLB9uJQ6vJwLJafymxLkMgTK+zGGisXr6tGGosRtPu7Yrf4vPTalm+RBHM3KqQDUlvqq1K0LPZQP7iShJfnE/DqRn45mNhMZqfbDMYl/vrRgxPL3J5hiAMDlzkMSt5vwSVGAza0ARcHwGM7a+oVdpMySBDSR44NNYxe5FbtgKM9HBke6b/4CABRrIYn5pfx5VEBbGcaZA/7vfgaNCOs9N+TIa3942yBprEcyVc3SjgZrKMW8kibq7FMB3y4cRUGIfIjgzrIjNTycf0ebseyzeYjPOJkqSxMmThobngJuaj8m8kqMEUV6t/I1mPVsn0dvd1u+9F1lwsCehARnPAZ7JcOgMgTQYk/ebIZGr2gNwPAOReGwOTFce+bTFVaACMZDAShN5vIK5iLXJ8EXDZMRf1YSLUudfpVm16u/CL5iRba/hFvlASYC6ZL8tEHpm+sYKBkk1HtmoXtjCfc26nHXabTe7NMa+jwdTrJ/xCnVOzX576fDtZtmIcS1o2x5N2G5TEVwVuRH1O8V5lscrqOXHCIuEr9dR2tV+Gspjf1VmTAuLVPVetrMm6zySXbWZNdhOC001/xf6Wx8v2RKCxER7TlFbdHB6zVVp1pyErvUjGtwvrYeiQx+uCZlSRyeTg8+jQ3W7UNAcK0DE2FjQnNu3AvYfH5PnBvpVl0OBlq+uwm+nd1849iXf94Pd00xwGumzwP/yZBAYKG1hgdoLtt8fJt/8e7PfJv/j+gZ7HaGODqYERoNhHPe61wVQfp7LnV20FHoadwNGImbb8igdOIhoYrAlvr5XCAJWvz6/g2cUMkjUn3LUSIo4KHpiL4KX3zO65AJVW57lbfohWyfJyuoSizdkADwO2kgxSyfIwwUMbOBg9EnKBqaHjfjeOju+eUTuBklimAAYMsCgZ88gHsdc7ZfN61qQ1l0vH//jE53F5fhFv+e5vx/PrRaTWlsXjbDLkxX3HZhH0+9CqD6YUnwbhBFg40Cfjgf+Nmg1qvE/sUCPDQSSQJjuBUkgm79EkfDuwPF8sS7LfVqVU4X63XiZT3Pp7E5zYnHTYvE/KNznIZqlUDSwnMogXDBhOL8bdGhh+YYKkFokY2ZoahM3A8IPVFBPGa3A7+TLlaiQiSju3YJt1lfOmQ9gOaKVnXtEwmSNkbnlrRWGveTweYUyo4q8b/m9Vp37X1mb1bt0hkvStCpfxuDb7RA2mBQ9mK2y3F5cTWEzmkavUegp34ZE0h8QogLGbFGq+jGbzRZDpQX8zU0JYk+tHZi9fOjlhdm4piZuJIuJFAwGtiimfhlMTARyOBuqBJpuTj/nqYcqPmSBrk7AG9QLbTbI0z/NO5mMFXt0uQAZl/vRwPBQ1gc5Wkul2y251NYWVWSzDpmnSh/Qra96vAOReHwNfW0vhwnIK1+J5YaKRdfbQXAhHx/xDARibwy86TbJN5KvIVe2wV3KoVitwu9115pnpX6iK1S+Pn3WbZEu/vMVkAdlSRTxLmVi7lq2KjHfCQ6a/IQFhPl0TH1Of04FvODLeU0LyYHrL/rbSTpatmMd8JrLHYxKw1f6AeyUQqfwFuwmBagYmJfSpLs1WwKQhzMn6uUm/a0iAyW3GoZhPygIKmOwnBIfH1Co8RtLqG/sFnppfxfVkRZjnrz09jukOJpB6uUJk8NNrMVUwfRVVAIraFlmGfAYxAIUsv1qlsillfNB+l0wZZzk0dTv80poyzu+OzY03TrUXyXirerLKu1v5T/7Lv3weH37/5oCSXuq713XC3/fn0g8p4FDayy78Hf/z7+v1kEfr7WANjADFPip3rw+m+ji1oa66HXj4xpc/MNTjs+5cBag8fuEWrsSKEqDiqWQkgfmhw2P4pnsPI+zfnD62Zw7eciAEYZ65uoilVEHYWZQOHZ8MD9QP8WtXF0BWH4MjYkWg4g6ipjGFDwhqFRg2TaQYrcDDwxG/AEm7Wei1t5EuYDFBsMVkQ85SnjOScg7kMhCUW01lsZbMCbhHRt3v/Onf4G8+/k+y/TP3HMUv/8w7MTc5hoCvtQ9ZP30w2UUE/XKFMvKlKsqUCxkmAEnwUeRQsEmQjwIfyS4k+8LjtMPrps+OHS7n3gSnrJJoMtW+9d7pbV+irYnR9457RC7abWJ0vO7d1K6RlMtlsS4g0Jg1TKuCoE6mmxMKVOwEaKUPJq/ZVoVplNsV5XllXa6eJSAftWO1WoHWVqxWAnh1u6+2h0A2ovIEa7fQeq6MVKkmoLFeK2PKY0Mk4IXLeTtopxNWK9vqzRjDLUrCNp9wmR5dpyaDcNbDDlx2TRh3VhYv2R7skx12u9wfBK1Npovo6u5IPs6XK7i4HMfVeBGpsulhG/XYcWbSjwcPRRHwdB8QZE2Wno8XpKo4mUjA8J6pwB2hDK1ARkouJwPOliAjU2MvraQboTKUZlq3T0kmg2LoDVmtg/ce9/DSmtsBIdaQDNbRTjMg++l/t7svB/09wbwnr69jIVnExVgRAR2Y82mYC3vEH5ftVMnZ1b6tzDx+ZvXL49+7HX4R9TpxYz0lsn4/Qb3JQNeSaD4X0vkyLq9lRGJM9i4Ln3eq3YsUOeiC36Xj3pnQvgUMB92GuL12adlWD1arlyLXUaxMKwuZn5MNSZl0L1YIinnI7ZTqE5fsm1lMkBK4A5gkPCrsSQVImt6yLO3SuRnK9vjNBDYKwOkQgeQAAh5XQ1attsX2w7Bv8SzXKRW3NSaJWl0HSpPZTwtoWKyArHqKQGjd4XXY9lwASqNPSKQ3gZedSMa5bqdhPduBl1a/y4vPP4MP/cJ/2Ylm3tE2I9//kTaMxHoTa8tY7O/72P/zvR0d32ih3a2BuwZQtHpztUv0UWlAX3vhSuMqWNOCmi/NfhpM7W6z6nxv+wk85FlZA1Q4U5exeRCqpmX29lX3zuLs4cl9ASDyXHbKD9EqWZ6PZZCqOmB4I0KEp9+hXyfDhQMOk3moGE6KeTgM8FC1WAKeC/E8MiVDBkccVI98EDu/n9stuZLIIJkvIp4tYSmWRomyY6cXTo2BJxr0Sg5nD0UxHvJJkAFlgJ2U3eqDCbizWMFHAloVAizG7WNV4KP4MWlm0vNeAB/5EvnZy2YS5bedGsfhDpKfreDi0ZBTEqO7BRc7uYZM1V5OZLGWLoJkG3rKm/6jvp5SsTvZ5zCW2Q5o5TGl8ib7uV0hCB9LZ7GRKyNepl7WjhmfXTwYlayrE6CVrNZC2RDfMbvuwnq2KEEllCgykZnhB/lCAdlsVg7F7KvNQCIC6MI2tUEAiOZitQ/gd2TLbuSrSBRriOcrKBbymHIamAh6MBn0wNuGdbqdfQC92a7HiyKXJjDiQgUTXg1Hwy4cnQwh4jcnIaysVoKG1zbyuJEsYildQUivYTpgBnWRyRi2TFwQZHz2VlI8HDNlGzayRZwc9+NQwI7TU7fTqIfRlrrdZ68AJAMxvE47bEZFwGc+t10OxfC14bEv/gu+6eWvEhaTiTDUmahsMzZaG5sM5ES2IAADJwwFuKvL5dV5NEtsVYqw9Ty3C79oTrJtFX6htkd2GX3fOLnBSeF4yYZ4WRMG/JRPx0uP3mYicR0F+qj194IPJr0WySynJJr3/8npEGgJwHarAEPeI2sZk+GeKzMl3WTuKsCQ1hgKLO+2TY2W764GOk3L7keW3d0R3V66FWvy8noG5zdKyKYTeGgujGNjIXOFdnJu8a7UoDkcMtbnZF+qWEEml8NqPInVZFaYtQ63V54jXntN7FAYKuZ2OjAb2d4uo9fz26/rWSXjPAcFXqqU8WEDimP/8S9MRqJiJu7Sz/U/fet+vaQH+rjvCkDx6vwiPvKxz+C9P2o2wl/73Y/i+970Gpw4Orvp4janjG535XfrZXa749gv3+838JD1SgDxmfl1SWBWASp+I4/7J1x7PkClVbugH+KzN9bAYEtKHvv1Q7y5FsfFG0s4v5yUoJR8zYGq2xx4MACDxtc05XfrGtIlo5FqtxfAQx4jAUSCXAyUYBn5IPbXmyjW4UamKLIphnWUbTpsmumnJOAh01arBZEMzY2HEPa7e2b57cU+uJXkmswBgo9Kdq2AR9Y2gaBuJde9XiWC/f96dU186MIeB75hJnQHu6vVtgkuMoF3KVUUqf9Lj0VxpANQspfjpNfT/FoKiVwZiWIVPocNIY+OI+OBAwUw9lI3zeuocJebyaKwO2aCLvFMJJPJylqhlI5/C3OFL36Ux5fL4nqkkojprXV1LYX1fBX5qskS6TaJutNzUmEv8/Ec6INI2fDJqAtHwh4cG/cJM8paOrUPWIplsJLISgLwjVRVLDPo33bvuBPHx7xoBVISzKYnGK0s1vM1Wcfrdkr/dGzMi6i9aIKpTqekw5MtuZ4pYyNbQrJkg91JJpcdh0M6ZoJOjHvtQ2e1duvVSnAtn2cqrBlmlaJVsUOXkAu2sXKJk0EF5OqhF2VDQ8moYeP8E7jvkZdtSrL16A7QG5Pb5IsmmYDqd/6MeF2ybQEX7XZE/bQ+MG0KDKMqoB4Mk1lM7IKyWoYoKEByp8A89o3zGxk8u5AUGwhe8+MRD+6dDuL4xO5Zq2x1Dynm7VLCbK8EDMUqpmpDtVxEzeGRMKLTEx6cmvAj4NFHgGGnndIeXW43ZdnsBy+tpvDMUhqTXh3fcs/klsogawAKWYaZMidYzdCcSqUiygOOM8hYDLqcMv4js1LYkwyMofesZpMJCV13olIqmYx3BuM4TO9cRTy47TlpTlLQJoOFkxYq+GuPXsIdO6xhj3/Hf/CjjXPjqMI0CDDLTv69/icjQHHHGlUfG74rAEWyE1ne9PpXyc/mv1X9NTMU2zEZ1fLDvpn7uO47vup+BA9ZKfSDevLaCl5YTmM1b3aODFC5d9KHbzwxvecDVFpdWKsfIgf390yG8MCJua7bgPI7vLCSwlquirIrANidpkS5VpYXAbfLJSwFyvNCLjuKVaPheThM5qE6WcqYl+uDcRUYMRfxYOSD2HVzgJV1mCxUkWfSIBwSmOOw2QQkcNrtsBtlOGplTEf8CHp0TEUD3e+szRr7uQ9Wkmv6PabqjJ1Wfo88dQbKsD6V5Lobv8d2ld2LJJrb4kvHMzdjkhjNl+77p/x40ZHotnLqXi+6FWBUzGEycu7GACRroImA1FWC1KY0n9LseL6MG+sJpKsOAWoibrsAjCgXYKvV4HHrDe/D7a4HgaQbG5lNXo7jPoaZhLsKi9luP/yeLLGr62lc38ji0noe9DCbZShLxIuzsyHMhHsLo2iWPqsQFyZLk33+4mN3+r9R1ryWM/CVS4u4lSphI1dtSEFbSay3k1e3kmR3UidcZhCs1mKF1gA18ZUVrzZ5iTfTawnglQp5FMtlFAp56DqBO77cmz+txerVqj4/9+TjOPOiR8VXs1yDhCFUDdPrmIUArgI3lSxfBUpFmqxgFEuqrIBvARjr8vpG1kXdR24bRiT7SpMNyZ+9AQ4EGJ9fTIAJ0iuZskyGzgbd0tdZwzo6vZadLMe2dGEpKQnJCjAkw1CxC7mN41G3JIW3AgxVkMtq1sCkT8OZuYjc76Nyd9VAt7Js3melUgmZmi737jdMeiSdvlqtwms3ULNpSBWrKHBiyrA1pMlht12kyfQy7JdlaA2PqbDPqlRNSw2ynRnEWLflMKpVsx8zqiZ8xdRupWhRP+WzuvekRc4tYynGXctntCQx/XtV2SqIZi+2oGGPfyff/pdDqZbVP3rLUPY72unWNTACFNvUT6FQws996I/x5je+Gi956ExjKd7AqjzzzDN417vedde3sf0KHvLCqQCV55ZzSBg6tGoZk3pJAlTunY3uSwBxLZHB+VuruJEwZZrd+iFaJcsrqZwwDyv+CZk1VH6H9DoTKZTNJqChuy5t4r4oCzsyJNPz5puRA+zFWOYOH8SxgBsh3973ttwLnUsz65Av+5yJ5usmPTDJPKQPnKMOJNqNEiJeB8I+J0I+17YBJ/2c47AHVP0cezfrduL3qAbJ9HvsVnLdiySa+2Nf8djlVQEXSwZwZnywidGt6kjd05RIE8RmH0SAMep3YW5sbzCJurm2XHYroJDfm5Ii8wWJL0Gmp+HtQBNlqE8mnywn16aAm7EMEmX6HNakjg5HfDg+WZeudXmQig1JZl6iSMDCgbmQR4KxGGY06KJYjOdXMljMlEEj/nvGPTg25sOJcfp4de/FyGO8M5iliqjbhlm/HfcdmsCJMQ+iAc8drGkyE5+aj23yWRz3OnBi3IcXHYncwQTbanl6k56eDg7Um45tiONW5XNJpiHbggQ5CADHtsMQB01eonX6wTq2Djna7pq2639VaJVilipPVAZMKWDStHvbP0Ak+7qn5jdwK1loAIxMkL53OtQxwNgKMKQnKP092Y+xEDCcCroxHXQLw/C+2ch2l6Hl95REX13Pyr1/csLftddiTzsdrbSvauBLl5bx5K0EqjY77htzi2Q+WTKQKhlwoyqgHaXJvFVzVZMtmC6b3qy0J+4lLbufCmoOj5GsMN439XvHDK0xU8bFTsmpo1Kt1v1/zXTuViE426ZzE7psCsFpBiY5ccG+laUVMNmJ7RrXtRKbHrzvJH7nA+9CJNR6Ev7jf/8PeON3vK6fKu1r3al3/JUQSExrTlP6vBt/r3z4zX0d92jlnamBEaC4Rb22YzKqVe6Wl1lrFX3lwg1curWKZ24lcStlykStact7KTCl+dKqAJUnrizjwmpWAlR8Rk4SmF92fBxnj0zuiwTmVk3W6odIcsCRsBunZ8cxFd36BZuD5C+fu4wbG1ncSJU2SZYVeDgZNL2o9jp4qOpF+SDSU4mFTJSo342JUG8sl53pevfmVptZh3athkypJuymWo3SFDt00F9Sg8Ohi8+kx2GD36Uh4nP2JV/upUbuxj54u3pqllzTy2g7v0clueYo/JmFBBbSBHDsHUuieUwyEXEjhqcX03DSTiHqwcOHozsepkSAkcbxt2I5ARhZxnxOARjHxJ9p8GDXdtdAfW8FChtAD2XH5vRMY/DNEXlz8jFfUHyeO8OIBDgqluSaGoT1WyQvtzq+a6tJ3IxnEcuVwTAY1tEDh8Z6BgOtAKNKo95JgJHP76/diuH8agaxnJmOHvU6+gp7IVCfL5TA8J6nr68iXdHw9aUM1rJlHA0724KFjWeNBWRUTLLtQMaLy0lhn3E/ubIhEmmCknxOnZ4ONRKpW13DXL4orCECdQLI1f3MlH8h+TxsN2To6Zbk7E7ba7fLDbr/HQQQyXNQ4U70z9wpRiRl0fTiXMga2EjnMO4GIk6bMIPpBXtlLSvtSgGG9Btl26B/4SAAw06vFfvHK8tJue8DLjvmor7RWKjTyjsAy+WKZSRyxUYAynqmgPlYDkwYD3qcmAu5Me53I+jWZYIj7HV1/UzYTVn2VpeEz8YylTKVigke1nHA20nVJvpFkmKn4THWZzm3ydJpCI5YNridWFxaxUf/5p/w3h97qzz5P/g7H8V/+M5/g9mZSXmW83jYX/O7//brf4pvevFZfNd3vBIVw0ChVMW19aR4TFOhwULgjuE18899Be/5j8MD12Z++H8O5Q5Z+v3vHsp+RzvdugbuCkCxnYfi7NS4sBAffeSsyKG53KVrC3jdq18iM72tGIrW6hz0YGqvNdYvPncZ86sJPDkfw1LW7Mj2C3jIYyXD4epaGl+9soT5VBVpuBsBKo8cm8RLT83umwCVVm2DUuZLq8mO/RDvkCw7A4DDZHnQ7zCiG5gIeOQdhQ+2+rNLvt9rzENrfawlsyJjpg8iAS4OmgmCjmTM7XuUVqxDLs2BDaUmRl1KaasZcDic4rNm1yhvMb2uAm47yPKMBnc3ebv5jA56H7zTz4RWfo+UXbMspopYyJSQzecRdWk4OxuVcIJO/B4JLt6IZfGV6zEQ2Ke3nxi774IXmQIYV5J5pAom8BR0OzAV8gwUYOSLgPIl3C75mCFDZDQIq9BeZ4h1yA4jiFQsVwREIqBP8IjSUqduR8DX2/3Hl8yLy4lNcuaT4wFhWvXKNqSfFhmR9HSj/JpyuH63uV37p0XJuSUCpQXEi1VE6GUYcePsTAinptozMTPZnICxlM+1S2vuNllaHat1PYKMVnCyFTNxE2NyI4+NPD1miwg5azg+7sdDRyYw6XfWr/3gWYbb1fFW3++l/lfJwxlsZGVE8vhV2rskutcztHSGxtDMti7Nlp9uc/KBQKRbZwgN/W1VCA3EP/PGehqZYlXSkaneiOUrCDkMLMRScFXz8gzNuaOYifjxyKEQHp5yi++ssIybwmoGIc3u5vqRtbgQz0mfrIJchjnh0s2xj5ZtXwOc3Elk64nJhbK0SWshu3sxXRKmd1iv4WXHxnH/XHSoVdqtLJsHO4i0bD63OUbgPBx9g4kRCoO7XshyVExuxXLsVwptJSexH/jYJz8Powb8m1e/FNfW0shVAVpCLd+4gf/5d5/DL773bcKQL5Qr4HiME6a0kmDAn9PGPsxknD/2pS/iu//964d2HWd/5GND2ffi771pKPsd7XTrGrgrAEVWQSu6sQINrYDiD7/v17G4siG1tlXCM7/fS4Opfhv6fgcPef4qQOXZmxtYzlYlgTlQTuJExIlHjk/uqwTmdtezUz/ELzx3GdfX0qBkOVbEJr9D3VbDuFuT1EaPronMYb+Ah6wX5YPIGTvOQHKwzlTY2ah/qGykfu/BnVq/FetQBicOG6qVsszoiuSD/2yaJLwK+9Chi7SF/3dDvtzL+R+kPriX89+tdb5+cx3/fGUDFTjw8KQH415dZEUc7DJohoNk83X5Tr9HDoJvJnLCCl/IlLGTidGt6kMBjAwI4qQDwTi28UNRb0uAcbeAwlbHegf7kAvVDDgdmiTsej2uHbnkVvYiMZfDIRfumQoJ26rXogBGFRjD4JKdBhi3YjGenQ3DDgNi1mBU4XI5uw6DapYxs24mA07QW5Ep0YfoV9miKJCRzMRzK3kBvPy2Io6EXTg5HREJtwTRkDmDmrCHVlM5YbfdSJawmi7d4eO4F9J5D0L/awUin19KgWnSywSC8zW5TtliFR6URKrtc7vg85iBPV5dw7TfgbmgqyUQuZzKY34jh2vxvPSPIbcDZ6cCmAt7oGvkI9/2iKw/fk3ZoFHbNjW7XyDSylrk+Gku4h1Jonvt6HZpveYAlESh2vAyZIAWvQzH/S64HHZMh30yMUTQ7tmbMQlZCTg1fPt9MzuuGNjp6tjptOxmWTXfMdgxy4SAVreQ4GREPcWez+Vm+wjFCs0WyhgLevDJf3xMQvn+3b99JSgg/7tPPyY+469/7cuRyBRkwn465MXf/eNjeP8H/6hRha0kz1bbtSeeeBI/+ZPv2ekqb7v9Qz/21+33XZdCt12gj+9v/c53Du2cRzve4pLXRPQ+Kr3UwH4dTB0E8JDXi+yES8sJfPnaOtYKQBkamMD8wLQXp2cieMV9R3u5rHtqHSVltvohPnBkqiFltvodXo3lkK1qqHlNzx3OrnlsFUz5dJG3mZ/ZxFxZeaAcjbjFB2uveB62qnyrZxpn1vkgJ4DIUIaRD+LtGmvHOiRoTOZmlbOyhoEs0WP2+jbIS5Hb6RTwUOSTws4Yjny5lxtvv/bBvZzrXlink5ToVn6PVsn1UrqE9RzZEiVMOEo4ORHAkbGgAJQEH71uXZhBnKEfZCFYR3kry3KyIH1lulRFOpVCwO3EeDiAAO8Vm+lTqBiFXJ6ec/2yFFqdy1bsQ+6vX4+7XuqPL0Pz6yksJPPgS+ugmIYELVfTeSiAUXk69sOK3O78CDBeWkliMWvgynJcxgnTXg1npvx9hb1Y90v/0UsrafFWJADIIfWhoI4zEx4cHw9gkixu8TJUDFOTAUN5/nO3YsJIfH4lt0n+3M5j0QpomhLr25LpnfBl3K5+91v/y2uVzjPwpICVVEFYhiy8ZpQkczzEIJmTE2bS+L0zobY+l1YgUgXfsJ+jxYSVEUnbkGrNhrVsBYlSDQQZnLUyxl3AsXE/wj63WLK0YkTy2FRYBX1SyYjuB4jkOzz7MmtYDRUeC7Es0sWqKBBGQS7btfqd+Z79LhPn2ZbWM8UGy5BsbwLQPqfWcQAKg9M+9cKS+BzeN+nDK+6Z3pmD3kdbHZQs2+XQZGKKqoOiYUNV05EtV5HKFlApZOH1B2B3OBB0aqCg5/RkAJ/+7OMypvieN3yL1Fg7O7VWAbLXby3j3e9sLWsedv97+D/9zVBawM3/+98PZb+jnW5dA3cNQ3EnGsKwb+ZOzumggIc8VwaoXFiMSQLzYkGDo1ZFSCvh9IR33yYwt7qGBBGfu7GCxUwFdtQafojxXBFXF9dwbS2JpRxQtDkBl+kLSPAw7DAEOJwOOEUWx0Ej0wn3E3io6oM+iKupggxyaYU46b87U13b3ePtWIcht128DOOJjICH6UIFpZpNQFivA/B7XHA5XShWTTYZAzzCXieCXufQ5cud9GfNy+yHPriX89oP6/SaEm09t4sL63h2IYHlTAWa7sHJsI4xN5NhbcJ8JHOHhSnXLJRbN0uumS4p0mNJPd6cfKzAgq0CTQjcKdsE+oyp9PewV8fRieDAWM+KfVgiI7hmGskTZBLwVN859mG/bUl5JSogkPJ1JkfPRlqz8Trdn5UVyXUGDTBmcwUzKZSWHg47fF7Tj1KFvczHc1hMlYWl323YC1ksTCMm64TtzuDsTL2tMqF3JZkVsHAxU8VCpoYJnwNbJUurOmsVGMNJn63W5TpPXl8XX0aGcKznqjJRNOHX8dBccFtfxk6vV6vl9lr/qwDDy2sZZIuVBmDIlGQWAob0MKRf5XaAYT/1stW6BCLZX11dTeDaejtc8KsAACAASURBVBZLOQNpQ8eYRxMW2eGgDkqzFRBJaTZn/whC0/uUAWjW5OyQx3WHNJtrdApENjTgTFsv1bCUzCOTzUhdTYb94jXXCojcqfo5yNttZhlyclcBhtIHeu5kGXZTHwxZOUhsxG7OfVDLWj0nV9IFbOQqiBWqKFZr0IwqtFoVeq0i6ijDZhd1V96wy70pYxSHTViiLlqSuHScnQkiFYvhbz7xz3jvj75V3tV+jR6K3/UazE2N4ec/9Cd49JH78aY3fDOu31jCRz72GVnO7Xa2BR7VuQ67/z36Ex8fVLV3tZ35//7GrpYfLbw7NTACFPuo52HfzM2H3gweko1Gz8PjY16cPTSG17/s/j7OdndXtQaoXFrPY6PmgbNakATmb5gN79sE5na12OyHSEmLzajiympSJMsVd1ASdethZuJ3OBNwifSG4GGpWkNynzEPrXXBF/pYpiAvReZDmTIcz13vg7gV69DndGDM70K5WEQyW0AsUxLwkCWgA0GvS9iH0BzIFDmjurfly730MHutD+7lHA7COr2mRFvPnayKZ27GGonRD055cf90QJg7+VIFxTKBGw2VmgajVkMuX0C+UESlUoHD6YbdbodDd0FDVRgEut0EIMk0pPxLd2gdJ47zfqJXWjJfRrZSQ9hlBwFGSslCvjuDUlpdQ7IPaQ5fkihKk/2rwZAXjWGxD/tta3zZItPjynoaq9kKwi4NsyEPTk+He/Ze5DGp7arQGH5G4HIy4Ok6lTqdzYms2TCq8HQga+ZY4+p6Gtc3suBYgyn20347Zv26sEuiPlc9AGUzy5D9qUra5svfVmzSVkChCmPZjlm4HcjYKsiF6ywmcnj6RrwOMlYkSVjJs++ZCvScHmxtQ7vZ/6pzIsOQgOFKugiyNKX9lAmi2gVEVYDhTNh7R/J2v+1/p9Yn83t+I4NnF5Jg2AvH7scjHtw7HcTxuu+sNbAmmS+iXK1JMBMZkdbkbAJURABp7aCBybOtgUiCHq0CaxST+/xCDMmKjnGfjpmAQ4J+rNJsKxBJNN3qEclx6t0IRDazDNPFChhYxaBEWkmQ7U1psgpA6XdShu2Rz81nF2K4uJ7HwzMB3DMZ3Pey5p26z7jdZr9J6zVSSesEdmkzMkHmsNPRdVCNYkOuZ/LiPc6gG/om/vbv/4Wc2hte/614xw98FzTDwK/+X3+Gl7zofnzztzwKp2bDJ/7h8/iDP/x/ZblveeUjeN+Pfx+Cfo+MgebGNods7mb/2+qaHPvPf3f7YyVhbv6plhjg99d/89/tZBMZbbvHGhgBij1WHFcb5s3cDB66NM5uaeLl89DxKbzygVN9nNnur6q8j566vioG6zF44a1mEdWrePmpKZyZG9u3CcztavOJizdwYSWJtaKGkuZGJp9HMZtB1RM2M0CZ/GWrYcJjx0xAF/CQgzaCh2QeqrIfZMvNdUAfxI10AYuJPIpViDRgNuy5q30QrazD9VwFbgdNo21QrEMyEYqFgkgrGDhRptyC4KtWk8AJvtD6vB4ksiUwi4IvvAxPCXp0TEUDu39T78Ieh9kH78Lp7btddCKJ5kk1+xTSw1MlH9dqBoqVGp6+sYbLsTxCwQAOBXQ8MhsQJi0le1uBN60k19y+1e+Rx8CXBzJ0+aJMkG8ryTUBRsrR6NvKBFc+b03bhdsAI4Gs/cY+7LeBKfYig1j4bFIsw+OT7QNROtmnFbhkAIbydWwHMKq0Zs1uhw1GR2E1bVmGNhvW03mcX4rjykYO8aqOqNeJe8acODbmE7/DgMe0EOmnWJmF3SRLc5/NION8ooQJn74tK9EqmaY8m0WlUm8HbLY610H2vwowXErkZGJRAYYKLOT+FWB4asKPgEffN4Bht+2E/ejziwlcXs/KWC9E4D7oxouORCU4qZvSb3I250NyVTtcRhFzIQeCPi/CPtNbNWLxWO2FEbkfgUgry5CTRa0CUAJuXUDDsM/Vlw/tVtf5+YUYnrgZF1nzy49Fhh6y0k2b3KllmxOtCRaKxY8lGZmgrsuuNfwmd/IadXueYofAmVA5XqBYLmMtncdXrqzIz1LNDrvdgXLNBqcGnHviMfzBf31bt7sZ2PIn3v3JgW2rmw1d/Y3hBdF0c5x327IjQLGPKz7IwdRWh3HQwEOeq5IdPXF1Gav5GlI1lyQwT/k0PHxkfN8nMLe6nlcWVvDUlUVcjReRd0dlhpngIIsCD6d8DvA/WR+5UvlAgIeqLihjXojnkSkZ4ulH2dHd6INoZR3G8yVhv5QNIOjSoFiHk0Ef1uLJBnhYMGzgMEOvg4dBn1uky6l8GemCKefa7/LlXrri3eqDezm2u3EdK1DIl+HraQMr6xsy0/+y4xNw1WVBjCToNPlYfGJvxMSjjh6qJ6IePHw4OhAWBlOuWZLZIirVmrB9rH6P6hoSnOf9pSTXBBjTpQo0lw/riRQmIkHQGH/Sa8N4yDcU78O90N6sMmZKwGjB8cChsb7YizyvZoCRYDCtPcZcGsaDpu2HVdbMvwlwMHDKTOI20zxNL0PDNNevmX68nbAMFYvxiRtxxHJmgmrU68CZST8ePBQdCMDIbfaaLC1tuAUrUbH2tgqNsQbGENi0+jLyGd2KAanaWjf9L4/vwlISlIQrwFCBmjxOluNRN3wuBxRgeN+s6Qd9txf2gU/Nb+BWstAAGE9JENAY/O7+we1W9dsMRPL6JdMZxBnyZ/fAAQMeB9esoVwzGZGcAKXkk4VelFZp9laMSLEN2MYjcrcYka1AKXrJsn8n27CZZUj2GRnwu1EOYshKN/W2G+zCbo5nmMtyrPUvn/sXvO51rx3aYZx8DwHFdtTDnfv8yq9/x9DOebTj9jUwAhT7aB3dDKY63c1BBA957ipA5avzMazkjEaAysmoCw8fHT8QCczWa3z+1pr4HV5cTWMtV0VJ9wMOJ+y1KgzNDp/dQMSj42jYJeyHgwYesi6ULxmTVVnog0h/v0Pj/bFXOr2X9sJyzaxDXZSPJutwOuQROedU2I/1RBrLG0mRfafr5FMyD5muPBHyYSoakjS4tVRB2IcsZDCa33sHHmCxF+quk2PYiT64k/3ebct0lnxsE3ZYK6Dw8moan728LtX2bafGcTjq6+lFmC9UN2JZPLeQQDxfEVksmVX37zDwQPZhKleGYXOgUCqhkDd90OwOHdDoo2STRFgyByqGAa2cg9+pIRowg6O6lVwfhPbFF/OLywksMtylaGDS5xhYyjP7y5VcFfOrceThhFHKI+Ks4djkGIIEWMQbhLH19KKDeMxREj/IlGyOac4tJUVRES9WEXHZcTjixtmZEE5NDe4Z12uyNNvQdtLndsnUd8qsKw1JsRWctPa/VsDwylpWgkkIGFJqraSEBAyngm5MB93CMBwBhr3d6ZRUXlhOmgzGbEXGkYdC7h0FGK1HuriRxkI8JxM8ZCWfnA41vGb7ZURagUju00+JcD3dflCMyEyhiHS+iFSuIAB6umKDw+FA1WaXSduoe7PkdRDS5N6utLmWClnh7yfHDmbIyn5nF/ZzfXtdd9jj33ve+6mGDRfPgaxKZcu1k39f/OC391plo/V2sAZGgGIfldvvzXxQwUNWqTVAZaloFznUmC0vASoHJYGZ52lNWb7FF6eyBnjD0qo4iOZrTUSvIuRx4niESX52CUuJ50r7XrbcfOtQxrxclyuZgNfd44O4Fesw6nXB73bg6ITZLrL5AhZW4yKhVOCh01ZDwO2QtMfTR2cQSxHAKCGRK0k4BctBly/30hX32wf3ss+DtA5ZXM2BJpQHm55/dV8s/k42F31dbRB5MEsvycedSqI7rePnF+MCLs4nSzgacuKBuXDf4CLBUybLi/che3BKo7vwPqT8NlcoYXEjKRLpfM0B2F3C1nHYavALq8csDJuxSq7p9xjyucz7vR4i0mld7PXlrOxFJWG+Zyq0rSSQXpTVahW5QhH83e31w+GwC9NQsQyrNQMLsTTWCwbW84Z4O5Id2cn2B1Vvyrbl/GpmR1mMPN7mZGl+RuuTTkNYmte3+iu2Axmb90v/wpXzT2LqvhcjV6qKdJr+hQownI14cSjaX3DPoK7NQd8OAUayuBdTBSSLBqb8OshgvH823NPETaf1xX7yynISDLMyx3tezI71bq9iTc7mBA1LpmDOsFqTs2VgzVIzQzBYCETKT7fJFtSMigAc8UIF2bKBVMn0MqTHpMcO+c+JXYbcjAd8Mumw1zwirSEr33JqAkfHN3vodXqd9sJyI3bh4K/CsMe/9/7XT1lOSjES1Uc79/eF/2MEKA6+NfW/xRGg2EcddnMzH2TwUAWoPH19DedXMo0AlbC9jEcOhQ5MgAqTGy/eWMK5hZiAgQXoqDjcJutQ98gYx15IwmOripn7zOR4Azy8kTTDRujdsR89D1vdJhxMLsYym3wQTV8xk5VzUItiHa6kCkjRUE2kyLdZh5xNVzPpCjwk85CyGUkCZSK32y7g4dxkBD6PGyuxdEO+zEEtgYbxgCmliQa780w6qPXe6ry66YPvpnppBRQyyMT0KeRMcg3bJR/vdH0NIiXaeowEFy+tpnFhPd8VuLjJ+1Dqxhh48jL7yo10HrdiOeTrKc9kbJN9Qz8+Sv7yJTNgQUmuOZHA68Si/B45IUVgdyu/x52+boPYPtko8+spLCTziBeq8GlVTPp0TIf8IheXqbg6y1CzaXC53chl0xK4MzEW3fYQFDtyPVvcFB5zZMy/LYC57cY7XMAa9kIW42KmLEEvZ6b8ODsbwkzYlGoPojQzEZWnYifJ0mr/VpBxNV2Sj5tDXAiWF4sl1OohQ1/64ufxile8EjbNgZpREdm519NZaNEgznu0jdY1cG0thQvLKbywlhN/6rCHid8hHB3z7xjASEXKQiwr4xyOb87MRRqsxZ24TtYAlOuxLPKVGtLlGhw1AzqqcGmGhFzU7Lqw5sk+3Co5WwGR7JOpHCHAyJ+eupx5tzwiyUa8tJqStOb9ErIyYhfuRAvffpvDHv/e99Of3v4gd2CJF3713+7AVkeb7LcGRoBiHzXY7mY+yOAhq8saoLKQLGHdcMNn5BBxVPDQ4TG8+MTUvg9QUZLlCyspkSxXHB7U7A4JSXHY7SJzczk00ATeVUhiwmvH9HgE9Lo7iOChuk2UDyKlLiz0WCIwRlnuQStW1uF6tiwz2yz0OmxmHfLzTsFDvpStJXMSnkJDbW7W79JEDh720xtxd/x4DsL1GvaAarfrsGOgUKBDyj1tDY+4XhiFu3V+g0iJth4rX8r+9do6llJFYc689FgUR6I+Yaj0wz4cVH0ogJHhSqm6h0HQ7ZBwpbGAp+WLOP0eyxVD/ATp98iQmUrVQMWoCYu53j1JGJPV79Gacs2X5GH0L4plWKpU616GEjtW10hxTFHAjY0UVvI1eYGf9jvhs9dweDwsTESP29nXcVvl1/RBox8afYp3E2Bk21He0fPxHBZTJvPqwRnfQMNeVBtN5Uu4sprG+eUkKEFez5FFaMe9U0yCDeDkVACBbfz3eLxPzcdwM13DQjyDbKmKo2E3jkddYFL0ysVn8epXv1p2ydT1cqVan7Qw+x6PyyVs0lEZbg1wEvxmLIersZwcyEzAhdNTAZyd2x6c7+XIKYm+uJqRVU9P+ntmLVoDUFTABsdhnMBlYRrvuN8F+jMyIKtbL0MrI7JY4YTO7eRsKyNyN4DIW+kKvrYYR7Fi4MG5CE6EdJn+46kOOzV7xC7s5S7Y+XWGPf49+7MEFHfOK7HBwFBMjPrPc788PN/Inb+q+3cPI0Cxj2vHm9kxdgjzqwk8OR/DUtaQ9Mf9nLbcqjo4qLy6lsYXLiw2AlSYwHzIBwlQ2c8JzJTgnZtfxsWFDaykcoiXbA3wkMwI+tR5dLv8t8OAbjPqEjY7UK3ISxzN5wNODTNBN+ZCngOVtmb1QWSQSsBlx2TQfeB8ENuxDsd9Osb8LjAkRc1Uq3vk4vyS6XlYqKBUs4nBv9cBGdgq5iGXbSdfHgu4R+zDPvpfrjrsAVWfh79p9e2Sj5UPWTeBJoM8vt3Y1qAl0WQfJvNlnNso4+pKAoZdx31jLjww48dEaO/IMRXAGMsUQc9ZBhzwmXMo6m0LMG51PVqBjyrluhl4pOSawSRkP1rBx24k1wS6CwUGTNUE5GTWGBmwKgDFlMxv72XIyRYe+0augotL60hVHYi47QL+nZ4Odw0YtKsjviDf2MiIv6MKWhj3MYBkcPvo5H6xshgvreeRLxuYDeo4GvEOnMXI40nli1hLFSV9ltdct9uQK1ZRqlYFeA95XQIEspAdS1azYRiolKvw1H3srJ6Ol5/9CvQjDzaSol90JCLJywwXI8BowAZN0wCjKszFEbjYSavY2WXYx85vZHBxJY0lptZXgfsmvDgc9Q4cYGS/dn4hjtUsPVS1O1iLVpbheqYIgoa8HznxQ1uE5gCUYXsZqiszSCByfi2JC4mK3DPfcWYSh+uScSsjkpYPnDhikQAb2sPWmev1X+p9rclq7waIHLELd/Z+28mtD3v8+8D7P7OTp9d228/90ms2j50LJfzch/4Yn/jM4/L5L73v7XjT61/Vdv2PffILeP8H/2jT92//3jfg3e9881DO56DsdAQo9nEleTP/7dUSaFL90PEpvPKBU31sbe+sSrPx6xtZPHZ5RQDEgs2JsJGRBMtX3DO9bwNUrH6HnKmlt5Wh6bDT28puh6E5EHIRRNTE5Hou5Mb88jrW0zmk4EZBc8FllMRQ/CCCh2yBygeR3l98KSRINhv2YDbq31H5ym61/q1Yh/R+CnlcEpLSXG4sr0vITCxTEvCQJaBD2JnTYyGMh2/7Bin5cjJvpi+r8BR6o3Xzkr5bdbKf9zPsAVUndddZoAnneTtPPu5kv/t9mW4l0a28DwlkOR0afB6XSGn5DHjs8irOr+fh1CCJ0S8/NbljMsB+rsHCRgoEGOlPRkI4Q15oKTHIvpgAHlmDuUK5IbkmKKjAR76c8vWUGBMlrbaaAVutKgEnZJ95PG55RhAs1MiI5bNUs8HtdnaVdM3jyBdKwvhnsE/Ad9vmgeDfpZUkltMleVlmCMThiA/HJwcXfKL2sZEtNQJkhgEwsr1YWYxXYkVhYd0z7umIxfjVZ8/jB/7zB6TZveE1j+IXf/Jtci2ai/WF6uyZ4/j5n/oR+AN+fOIz/4rf/t0/byx+5vQx/OGvvQeRUGtfPNX/WkFGeivmyqan4olxn/w/GvHAIx53FLOTheqEc8TE76d7GNi6CmB8diGJRL4s9grHIx686EgUU6H+7VYUu+3CShrJioZKMSe+hQxBIXjN9h1w6wi6dQG6o/6Da5ejAmvI9v3s1SRqRhVH/DbMRgIoVQ2UqkzKNn0eFfGLbEyZjLHbpN62S85uBiJjuRIyhQpyhg1FwyYs41y5gkrBZKs6HLpMrumaBr+D7E/zWeNx0nqCfbsNum4a/7pdO5MoPrDGfJdtaNjj3wd/7jPCnlVhLLv189lf2Awo/sYf/JVceQKC8WQaP/ZTv4l3/8ib8ZKHzrRsEXz+Pf7UubbPx7usGQ3sdEeAYh9VOeybuY9D37QqA1SurKZwbjGJhXzd4NjI40TEKQnMr7jv6KB2tWvbUZLla2tJrBQ0FG1OoFKE0+mEU9clafloyIVitYbpgBOnJvzy8KT06mvzq1hKFWRm3qMZuGd2HGcOTR4o5qG6EJxBXk/lsBDPS2IfC2XMB8EHsRfWIc+f4GEqWwDliGXDBsKCTFymHDHoc+PI9HijHZNNk8wWR/LlXbuzN+9omH2wAgp5RPS942BKBZrQh89kFAoSU5ce1+XHdk0CTQhwjUpnNaAk0fTEeuWJMUmJrlUZKFNFtQ7wc0vC7HM5O0rzlQmmGzFcWc9K30dw8eHDUUwO4CW6s7PqbinFFrcCjGGvjqMTwYFM9mzHMiwUiwIsEvyTR4VmF4kgmTMVwxw3ECzqxu+RDNIaI2+q1Y5lzdZwF+6Lz+8HDo0NjL3I87ACjIrBSPUBQxG6lVV2d5XvXFqxGJ9fSuFW3Ys56nUIi/Flx8fFg5OFL1K/+lsfwU//798nACBfsl71sgfueKm6Or+Ij3zsM3jvj75VwMaPffLzQnL6rm9/Jf76U1/C9VvL8mLGz8g2vRXP4a+fvgWbrYYTYz5YQ1u26n8JMl5cTmI5VcTXlzKSpjvh13Es4sGJiQBOTPjh1oyR72K/DWTA67NffH4xIQnS84kipnwOzAbdbQHGVgw3+ijSVkDdOwEmNbt1YcCSeb0Yyw4syGXAp7+jm+s1ZKVdcvZGtohkoQq6J5DRCQZVGRU4jAoqmkmYoH8khyJhHfA4bIj6dEz43XckZ/fGiNTEc9h89m6WZo+AyB1tSrLxYY5/uf8X/cJnd/4kW+zh6Z//tsanfO79zK9+WJ5nJ47OyudWgLHVAY4AxZ25bCNAsY96HfbN3MuhWwNULq7lEKuYCczjWgH3Tvpwaiq07wDEp68t4/zNNSwns5LwSKYhjZjJQOFLe9GmY9Jrh8vOmVe3JNHx9SdfruDqRk5kT5mKDZrDAWc+gZNhHd9033FMRfdvotpWbYM+iPFsSaR1LAwHIIC4X30Qe2Ud8tyt4CH9L8mh0NuAh/KiWU9fjmXLIjvhCzYHaEGvcyRf7qVD6nOdneiD2/sUtk8+pnyQA+i97FPYZ1UPdXVek2y+KMFFFxJVXFpcw1Q0jONBDffPhPtmTvAl+kYsK4nR8XwFM0GX+MzdPxsZ6nlvtfNktoAb62mRdGcrNYRddhBgpOVCyNc6GGM7L0Mry5CslF4ZKVv5PdZsdlSrpsen2+1CtVIGyWu9SK6t3oiJImWVDpwcDwizapDAH73cbsYywpIke4hSzJ3YT6eNjSqSc0tJMOwlUzHwyuNjMOKr+NJXnsNP//hbZTNkK37hy89tknGVy2WkMnn87Af+EO/7MfMFzAo8WpmLs1Nj+P0PvqfxktYqWdqxdA6vf+234sXHxgUs2q4wPObJ6+sCMl5dz2Ijb2AuGsDhsAteFPDS4xMYC/pG0ujtKnIXv2ff+LkLyyBbNlWsIGIvywRGxO+WcB4y6HxODQQNCVS5nQ50Kk2m1+JCPCcTOmQen5wODWRyZBerZ9td9ROy0q93YTsgksnZVkYkBdRlUSSRIWnblJzdLSOyM2n2CIjctuF0sMBOjH872G1jkUd+8bMWhmJdbt9gLO7c30++/zagyAmyn/nAH+JXfuodjWfVdoBhs+R5JHfu5qq3X3YEKPZRj8O+mTs5dBWg8uzNDdyI5SVAxWUUEdJKeMnRqACIDxyb7mRTQ1/GKlmeTxaRNvEw2HSXyE9rmi4ymhBfrNx2RDy6gIdMbVvPFAQ8XM2WJWm5UiWjyJQVjDmqImF++MTsgZSkKhkzB/FKOjcX8exLH8ReWYdsJ+uJNJY3kqbvYb3tOG01RP1OAVOtzEMuTyZOIlMQ8DVTNAQ85Itv2OfESL489O5ADqCbPrjjQJM6o5Cz+iOgcDjXmcBXvli6g33o1O0NOSwBjstraQnBOhJy4VvvnR6YdJmJ0QQX55OlrhKjh1Nb5l4JMC7EMogXajJZZhSyiHidmAgH4dE12DR7nS1LGVudJavbd40pq2TNNk2T0BjKmpXkmmEzqZyZLEy5dbPfIz9n8j3l1C4es9iU2AQ01B1a47ltZS+SsXM4xPCQ0MBllApgvJksit+b3zVcgJGy9a88cx6f+sLT+C/vfAtW0wUsXp/H41/9Ot73o29BoViWsQ7rjWOkv/77LzY8pNpJowlI/tXHP9dWFkZw8NP/9FmUJ+4VcFCFvlDi/M2nJ3Eo2plHKbdzkYnEi3FcWEogXgRcWg1jXjsePTWFM7ORjrc1zPtvv++7OQCFLEPlZUi2IQFDBqDQz28tU8K1eAEr2YrYAx0KufHI0bGe+18qZa4sJw8Ua/H5hRieuBlHumTg0SMhvPjY5KYmspe9C0dA5P64m7sZ/+7EGb3klz+3E5vddptf/VkzCIyFgOKv/e5H8Ss//UMNa47tAEXrDpRE+s1vfPWWvovbHtRoAYwAxT4awbBv5laHrgJU6H+4lKkgVXNJAvOY08ADc5F9k8B8bS2FF67dwo1YBotZzp7ZoBkVaE43YNdFNjHmc4pkmZIM+liO+90yW9IMHoZo6h50I5vNIpErgtZ2Hjtw33QID5yY66MF7M1VOThbZL0l8mK47bLvPx/EfliHvCoqcXk5kUWuAvGDJHgYcDvE9/D00Zk7Lp5VvlwPXkXIY0fQo2Mq2tpDam+2gLvnqNgHv+KVr0SpXBGz8kYohGF6v7GISbnNZBfup+Tju+UqitS2WBIPP/A6caIHNfE+JBOmE5acVRL9yKEg7p0O9/xy21zvBBcvraZxYT2/J8BF1lWZHlhGzTToF1l9/aiZ8Fz3MiQgG/v/2XsPKEmys0z0y4z0vrJ8Vfue7jGa0cxII2RHDDystBgJxBMI7YK0AsSCEGgx4h32nUVnhQA9LSwLwjxg3y4sAna1C+8JsUIHo5nRGGk03nT3THdXd1d12az03rzz/ZG3Oiors9JFmqqOe85MdVWGuXFvxM0b3/1MpoBMCUiX9MC4sNeJY1PBlgzGQdxzmWxe6sqAFo+7s/5sVo9O/B65n5Jc8+dWriyeiPlyCZMeG45EfDg5Y37wCoHM9VQOCmBUPo9mMyX36x/FSPzpD7wL1VoVDz/xIr702NP44A+9E2uZErK5Im6ZCeKlcxfx5a/cYC42YzLyPI0SanVujrmqPPXUU/jwhz+887vRS3FpOy9/v2PWj3uPTuDsXKgjFiP3iaWyePryOi5vF7CWs2EjU4SjWsJc2CNzPaPsehD37GE8ZrMAlFLdr68fluFaIivWEZfENqeG2YATdy+GcXwy0NMYzIWRS+tJENAkMeC2xYkDxVqkrPnF9QwqtRpesxAUED+VL+0KnFEBa/SP5PecYnZGCzfv4gAAIABJREFUfG5TmdXDvo8VEMnzMgAqXShLFciIlJ/8jueiEVd79OmZfHd5iFyD3o16InzA49R/uh3wONlGmvxkMKIlzb7Rq6PGIL7u46MBFB//xd2AYrcMxcbnggCksvoY9jNzmM5nAYp99OaoH2ZW3RigspEHcnAKgLjoqx2YBGb6Hb54ZQ2Xt9LYyFYkZVmrlcW02efSULQ5hW3IosJS2oGHRyZ8iPpcOHdtHRc30wIizvgcODs/gdML0330+njuShkzfRDTxSqYxnyQfBD7YR2yNxR4SOYhJ6F66p2eEEjw0Ji4bOw9ype3Ukxp1ic5ZM1EfC5LvjyetzgKpTLiySyurW4gnkwDmgsvPfckvvFbv0vYSnYbAyN070KxL6xW5N8KWORlMfChWaHPUD3cdNfH/LtGc6AmhS8KzQpBsGZFUlXr5uZj2sRDqRbZh+xLsqp0oFeXWhnZh71WxOyU6MZ6UL72yKVNXE8WJLzrzvkgbps3D7zk+fjCVCpVdJC8SpCcNy4Tkyt9sQy50LS0kUQ8W0K8UIHfYROAcVB2F8ofkfUmKOweYghHo+S6VKkins1jPZHBVqEqzOOAy4Wgy4YJn0fk1vyPhfYVZD3yJbbXOiuAkfcJy6ABxlK5gkQyjV/97T/DRz/0HkyEgvj39FB8g+6hyBemh77yHH7+p96LF89fxl99/kF87GffJ76V/+PzX8LStTV85Ee/T7wV3/a/vV6YHu0YiryudnNgxT4kIK/7KFZwfKI7ULBc5rNQEmVBomTHc9dT4ELhpa0MvA47ZoIuC2SsD1SNLMNMsSoSfQKGch96dZah26GJNYKZtgBqrCQZ4BwZpxtZWcyOeHsHGCmJPr+elkOfnQlgoZ6A3Ov3g1n7NbILhcSwnkS+xgVol5AdOP+kGkq192EPnOm3bc1Mzr5ZgMh242+/fdJu/zd84p/0OTbx4abhLLqnstmfP/Lzb92pWi8eio3XZQGK7Xq6s88tQLGzdmq61Sge5sYAlYrNgYlaBrN+O954emasE5gbJcv0LeRgo9Uq4qXEsBSXyy1fxMawFK50bqXzLZmHBA9pls6yFkvi/MomLtZXx09NeHB2YerQ+SEqg36jD+KE3zXWMuZ+WYfs317Bw/3ky9NhX88vjn0MH9au+7RAPJUD75dYKgfaNmgOJ7y+ABJba3CgJAyr2245IS+0973+jdiIZ5GiLB01+N2a+DtFgq3TIoXhJUjN3kLgpbGQ+VgV5tzeQrlms0KPzVb7MIhCFUKenHHJ0esA285ndcNzelXt2n6Hkrb7zJSENivdAqMOhwaHvTlgShCi06LYhwytYe/0wj7s9FyN2w1SEs1zqcToi7EcilXg3oWgBBcEOmifTliGnKAT1GKiss/b3p+u23ZSTPaNVGFnIYrAVz8AYzNZc7f1Gsb2BATIrHplMyWyTQJTYZcm0k0+5pRcs1Rrth2vXC448fkiGNmN36M619VtPYiChR6dM0FvX0nVEgrFscquUWoEj8eJJ5+9gB/+6V+VcxilzI0SMPom/uF//ZxsxyTnD3/4Azg2P4Hf+L2/wBf+VmedvPr20/idT3y4ZcIzt+llDmxkMb6wlsW034k75wPiWdoJizGby4MAqo1e2dUyLseyuLyV1S1tUrpsXoGMZ2aDuH2MfVC7vdebsQwZfKKkyZw7GwNQxoHx9vxyDFdjWVyM6anC80E3zs4G8arFaMeXz7HqpeVtbGUrIoUfNGuxU+/CS/E8llIVHPHW8LpjUdx59EZgX8cXZ23YVwvczEBkL+NvX43dsPObfu1LZh6u42N9+eduAIrcab+U50ZJcz5fxH/73D/he9/+9RJK1kkqdMcVu8k3tADFPm6AQT/MKkDl2WvbYMIfA1RYgrU87przjXWAyloig2curmCJpsvxHPJwimTZ5nTB53LUk5YdwvIwhqU0godMMGOhbPnUpE9kzQo8VF33ysoGXlrewma+KlLmU1MB3Hpk5lD5IRp9EHndbDf6IE6FfGMpB1naiCOdLyOWpZG3DrhwlXzK78RkwI2ZkF/kC+3K+aXruudhvoxiPc2VfplcXW/FPOQxlXx5M0XfSJ19FvRY8uV27T3sz8lUS6bzIolhH9MQXHO5JeBEQxWFbEpk6kG/B9PR8J7qNY7BPF4qUxDmaa5sg9dBgNGB6Qk/3IeQHZjL6y/QjaVcrYLMnsbSCzCqTNb3nqWB/Unw064J1EkpbrlcgqY5oElgjYZapSQm/qoIkNolMErmWLMigGkTMFUBo+fWEnhoKQmXvYa7+d05E5bwB7OKAhdf2sxJGNiJiBuvPRqBU9MaWIZV0EOQyZgkviqPTk5sR536zZf2rVQO12JZ5Orp2QzsigbcWJzcP6CMsmaCPDLOOzT4fc1DYcxqb7OPQ6Dm2WtbErpCiwTFKDw5c2PMaSe55gKCKo1+j16XBl9dxkeAWIGZ6UJF0lnp9dgJwKja2a5pkoxtdluTyanWTeIyJpdAAHDC58TJyeBOorS6TjPmwIrF+NArm7sAwbsXQ23DXgioUtqvs9BrMgZ43W6sJnP42pKe4E6QMVeuCjNyNujGvccmsBDxdSy/Nvtea3e8RjArltNlo6qQZRj0OCU1+aCx3jhOLm2lcX4theupgljy3D7tw61zIZyc7iwEkaxFHoPreEciHsxHA13Ngfv1LuwnZKVd31ufD68FDgMQacb420+Lv+WTD92YzzVlKN44enMGY2+fP/iRt+yqNkHCf/PJP8Lnvvio/P1jP/f+HT/EZh6JxgW1xu37aY+bfV8LUOzjDjD7YTYGqFyLF7Bedu0EqNwxH8LdRyfHMkCFkuWLKxs4t5bEVr6Got0NRzkHl8slE/OS3QWn0ynAoTEshSuUS5vJHeZhJ+Ch6q5nLy7jxdXEofVDNPog0v+PL5/TQbewR8L+1syrPm7nnnbllzK9UlYTObD/KK9hCbntmA15EPa6MRvpzJydictkXsYzRTBxmYXgIWXLc5NhTEVa+xiuxVKSAGvJl3vqxqHspFiH7Ce+SNRsDtjt9p2ABc1WRaWQh1OrYiIUQCjga1uvdmNwOlfYxV70OO3yEjYVMQ9MalvJQ7qBmezDYQGjZEo+s7yF6+kSpiaiOB5yYjHo3C2Lb8IKlS6knJ4/6zL6arUK+a9C/06+9FMerwFOLy7FC1hJ5lGu1RDWKrh9xi8WHKp0C4yOQkavAMa1RA7JuqlsyOPAbNiLyaBXXuKVrJngFpmrvUqEx+0RMYa7UEUxF3ThriOTHUtEm4GPvPcIzivWo8DxNjIga8iUqtgs1FCqlOGoFoXBeDQawMJEEPlCAWWmYpMxXKtKG3fiK2pGmxIAuriZwvMrSby8lRevs6jPgeMTPrxqIYxzT30FDzxww8/KjHPyGGQXP3lle0/YC8HAVoxDLqCQvchFDT6XZKv7vJ6dxGgjM3IjXRL59ZTPAYbIdMqONOP6mgFatGph8AnZhuPIMjTjupsdQwGMTy8nsJYuyf11csIrTG/6j+5XWgW5dMou7Na7kO8q//TyhoSs3DMfxJvPHIwwy0H13c16XAVE0rIlkSugVKmBYzsXY4zJ2fIupK9zCJmCDjkuzQYXrW80ez1czCb2A6G6AmEi4O3KI/LLDz+E7/6ObxtZV7z1UzcAxWFW4ks/sxtQHOa5rXO1bgELUOzj7mj3Mtvu0MYAldVMBYmqC65KHnPusgSojFsCM7/8L1yP4aWrG7i8lUKirOmAQCUPp9cvnoccGPlS1RiWcmI6JODhte2svGh1Ax6yHck4e+riCq4n86CRNI2faa5+mPwQ6YO4nswjRdZCFSA7pB/5Wbv7r9vPG1mHTjvTQoEJesZ0wTrkeQkeJjN58GW1VLWB3BaPvSYvqyG/Z0/isrGuSr68kcxDhad4HMB0yINIwHNoXmq77Z9x2T7N4KNCCYlsUcy3FXOHybJCMLPpCbNcsawU83BpNYQDvo4AxMZr7GYMbmQvuuxVCdw5rOxFs++HQXofml3XTo7XiSSa17zXy7A1y7DcIH/PFku4Gkvj+etJbBY1LAYc4gN8y7S+yMKXkGalUmkuse9URs9j0k+UxcgK1f+wGxhV52/nL8oXJ3r0pko1kXvzpcjrsCGglWWRi8+0KofJX5QA0PnVOFYSOQl4mZEQuKAAHmZ40DX6PZIVmC7XUICGV66uYGJyCu5aBRNuu6g7lN9js5TrTu77frehb/fz1xO4up3H+acew5E77xPJeL5SQ750g6Y54dEVNY3F67LDV/erNH42HWgu62dCebVawzMrSby4ngV9AbnQeCzixhtPTODoVGAXuzfg1kP7BIiVLx+bhHGRzUmA0VgIMp5fTeCVjQwuxfLIlqqY8ml9g4ytWIbKz9Dvsos0WYVxLEx0tujab9+N+/4cV15YiePlzQyW4gUJXGSgogIYW7ELCcTWKmWUoYlNxIzXhvmwV8CaflmcKmSFeSHfdvs8ZtoAnePexlb9RtMCg0jOfuarj+E7vv1bR3NBAB74jYd1w/qdUjewH/Dv//jhN43smq0Tt24BC1Ds4+7o5mWWp1EBKo9e3MBatioBKoFaDlFnBW84NY3bFidxbDrSR43M25WS5fNXrgvrUEmWKQVy2mriEeV2uyQUwV6XmRnDUpqBh4UKJ+LOlrLlZjU/7H6IygdR+SoF3RpmQp6R+yA2sg65xEYQl6v59GnshnXIfjWCh2Qe8jXD2SF4yP0ZnpLMFhHPFoXdwWLJl8171ns9klGuXCxXhXXI4YDMEAIKlJ8JaFitweXxAbUKqqW8vIT7vS74G17ueqlHt2Ow8RwWe7F1i+9hH3LTWrWr5OVe+nPY+8h1cqFsI43HV/OoFrK4cy6EE5NBPXmyRhmleV6GTIx+djkuvn18Wb5rMYI7xszjrZW/KBlBZBXnc1lUKyX4/X5sJNKycLCZrcDt9Qn7IuisSSgBGUD9AqPKX1Ruvxb+oooxqu6ddsBo4z3Wrb/otXhWGJvr2bKwSchwvWUmhBDZcD0GL3GRrEDpbv0a6ddI6S4l+wRRuBi7nMhhK1uWsdXv1DAfcEl70+9RsR55bTIG9+j32O3z18n4S+VNurDXlzZTKLf8e44TjoaSKZaRrafEVipkIxaQzRclCXo5Z0fNrkmw09moS+YqLNt1y5xyuSx2B26HDTXNpTPk64A7g0OMgGimVMG1JO03aqA/rsdGj7yKMHIJmtNmJuh1oljU5fGlUkmYSfmqBs3pRLaqA6kerYaQ0yZ2PUcjZPTeANz5+WyoudKEgGjQ27lPbbd9Ns7bNwKxm9kSXkmUUSoWUS6VUXN5EHXbcOeMF8cm/NKmRp9IjlHXY2lci5NNS1sgX09BLpQ1/+2L1y024jjfLDdJ3fYDIh975GF86L3fO7KW+Ibf/LIegFgvKnxl0L///YcsQHFknb7PiS1AsY9eaTeZYoDKUiyLp69sYSVvl9UzFaDy6iNRfN0tC4gERi9fZSrbi5euCXi4XbShYHOJZJmrwF6vF5rLsyNZbgxLIbjYyDzsBTxU3UA/xKevbIC2MWTAHSY/ROWDSBN8JWNeiHix0KUHTB+37K5djSEpnKzT67Af1iEPvhlPYXUrofse1t8hXLYaogEXpsP+fZmHqnJG+TIJBvSjmgq6Efa7D5Uvpln9OIzjKLkyXwLJOiRoSJ4TQRd6FJbo56VpepiB3QGH0yUMqYoAiA7xDzMDQGy81nZjcKdtc7OzF3exD+2aDqTVk5cprxy1v1+n/dhsO14bAQhKlG4kJjdnGVZtdjy+tIXLsRwiXgfunA8PLNSB4CLTbxUTh+Disai/o1CXftqj230payZgVatW28qajYtkJGsGXHax6hjFd9wwgpfypTJWE1msJzMo2D2YCPhFsjrl4YLK/sFLTDhXknlawjhcbhQLeeme/fxFKZFeSZeRLgGbmRzc5SzCbg0npiMSVsVCIIyAWL5UFbUDgS/OOcoSMkOgnICdzuoiYE5LFQLADJ2h32M46Oso5dqs8bfbe7LZ9kZJ89J2XliQzcJeVKiL8l3kNXvq4K3xuCoAZTtbxKWtNJYSJWyQCJBOYyNbEa9fMg1vjdhxctKLEzM6GYDfkc0AUX62kdZTv3edp1RBjqlOTYoCRPmRx2mDR7OJHyQBUVUUIMrf4/kbxyGzk9s3llYMUZ9Lg78B9OS+PA6/4xsLgc9Wf28GiPbrXcjz03v03GpCGIxclBG295QfdyxE9oybKsiFcnI+k50EuTxxeR1PLqdANuJ9RydwRxfBMWbcw9YxrBbopgVGPf5+03/UPQuHXb74E28Y9imt83XQAhag2EEjtdrE+DAbA1ReWktjq6QDiJFqGqejbrz6aHTkCcxGyfJqIoPNXBVFVxCuYgp+txMhnxs2hwsVm77C2hiWYjZ4qNrV6IdIEPPMTBh3nVrso2fGY1dOaDaTWSxv55CvS+HmQqPxQVyLp8XvYztTFLm5Zq+JXLhX1iFbWCUur8YzyJYhLywEDxmiQd/Ds8fn23YEmRkbiaz4JpJ8QAAx4LYLE9KSL7dtPtM3aGQdKqIIgWa+cAY8TgEHCUbniro0X3O6QZYPQzfsqMh2gwIQGy94UBOqw8xe3I996HI4BpIobPqNajigYhkSQGFyN8chgjUEwGyka/XIMuxEEm3WdZER88ilTVxPFoRZc3rK33FitFl1MB5HMeYkQRjVHbZct+dSAGMiV0KG/nBuDRGfE8enQ10FKXR73lFtT4bVhbUEriYKkrzbGO6SzmR3+SE6tPYBNu38RQmUX1yPYztfRrrigM/lRNRjF8sUBncYS7NEevY1F4eKpYrI+8uVigTsVOgPCg1Olwc2TZNFZY7xZJ6TJUmQ8muPPYQ3veXrYUcVlGDze4AAnVb/t9vlkLT4Xpmb/fSjCnshaP/4lYQcisEsfLZeczyKI9EArm0lhfWYLAFrsW0JkrM7deYnCwNQpgJukc4yCM4ocTce/+JmBpvZsoCY0wHnrnP0cw1m7NuKIcpjryVze07RLSDKA2xlSuL/yP+U/zX/XihX4aiW9P80mwSjFas2FGt28Q+lBQp95SJuvb27BUS3syVciJfENifiKGPRb8eRiFf828XPtl74XbCaqcFZK+FI2ImA3wsFiKayBVzbzuCr17M4O8n7I4C7jk6a0fTWMawWGGgLDGr+22mlv+W3RwMofuFfWYBip300zO0sQLGP1ubDfN4+j8tMkiu7oNXKksB8z2IQJ6cCePPtx/s4en+7Ejx88sIVXN5IYSlRQLpM+aENHpQQ9LoR8nmEeUg/pGZhKTz7C8sxkdnEcyUBofphHhqvZiOexkvX1nElrq/GHyY/RPogErRbJ30Aw/dBbGQdqpVyWWV2Obr2OlT9psBDMg+54ivhrDbIyi/Bw/0Sl41930q+PBn0IBpqH8LR31Nh7W1sASPrMFuqiVSORbEOmcIdCXrFv1QAxEJFJHl2h0teKmtVLplURUbGF8dBMBDb9dgwJlQHnb0oPoDlMihLp38lCwEAt1OTcIeDwD7cyzLkzapiBXWZ/SATkwku/v3Lm3DZbXjNkRBundvLiGl3r3b6uUqMvhjLgcSl26a8eNMtM0NhLhJcIoDFFGHeIwG/uWNyIpPHlc0UCDAWqgBxBD1szL/Druu0ncZ9OzKyVrbTuJosYjVVwKTPhWm/E6cn/eITPKhCUPPKVlo8H1XIx5TfjbNzkb49Hxv9Hh966EHcc98bxKuwWGZwjO6Na9McAi7ye4I/lRWGzaaz28kA4yRCfcaQIv7bbABSsQwL5Qo20wVc2s7jhY0C8pkMksUa3B63eGLet+jH3YthYfTpXqC676LX7YLLtRuU3a/fCDKuxLOGQJmyyKlngq6xAhm7vffMYBd2e07j9vSbb1YaAdF8Pq+nSG8VEa84QPbmsZATCyG3+I9y+2Q6iwKcSJZtiBWqiGpF+B12uN17PTybMURZD3qpGks3gCj3m/TvvadaMUS5/VRgrwS+FUOU289boXP93G4HZt9hzH/3a4xv//Rjho/rCTQ7fxnc75//4OsPTB/dTBW1AMU+epsP84MxL05OB0aawEzJ8svX1vDK2jZWMjXkNJ+wDidcNVSdPng8bgQ9Lnk5aRaWwiZQ4CFDT5hixtKt5+F+TWn0Q+TK/bGIB2cXpjAbDfXRA6PfVcmYV5M0ANclXosT3qH4IDZjHVaqumdPL16HqjXNAg9VeApTfRM5XaPD8JQIfRgt+fLQbl4j65CG9iokhZNtypFp8j9dN4WnTJDsvGyhLKv+LHa7Brtmh61WkZfBUQKIjY02ignVOLMXFfuQbKMKpY1kjlbJGtWEHeKrpwkO7ebr8ET7swz1dFszvQw7rNaezQj2PXJxYyiSaJ5cFgavxPDkSgouWoBEBwMudiNr7rXtmu1HgJEMd9qAKIAx7HXi2FTwwAKMkvBcKhEuExYf/QxdTqcwZ5+9toXVlO6918heNLNdjccyAowqVMYsgHG/8ZfgI0s2r7PZGUCky7B1z0e2B5cCmF4tbDI+45oGjenXEvimg9qarSpgI5myjQAkActipYIU2ZlF/iwhRr8cQyHLMOjR2ZqNAR0EAJ+4vImnl5NYTxX1eW/QhVcvhHDnQkjYwgRJuXjWLNSl0z7jgsSFtRReIfnAcB6yJc/MBgdmq9Bp/QaVjNzp+Qe13fPLMZxfS+F6SpeazwfdcKCC7WIN9NU8HfXL/IbKoaNTwYGxpjsFRFU7bKb1e7GxNJPMcxsyRJsVBiUZ5fcRT50JOgBAlOdvFazUDBDl9q18RC1AtLMnYhTzX2PN3v67j3dWUZO3+tyPfZ3JR7QOZ0YLWIBiH604iof5yUurkrKsJMslzSMpy2G3XZIWNbcHFegpyyyNYSn826DBQ9WklDJfWE8cKj9EyphXYmmsxHPiY0NQhj6IZNix/QdRBsU6VHU9v3Rd9zzMl1FUoSdOCGukU+Yhj8UXiESmYMmXB3ETdHhMxTokiKt8lsgOodcT5cohpmAb0liN7EM93MAOWn8xvZ0vdnzJczspYXYJm23cyijGYGMbjJq9mC8UwTHpILAPO2EZapru4+Z0OsbyfjP2/TAl0TwvwcWXrsfx3PWUWGjMh9x448mpnlNHjcAXwRqCXu4u2FiDGAt4Ly9tJBHPlhAvVOB32ECAcS7iEw/ecS18DtmeRMIor6S8sx2789I6k5IzYCgb1SNzQRfOzIYRHbCvtpJlb2WKOwzGxbAXx6dCXTMYzRp/5V4sU2pdlRCasiRGV8TCgJ69iSItVRgOR1CyiiJs0Gw2kStTZuyolRHxecS6h7Y5lGQ3ApC8d/h3hqvsJ8Hmc/3klW3oMuaKpD6fnPTjdccjmAv7ZIGG4CKfF4bm9FqMno8EGemNqCTZBBkXIj6Efc2Tr7s556jZhd3UdVDb0lLir5+7jq1sEVOuGvI1TaTXt0/7cGLSh0q5Ks9hP0Eug6r7OBy3FSDaKlipFSBqDFYyXpdZgGinSfPNGKKsz35J8838QkcNiJo1/vZ6j33H73+ldcbzDQHJzuF3ZUD38flf/8jreq2ytd8AW8ACFPto3EE+zHx5eH5pFeeXt3Yky3zJd9eKmPA6JcylpLlRrtlFstwsLKUVeHgs7MZC2IOjE4GeX0ZaNdth9EOkjLnRB5Ey30G84AyKdaj6i4nL9LWiZ6HyuvHUE5fnJsOYigQ7fiIoX95KEYi84RAe9dOL02XJlztuxd423I91GPI6oeTKxqMr9mG+WEGxUiMPpJ4ISoWXXYz5xx1AbGytQY7BvfTMoNmLZJLtsA/ZXZK8PB7sw05ZhgyroKzQ6dQOhNy6k/tgmJJoVR+VGL2UKOLWKS/OzAQ7Sow2ypoJugRNljV30l6dbqMW8MhgTBer4rlGZt84AIyZbF68BikPJ8jUiR9iq+sm6HN+NS4yZcUiPD0VxGzY1zXI12nbqu0UwEjmZKlaExuTTgFGs8ZfJU1O5ku7WIasj9NukwWxoNuB6YBHkn35b5ZW7Eey8CVxlJJru+7Xx4U1Llbo/yYgqSe4898sKh1cFjR4o9UBSAJNT12L48p2Dgx7IaONAUqvmg/iSIh10Xr2GG3sKyPIuJEuIVsioOnAKTIZZ4I4OxfaAzIeVnZht/dxs+1Jnvjy5e2mISt8x6I8+unlBNbSBBNtCLsdmPHTM9Mm48zpufDAWItmXJ91jM5aYNCAKJ/TZsFKnTJEG5Pm1VVNeJovWChA9IWvPYqP/dj3d9YIA9jqu/7gK7r1DP9fBwjVafTfb0CIZn7+Vx+4bwBXYx2y3xawAMU+WtCsyZSSLC9tpXAlUUIeTtirJYS0MrweDyIBXbbMZDmWZmEp/HKkbw49D42y5UGCh6yLkjIb/RDvOjZ7oKXMykiePoicV3LCOBPymCpjHjTrkH1D8DCZyWMtkRP5Ku8eBR7Sw+nY3FTHd7+SL9MfMl2g9Ihm2pZ8ueMG7HFDBRySrUEZciesQ3WqbL6w88IlL1jC6tATRPkSLEmitRo8Lr4QOceeEdasCc0ag3vsnn1365e9uIt9yEkbX4RH7H1oZBlyrsgwB/FTlRml7mV4kFiGZvf7sCXRqv5GcPF42CWAxx0LE7suj4EgVd5BlUrbtGaz28Ws4xkBxlxd1s/wkWjAjcXJwdqnlMsV5ApMDKcklxYQVfHXGwRzm+zF9RTncgWUa8DRsHso7EX2k/g+xtI70uyAW0MrcLOb8ZfHzRfL2KAaolAWL2ba3/D6fA6bgIStAlD6uX/2Yz/S+7Fct/aQF15ZZFPejzrYqHwg+bnTXkOmVMO1RAHLqRIubGSENXlq0o+ILYdbp704szAlATZeT/+MfgKtlO0+s5zAc+sFsSOqloqIuGrw+31gmvKtky5Efa6dtmuUdffTdgdxX7IRL6wn8dT1FM5OeXH3YrQj4gTH7hdW4pIgfXG7KJ6LEY8Dx4J23DFZMpwdAAAgAElEQVQfwcJk54vtB7HdrDqPbwu0Clb6+3/4R7znHW8fWcXf+YdP6Hiiwg2H9POz73vtyK7ZOnHrFrAAxT7ujm4mU+o0L13bwItX1nB5K43tog0FmwuOck78DidDfni9XklaXsuUBTjkfzQUXpzw4fhkQIzZjeAhV0wZlsIyaPBQXQNBxGevrGElzVCG2oH3Q1Q+iGRBUClO2QON4heiAVNWJwfNOmS/GMFDMg+5rsXJ72zYKwbw3YCHPJ5Rvsw0aAKIQY8Gst9mo9bEqo9ho+WuxpAUyrwIzpRrNvicNlBu0Yx1aDzYdjIDxT6Uv9cYVKEzMvif+ttBBhAbG6+XMXgQfdfJMduxF8eBfdjIMhS/TZFxVmCz133OxN/s8LEMO+nDbrYZtiRa1Y3gIpNtCUbRCuXMpAdHJyPwuRg4MXpZczdt2G5bAoxbqRyuxbIgwMgS8jjke28y6O37+9soC+exRyENJ6i0tJnUA/Lyla4YhO3ar5PPFbipkquNAOPjjzyMBx54QA7TGIBC0JChMAQN+f3TyDJcqPv2dlKHYW7TzvtReRAr1iNBR8rHz61uy5yYPuYzQTfOTPuxEHQKGExv7foXsLAkBajUbGJXwfl8plQFhR6NbcZ96AHp4py0zs6M+NziR0nvR3p3P3c9jWypKtJsMhnpB/jaE1OmyKWH2e79notA4t++eF1A13vmg3jzmbm+Dsl++drSFi5spLGaLsu716KnhG++6/jA7I36qrC1803XAqOe/37vHz+xw1BU45tiLA7y9//2w6+56fr6IFywBSj20Uv7Pcz8MrpwPSZ+h5e2c5IoV9Nc8JTT4pWjubzweb3iFcVJYquwlFGDh6p5mvkh3nf2WB+tN7pdjT6IBBDJ2tKTJn19TRSGwTpkq23GU1jdSui+h3UvZpethmjAJTLsbsFDHnMtlgJ995R8mUbyEZ/Lki8P4DY1ypXpfVeqBwY67ZAXh2Zeh43VaMY+JIAsDES7TUzv9RfgmqT5HlQGYrvmH/WEql39Wn2ezuaxnc4jX3MhmcogEPCBz3DIU0PI7x2oFJjMR8rfyc6pVKoWy7DXTuxiv2FLopWseTtXwtNXNrCa0xfKGAJx77HoUBKju2ge0zZVACNZ+UmuhAHwOjUcifo6Bhj5fBTph2jXhM3JRRmP292XX55pFwhASZQVwDescBd1DUb25LknH8Ppe14vsmQWgl+DYBma2X5mHqsV+zGZK+Lc9Tie2SxiO1sCijmEnFUsTEewOD0Bh8MhvrcelKDVyoj6vfA4+d3vEWac+u4m9ccIQBqTsBsZkAyYOb+alMUE5f/oc9px53xAQMazc2EciQbMvPyxONbDF1bx4npGFDPfdvt8R2zEXiq+lsjikfMruBjLIVGy4WTEKSzwOxYih3Y87aWdrH2G1wKjnv/+7//Pk8O7WMOZ/vxf3DuS81on3b8FLECxjztEPcxriQyeubgCSpbpQ5Op6Ol+XltZjNMJHPp9fqxnKVnU9WGzfodM7qcCHpyY1qU6jeChqtpswInTUwEcqzMU+6hyV7t+9fwVXNxMC+DhdQBnZsK469RiV8cYl43pg7jOBOtCRdKYKZPqx4dpGKxDtp1KXGYSZpbvR3VKOX2O6ON49vh81028n3x5OuwbuTF/1xc0xjs0Yx1SJkq/nk5Yh+rSyJpIZ4vifaiKS7PJyy4L72nCh2TQEEAM+NwDBaXGpclHPaHqtB3asQ/bsRc7PQ+3I8uwVKqgWCpLgIEQ2BtYhuInplksw27a1YxtBy2Jpq8fgWIGg3gabAx47i+/vC4vxMUqcNvUYBKjzWgnM4+xvJVELF0ALUzom0eAsVGBYPRDJIjI0A2/z2NmNQZyLLICCXS8spmShWlKhxfCXpydiwzce5EXdFDG30E0fjfehRG3huuxFC7FS9gqOXE1noPXoWEh4MCZKQ/mgy5ZBFTsR9bXYa/t+D86bDSEpPzarjM+7XZJD9eXDG8sHnKCSNCRICQZkEzXXoplJZWetkSbmaKE2EwHnLh7MXRgQcZGNuLdR4e7SMKFi6++soaXNnLYLNnFoupI2I27F8M7SrJB3HPWMa0WMLbAqMff7//PowEU/+yfW4DiOD4JNw2g+Nm/eRC/9Gt/KH3w/h94O37mR97Vsj/y+SL+zSf/CHMzk/tux4f587GwpCxHnFWEfG4E/H5MhYO4tJ3fE5ZC8JAm2yzjBh6yTkY/RPraLAadOKh+iPRBJIOPkhAWPb3N27UP4rBYh6yjAg9Zb74cNIKH3SQuG29uhqcks0XEs0XxC7Lky+YPxUbWISfxBA35ckCz5U5Zh6pWKjyFnon0vhTPQxvgdem+hzzuzQogNvbcqCdUze6kZt6HDLvhfeD3tgd6O/Fe7IRlSJU7A1s0TYPP239aqPlPzc19RDMl0QSsaZJQrVbgdbvaLgpx/vHklRieXEmBasxT0ZsDXOQdx7nB9XgWyZINqXQG0aAXk363gCzhgD4/O6iFAOOz17ZEgsvFp0GzF8dx/DWj7waZjEwvzmwuj3SpinObBby4lgFB72q1ipmgC285PSXhK5yzMvmawTOUOBuTr43ej7xezg8IMDrsdvF85ORRwMc6c5Tgol5sEm4Uy5ZxIZbHcjyPjVQOjmpBT7OOenHfyWkcmQztm4RtRhv3cgyGrHz16rbset/RCdyxGO3lMKbus7KVwvJ2Fi9vFyVEJ5YtwO+0YT7oxtnZoAUwmtra1sGMLfCZ//k3ePd3v21kjfKeP3m6dcqzwVpRVXBXynMfn//JD949smu2Tty6BW4KQPHi0gr+9LNfxM9+8N3SEr/+6c/gPe/8Jpw6vtC0ZT71+3+Jcy9fwa23HGsLKCYip7AULwh4yHJywrPL75B/G0fwUF248kNkyhnLsYgHZxemDlyoCn0QmTi8Es9JcAWBnIWItysfRCPrcDNbBiWonICFPRom/C6EvW7MRsyRjAwKPGSNLfnyYId8xTqkRNwYkiIpgT6XyIvJEOy0kH1I4DrHg9W9Dsk+pNchXw4KJbJq9ZcEAoo++il6XDcFA7FdG47DC20j+5B1FiaU29UzkGdkGWaLZeQqDtBXs5DNIBwOwmmrweeoyksf7xGPdT+0u1XG+vNeJNFmpTXL/CSWweOXY8iXq6KqeOPJqYFJB0fVEcoPkUww8ZVFVTwlKU9djWeRyJWQKddANlnE58Tx6VDfHoyjulZ1XsqTr25nwKRiXjPtds7MhhENeE2p2jiMv71cSDfsQqN3oc/t7OV0LfchuJgvFIRVnCvVcCmWxaWNNJ5fTWMjU8LxiAuvXgzjNcejbeXKnEeUaKHC8KBiRUDISrUGBro1Yz/qYKMNbqeuqFrayuDaVhJX4jmsZYGg34vpoA/zATuOTXhxNOKVZ4YMSO7KJGwVWuNxOQcGQBpDVugT//oT4zk2kbX4ympCnjWCwZlSBbScuJ7SSQ2noj4cjfrwqjEAQU29ia2DDawFLm8kkSmWEcsUEcsWRQHJQqUjMYeV57+CfzvClOf3/uloAMX//B4LUBzYTdfHgW8KQJHsRJZ3vu1++dn4u7H9+Nnla6u4//V34cHHnm0LKE6fefWuFahxBg/VdSo/RPrveTXg9rmDKWWmjHl5Oycrrkxjpk9MJz6IRtbhdq4okkDKukNuO/wuByYDbswwIMfEyeP5peu652G+jGLd3y7oBOYifvTKPJQvlmIJG4ks4sJIgLDXAm67AKCRgKctU6WPsePQ72pkHWaYrlhXGxOsZjhNu5CUZg3UyD7cAZ9cGnweJ/iCYQGInd9aw36hJdCXyRXE/4oyYildsA+NV9aSZSigsp7ArYmv5g2WYSfsxc5bz9py3FqgE0m0kuey7oOQ5hoTo2+d8uLMTHBPYvS4tVur+vD7sVAoolZ/Vsni8rbxQ0xk8riymRKAsVAF3HblsexH2D/+MuhWbUHW3fnVOFYY7lKoYkZsd4KimukVKBv2+NvJfTdIdmEn5+9nGzIXCQgyAItBWBvpAl5YTeOVzQwYwEi5Mj0R+UySxRjuYuHSWC/l/diO/ciF9UvxItZSBcSzebHROBLUcDzqw7GIG9MhL4IeyrU596wJS5rfh+q7sRGAlDFLswtQz8Uwesi3KmaHrPTTL93uq1iLXKAhS3huwo/VZA5PLycQry9E3z7tw61zIZysW151ew5r+4PfArzHmXqvAEP6rSaLVVEN0JaE1mgTXieifhe8Lscetuuox98f+rNnRxHyjD/+/rsOfucfwiuwAEVDpxJMfPRrz+OX//X78Oy5i00BRT7Aqjz11FP4lnf9c0nf45c9TYEJ6hwnSzHsHbrnYav7kyuX566tH3g/REqVyCSgFxJLJz6I+7EO55iA7HVjwqTVetX+TFxmXQnyUbLK7ElPPXF5bjKMqUjvKclG+bIK3rDSl/sfmTe207KST5mxkXXIZMpOQlJavsTlCyJZImOgUgeSGZ5ClmHA60auUJRkZv0zPVRFUpgtxllHnTroCVU2V5A+Un3HSpF96HJqCPrbyyO5f6VSEenaDS/Dqnhg1WpV6e9+WIZmei921ODWRkNrASb7PrMcx/mtPM5OevC6I2H4PG4JCuH44HaZy5ZqdmFGcPF42IW7FiNjDy6Kj2RFB2XM8EMkwEgP441U4VABjCvbaVyNpSUNnBY3TCPulr046PG32T05LuzCQQ8EClzUPRL1cJZSzYaX19MSvPL4lYRUge8b9GPvhMXYa52N7MerWyk8vxzDle0criVLsLt8CHucmAs4cGrCg+mAC0GPQwcMNT3RmmCj22EXliyLAiDFA7JGf0h9cY4A5HPLMVyK5xHwB/CGRT9mQ54dpnBjEE2v1zOs/chavB5L41o8L9fOFO6FyaCo1pa20gIwUh0WdtuxEPJIYJayxRpWHa3zDK4FVD/nimUsJ/IS0ETAMOSy7/yc8DmxGPY0BQzb1WwU46+xTu/7zLPtqjiQz//o3RagOJCG7fOgFqBYb0Dlm/i5Lz66q0n381vkw1yaOTNW4KGqfKMfIr/oD5qUmTJmAoj0QSQhKOBq7YNoZB1uZkoo1elkZB1G6W3pceD4dKTPx2Xv7gQPk5k8mCrZCB6G/J6eEpeNZzHKl3lJHgcQofza70bwAJjGm97gfR6wMSRFTW59zu5CUlpVYzuZEYBwJzyF4UxuPWWZ/ZVMZw0Aog5OEUAMHXDvrj67pefdzZxQ7WEf8kUHNfE+JKPC43btqSf34XcHpWVlY2LyPizDni+2zY4We3FQLTu644qsuVCUBcuHXl6Dy+XCHbMBDDuEgC1AcJFABgGoCa9DwMVjUf9YJJymM1nxmCNQT4aUQxtcqApBgqWNJOLZEuKFCvy0uvA6cWwqeGAZjI3hLgx946L48anQvuxFM8df3mMHmV04yFFC+S7Sm9nOe7xagc/rkeTxa7E0vnSehIEMNrMV8UIkcHXvsQncvjAxyGrtHJt1OL+awNPLSawlC6D6KeJ1YjHkkrCShZBbZMCtvB+L5TJeWEsgVtJwZsKFExM+TPhcsnBXqdRkP4KSzUJoWAljErZiQPLv4wRActx4aXkb6xmyg+24bXFiBygl8PS1pS1cS+TFQovMtFum/Lh1LmwBjEO5g3s7iREwJMuQEve1THmHYUjgkIBh1OcSliHtE2bqOQq9nXH3XmaPv93W6QN/8Zw8k6Ko4Zy3/owO+vc/+L5XdVtVa/shtMBNASi28lBcmJ2S8JU3vOZVO3Jo1eZfefqljiTPDzzwwBC6qbNTvLKygUvrcVnxYqEf4j2nFg4M8MQv3JVYeo8P4mTQg7D/huePYh2uJfNIUpNEGYVd9zocFOuQ5zCCh/mqDZqct4ZZMh1NAA+5CpzIFCz5cme3+75bGeXKlKdS0q7fJ92HpLQ6UdbAPiTYSyaBkX3I79lcXjEQeRSbBSCa0LfGQ/QzoSJ7kPcJ2YO2OkOiGftwL8vQhlpVBy/MYBma3CQ7h1PsRcr1OdHzOO2I+N2YivgHdUrruCa1gAT7FEpyj/FlWSUOdyKJNqkK+x6GUq2nrsYkMZpAARlSZNcEPHtB90HUx+iHKCNrrQp3B2E0g6iLEWBU9isic4z4MB0+mM8aWYAX1hK4mihIqnCrcJdux9+bhV04iPtMHZPgYq5QkEUszinoq0y/XledsZzIFvDE5U0B99brnmsMe2Gq82tPTPUsk+72mlQ9SAh47noa2VJ1B+xUku3l7QweXYrDVivjzmkvpkPBPd6PZDCqJGsmX3M8JPvR49TEy9EhLEh9fmW32wSAJPhIEHIvAMnt9GOI/6NmEwk2gVkG2gwLgKQk+vx6WhQKp6cDwlo0FgUwvryZQaJQxWzAiSNhD15zfHJoY2y3/X0Yt2c/bKby2KzLkgkYMjBTeRjymulLqwBDWmadGKKEvdvx1+w++tG/fH4HT9ylfVYnUiksjT/7/Pz3vtcCFM3uSzOOd1MAimyoZinPipV4kAFF+iG+tJZEtlw7kH6IygeRXiMyOIfciAY8MhHfj3VIGYSZISmND9NmPIXVrYTue6jjs3DZaogGXFK3Y3NTfT9/reTLBFCjofZyyr4rcEgO0Mg6tDMJGTYwJMXPABO3E5Fg/yb0BHzTWT09UxWGpwR8LgHtyVYjgEjZtD4BtoETYLfTYiB2eqsZmeILs5P4vV/7SMvwLB6z0wmVMAkLRfGnrIrP0w32ocvhEFmyYhmyewkw1qq6NJmMp0Yvw06vZ5y224xnJLiKkn6HrSY+oNMTfrj38bEap/rfDHVhwA9fiFnayZobJdHfcOvcSF42+dL15ZfXBVwkdn3b1GASoxWISJ82ggz0Q2SoyjCk393ce2phlBLpXImLFTYB5KIBNxYnQ90caiy2bWQv+hw2LIS9ODsXweOPPAy1qG6xC4ffXQQXi6VS3XfRgVq1LL6qZC8aC0OfnryyPVIWI+tDkPGRVzbwj69sI5YpoFCuIeh24E0nwjL3PzsX3jd8pp33ozF8RiVfE3hkcBmBQ2896I6WCPzek+CaBgCS9VQAJsHaRgCSQKTb5TAFgFSsxVShgqBbw2LU33QRYi2RxZNXYlhJ5oUBdzziFgbjHQuRkYz5w7/TB3dGFXzCpG4FGBrPRrY2fQwXJ3zisT9MwLDdVXc6/213nF4///HPvmDYtc5U3OOqqDYx7/PfeeftvVbZ2m+ALXDTAIqDaMNRPMyNfoj0eLvryCROL0wP4hJNP6bRB5FBKvwSnQl5ZBKUyBXQyDqc8jsHEpJivDCVuEyfpGz5RpY9v0gIbp49Pt93O3AiFE/nsZ0pIl1gUh7Ec9OSL3fetMNgHaraNIancGLJPuOElOEp9DKzAMTO+67TLT/1+38pm/7Mj7yro11ajcF72Id2TWRiUsSzSQd89X+DEEVfXoYdVXaMNuKztLKZgsVeHH2nGIEylTzcLUhGwODhSzEB2kYliWZLElzki++TKymRfZ2KenHP0WjPMi9ZBCiWxGONAD/ZSIEOvEtH36s3akDQYCuVw7VYVgBGlkm/SwDGyaD3wCVJEzh89toWtjJFPPvVR3Hrva/f8caLeh1iETHIZORx6ttxq0tjqAvn1QTdycAzFkqUv7YU2wl74Wd3zPpx79GJvsJe9msPFbJCn/nbZ/x485k52Zwg4/nVpNgpULa9FC9i2u/EdMAprMp2ION+52yXfL0f+5FjDcOKqtWqJFpXq7UmACTPztmh7g2pAEiCjmRBkgFpBCD3C6JpDHI5PRduOTZc2kji3GoSl7ZzMuZTXn73YnhPaMe43Z+jqE+7pGQFGFKSPBXwYCroOTAg7SgwCGMf/sRnX9QZiq2KYiaa/Pl/fIcFKI7iWWp3TgtQbNdC+3w+rIdZ+SFe3M5LbQ6SH6LyQeRqPYkXHF8IpHHFMJGv7PI6HDTrkG2nwEMyD0ldlwrZAAUe9pO4bLxVLPlyHw8WAMU6TNYT8XRJCz0kzWUdqlqyv8iIzZG+VTcOJ/uQ/oYTIV22RgAxnaVMtqKnGYp0BhYDsb+u3tmb1hS//unP4OMf/QAmwp0FF3EMfvNb3gK+SKUzecDugMvjhZ0AIoByUTdDPywsQ5Oaes9hLPbioFq29XHFHzFfhF3TYEfVFKBsXCTRvGrW5Uosg8cvx0AFwnzIjbsXI20ZHirFmu3CpNtB+iEOv9cBBTDSdzmZ5womEPI4xDrloAGMw5oDj6KfDvo5i8WSsPKV7yIXK1olnBtBPV2eXDEt7OXhC6t46noKQZcd33b7fEeLC6zPSpysPMWq1J+TQQbQmMF+5GJzoViG3+OS55wMSH3uWK1LsDlr1ANoOCfRQ2q4WK3LtglcUimxmsgjVazBba/i6OReSXTjvcmQnKuxLF7cyMKtAfNBN87OBm8KgLHfpORhPefNVJKtzq2UOnMzk/suro96/P2pv3ppWM236zy/+V237fq9MQPjYz/3/j02dq0qShLDV558Cb/ziQ93/N4xkos+ACe1AMU+OmmQD7PyQ1xJlyUheD50MPwQ+SW6mcxieTuHWL6MfEVPeOPKHb/o6HU4DNYhu7UVeOhzAHMRP8wCD3kuypcpJ0wRpAREjhXxuRCiGa8lX275lBlZh2RL1bN05F6hJJMrutMTgT6e0r27NrIPuQW984zsQ30S2BxA5KTR3yApMrWCN+nB6Fv7Qz/1iZ2rbyZ5/sLf/R3S6QyKAurq/lFvfMvXCwZMPyKfzyvMAKfT0TRE5SZt2q4u22IvdtVcXW9MWTNfKged1jwukmjVQMbE6FunvKCP2h0LE9jxhKuHqtAPkX5wzUKQum7sA7CDAhhj6QLW0yX9u8ip4UjUN/YA4yDnwAeg6w5MFdUzJuNOlaYfNXm+lO9iswsxshhfWMsKa/DO+YA8t2fnQvt6MRLkeezyJq4kCrhnPogzM6GOgMR2DUom9oW11A6z0uuwg/6Qg065blYvM9iPOvOxCtquNAKQnAvH0ll5p8hTGu51YdLvhlPj+8UNAFK8IO1c/Nbny5z7EGA8v5bC9VRBqn4q6sPRqA+vWoy2a+Kx+3zQSclmXTD7j2QDVejNzf/oK3x9dQN//ld/j5/94LuFwPLrv/MZvOs7vxGR6ATWk1lhv1KSH/C6EfQ68cd/8te4cPEaTp9cxI+/73vwzJWYLK7RF7RCL/a6D+gTjz2Cn/oX32PWJXR9nJ/+65dGQVDEp75zN6BoVDZtJ1L48V/4DfzMj70Lr7t793aNF8j9/vC/fg6vvv20BSh23ft7d7AAxT4a0ezJFP0QX1xNIFfBgfJDXFrbxtWtJLayZRQ0D7gS6kZF0q2GwTpUXXh+6brueZgvo1jTKW1Bp/ngoSVf7u2haWQd8ihclaVsP+BxIhTwDMTPjRM/rhrnihVUajoIpdiH/ALnBIyFq/lkKeoMRP3+IQPRAhB76+9u92oMwvrKUy/hL/76H/ALP/kDyORLMumqVivC5uLkORIJ4dFHHtnx8Or2fNb2nbWAxV7srJ3228oMWXM/tRgXSbS6hmevbuHcZh6XYlmcmQ3jRNCG2+cjY+eH2E+b97Pv8lYSBBhj2RJoLx1w2TEddGMhGhgribTZc+B+2szat7MW2O27qLOAm/kuNh5NsRgfemWzZdjLC8sxfPXqtux639EJ3DEEAMsIfDKEJleu7jAZz8wGh5Z03Xb8L1eQzeusRSbS50sVlPlvSbAm8UI/QjPvR/6tUK7gWqIkc9IjEbcQFshmJGGDDEjuz38LA7JWFZsIlmKlIgsVl5JlsZUq5zM4EfHg9oUIjk2GhhZE06p9zEpKTlChUi8E8rgwaiyZwv6/lyq6pF0VipVUIcFBgXn8m9sOUdzVrf+lT7igrYqPMjy+P2h2LEwE8MV/fFTcdd75trfK4vf/+PyDwk59+ze9Eay3y+kQ4JHb/8+/fQhXltdw/+vvGvtg2J/9/851NuiYvNWv/7Nbd45IAPEXf+UPBKw9dXxB/t6JdRIZo5evrUo7f+p3/9ICFE3oIwtQ7KMR+51MGf0QCSLO+Bw4Oz8x1n6ITFhejydxPZ4VyTILWYczQTcWp8KYCfklBGPQhYnL9GOMZ4ooVW1gTcjkpGxobjKMqUhnkslO6mmUL1OhxC/3oEcTBt1s1LzzdFKXg7ANZcEE5hLZoqysNrIOzQpJadUW28kM8sXKjfCUGlMQNbkvGZ6iigIQua2SObsduuG2xUAc3p1GJmg2k5N75pO/++f46Id+ENFwAAQUv/ToM/jJ9303NE2Dw6EDv8bS7xg8vKs8HGey2Ivd9aOSNTPch6z14Ij9/0YpieZ4Sxkm7JqwM+lR5nG7cW07g6eX47ieLEhi9NediOJY1H9gfKy6uyN621p5TxsBxojPiePToZECjNb421t/jtNeN3wXb4S6NPNdbFZnLlQ88somHrqSRrlUQs3hwhsWvPjG22ZGCuQ184ic8jlwStLoJ7AQ8Q0t7bqXvt6P/UjgK5kvydzao9Uw4XOLb6lKvlbej2Q/uhxMwrbVgcuqLKzzO+D8ahwXN1OIlzVMRSKYcAG3TAUQdtuFEMIiSg8iZXzHY6p2PUW8WRK2Eczj9qmczoxkIbgXS+WQKZbFSzZZrIrdVBEabJoLVZsNfqcGt8OOgANwazZMerUdsI5gHkuhjvW1A/NYV6cB3ePvbB9VGn/n34Ne965uCvt3hxr10ofGfQhesbzzbffLz8bf1bb8+6Nfex6//K/fh2fPXWwKKHLMVeWpp57Chz/84X6r1/P+P/+5c3siWFpFr5j590+8/QagSKukX/zE/42P/8K/3AEUje3o8bj2XF9jO1uAYs+3wK4dLUCxj3bsZTJ1UPwQjQnLDErJV2oo2pxwVEsIOmpYDHtwemFqKJNZgofJTB70HCJ4KF9wdfAw5PeYkrhsvA3WYinQu8+SL+//cDSGpHBFT1ZXocuHB8k6VDXL5guy6kv2IYFLMgt5b/jcDpEPKEysF4EAACAASURBVPYht7cAxD4GO5N2TaYyyGRzErRAbydNc4ipOOd7E+EAnnjmAj74C5+Ss3UiQ+hlDDbpUqzDALDYi81vg3QmK2nig5Y193MTDkMSbfRDZFuQCeU3LOo01p9SyaeuxnYSo+9dCOLeY1ELXGxoKL7AX9lMIZErIVOuIeLWQICRVi5mvwzvd49Z428/T+D47UvAP1co1hUaNZHStvJdbBayQhbjE5c38fRysiWLcVRXTZDx/GpC6raRLmEjU8LxiEtAxk5k3KOq937nZZDLC6tp6a8pD+e9Lnl3KddsINmOcyzxrmcgXa0Ke62CarUsP+12u7DkCjUNF9M2pIsVJHMFRLQyokE/on4PyLTjfJ6gIOdpWrUsP4vVGjSHE06nE06HE1vZIgqVKuI8d7WGTKkCzWaDkwLdShEhlw0hlx1zESYlOzFpsIEaNJg3Dv3WCaDY6AOo6v3+H3h7Sx/FUY+//8fnzxuaV0GG6k+D+/3fffvZnfM2817fD1CkEuov/99/FNCWYCN/twBFc54SC1Dsox07fZjph/jS8hY281WRMp+aCuDWIzO72FJ9VKPvXck6bExYJmMSNg0OWw0hAogRr3wZhP3evs+33wGM4GG+Sq8IHTxkGvJ02G86eKjkyxsETevsQ5W+PB32WRKsemcpuTJlA1wZ5SSDk5VBhaS0ukf2sA/B5GX7HvahAhCz+SIKpbr8o1aF22m3GIgDfYJvHHxjMyayE/od2uyaTGBrlOJUyzuSZTKU+imdjsH9nMPat7MWuNnZi0afMiaKu92uA/P9YZYkmm2QLxRE0kdWJl9imVjdix8imTRffnkdL23mdhKj33TLjAUuNnkcCTCuxjNg+B2ZPGTxUCI9aIDRGn87GxsP4lZ8lsleFEZx3XfR5/XgsUsbHYesNIa9KBDv1YthvOZ4FEei5vpjd9vOCgBdTRagh9FUMeXTOgYZG33zjMw81qVYru6S0Tb+zm2yVMjUSzMZrWLmKd+8RikudyXIVyrkUajZUdU8CLggITh+925VB38vlUqoVCq6D7XIom0o1CXTdrsDiUIFq6kCNgo18aGf0AqIuAkG+mXunyrVsJGtCBhZqtngtNWE2UjAMOjWEPY4EfZ5hB1JcHFvCrbUWBiQ4v+o2YQBySRyh90+cgl2t/dQJ9sT9PrTz35R91AEJHzwPe/8JizMTuHffPKP8IbXvGpPiEijBZDxPBvbaaTzJTz04IN47/d9ZydVGMg2v/S35+U+oJxbsg+ZlzCE33/5W8/sXE+3DEVjOI6xUTohMAykEQ/RQS1AsY/O3G8yNY5+iNvpnKxAbaUL2MyUdiUsux2ayEQVA3Am4MSE34UjU+E+Wmj/XTfjKaxuJXTfw5K+rctWQzQwGPCQx2d4SjJbRDxbFN8SFku+fKOfGlmHxOJYnHaIbGAYrENVG4an8EXJ6H1IBiTZj2RhGNmH3IcMxGYAos/j6umFdmA3/iE7MCXL8XgSZIvWbFwC0J+rcqko4K3yO3Q2kSz32xTWC22/LTi4/W8W9uK4yZr76dFeJNHKH5Lfp3yZoGSOkkkCiWYV1uvJKzG8sJaWl5ZTUS/uORo1JejBrDqO03EUwBjPlhAvVOB32BD2OnFsKmgqg9Eaf8ep1wdXF4LVz15P4tx6GvccieBI0ImZoAcEGLstjXJkn1PrOOzFeK5mIRj7+ea1A/N4bIJ1ZNfRc3AzXRCAPpnOwO314kjEK2zNkxNOXaJbl+KqOinfPPV7MzDPWH+30yGgmypup2aK4ousxeXtLPLlKqI+J07PhdseVyUl54plLCfy2M6WRJpM0I9qNU8li1ypgi1bAH63C6cjHpyKuMTuaj/vRxV0KO9ZBmZ6Ll9EuVqVQC76FlYquhekAiC5vfIxp+d5IwBJIJJzSwKQKoim2/tw2Ns3S3lWrMT9AMWf+OF3YCuZk/dWvo+xvVVo5ROPP4J/9rZvHfal7Jzv337hZX26r+PGN36qLRr/rn7v8/P/85tv2alDrx6K6gAWQ9G828cCFPtoS+Nkip4XT11cwfVkXh762YATJ2ciI/NDXNqII50vI5YtIFlf4jImLHudTmxzVTupe13Qu2hxwoupkK/tl08vTaYSlzkxydIbtz6wRDwaogEPzh6f7+Wwbfcxypc5EDvIdrTSl6XdjKzDbKkmcmX9XrDJyuagvQ4bO4/PECcvOc7quNxFgJk+Wy4NEyH/nr7mPUVPmEK57mZdqwkD0QIQ2z4WPW+gJMv5YllYhy63B8VCXiQ1HnpP+rwIBff2Vc8nbLOj9UI7qJY197iHkb2o5LxsqXZSXnNbczhH208STRCxQGlk3fif/pBmg4itrpLg4pVYBo9fjslL83zIvZMYPZyWOXhnYX8tb6fFxiXD+aCtipDbIZ7TVH70Wqzxt9eWOxj7qZAVkujedOJGyAqVIsVKDXbNgWI+h0qN/96NsLULwVDMvGy5hivxAlbTZVyO5WAr5TAbdGEq6MN8xIdZP5lrunRXhWC0A/MaffIawb1uwTwj0/LiZgZL8aKkXk8HnLh7MYSzc+GRsy0b7ygCrq+sJiTYiYoih70KzekSwJCBMGuZsrAKCRzyJ0M0aWXldTlwfDLQkgl+aSOJc6tJXNrOyeJOxMs2CMs+tWpVAmKyhZKw1AkWMuRQBc9w+xuBhzpLsZX3o3FBigAki0rC3g1A8hPCjvo7gwIgCTry+GRAHhQAMpHOIZUrwmazS1ALAV6dVUpVjwOR4G6F4KjH34/9XQtAsRWQaNLff+mbbgCK7PP9Up5V6vO7vuOBPSxQ7msBiuZ9F1mAYh9t+Tf/6wsILt6Ci9t6utSpCQ/OLkxhNhrq46jd7apYh6uJXD0kpSaAJg2IyTAMe92YjQRkIF6JpbES55e/nkilS2LMlzEr8JDMQ5rvkqrPqHsFHi7OTAwk9IKT5o1EVoJaOAEigBhw26UdIkwQNpEx0V0vjXZrI+swU9TT4Fg4KaPXoMepYXpiuNITfkGmcwVkC2VhxXISoNiHTFX2efZKYZsBiAQbCXz2Iqkbba+M99kV65DjBieGfHHgC0OlXIJmqw2UddhNy4x6QtVNXa1tb7TAQWYvpjJZSdJk4rj3AMma+7n/JHzhShL5XBZ3HZ3ErVN++F37+yH2c75u9n1hZRvPLsexlCjieNiFuxYjuGNhoptD3HTbVqs1rCUyuLqVQapQkYW7o1Ef5if8INjSabHG305bytzt9gvB4JnagXn7JdpytX8lVcD1VAFULt066YHX6WiZaKvVyuB8welyIxgKo1YqyMI9QRyWdiEYzZh5isX4zHICm9nKjgyZgSq3j8mzTZBxJZ7Fk1e2QZBxU5gS2EmYHqaku11Ssl+rwVEroeYKYsJtw2uOhnF0ypz31OeXY7gay+JiLCvXPx904+xscF9QktsJs72efE0VEguBTv7H0i75uhX7kfs2ApD8G4FOnQHJO7we0lKrCqte/mIj8MjFQQao2cQ/lOqaQTEgE+k88oVS3fOScmG+l9ck7NPndiLcAB42G0FGPf5+/O9fGUkoy0e/8fSu5mj0n/zYz71/Bzy0AEVzv3v2O5oFKPbR1nyYAwunhuaH2Mg6pAxVY5iB14XJgHtPwvK1zQTWk3mZMLKQ/k4AsZ8V6cbmagQPFfPQ54B4bgwKPGQ9LPny3ptXsQ5pzKy8Vvgl6XcNV67cWDMj+5CsFgKI+7EPZVLchIFoAYh9DFgtds3mCkilMyIZZ9/Y7ZqsPBM85OSKidfBoB+DkCz3ezWjnlD1W39rf4jP5spmClzs4Kza47Qj4ndjKtI7c8rsdlWyZoLqlPSOOq3Z7OtrdTyGyxj9EIuVKp5aSQqTKOJ14M758Ni84PMaCC5eWE/h3GbOAhcNnapeqp558RUszE7i937tIzuJmPJyXypLEuxTLy3hlz7+aaytx2Tv3/7ER3D/614FjRPNesnlC+KpV6nW8KUvfQlvfetb5aXS5XLA7dqbqDmse3VY52kH5rXzzWsE85ox70aRaKtCVtiOpyf9ePOZua6bVPku0l+bnsn0kqUsmv54/ZRxDnsxXpcCGS+spfAKmYzbeXgddswEXTg95e/ZN5KA4WYqL0nJlDNv50pC1ihUapKKzDIXdCHqcyHqd8HvcuDEdHPAkJLoVzbSQiw5OxPAwmSwn67Zta8CNs+vpQSQ5jvI7dM+Wax41WK0r/Oo5Guz2Y+sFAkOHP8UA1L+VveVpBTbCEBC3l+qXQGQje9lAlzaIeBhP0qwUc9/f/UfXumrT3vd+ee/YTeg2OtxrP3MbQELUOyjPQf1MKuQlO1McV/WYWPVNxIZrMazQnFnoUHuTMhjqg/i+aXruudhvoyi8iB0Dh485PU0ypc9DkhYS9jvHpuAmz5up6523Y912O+XVFcVabGxMTyFUgRbrQqvW2cTGr1UjLsTQGRisy5r0b24uHod8LnHEswyo52GfYxEMo10NieG3GQdklVAr0OCh6OQLPd7/YMag/utl7V/7y0wTuzFwy5rbuwlox+ijMIMVWnBwhxGSnTvdxFAgOSRS5u4niyIpcvXnYjiWNR/U4a6UBJ2/+vvwuvuvk0kXg8+9uye5FCyPH7t03+G97zjm3H6xAJevryMP/nvX8SP/PD34OW1hIDoUb8bXjsZjXZh8Hz5yw/jjW96s/ifkfXIxagqg7fEnJ8L3naxA7Db6XnWP9jYbwjGfmCegwv0NkioDQuDbVjUwqz6XN2TZN4562CO+ptRWtuOmcd9hpnI3epZevjC6k7IytffMo3jJjHXVEgVgWd9PlcTRrfLJKUQWdM32IHjyWJUbW70jVxPFZErV3eYjGdmg7Ioc3kjuQMY8vPVlC7zVYUKrwmvE4sTTEpuDRh2OmbyWXppeRvrmSpm/Hbctjhhut2VAhifXk5IAjTZgCcnvLh1LoSTLQDPTuu/33aDZD/yvEYAkvc3xz8FQDLcs2Z3Ip/LieTb4XTC4XBAQ0UCRunZz8LxgQxIFq+nt7Fx1PPfT/7TxZEwFD/y9afMuE2sY5jcAhag2EeD9vsw0y9uPZmRkBSuPNHrsB3r0FjdRCYnACKNg5WMeSHixUI0YMoXAxOXCVJSQkxZKnmOHntNfHfmJsOYipi3stXYDVyNSmQKN718WQGHlAFQHjxOrEPVZwzjIBBI2QLnjgQQ+cVJOXXA694TnqL2swDEPgafNrsaJctV2AU8ZKlWyhRrjo1kud8W6HcM7vf81v6DbYFRsRcpa6bkip5QnOwfZrsMBSKShUFmci9+iGalRA/qblKJ0RdjOZAIe+9CEPcei94U4CLZib/yW3+Kj/7kexAJBRCLp/Erv/Un8jvBnQotFW01sRn5D3/433Hy6Dze8bb78dWnCDw+g5/+kXeJNHEzmUUsXZDACkrzvE4NF5/9Cu5/61t3uk1JbfmCzeTYmt0hfmCapqHM8K5UBoVcVg/v4XeSfG6TwDcjmLdfoq06Wb8hGOMA5g3qfm93XILtF9aTAiTeMx/EmZnQQAOOCC4WSyWUyhXY7A7UqmUBmnsJdWl1bY1hL9zujlk/7j06gbNzIYR9e2102rWTmZ8rwDCWKSKWLeK51Qyup8pAuSA+g5mKBrtDw6mIE285GcFdixNiQTCMQtYiZdsc/09PBxANekx5h2ysO8fhF1bieHkzg7V0SdKhF0IeGYtnw75hXGrTc/TKfrRVy6jVqvJ+XK5psoDCYG2++wS9rh3PQwVAMoiGvu9GAJL/FudHiUrW1Vt6yAA9/22iEmJpBkCOev777790cSR99tNvtQDFkTR8m5NagGIfvdLNw9zIOtTsNVSqNoS56mTwOtyvOlxR4qRueTsnZuQscyFzfBAJHiYzeawlcjtJzwSFCB6G/B4cm5vqo6Xa76rky7FMSUApUsK5kjMZ9CAaGt0XTfuam7eFMSQlX5bXO5RrNvicowlJaXVlRvahbFPjyvP+7ENulkxn6wbNumcJvzgtBmL/98+OZLkelOJwulAqFgQ8dJHh6ffKxH0cJcv9Xn03Y3C/57L2H30LDJK9qIJGYD/8smbaG/B6+QJD0NTB8Cu3u29pYi8p0cO+qxS4+NJmDi47JDH6TbfMHApw0ShHJmOQQF6xWMLHf+u/4Bd/8r3w+9zIZAsCKP7ih34QwYB31/fCxaUV/OjP/V9YWdtqKo1mX3HMZeFc9GtPPoXvfe/7JTjAWPYLwahU6Khdk5dv1pEv1GQ2stCXVLzM5EVak//I7rGKOS1gDFm5dzGI156YMefAXR4lm8vXwUVNAt3Yzwx16lcabayGMUjluetpZEuVgfobtkpK5hjDRYxZv+5Xvl/wCUHR86sJPL2cxEa6hI1MCccjLpya8kvw1KCBUWOQix7U6TNVEt14m3As/trSFq4l8jsA4y0iDZ8cu/E4nS0glS0gkSshW7LJ/LpWKcJpq8riCBdPZAyr9ZZ8bWybZgAkg2j0cJs6AAkbHv3yQ3j3O97W5dNn3ub/4aFLDfHON1JXdE5y6xSWfj7/0FtOmHcR1pFMawELUOyjKZu9zDayDnNMSCGl2WkXmnozr8P9qkAfREqfuSrMMhPo3wfRCB7mqzZwKkfwkPJh+isOGjzki0w8nZfrShfoRcE035tHvmyUK4vfTl1iQ3YqV+oDHidCDJHpwhy9j9t43135xUbPILIPK3WJu7ATXJrIdZz71LEZgMiVOzJ+DiO4Nag+UMcl6zCbzYtkmX0hKcsuDwr5rO5J6bQj6PfD5x3tSvyg28F4fAtQHGZrj9e5zGIvElyjObrNbhdGgN/nGa8LNak2Sr5NH8hqRX+JH+S1jrskms3KF9onr8TE74yLtAQX7zkaHShbq9fuJMOPcyeCcEzVVYyWXcerhwxodVCOYWX8HlYMxYlwEEbGIn9XpfHvrbYb5PjLaySLjf9ZYGOvd8re/Yyy5m+7fX6s7m8C3hyDle8irW68JixuNGs9I4vxhbWsJDXfOR/oCKwzBp/0m5TcTc8qkHE1WYAOjFZ3QmoGCTKStUi/Ro6L9N8/PRceCGvR2BZriSzOrSZ0BmOmjOMRN46EPUMHGBV4SMZ1tlRnC9bfe/h+1k2IZa/sR4LPXOhjQAtZii6HtkcpMer5728/fPlG9+k8kaH8/q/ebAGK3Ywhw9rWAhT7aGk+zAu33iXAWIJpxj2wDhtPr2TM/PIgCTHg4iqRt2cfxM14CqtbCd33UMck4bLRx8EhK0+DBg95PqN8mf4SLGGvJoa0hz19uRnrkBMnj2O8WIfqPjSGp4gJEu8XsldcGiZC+8svLACxj8GkYVfFOiyWyjLRdrm9KJdLsipKBQS9iMY1KMW8Vmh/pFFPqNrX0NpiWC3QLXvxsMuadzzMKjUBS+mHSIkrQaZhl3GXRLM9CBhciWUkMXo7V8Z8yC1Aw7ASowvFIthn4sllYO7Rk9BOJilZ/cLm0xNIGXrh9XS2eNTKQ1GFtfzMj70Lt5xYxC/+yh/gZz/4bglsIVvx1z/9GXz8ox+AEXg03jvDHH8tsLG7p1aFrDBA9/aZ3kJWujtj/1urMYv6HAb/8K7neGWW7+Ke961sAedXk3jy6jbObWTlnLM+O+aDTmguN2KFmrCY9STg3cEn0wHPyIBZFVLD90Q9YboCn9Mu4ChVa689MWWaxHvYrEVjHxFg5ILPSjKPRKGK2YATZDDesRAxjcGoCB6JbBFUhqkyiiDLbr0fv/b4w/iX3//d/T94PR7hdx9ZolpbBxIbfvKRqZMpTf/8x95wvMcaW7sNsgUsQLGP1uVkKnT89q5Zh8ZTcrBeiaWxEs+JP55bA+iDSKlv2O/tqnYqcXk1nkGWwF39IaeZbzTgwdnj810dr9eNKV/eSjG4RU+XpidTxOdCiAlkh1S+bGQdipcgI0Vqen+OG+tQ9SvZh+lcQbwZ6QFClhvZomQf+jxO8VTarxBAzDcwFwk8hgI3h0S91+fDuB9ZhzTDNwalULLMoBT+d9gly/224TBfaPutq7X/8FqgFXsx6HOJlxdfWMmEoczuMPkjGv0Q2drjdo0HQRKt7lImRhNcXEoU+06MVmAYAQsa9XNuVquDFLpvJf0rKQVWYKFN5J9mBJnwelqlPBsBRRXY8kM/9YmdB/U//eYvSJBLqzIu468FNt7ooUGFrAxv9NbPtNt38YY0ulffxU6TkouFAlK5Eq4mitguYIcNeO+xibFKtG/sD6PE2wgyTgecuHsxhLNzYRyJBvrqRnrqL8cykjDN98pBBLnsV8FLG0mcW03ixY2svFtFvLy2MI5PBjoCGMcJPOyrI+o7/83/+gLe9q3fYsahejrG7z+6pPNO6liD2EAO4fcPvN4CFHvqsAHvZAGKfTRwr5Mpypjpg5guVoVt1IsPogIPyTzk4E4Ta05HFXi4ODMBv3fw0q395MvTYd+hellTt4piHSZzpV0hKWQdhn0uSTJmMvG4FSP7sFY3/+2UfchrsQDE/npUfMsKBA/zEqJEybLb4xWTepA9dBNKlvtrUd3P64EHHuj3MNb+h7wF1mIp5KpObMcTCPj98GoVTE/4x8JWot+m57hC2SC9HyllNssPsd96tdv/IEiijeDihfUUzm3mmoKLil0ocuQquYRMOdZ9AXUfKf6jKkwnmuuTXXgY/AEPwvjLvmG/UEZdqVbrrBmbgLji2Ui2J/vlAHs2Djtkpd2zPYjPb/gu3gh1afRdHERSsmID0teQCc0sM0GXgHRmMgEH0Was+0qcLL/tOpOxDJ9TA0HG0+JVGO0ZZKQk+vx6Wqp9diYwUK/FVm3z/HIMV2NZXIxlZZP5oBtnZ4N41WIURpJHhiaW9TIK5uEg+pbHHPX4+0ePX2nJUBxk/PP7XndsUE1qHbePFrAAxT4ar9OHmas6TGM2+iAyiOXIVLjjs59fui6yZYKHajXA5wDmIn4MCzxkZZV8eTNFSTYnYnp4CuXLs9HBpT533FAmbtj4hUTGIQtXxni9BA4jwe5YpCZWb99DKfYhGYTFirzeiOTN73HA7XIg2MYnjMy5XL4o7EXuy28Nh10PUbEYiO17cUeyTN8Cmx1ujw+FQk4MyOlBeZiDUtq3jnlbdDoGm3dG60gHqQUoaxb5XKWyk9bMcX1jOwMuCHFM9zjtiPjdmIoMJ1HTjPYbth+iGXXe7xiURH/1SkwkZyeiXrzx1HRHjJNB10sd3xh2spUp4sVYCcvxDJyo4bXHJzHtsYuNSS9y5GFdQzfnIeOPIByLeDUCkvTcWB588Eu4//4bKc/tzkEfsG6Ke8Dy/EawUVJWRatXD4gZc7BRhaykilW84Vh4ZCEr3fRpP9uq4JPNdAHpsh3Xk3lkM2l4vT7kShXM+jVMeJ2I+l2YCngwFfSYPo40hr2o4JRXL4b7Auj6aZdu9lUg44W1lHjHLm3n4XXYBSTtBWSkyu6l5W2sZ6qY8duHzlrktfM7/foWryeHq5kqtpJJVDQPjgWdOBpy4L5T04di8bCxn0c9//1PX7lyo0otpM87G5j4+Q/dZwGK3Tzzw9rWAhT7aOlWD7PRB5GH19OyvJgK+ToytVXgYSpfRrEehBF0QmTLJxemhsI8VM1CZgdfvA67fHljO418qSIAGqXnLARLD8pqVjZfQDZfkvAUvgcQBGTQDkNQAl73vuEpvFYLQOxtIDBKlnXs8EZQChkpZAsRPKQPkBVE01sb77fXqCdU5l+RdcR+W8Ao++1E8kvvxXimgHxJDwjjYtG4sRcp/8sXCijX/RA5tlCqPQo/xH77Z7/9RyGJ3i/sZCeJsiHshG3P9GGVGH0xlpMk13sXgrj3WLQtiEGmurEwZKVCKXRDIaNu79+Mzvf6pwr8M27L76IbpSZp3lwYpJ8mCxe3WJpvd2NP4mvKQ079le+GBE8ffvBBvPn++3dVkXXZW8PmvU6wso5XdnRb6XXX/ewai7oeQ813rnXvtmyL3bXc3Q5sFzscDqfeRvVTFgoF5LIZVMplSdDmf7wP2D6qjZq1V6uLU+3Y0cXXr5zs1sdeWcWlVBVelxNvOR7CpH+vIkbT7GA4T6dl0OBtJ/XoJSnZ49BA9qIwtOu+i5RFm5kY3a7uxrAXAnRkAXYa9tLu2MP6nIs6CmQkEzNXru6kYp+ZDXYk9yZrkXJrPtdHIh7MRwMdvfN2c42tmIdKIaYCLVWIztPLCcRzJXk+T054ZXyeDR8OW6ZRz3//yxNXW6Q8qx5tlfLc3+fvfe2Rbm4Za9shtYAFKPbR0OphNvogUsqo2YDpoBtzEV9bH0QmLpPBGM8UxceOUzyPvYbZsBdzk2FMRYbH+lPy5Y1kHio8xeMApkOeQxOe0hiSwu4nAOdzjmdISqvbczuZEf9Csg+l1GrwujVhTbZjH3JzAmFMMiuUKnUGIkR+bzEQWw8IZB1SXihsFdhBr0PN4RDJMv0nfV4XPC7XTZWy3Mfwacquo55QmXIR1kFMaQF+f5FVTSCAvr1Bf/cvDePEXlTAaJWJ7gQsDqHn434dv57M4rFLm3huI487pz34hlvn2gJ1PF4jWFcqlcSjljhUjQu0Nhs0zQm7Vh/DNQ1l+mrWqnXQjdvp8mT9q3Uv6NUIbBHMIrvy2bU0zq2l4LDVcMtsGHfNBUDAY+f1qQ7iGa+bwFxjYejK3r/pQKCxNAONhgkM3azjbzabA+f9BLBE/WGzw+lyoUp0lPcLpdQ2wKFpIqVuxu5sde83A5G5bSxTxCPLGdDu6HjAhtefnhMguVPwVua6SmbTwYi7H3grQv5dYPcNoLrZoRXYy8X61VQe2UIJ1xM55MgsS+QwFfShpHkQ9jgQ9jox5XWIEmjap/9sVfaAt3z/chLsdyKVTKBULMLhdMDt1gHXZs9Vy2MLaL73mWu2feNzmMyXcGEtiYubWTyxkpG2OhJy4GTUKyzGk7MTHfTA6DcxAqUKZJzyOXBqyg96Si7wHbeJvZNZQS6dgoedtBQBgHZs5AAAIABJREFUxhdW4pIgvRQvYNbvwELIc6ABxlGPv3/6xLVOmt70bd5jAYqmt6kZB7QAxT5akQ+zbfaspDHPBJwCIE6HW8umCB4mM3msJXICHrKQRUbwMOT3DCVx2Xi5DE9JZouIZ4vgSwvLYZEvG7+IiuUqSvWFfqd9fENSWt2KzdiHIpv1dMY+5HF3A4icJNUEQGT4yjC8Nvt4zIa+6y7WoW52KJLlUqmASrkkkuVQ0G+xDofeM3tPOOoJ1Rg0wU1fBcp/y3yxrlbhcZvL2hs2e5EgIgExetyyEBgdp+AYsvkamXSdsutagR/t2HUEI66lSnjmegKZXAH/P3tvAiZHWbX9n967Z81MJnsgO4RACFsg7CCRJWwSCasIiiCgKNurwKt+76v/D/kEV1QUBBQNiyCrBES2sAaQkABJICEJCVknk8ze+/K/7lP9zNR0ume6u6p6PaVck5mu5anfU/V01f2cc+7JIxpp31G15HXYyOZwkN3hJEcyGk8FZKGdMFeIxaIUCYdYFHS5XCwQQORJdY3VIsV2Fw9SU3QhHCAibagFL69wJ0VKYTAaZ8fowye1FM0Vdqj25vu5jL+7k0MadTgcJdwXnC6eTKPmf+siXd1ulJ8Z2nH9vc9aacnGTqp32+mQPZpoxrjmfLvL8u2U8UlbT5AF0PZAhLb3Rg05JacbcwY7Eb14GwwGWUStqWvgsSARj/L9r5ZM4m2m/aM+arZL6rjW2hWk5Zt20Qef7yK/zUvjmhtoz2Yf7TXcQ3s2ulMihfVHSRVvU6OKB7YoNVI3t6jewc8Okx/bu0P0yY4gbeqK0I6eEO3q7KYGZ4yjGTGJMnVUA0/8KPF2Z0+YOkKowd5LNfYoTRrdRG7XwDFUjb8727soEMH7mo3iNie5PV5y2aLkdhDVuB3kdTsp18jbTGM2rtWlG3bSps4gbe+JUKPHzg7SB00YntXEVbbXgZXrFXv8ffD9zVaWSkxnHs3HO+/AcVZilX3nSUAExTzBYbPBbua2jm7atrOTxcNg3Eb4CoN4OKzWzaLjnqNbDBw5v0316cv4XkRNvJZ6DzXWerKKasvvqNZvlRp1aKcEuywjBL7W4yzpWofp6KBOZY8/3B99SEQwT6mrcWfdTyIgZnfdIeIwGIpwygy0Q7ycutyePqMUSVnOjmOx1ir2A1WxzluOS6TqI+IFCqm/Vrs1WxW9yIJoLMYvlEp08Lq1VEss6aKbtMiogUu6l9300XVDpcJq6aDpovD0R8yU2pkaBZStWId9p0bXpaYjo6THJx1RWr21nYbX+2ivlloaX+/gaEKkdyLNsdTMTvDiunFXLztGQ1yZMMxD00bW04yx5RGlNNhYI+NvbiNxtmJjZzDMte2Wbe2mA8bU07SRDSUhRmfrlIyafOOaaqjW7aSJIxpyg2TR2srURasJjgl1G3k9noKmRutPrRTNXnIVb9Vk0tb2HlqzvZO2d4dpVWuAIjYnjaz30B6NHprY7KUpLTXktttoY2s7dUZQh72WxUW3y0ORhI1LeQQDqEkb5TJN9bW+Ics06VnmXjph97DXXf4QrWvrofU7e6m1J0xTRzbS6AYv7T2ilsuWpVu0KN3+b+LconoHv9DTRa6nbvHG66/RGaeeYtEdM/RuH2ZBEflZHKc98KfNxs8zVnx+zoFjh26crFFwAiIoGkCuHqaUeAjTlO6ItkM3Uq68Tna+KoZ4iEiHHZ1+TqUOx7S03jqPnWAGM6zOa/nLlwGsGTfVRx1yrcBkLZ1yjDpUJ6nMU1C7EbNyGJKRKuNzOzh6sMabnVs0p+KGIpwGrQr+eJw2NmCRCESNtkpZ9gfD/PWHqENcQpKybMXdWph9ygttYTiXylGMpDVnG12XTqxLF13njxBFEg5Os+7taqf6Wi811dcMiGBLV6cOf1PlEnp6etgwhqModJEz4J3uhSJdzTVHmsi6dFEc2UbXFbKv9WYnYIyUUTvXQoP7bvKnLb3ZSb4p0YU8v3THWrmlncXFDZ3htI7RxW5fLseX8TcXWoOvC7Hxs7ZuWrotQFva2mn/MQ00e9LIvkkGJZpnG9mYb8syOSWHYgnyOGw0zKsZnyjB0Arjk3zbnu12qEkLgRHvEByZHI9Roesupmsr6hj2OzLHqKXG0ZdevE+ZTUAowXRbV4g+bvXTzt4INdhDNLZ5GDXW19FId4ScHh81uIn2nzDc9FqL2V4Lmdbb3gl37F20vj3A5SxG1blo1rhGmjC8zrQIxtTyHIO1OV0mAEyx5p18ktFTzXv7R5dvzXtbIxuePWuMkc1lW4sIiKBoACwepoJ141mUwJcsTFP2mlCcCz1T+vLwei81N+ReS8oAFlM2VVGHMIRB3RVVUkgV3kUUQqk6LA8GANGHEP4COKlkfhaiD71uBzU1ZO8yKgJiZsr6lOUY6o/ZHeT11fIMqN5lWYxSTLlVi7oTeaEtKv4BB7fSaAJiIO7rYU1auh/SWfvreKUzmtCbN6RJGRvEaEJ/UtlG14WjUersjWR0jtbXQ8T+bTBVKUBUZTGvDq3PYoSXd336J59/cjIwkYj1RRdCQEWEYTZpoKnnVeou0Zn6AeLimtZu+qQt0Ccu7tlca9oLq9X9L+OvOYTfWLONVrX2cmrnyfuM2S0aUR/ZCOEdkVAQGPNJo1bGJ0hJ3uUP07ZuzSAI+4KxEGrLWe2UbA41c/aC8SmA8giczqxN6vs87t3KIphztNz2kmr2gq1njKqlA/door1GN6StX5jbEcxfG+9u3YEwG1yi1BSwog4mzM5iiTht7Y7wmAfzljY/AkPsVOt106R6ojmTmmj/iaPMb5QJe1y/o4s+2dZFq3b4+XyG+cwXGHNtZrHH38eKJCjOF0Ex10ulIOuLoGgAczFvZpW+3BnQnPpgnoJ06nJLX04tuqtKlKgvIKfDTiOa6gz0UvE2TY0+REtQfy/X6ENsBwERkXUhfENDiEwkyOOyV30EIqIOw5Eos8G14/b4WOAPBwNcrwg11RClKeJh8e4DK49czDHYyvNK3Xe66LpsU2HTRddlazTB4k+yPp1K7xkqFRbbmGU0gckX1MlLxGLk81qf1mxWn6L2YntPiCIJO0dAjxnVQh5bmCPOrU7NNuschtoPRA68jOP6wss4pz3ZHBTXGZrYuIYckcth50ggq9ORi+ESPRSnbD+H0PPW+jba2hXiFLspbHwwtGN0tvu3Yr1qGX+tYIf+fm7VVuoOxzmt+chpo3M+DH8vxON9NRtxL3aF49QZjFFnTy9tbOuk3qiNeqJE9T4vBaMxFgy9LgeNa/SSz+00NeIq5xMosQ0wnoUjEZ4IsdmdXHMRYxaiF0thQdTf6m1dLMh9tLWH/BGtdiHGCpi9jG8u7LuSPvAjVTyEQWQ2QR/qnFZv76IVn7dRqz9O9S4bjW9Bqn99Uc4rm75esXkXfb7LT+t2+Xn1MfUe2mtUPe1bwBqnxR5/n/xgG3+/9y3K1Fn9waLfz5yZ+1iZTZ/KOsYIiKBogF+hbmZEtXX2hso+fTk16pBfPG1EtW471Xld1IBU7JRivQa6p+Cb6s1TEBmHBXUzUROkzufJqSbIQAHRzuIYBMQar5vFsWpbVNQhBGjUPEShc19tPRfaVuJhXa2X3E6nuCxX0cVhxhicbSossKYr4p6udl02RhPYnxLr8O906bG7u2lq8wnKgVZ1dbpU2Gyj60otFZbTmkNhTnmFs3E+bs3FugUwbqP9GJ8gwKIGq8PhpJ1dgYzRi8Vq62DHVdGFSP/G9c2iNDtN21gwtNvsWlqyLh053+hCq86/XFOiwQPC6JufttK6XQGOGpve4qMjpo4suchFM8Zfq/q/VPcLk5X3N3dzNGI+Jiu4Njbs7KFAOEqbO4MUjMT6jE9wrTS47dRU46Ix9W6uvd3gdlBzvY/vYYypmtu5ZhCDcgkQzDABlE9kcKkyNqtdqu6iXlyESRbGulJZ9FGMK7f7aUSti/YbU8dinJlRjKniofZ+o0UeZiseZsvs06276KNNHfTJrij1hqKE+oYwJRpZ7y6aeDpY29U9uXp7N23tDnFW3T4jamjv0Q00ycIaosUef5/6cHsx9EQ6fWZpRrFme31X6noiKBroWatuZpW+vKs3wlFXEN2aa13UUOMui/TlHn+I03o7/WGuPZEadWj2l4+BLjS0aXtXL9csDMPNgxUBpEo4+Mu1via3Gc3eQJBC4ehuEYjVKCD2RR2qGjcOJ9c7lJRlQ5dr2W/Mzq1In4zFOYIA9daWvPkGHXb4kSkOiSrFVZ8Ka67RBGCmq12X6gqL9VKNJsq+Iyw6AZiToF/5RcXpoNocx1CLmjXkblW77Q4H10Mcqu2Fdo5OdwKpZifKjXbAujpHWk1wwIv00A7HQwIrwgrlmhKtxEXU8np/Sze75U5uLr64iOhUCFSLF79Cxx9/PI+F5XptFOJyRDTimtaurExWrHBKTj1HNWGgvkeV2IjJAjzHYtJKxMaB1MLhCGcKqbqLmOzyFdHUJdN1qyL+3v+8ndbvDPBqEOJmjWuggye2ZJUmna7kFMRDNkzxubOKPDTjvgqGI7R2Wyft8kc4atsfiXL07dq2XmpNpuorkXHaqHoqlTqTSmBcvrmTHaRRqmtSk48jzkc1mleCzCoNItu+e2ZFa1FcnuftOzLbJsp6BSQggqIB2GbczIhm6OgJUntvmHpCmPmHo295pC/r05XD0XhfrUO4LCOttxKiDtXloY8+hEAKU498ow+xzz4BMdovRqKOIsTIaopA7O7xUzSeYGMDSVk2MBhVwKZKMESpAI6K4nTJFHc9jo6ysWiDyLp3lrxFxx13XAWcffWeAtya4wkbR/SVQ1oz0uKCoRA7U0JEREF/tzu/cdsq52iVjqyiC/vMTjJEFyId2ZelAVg5X6nlnBKtxMWPt3bQR1u7KRiN05gGDx0+qSVvB2AlDCISVZVGUNHVuGa4Vh+iUuNazWdERqvfITq98frrdORRR0GD0kx0kiI07uXU6NVqFB03tHXR4k93DEhrLnWn5AFio84oCdcfrgO92Gh1CYNSHWuUqQuxcRSqACb4uR3fA6W4DGb2MqbeywEg+nr1xRAPh+K2ZWc3bW7387jXXOOiKaMb2chFH6EJkTEQjVNLjbPPzGbssJqsRNShjm/kc9zzK7d00KdtvbShI8RlB8Y2eA0LjGZoEEbO69kVrUY2z3vbU0RQzJudlRuKoGiAbj43sz59ORjVDt7oc3DY+KjmegOtsXZTNWOF8HNEHeILFDN1mHmp9ThND3m39myG3jv6qccPh2yuDMWFmpE+Ulfjzjn6UAREYkOFINeARBQmXk7sbJSClOVIKEg2W4LTuSVleehrs1zXyCwYIjlXE9Zxn+E3JRgi4m+wyJd8xuBy5VdJ7cZEGpu4JNOaSzHSQ89bmargm0+7TuOE1Dez6yFmE72oT0eOxBBRRJyOjAWRhkhHZrMTspHDrjkkl1o6cilcy+WcEg1+eEnduKuXPtjUQZ93R2lCHdGU4TW01+gmHk3TCoOIQONSM3iC0yK5Ifzx3+yaVQ5+QmDOJg020/irhEoVAadqtlaL6PjiRxtoxY4gbQsQ7TXMSXBIxlLuTslDiY1KRMb3d7WIjQPrLjq4dEkp1V3Uj7XIHuv2h6i1O0QftYZp7bad1B6IkMPloRE1Dpo9IfsoxmKN4Yha3LqrhzZ1BDlqEW7jY4cPfHfWi4w7eiJca1KJjGangufDAWP30g07WWDsDMWp0WOnqVwHc3hOZS2K/fz7/ModfTX9VW3/Qvw8cZ+WfLDLNhYTEEHRAOBsbmakL+/sDlJ3UEvlstsSNKzGXbLpy6lRhyi0iwUzVm5nZdQ6TO3yVPMUiBqIFM3HPEXtGxGI/mCEosyP5/TJ46qOCES9UQpHcrq95HA6KRT0Jx+27H2RmK4yTaEzMGxU7KZ42cBMd1/dNY4wxAN2nGxJm/ZUwRAmFUaWbMZgI/uXbc0lwPURg2GO7LNTnOpqzUv/MbelmhEW0twSyXqIDoetICluKrowEo0TsrpCMTt1d3eRz+OkxjofG7Ch/hmixQpldmI221LbXymkRCuDDQgUWPqitDkjItEXBaj9G3/UauIpYXDN9g5asaWDdkRcHJ0zrdlDe49qyEoYzLc/jIy/5Sw6pnNKRuRURzBKiXiCJtbbaExTPQ2v81BLnZda6r05CQX59kcxtxOxUaNfKnUXlXiIIBB/RBO0nUlTSGSP6c0uU81edvRGaMIwN+0/rrFkTVFwPhAXP97cTh3BGA3zOmj6uCaOWky3QGRcva2T1u7opfW7guSPIJLRoY2VJtebzPU+3N7pp0+2dbLAuL03ShOGeVhgnDF22KDjhpHxN9c2plv/hVVtZuwm533MFUExZ2aF2KBqBMXHFr1GP/zZPcz00gtOpesuX7Ab3/bObrrqxl/RB6vWDrqe2jD1Zh4sfXlEY43p0QxGLxB91CG+cJLv/BUbdah4IfoQwkcAlXOTs/OIPkTKcVNDbV5YMwmIdTUeqlTRTEUdoq4d6j9CPPTWaC5zoUAvYiTYZMftcojLcl5XVWltpBcMkaau1V3bXTBEVBTS25CSbFQwHIpAsR+ohmqffK4RKJe05lzrIebTv4FgqF9016UUZjI7UenI2UQv5tMe2aafgBkp0RDKsGQjDEIUxjiqTyPmOEEbJp+1CFMsiDDNJWV45ZZ2doKFY3STz0kzxw2jPZtrTRe1rB5/iyU6KsFQGZ+0+yPsnowaljA+0Tslb+4I0OfdYTZDycdkpRruv2oVGzEhBYMxLe8iwfezFdH4KhAEdeuVeKg3vNSLh9leb/oovw3tQapxOSwxe8m2PUOth5To1a09vNpeI+t2i1pMtz2E1Pc+a6NtXSFa19ZLbX5EMmoi4+gGT9Y1J4dqW66fQ2BE3dz17QHOCBxV56JZ4xp3c2S3evwdqt0vf7xzoMtz6gapLs8mfX783sMH7AnZbz+6/V565oUl/PeffO9Smj/v6IzN1+tB2aw/FAf5XCNQFYLiug1baOFjL9B/XXken/Rtdz5EF86fS5MnjB1wHWC9Nes300nHzeb0TFygC04/jmbPmp72evn3Cy/QPrNmU1t3iKJxGwty9d7SS1/WRx32huMDTFJQZNfrcgyYraqkmyM1+hDn5kjO0tV4XXkLHl09fk7d1SIQtVRNRCBWqoCoog7DkSghzc7ucJLb4+tLWbbbiaMOJWW5fO8epKBCHEaE4e6CIVxrYxztogRDpCMX23Ck2A9U5dvb1rdcnyZsVYqw0bPQ10NEvThE/iGNOd86toOZnWiFMzR3VQhJjqRDcj5mJ1bVXjTKs5K237Kri/7zeSetbAvS5No4HTNtFHldWvRLNvUF0d8YL/mZI09h0AyeEMeWfb6LHaORIjilpZZrd9V53YZ3Xwrj74B6oQk10ZWs/ZihpmMoGqfNnQHSfmZ2Sh7X6CWf20kj6rwD6lTqTVb2avHRrHHNedexNNwJZb4DvWgci8f7InH5Pks+c6i6yeWcRp2u7mKNz5uzY7RePITYpJZat7UZZPooxnc2dvJhJzR5S851OTVqcdLIBmqszd4kU3+eSmSscdlpUrOXpoyopb1GN9L4Zi1wolDL+h1d9Mm2Llq1w08eB9GYeg/tNaqeNq5YSqecOLdQzdjtOK98spPffrWSRYX7edzezQPa8ou7HuHfESimAsOuu2JBWu0G2s7v73+SvnbuydTUWD/k+kWDW4YHrgpBEWo0FqVYp/6ert9wUd7807tZhEwVHtX6eJiaOP2AkkpfTnXnQlv1M1UNdV6OGqvUBdGHiJYLhGMUS2gP8xiAEX1Y5/OQK89z7xcQtUETr4YQY2EiUGkRiDBKUVGHqHWIlGWkKErKcnnfNamCIWps2ZAyh0LryZ+lJhgORbwUXmiHamO1fa5Pa4aQWF9iac1K6IQRjGYykX09RCVe4N5RKan6unDoaxtH7lJB05ElejHzXZa18cgg9QXXbGunD7Z1k83to3F1Tjp0QjM11Zduun4mGojAfPPTVhYXEWk3vcWYY3Spjr+7OSUHY7QrbCNHIkahUJCikQiNafDSyGF11FJfQw0eBzW4ERSgicAQgNNFhUJIfG7V1gEmK9U2vhfyfNOJjcgqQg3QchYbIS4GQiH+DtFKIiXS1l1MDQZR7K0WD7PtYxXF+MHmzgHRfUghnj15RLa7sWw9vZELIg73aKnPmBI9WCN2FxmjHLE5os5VFEF1xeZdtHp7N7315uv0o28sMGVyKJ9OeG11eyF1xD7d8uhpTX3NTafV6AXGoc5LBY/NOWjfQaMah9qPfF4lEYq5Coq4GO954Bn6869v3E3hxgOUWpYtW0bXXHNNUa4j1MdA2m5PMEKpUYcweEG02LB6X1HaVsiDtnf1UjAcY/MUXhIJ8nm0WoX1NdnPSqW2uRoExAEpyxFNVELUIRZJWS7kVWzOsZRgiFl+5e6qCYWoYdgfYehMFt0vhQhDo2deqi+0Rs+rHLfvgVszKiPGYiXn1qxMYFAPEQtqGaeaqlSK2UklRi8arS9oxHhEfy+akRJdKvc2zgVpde9v6eZU3snNuYuLxRp/rXBKHizScdmWTvpwUxuNHD6cDh3jo+G17oyiY6n0b6W3A/0V5lI7qDcaZ6M/TBAhw0KrL6pFgbvdzpzKBRSDG+ouIr0+ErfTjp27KEpODvyA8WWpiIfZcFEpxMs3dxEcl7GMrHfTrHHFNXtB1OLabZ20yx/JaOSSzfnp18G5bulAanJ7Ml06Sj6nnc8XUeAHTWi2PJKxWOOv4vDGmvZcsZmy/pE6QRGZpTff+ie65cZv9AV/QfNZsnQF/fiGr5N3iEh8bP/N7/2cbrn5sozZqKY0ugp2IhGKg3QyhMWjD5uZ8SIrxM2sZqiCkRj5Q1FC2T9V67CcvmjMuJf8wRAbnSD6EBN7bPhh1yIFjUQfom0QECFMqqhGpEUjqrGhrvyiENKxVinLwXCU2amoQ8zywmUZ2X5et1NSls24UC3aB67/WAxioSYYanV5bH2CIcHZ1WYjJRhCVB/MIdmiZhZ0t4UYgwt6QmV2MBVpAffjXCL9CnGaqIcYjWmO8hDVleMxRxempEZyKjIWXToyIpTKOcVOMS6l6MVchEGr6guade2Vu0t0qlAKx+h3PttFMBcZ0+Chwye1DJnGa+X4+9mOLuoNR2lzu58C0ThtSwoUhXJKTo1GnLVHM5sTYsxT0claHeHB06tzrX9p1vVZzfvJJDay2ziczYssNmaKPPQ6beS2x6nW62YjQ7zl4HnO6/HknBpdKv0Pw6t+0a2/RuGBezbRPmP7I80K1V591GJzjYumjG7MK2oxU3txvmu2d9Patt4BoipExmmj6k09ZyvH32z6461POzQbAg60TdYDxh94XFS/m//5nCmNfc2DIIgydrfcdBmnMGPJRlDUe2YMVXMxGxayTpVEKGaqoTh2VAvXSVShru8u/5ivCVUzsdCCot4kBbUx7JSgaMJGNS4b1SK9tkqiDtWNifTlHn+4P/qQ4LysOQQbiT6sZAFxsKjDcCjA6a0wSUG9R9QJq7R07XIe1JVgGInG+PtZEwyhcSA1GfXdYn2F+tmooQoEw6H6s9gPVEO1r1I/V2nNOD+4H5dCWjPMTrq7uymesJO3pobcbg/fR4i25rRk1OPSpTQqs5NK7aN052VW9GLWacRxzfhMSy1H9BAmPbQkP6PGI6XUb6XgEm0mD5i6fLi5gzZ0hmnvFh+7oM5I8/JvZPxN55TM33eJRJ/xSZPPRc217oI6Ja/cvIv+87kWeZOPyUo+NR1FdDTz6h18X0psHDCplBQ/9BNKiGz0uI3XGR1MPGyscdNgZahU3UVEKuL7iuIxyqfuYuHoDn2kVLMXbDFjVC0duEcT7TW6gRprPEPvxIQ1ELW4dVcPbeoI8vcTjFjGDtcEKbMX/TkjchMTJKr+JETGscNq8jpvI+OvGee4ZG1HASsn9ldqPGzKsL7mG41QlJRnM64EbR9VEaGIE03n8px6IanQ1y3bUWg0sxu0wp/vzaz/gglH4xRJGntg9tPttLawrnmXjrl7gnlKZy/C/rUoQdQUQSSmz+3ggrr51j5EKyGyBYJhjvBUUV2VEIGoog6jsTjXPHQ43eR0aQ9A4aCfXZaR1iouy+Zeq/nsDZE56CNEGKYKhn1FSBJxEQxzhJvvGJzjYWT1JAGO+kN0bDxOXk/+5iW5AlXpyBwdpIsuhGKIMQ81Xnu6OykcClIdi4kuNlep9AjdXDmmrr+1rZN6QngGsVMw6CcXRWn08EaOzBxgPDJIfUFE+2DqAz/x0qvVoLNXJftKSolW14peXJzQ6GbHaCUuDjb+5uKUDOOTCcPrilYLTG+ysmejhw6bOHR0ppF7T0RHI/Ss29YMsXFHe89upagQFDKUeDjUWaWru+jzuPm7rpwXfX3Cj7b2kD8SK7jZizJyae2N08haO00f12Rq1GK6/tGLjDt6InzeLTVOFjYxgZONuFrs59931mnmPIVeDp3cH6FotIai0oc+27SNTV1kyZ9A1QiK+SPKvGU2N3O6qEPMNiG0vRqjDhVNRB+iBmQAOdwcM03kdtg4zbipodZQd6UTEJ12zYW5HFOY9VGHkWicRVGny8Mv0ZKybOhSMW3jVMEQL+NIhRqw6ARDCOQQe0XwMNYF2YzBxo4gW4NAd68fUzw83uAlBmKdmUuq2Qkn9NsgammOyFiU2Qln2CSIneYTfE/tXg/RzLaV+r7SpRGjzUjt5v+BFWqp8r9RKwT1xZK/I/0vyTcWi1FbRw+F4nayu7xcTmR4nZtahhn7Pi51fla1r5JSohUjiItrWrtpa1eImnxO6vh0OR0854i8nJKt4p7LfkvZZEVEx1x60vp104mNgUiCOjq7uVySzeEib00tOeMhqvM6qb7GQ3UWRdtBXAxHIjw5bbM7KRGPpjV1sZ6KNUd+lj/mAAAgAElEQVRIjWKEAcp+Y+qyFtqMtAop0atbe3gXe42ssyxqMV0bcd6rt3USalBqImOcWmocGUXGYj//vru+OILi7En9giI4DubyrFKbF5x+HJuu4Pf7Hn6OrvrqmVxfMfVzI9dOtW8rgqKBK0B/M+ujDrnGH9J7EprDcLVGHSq0iD7sCYQ4QjASHxh9WON1UY3XWIh7JQmIwVCYwCsUiXFEm94oRVKWDdysBjdVgiH6RtVPyiQYIrrH4bCLYGiQeTabF/uBKps2lus6Zrk1ZzI74RRYFgSTjp0pDqv6dDOMi2iPqofoxORTGdeVSndNWFVfEMfKJ3VPX3sRk36o2Ty2pZ7NAmTJjUClpUTj7CHGPb7oeZpx8BxOSx5R5x2y5mJu1Kxb+40122hVay+5HUQn7zOmbNqdSkRER+uukdQ9IzikOxCm7kCES1HxuOogggmmx2Ujl8MxsDavhWnUqW2DqUuquAjTMaTSV8Kiohjf/7yd1u8M8Ckp85Nj9x6VV7rwUFxU1GJHMEbDvA4a11xLIxoLP7mmjG62dYVIi+DsFxm3f7KUrr347KFOxbLP3/usy7J9D7bjgyc2DPhYZZs+88IS/ru+JmI6wVAZ76qdSA1Fc7pRBEUDHPEy2zxxJu8B6bmIOkRYO2qbWTUzZaC5BdsU0YehcJR6g1GCqybSl82KPsRJQECEyzVEN0TNaIWLiSBO1vryd3YuGKDkgVTKMtLeIVKpqEN8jJRlmy1BLghTUu/Q8q7ByzwiZuEQOFAwVBWH2f6EU/tEMLS8O7I+gAiKWaPKekWkNePlBAuu9dqawcdU3DsQ+1LNTgYcUGd2gpTYbNKRVTs4EjsWy6otWZ+khSvq6wviMH3jSYIGphGXUX1Bfe1FvEzjRXp4vVeiF3O8jvQp0XhePGTPZlOL9OfYHMOrl9P4CwF08ZpWavVH6IAx9TRtZEPZCom5dJyIjrnQ0tZV4qEWBIFxu188zKWWvZokghs1SnXgO5LfFx2OZLQ4zMLwjkTsRp3PxE/q2YXDEcIEnKq7CLM0X4VNvuGcC2n2YrWRS65XqBJYn3ruBfrJVefnurlp6y+FoNhnyqLMV6z/edCEgYKiaSckOzJEQARFA/jK6WHKwGkOuWl7Vy+H/IdjmvOsLYEvMIcp5ik4eLkLiANSlpOM3B4fc0UKYTQcYmMDRLK6nU6q8RmL2Byyw6pwhfSCoSPpkJxMqaQEO8HiAQ8RhkYjZ6sQc8FPWcZg85D3pTXHYuTz9qc1D3ghjSdYFGOTkwzRhfmanSCNKxgKUTSW4BcuFKBHfSiYRxVjydp4JMv6gjiHSjFfkOhF41ckxMWXP9lGH+0I0n4jvHQYXJUbaozvuIB7KIfx16jJSgFxFu1Q1Sw6miUe5tp56cRGfK9CoNFKUxgXG5WpC7EpWZyNPvF9Wu51F9OxVpF8SBeG8QkWRDHOGtdAB09sMSWKEVGLa7d10i5/hLxOO41rqiloSnTqeRd7/F22sTvXy96U9Q/Y0xrzHFMaV8U7EUHRQOcX+2Y20PS8N4UTrT8YYfMUTLZBQEStpRqPk+p8HkPmKapRmF1DtBhESlVf0eNEVIuz5CMQ9UYpEX4xdvYZpUTCQX5IQLqeuCznfQmm3VAvGLJpBNcwVIKhFsWKCEMRDM3lXuy9VeMYbCZzfyBA/kCY3F4v3zOJWIwSyZp6+B3pyIlEjF15ce8guhCimBmRFDgPRDaiFpQWaY53qTghVcusGo2pacRaXcFB6gtytgFeuzTjGVVfMJ3xiFkMzOzPYuxLoheNU0e0zUdbO6kjEKWJzT46fPKIohmU5HI2pTr+6k1WRta46NhpI6siGjGXvst13UoQHVVN+65AZIAZJtKWc4k8zJVdruurMiHIFMAEHr631CQeauDiKxoT38gg0CL+h550U3UXUUoJ37R4Hsb2cI2uxCXV7GVHb4QmDHPT/uMa6aAJzTS+uc7QaZdC1GKxx9/lEBSLEKE4aw8RFA1dvBZtLIKiAbDFvpkNND3rTfXRh7xRImFq9CF2WY4Coj7qMJZMiYDLMkfWJFOWEXXosJGkLGd9tWVeMRQKc01JzLJCMMQDFupL4qXfZrdTIh5LuotqEYYwPPEUKbLJhNOVXWRJoBrG4CxRpF0tk9kJ3kgwVnV2tHNUtMfr4fIKiC7ES4aVZkEY75GWhXIYuH8xTg6VkmVFfUHlSJzNy5iRPqi2bSV6Mf8eL7eU6FIbf5XJCuai9xlZS0dOG51/Z8iWORMoJdFRLx7C+xFlqVx2reZhKYmHuULOJDZiP8h40ouNg32Xp6u7WKniomJshdkLoha37uqhTR1BNpCDS/PY4YURvIo9/n64STOvKfQyc7wxMbjQ7a2W44mgaKCni30zG2h62k1hONHZG+Tow1iy6LDDliCf20GNtV5Tog+VgOgPhimE4iTJaJhSjkDEC3AwFKFoTBOzIGSh3qH6ApeUZeNXohIMY6qGYZ9gqBnTKMHQyVFSIhgaJ14Ze6i0MTjXXgkEQ/11P7NIR8YYhuBdLPq05lyPm+v6/fUQNUOPWDTCEy2p9QXxGUdiYIIgWWeKzVuSL0r4N/6PyEFETGKplDTiXJmWw/oSvZh/L5VDSnSpjL8wWVm2tZvq3fayNlnJ/2opny2tEB0ziYfInKr3uWlYvVZiqNKXAWKj7nlAvavgexMRjRAa9WKjMj3TqoRrmTxDTfJVAsvUKEZ/JEYTmrw0paU2ryhGZeTS2hunkbV2mj6uibxuF6N6bNFr9MOf3cP/vvSCU+m6yxfshlAZiHywau2g66kNiz3+QlAsQoAi7SeCYknefiIoGuiWYt/MBprOm8I8BanFAUzfJYU9M81TVPvwZdUvINo57dfjQo06d9HqY2ViN5hRiqQs53/FZRYMtQhDQlqlzUYiGObPuBq3LPcxeLA+M8vsRJ9WbFZKcTb1BaORKH+vRCMRvrcdcD+329OmEYswWB13r0Qv5tfPpZoSXczxF9GIb3/WRhs7Q1VlspLfFVReWw0mOiJTpbs3SB09forbnFRTU8emjF5HjOp8LhreKNFL6Xo7W7ERYiImHjGRr+ouInKxUhyjh7oTVBTjB5s7qc0fo5YaB0cdThtZT7Mnjxhq877PkRK9tq2X9miupWBXBz3y1Mv0X1eex5/fdudDdOH8uTR5wtgB+1u3YQutWb+ZTjpuNkFcvPmnd/M2qeuViqC4YnOvlvLMSfScwFiQ3/cdW3i37aw7vopXFEHRQOcX82Eq12Yj+rAnECLNtUyrn4EAD0Qfwh3ZTAOKchAQB6QsJ2xcD9Ll7q8lEgkFCDqXpCxnd6WhtmYsBodkzSVZm+mEdoyIzt0FQ6ScWJlWmV2rZa1yJ1BOY3Aq66HMTvgu4lqglFc6MoTEQDDMkX52ilNd7UDDh8HqC6KtqN2Ee5cjBLMwHsH6aC7qxmo1S82th1ju16q0fyABiV7M/YootZToYoy/YrKS+3VTrlv0+EPU7Q9RbyhK/ogWWu9MZk3Bab6xztsX5a7Vze7/vsIklqqDi6g8CGVm1v8tV6Y5iY02G7ndHn4G8fd0c6aAz+Om+rrqEXSMmr3gneiRfy6mcDRB55x+DDkddnrquTe4G+bPOzrjZRQMhjMKj6UiKK7c0tvXfhWpqP5g5e8zRFAsyeFHBEUD3VKMh6lsm6uPPkStKgiIVkQfoj29gSCFwlEKRZO5dIkEed2ay3OxHDr1nPRRh3jNtTtcfbUO8QUZj0U0PuKynPHyUoIhikSjl9MJhioNkV1eRTDM9laV9QwQKNUxWEUDYIY/giKrMLCyyOwkVRjs6u4hu9NN9Q0NFA4GtCgDlA3AXYuXLAiFQ6QRZ1tfEKIloo/xHYPFbkuYaqpi4NKQTcuMgEQv5tZh+pToWaN8dNTUUdTgG9qcIbejDL52ocZfnOvyz3dJWrOZnVdi+8IEw65Of1rxsM7rohFNuUceZop0ZPERwVT4Tk7E+ad6fhXRceCFoY9sDASDXP+4praOnyvisSgbwqRLoy6xy8vU5iBi/P2N7bSurXdAFOOBezbRPmObdjsW0p2xnPbFIygUjdETz73O5pznnHYsZ22kW9Q2qaIjxly1LFu2jK655hpTzy2XnX281d8Xkcjb6SIUrfx9+uiBk+O5tFnWtY6ACIoG2BbqYSqbJurNU/h1MRGnWq+TnZHra8x18SpVATGdUYrL0187BSnLiMrES6+4LPdfVXhgQBoJIgxTBcM+C6+E5niKWV6Xy8mmJxJhmM2dKetYSaBYY3C6dGSbTTNk0nyEOTxXS/VFKn9KzaJ0TPRpxPhcX1+QXYcR/ZdBGGQB0OHkh/xAbzf5YLLiQhSwlmZs5r2KeojRGMpkaKYqeDBOjX60ss9l35VPQKIXc+vjda1dZHfY6ZW3V9BtP7uTNz517hz68Q1fJ693oMj47vKP6ZLv3jrgAGrdRS+93VfnCyvsv88U+v2t11BTY3qTAavHXzFZye06KJe1cX939QSp0x+moApEIKJat50gHjbUecnj0urtWr2I6JgfYZi6oIYzAjS8Ph+FQyFKJOKc2WC32bU6yKh5btu9ZmN+RyzdrVLNXtDSGaNqafbEZtp3XBP98/k3ufFKHPzHolc5rfz0E4/ie6CxxkU1Hq3WIpZf3PUITRw/etAIRqxn9fg7FPFPtvmHWsWSz/cWQdESrkZ3KoKiAYLFupkRLeYPRtg8Bam6EBBd9gShAHGdDy+S5n4RQ0DE8aJxDRai+SDIFTMCUUUdYlCOc4tsfUYpaKOkLPdf2KmCIb7wIQYMWEQwNDASyKZmE8AD1bbWnWlfiPXHsmoMzmh2wg/JSdOQZIFziOwclevVjJqyqS+YKY0YARP4DA/iSBnBTyyZhEGV1ozUZEyU1KekNZvVL/2mKppBktPhoFqTJ6rMaqvsp/IISPTi0H2Kmlu3/GYhff9bF1BjYx396u5H6IhD9qMjD9l30I31L6+Iivls07a0hgHpdmLV+CsmK0P3d7msUUriYb7MRHQcnByiFlHqCu9ieBaieIxNXzC1inc0pP1yOjpHhGpu1JyGzinVTtMnPfPtZ7O2U2Yv63f2UmONl5zBbnrl5Tfo+1edx+d6e7KG4thRLXTz//sTHbT/dDrxhDlEkQh99we/oeuuWECzZ00fsjlWjb9DHji5wprtgWxXNXW9aaOqw2TJVGgF2JkIigYgF+pm1kcfcnMTCfJ5NEHP7OhD7H6ggMivviwg1tV4yOU0V6zMBn93j5/dlSPROAuHkrI8kJoSDFEnsy+qiQVDXRWLpGCIL3mHQ3NJNjNqKZt+lHWEQDYE8FL796dfpn33msgFqVMjbPT7yGcMVik8UUTlct2/foFdqy6b4Mg7zlBOBhvinsESxwxOHvUFeaYeop/dxilCRpeeXj/FURkxFrPErRlsAqEQxROaoImId4/HTZ6kY6HR9sv2QiBfAhK9mJ4cIg9fe/vDPjHw7fdX0QtvLKPzzj+D1m3voFnjm2hkw8BUMZgAwCDglpsu4yhEvRPp2FHD6Y8/uz6jIQBakc/4m6nfEY24fPMuWt0WEJOVfG+OIm+nxMOeYIR6w/iGSrDIVIzIw0KjENFRI65/dsCzFa4BlL5y654dwCocjvLjlV5sxPMMlkoUGxc+8RLd8qv7+fyOnXsMXfW1L1Odk+jnv/sbHXPofnTWKUfTO8tW0WXX3zbg0v3J9y7NGKlo5vibz/3yaWtxBMWpI0VQzKe/rN5GBEUDhK24mSEKdfYGB0QfOmwJqvNaE32I0+/q8VMoEktGIBZPQBzKKCUaDbFJQbWlLEMAgRs30hn7BUMtvVIpHlqMJvGsIMQPM012DNwisqkQyIkAXoofefoVunjBSfxym4+gqB7sIf4hhV8zFLGTw+kkh9NFDoe6d/DwCwdiO8WjEdbf8UCrIhD5wVYLGexL99ceds0TBnOBox7U8YiOCACzBT69GzS/CEg9xFy6R9YtEgGJXtTApwqK+t/X7+ii5Zs7qCsYpfGNXjp8ykjyuZ2cWnf0YTPTRsOosTg1bdrsGl7KZCUcIzpiYhPNGNdcpCtJDpsLgVTxUG1bDeJhLpz061ab6IhnlnAkws9hNruTEvEov6PANTrTosRG/WSvqv3MJju6yEYzJmfz7Uuj27FbeTBK69u6yWF3cNDMlBG15HM5yevSal6Ho3EuRYX6/uCWulihQeRyXut2BHNZ3bR1J48wt4ybaQ2r8h2JoGjgAjDjZu4zTwkn84mJ2DylrsZtSfQhTrdfQNRCcCBGIV3a53UXLAJRb5TCofB2Z59RCtoYi4a4Blk1uCxnEgw5SiqZ8og+QmolwuVFMDRw08qmJUsAL7C/+MMjXLOrvaObFj72AguKLpeDgqEQm3+8ungx1+iBWIh4ZdwPc444ih/IXB4POZ0uisWiFAmFWPhDTR88gDrhPJwiDFpRX9AKuFamNSNNCfvX10P0MsfdH16tODfZpxAwk0A1Ry8OJigqxjCIWr5pFzXVeGln6w565rnFdNO3LkgbBY4U6p/esZBuuvpC02soismKmVe99fvKJB56nTZqrHEXtOah9Wdb3CNUsuiIuoup4qI7Wes5G+qDiY36mtVIoy5HsXHNtk5atbWTtnWFqDMUp1oXkdfppHqfh0bXOWjKiDoaO7y/nq0ZGkQ23DOts25HIGn0B4MjJE8q4z9rf5/UIoKikX6zalsRFA2QzfVmRvRhTyBE/lCUInEtuQ56kc/toBqvy7KosmIKiPqow2gsQTa7gxwurdYYFtTSwKwVvgwq1WUZQghmoxBhiFkoLcUStcggGMLYIFlPRARDA3ejbFrKBEKhEGEs8Pu1FAkIgkh1wewrZp9ranx030PP0n0PPzfgNOadMIeuufxsikUxRmjpxhDUISRCKHzvvf/Qsccey87ClZbCr+oW4pwxO21WzUJ9PUREZJq571K+BqVt1UegmqIXUwVAffQhor2XLF3RV5M2GAzTD2+7l07+4pE0asIE2tntp0MnttBj/3yF5p1wGAuImSIU9VdRrs/AymQF+5gyvJaOnDa6+i7KMjjjHe09pNKWUeUD7ykiHpZOxw0QHTG5CiGHJ1A1QxQ2hitx9+rUuosoreUzMJlZiWIjajG+91kbLd/cRdu6wxSI2qjO46D9mu106NRRtOmTD+i4444r2oX52c4g1/zG9Tbwpyq4lfp39buxzycM79cQinbycuDdCIigaOCiGOphqi/6MARHTK0WFaIPvW4HNTXUGjjy4JtCQAyGUR9Mi0BElB+OaXUE4lBGKZWaspwqGEIsgXAKoVD95DD9pGCI+oVIV5RFCJQTgZ7eXhYAIQ5iUY7gcYiCdhvrfZo5iPZAy8I5pw3bOWoQ0YJ46MC6mmO4JgrCjRguwRAEuWg3EaG2l4pQNLuGYqkz7+71Y6qJJ1t8JtQtRNoRIjwxoWNHunc8xvWMUNdIFiFQLQSqIXpR7+Csd3lOFRRTf0dkTCAWp3v+8gS98PxiviSGcnjGOkM9A6trS2+ycuzUETShpaFaLruSP08lHsLkMZqsmVvjslGtx0n1NR6unS5LeRFA1hMmbLlONATHEhcd0U5ELxIb3mm1N1PrLhrpgUoRG5XZy4cbd9AHm7to1fL36F8/+5YRNIa23bAzlIxMVBGJhfm5Z7OMSYY6zqKNRVA0AFb/MKWiDyHkQT/EgtqHVkcf4jgDBUTtuBAQG+oGFuA2cKq7bQqjFETdxThTG7mEDk1MsGupcpWUsqwEQ46oSn45pxMMnUnjBREMzbzSZF9mEcBDJoQlzAzj37hvETWI2e0EImcxy2hDSr0m7MXiyQLZqDGYiPcZlWBdJQqqui4ej4cjB+tqzZkoqTZBUaU1Q/DDTL1Rt2Z9PURthI5zFKeYqph1N8l+yp1ANUUvZttXeL7Bcw7iSIKRKLuw1nldGTcfTFBENOKa1i5atrVbTFay7QCL1xPx0GLAZbT7UhUdVd1FvF/iyQXxb0PVXTSCXS82asEgmhs1T4ij7BZ+RzBQCaZRP//CC3Ti3LlGTt/Qtp+3h5I9lBpxaO3v45tkMtxQx1m0sQiKBsDiYWrKjAOTkYBELrtWi7DO5yGXyxo3ZAgAgWA4GYGovSpaKSCmGqXw8Vwejp5R5gXlnrLsD4Y48mp3wVBLSaZEjL9gRDA0cLPIpqYQUKnDELljMaTRJ18AE0gj1q5X/g8SEh6GHNqMr0pHYBc9Xeow6gwichYL0o7xe42vfBzUso2QMQW+BTsxM60Z9RAhFicQIRpH39sMpRBZcLqySyFQkgT00YvhuJ18zgQNr/dSfa2HPBY9y5UkCF2jekMRev3T7bRsW4BmtHjosEktu7lEpxt/9SYrB46rp4Mnjiz1U63I9nV0B6g7EE6WWCJC6rLHQdTgc5HP46Jh9eXzPV+RHVQGJ1UKomO6uouDmbqYhVWdO9yoYRCDZ20smPQtFbGx2M+/m9qRraRlQhbypwiKZl3l5u5HBEUDPHEzHzbnCE4ltmpRAiLqLmo+vhC2EuRxmR+BmMkoBeIhFk04LD+X5VTBUOOI89Fmo1IFQzxsVVo9NquuT9lv7gT8gQAholmlDquokHSpw2wsQgkWD1XqMM+estsdZlKpL3UY4iFS6TVTDWsmNHI/W2u3KPYDVb5nh7TmeELrR3x/5Bs5CEEyGtNKK0g9xHx7Q7YTAgMJ6KMXMR1T77HTiGE1PFlcjcuqLe300dZO6ghEaWKzjw6fPILqvO4BKc/6tOaT9xlDIxuty5Cpxj4Y7JxFPJQrolgECik6KhM57R1OM6o0UncxX2Y4Z5T8wX/KJJCz85LGJCqyEZGVKOtjlUFMsZ9/t3SENR2RlzTCItdBMv/zsY2Zo+bz7VPZzjgBERQNMLTiZi6EgJgu6hAuy9pgCJMEOyVikb76i26Xg+tZuEpUpFCCoarppgTDvpEsATFGq2EIEUYEQwMXvWzK6cJIHe6vJzgwdVjVE4TjMBakDkMEhCCIJRqNaHVHBqQOQwBMkNmpw5XeXVaMwVYxQxoyIku5PISBtOaeXj/XQ9QmQ+IsRko9RKt6TfZb7QQkerH/CoA781vrdtBnuwJs0hH47EPyTpxJ4RjRPiPFZKUQ9wrEw0AoQl2BCEW45BCyoyTysBDs5Rj5EbBCdExXdxGRi06nVnarWEsmsREZQwjIUUEAZoiNxX7+3doZLmhkooqEHCOCYrEu70GPK4KigW4x42aGuNfjD1EoEuNC/LhhnHZi1+dan3Fr9FSjFK5J4eiPXoKAiJfSUnVZxuDMtRpj8b7ZIEoKM30zIol4n2CIVHPUMKyWCC0Dl29Vb6pEQZU6rOoJYkItNXUYEYIcDQgZiOtLJTgaTImC9qTrsEodhiiI67CcUofL9WIwYwy2+twxqx4MRVgARNmEXN2aVT1ERDRCmJZ6iFb3mOxfCGQmINGLGhuIiw88sYhOmvsFMVmx6IYR8dAisLLbkiNgRHR02B0UwCQ/pyVrBX5KcaJ1gNiYNMpRvgNcRgyBBzAqdDr4v6HeY4v9/Lu9K5I0nE2mPHNEoi5S0aLfR9VXRwZWyd2kQzRIBEUDPZbPzWyVgDgg6lBnlIKoQ0QcYinFlGUlGCIFlA1PNKvYgb2SFAwxwML4QQRDAxdtBW2qUof5QSSmudmhDqY+dVgzudAiU1kI1NUTRLqpPnVYi8BNcN3BaksdLtfLIp8xuFDnaiStWUUzoh4iFrstIaYqheo4OY4QyJJAtUcvlvL4m2UXlsxqevEQxo4obYzIQ9Rlr/e5peZhyfSUNKRYBLIVHZEN5PJ4KBIKUSgYIGTZDWssbWf5fMTGYo+/rd3IZCz8MrJeUp4LT33oI4qgODSjjGtkczMjOgXpCVoEolZMwGgEIvbJNdgiMUJ9H66HmqzfgP2XUspyZsFQzWJgPkkjI4KhgYuxDDflayMS0dUThLOwZo6jFwVV6rAyGUGqMBakDkMoRLQgREDcCEoUdLvdnPpQTfUEy/ASMNzkbMZgwwfJYQd6d+VcIwlVPURMqEDodjpsVFcrdchywC+rCoGiEqi26MVSG3+L2vk5HFzEwxxgyapCIAcCqaJjIBAkBNw4HE7y+nxsqILMPAj2WikirRwW3hesqnWYQ/PTrppJbHz9tVfptHknGd193tu39UT7t+1/pdf+ZuHvLXUDIxSDwTD96PZ76ZkXlvChf/K9S2n+vKMzntcv7nqE7nngmb7Ph1o/b0BVtqEIigY6PN3DlBIQgygqw6G/RB4nirI680phTjVK0bRDZ1+tw3g8qsmUiTi5nYjeQ6pl4QqHY6CDYIrIr/4IQwe/EKOWnDauDBQMa7yFa5+B7pVNsyCQbeowZgzZTISvBRt/qeP3SCQsqcNZcJZV0hMolRdaCImBYJgdAHOpj6hcntk5MB4jp8ORc0q0XBtCQAiUHoFqiF4slfG39Hq/v0UoadTtD1FvKEr+iDYZ6rQlyOd2UJ3XRSOa6kq5+dI2IVAxBMLhCOEdnetYw8guCkEsjtKGnB2HsjR4N8H7Ct5V8F5dyqJjscffnb06QdFKBTFFoRxeO1BQhECI5brLF1B7ZzdddeOv6LorFtDsWdN3u3YhPv7+/ifpa+eeTE2N9bRuwxb65vd+TrfcfFna9Svm4i/AiYigaAAybuY5hx/BgppRATGTUUoCgx2Lc3aipNsy0t/g8lwIoxS9YBiNY2YHKcm7C4aY4XHY7ZySLIKhgYuqCJuGwmEKBkNsNqJPHebvUw5/tfH1p1KH1feGqieoTx3GZ4gShHSoUoddLlfJzvwVAbcc0kQCxX6gQlozat8iSjYbt2YUEketH9RD5MkWmKp48nd5NhGl7EoICAELCVRi9GKxx18LuyuvXYt4mBc22UgIFJyA/lmMRURK8Du1262l02abXl1M0bHY42+7P1bwfsMBm2r6jXcgIN7807vpv648jyZPGMvt0eL3vS4AACAASURBVAuMQzVQRTfOOWjfQaMah9qPfI73GVaIZMmHAG7m6TMP4sjAGq87a6fNgUYpcOpM8IwJG6TwWyZ3TEFclmFKAdMTiEO7C4ZIvYtxkVglGKJ+IV6AZSkdAtmmDrtc7r7IQCUK4vZX7mOSOlw6fSotyY5AMR6ock1r1q+vzX5LPcTselfWEgKVSaBSoheLMf6WyhWBPuzqCVKnP0zBaP9rVK3bzpGHDXVe8rjEPKBU+kvaIQQyEYC4yOWXojGy2Z3sN4ASXHCNHmwptuhY7PG3A4KizoMlGX/Sjyzp1dL3d/W7WiPPz4f5+gVFRBjefOuf6JYbv9EnKD626DVasnQF/fiGr5PXO7heMVREo9w12RMQQTF7VrutOdTNnNYohdM+4TuCFFAIdsmQYYtSllMFw3gcYd1aep36KYKhgYvApE2VKIiQ/HA4zKoyrh/8RNQgUiKRG6xShzGIoyZINBIZJHVYcw1XrsNul2tI1zCTTkd2IwQKQmCoMdjMRqi0ZozdEAXrB6lviLQarK+vh6jV8+x/EDKzbbIvISAEypdAuUYvFnL8LWbvinhYTPpybCFQWAJ+rrs4UFzU3p9yf36zUnQs9vjbFUwGQRW2e6jB22/cCkHxtjsfoltuuoxTmLHkIijmEs1Y4NMsu8OJoGigy/Q3M14gg6EIRWNxNkrhNGWHqy/q0KqUZSUYamYWcLFVgqGWJq0iDJ12zelWIgwNdPgQm6amDqNaIIuCKanDEAWdLhfFYtpniA5F38BkBH9AanFq6rDT6SSv1yOpw9Z1n+y5DAkU4oGKzVJQ7iEeJ6/HlTESXV8PEdG+mOGurRl8hrsMkUuThYAQsJBAOUUvFmL8tRB12l0r8bAnGKHecP8Ls0QeFron5HhCoPgEVN1FvNdr9RQT5DN5cjhf0fHNN9+gL86dWzRI3RAU00UoZoo8NOnv9Z6BgmK+EYoQE7e17swqkrFokMvowCIoGugsPEzNmDWbU5YTSQMW3p2JKcv+YIhiMc35FoKhZm+SFCxRVzER40FOCYY+j0Sh5dul+tRhrZ5g0nE4WTtS1ROE67AyFYHxDFyHM6UOQwhETKpyHZZ6gvn2jmwnBHYnYOULraqPiEkZ1NbxJGvrqFYgTSYYClE0ltAiiOMxrr+DdWURAkJACJhBoJSjF60cf81gN9Q+UsVD1FGDcCDi4VDk5HMhUH0E8MyH6EWUKONAkJS6i1YSSSc6vvbaq3T6qadYedhB990bLk7FvFq3VoMcS741FEVMNP+yEUHRAFMWFA+Yre0hz5Tl9IIhdqc5TkEwVLb2iGITwXDwDktNHYYAi4EfkZvpUocdTq3GjT51GJxVPUEtHVxLHYYoCMFAUocN3DSyqRAwkYDZL7RDpTXr6yHiNODojPEgVWw08RRlV0JACAgBJlBq0Ytmj79WdnOmyEOv00aNNW6peWglfNm3EKgwAqruIjwI2LiSElnVXTQTQ7HHXwiKRQhQpBqdoAieg7k8qxqJC04/rs90RdKczbwK+/dVNYIicup/+LN7+MwvveBUthdPXdSF98GqtYOup7bL5mZWgiHqMWg2K0pZT96GibgIhikdoVKHEfWHeoIqdRhDNgxEUHtS1RNE6nCcjWMcfaJg+tRh1By0cw1BpA5DJMS/ZRECQqB8CWQzBmdzdipdGeumpiqjnAXSXhJc8zZODofN9JSXbNoo6wgBISAE9ASKHb1o1vhrdq+KeGg2UdmfEBACgxFIV3dxKFMXo0SLPf4GokXJeCZvyqu7cmp+5oUljPQn37u0TzxMFRRTdR7VB6fOnSOpzwYvyKoQFFG0c+FjL7CtOBYU8Lxw/tw+RyDFEOutWb+ZTjpudtow2lTWuJkPnXM4p8ZCMIzDmRliFy+7C4Yul5NrGFa6kKVCs4PBEKnUYYipmNGBSJiaOuzx+SgSDvWJgsp1GK7XqDeI9V261GGkeEs9QYN3vmwuBCqAgNEHKpXWjIhkn7c/rZnrJsY04yqph1gBF4qcghCocALFiF40Ov6a1SU72nsINQ8D4RhFE9qkfY3LRrUeJ9XXeKiuxmPWoWQ/QkAICIFBCShTPhW/57BbMwldKuOvXA5CgFWvBBSeCl8QnYhl/ryj+Wfq7+lOH4p3JuFRrY+beb8DDuYIQ0S1IAKuUgRDfeowUoXZbCaZOsyXjM3GKdkQ/LCo1OEYOxMTxeIxri2pTx1GKrGqJyipwxV+08npCYECEMjngYrTmkNhnsBAyrJya+7p9XM9RK3URJzTmKUeYgE6UQ4hBISA6QQKEb2Yz/hr9ERFPDRKULYXAkKgUARU3UXUZsWCEBlELubjGJ3a5mKMv4XiJscpPwIiKGbos0yiI25gtSxbtoyuueaaku11pA4jVQ+CoEodhrkL6jNmSh12uT0UCgTY6AWpw/gJYZCNX5x4AddShx0OB/l8XkkdLtnel4YJgconkMsDVWpaM8azcCRC8YTm3if1ECv/epEzFALVSMCq6MVcxt98uHd0B6g7ECZ/KEohlCojIo+DqMHnksjDfIDKNkJACBSNAMTFQCjEBquq7qKRiWurx9+igZIDlyUBERTTdBsKdk4cP7ovojFTz1p9M+tTh7V6ghGuw5gudRhtdHu9fanDfZGCsSjtnjpMbC4iqcNlec9Ko4WAEEgSyGYMRlozREPUP0QkOSZYUA8Ri92WEFMVuZqEgBCoKgJmRS9mM/5mC1YvHkbiRHjnVuIhzAiH1fuy3ZWsJwSEgBAoeQJG6y6aOf6WPCxpYMkTqApBMVMNxbGjWuhHt99Lcw7al8VDVazzuisW0OxZ04fsvGxuZkQJYgkEgvwii9RhLEoUzJQ6jHUgCqrUYSUK2pKuwyp1GJGCEAc9bveQ7ZUVhIAQEAKVRCDTGIy05lAoTJSsgYjQapg5QVR0OmxUV1tTSRjkXISAEBACeREwEr2YzTNwukZBPAyEItQViJCIh3l1m2wkBIRABRFQ4qKqu4jyaW6Xa9DU6HzH3wrCJqdSQgSqQlAE73Quz8oZSAmK7y7/mC757q0DukfvFpTab7iZp+w1nV9UHQ7NdkjVEsTPcDDIf0N6MV5kJXW4hK58aYoQEAJlTyD1gYrrIwbD5K2p5QmcWDRCiXiMnA4H1dZ4y/585QSEgBAQAlYSgNjX3hOk3lCMUPer3mOnEcNqqM63u7FJNi+0qeIh2u6ya2nLEnloZU/KvoWAEChHAshGhLELxl94D1A8lrbuYjbjbzmev7S5PAlUjaBoRffgZj7gwIP6UocddnvFOzhbwVH2KQSEgBDIh4B6oOro6iYEf9fW1VMoGCAbTFU8/a7N+exbthECQkAIVDMBRC/u6vRzJGEgaiOfM0HD671UX+shj8tJqS+0evEQNQ/tNk08rIHbss8tacvVfDHJuQsBIZAzAVV3kcv2JBJs6gKzQGQmiqCYM07ZwEICIigagMsuz7MOMrCHzJvCURlpzrJUPgFV77Lyz7SKz5Cd0av4/C069beXvEXHn3AShcMhTmWuralhd2ZZhIAQEAJCwFwCqdGLHy9bQrMOnsOGKSIemsta9iYEhIAQ0BOAuAgjwUg0Rja7k15b/DKddOIXTXGMFtJCwCgBERTzJKjcng+efWiee6iOzSKRSHWcaJWfJQRw/CdLZROAUVQpLG+9+SY3w+f10oknnigPVKXQKdIGISAEqobAv194kULhKB119DESeVg1vS4nKgSEQCkQgAYRjkTpxC/OLYXmSBuEAImgKBeBEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJZExBBMWtUsqIQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAiIoyjUgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEDWBERQzBqVrCgEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgAiKcg0IASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIZA1AREUs0YlKwoBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIIKiXANCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACGRNQATFrFHJikJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIiKAo14AQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAlkTEEExa1SyohAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACIijKNSAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEQNYERFDMGpWsKASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRA1QmK7y7/mC757q3c86fOnUM/vuHr5PW6014J6zZsoYWPvUD/deV5feu0d3bTVTf+ij5YtZa3+cn3LqX5846m1L/rP3ts0Wv0w5/dw+uPHTWc/viz62nyhLGkbws++/Ovb6TZs6bLVSkEhIAQEAKDEMg0pgo0ISAEhIAQyExAP3ZeesGpdN3lC3ZbWb+O+lC/bjAYptvufIgunD+Xn2X1C56bv/m9n9MtN1824HkW2/zo9ntp9MjhfcdMPc7++0yh3996DTU11ksXCgEhIAQqjkC2GkSm9VJ1A72moNch9GOpGpO3bN/JPJXWkEnPqDjockIFIVBVgiJunp/esZBuuvpCfmD5xV2P0NGHzUwr4uGzex54ZjfRUb+Nfn/orZt/ejeLj6kPWBAl551wGB8Tg8EjT7/CQubiJctp2qRxfeKi+nsmgbMgV4QcRAgIASFQ4gQyjakydpZ4x0nzhIAQKBoB/SQ5GpFJFNQ3UAmBC04/jp+V1Qut/kVWrY9nYjwHt3f20PVXnDPg2RrPzp98upH2nrrnAEHxs03b0oqaRYMkBxYCQkAIWEAgWw1isPX0GoL+eVeN03MO2peDnNSSOvmj/w74/f1P9mkgqce04PRllxVOoKoERdyIr739Yd/DS+rvqX2dLkIRM6rqAUj/eSAUGhC5ONjMb7oHqHTHqvBrT05PCAgBIWCYgH5MNrwz2YEQEAJCoEIJYKzEol44U39Pd9rpXmDTRSjqhUc8Z+sn69UYjb/pn8El0rxCLzQ5LSEgBHYjkK0GMdh6mTIbMwmNaAQmcyaOH83jvn7fmfQMmZiXizcfAiIo6gTGbATF1BDhdGnKqTO62K8KOT5w5rTd0qwHSx/Jp1NlGyEgBIRApRMYbEyt9HOX8xMCQkAI5EogV0Ex07Np6t9To2P0mTw45pKlK/i598NP1g0QFPXtH+yFONfzlPWFgBAQAqVGwAxBUX9OeAZGlPktN11GL7+xrK+0GtbJlPKcKUUa20jZtVK7YsqrPSIo5iAopnuIypQykmnmNzUSUaWIpEuVLq9LSVorBISAECg8AYnuLjxzOaIQEALlRyBXQTFTFk+6NDrUTVQ1uhSZu267np781xv0zAtLBsBKl8EjKXfldz1Ji4WAEMiegNmCon4cXrZC83XQR58jG/Jr5548oNSbGmevvXwB/WnhM311cCWwKft+lDXTE6gqQXGougS/+MMjAwpCp76opkYe6sVA4F2zfjOddNxs0q83c+/J9Ogzi+nsU49lYxf9PjFbm3pMuVCFgBAQAkIgMwGMr5nGVEnVkCtHCAgBIZCewGA1FPWRhBhHB5vsHurlM1N98tQXaqmFK1eqEBAC1UIgWw0CPDL5PfzrlXf7vBf0EYrtHd0DTGTV5NHxRx4wwN9BbfOj6y6mX971CKnauBLcVC1XoXXnWVWCIjAO5pykF/eUKYtCr0KBU92SlMtzpr9je/2+9OHGqcdIV+Tauq6XPQsBISAEypNApjG1PM9GWi0EhIAQKAyBTC7PqYIixlgsqS7QqTW80kUbZiso6sdxcXguTP/LUYSAECgegWw1iEzrDVZ3Vv/ZqXPn9JVXy1R3cTDdoniE5MjlSqDqBMVy7ShptxAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAECgFAiIolkIvSBuEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRAmRAQQbFMOkqaKQSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBEqBgAiKpdAL0gYhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASFQJgREUCyTjpJmCgEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgVIgIIKiib2wYvVn9PM/PEzLPvqUTjjqIPruN86m8WNHmHgE2ZUQEAJCQAgIASEgBISAECgtApFIlFwuZ2k1SlojBISAEBACQkAIWEpABEWT8MKW/Xf3PkE/uPYimjpxHG1r3UW/+/PjdPE5J/PvsggBISAEhIA1BOLxBL2zbBX9Z/kntPeUPejYww8gt7zYWgNb9ioEhIAQSCHw+ZZW+tXdj9I1l51NY0cNJ4fDIYyEgBAQAkKgAARWrt5Av7zr79TYUEffuOBUmj51Tz5qLBajRILI6ZTxuADdUNWHEEHRhO73B4L0Pz//M104/4s0a8aUvj0iUvGlN9+n7146nx+ucGPLQ5YJwGUXQkAICIEkgUQiQQ89+RJt2dZGX/nyF+n1dz6idRu30EVfPpFGj2wWTkJACAgBIWAhATzb3nn/U9Ta1k7DGutp1ZoN9MNrLqI9xo4km81m4ZFl10JACAiB6iYQjcY4O3LeCXNo7OgW+sUf/05fOuUomj1rOr313gpav3ErXXDW3OqGJGdvOQERFE1A/MGqtfT4s6/TTVdfOCAq5tPPNtPCx16g7191PoXCEfrl3Y/QFRedIS+5JjCXXQgBISAEQACRMX9a+AzdcNV5VF/rI6Td/ez3D9EJRx9Ecw6aIZCEgBAQAkLAQgLLV66lRS8uoeuvOJefgfGC++Z/PqI//u1puvT8eXTsnFkymW4hf9m1EBAC1U3glTeX0UtvLKXvXXU+RWMxfg522O30+dYdtP8+k2Vip7ovj4KcvQiKJmBGuvNrb39I112+YMDeFr30Nm3a0kqXXXgaPbboNf5s/ryj5cY2gbnsQggIASEAAhh/P16zkS46+0QGon+57e7x84tuIBiieV+YIzVt5ZIRAkJACJhIIBgM009/u5DOPeMLNGOvCQP2HI5E6R//XEydPb102QWnsqi4YdN2rrOItGhZhIAQEAJCIH8Cm7bu4MjwA/ebRi+/+T69uuQDuvFbF5DL5aC7H3iG9pk2gSd0MMnjcNhFf8gftWw5BAERFE24RFIjZLDL1rYO+r+//ivXk0Htgv+5/c90/pdOoAP2m0otzY0mHFV2IQSEgBAQAis+Wa9Fgn/rArI77HTrHQvpknNPJq/HzePulRefSc3D6ulPDy6ik46bTYcfvK/UV5TLRggIASFgAoG1n23htLrzv/QFFgzx+00/vZv3fPRhM+mEow6mh558kW644lxau2ELPfjEi3TJOafsJj6a0BTZhRAQAkKgqgjs2NlBt//hYdYXJu85hm793YN0+YWnkT8Qooefeolu+vaFnCH5o9vu5dricw6eQWNGNouwWFVXSWFOVgRFEzijhtezL79DL7++lM4/6wS+kZGCd86Zx9OJxxxCf/jrU9RYX0tjRg2nx599jSNpVCoeas+sXreJpkwcJy+5JvSF7EIICIHqIoDx991lH9MDj79A6zduo9NPPIK+ft4p9KcHnqG9p+7Js7NYPly1jv7+9Mv039+5iLxed3VBkrMVAkJACBSAwB33PEb77zuFx93N29ro1jse4JdYCI5PPPcG3fmXJ+iH115MRx06kzo6u+nhp16mry44iWprvAVonRxCCAgBIVBZBJCB88jTr9DLby7jLMgvHHkg/fKuR2n+vGN44gYZkhs2baNDD5xOL7y2lA7YdyqdedKRlQVBzqboBERQNLEL4Oz88hvvUzgSobnHHELjRrdw+h1ERIQg4yUWxaqxzlWXfIkftiA0Ln5rOT9cNTbUmtga2ZUQEAJCoHoIICr89j88RNddfg4Na6ij2+58iC6cP5cmTxhLSL1TRav3nrwH/fa+x+ncM49n0wBZhIAQEAJCwBwCT/7rDfp0/Sa6/KIzqLc3wM7PN1x5Lu/89jsfpqsuOZOWrVhLe0/ZgybtOYYCgRA11NdIxIw5+GUvQkAIVDmBxUuW8wT6lV89g7Zs38mGWfBygMYAb4cf/+IvdNDMvWjqxHFca9zn9VQ5MTl9MwiIoGgGxQz7SFdbRl9X8fV3PqRH/7mY/vu7F9HIlmEWtkR2LQSEgBCoXAKIUrz3oWdp/JgRnNasfkdhaqSCLFv5KS1f8Sl965Iv0evvfkQ//c1CaqivpZamBrruinP4wUoWISAEhIAQMEYgHk/QO8tW0ZL3VtLit5bRNZcvoGMO258eePxFfnFFBA0WTMBjYue6b57DJSlkEQJCQAgIAeMEMLbCHAsCIsTEmftM5ohx9Vw8YvgwOmr2fpxZuWV7G/s/oFwFylE0NdbTyccfarwRsoeqIyCCooVdjloyP/nl/XTFxWdwijNqHdz62wfo2187i2dmlyxdSa+//SFde/nZ4oBnYT/IroWAEKh8Aj29AXK7XXyi6zZsoWmTx3MqNCLAP1i5lm7978up1ueln//x73T11+fT6JHN1NnVS7F4nH533+Nc1HruMQdz7UVZhIAQEAJCIH8CEBbXrN9EE8aNop0dXTzGos4tXnJR6kf/ooujYPIHZi2yCAEhIASEgHECyNp58l+v00VfPpEzJPFcfM+Di+jGqy+k+lofZ0w+8dzrXN8WdRZjsTjV19VQOByhP//9OU6ZlmAn4/1QLXsQQdHinvYHgvTb+56gt5euZAv3G6++gEON8SJ7yx1/oysuOoNrKy78x78JYcr7TZ9Ml3/lNE7Zk0UICAEhIARyIxAMhemPf32aPB4XnXXyUfT3p1/hyEXUjHnwiZcGRMmoPeMFF5GLTz//Jn3/W+cTZnBlEQJCQAgIAeMEUN7nzr88Sd+59Mv8grpy9QZ6bNGr/CLb1t5J//uLv1B7RzcNb2rgl91Je4w2flDZgxAQAkJACDABVfYHk+azZ03nSR2UoJhzyL4crYgJngP3m0pHzp7JWoRKmUbkoixCIBsCIihmQ8mCdVAkFYVUzz3jeE772GvKHnTK8YfSmnWbaOHjcCw9n2p8UqTaAvSySyEgBCqcAFI7UCsG9Wr3nzGFDj1gH2pta2eDrGsvW8BRMljnX6+8S3/7x7/pkFl704LTj6O3/rOCanwemnfCnAonJKcnBISAECgcgY8/3Ugo+XPhWXPp9395gs494wvsSvr//fqvdNoXD+csHqTq3fvQIrrmsrPl+bdwXSNHEgJCoMIJYKJ9+Yq1dMisvTgjEv4Oi15cQtdfcS5HKqp/9/T4B2TxVDgWOT0TCYigaCLMoXaFGQHcyJ9vaWUREUVS23Z10l//8TyNGTmcevxBuuCsEzii5mvnnsy1DGQRAkJACAgB8wls2rqDfn33o3TTd75C0WiMFj72b3rx9aX0m59czRHid9z3OLtFjx01XEpSmI9f9igEhEAVEkApoNff+YC+8uUv0orVn7Hr6Hcvnc9jbK8/SL/+06N05cVnyvNvFV4bcspCQAhYTwCZk//vtw/SuWd+gSbuMYpuu/Nh1h5QS1xf6xaR5Igob2lutL5RcoSyJyCCYoG6EC+sv7n3MRo+rJ4+WLWOzjjpSC6S+u7yj+m95avpiq+eQZu27KC7Fj7NbneYoX3w8Rfp1bc/oCNn70cXnX0iv+QibBm1wqSIdYE6Tg4jBIRARRJAGt6v7nqEZ2hRTxHRihAZMZmD1OiVqz+j4c2N9NHH6+i/v3MRTZk4tiI5yEkJASEgBIpBAM+/Gz7fTmefdiwfHnXFX3lzGV3/zXOknmIxOkSOKQSEQMUTQHbOzvYuamqs4wkdPPdi8hw/lSN0Xa2XPly1nh579lUuAXTZhadJffGKvzKMnaAIisb45bQ1xECEFjfW19KE8aNYONzV3kW/+tOj9PXz5tHEPUZzGl4gGKbb73yI9t17En3plKO4lgHcl6697Bx6/6PVtHbDFraDl9oGOeGXlYWAEBACAwggQubuvz3NBanD4Sj99ObLqdcfoD8//BzdcNV5XLgaL7lPPPs6nXnykTRh/GgaM7KZx25ZhIAQEAJCIH8CeP695Y6FdN6ZXyCnw0F3LfwnXffNBRwpI4sQEAJCQAhYRwBZk6+9/SHtu/dEDlL65V2P0lGHzaRZM6bQR5+sp+HDGmjCHqP5+TccidD5XzrBusbInsuegAiKJdCFW7bvpF/+8e/U2e2nr59/CjU31tOjzyymG648j63fsXz2+TZ2yvvBrffQdy6dTycddyjZ7TZOGcE60yaNL4EzkSYIASEgBMqPAOot7tzVxfVl1EMVanopN1JMAu05fhQ9/OTLbO5y0nGzy+8kpcVCQAgIgRIjgFriL762lHa2d9LcYw6hcaNbSqyF0hwhIASEQGUT+GTt5+z4/K2vncWlgDAOo574K28tp9Ejmtgwdv68ozmTEuLi5AmSsVPZV0TuZyeCYu7MLNsCUTJOh52WfrSGUGcGs7ZqQeQiahsgMMbr8VBPr5++uuAkQtoeomVQ50sWISAEhIAQyJ+Aeqi69vIFPFGDGjIPP/US3fTtC8nrdXO04rvvf0xXXzo//4PIlkJACAgBISAEhIAQEAJCoEQIYAK9q8dPt/z6b3TT1RdSc1MDawy/vOsRuvHbF1BdjY9+dPu93NqD99+bTjz2EHK7XHT7Hx7mlOk9xo4skTORZhSDgAiKxaA+xDF37OygO+59jL550Rl9s7UwclG1DeBQiuX5xe9SIBCiM08+qgTPQpokBISAEChfAsFgmG793QN01ilHcwoISlbc9vuH6ISjD6KDZu5Fz738Dm1r3UnHH3kgp+hJGnT59rW0XAgIASEgBISAEBAC1UwAwUtPPf8mvfjae+z18O6yj/l5F1k5i5cspw9WrqUL+Gpi+gAAD+FJREFUz5pL6z/fRrs6uvjZuKG+ljxuF2FCHvXI4fcgS/UREEGxRPscadB//OtT1NrWTj+69hL6x6LFNHOfyWzkgmVb6y761d2P0g1Xnkuwg8d6uOllEQJCQAgIAeMEkNqx5P2VdNbJR3G9WkQnvv72h3Tt5WfTW++t5AetL596DP310X/TftMn0RknHiGionHssgchIASEgBAQAkJACAiBIhHo9Qfpk7Ub6cl/vcEZOj3+AN1+58NsGAvREEtrG4Kf/kFXXXwWrVm/iZ56/g26IWlyWKRmy2GLSEAExSLCz/bQSIW+7c6H6JzTjqO9puzBxi33PvQsjR8zgmcN4JT38ZqN7AQtixAQAkJACJhLoLs3QLfesZAuPX8e145ZvW4T/e6+x+kH11xEtTVeeu+D1XTUoTNFUDQXu+xNCAgBISAEhIAQEAJCoAgEkAZtt9u55JrP6+E6ilj0OsTcYw6m3977OL313gr6wXcvYpMXydgpQmcV+ZAiKBa5A7I9PMKLkW6HOgU1Pu+Aul6PLXqNhjc3cPQibv53l3/CJi3Dmxqy3b2sJwSEgBAQAhkIwDhg1ZoNtP8+U3gmdvrUPWnph2vo/kf+xaLiiOHDhJ0QEAJCQAgIASEgBISAEKgYAhAPkTUJTcHrcfN54TkYIuN/XXkuZ0ze8+Ai+u43zqaX3lhKs/adyq7Ro1qaKoaBnMjQBERQHJpRSa0Rjcbot/c9znW7ULsAy51/eZKOPHQ/mrznWK69OLKliaMVlUN0SZ2ANEYICAEhUKYEVF3FLx5zMB1xyH708FMv8wQP0p1lEQJCQAgIASEgBISAEBAClUoA9cR//oeHad4Jc2i/vSfSL+96lI46bCbNOWgGnzKyJpf8Z6WYF1bqBZDhvERQLMMOj8cT7PaMkGKkQ6OW4tGH7U8PPv4i1/Q6es7+9NxL73AUI5a5Rx9M533pBBEYy7CvpclCQAiUFgHUrF34j3/Tvxb/h4Y31dMPr72Yxo4aXlqNlNYIASEgBISAEBACQkAICAETCXR193JN8ROOOog+/nQjIUvy+9++oE9jgGFsT2+Q06MR3di6s4OaGutFgzCxD0pxVyIolmKv5NCm7h4/Xfe/v+ctULtgwvhRPDtw74OL6H+uv4SjFXGz19f56MRjZ+ewZ1lVCAgBISAEhIAQEAJCQAgIASEgBISAEBAC/QRWfLKeHvnnYvr+t87nGotY/vro8zR92p40a8ZUemzRq/TRx+vp2ssXSBm2Cr9wRFAs8w5GtOKmra1cwws3cyQSpdv/8DAdOXsmvfHuh3wDT500jjo6e/uKqapTXvrhavrs8+27/b3MkUjzhYAQEAJCQAgIASEgBISAEBACQkAICAELCCAC8e33V9GyFZ/S18+bRy6ng/5w/1N0wH5T6ZkXltB+0yfR/HnHSHSiBexLbZciKJZajxhsD1KgYe1+/pe+QJP2HEOffraZ7nlgEZu5wCFavzz6z8Xkdruk/pdB5rK5EBACQkAICAEhIASEgBAQAkJACAiBaiSAOuP/5+f30afrN9P/3vA1FhSHWnZ1dFNdrU9Ex6FAlfjnIiiWeAfl0zzUNnjlzWV02YWnZQwxxqzCr//0D/rCUQeyc6laYPricNjF8j0f8LKNEBACQkAICAEhIASEgBAQAkJACAiBKiEAsxaV4nzDlefSsIa6Qc8cOsTmrW30+/ufpG+cP48mTxhbJaQq8zRFUKzAfsVNumrNRrrrb0+zxft/X3MR1df6BpxpIBiin//x73TJOSfT+DEj+LP3PljNDtL/e8MltOe4URVIRk5JCAgBISAEhIAQEAJCQAgIASEgBISAEDBKIBaPszGsx+3iMmoOh2PIXSq36C3bdtL/uf5iamluJEQ4/vnvz3Ga9MiWYUPuQ1YoHQIiKJZOXxS0Jdvb2umP9z9F119xLtX4PPTsy+/QS68vpe9ddb7cxAXtCTmYEBACQkAICAEhIASEgBAQAkJACAiB8icATweXy5nxRLa17qJf3PV3Ouf04+mZF5dwabZ1G7fSqjUb6LILTs1KlCx/SpVzBiIoVk5f5nQmuGGffeltuvLiM+mBx1+k1rZ2uvrr8ykej9PGza20z7Q95WbOiaisLASEgBAQAkJACAgBISAEhIAQEAJCoDoJxGIxeu7ld2lneyctOP24PgdoRQOZlPc+9CxnSJ503Gz+c9uuTrrlN3+jb150Bk2dOFY0iDK7dERQLLMOM6u5i5csp0/XbaLWnR00emQzffXsE/nmRXHUF179D734+lIWGFVBVX8gSK1tHTRh/Cipr2hWJ8h+hIAQEAJCQAgIASEgBISAEBACQkAIVBCBne1d9MRzr9P0qXvQnINm9ImE6zZsoXseXEQ3Xn0hl2SDwIjgppWrP6OGuhpauWYDff9bF9CMvSZUEI3KPhURFCu7fzOe3UtvLKX/++u/0Q+v+Sode/gsXm/Dpu20Y1cHTZ86gQIB1Fh8mK7/5rmcAv3YotcIdRcvOOsEERSr9JqR0xYCQkAICAEhIASEgBAQAkJACAgBIZANgU1bdtCDT75Ipxx/GO2790R6/6M1HLgEjcFut9H6jVvpzw8/RzdcdR4LjDCXffM/K+i6yxdks3tZpwQIiKBYAp1QrCbo6xssX7mWTVzOOuVoenXJcnK7XdTZ2UM3fecrFA5H6I57H6Prv3kONTc1FKu5clwhIASEgBAQAkJACAgBISAEhIAQEAJCoEwIxOMJLq82akQTl1db+PiLtHHTdrr2sgV05/1P0lGHzeQoRhWtCKHx/C+dQE89/yabvajU6DI53aprpgiKVdfl6U8YEYi4wc8+7Vi+me97+Dm2fD/zpCPozvufopn7TKZj58yiUDhCbpdTohTluhECQkAICAEhIASEgBAQAkJACAgBISAEcibwydrPOS362ssXsL7w+ZZW+u19j9P3rzqf4AR9/Y9/T5FIjCMZUZ7t5OMP43/LUloERFAsrf4oWmt27Oyg//vrv9KMvSbS+LEjafFby+jmq79Cm7e10cNPvUQ3fftCQh3F2//wMH3ra2fRuNEtRWurHFgICAEhIASEgBAQAkJACAgBISAEhIAQKH8CMHNRQUxHzd6P7n7gGdpn2gQOaAqGwhQKRaixobb8T7QCz0AExQrs1HxPCTdyZ7ef7l74T66reMCMqSwgzp93DLs+o2Cqz+uh+fOO5kNsb2vn4qn4myxCQAgIASEgBISAEBACQkAICAEhIASEgBDIhQDMXx9b9Cpdcs7JtG7j1r6AJq/XzdmT732wmn577+OUoATtu/ckuuriM6mu1pfLIWRdiwiIoGgR2HLeLeoc2GxEr779AX24ah1d+dUzaMv2nTxrgBBkzA50dvXSLXf8ja646AyatOeYcj5dabsQEAJCQAgIASEgBISAEBACQkAICAEhUEQC0WiM056PP/JAmjVjCrcExi3/8/M/0w+uuYimTRpPb7z7Ia1et4m+du4pRWypHFoREEFRroWMBLa17uJ6BjBigWHL1Enj6AtHHsTr///t3X1MlWUYx/GfB4KDSJaC1ImsZBo5TYIMR2ODdLFMK1MXaLhhMRazl02arf6ytVo1W69zltpG66RRuSmLxErUYCUVyxlFCWIHTshLhKSAzU67763WP21ux+fs8Zzv/fd57pfP/Zx/rl3Pdf3T9bn0ntv047GAbeSSOmWy7ly0gIxF3ikEEEAAAQQQQAABBBBAAAEEEAhLwMQhTEm27mCfBodOqTA/W0faOlWxeolG/jij+Pg4JU/0/ruGyWgMhUS9xbDUz/9hAornbxXTv9y+o16TJnq1Ykmhenr79erWD7Vh3Sq1/XTCtnd/oHSxugK92lV/SI8/VEKNg5h+Wzg8AggggAACCCCAAAIIIIAAAuEJmIzFvJwbNH9elu3v8PaOehXdmq2eXwf0VesP8ng8yrgyTZVlS+VNTNB3bR3a39SqdeXLbLCR4awAAUVnfaNmdlMM9f09jdrbeFhdv/Tq2ScrbI3FZ16uUWJigmbNyNDKpYV654MGLSrI1YxrfFFzdg6CAAIIIIAAAggggAACCCCAAAKRFTjW1SOT3FS15m5l+NLs4qb3wyvbPlLeTVnKv3mO7RZtyrItyJmtFzfv1KplC+3n0QznBQgoOm8cVSuYFu7NLUftnzV4ckC1dQf0WMUK/dzZra3+Oo2f/VMbq9dqWuplUXVuDoMAAggggAACCCCAAAIIIIAAApEV6A726y1/ne3r8HR1uY019A8O67nX3tWalcXKmTvTfua87+DXajjQorLltytr5nSbschwVoCAorO+UT27acyyactOVZbdpauuSJVp5tI3MKT0tMs1wXR1YSCAAAIIIIAAAggggAACCCCAAAIXQOD79uNqajlqS64NDo3YeMT6yvtszcTnX/eruOgWDfw2rINfHrGNXHzpUy/AqkzxfwIEFHk3whI4HujVC2/4bUrxwoJczcm6TnEeT1hz8jACCCCAAAIIIIAAAggggAACCCDwXwHzubNpENveGbAl2D499I2eevR+7W5otrUUiwvn25+/9GatCvLm2tqLDOcECCg6ZxszM5vMRPP5c2LCJUqbyqfOMXPxHBQBBBBAAAEEEEAAAQQQQACBCAuYLETTFDbzWp+Gfh/Rtvc+1hMPr1ZKcpLNUDTZio88uFxX+6ZFeGextRwBxdi6b06LAAIIIIAAAggggAACCCCAAAIIRIXAnn3N8qWnKvfGWQqFQvLv+szWT7x3cQGl2By+YQKKDgMzPQIIIIAAAggggAACCCCAAAIIIICAswKBYJ821+zWhqpS2/mZ4awAAUVnfZkdAQQQQAABBBBAAAEEEEAAAQQQQMBhgfaOgMbGz2re7EyNjo3bDEW6PTuHTkDROVtmRgABBBBAAAEEEEAAAQQQQAABBBCIoIBp3rJpS61Sp0zW2pI7IrhybC1FQDG27pvTIoAAAggggAACCCCAAAIIIIAAAlEtMHzqtOLiPJqUnKQzo2M60X1S12dOl8czIarPHcnDEVCMpDZrIYAAAggggAACCCCAAAIIIIAAAghETGB/U6s+aTysjevL5fUmRGzdaF+IgGK03zDnQwABBBBAAAEEEEAAAQQQQAABBGJUwHR/PnfuL8XHx2nk9Kg+/+JbFeVn69IUGreE80oQUAxHj2cRQAABBBBAAAEEEEAAAQQQQAABBC4KgY6uoGpq96q6qkQpyUkXxZ7dukkCim69GfaFAAIIIIAAAggggAACCCCAAAIIIICACwUIKLrwUtgSAggggAACCCCAAAIIIIAAAggggAACbhUgoOjWm2FfCCCAAAIIIIAAAggggAACCCCAAAIIuFCAgKILL4UtIYAAAggggAACCCCAAAIIIIAAAggg4FYBAopuvRn2hQACCCCAAAIIIIAAAggggAACCCCAgAsF/gYGkF0yR4FdewAAAABJRU5ErkJggg==",
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = plot_parallel_coordinate(study)\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "2ae740cd-fd37-4d95-b5ac-1cfceeed325d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "dimensions": [
+ {
+ "label": "Objective Value",
+ "range": [
+ 0.18531875170393172,
+ 0.6482633708392243
+ ],
+ "values": [
+ 0.30337436666113177,
+ 0.20307681243216183,
+ 0.19103604207409036,
+ 0.28333512688101153,
+ 0.4633111426794054,
+ 0.18531875170393172,
+ 0.1907552827778649,
+ 0.33330840997266736,
+ 0.39784787794552795,
+ 0.1862693152521443,
+ 0.6482633708392243,
+ 0.5274133516352982,
+ 0.42621654591235925,
+ 0.22112929238626436,
+ 0.4070833316320489,
+ 0.42621654591235925,
+ 0.2123846817548284,
+ 0.3258435026582389,
+ 0.3480318083295157,
+ 0.36391860524716446,
+ 0.20993148042255388,
+ 0.46330684097155167,
+ 0.4070833316320489,
+ 0.42745701777773953,
+ 0.40750648259180683,
+ 0.3258414249026382,
+ 0.46330684097155167,
+ 0.4037641499510466,
+ 0.3639219361818585,
+ 0.24080227825457184
+ ]
+ },
+ {
+ "label": "qgrams",
+ "range": [
+ 3,
+ 10
+ ],
+ "values": [
+ 8,
+ 5,
+ 4,
+ 7,
+ 10,
+ 3,
+ 4,
+ 9,
+ 9,
+ 3,
+ 10,
+ 10,
+ 10,
+ 7,
+ 9,
+ 10,
+ 6,
+ 8,
+ 8,
+ 10,
+ 6,
+ 10,
+ 9,
+ 10,
+ 9,
+ 8,
+ 10,
+ 9,
+ 10,
+ 7
+ ]
+ }
+ ],
+ "labelangle": 30,
+ "labelside": "bottom",
+ "line": {
+ "color": [
+ 0.30337436666113177,
+ 0.20307681243216183,
+ 0.19103604207409036,
+ 0.28333512688101153,
+ 0.4633111426794054,
+ 0.18531875170393172,
+ 0.1907552827778649,
+ 0.33330840997266736,
+ 0.39784787794552795,
+ 0.1862693152521443,
+ 0.6482633708392243,
+ 0.5274133516352982,
+ 0.42621654591235925,
+ 0.22112929238626436,
+ 0.4070833316320489,
+ 0.42621654591235925,
+ 0.2123846817548284,
+ 0.3258435026582389,
+ 0.3480318083295157,
+ 0.36391860524716446,
+ 0.20993148042255388,
+ 0.46330684097155167,
+ 0.4070833316320489,
+ 0.42745701777773953,
+ 0.40750648259180683,
+ 0.3258414249026382,
+ 0.46330684097155167,
+ 0.4037641499510466,
+ 0.3639219361818585,
+ 0.24080227825457184
+ ],
+ "colorbar": {
+ "title": {
+ "text": "Objective Value"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "reversescale": false,
+ "showscale": true
+ },
+ "type": "parcoords"
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "white",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#C8D4E3"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "white",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "radialaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "yaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "zaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "caxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Parallel Coordinate Plot"
+ }
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqMAAAFoCAYAAABjWPKCAAAAAXNSR0IArs4c6QAAIABJREFUeF7svQmYZGV5Nnyfpfaqrt67p2dnQDZBFAnEuEwEP3UMMcGIGpMYIYRgll/lgw80fv7EKASCepkvIBJc8klEVGKikvjHBZcYlKAoIiAMs/fMdE8v1UvtVee/nrfmrTl95lTVqTqn6lR1PcdrLuyu8273+54+dz3L/SiGYRjgixFgBBgBRoARYAQYAUaAEfABAYXJqA+o85CMACPACDACjAAjwAgwAgIBJqN8EBgBRoARYAQYAUaAEWAEfEOAyahv0PPAjAAjwAgwAowAI8AIMAJMRvkMMAKMACPACDACjAAjwAj4hgCTUd+g54EZAUaAEWAEGAFGgBFgBJiM8hlgBBgBRoARYAQYAUaAEfANASajvkHPAzMCjAAjwAgwAowAI8AIMBnlM8AIMAKMACPACDACjAAj4BsCTEZ9g54HZgQYAUaAEWAEGAFGgBFgMspngBFgBBgBRoARYAQYAUbANwSYjPoGPQ/MCDACjAAjwAgwAowAI8BklM8AI8AIMAKMACPACDACjIBvCDAZ9Q16HpgRYAQYAUaAEWAEGAFGgMkonwFGgBFgBBgBRoARYAQYAd8QYDLqG/Q8MCPACDACjAAjwAgwAowAk1E+A4wAI8AIMAKMACPACDACviHAZNQ36HlgRoARYAQYAUaAEWAEGAEmo3wGGAFGgBFgBBgBRoARYAR8Q4DJqG/Q88CMACPACDACjAAjwAgwAkxG+QwwAowAI8AIMAKMACPACPiGAJNR36DngRkBRoARYAQYAUaAEWAEmIzyGWAEGAFGgBFgBBgBRoAR8A0BJqO+Qc8DMwKMACPACDACjAAjwAgwGeUzwAgwAowAI8AIMAKMACPgGwJMRn2DngdmBBgBRoARYAQYAUaAEWAyymeAEWAEGAFGgBFgBBgBRsA3BJiM+gY9D8wIMAKMACPACDACjAAjwGSUzwAjwAgwAowAI8AIMAKMgG8IMBn1DXoemBFgBBgBRoARYAQYAUaAySifAUaAEWAEGAFGgBFgBBgB3xBgMuob9DwwI8AIMAKMACPACDACjACTUT4DjAAjwAgwAowAI8AIMAK+IcBk1DfoeWBGgBFgBBgBRoARYAQYASajfAYYAUaAEWAEGAFGgBFgBHxDgMmob9DzwIwAI8AIMAKMACPACDACTEb5DDACjAAjwAgwAowAI8AI+IYAk9EG0D/w4Hdxx2f+BXfdei12bJ0Sd3/4rvvxo8eewp23vAtDyYTjzVtILeOaGz6CXznvDLz76ssdt+ulGwmbIzPzuOm6KxAJB3tp6q7nandWXHfKHTACjAAjwAgwAuscga4io/Qyf9+tnzwJ8ivfsss38uY3Gc1k83j/bZ/E17758BpcXnfxRV1J+KxkVBLwLVPjbZ1vO4mg03PpZg5u2q7zv1G8PEaAEWAEGIF1jkDXkVGrFXL3vmlcff3teNHzT2srmam1z36S0Uceewp/+M5bYCWekqD++OfPrLHYdsNZXa9k1Mm5dEMo3bTthn3nOTACjAAjwAgwAq0i0PVklBYmSdmnP3oDLjjvjFbX2lI7v8ioJOG7XnlhTavw1x/6EU7dvqkaPtDSAj1u5Jebvp1krlbf1nPpZg5u2nq8hdwdI8AIMAKMACPQUQR6goxKYvaOt70er33lRY7d1jK28yP/75/iI5/4gnB1b5gYEdbEnz7x7EkhAfIzGRtKO9EMGbW6c60WzWZiRmnuD37rh01ZPmX/jz/5XPUQ1SLw1P89n3uwep81FMI819e/5qXCOn346NwaK63cF/o9XYTf6NAAtmycqFqx7dYsMf3oX/0Z/vH+r1dDEM4585ST4nDtXOTWfarlRjevvRlsrE9gLaJoPpeX7Xq57VmhvuxwMscgO5l/R/8q8GCMACPACDACjEAHEehJMnrbnffhrZddUrUISrc14WZOnJGEqxbJpPuJRMjLjnQ4IaNy/P3TM2vIlDXRySkZbSXO0kqMzBblD1x/RXWddljZjWcmb3bxqdIq6LRvc9KWJF/mfam1h3Rvq/sk99VurnZ41Xru3JBRO6u+XL+ZLLNltIN/9XgoRoARYAQYga5CoCfIqN3L24oivfRvvPluV1nvkoBdfunOKnlzQkbtxjZbxMiiS6S3WTLqNOu+FpGjOVjn75RY1ZurHG9yfPikEIJaMaNWMmqNwZTk2bqHdk+L032ito3m6kQVoRZm1nNpva8ehtYvKkxGu+rvIk+GEWAEGAFGoIMIdD0ZlZYlqxvZifu2kQST1X0qcTdb+5yQ0VpxklYi1C4yakfOrFZBaYWrNVfr3OrNtZ5V0S0ZpYQta2hBq/tk/kJw841XnRRvXOtLhPX5szsDdufSep+ct93YTr8kdPBvAQ/FCDACjAAjwAj4gkDXkVE7aSe72L9j86k1VtBmLaPShW8mnk4tbmaSGw6FbGNYzbspiXSzZNSpHFI9cmgXb0tzs+qAWq2r2VyupiZqvYQyr8mom32S1lYiuLUuuxAOOzLa6FzaWaHr4eRl8pMvfzl4UEaAEWAEGAFGwCMEuo6M2rlvzWutl9ns1E1fi7y1QkZJ9N5pBrlTMkrrbSaByS/LqJ3Fz0sy6nafGllGnT5DTl3obBl1iijfxwgwAowAI8AInECg58hoLdd7M5bRWharVsmoU7LSDBl1Iu3086f3IBIOYWpiVFhn7SyeTt3BVuJXb66NYiHNFZjqZdObM8rNVkxpCW9mn2q53JvBvNYfBqf76yZm1GnIAP/xYgQYAUaAEWAE1hsCPUdG7QiK/J3V5VqLuNoRFHP2eLMxo/VE6M3Z4M0So2ZE7+3Ia72Md3Pmf71s+lpJVLWUB8idbc6+d0NGm9mneqEKteKOqf+bP3YvbvyLt9Yt69oqGTUTbOuZIpzM4SfNZPevtz9CvB5GgBFgBBiB/kag58io+QUvt45iMl924blNZdNbdSdJ4/JDN16F99x8N5rNppfzsEuqMmtnNktGqd9myoFa10TtvdAZfffVl9s+Jdb1EuHae+DImtr0bsgoDep0n+zORSOdUWpjJoleW0Zlf410RuV9kjTLn/0o8tDffw559YwAI8AIMAJ+INBVZNQPAHhMRoARYAQYAUaAEWAEGAH/EGAy6h/2PDIjwAgwAowAI8AIMAJ9jwCT0b4/AgwAI8AIMAKMACPACDAC/iHAZNQ/7HlkRoARYAQYAUaAEWAE+h4BJqN9fwQYAEaAEWAEGAFGgBFgBPxDgMmof9jzyIwAI8AIMAKMACPACPQ9AkxG+/4IMACMACPACDACjAAjwAj4hwCTUf+w55EZAUaAEWAEGAFGgBHoewSYjPb9EWAAGAFGgBFgBBgBRoAR8A8BJqP+Yc8jMwKMACPACDACjAAj0PcIMBnt+yPAADACjAAjwAgwAowAI+AfAkxG/cOeR2YEGAFGgBFgBBgBRqDvEWAy2vdHgAFgBBgBRoARYAQYAUbAPwSYjPqHPY/MCDACjAAjwAgwAoxA3yPAZLTvjwADwAgwAowAI8AIMAKMgH8IMBn1D3semRFgBBgBRoARYAQYgb5HgMlo3x8BBoARYAQYAUaAEWAEGAH/EGAy6h/2PDIjwAgwAowAI8AIMAJ9jwCT0b4/AgwAI8AIMAKMACPACDAC/iHAZNQ/7HlkRoARYAQYAUaAEWAE+h4BJqN9fwQYAEaAEWAEGAFGgBFgBPxDgMmof9jzyIwAI8AIMAKMACPACPQ9AkxG+/4IMACMACPACDACjAAjwAj4hwCTUf+w55EZAUaAEWAEGAFGgBHoewSYjPb9EWAAGAFGgBFgBBgBRoAR8A8BJqP+Yc8jMwKMACPACDACjAAj0PcIMBnt+yPAADACjAAjwAgwAowAI+AfAkxG/cOeR2YEGAFGgBFgBBgBRqDvEWAy2vdHgAFgBBgBRoARYAQYAUbAPwSYjPqHPY/MCDACjAAjwAgwAoxA3yPAZLTvjwADwAgwAowAI8AIMAKMgH8IMBn1D3semRFgBBgBRoARYAQYgb5HgMlo3x8BBoARYAQYAUaAEWAEGAH/EOg7MvrIY0/hD995i0D8dRdfhJuuuwKRcPCkHchk83j/bZ/E1775MDZMjOCuW6/Fjq1T1ft275vG1dffjptvvAoXnHeG+P2H77of93zuwZP6fuDB7+J9t35S/N7al3k+V75lF9599eX+nQYemRFgBBgBRoARMCFA76jv/fBna95NTt+jDCQj4BSBviKjC6ll3Pyxe3HjX7wVQ8mEII8vu/DcKpk0g0af0WVHDqmfGz90NxZTy7j2T94k2lsfWHPf9z7wH9h18UViTCKmew8cEf0SoX3vzXfjgzdetYboOt08vo8RYAQYAUaAEWgHAmaDjNlQ0sx7tB3z4j7XJwJ9RUathNHuGx9tM5HE2+64Dze/5ypBIM2XfEDfeOlO8W1Rkllzm3AohNvuvA9vveySk0imeUwirNs2T+KyXS9fn6eLV8UIMAKMACPQ0wg0em/Weo/29KJ58h1HgMmoxf1AO2B2QdDP0rU+NTEqXPcXnX+WIJBWy6rZTW/ncjd/oyTCKsMA5K6zm77j558HZAQYAUaAEaiDAJNRPh6dQIDJaA0yao6RoYfxC195CG9702vx/7zvYzh8dG7N3nz6ozfgwPSM+J20cpI73vyz1dpKFlaz9dRscZUxqJ04ADwGI8AIMAKMACNQCwEmo3w2OoFAX5HRerEu9MDdftf9uPOWdwnczbGltdwQZsuoORaU2ptd8PTZw4/+4qRkKTNhtZLTTmw+j8EIMAKMACPACNRDwPr+45hRPi/tQKCvyCgBWCsL0ExGKU7UfN85Z54iSKo1ftRMRs3B3jSOzNSn/291x8v+rK76D1x/BcePtuOUc5+MACPACDACTSFgfaeZlWA4m74pKPlmBwj0HRl1gAnfwggwAowAI8AIMAKMACPQIQSYjHYIaB6GEWAEGAFGgBFgBBgBRuBkBJiM8qlgBBgBRoARYAQYAUaAEfANASajvkHPAzMCjAAjwAgwAowAI8AIMBnlM8AIMAKMACPACDACjAAj4BsCTEZ9g54HZgQYAUaAEWAEGAFGgBFgMspngBFgBBgBRoARYAQYAUbANwSYjPoGPQ/MCDACjAAjwAgwAowAI8BklM8AI8AIMAKMACOwzhGoVeWPKgG+79ZPitVf+ZZdePfVl69zJHh53YgAk9Fu3BWeEyPACDACjAAj4BECsmKSuYoSdb173zTufeAbuO6aN4uRbrvzPrz1skuwY+uURyNzN4yAMwSYjDrDie9iBBgBRoARYAR6FgE7yyhZRem6bNfLxX+tP/fsYnniPYcAk1GXW/aJz3/bZQ/cnBFgBBgBRoARaA8CuqZiw/ggXnjmNvzN3/8T3vamV6NQBEaHEvjW9/8b5bKBXRf/qhj8wW/+F1RVwSt/7cX43qNPI5sriN8Xi0Wk02mUy2Vcf/Vvt2ei3GtfI8BktMXtf+ihh0TLr377MTzvrBe02As3YwQYAUaAEWAE2oeAJKMvOmsbbr3jc3jbG/8HSoaGaCSI//zRT7GcyeMNu16BYtnAvV/+NuKRAAY3noLbvvgoVnMFFGZ/iYGQAmVhL0ZjOm669krs3LmzfRPmnvsSASajLredSCk/mC5B5OaMACPACDACniKw52gK+4+tIBzQsX0iibAOfPjjn8dbfvsSJEeGse9YBoemj+KRHzyMa//kTVAUBbd//D5c8qqXIa1H8dPdh3DKUBBnTA3jhadtrs6N33mebhN3dhwBJqMujwI/mC4B5OaMACPACDACjhEgkrlvdgVLmQIOzqeRShcwvZjB9GIO8ZAGQIGiAFODYUwvrGAsHkBp6Ri+/sUHqmO86GUvxYWvuhjnbUziG9/6Ab5w7xfFZ5dd+uu4/po3IREN15wPv/McbxXf2AQCTEabAMvuVn4wXQLIzRkBRoARYASwsJLF3pllpNJ5QTIPzKWxnC1iejELwyCADKzkSpgaDGFqMILNI1FsGo4K5LKZZcwvr+Kp6UUcWCpitayhFIwhFArjvE0D+O2zRzGRjAgraRnASjaP2cVVRAIqJocSCAd1xzvA7zzHUPGNTSDAZLQJsJiMugSLmzMCjAAj0IcI/OS5WUEypTXz4DxZMteSzERYx+mTcSSjAUEyByIBbB2LCxc7XTMLS3jk6QPYf2wJz86u4PBqGYNB4IiRQBAlKJE4KD40VlpGXC1hNBbAQCSIgVgEwWAAMV3F5EAIW0YHMTaUaHkXmIy2DB03rIMAk1GXx4MfTJcAcnNGgBFgBHoUgWZc5kQ2pTUzGQ1i23gCQ/GT3eHff/xZpFZzeOLgHI4u5wTppEvXNKgKEArqKCsaoseNmcPBEk4ZTUDXNYwPxnF0pZIBH1CB7SMxbBpJYnKkQmi9uPid5wWK3IcVASajLs8EP5guAeTmjAAjwAh0GQJ2LvMTcZk6VnJFMWOry7weybQukUjn/tlU1bWeKwMhFRiOqEiEdOgqcCynQFOBIjQYhoGxCHDW5AC2TQwjFNBxdCktyGfRABIBYPNQDKdvGq8b8+kWan7nuUWQ29shwGTU5bngB9MlgNycEWAEGIEOIWAmmeQyf+Jgqm5cZi2XudPp1nKtL+aBDTEVE4mQiNckq+mhpRxmM4CqqlDLBWyI63jBlhG8cMcmjA4m8PM904J8HlouQFeAiA6cNp7E1onhtpJP61r5ned09/m+ZhBgMtoMWjb38oPpEkBuzggwAoyABwi0w2XudFq1XOtk6dw8oOOMqUGMD5IrXcXumSUcnFvCXE4V3cf1MjYPhvG8DUM4/7QtGIxHsJzOYt/ReeyfW8axbMVNPxpWsWUk0XHyyWTU6Sng+9wgwGTUDXoAmIy6BJCbMwKMACNQB4F6LnNB5kIVt7kbl7nTDajnWicr59mbRpCMhXDG5gn8ZPdB/PLwAvYvl5ErAaVSCeNRRbjZN40M4MKzTqkOK8nnMzMpZIoQbveNiQAmBqJ4/vbuqhPP7zynp4XvawYBJqPNoMWWUZdocXNGgBFgBCoINCtl5NZl7hR36Vo/nMrgyemFata62bVOpPOC0zdjfGgAvzgwi2cPzeBZ0v9cKqGk6lBLBWxJqDh1IontkyN4wSlrCSWRz6cPzuDAwiqWCxBu94l4d5JPtow6PTl8nxsEmIy6QY8toy7R4+aMACOwHhFo1mV+9qakkDJqJgHILW5P7T+C3dNzJ2Wtm13rW8aSeOk5p1aH+uEvnhOkc8/cCmbShojvDKoGtg5ows1+wenbhJvdeh2ZS+HgHLVbRaHidRfkc9tYEjumxtwupaPt/bKMZrJ5vP+2T+Ki88/CZbte3tE19/JgDzz4XTz86C9w03VXIBIOdu1SmIy63Bq/HkyX0+bmjAAjwAg0jQBZM3+6d060k8Ls1uo/5DInvUynUkZNT6LJBlbXumxOWetm17qZdFK99kef2S/iO385m8ZKSYVulEAySpPJqLB4yvhOu+kQ+Xzm8ByOLOcE+aRSm5sGgpgaTvQc+bSurx3vPEk0v/bNh6vDve7ii9YQKKdkdCG1jGtu+Aguv3Sna9Jaa8xHHnsKN958N+669Vrs2Op9GIUcd3J8GO+++vKTjhiNf/td9+POW96FoWR9zVgmo03+wejV29vxYPYqFjxvRoAR6E0EutVl7hRN6VpPpbN4dN885jNlkW1ey7Vu7tfsZj+8UkS+rFRllM7ZOGTrZrfOa/f0LKbnl3EglRMfkcbnZCKE0zaMeKrx6RSPdt7n9Ttv975pXH397dj1ygvXEK8P33U/HvzWD6uEzykZ9XLtfowp508k8v6vPGRLOAkbuuyIqnX9TEa9PBFd3JfXD2YXL5WnxggwAj2IgNVlLqv/UKlJay3zTcMR2+o/3bLsVlzrdsTzZwfnhYySRkLy5QImY5qwdp67fQNO2TDacLlEPvfOptouMN9wIj7c4PU7j4jVkZn5k9zIVuug/Pncs3bgZ7/YDWlFvfItu6qkjIjX+279pEDl0x+9ARecd4b4/9Ja+viTz4mfrVZX+h3N457PPVhF9APXX4G9B46s+d2GiRFBjucXlqqWyXAoZBs+QCT7vTffjQ/eeJWwnjqZg3k75f3XXn15dR30uSTvN994lfi9dd7nnHnKGgJrJqPU3i7UwY7cmvuV626HFViuuW/c9OZDaj681mfZfGCsm2r33Hv9YPrwt4WHZAQYgR5EQJJMmvovDqWQShdgdZkrCgmzh7vGZe4U5lZc6+a+zW72ffNpzOUrMkoxtYQdw6GGbnbrPKXGp6xuRFbXTgjMO8Wrk/d5+c6rRbjkeszuaEn6fvzzZ6rWUjuXvLVPuzGsBNj6M7V58JsP47Jdr7Alb1Y3uZ310fy7bC4nQgfMxLIWCTfvpR1JtFpMP/HZr+Dil51fDRew9tsKGbWO2+6wBFpzX5BR+iZx7wPfwHXXvFns82133oe3XnbJSbEerZjkvXwwO/kHhcdiBBiB7kSg113mTlF141o3j3F4cRVP7z+Mnx2Yx6GlfNXNPhIqYzwRxulTw9h57okkJCfzI/IpNT79FJh3MtdO3+PlO89q5bOuxUyCpiZGbYmhlQhaySd9ThZOs0vbbLWkMc0WTPMc6sWMmmM2reuQ7d546U5hvWw0h1oWRysJdMJRaC633XEfbn7PVSKetFkyam1PeDgZ1+057AsySptBl8zAs/5s/hb2ha881FTWmZcPptvN5PaMACPQ3QjUc5lTkguVfKTEH7JmdrvL3CnSTl3rz9s0LqSS6l0yvvOJwykcWSkhp4UQLGaFfufzpwYdxXda+zcLzC/mykLjUwrMd5vGp1PM23mfl+88L8io1UppJaNWN7bExuxyr/Xed0pGqU+zNdE6p0ZzqEVGrZZfq+vfTBTNyV9mt3qzZJTm/ofvvMX2CFHoQruUDJiMmiA3u/Lp13ZuenoQrdfOnTvb+exz34wAI9DlCDQrZbR5JCpiMzspZdRuCGu51smlvW04UhWEN2et15oTudl/tvcwnjo0B7J8HssqKGsBhI28iO+kMpn1stnrrdWs8dntAvPt3rNW+veSjLbiprdKOzkho7TOWsk+1N4LMmqex6fu+zcBrRyzmYQj656YyeS/fevhNTJNdslfVsLaChl1mqnfyvmp1YbJqIWM0o9mC6rVvG8F0ssH08uN5b4YAUbAPQKtuMzP2pgUA28di2P7ROX/r5fL7Fp/7GAKsysFx1nr9YinWUZptawJC/GQXhRlMhvJKDXCVmp8WgXme1Hjs9FaO/G51++8ZhOYrGTUiZu+ns6mnbXRjCPNb9vmyTUWQTtpJUms3/6m1+BTn//3NfGhbjLa5fz+8l1/gH+8/+trdFbtiLRbMtoIj3adsb4go7ViRq0xKOb7SBy2ljvfvBleP5jt2mjulxFgBNYiUMtlbhh0n4GVXEm4zEkzs1PVf7pljyTpfOLgHI4u50QVIrqsgvBOXOvmNT1zZBFP7j0khOMPpRWkoSNQyAg3+/aROJ6/deKkakXNYmInML85GVoXGp/NYtGO+71+59WTdvrRY09VM8PtXOZ2bn6rtdWuf+rrzs98GW9/82shE6MIKykMLxOY3nrZq4T73ZrtX0vnU3pXrdn6jeZQTytUrju1vAr6Z9YWrRVTak7yshJh63qkW14mdsvx9k/PnJSVv3lqfE1mv5fnqy/IKAFml01vd7jN99nJP1jB9/rB9HJzuS9GoB8RYJe581330rVuHfWR3Yex5/Acds8u4ehqWcR3hko5bIpBWDup8tA52yadT7bGnVLjkwTmMyUgolU0PteDwLxrcNrQQTveec2I3ptjI2l5Zgkn+tnO9W+VVaL7zKo6duPL+EhzWztpJzORlKTzHW97/UmxlY3mUG+rJC+xUwIycxaa33XXvAkUJiAlpaxk1LpW6lNe5lCGRpJRXh+tviGjXgMn+2vHg9muuXK/jEAvI1DLZf70kRXEQ3rVmjk1GMLUYAQyLpPW/IJtIxiKh3t5+S3P3exaf2p6EQeWiq5d6+bJmGWUds/nsFSofBpVii3JKDVaqJ3A/PaRGDaNJNedwHwjLPz4vNvfeY3iUP3AjMdsjACT0cYY1b2j2x9Ml8vj5oxA2xEwk8ylTAFPHEyBBNmnF7Mwu8wlyew3l7nTDWiXa908PrnZnz00g+dml7F/IYMlI4RQOQeSUaIymWdsHME5Wydt67M7XYf1PrPAPGW6JwIVjU8mn60i6q5dt7/z/Ip5dIcqt2Yy6vIMdPuD6XJ53JwRcIUAu8xdwWfbuJZrnaShzhgLY+vYADYOx+Eka73e7MwySjNpQ7jZKb5zLIKWZZScoCEF5g8tFyA1PvtVYN4JXp2858e/3Iel6T3oRgUZs1u5nRJEncS7n8ZiMupyt5mMugSQm/ckAnYu8xPVf3Ss5IpiXVaX+XqSMmrnxtm51mm8XBnYEFMxkQgJqaQLTt/cUJuz0TzJzf7U9ByIfO6dW8VsFigpOhLIYioRwCljCaHf6UV8p91czALz9LnU+Nw6MYxEtD9DKxrtWTs/n0st4/E903juaAoL2SJSRQ1QNTFkUi/h/ESmK8loOzHhvtuPAJNRlxgzGXUJIDfvKgRakTIivcyBSGBdShm1e3OcuNaT0bAnpJPWIqsVPTGdEtWKrPGdVK3ovFM2eupmN2MoBeafmUlBanyywHy7T9nJ/RPh/Nlzh7CaK2Lf3DJm0yXxBUSPDiAYDCGqFDASAkYjGnZMDmLz2CDCwYDoiN95nd+vfhiRyajLXeYH0yWA3LxjCDTrMj97U1KQTLZmut+iWq516vnM8Qg2DcewZSzp2rVunqmM73z80ILIZicZJcpmHw0bmBiIiPjOl5293f3i6vRgFphfLkC43SfiAUwMRMHVjdoKvej80af3Ynp+GbNLGcxmSljKGyjqYUTDYYRCIcSCGuI6MBgENiYjGEuEMBwPIRmL1Jwcv/Pav2/9OAJMVzC2AAAgAElEQVSTUZe7zg+mSwC5uWsE6rnMqXPKNCe3ObvMXUNdt4NOutbXWBtNbvbphZUK8dRjiBZX15TJbJeb3TwXO41PIp8sMN++s3dgdhHPHjyCPTNLmM8UsJBXAD2AohZBpJzGUEhFIhZDLBwUYQ8hVUEipCEZ0TEUC2F8MN7U5Pid1xRcfLNDBJiMOgSq1m38YLoEkJvXRIBd5t15ODrtWrcSTyqTSaLxT8+sYrmogBKXqEwmxXees2kIp24cx9bxoY6AR+TzmcNzII3PQkUXHyww7z300q2+ki0It/qxTBlZBFCKJBEqrCKmlTEe1bB1NAE1EEYiEkQ6V4KuKiiWDYzEghiMBrBp1H1FMH7neb+/3CPAZNTlKeAH0yWAfdrczmVOepkkaRQPUbIAkQxKAApj0zC5cStxmeQyf+EpY32KWmeX7Ydr3bxCs4zScwt5LCthBEtZxLWy0O9sh4xSI4TtND5JYP60DSOs8dkIPAefk1v90NwSDqUymFktomCoyAViUBUVUSODeCiATQkdG0cGBLGMBjQsrOaQyhSxnCuJEYYiGsYHwhgdiFbjPB0M7fgWL995kRf+ueNxvbwx85O/87I77ssDBJiMugTRywfT5VS4eRcgIEkmTeXgfBoH5tI4kWW+lmRSqUkpzM5xmf5snl+udetqH9t/DL/cf0RUK5rLqSK+M1zOYzhYEmUyz92+oW3Z7PWQN2t80n0BFWCBeXdnlTLVjy0uVbPV53NAORBFKRhBoJgVVs7JeADDsSBOnRzG9vEk4uEgUqsZzK/kMLucE8RTV4FIQBNxnrGQ3rS7vdVVePnOi5z/zlan4apd5tGPumrPjb1HgMmoS0y9fDBdToWbtxEBdpm3EdwOdO2na928PLOM0jPHMljMlZHXwiK+c1tSb7uMUiOopcbn0ZUCzALzp28aZ5mlRuCZPie3+k93H8T8ah77F9JIZYvCrV6ODAqPR7ScFeL9GwZC2D42gA1DcYwmIoJ00pXNF3BsKY3FdAFzq/lqz16625tYzppbvXznRS64ttVpuGqXeeR2V+25sfcIMBl1iamXD6bLqXDzFhGwuswPzmdE9R/pMl/JlUBWTKvLfOtYHNsn3MdgtThtbmaDQD3X+tbBIJ43OeB51nqtjTC72UlGabEUgGYUEVNLvrnZrXMl8nlwYRUz6WJVYP608SRY47Px47WSzeOpvYdEtjrFcZKFM19WkA/GoehBaEYJCSWPwYiOjckwThkfFLGclMxlvWYWV4S7/dhKHtmiIayelGTUTnd74xXa3+HlOy9y4XWtTsNVu8wPb3PVnht7jwCTUZeYevlgupwKN7cg0KyUEbvMe+MI2bnWSQyeLq8F4Z0iIonnk0eXcShVie+MlzOIaSVsGarIKHldJtPp3OR9UuNzPyXAZCuAscZnYxT/+6k9WEpnq251ylYvhgdgaAEoACKlDKJBFVMDIYwlItgyksCWkXjVymkdwexuzxRKKJYrxNOJrFLj2bb/Di/feZFfvaH9E7YZIfNft/gyLg9aGwEmoy5Ph5cPpsup9E1zdpn3x1Z3i2vdjLa1WtFcXkVWCQo3+2Rcw1mTA22tVtTMztsJzG9MsManHYYyW306lcPRpbSwchYMpepWJ9IZV/JIhlShx7l9fADDUXsrp7l/6W6fWcpiIVNJMArrCkbjwZZklZrZ/3bd6+U7L/Jr723XNOv2m/nPD/oyLg/KZLRtZ8DLB7Ntk+yhjtll3kOb5dFUpWv92ZkV7JnPrul184COM6YGO+ZaNw9O1YoOzi3hx3tmcGAxK6oVFaEhbmSEjNJpkzSvQV8Si+yglxqfBxZWYRaYZ43PClrkVn/s2QOYX1qtVh3KqyGUAhHhVifCqStlDKgFYeWcSMaxaSiKaFCzda3b7cHBY6macZ7tym736DF03I2X77zIy/6343G9vDHzvb/ysjvuywME2DLqEkQvH0yXU+nq5uwy7+rtafvkutG1bl602c1+eLmIlBH0XUap0abYCcyzxidAbvXZ5SwOHUuJqkNEzAuhBKAFRfIQ6bLGkUMsqGMyEcB4MoapgXBd17rdXlCcJ5XTpOx26W4nWSUSkm9UxajR3nbz516+8yKvuMmXpWa+835fxuVBayPAZNTl6fDywXQ5FV+aN+syl3GZNNkXbBvBUDzsy7x50PYgYOdaD6mVsaSV08ta682ugtzsJJ/0xP4ZHJpfxkzawBJCIr5zPKpgLB7CmZtG8ZIztjTbddvvlxqfJDBPHt+IBpDG59RwAjum+kt7VlYd2ndsBTPLGaSKGkqKhlI4WSGcJEOllBHVyhgK69g4GBFWTieudbuNJHf74YVVkWRE7nYpq9RqFaO2H5Y2DuDlOy/y63/dxpnW7jrz7b/0ZVwelMlo286Alw9m2ybZYsc/eW4WqXQeS5mC0MyUWeaGQR0akFnmp0/GkaTqHseF2TnLvEXAe6iZdK0fnF/FkzOZNTP307VunohVRimVN5BTQ4iV0piIqV0V32m39XYC8/2k8UlxnE8emFnjVi9oYRRDAwIu9biVk0jncAiYiOlVK2czrnUr9t0sq9QNfyK8fOdFLv6QL0vKfPM9vozLgzIZbdsZ8PLBbNskLR2zy7xTSPf2ON3uWjejS272vUfn8dzsMp6dywo3ewQF8Y/iO1+4bUzEd3aqTGYrO28WmDdrfG4aSa7r6kbSrb5nNoW5rIFMobzWrU7EU1UwFCgjpCnYkAgJS+dQNNi0a91uX6yySnRPu6sYtXI+uqWNl++8yKv+xpdlZf7jf60ZN5PN4/23fRJf++bD4vcfuP4KXLbr5XXntnvfNK6+/nYcPjqHDRMjuOvWa7Fj65Qv61kPg7Kb3uUuevlgupwK7FzmJ6r/6FjJFcUQU4MhTA1GuPqPW8DXSftud61bYaZqRXsOz2HP3AqmlwrCzR4q56r6nWdvGcdZm8YwGI909Q5JgflDy4WqxufmoRjWo8D804eOYXrmGHYfWcR8poClko6iFq4kDx13q1MsJ1k5xyIqghpE1jqRzlZd63ab3y1VjLr6YDaYnJfvvMir/9YXKDJf/59rxv3wXfeLn9999eVYSC3jmhs+gmuvvhwXnHeG7fyIiL735rvxwRuvYgLq0Q4yGXUJpJcPZq2pNBuXyS5zl5u6Tpv3gmvdDL2M7/zpc9OgakXLRQUZBKrxnduGYyDiec62yZ7YMSKfUuNTV4CIDqwngXkpj3RoMSvkkajq0Mlu9UoCUVhTMBQ0MBkPimQfSiAaTYQxPhD1bC/t3O26qiAZCQgx+fHBuGdj9VNHXr7zIq/5iC/QZf79XdVxiXze+KG7cd073lwllmZyap2gtKK+8dKdNcmqL4vq8UGZjLrcQLcPJrvMXW4AN1+DQC+51s0TJzf79MIKnjo0J2SU5gsaioomiCeVySQZpU0jAz1DPO00PteDwLyUR6IvCvXc6kQ4KaaTYjmTIQ2TiaCwcoZ1zRPXut1jT+520vNMZQoolkVgO2T5zPUiq9QNf+7cvvPMa4js+pgvS8o8+BfVce2snA88+F08/OgvcNN1VyByvESrbCAtp48/+Vy1j9ddfJHtvb4srkcHZTLqcuNqPZj1XOY0ZDxUcZuzy9zlBvRp815zrVuJ57OHZkDVikhGidzsYSMv4jt3DIe6olpRs8eKyOfTB2dAGp+ZIkRd914WmCe3+nPTs0IeidzqiwW1UnVIDZjc6iesnEQ6IwENE/GA5671WsTTKqvUS1WMmj1f3XS/p2T0N/7el6Vlvvqna8jobXfch5vfcxWGkgnx+3pklMir+X5pKZ0cHxZufr5aQ4DJaGu4VVv98V/fg9Ed54la5uYsc0ky2WXuEuA+b06u9cOLaew5uoinj+VQLh+ve2mSStoylsRLzzm165AyyyjtX8jgyGoJq2oUA8UlDASBzYNhIaPUC/GdVnDNAvMrRQUaDEHEeklgXsojSbc6VR0qQhVVh+iiWE6RsU7/UyCSh0bCirByDkYCLWlztnJI12MVo1Zw6JY2npLR3/y4L8vK/OufrCGj1vjPZsgodfTIY0/h9rvux523vKtKaH1ZWA8PymTU5eZ99FNfxCte8QpsG0+wZqZLLPu1OVk5H3vuCI6llvHU9CIOLBXhd631ZvfCWq2I4jtlmcwNCR1nb0h2VbWiZtdH5POZw3Mgjc/C8e8DvSAwb646dHAxjdl0CVkEUNTDJ0TgBfGsuNVJoHMkqCAZPmHlbKdr3W4f+qGKUbPnr533U3zkPZ97UAzhxN3sKRn9rU+0c2k1+858+Y+rnzUbM2p3P5HRL3zlIXbVu9hNJqMuwKOmXj6YLqfCzbscATvX+mAQwq3bDYLwTuGT8Z2U1X4olcdiOQDdKGFAyVXLZPZSfKfdumsJzJ+2YaQrZZYe3zMNInEUx5nKlrCUN1CKJIVbna6KJmeFdAorp1qxcoZ1tWOudTucpaxSKlM8qYrRhqEYwsHK/PlqDwJEor73w59V3ctETF924bl1E3O8fOdFLrunPQtr0GvmgSvX3FEvm17GiF5+6c6q3BPdf2RmXpBPukgW6qLzz2ooB+XLYntkUCajLjfKywfT5VS4eZcgQK711GoOTxycw975jCCb8uoWQXgnUJnd7EeXMiK+c0GJIVJcQUI3RHxnr7rZres3a3zSZwEV6DaBeSmPVM+tTsbNmGagrGqiChFJJA0EFUzEO+tatztfLKvk5Knr7D3m+MdwKITb7rwPb73skrpyRV6+86K/88nOLvj4aOkvVkikvOrpjNqRUev9V75lF8eLutxJJqMuAfTywXQ5FW7eQQTIyvnLgzPYP5vqWde6GS4z8Xx6ZhVLBVRllMYi6Ooyma1su9T4PLpSEMlGiQDQDRqf0q1+ZGEF0wvLoDjOnBJEITQgyKVmlBDSDJSgQVNVhAMKVgoGRsIqBoInrJyddq1b94CrGLVyKv1pY3bTOyFVXr7z4pd/2pdFr9z/h76My4PWRoDJqMvT4eWD6XIq3LwNCNRzrY/GdLxw8yD8rLXeypKtbnaqVmQYhpBRmoxrOGfjUE/JKDnBwE5g3i+NTyKcT+09hNnlrHCrH8uURdUhs1s9amRR0kKIBFQUDEohAhJBRRDOsK5gciAsEojclL10gpvTe7iKkVOkuus+StShS1Ybkj+/6tcvxN5DR3BkcRU/+M/vI2eooAxdUsx6zYtOw86dOz1ZSOLNn/Gkn2Y7Wb7vbc024fvbjACTUZcAMxl1CWCXNF8vrnUrnBTXSSUyDxxL4eBiTsgoyTKZG+I6XrxjEhuHE11dJrPZIyI1PqXAPLWXGp9bJ4aRiIab7bKl++3c6iQCbwQrwu46yojpZWTLGgYjWjUxalNCx1Ku1BWudbuFm93tmUJJ3EKyTmOJkBCwT8a6u/JVS5u5DhutZHJ48Bs/wL6DR6su5r/9+P3YtHEC5553Np45OIPhiI5EWMepmyeRTFSKBHj5zku+5f/6gmzqc7/vy7g8aG0EmIy6PB1ePpgup8LNGyDg1LX+vM3jOG3jWE/haXazU232+UxRyChFS6uIa+V1Fd9p3Rg7gflOaXxKt/re2WXbqkOULJRQCigpKmJBXVg5Q3rF0hnS6N/aBKLRRARxi8i2nwfRLKu0nCuhWIawzI7GgxiKhbiKkZ+b42DsIwvLyBVLmEmlhVoHJbcZUBCKJ3HaaBwho4iP3vlZfOc/fyx6e83OX8Ff3/BHJwm9m4fy8p03+NbPOliF97cs3vt73nfKPbpCoG/IKLkf3ndrJVi6VlyMXWWFD1x/Rd0MOS8fTFc7yY2rCNRzrQ9HVJy/dbjnXOvm7SU3++xKDo/vPSKqFS2WAihARcLIYjyqYMfYAJ63YahnqhU1e3TNAvPLBYi67qTxOTEQxfO3TzXbXcP7rVWH7NzqFMs5HCxD0YNQVKHMiXzZEMlDRDgHI3pVm7NbXOt2C2dZpYbHoetukIRzfjWPpUwOcys5lAwDRiAKTVEQUFXoqopydhkxXUEirGHz+DCGEmEEA82rFXj5zhv+/X/yBc/5//u7vozLg9ZGoC/IKGUM3vvAN3DdNW8WSNTKGLTTD2t0eLx8MBuNxZ+vRcDsWj+QymMlV3EZ0tVLWev19tUuvpPuj5XSPVkms5UzLAXm98ytVl3Z7RCYl1WHji6uYmY5g1RRQz4QB/SgmDZZOQfUorAMQgsgHFCRK5GdCRiLal3tWrfDneI8uYpRKyey823MhHM1X8Sx5SwMRUFBCQrCSf+IcNJ/g0oZSjGLaEDB5vEhhAMaRpIxzybt5Ttv5G2f82xezXQ095m3NHM739sBBPqCjNYK0pZB2xJnq2W005mFHdjvnhyCSGejrPUdUyM4Y8tkT66PJi3d7E9Pz+OpoytYyJawokQQK6cRU0tCv/NF28d7slpRs5tiFpjPlICIBkwmQpgaTmDHlLvwCao6tO/oHKRbnbLVy6qOYmigSjgDioGhQBmBQEAkEJE2Z65YFmSULqtrnaoudftlV8WIymcmIzq727tk8xZWMsKySRZOIpzpfBnpQhF5BATJVKukU0FQ04R2rFbKifM4OhAWsZ2D8TBCbdZm9ZKMjr79Pl/QP/apimGKr+5BgMlojb2QOmJvvHTnGgFgehCtl1eZhd1zLDo/k/XuWjcjStWK9hxbwZMHj+FgKlclnhTfORIsY+twVLjZe7FMZisnRwrMH0jlRHPS+CTy2arAvJ1bfbWkohQZFFZMuqSVcyQWhKZRhroqLJt0g7zHrM3Zza51O8zN7nZdVVAsG6C1DkYD2DTa/eS5lXPUC23sCKehGFjOK6AvQWRnV1S96l7X1EplLCo3G9EMxIIqBmNBz62dzWDnJRkdv/L+Zob27N6Ze7iGvGdgetQRk9E6QFotqna3evlgerSnXd2N2bV+dDmH+Uzv1FpvBdh6bvb1KqPUCCezwLxZ43PTSLKp6kbSrS7lkYhLFoIJGFolDo4IZ1QtIa4DY4kIciWybp6wcg6ETrjWNyRCGIoGsWUk3lUJRI2wpM9ZVskJSp27x45wFsqG+EKgwIAOCIkk+ili5FEMxKDDgBqouNxDSrlSrOB4JnsnrJ3NoOPlO2/iqi80M7Rn9x69+42e9cUdeYNAX5DRWjGjUxOja8p40X3P7jmIV+/8FdSyjFph9/LB9GZLu6OXfnCtm5GWbnYpozS9VMCcEUGonENSzQs3O1k7NwzG1m1iUa2TZ6fx6VRg3k4eqaRoKIUr1j0inCSRNBw0kIiExM/JkIZ8yRAmzlzRECS0F13rdnhyFaPu+PtWi3DS7MiyX6QvPgYxzoo2ZwglFKEhGNAR0FSU1SBCqgGyWkcCiu/WzmZQ9fKdt+GPv9TM0J7de/gTb/CsL+7IGwT6gowSVHbZ9JJwypqyREavvv52HD46J9BtlElP93j5YHqzpZ3rpZZrPVVQMBlV8LyJAWwajuOC0zdjfKgSk7ceLquM0mKujGWE+0JGycn+EfmUGp+U6xPRgXoC89KtTkkZe+dWhLvc7FaXsZqUPESyR0MRvVJfXafEDRWL2aIgnHSZXeujiTDGByqanr14cRUjf3ctkytgZmkVK7kiVrIFIYtEFk66KJY4oADlUhEF0lo1DOSPO3k0BQjqOkK6BkUj8qmJNuRu71ZrZzNIe/nOm/qTB5oZ2rN7pz9+mWd9cUfeINA3ZNQbuE7uxcsHs11zdNuvnWs9b1DWprFustZrYSRllH68dwbC2llQUVJ0DJZXhIzSZDKKUyeSeMkZW9zC3JPt7TQ+pcC8WWaJCOehuSU8Nz1brTqULRoohgdgqCfc6jJ5iKycRDqpMhRZOSNBDUdX8iDXOlk7SSrplJEo/C576eWmkbt9ZimLVKYgXLp0UZLR+EAYowNRhNucmOLlWnqlr1qEk6ybuqYiFlARD+lYXc0gXywhXyBCejyqWKloroYCAaiqBl0PCCtohaz2lrWzmf3y8p236R1fbmZoz+49eMdvedYXd+QNAkxGXeLo5YPpciqumztxrZNEyEVnbnM9Vjd2YK5WRMRzsVwhSVQmcyKm4rwto33pZjfvlVnjM1OEqOtuFpi3c6tb5ZGov6GAgeFoQBDObLGMwbAOVVWwmCmASKq8SMJp42AEw9EgeiFr3em5Zlklp0i5v68e4aRYjmRYE5WjVlez0BUDq9kCFrNk7ayMrakGEiFduNgVRUUgEESmUPlwvVg7m0HZy3fe5j/7l2aG9uzeA//n9Z71xR15gwCTUZc4evlgupyKo+a1XOuLeWBDTMWpY3FsGR1Yd671NYQqk8fu2SVRJvOJ6RTm0gUho5RAVpTKlPGdp08Nr6symY4OiOUmqfF5YGEVUmCeXt6ZTBbZQhnHVnNYyJPAO1AIDYhMdOlWJyvneFTHYFjDUDSATL6IaJDSNwwcXSnYutZ7MYGoEa52skpcxagRas197pRwBjUVxXxe5AQsrOaQLgIUXkxXWDUQC+lIRAKIRaJC03YpU+wLa2czaHv5ztv6F19pZmjP7t33sUs964s78gYBJqMucfTywXQ5lTXN7VzruTIQUtePILwTvKSbnWSUds/nsFQAskpQ6HdSmczTx2PCzd4vMkqNMJPk85czSyANzrweRXZ1Rehs5nI5lIPRNW51Ip/DQQi3+WQiKCyYC+m8sHKSxZNc65Q8RJe0cq4n17odnlzFqNEpa+1zSTjzpTLmV3LVGE5yqZstnEQ4xwdimF1IYWk1W5N0DsfDiEbCAMUdr+b72trZzI54+c7b9s6vNjO0Z/fu/ehveNYXd+QNAkxGXeLo5YPZylScuNaTsRBees6prXTfU22IeO6bT+OJAzM4vFwUbnaKOTSXydwwFOvb+E67zXz06b3YO5uq6J2WgygFooJ4UiIwlbgkKSSqqx5UgfGohsk4udYDIEVEit2UVk5z3+vVtW6Hn527fSiiCSF5Omsc59ncnxA7wln1l5tc6pJwlsslTM8uIlcoinjbbLkSy04x7WTppHjbUEDH6GAC+WIZy9kiWzub25KT7vbynXfKux90OZvWmj/34V2tNeRWbUOAyahLaL18MGtNhV3ra5ExyyiRm52qFS0ZIWhGURBPiu98weaRvo/vlKgdTaXxzIHDouoQlblcpCQsqMgFE8KtTtJIZMkk4km11EkayWzlHI5VrJ3kWqeLMtfNWevr0bVu9yySu/3wwqqwtC1kStBVSlTRMJYICffu+GDc5V+T/mjeLOGMhAJYzWQF6ZxfyYoSpkQ66aLM9agOQf4HYmFsmRzFXGoV2UKJrZ1tOk5evvN2XOsPGd19O5PRNh2PlrtlMtoydJWGXj6Y7Fo/eTNktaJfHl4QVs9U3hDEk+I7o0oRGweCOG/raN+72e2qDqXLGpToYDUzm2I5SVR7UC8Ka9HUAGWsB0Q8J7nU6R8lEJFrnS6zNud6d61bTx7LKrn7w9gK4aQRmyGduXwBiytZtna626qmW3v5zjvtun9renwvGjxz22u96Ib78BABJqMuwWzlwWTXuj3otWSUKL5zOFDC9tF438d3yqpD00tZHFmmOLcyCloYZVUT5QRLVDhQ06GV8gjlUtB1HVtHEzhtwzCKUEFlLQ8tZqpWTrkT24YpYz2w7rLWnT7eXMXIKVIn7muVcFIP+48cQy5fFJbO5VwRJZNcEiW8UTxnKKgLSyddbO1sfn/a1aKVd16tuZz+v/69XdOs2+/Tf/MaX8blQWsjwGTU5emo9WA2cq1vSEZw5tTQus5arwWt2c1OBHQ+XRTVitjNXkHsuZkUpmeOCbf60aW0SCSiEpcU/1oKRKAqKkIakDU0DAUr/yUB+EBmESNRDYOJGMYHE5hPk5WzID4jIfl+dK3bnUGuYuT8j54bwilJpzWJiCTgA8cz14l0To0NIkaJRBQCwtZO55vj051ektEzb/y6L6t48uZX+zIuD8pktG1n4O8+dS9OOfM8PHFwDlRr/UjaEKSh37LWGxHPnx9axJ5jK6BqRalyUJTJJBmlbUm9L8tk2lUdyhg6ympASCOpqiqy1imWk+SRSAqINA1LpTKKIDkaBaquA6WiqP5C99FlLXs5moj0XK11Lx9Ws6zSMhWvpxhZVUEyEhDJLRznCdQinCRtFCCsjutwyqQhiuG0XmTpbJS5biad1J6tnV6e9M715SUZPfu9/1/nJm4a6YkP/o8148pqjF/75sPi942qL5orOsqOrnzLLrz76st9Wc96GJQtoy538U033I7zX3wBzt40gn7JWq8FmdXNPl/URD3muJFBTC31nYwSEc5nDs/jyLEFkE7nbLq0xq0eJlqpBRDWVWQMDZsTpMEJIQS/YSCMiK5gZm4eh1OrmC/oyAfjUI1yJVZ2KIbBSABTA2Hhel9PgvBuHkkpq2SuYjQSC2IwGujrKkZOCGc8HBDVhkgWyY5wynhOylyXGp0aTmSuUxKX1dLJ1k43p7k723pJRs9533/4ssjHP/CqNeN++K77xc9EJhdSy7jmho/g2qsvxwXnnWE7PyKjDz/6C9x03RWIhIO+rGG9Dcpk1OWOevlgupxKR5tTtaL9Cxnsn10UMkpUJpOI55CxirEIsHE4IWI8+0G/k+I4SdPQ7FYv6hGo5YJwq0eUEgI6WT01QTzpn5RImhqMiIx2uqbnUth7bAmHl7LQykUUoGI0omFqJInTN46hX7LWnR5krmK0FikinKk0xWAWhA7naqGMYqksxNulhbMR4aQe7ZKISC6pBKWauS4S4EzudTkTtnY6Pb29e5+X77wXvP8bvgDx05suqY5L5PPGD92N697xZuzYOiV+byandhNkMur9tjEZdYmplw+my6m0pTnLKFVglW71gwsZHEmtVqsO0WcUz0k6nEQ4yb0eCJBbneI6FSGRtGkwgnBAO0E6l7Iia306lcFKUYGhaiJsIVrOYttQGKdvGseOqbG27GevdspVjCo75xXhrEU66fd2cknWc0lsGp8AACAASURBVMOxnb36JLmft5fvvBfe9E33E2qhh5+8/+Jqq937pvHem+/GB2+8qkpGG5FNq5ueXfQtbIKlCZNRlxh6+WC6nIrr5tLNTmUynzq6ImSUMghUZZQ2D4ZxylgC67VMptmtvmc2hWOZMiiOk/Q3KQ6YMtPpXzRQcatPxALIlYw1Vs4okU4FmE/nq1nrpMtJsZylchmlsoEyicgbBZF8NJkI4bQNI5gcSbrev/XUQb0qRptG1zdWdoSTVBPoasbCKc+DOXOdNDoLpsx1q0an3Rlia+d6erLcr8XLd975H/iW+wm10MOj73vlGjJ62x334eb3XIWhZEL8vhEZNQ8p3fqXX7oTl+16eQuz4SaEAJNRl+fAywfT5VSaai6rFT01PYfppQJkfGc/lMkkt/qB2UXsm1vGseWsqLlO8kiBUla41cmiqWsaNE0TckfyklZOKnkZCwVwbCULkliS2pwDIW1N1rpRyKNQyGMxW0mcobKF20di2DSSZPJpOq1SVimVKUImGVEVI0owGh2IrssqRo0IZzSoIhbUQQUHBiIhDMUjDZ9vmUREhFOcueM1182Z62a5JGuHbO1sCDHf4LG29gUf/LYvmD7y3l9fQ0abtYxaJ03kde+BI5zA5GI3mYy6AI+adjsZlW52iu/86f65ajY7ySgllbyI7zx1PImJZGRdlcmU8khWtzpZOEmPk1zpih4Slk5NU4WVM5UrrbFybh2J49hyBul8qUo6FzNFUYHImrVOCUQ/3zMtpJhITokqZSYCwOahmHC7J6IV6Zp+v/pNVunIwrKI4VzJFrGaL4p66pUvJgpaIZzUtpXMdeu5Y2tnvz+Jjde/sJTG0vIK5lIrWElnRU6AUSpCy8xi586djTtwcMeFNz/k4C7vb/nhjSfm30rMKJNR7/eEyahLTLuJjMpqReRmJxklcrMvlgJCv3MAOUzGNZyzcWjdlMmUbvV9R+YwvbAs3OpUdYgsmkqpgEAgIEgnxXJKt7rcbrOVc/t4UtRnt7rW6V6zNqc1a53I536yrmbL0BUgogOnjSexdWKYySeAfqliZEc4dY3cTq0TTjvSSZZOorJUc71W5jpbO13+Qe+z5kQ4KcmNjBZEOOmLN/39DEcTyKykUC7mRDx8LKxj68ZJhMMhTw0wF93yHV8Qf/iGV6wZt142vdUNTzJQX/rad/CG171CZNI7yb73ZZE9NiiTUZcb5hcZlfGdPz0whwML2aqbXZbJpPjOczcP93w2OxHOQ3NLeG56VlgnzVWHyK1OyUORgCosnMFAQPyXaqtTaUuSSKJyl5SxTlZO8YKfWznJtZ4rGhiM6DhlJIpaZS+X01nsOzpfJZ/U12hYxZaRBJ6/vZKB2e+XtYoR1W5PhNaHu71dhNMslzSzlBU112XmOlnwKVShVuY6Wzv7/Ylztn5JOCl8I18sC8JJiZbQgtBUReju5jMrQLmIeFhHNBzA8OCA+BJvd3n5znvJrd91tgiP7/rB9WtjO+vpjNrFhBJ5vedzD1Zn1UiX1OPpr8vumIy63FYvH0y7qZjd7FSffSFTwtFCJY6R9DtHgmWRVNTrMkrmqkPHVnMiWz2LgJBH0lFGMBjAYFhHXiHCWRGGp9hOylqnGusUW0exnNLKKV3rR+gFTz7z49dEPICNg1T6MlhXm5PI59MHZ4Q+aKYI4XbfmAhgYiDK5BOA2d2eKVRcz5GAhrFECMPxEJKxxjGOLh89z5vXIpzFEoTwu4zhDOkaJocqiQ5Or2Zqrjfqk2M7GyHUf58T4cwVSsgWSoJw0t88TVFRUnVBODWF4uAVURzDKGShGCXoqiGqtZF1rxbxbDcZfenffs+Xzfr+/3yZL+PyoLURYDLq8nR4SUYl8ZTVisxu9oSRxURMxQs2j/Ssm52snE/sO4I9M0tCHolKVFK2On1Ll271aFAXrvVQMIiCIasKrZVIklZOiuds5FofTYQxPhBtuMtH5lI4OJcS5JMSmsjtTsSVYkH7XWbJWsWoWIaoCDUaD2IoFuqpKkZEOHPFEuZX89UYTnKpe0E46ZB5STqpv6PzyyiWDSyu5pEpVL5UUbGtgYiORFjHoKjhfnJFpIYHnm/oOQTsCSdVY4NIuFQVBQoMUZktoKni72rpOPGMhgIIB3UMxBv/LWwEjJfvvJd/+PuNhmvL599990vb0i932joCTEZbx060bPXBlG72Jw6nsG8ujWN5RQSIh428KJO5YzgkLJ4bBmM4Z9uky1l2rrlZHsnOrU7WzFAoJKoGqYGQiE8ieSS6zELwJJFEVk7qz+pap+QhuqSVs5Zrvd6qJfncM7cqRMHp2pwMYWo40ffks56sUi9kt9sRzkhAEWTOrYVTnimzXJI5c53EZAdF+UwiiTq2TI46evjIEp/OFrCwmkc6X0b5uDGf5j0YCwqd2pFkzFFffFPvIlCPcNIXQLrIrW4Q8TTKUFQNWiAEBWWUC3koKCEeCSEY0BCPtsc70eo7z25Xdn70P33ZrIfe+Wu+jMuD1kaAyajL0+HkwaxVrYjiO+NaGWdMxHvOzU5udYrjPLKwIjLIFwsq8mpIuNXDKCAUCoskC+hBJMJBQTjpn1UInqyc8XCwmkA0ny5g73xmza44da3X28rdFHM6v4wjyzlkSkBEq2h89jv57NUqRp0gnHSevMhct55LsnZm8iVQDB9bO13+Ae7B5rUIJ33/CGoKglSljXTgxKUIy3ihZEDVAuLLu2GUK4lFmiLKtpL7vV3E0w5eJ+88p9vyyo/9wOmtnt73rb94iaf9cWfuEWAy6hJD84Npju98/OCCkFFaKFaCwIeRFjJKU0O9QzyPptLYe+RY1a1OcZz5MqpudZIuUoMRhEIVLUQimxTDaZVIGouHMZ6MVq2c2WJpjSA84WPOWvei7KUknwdSOYE/a3yeyG6nRBmKPaaLEoySlOjVhe72ThHOdpFOtna6/OPao81zhSLSmbyI4VzJFgSRJO8LVbYyE076sh4JB1Aul1GgOM/88YIEigpVo/Clitu9XMgJghoKaB0nnu0mo5f8n//yZZe/8We/6su4PGhtBJiMujwd773jXihTZ2OpAKQNvSqjNDUQwNkbkl3vZrdzq1OJyrIagF7MYDgE4U4nmSTpVjdDZpVIos/sXOv0e7M2Zyuu9XpbReST5JmsGp/9KjDfK7JKnSSc1sx1iknWYCBvKEIuqZnMdetZZGunyz+kPda8FuGkZVBMr7RwSsJJrvNCoYiVTA65Qhm5YhmGIJ2BSqynQjZQA0q5CE0xhJudYjzDoWDXIeOlZfTVf/+wL+v7+p9e5Mu4PCiT0badgd+/6Q782kte0vVlMqVb3a7qUEApi+zyYDCIvFpxqy/ly0IiyU4IntzqdFm1Oc0gbxumjPVAw6z1VjdGCswfWi5UNT77WWDeKqtEuHZLFaNOEk5at10SkZRLMpe/HEnGEYs0V4zAau2k8Si+Mx5SkYgEOLaz1Qe6C9u1QjjlMhaWVlEolZEvGqCEP2KbqqpDVYyKrFK5KMgnWUvDQa3pjHY/4fKSjL72zh/6spR/u+ZCX8blQZmMtu0MePlgup1krapDMlud3OqUPDQYjwrX+lLueOYOCWnrqtDa3HRc9oiSh8xWTrNrnX5PVYi8dq3XW79ZYJ5qxY+EFKHx2Y8C891YxajdWep2Z8PrzPVG1k6yeFHuHFm7OJPd7V+r7mhvRzgpn5K+YNB+U9IQJY+Ri5xc6mThNF9Lq5mqi12QTqBi8SQLqVrJaFeNonDPB47HgzYrpdQdSJ2YhZfvvNfd9SNflve1q3/Fl3F5UCajbTsDXj6YTiZprjo0s5zBbLoEcqsX9QhChRUMBQ1owTBGYkHklICI5TyyUhCJQ3SREPyGgbDQ5ZTJQ/T7maW0qNNurrVOv7eWvRxNRETCUTsvKTD/zEyqqvHZrwLzdu52yqZNRgIYjAawabTypaETlxPCSaLZiVCgaR3OevM3Z65T0k+hXDnLlLlutnQ6zVy3jsXWzk6cHv/GIMK5tJJFqWxUYzhrEc4BUkEInCz2bnaxU0IR9SWOoHCxV9zsmqoBBjFSY90QT7td8/Kd95ufeMSXg/Gvf3yBL+PyoExG23YGvHww5SRl1aEDs4sgt7qsOkSEk+I4pVs9HA5jIBpCWdWFlbOeRJLsu5ZrnSwAkwNhTA2EhewS6Wt26jILzBOxpjg+yqDvR4F5crdTglEqUxBZtHTRFwsinp2QVVpYyWApk6vqcJLMkKEYa3Q420E4aZ3WzHVhThLJZyfKXzYjl2R3fq2xnWzt7NRT3t5xrIRTFrqws3DWIpxyhmZrJ33xIXc6XRTbSedFuNyJfYrvQ4ZIKqIEo163eDrdIS/feb/1D//tdFhP7/vyH73Y0/64M/cIcAKTSwzdPJh2bvW0GgGVuQwZeQyEyDUURjIWRiQcQb5sCCsnXbUkkugzmUBErvXn5tJYzBQR0hUhMt9J13otaO00PvtRYN4vWSU/Cacd6TwuM9tUzfVGjy1bOxsh1Hufe0k4afUnJRSRqV3oeB5PJgKgaSrKoviGIYgoVTMi4umFeHzv7UBlxm7eedY1v+GeR32B4UtXnu/LuDxobQSYjLo8HY0eTOlWf/rgMVF1iOSRKIu3pOiCdJJbncgmVRxS9BAS0ZCwhNJFlk47IXg5ZbJyyrKXi5kCjq5U2lld6520ctrBSeTzmcNzQuOzXwXmzVWMpKxSO6sY2RHOwnFLqxR+b5eFk84AxXPOpVawtJrFwmoO6SLWZK5T3CUJw0+NDTadRGQ9Y2ztdPlHrIua1yKccormGM5GFk7zsiihiI4/6bvK2E6yaoZ0tZJIpKnC9S6LDRDx7BYppS7aHs/J6Bs/9WNflveFt7/Il3F5UCajbTsDREZffNFL8MzhefHyreVWJ8tfNBJBJBJBESryJSAr/ypS9aFEsJo8NDawNi7T6lqn5CEinJRwNBgJ+OJarweo1Pg8uJSHYRhC45ME5k/bMILJkc65/9u26Q467kQVo3qEMxJQEQuook48xXAmo2EhkO31JZOI6EsXVQ/KlhVYM9cpBs8L0snWTq93z5/+nBDOeDggrJDNEE5ajW1CERQR6kFSScVSCRqVyawST3K5G0w8mzgKjQwwTXSFN33mJ83c7tm9n3/bCz3rizvyBoG+sYw+8OB38b5bPylQu/Itu/Duqy+viWAmm8f7b/skJseH695HHbz5rz+F7WecLaoOEeGMh4LQQmvd6o0kkqgfO21OctN3i2u9EfmUGp90X78JzNu520lWiYTkNwzFEHZROzyTK2BmaRUruaJIvkhlS5AWzk4RTtrTdmeum89XLl/A4kp2TZUiju305g9+p3ppJ+GkNdRKKCICSwl+lLlOcZ0lg+KdDVLwFEuXGp6drlrUKdw7MY6XZPR3//GxTkz5pDH+6Q/O82VcHrQ2An1BRnfvm8a9D3wD113zZoHEbXfeh7dedgl2bJ2yRebDd92Pp3cfwOk7Njckox/8h/sxevpak7+dELwcyOpap3hOaen0ouxlJw671Pi0CsyfvmkciWhzuo2dmK+XY0hZJXI9k7ud4ssiAQ1jiZCQ/BkfjDc9XC3CSaRe1zpj4ZSTtpJOSuCgWk0kxuBF5roVnLnUKrKFEpYzBVGTnS7W7Wz6CPnSoN2EUy7KmlCkgshlJbaTrJ0kt0XEM18si2pH8qIz283i8b5smgeDeklGf++z/pDRz/4ek1EPjoKnXfQFGSWrKF2X7Xq5+K/1ZzOi9NneA0fwsgvPxfd++LOGZPTTX/wKfuc3Xn2S3JGda53GMScQdTprvdWTYycwf9p4ct1rfHpZxaibCCedA7Nc0mK2VKlTSJcCDIY1Ec/pNnPdfN6ktXM5WxRlEqkmO1s7W30iO9euU4STVlQvoSiok7VTRTwaAnmuJPGspBZVviz1mnh853bR25G8JKN/8E8/9XZyDnv7x999gcM7+bZOIcBk1IQ0EdGHH/0FbrruCvz8qedsySg9iOZr37FlbDz7fMgEIrNrfUMihKFoEF7UWu/UgZAan/vnlnEsW7FUSY3PU6bGEG1D3GGn1tZoHLdVjOoRTmJ5lDhEMZxBTcX4QKwtMZzWNVrlktqRuW4dk62djU5ad33eScIpV14voSgUUIW4fKlcqdeeL5RgMniuaw3P7joZ9rPxkoy+/XM/82XJn3rLub6My4PWRoDJ6HFsZJzo1765tlZuo/jSm++5H6++5NfbVvay3YfXTmB+Y2L9a3y2WsVIEs58qYz5lVw1hpNc6n4RThrZD9LJ1s52P53e9S8JJ1mlKSxC6nDKEShLvdWkoXqzbJRQFCCZpFgEK+mMiO2sEM/jRQ3WuXi8d7vb2Z68JKNXfv7xzk7++Gj3vOkcX8blQfucjNaKGZ2aGBWJShedf1bVhS+heuSxpxy56b18MDtxUM0C88sFiLru611g3iyrtJyrSLvUk1WyI5xmP7YfFk46GzKek4gFCePLzPW8oQiNzvGBSvUYLzLXG1k7KU6vVAaiQa7J3onn1skYdoRTir5T+3YRTuq7UUKRtHYGAnqVeBIxrmh4rhWP72cNTyf77Pc9Xr7z/vj+n/uynE9c/nxfxuVB+5yM0vLtsumlNXQ9k1E7gXlKsNo6OoAdU2Pr8tlwIqvUrYTTTDrnV7Kg8pdEOrXKG7stSUTmQ2C1duaKlWBSKppAuotck93fR8ZPwilX3iihSFo76X5p8awQz0oPFCss6rQHNMSjEX8B5dGxkFrGNTd8BI8/+RzOOfMU3HnLuzCUTNRExksy+idffMKXHfj475zty7g8KJPRtp0BLx9MLyZpFpjPlICIVtH4nBpOrEvyWa+KUTSoI1sswuxS7wYLp9znTsol2Z0ta2wnWzu9eALd91GPcFKiDhG5drjUrTN3lFAUCYGsnZJ4kpudMtorxJM1PN2fhvb2UM8gU2tkL99573jgF+1dYI3e77jsLF/G5UGZjLbtDHj5YLYySSkwfyCVE80pdnHjYBSnjA+uO4F5uypGZLErGwYiQQ3lclnEcHYT4aQ9MWeuk6WT5JLEdTxznSShBmJhbJkcbeUINGzD1s6GEHX8hpVMDplsQVi+i6WyiOGULnUz4SRrdDQSFOEX7bycJBRJ0knzWFpJi4x2s4Yni8e3c4fa0zeFo33hKw+JpN1IOOhoEC/feX/+z086GtPrm/7ut89c06U1Z+QD119xUuherTmQFOSPHnuqoUXZ6zWst/76IoGpnZvm5YPpZJ5EPqXAPHlQEwFg81AMm0aS6458Snf77EoOmaKBTFkV1VKIfCb0E1pEfsVwWvfLmkQk5ZKo+ossfzmYiGJsaMDJVrd0D1s7W4KtLY3MhJOIW75qMax8aZQWzk4RTkEiVzMoFCtZ6rIAHAnCC73coAazi53uLxSLa6SUxDcok3g86XyGQ85ITFtA5k5dIWAOX6OOrG76xdQyvv3tb1USy8oGVE3H5GgSO3fudDWubPzOf/GHjH709WvJKBFKuqgYjgxbuPbqy3HBeWfUXSe1u+dzDzoKb/AEsHXcCZNRl5vbbjJqp/FJ5HO9CcwfnlvC4YUlIZG1lAfyahAqyggrZaEvSKVPOy2LVOto+JG5bp0LWztdPrgeNe9GwilIZKEImluuUEaxbAgiIUjk8QpF5oQiCcXJxLPyCWt4enRYurAbIqNUsvkNr3uFmN2XvvYd7Nl/BFf9/m9icWkVxUIeVK0qGAggGNAxMjwIL995137lKV9Quf3SEySTyOeNH7ob173jzdVCOGZyWmuCZk3y2++6ny2jLneSyahLAL18MGkqRD6lxidlukd0YL0IzMukoXQuj5nFVVD1KXpR0msyoCqCcA5EQxhORDumw1lr+82Z61RtKV0ENBiQmevS0tmOzHXrnNja6fIhddncjnCSfZC0L/2ycJqX1ExCkZV4ZvMVDU8pHi8Si3RVuGwDentDA1xuCzdvAoFsLoeVlTToS2y+UISi6UgmYpg+cgxf/OpDojoh7bkoCKMoeMPxAjF2Q3j5zrv+q083sQrvbr31N06vdkZqO++9+W588MarqmTUrDluF75g1SRnMup+b5iMusTQzYNpp/EpBeafv92+VKnL6ba9ORHOVDqL5VxB6HAS4SyUysgYVMRPRcgoIKgaGI7omEjGsG1yuO1zqjeAXRJRUDFQglLNXG+XXJJ1Xmzt9O8oLCylRewmxXBKl7oknCSJRAQtHNCEosDQQNSXiTabUCQnmc3lTeLxknYez2hn4unLXrZjULJsp1LLKBRLgnBCJQ2OSlhFuVwCyiUEgwHoqoJkMoFwKCQ+M7vqX3fxRQ3jR92886zrvvFBf8jozbvWktHb7rgPN7/nqqqKQD0yao2zpZ+ZjLo/0UxGXWLYzINp1vjMFAGK+exFgXkr4VwlV2CpjEIZKBgKVCgoQ6Ev2BjQDSTDutDAHB2IIhwMuES8teZ+Z65bZ83Wztb20U0rK+GkpCFyQZNlsFsIp1xfswlFst1aKaWTNTzZ4unmBHVHW4rjzGRzgnDS31lV1aAoinC3l0tFEfdLoU3RaBSJuPdfnJp55zVC7C//7ZeNbmnL53/92ue1bBm1xtnKjpzIYrVlMeukUyajLjey3oMpNT4PLKzCLDC/bSzZ9TJLdoQzQ2zzuEudkoZUVRHJECRcTTFplBCRCGkYS4REfGcy1nkNwVmKO11OQ2p0mjPXozowFAu1NXOdrZ0uHyiXzXuJcNJSm00oMsNzMvE0hIYnxYWSJZfF410eJh+bL6+kkU6nhVeJ/sZS4pCm6yiXSiiViiKenuI447H2EM56S/eSjL7/68/4gvJNrz6tOm6rMaOyA7aMerOFTEZd4mh+MM0an8d5GzYnu1fjsxHhpOo6saCO4VgQIV1HsVQSlX8WSMD0eEWX0XhQELzxwbhLJJtrbpZLWiQ5p+PJ9ZpqIBGiZKcwQkG9bXJJdrNla2dze9jq3b1GOGmdrSQUWYnnWg3Ping8hQ1QggmLx7d6mvxrR4Qzl8uBJOsk4VRVVUjUiT9o5FYP6AjomnCrd0sMr5dk9K/+wx8y+r9fdYKM0gmol00vs+svv3SnrdwTk1FvniEmoy5wJLf7pz//z5g84zyYBeZP2zDSVTJLRxaWRQznSraI1XzxuBZnJWnITDgHIiEMxSvWTCdVjFxA57hpN2Sus7XT8XZ5dqMd4aRkIfqSJ13qlESma6pvMZy1FttKQpG5L6nhSd4GFo/37Ej50pGM48wXS4JwUuwSWTnpIpc6DEO41YNdRjjrgeUlGf3gN571ZV/ee8mpa8atpzPKZLQzW8Rk1CXOd332frz+ta/2nXzaEU5dAxSjNuGUS7erYjQU0YTFs1Pu9m4knYQPWztdPiB1mvcy4bRaO3PFMkivky7S7Azqiojbi5sqFFmhMEspmcXjNcUQpTLZ4tm+s+dlz7SPq6uZahwnJQ4R4aQ4TuFWLxYE4aR4+Ugkglg07OXwHe/LSzJ6y7d2d3z+NOANr9zhy7g8aG0EmIy6PB1ePpiNpuKGcMq+ySV0eGEVJFdE7nYhdh3QkIzobXe3m+WSyN1PNdcpc13KJVGSU6cy161YcyZ7o9PX2ue9TjjlqltNKJLt62l4EvFk8fjWzlenWpkJp7BYiy8eCgLBEAr5nMhWpyx1itf1I46zUzjQOF6+8257yB8yet1OJqOdPDNOxmIy6gSlOvd4+WDSMLUIZ7EEUNLQiRhODZNDibqzl+UzF9MFzK3mq/eOxIIYjAawaTTpcvX2zbstc906S7Z2ervt64VwEipuEopqEU8ppsTi8d6eu3b0tprOIp3JCj1O0kDWNB16IIhisQCjXAIJ1BHhjERCiEUjXRPH2Q4savXp5Tvvw995rpNTr4717lec4su4PGhtBJiMujwdrTyYRDhzxRLmV/PVGE5yqbdCOM3TJ3c7WTyPreRFrWu6yN3eLlmlbiedbO10ebhNzdcT4aRluU0oktCQhidJ7EjxePl7Fo/37ux53RMRzkwmAxnHSS51IpyUpW6Uy1V5pGgfE856mLfyzqvV30e/5w8ZfefLmIx6/Vy57Y/JqEsEaz2YdoQzElCQKZDuZnMWTrspplYzQlR+djmH5dwJdzvJKlFih5fZ7ebM9eVcEaVyJTaOPFWDYc2XzHUrJmztdHmQARDhzBVKyBZKQvidvtD0StJQvdVbrZ3SUkkhKuQet9Zjr9WXlFISdbqN488ADFFjnqsWuT9/XvZAhLNQKCCdzZ3IVNdIjk4TJS6lHiclDq2HOE4vsWvUl5dk9O++v6fRcG35/M9fur0t/XKnrSPAZLR17ETLz//LV/G8F/xK1cLpJeGsWl/yBRxbSsPsbhdVNCIBYfX0injaJRFRDY+AagiCS3JJnSh/WW9L2Nrp7sDaEU6r8Hu3Zqk3WnmrFYrs+m0kHs8ano12o/2fyzhOIpylckXdjaycwWAY+VwGhlGGYpQRCgUQDYcRFF88uMSp253xkoze8YO9bqfTUvt3vGRbS+24UfsQYDLqEtt/uO/LeNXFOxHSG8dwOh2K3O2U4JPKVOKW6JJxnl5UMerWzHUrPmztdHpi1t63ngmnXKm0dmbyJVFsgS4FBkK6ilCgfha7FdW1xLPyKWl4CotnQGMNz9aOoSetiHBms3lQOAR9ETUUFYqqVQhnPissnBTHSYST9Dj7NY7TE7AdduIlGb3rYX/I6NUXMRl1uN0du43JqEuo3T6YdrJKXlQxMmeuUxxpughoOJG5PhQLIh4O+m7pJPjZ2tn8IaxFOOmrS/C427hXLZxmNLxIKDL3R8RzrXi8AlUxWDy++SPoWQsz4aS66lSeVVFUBEMRFAo5EcdJyUOaClAcJ9VUD4eCno3PHTWHgNt3nnm0f/jhvuYG9+juP7pwq0c9cTdeIcBk1CWSzTyYMrvdyypGdklEJJdUggJZ/tIvuSQ7aNna6ezA5QpFignCoQAAIABJREFUpDP5k2I4yaVuJZyRcEDoWfby5VVC0Roiu5IWsa9mDU8mnv6dEorjpGQvqqtuJpwUe57PZoSVk7RViXAG9EDP63H6h3R7R27mnddoJp96ZH+jW9ry+dsv2NKWfrnT1hFgMto6dqJlvQfTyypG3Z65boWRrZ2ND5aZcK5kCyiUDFFhiC5yE5stnOuBcEpEvEookv2drOFZSS6S4vGs4dn4LHp1h0wckiUuyaWu6QFRV50IJ8Vx0hcqcquHg0GO4/QK+A724yUZ/cx/H+jgzE8M9bYXb/ZlXB60NgJMRl2eDvlgSlmlVKaITKESxyarGG0YionqG04uc+b6aq6IgilzXVo6B2LhjtZcbzRvtnbWRqhfCSch4mVCUW3iWfmENTwbPaXefU6Ek+qn0xdkKnFJhFPVNITCUWQzq8LCSfuhaepxt3qQE4e8g9/3nrwko5991B8y+nvnMxn1/SBZJsBk1OWOfPjTX8L5F/6qqGLUjKySNYlI+F4tmeuhoN5VpJOtnfaHxY5wkhuScs/Ws4XTjIaXCUVW4ik1PKUkE0spufyj5aC5jOPM5PKCcJYNQ2SqhyMx5LJpUeaS4jhJFovKW6pK5b98rX8EvCSj//Tjg74A9rsv2uTLuDwoW0bbdgYaPZi9krluBYitnWsRaUQ4w7qCcEATiTAD8UpZ0/V4eZ1QJDGibOlsviiSiyoanpVvZ0w823eKJOEslsoijpMy1aGoCARCQkNYuNWPE85QKIigrjPhbN929EzPjd55zSzkvp8cauZ2z+598ws3etYXd+QNAmwZdYmjfDDtLJ0lAOEu0ui0WypbO0+gQoRzaSULqj1NMZyyipW0cPYL4SRE2pFQJJFupOEZCbNb1+WfpWpzM+Ekwk811Q0DIlNdEk5FgdDjpBKXuqaKTHXW4/RqB9ZfP16S0S88Nu0LQG88b8qXcXlQtoy27Qzcfve9eP75FyGgGEKAvpsy19naefK2M+E8GROvE4rMI5xMPA0RukD1valqEYvHe/OnieI4ycJJddWJcBLTJMJJsZwVt3pR/LZC9JlweoN6f/biJRn90k8P+wLiG16wwZdxeVAmo207A14+mF5Nst+tnUw47U9SvYQiqujVrFi8dZSTNTxZPN6rZ5r6kYlDMo7TgCJqqgeCoWocJwn/E9kk0slxnF6iz31JBLx85/3zz/who799LpPRbjvR7KZ3uSNePpitTKVfYztrEU6JIbnU4+GAsMCt5xjOWmemHQlF5rGWjmt4UkhDpUgYi8e38vxa20jCSec7ly+KTHVFrQjAl8slEcdJ8bRUdSgaDUNXOXHIC9y5D+cIePnO+9fHjzgf2MM7f/OcSQ974668QIDJqEsUvXww602lH62dTDgbH06ri52sZXTpKhAJasJKNhCLNO6oxh1mDU8Wj28ZxjUNZRxnoVRGNleopGopqshUJ8JZyFPVoVKVcFJYA8dxeoM99+IcgVwuj3yRMh+AUrksYukp3vjnj/03du7c6byjOnd+9edHPemn2U5+4/kTzTbh+9uMAJNRlwC3g4z2k7WTCaezA9jOhCI5g5PF4yufkGYk1Whn8Xhne0V3ScJJVmOK4zRnqss4TiKclDwU1DWQjBsTTuf48p2tIyBJpmEYgmCSbBeRTPpCJP4PHUq6jLL4v6qiCA+TolCct4b/+q8feEZGH3xipvWFuGi56+xxF625aTsQYDLqElU3ZLRfrJ1MOJs7ZO1MKKpFPKWYEovHO98rM+GkMpdk6ZSZ6kQ4i8U8SoWCsHIS2aR/HMfpHF++0zkCxWIR9He2LKyXtUhmpT+KKxZfMlUimar4/+ILUSjoaEA37zzrAF//xayjMb2+6dVnjXndJffnEgEmoy4BdPpgrndrJxPO5g9SuxOK/v/2zgRMiuLs4++ce7CwXHLLjaKCoIRLrlVQFBUVlDOgYgiiRI0GlMR8iTERP9Fo/FRABC8QkHAKi1ERBaJ4IAgKyH2DyH3t7uzM7Pe81VO7vcPsTO92z3T3zL98eISd7urqX1Vv/+e9So6IS/qwWJLF4+XPUcNT25zJTHVmyG5LB9fi9KaLTHXhVi/IF3GcHBLh9bgRx6kNK47SQEAtMqWrnE9TwnEcIUtmZJHpFEmJbnK7ja15rPWdp+H26OPN5ojR6y+DGNUyP4k8JmXE6PzclfTn56YLtvcN7kOPjhpwAecTp87Q6CdepI2bd0Y9Tn1i+IOptnbydp6BoLITT4aHfzG4qHK6m6pyUXSN24MmcjHEupYUnAWFAcrnP/7QtlGhE1M9aSgav3gnFMlry1JKJcXjlVcXhGf01S0Th2QcJ7sseU91zlaXcZzstnQ5lfhNxHHG+m2Bz6MRYFe5PxgUlswLRWZozwf2kUdwlcdLZGqdMSPF6PItR7Ve1tDjerasWaq/vHwf/WXidFq6fI34+dPjRlC/Pt3LvKZaT2g53tDBJ2lnKSFGd+w5SDPnf0JjRw8S0zhx0mwa2q8XNWtUuvAtH7d9137qndOB5OK869Ycat+2ZZnT/+9FudTq6o50tiAoXlDcMr1OqpzhETvy1MiuZKulE0lwyqLvfCMQnNGnM94JReqrxyoejxqepecqXHBypjoHxYkC8ETkK8gTlqaiogClez3C0snF31l8ooGAFgJR4zHZPS5iMyOLzPK4yrWMJV7HGClGP/vpWLyGGbXfnEtrlPr8n1PeF/9mI5U0Sj02akDEdz9rg0lvL6R7B91E1bIrxzzelBu04UVTQozytxhu8ptO+L8jzRsvyPHPTKWxDwy6QLSqj585bwn1uraHraydEJz6n9REJBRFF55K8Xhh8fS4KCuz4hnz+mlYpwd1pjrvqc5WJxadUnCWuNWDxYITcZzWmT+rjiR20g+PvERkcjwmJ/7IpB+t8ZhWvX/1uIwUoyu3HjfllrtfUr34upHe9WpxGmuA0nDVqd3lUa2psfpJ9c8hRiOsAF6I02bl0lsvPXHBNyN+EMObUWUujFyM0QQnJ6mwiEnlOpzlYZ2IhKJw4clu9sIAanhGmqdIiUMsON1ub3Ecp99XIHydbiHWlThOr9eNbS7Ls/CT/Ngyk35MjMe0A3IjxejqbSdMueWuLaoVX5c9on+aMJX+MX5kseGJDVZr1m6ip8aOEBtIRGt8/qhxL9CE8SOjelFNuVEbXRRiNMpksSjt1vHKqAvMyAezvOvmbF4B5eUXkjqGU7rU1YKTY1UzM7wimB2tbAKJSihSj0AWj0cNz9LzwoLT5/OLLS4L/SzMg8Ly5PakCcHJjd3qnKkuE4cQx4mnmwlET/pRxWOKNKDSmeVmx2PaYQaNfOd9uf2kKbfcuXnVUmJ04muzacIfRwq3OzctYlSdYxIrxtSUm7TZRVNCjJYVM1qvdk0RtCzN69+s3yKmT8aIWkGMSsHJyVA+f5B8xdYyIo+zxMIJwVm+Jy9RCUVyVBfW8FQCjF2OIuFmZwteKrraZaY6u9N5fXNpJLXgLPTlU1EwSFyBxuPiGE7EcZZvpSfP0WUVYS+pixk9HtPlchqeWZ48dLXfiZFidI1JYrRTmBjVYxmFm1772ol2ZEqIUflNJzybPnwRSXP7oZ+VoOqysu7VQI14MCE4jVnMkXpJZEJR2cJT+SRVa3iqE4c4jpOt95ypzn+4cRwnu9UdLMzdLhKiAdtcxu+hsFjPseMxoxdhT6Z4TItNTcThGPHOkx1/tcMcy2jHZiWWUb0xo1Jf7N53OGKVHjvMqRXGmDJiNF6wtT6YEJzxmgGl30QnFIULT1nDUxaPT7VSSlzLlOeA3eksONkBynuqs5VTCs5AoY+KioIh66YL5ZHi+0iY2nsii7CbeqMpeHGt7zwtaL7ZeUrLYYYf075pdqk+o2XTS3f8gFtzRIIS//vN2cto9N23i3jS8M8NH2yKdAgxqnOi1Q9mJMHJ4iRQpJRE8rqdotwTu9SrVcnUeeXUPT3RCUWSNAuufJ+fSmp4KvFmqSI8ZeKQP1hEHOPqDwREpjoXgJdNKY+kCE7e3YXDD7DNZfI8q1Yswp48dO1xJ0aK0W93mSNGf9WktBiNVmc0ktiUSc5yxhAzqn/tQozqZDh99mLq2LkLBKdOjpFOD08o4mPY4uZ2ErnF7iJOyspII08cErNi1fDkb8RcgzLZmjpTnROHWHiKAvAuT3HikL+wQMRxsltdxnGiPJK9V4Kdi7Dbm7z9Rm+kGF27+7QpANo1rmLKdXHRsglAjOpcHUY+mDqHYuvTE51QpIZ1ofBUanhyrUC2Zidb8fjwTHW23MvEIXatC9FfFAzFcSqWX8Rx2vPxSoUi7PacGfuO2sh33ro95ojRqxpBjFptBUKM6pwRIx9MnUOxxeksOgOBIJ0v8JM/KPdYZksnUYbXJdy7VSrFr4A7C8/SNTwpaYvHqzPVmTVvPcgxnJEEJ29z6XEjjtMWDxERxU764TtJjSLsdpmzZBmnke+89XvPmIKlbUOlhBOadQhAjOqcCyMfTJ1DsdTpZiUUqSHIGp6BYPIWj1dnqnMpTr5Xp8tdnKnOPBS3ekBYN0X9WY5dTkvOMANLPQTlHAyKsJcTGA43hYCR77wN+8wRo1deDDFqyuKJclGIUZ0zYuSDqXMopp1uVkKRvGF1Dc9kLB6vzlRnwSlLdctMdeYQCBRS0O8nF7vUQ4ITcZymPRKlLowi7NaYB4zCGAJGvvM27j9rzKDK2UvrBlnlPAOHx5sAxKhOwkY+mDqHEvfTzUwoiiQ8ebtM2ViAcfH4dK9bWP3s1sIz1YNFRUJ0qjPVOY6TyyM5HBxaUCTc6qjHad5Mowi7eexxZfMIGPnO++GAOWK0VX2IUfNWUOQrQ4zqnBEjH0ydQzH0dDMTisoSnrKGp12Lx4dnqgd5M0JRAN5bKo6TrZwUDBLiOA1d0po7ix2PiSLsmmHiwKQjYOQ7b9PBc6bwubxeJVOui4uWTQBiVOfqMPLB1DmUCp1udkKRHDS7on2FfpLF4+XP7VbDMzxTPZLg5HvjOE62cPLe2IjjrNDSLddJKMJeLlw4GATKJGDkO2/zIXPE6GV1IUattsQhRnXOiJEPps6hRD3dCglFcoCylFJJ8Xj+hGtWKqWU7FDDU52pLuM4nS5PsYWT70hYOIuEHEUcZ5wWN4qwxwksugWBMggY+c776fB5UzhfWgebzpgCPspFIUZ1zoiRD6bOoRSfbnZCkfo+YhWPt3INz/BM9UiJQxzHGRSik2uTlsRxer3upCyKb9QajdUPirDHIoTPQcA4AnIHojq1qsfcX93Id95Wk8ToJRCjxi0eg3qCGNUJ0sgHs7xDsUJCUXThqRSPFxZPj4uyMuNXP7S87OTxkTLV2X/OcZzq5vcXkEMlOPm+UB6p/NRRhL38zHAGCMSbAG9v+dOOfXRps4sTKka3/WyOZbRFbVhG472myts/xGh5iYUdnygxGiuhKM3rpsz0NJ13o/30C4vHO4RlMM3jEvuRW0l4qjPVueC+4jh3iALw6hYI+ISFU+1W5y0/7Zidr30mjTkydtIPXwdF2I2hjV5AwDgC83NX0u59h6lbxytp1VcbEipGdxzJM+5GytFTs1rWM4yUY/hJeSjEqM5pNVqMWiWhSI1FFo+3cg3PSJnqLH7C4zilWx1xnLEXPoqwx2aEI0DAzgRYiK5Zu4meGjuCftiys1iM+nw+On3mLBUVFdGqVavF/7kFg0G6qGZ1ysnJMeS2d/5ijhhtehHEqCETaGAnEKM6YVZUjJaVUMRFYziJJ83jpKyMNPJ43DpHqP10dfF4pYanUsLG5SgSbnazLZ6RMtV5jA6nS+w6JBviOKPPOYqwa38mcCQIWJ1AQUEB+QoLid8pgUBADFfsOhcMkqhXHAzVY+byHfz73OUmh8MhqnlMfG02fbji61K3eO/Am2jYnb3I5yskh5M9Xsp5XNeY248/bDRMjO4+mm8K3sY10025Li5aNgGIUZ2rQ4sYtVJCkbzdC4Wn8okVanhGy1RnocnN4XCScKsHgyI8wOV0CrGcynGcKMKu82HG6SCQIAJnzirF3tUCstAfEpJcnoN/xzmVOsRqARkIBsjpdApLpYMcFCwKUlFQOV4eLAUki0jeAlg53yUMG16Ph9LSIodzfbN+S8Ld9HuOmSNGG9WAGE3QUtd8GYhRzagiH6gWo1ZLKAoXnrKGpyweb2YppUiZ6uKXZngcp79A+cWcwuWRYsdjogi7zscYp4NAVALsTcjLz6dgsIjYhS21nz8QINaLwWIBGRKKTifxdry8jxqLR2mxlD8L8nmi7Ju0Viqi0e1yCYslt/RQDkDlrMTsFmSGGN17XPn9nujWsHri8isSfW92vR7EqM6Zm7sol9p36losmNJCLvZEJxTJ2+Ds8Hyfn0pqeCpfrc0QnhEz1YuKyOVNp2DQL6ybsnF5JCk4+dt8sm9ziSLsOh88nA4CMQicz8sTIlCr+9rt9giLYyDgJ5fbLf4uxGPoZ+JLscjBUwSm2JbX6SQXl9ZQWR/ZCpmZkbwxiVq8gVoX5/4T5ojRBtUgRrXOUaKOgxjVSTr3w4+oz4036OylYqfHquGZiOLxkTLVyeEkp9NNRZy37uBf2k4hPosCfnGjsh5nMpZHQhH2iq1lnAUCTCBcQLKbmq2P3PjvHAcp3ddOtiLyfw7FXc3CUHwe+pnfXyg+k25sp8sp7JBq97XX6yWnk0vPle2+xsyUJmCkGD1wUrEyJ7rVr1q6dF+ir4/rXUgAYlTnqjDywYw2lAuFp1LDk7+Vc8JTPIvHR8xULyJycCC8U7FuCpcTi85QAXi2GridjqSJ40QRdp0PCk5PSgLldV9LASnd18ovD/79wT8pInZfRxKQkdzXGenp5HYnLsEzKSewAjdl5Dvv0ClzxGjdbIjRCkx9XE+BGNWJ18gHUw7lwhqe/G0+vsXjI2aqi4R6BzndnmLByRbPQGG++HkyxHGiCLvOBwCn246AtD5yzd3CwkIxfpl9zV8oWWCy9VFEahcVkXRfi8QZFowiaVD5EsoWSUVAwn1tu4VQwQEb+c47fFpZf4ludaoo7zQ06xCAGNU5F3ofTFnDU7wMRHhnfIvHR8pUF4LT5aZggF9CJW51zlTnpt7mslKmPbIQYyf9KKzF3vEhCzO779gq43W7KC0N35x1Pho43SACLA65dI86/lG4rIsUYWiU+5qtjPwFk1ux+9rrpTQvngWDpjIputH7zlNDOHLGHDFaqzLEqNUWI8SozhnR+mCqSynFu3h8xEx1jqlypxXHcQqrRtCvBGLZZJtLFGHXuVhxesIIqN3XLCL5j4x/VGdfs9uaBaXH41UsjiHrI38pYl0oxGbIfS1iIgNKaR/+HsW2S+m+5qQZ/sPxj3BfJ2yaU/JCWt95WuD8clbJI0h0uyirdHhHXr6P/jJxOi1dvkYM5elxI6hfn+5lDou3T502K7f481jHJ/r+7Hg9iFGdsxbpwYxWw5OLx6d79W8xWVamutPNLzXFwsmB+8Li6VficoQFkN39bqel6nGiCLvORYjTDSFQ4POJsj1q9zVXcxRu6zLc18pzxfZEpe5j8U41UdzXigW+pPYji0hOoEH8oyHTiE7iTMBIMXrsnDlitEal0mKUxSW3R0cNoBOnztDoJ16kx0YNoPZtW15Ak4XrpLcX0r2DbqJq2ZVpx56DNGrcCzRh/MiIx8d5OpKme4hRnVO5fPlyat+xM/n8QeJdi2QNTyOKx0fMVBcmEd51qKQsEt+CyFS3WBwnirDrXFw4PSoB6b6WpXuk9ZHd1wEOMQlZFqX1kf8vYx2VjOwSAcmCsrDQJ4Qln8jle1gccmKe2n3t8XhEIXF2Y8N9jQWaigSMFKPHTRKj1VVilMXn+Gem0tgHBlGzRvXElKrFaaw5llbVTu0uj2pNjdVPqn8OMapzBcxfvIy6d+8mMtorUkqprEx1mTjEcZzC+iIsnYHiXTbMjOOMHY+JIuw6l1XSns7WR3XsoxCQIeujiFYME5Bq93WoPnjJMU6nEJDh7mvejUttfVTvPgPrY9IuLdxYgggYKUZPnlfKdiW6Vc1UtjblxpbNP02YSv8YP7JYjM7PXUlr1m6ip8aOEO/1aC2WJTXR92bX60GM6pw5LQ9mtEx13le9eItLKTjFS5lLNxWJ/YATUY8TRdh1LoQkPr087mv+0uQSa7pIsTIKd7Sb/KGsbbl9oagNGQgIqyP/TC0gpfUR7uskXlS4NdsS0PLO03pzp/LMEaPZGaXF6MTXZtOEP44Ubndu5RGj5bGiauWSisdBjOqcdfWDGTFTXVg1SwSnuBwbDtnKyQXhVdtcetz6Y0nDbwdF2HVOsA1PV7uvWRRy+R6Zfc3ua3ZV8zHsthaiMbR1IQtE3nmGd6BxOl0UELGSDuL9sJXC4XBf23A5YMggYCgBI8Xo6XylYkuiW5X0kjA3PZZRFqKHjxzXZEFN9D3a7XoQozpnbOGSD+maa7oQOUu+aRULTlYAcdpXHUXYdU6cxU6X7mufr1BkUEv3tbp0j0iSEbtZlWRfuz0eCvIXG26h4uEy/jGi+5pLd/EXoFD2tcfjFn9H/KPFFgSGAwIWJWCkGD1bYI4YzUorEaMVjRmFEDV2gUKM6uS5cMkyuqZLN9GLOo7T63UTWzrL21CEvbzEzDmeLYtsZZTZ1ywQ/X62dpdkX8uyPCwg+efSfc3WRxaQ7L5m66N0acvtC9Xua7GGhMubiN3XLDTT09OEWxvxj+bMPa4KAqlMwEgxes6nGGwS3Sp5Q3kNoQtHy6aXMaEDbs0pTlCCa974GUsZMcoxIH9+brogeN/gPqKEQ3iTi27j5p1Rj1Ofp/XBjJ30w72iCLvxS7ykRykg8/MLhACU7mtWehzXG+6+ljvPSPc1C0gWlmr3NQtFsRUqb1bAMb+h7Gv+uZvjfTmGMpR9DQEZz9lF3yAAAokgoPWdp2UseYXmiNEMT2kxGq3OaLgYDdcJ8j5v7tkJ7notk17GMSkhRjkmZOb8T2js6EECw8RJs2lov17FmXOSDR+3fdd+6p3TQdQaCy/3EInhhx99RF26dBPiRtlFSak4qAhL3sBdOUvubMJ7yYtkDaeD0jxuWLdiLN6KuK+5S6Wcj2J95LlhayM3mX2tFpBsdWTRKN3X/Hevl0v4wH2t43cLTgUBEEhCAkaK0STEg1uqIIGUEKNsFeUmd1QI/3ckdvxNqSzRqj5+8dJl1KVrN4LIVKhI6yPXfuS/q93X0vrIPxN+Z6HSS9zX3vR08otSPUryjGxluq9DIh/u6wo+/TgNBEAABMpJAGK0nMBwuCYCEKNlYCpLsPKDGN5ycnI0wbbqQWx95FbKfR0y6Zblvpb3IuMf3R4vFRYUiB9z9rWwCnPjElWh7QvZIqx2X3PMo0igQfyjVZcGxgUCIAACpQhAjGJBxIMAxGgEqhyc3PjiOpp2UzDrwVS7r/kWRPwjOZS9rEM6kEUhxzjK0j18HLuvlV1mWBeWuK9l/Ud2X3OiDTe1+5qtj9zgvo7HY4g+QQAEQMAeBMx659mDDkZZUQIpIUbLihmtV7sm/WXidJLbeFVkJwWtD2Y097V668Jw9zVPrCctTbiv2frI7msZ/1ge9zX3g/I9FX1McB4IgAAIgAAT0PrOAy0QKA+BlBCjDCRSNn34nrLfrN9C9zzybCl+T48bEdVCOm/BIurU+RpxDifLcGPrI7uvpYD0+3zCCsmNC4qLBvd1edYpjgUBEAABELAAAYhRC0xCEg4hZcRovOZuydJc6tq1K2VkpCuCFPGP8UKNfkEABEAABEwmADFq8gQk6eUhRnVO7OIlnE3fVWcv2k9XYkLN2bVC+yhxZDIQkOEgyXAvuAfrEsDvM+vOTaSR/bR5E9k9addexFNjtBCjFZxnmVWfl19AXbspOzChxZcAx92igUC8CfAXPlF+DA0E4kjAbr/PvvziC0GjerWqEKNxXBep2jXEaKrOPO4bBEAABEAABEAABCxAAGLUApOAIYAACIAACIAACIBAqhKAGE3Vmcd9gwAIgAAIgAAIgIAFCECMWmASMAQQAAEQAAEQAAEQSFUCEKOpOvO4bxAAARAAARAAARCwAAGIUQtMAoYAAiAAAiAAAiAAAqlKAGI0VWce9w0CIAACIAACIAACFiAAMWqBScAQQAAEQAAEQAAEQCBVCUCMpurM475BAARAAARAAARAwAIEIEYtMAkYAgiAAAiAAAiAAAikKgGI0VSdedw3CIAACIAACIAACFiAAMSoBSYBQwABEAABEAABEACBVCWQcmL0m/Vb6J5HnhXzfXPPTvTU2BGUke6NOP879hykmfM/obGjBxUfc+LUGRr9xIu0cfNOcc7T40ZQvz7dKfzn6s/m566kPz83XRxft3YNmvLcY9SsUT1Sj4U/e+ulJ6h925apuhZx3yAAAiAAAhYkEP5+u29wH3p01AALjhRDsiuBlBKj/EBNeHkmjX9oKFXLrkz/nPI+det4ZUQByJ9Nm5V7gWBVn6PujxfA+Gem0tgHBgmhqW4z539MfXp2EtdkATr3g8+ECF65Zj01b9KgWJjKn5clju26yDBuEAABEAAB+xJgw8z2Xfupd04Hysv30V8mTqe7bs2B8cS+U2q5kaeUGGUhuOqrDcXf6ML/HT47kSyjbOXcve+w6EP9eX5BQSmLaVnfHNXnq68X6VqWWy0YEAiAAAiAQEoTYCNMWYaXlAaDm9dFAGJUJU61iNFwd0Uk13qkb44sNkeNe4GubtXigtAAPn7ipNk0tF+vC6yqumYXJ4MACIAACICAQQSkxxAhZQYBRTfFBCBGyyFGw0VjNBHJFlBuHE8azQKKb5l4GkEABEAABOxEIFqIm53uA2O1DoGUEqPRYkbZZf/ClPdp0rO/F7Gd3MJd5+EWT7WQ5OMjxdS0atmU5i39nPrf3EMkQan7/GHLzguuaZ2lgZGAAAiAAAiAAIlcB24ywRZiFKvuMC21AAAQOklEQVTCaAIpJUYZXlnZ9OFiVLojJHDplpDu9kM/HxMfyWz6sn7Ox6j7UmfTh19D/ZnRE43+QAAEQAAEQKAiBMLfb8imrwhFnBONQMqJUSwHEAABEAABEAABEAAB6xCAGLXOXGAkIAACIAACIAACIJByBCBGU27KccMgAAIgAAIgAAIgYB0CEKPWmQuMBARAAARAAARAAARSjgDEaMpNOW4YBEAABEAABEAABKxDAGLUwLn48afd9MLkObTux+3Us+vV9PBv+tPF9WoZeAV0BQIgAAIgAAIgAALJRQBi1KD55NJQr7y5gP78yHBq3qQ+HTpynF59cwHdM+BG8W80EAABEAABEEgWAufzCmjp8i/p6PFT1KNTG7qsRSNyOBzJcnu4jwQTgBg1APj5vHz66/Nv0dD+11Oby5sV97juh2204r/r6KHf9Ce3y0X+QED8Hw0EQAAEQAAE7ErgzNnz9MzLMynnmrZ0xaWN6d1/f0Qtmzek3jkdKDMjza63hXGbSABi1AD4GzbtoAXLVtH43w0lr9dT3OP2XQdo5vyPadyDQ8jnK6QXX59Lo4b3pbq1qhtwVXQBAiAAAiAAAoknkLv8Kzpx6jQNuaOXsIYeOHxUbO7C78Ca1bMTPyBc0fYEIEYNmEJ20a+KsMc9P7D7Dx2hkUNvofm5q8SV+vXpBleGAczRBQiAAAiAgDkEXntrIV3b5Srhmi8qKqLps5dRg7o16YYe7Wnztj30+ZrvhSi9uWdnWErNmSLbXRVi1IAp23vgCL3x3hIaO3oQVc7KFD0eOXqS/v6vd+iRkXcJ1/xTL7xFg26/jq5q1QLfHA1gji5AAARAAATMITB9di5Vykin/rf0oK079tHsRZ/SE2OGCKPMJ6vW0sO/uZO27dpPn65eR/cMvJGaNqwLI4w5U2Wbq0KMGjBV/M1w2adf06f//Y6G3NGTzp0vEOJ0YN/r6Poe7WjKOx9QdpVKxHvPszt/WP8bqFO7y8WVOY5028791KxRvVIufgOGhS5AAARAAARAwHAC+QU+WvjhavrPZ1/T4SPH6dk/jaLGDerQc6/NojEj+olQNH4vvjlnGVWtkkX9+nQ3fAzoMLkIQIwaOJ+cQc8JS77CQrq++6+ofp2a9D3Hk+auosfHDKGMdK9wYfAxD9xzu4izya5ciT77cj1163ClEKxoIAACIAACIGAHAqu/3khfrv2Rfv/bu2jP/p9p5vxPhIeQ33XsMZz8ziJ6/MEhwugy5d3FQqhWCXkP7XB/GGPiCECMxpF1Xr6Pnn1lJg3sey1dfkljcSV1HCk/yHOXfEZPPjycatWsGseRoGsQAAEQAAEQMI7AqdPn6H9ffY/uH34bNaxfi/jff3vxbbrl+s7U8arL6dW3FlDndldQl/at6L0Fn9CshZ+K+NFGDWrTuAcG00U18M4zbjbs3xPEaBzncMfuA/S3F9+h0cNvE275X46dpAn/9x6NGXGHiKFZs3YTrfp6g/hWiZJPcZwIdA0CIAACIGAoAXbDnz5znqpUzhS1RgsL/VQ1u7KoPfrNui1UKTNdZNfvP3yU3pqzrDingo/dtG0PLV+1lkYM6iOELOqTGjo1tuwMYjTO08Y1SF+ZvoC+WreZnE4njf/dELq69SXiW+QzL88QpZ7q1a5BM+Z9TJ9/+T21btmEfvvrW6lqdlacR4buQQAEQAAEQEA/gf2HfqGJr82m22/qSk0urksvT5tPD9x9GzVuWEeUNOQwNJknIa/GSb5TZ35ArVo2pb43XANBqn8abN0DxKhJ0zc/dyXl5RfQgL7X0qtvLqRLml5MN13Xgbbu3C9cGo8/OJgyM9JNGh0uCwIgAAIgAALaCXAt7TXfbaIt2/fSTdd1FFth898X/ee/9PuRd4oE3WMnTosts4+fPEMDb7uWWjZvRP83bZ6IK0XOhHbWyXgkxGgCZ1XuwMSB3bxV6LgHBwv3Bu9ewdbRs+fyaEi/XvT+4hV076CbqFp25QSODpcCARAAARAAgfgReH3GB1Svdk3qndNeeAtfnjaPundsQ/ff3ZfWbdxGX323mYYP6E2VK2XAUhq/abBkzxCjCZqWQn9AfAOsXq0Kbdi0k27r3YV6dG5DXDD/2w0/ibjSfQeP0OszlpDT6aCH7+svaretXPM9denQWpSDYtc9f/s8ez6fqleFUE3Q1OEyIAACIAACBhDg+qRZmRl05y05xFuKygSoatlZ9Pd/vStqcJ87ly+uNO7BQfAOGsDcLl1AjCZwplhIbt6+V5Rz4oxCDtpmt8VLU/9N9w3uQ40vriNqs53PK6DnJ8+hVpc2odtv7Eobt+ykWQuWiwL663/cRjt2HxTfJJH0lMDJw6VAAARAAAR0EeD6pJwf8fW6zeLdx9uJ8q6Eiz/6gs6dz6fBt18n+v/nlLmiwgzvd89/5GYyui6Oky1NAGLUAtNzkPf1fX0unT5zTmQXVqtameYt/Zz+cP/A4kL4u/cdpmPHT9GTz02jh+7rT71zOggL6o8/7Sav100tmjSwwJ1gCCAAAiAAAiAQnQBn3n+8cq0o+3Q+v4BemjpXZNuzZZRD15595T268doOQqDyu/Dvj/9GZN2jJS8BiFELzW2Br5BcLqeIndmx5yANuk35lsiNLaac2ETkEAWFz5zLo7vv6i0K5zuIqF6dmha6EwwFBEAABEAABGITmLVwuQg7YwOLfM9lpKeJXZv432wlvbZLW1GFBi15CUCMWnBuuR4pl8a4f3hfsYsTN/VuFjLr8D+ffSMy8tmVjwYCIAACIAACdiawc+8hmvLOYvrjQ78W2fX83uMkJ973Phgsog8+/oKyMtPphpz2SPC180RHGDvEqEUnlF33U2Z8QD//coL+59G7af7SldT6sqYi6Ykbbz0qXRsch3Pk6Al8c7ToXGJYIAACIAACsQms+GIdZVfOoqtbtxBbiE5+e7F473Xp0IpefmMetW3VgjjZife85yTfZo3rx+4UR9iCAMSoDaaJ3fdcUPiuW3Po0mYXC9fF9NnLqEFdLpHRQWTkcz23YXfeYIO7wRBBAARAAARAIDqBTVt305zFK+iJMUNFaBqXPOR40t8Ou5X2HThCXKHmkqbIlUiWdQQxapOZ3LX3EE2cNFskOPH+vuqHlAvo16iWLaym/G3y2/U/UfMm9UUwOBoIgAAIgAAI2I0Alzpk1zxvN8qJTHVqVad3534kQtNYkKKajN1mNPp4IUZtNp/8bZAL5l/b5Spqc3kzMfrX3l5EXdu3oqaN6olY09oXVaNh/a8vzsS32S1iuCAAAiAAAiAgCHAcKW+pPfaBQZRdOVNk2rNRhkshoiUPAYhRG84lf1t0OEjUKWUXPtcp7daxtahF2u/m7mJHi2UrvqI5i1aIu+vVvR0Nvu06iFMbzjWGDAIgAAKpToBzKP71xjzavvsAde/UhkYP74v3WZItCohRm0/o6bPn6bG/vibu4slHholi+hxDOm1WLv31D/dQ7ZrVaH7uKsqqlCG2YEMDARAAARAAARAAASsRgBi10mxUYCxsJd1/6AjVrF5VxJJyMeGJk+ZQ1w6taPXXP1DN6lWoeeP6dPL0WVG3Td2+27iVuJh++M8rMAycAgIgAAIgAAIgAAIVIgAxWiFs1j2J3fbPT5pNg27vSU0b1hVujTfeWypibDgTX93mLvmM0rwe6ntDF+veEEYGAiAAAiAAAiCQ1AQgRpNwetes3URcr23k0FvKzKjn8lAcg3Ndl6voylAiFKPgBCm3yyniUdFAAARAAARAAARAIN4EIEbjTdiE/llobt62h16fsYTS0jz05MPDqHJWZqmRnM8roH9OeZ/uGXgjNah7kfhs7Yat9Mqb8+mpP9xLDevXNmHkuCQIgAAIgAAIgECqEYAYTbUZD90v7+w0+d3F9If7B4pY02Wffk3LV6+lxx8cQrVqVk1RKrhtEAABEAABEACBRBOAGE00cYtcjy2nucu/otF330azFi4X244+dF8/CgSDYj/gy1o0RFFhi8wVhgECIAACIAACyUwAYjSZZzfKvX3+5fe0bdd+OnL0JNWtVZ2G3XWDEJ/HT56hT1Z+S8tXf0djRvSj1i2biF7O5+WLY7l0FOJJU3TR4LZBAARAAARAIA4EIEbjANUOXX66+jv6x79m0JO/H0Y5nduKIe/Z/zP9cuwktWzekPLyffTC5Dn02P0DhduetxzlbdiG3NELYtQOE4wxggAIgAAIgIBNCECM2mSi4jFMrknq8bhF199v2kGvz/iA7ripG7HVlEs+cW3SPz70a7HL0yvT59OjowZQjWpV4jEU9AkCIAACIAACIJCiBCBGU3Tiw2+bLZ8cL3rXLTnE2fhvzllGVatkUd/eXWjy24up9WVNqUfnNkKYej1uWEexbkAABEAABEAABAwhADFqCEb7d8Lu+b+/9C5dcWljalC3Fn3+5XphFT1w+Beas3gFPTFmqIgbfX7SHBoz4g6qX6em/W8adwACIAACIAACIGA6AYhR06fAOgPwBwJ0+sx5mjpzCfXo1IbaXNFc7ObU/+budFmLRvTegk8oIz2tePtQzsDn+qVcGgoNBEAABEAABEAABCpCAGK0ItSS/Bze7543YFq5ZgNt3LyT7r+7Lx08fIwmv7NI1CHNrlKJTp0+R8+8PINGDe8rth1FAwEQAAEQAAEQAIGKEIAYrQi1FDnn0JHjIj6Uk5Y4ual54/p0Xderxd3L7PrBt/ekLdv30udrvhdbj97cszMspSmyPnCbIAACIAACIGAEAYhRIyimQB/TZ+dSVmYG3XlLDu0/9Au9PG0ePTFmCG3aupvWrN1EIwb3EaWhFixbRWNHDxLWUzQQAAEQAAEQAAEQiEUAYjQWIXwuCOQX+Oj9xSvoP599Q7v2HaIJ439Lba9oTk+/9A6lp3mpRdMGIhN/xryPqGe3dtSsUT2QAwEQAAEQAAEQAIGYBCBGYyLCAWoCPl8h/ffbH6jT1VfQwZ+P0r+XfE6PjLyTtu7cT2/MXCJKP/1t7Ajsb49lAwIgAAIgAAIgoIkAxKgmTDgoEgFOYnp+8hy6f3hfUeqJE59+PnqC6lxUDXVIsWRAAARAAARAAAQ0EYAY1YQJB5VFYNfeQ/S/r86iFk0aUK/u7ajVpU3I5XICGAiAAAiAAAiAAAhoIgAxqgkTDopGgC2i7LLnLUQvqlEVsEAABEAABEAABEBAMwGIUc2ocCAIgAAIgAAIgAAIgIDRBCBGjSaK/kAABEAABEAABEAABDQTgBjVjAoHggAIgAAIgAAIgAAIGE0AYtRoougPBEAABEAABEAABEBAMwGIUc2ocCAIgAAIgAAIgAAIgIDRBCBGjSaK/kAABEAABEAABEAABDQTgBjVjAoHggAIgAAIgAAIgAAIGE0AYtRoougPBEAABEAABEAABEBAMwGIUc2ocCAIgAAIgAAIgAAIgIDRBCBGjSaK/kAABEAABEAABEAABDQTgBjVjAoHggAIgAAIgAAIgAAIGE0AYtRoougPBEAABEAABEAABEBAMwGIUc2ocCAIgAAIgAAIgAAIgIDRBP4f9FuypQHEDJEAAAAASUVORK5CYII=",
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = plot_parallel_coordinate(study, params=[\"qgrams\"])\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "5454baf8-1efb-4e39-8d3d-e3dfb40fb564",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "type": "scatter",
+ "xaxis": "x",
+ "yaxis": "y"
+ },
+ {
+ "autocontour": true,
+ "colorbar": {
+ "title": {
+ "text": "Objective Value"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "connectgaps": true,
+ "contours": {
+ "coloring": "heatmap",
+ "end": 0.6000000000000001,
+ "size": 0.05,
+ "start": 0.2
+ },
+ "hoverinfo": "none",
+ "line": {
+ "smoothing": 1.3
+ },
+ "reversescale": false,
+ "showscale": true,
+ "type": "contour",
+ "x": [
+ 2.65,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 10.35
+ ],
+ "xaxis": "x4",
+ "y": [
+ 0.7027288870821999,
+ 0.7144467000567123,
+ 0.7395142458665667,
+ 0.7662074140900922,
+ 0.7808721328696897,
+ 0.7929630924927731,
+ 0.800827464931477,
+ 0.8038691888459086,
+ 0.8174855005418883,
+ 0.8294161917860436,
+ 0.8380947452182991,
+ 0.8389446905059951,
+ 0.8429055971815752,
+ 0.8517624194151302,
+ 0.8563838420348091,
+ 0.8596838078185782,
+ 0.8601034741266624,
+ 0.875183707875409,
+ 0.876132015812083,
+ 0.8777239752940389,
+ 0.8948541483847852,
+ 0.8957263433574094,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9045625386867897,
+ 0.9174470432736699,
+ 0.9196762030928591,
+ 0.9204153410113451,
+ 0.9275690010126776,
+ 0.9483018131894073,
+ 0.9488029595469605,
+ 0.9605207725214728
+ ],
+ "yaxis": "y4",
+ "z": [
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.28333512688101153,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.39784787794552795,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4037641499510466,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ 0.1907552827778649,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ 0.20307681243216183,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.33330840997266736,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ 0.19103604207409036,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3639219361818585,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.36391860524716446,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.30337436666113177,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.24080227825457184,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42745701777773953,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4633111426794054,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.46330684097155167,
+ null
+ ],
+ [
+ null,
+ 0.1862693152521443,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.46330684097155167,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3480318083295157,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.40750648259180683,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ 0.2123846817548284,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.6482633708392243,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.22112929238626436,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.5274133516352982,
+ null
+ ],
+ [
+ null,
+ 0.18531875170393172,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ 0.20993148042255388,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258435026582389,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258414249026382,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ]
+ ]
+ },
+ {
+ "marker": {
+ "color": "black",
+ "line": {
+ "color": "Grey",
+ "width": 2
+ }
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 8,
+ 5,
+ 4,
+ 7,
+ 10,
+ 3,
+ 4,
+ 9,
+ 9,
+ 3,
+ 10,
+ 10,
+ 10,
+ 7,
+ 9,
+ 10,
+ 6,
+ 8,
+ 8,
+ 10,
+ 6,
+ 10,
+ 9,
+ 10,
+ 9,
+ 8,
+ 10,
+ 9,
+ 10,
+ 7
+ ],
+ "xaxis": "x4",
+ "y": [
+ 0.8380947452182991,
+ 0.7929630924927731,
+ 0.8038691888459086,
+ 0.7144467000567123,
+ 0.8517624194151302,
+ 0.9174470432736699,
+ 0.7808721328696897,
+ 0.800827464931477,
+ 0.7395142458665667,
+ 0.8596838078185782,
+ 0.8957263433574094,
+ 0.9045625386867897,
+ 0.9483018131894073,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9488029595469605,
+ 0.8777239752940389,
+ 0.9204153410113451,
+ 0.875183707875409,
+ 0.8294161917860436,
+ 0.9196762030928591,
+ 0.8563838420348091,
+ 0.8948541483847852,
+ 0.8429055971815752,
+ 0.876132015812083,
+ 0.9275690010126776,
+ 0.8601034741266624,
+ 0.7662074140900922,
+ 0.8174855005418883,
+ 0.8389446905059951
+ ],
+ "yaxis": "y4"
+ },
+ {
+ "autocontour": true,
+ "colorbar": {
+ "title": {
+ "text": "Objective Value"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "connectgaps": true,
+ "contours": {
+ "coloring": "heatmap",
+ "end": 0.6000000000000001,
+ "size": 0.05,
+ "start": 0.2
+ },
+ "hoverinfo": "none",
+ "line": {
+ "smoothing": 1.3
+ },
+ "reversescale": false,
+ "showscale": false,
+ "type": "contour",
+ "x": [
+ 2.65,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 10.35
+ ],
+ "xaxis": "x7",
+ "y": [
+ 0.015833684256437684,
+ 0.056875572246384,
+ 0.10683080190597335,
+ 0.1331382386125572,
+ 0.16506027753408292,
+ 0.1658021229910926,
+ 0.23323189289645876,
+ 0.2644175908762265,
+ 0.3138589895822442,
+ 0.34701140984689427,
+ 0.35743796412615136,
+ 0.38959392590704467,
+ 0.40948711496314116,
+ 0.44798780615040656,
+ 0.4726717116974519,
+ 0.5035164496571632,
+ 0.5114877692227677,
+ 0.5795471650862246,
+ 0.5808143891387648,
+ 0.6036793964995847,
+ 0.6110684353074003,
+ 0.630359849425508,
+ 0.6392297322807924,
+ 0.669716499745008,
+ 0.6726766450815258,
+ 0.6808222011656786,
+ 0.7435281257384602,
+ 0.7454617001392468,
+ 0.7695051840189288,
+ 0.830695162394687,
+ 0.8777133320453102,
+ 0.9187552200352566
+ ],
+ "yaxis": "y7",
+ "z": [
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ 0.1862693152521443,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ 0.1907552827778649,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ 0.19103604207409036,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258414249026382,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4633111426794054,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.46330684097155167,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ 0.20307681243216183,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.30337436666113177,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.24080227825457184,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.28333512688101153,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.33330840997266736,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4037641499510466,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42745701777773953,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3480318083295157,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ 0.2123846817548284,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ 0.20993148042255388,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.22112929238626436,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3639219361818585,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.6482633708392243,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.5274133516352982,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.40750648259180683,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.36391860524716446,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258435026582389,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.46330684097155167,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.39784787794552795,
+ null,
+ null
+ ],
+ [
+ null,
+ 0.18531875170393172,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ]
+ ]
+ },
+ {
+ "marker": {
+ "color": "black",
+ "line": {
+ "color": "Grey",
+ "width": 2
+ }
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 8,
+ 5,
+ 4,
+ 7,
+ 10,
+ 3,
+ 4,
+ 9,
+ 9,
+ 3,
+ 10,
+ 10,
+ 10,
+ 7,
+ 9,
+ 10,
+ 6,
+ 8,
+ 8,
+ 10,
+ 6,
+ 10,
+ 9,
+ 10,
+ 9,
+ 8,
+ 10,
+ 9,
+ 10,
+ 7
+ ],
+ "xaxis": "x7",
+ "y": [
+ 0.34701140984689427,
+ 0.3138589895822442,
+ 0.1331382386125572,
+ 0.38959392590704467,
+ 0.1658021229910926,
+ 0.8777133320453102,
+ 0.10683080190597335,
+ 0.40948711496314116,
+ 0.830695162394687,
+ 0.056875572246384,
+ 0.630359849425508,
+ 0.6392297322807924,
+ 0.669716499745008,
+ 0.6036793964995847,
+ 0.5808143891387648,
+ 0.7454617001392468,
+ 0.5114877692227677,
+ 0.7435281257384602,
+ 0.5035164496571632,
+ 0.6808222011656786,
+ 0.5795471650862246,
+ 0.23323189289645876,
+ 0.2644175908762265,
+ 0.4726717116974519,
+ 0.6726766450815258,
+ 0.16506027753408292,
+ 0.7695051840189288,
+ 0.44798780615040656,
+ 0.6110684353074003,
+ 0.35743796412615136
+ ],
+ "yaxis": "y7"
+ },
+ {
+ "autocontour": true,
+ "colorbar": {
+ "title": {
+ "text": "Objective Value"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "connectgaps": true,
+ "contours": {
+ "coloring": "heatmap",
+ "end": 0.6000000000000001,
+ "size": 0.05,
+ "start": 0.2
+ },
+ "hoverinfo": "none",
+ "line": {
+ "smoothing": 1.3
+ },
+ "reversescale": false,
+ "showscale": false,
+ "type": "contour",
+ "x": [
+ 0.7027288870821999,
+ 0.7144467000567123,
+ 0.7395142458665667,
+ 0.7662074140900922,
+ 0.7808721328696897,
+ 0.7929630924927731,
+ 0.800827464931477,
+ 0.8038691888459086,
+ 0.8174855005418883,
+ 0.8294161917860436,
+ 0.8380947452182991,
+ 0.8389446905059951,
+ 0.8429055971815752,
+ 0.8517624194151302,
+ 0.8563838420348091,
+ 0.8596838078185782,
+ 0.8601034741266624,
+ 0.875183707875409,
+ 0.876132015812083,
+ 0.8777239752940389,
+ 0.8948541483847852,
+ 0.8957263433574094,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9045625386867897,
+ 0.9174470432736699,
+ 0.9196762030928591,
+ 0.9204153410113451,
+ 0.9275690010126776,
+ 0.9483018131894073,
+ 0.9488029595469605,
+ 0.9605207725214728
+ ],
+ "xaxis": "x2",
+ "y": [
+ 2.65,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 10.35
+ ],
+ "yaxis": "y2",
+ "z": [
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.1862693152521443,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.18531875170393172,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ 0.1907552827778649,
+ null,
+ null,
+ 0.19103604207409036,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.20307681243216183,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.2123846817548284,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.20993148042255388,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ 0.28333512688101153,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.24080227825457184,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.22112929238626436,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.30337436666113177,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3480318083295157,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258435026582389,
+ 0.3258414249026382,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ 0.39784787794552795,
+ 0.4037641499510466,
+ null,
+ null,
+ 0.33330840997266736,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.40750648259180683,
+ null,
+ 0.4070833316320489,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3639219361818585,
+ 0.36391860524716446,
+ null,
+ null,
+ 0.42745701777773953,
+ 0.4633111426794054,
+ 0.46330684097155167,
+ null,
+ 0.46330684097155167,
+ null,
+ null,
+ null,
+ null,
+ 0.6482633708392243,
+ null,
+ null,
+ 0.5274133516352982,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ 0.42621654591235925,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ]
+ ]
+ },
+ {
+ "marker": {
+ "color": "black",
+ "line": {
+ "color": "Grey",
+ "width": 2
+ }
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 0.8380947452182991,
+ 0.7929630924927731,
+ 0.8038691888459086,
+ 0.7144467000567123,
+ 0.8517624194151302,
+ 0.9174470432736699,
+ 0.7808721328696897,
+ 0.800827464931477,
+ 0.7395142458665667,
+ 0.8596838078185782,
+ 0.8957263433574094,
+ 0.9045625386867897,
+ 0.9483018131894073,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9488029595469605,
+ 0.8777239752940389,
+ 0.9204153410113451,
+ 0.875183707875409,
+ 0.8294161917860436,
+ 0.9196762030928591,
+ 0.8563838420348091,
+ 0.8948541483847852,
+ 0.8429055971815752,
+ 0.876132015812083,
+ 0.9275690010126776,
+ 0.8601034741266624,
+ 0.7662074140900922,
+ 0.8174855005418883,
+ 0.8389446905059951
+ ],
+ "xaxis": "x2",
+ "y": [
+ 8,
+ 5,
+ 4,
+ 7,
+ 10,
+ 3,
+ 4,
+ 9,
+ 9,
+ 3,
+ 10,
+ 10,
+ 10,
+ 7,
+ 9,
+ 10,
+ 6,
+ 8,
+ 8,
+ 10,
+ 6,
+ 10,
+ 9,
+ 10,
+ 9,
+ 8,
+ 10,
+ 9,
+ 10,
+ 7
+ ],
+ "yaxis": "y2"
+ },
+ {
+ "type": "scatter",
+ "xaxis": "x5",
+ "yaxis": "y5"
+ },
+ {
+ "autocontour": true,
+ "colorbar": {
+ "title": {
+ "text": "Objective Value"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "connectgaps": true,
+ "contours": {
+ "coloring": "heatmap",
+ "end": 0.6000000000000001,
+ "size": 0.05,
+ "start": 0.2
+ },
+ "hoverinfo": "none",
+ "line": {
+ "smoothing": 1.3
+ },
+ "reversescale": false,
+ "showscale": false,
+ "type": "contour",
+ "x": [
+ 0.7027288870821999,
+ 0.7144467000567123,
+ 0.7395142458665667,
+ 0.7662074140900922,
+ 0.7808721328696897,
+ 0.7929630924927731,
+ 0.800827464931477,
+ 0.8038691888459086,
+ 0.8174855005418883,
+ 0.8294161917860436,
+ 0.8380947452182991,
+ 0.8389446905059951,
+ 0.8429055971815752,
+ 0.8517624194151302,
+ 0.8563838420348091,
+ 0.8596838078185782,
+ 0.8601034741266624,
+ 0.875183707875409,
+ 0.876132015812083,
+ 0.8777239752940389,
+ 0.8948541483847852,
+ 0.8957263433574094,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9045625386867897,
+ 0.9174470432736699,
+ 0.9196762030928591,
+ 0.9204153410113451,
+ 0.9275690010126776,
+ 0.9483018131894073,
+ 0.9488029595469605,
+ 0.9605207725214728
+ ],
+ "xaxis": "x8",
+ "y": [
+ 0.015833684256437684,
+ 0.056875572246384,
+ 0.10683080190597335,
+ 0.1331382386125572,
+ 0.16506027753408292,
+ 0.1658021229910926,
+ 0.23323189289645876,
+ 0.2644175908762265,
+ 0.3138589895822442,
+ 0.34701140984689427,
+ 0.35743796412615136,
+ 0.38959392590704467,
+ 0.40948711496314116,
+ 0.44798780615040656,
+ 0.4726717116974519,
+ 0.5035164496571632,
+ 0.5114877692227677,
+ 0.5795471650862246,
+ 0.5808143891387648,
+ 0.6036793964995847,
+ 0.6110684353074003,
+ 0.630359849425508,
+ 0.6392297322807924,
+ 0.669716499745008,
+ 0.6726766450815258,
+ 0.6808222011656786,
+ 0.7435281257384602,
+ 0.7454617001392468,
+ 0.7695051840189288,
+ 0.830695162394687,
+ 0.8777133320453102,
+ 0.9187552200352566
+ ],
+ "yaxis": "y8",
+ "z": [
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.1862693152521443,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ 0.1907552827778649,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.19103604207409036,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258414249026382,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4633111426794054,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.46330684097155167,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.20307681243216183,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.30337436666113177,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.24080227825457184,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ 0.28333512688101153,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.33330840997266736,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ 0.4037641499510466,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42745701777773953,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3480318083295157,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.2123846817548284,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.20993148042255388,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.22112929238626436,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3639219361818585,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.6482633708392243,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.5274133516352982,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.40750648259180683,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.36391860524716446,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258435026582389,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.46330684097155167,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ 0.39784787794552795,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.18531875170393172,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ]
+ ]
+ },
+ {
+ "marker": {
+ "color": "black",
+ "line": {
+ "color": "Grey",
+ "width": 2
+ }
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 0.8380947452182991,
+ 0.7929630924927731,
+ 0.8038691888459086,
+ 0.7144467000567123,
+ 0.8517624194151302,
+ 0.9174470432736699,
+ 0.7808721328696897,
+ 0.800827464931477,
+ 0.7395142458665667,
+ 0.8596838078185782,
+ 0.8957263433574094,
+ 0.9045625386867897,
+ 0.9483018131894073,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9488029595469605,
+ 0.8777239752940389,
+ 0.9204153410113451,
+ 0.875183707875409,
+ 0.8294161917860436,
+ 0.9196762030928591,
+ 0.8563838420348091,
+ 0.8948541483847852,
+ 0.8429055971815752,
+ 0.876132015812083,
+ 0.9275690010126776,
+ 0.8601034741266624,
+ 0.7662074140900922,
+ 0.8174855005418883,
+ 0.8389446905059951
+ ],
+ "xaxis": "x8",
+ "y": [
+ 0.34701140984689427,
+ 0.3138589895822442,
+ 0.1331382386125572,
+ 0.38959392590704467,
+ 0.1658021229910926,
+ 0.8777133320453102,
+ 0.10683080190597335,
+ 0.40948711496314116,
+ 0.830695162394687,
+ 0.056875572246384,
+ 0.630359849425508,
+ 0.6392297322807924,
+ 0.669716499745008,
+ 0.6036793964995847,
+ 0.5808143891387648,
+ 0.7454617001392468,
+ 0.5114877692227677,
+ 0.7435281257384602,
+ 0.5035164496571632,
+ 0.6808222011656786,
+ 0.5795471650862246,
+ 0.23323189289645876,
+ 0.2644175908762265,
+ 0.4726717116974519,
+ 0.6726766450815258,
+ 0.16506027753408292,
+ 0.7695051840189288,
+ 0.44798780615040656,
+ 0.6110684353074003,
+ 0.35743796412615136
+ ],
+ "yaxis": "y8"
+ },
+ {
+ "autocontour": true,
+ "colorbar": {
+ "title": {
+ "text": "Objective Value"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "connectgaps": true,
+ "contours": {
+ "coloring": "heatmap",
+ "end": 0.6000000000000001,
+ "size": 0.05,
+ "start": 0.2
+ },
+ "hoverinfo": "none",
+ "line": {
+ "smoothing": 1.3
+ },
+ "reversescale": false,
+ "showscale": false,
+ "type": "contour",
+ "x": [
+ 0.015833684256437684,
+ 0.056875572246384,
+ 0.10683080190597335,
+ 0.1331382386125572,
+ 0.16506027753408292,
+ 0.1658021229910926,
+ 0.23323189289645876,
+ 0.2644175908762265,
+ 0.3138589895822442,
+ 0.34701140984689427,
+ 0.35743796412615136,
+ 0.38959392590704467,
+ 0.40948711496314116,
+ 0.44798780615040656,
+ 0.4726717116974519,
+ 0.5035164496571632,
+ 0.5114877692227677,
+ 0.5795471650862246,
+ 0.5808143891387648,
+ 0.6036793964995847,
+ 0.6110684353074003,
+ 0.630359849425508,
+ 0.6392297322807924,
+ 0.669716499745008,
+ 0.6726766450815258,
+ 0.6808222011656786,
+ 0.7435281257384602,
+ 0.7454617001392468,
+ 0.7695051840189288,
+ 0.830695162394687,
+ 0.8777133320453102,
+ 0.9187552200352566
+ ],
+ "xaxis": "x3",
+ "y": [
+ 2.65,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 10.35
+ ],
+ "yaxis": "y3",
+ "z": [
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ 0.1862693152521443,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.18531875170393172,
+ null
+ ],
+ [
+ null,
+ null,
+ 0.1907552827778649,
+ 0.19103604207409036,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.20307681243216183,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.2123846817548284,
+ 0.20993148042255388,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.24080227825457184,
+ 0.28333512688101153,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.22112929238626436,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ 0.3258414249026382,
+ null,
+ null,
+ null,
+ null,
+ 0.30337436666113177,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3480318083295157,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258435026582389,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null,
+ null,
+ null,
+ 0.33330840997266736,
+ 0.4037641499510466,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.40750648259180683,
+ null,
+ null,
+ null,
+ null,
+ 0.39784787794552795,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4633111426794054,
+ 0.46330684097155167,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42745701777773953,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3639219361818585,
+ 0.6482633708392243,
+ 0.5274133516352982,
+ 0.42621654591235925,
+ null,
+ 0.36391860524716446,
+ null,
+ 0.42621654591235925,
+ 0.46330684097155167,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ]
+ ]
+ },
+ {
+ "marker": {
+ "color": "black",
+ "line": {
+ "color": "Grey",
+ "width": 2
+ }
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 0.34701140984689427,
+ 0.3138589895822442,
+ 0.1331382386125572,
+ 0.38959392590704467,
+ 0.1658021229910926,
+ 0.8777133320453102,
+ 0.10683080190597335,
+ 0.40948711496314116,
+ 0.830695162394687,
+ 0.056875572246384,
+ 0.630359849425508,
+ 0.6392297322807924,
+ 0.669716499745008,
+ 0.6036793964995847,
+ 0.5808143891387648,
+ 0.7454617001392468,
+ 0.5114877692227677,
+ 0.7435281257384602,
+ 0.5035164496571632,
+ 0.6808222011656786,
+ 0.5795471650862246,
+ 0.23323189289645876,
+ 0.2644175908762265,
+ 0.4726717116974519,
+ 0.6726766450815258,
+ 0.16506027753408292,
+ 0.7695051840189288,
+ 0.44798780615040656,
+ 0.6110684353074003,
+ 0.35743796412615136
+ ],
+ "xaxis": "x3",
+ "y": [
+ 8,
+ 5,
+ 4,
+ 7,
+ 10,
+ 3,
+ 4,
+ 9,
+ 9,
+ 3,
+ 10,
+ 10,
+ 10,
+ 7,
+ 9,
+ 10,
+ 6,
+ 8,
+ 8,
+ 10,
+ 6,
+ 10,
+ 9,
+ 10,
+ 9,
+ 8,
+ 10,
+ 9,
+ 10,
+ 7
+ ],
+ "yaxis": "y3"
+ },
+ {
+ "autocontour": true,
+ "colorbar": {
+ "title": {
+ "text": "Objective Value"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "connectgaps": true,
+ "contours": {
+ "coloring": "heatmap",
+ "end": 0.6000000000000001,
+ "size": 0.05,
+ "start": 0.2
+ },
+ "hoverinfo": "none",
+ "line": {
+ "smoothing": 1.3
+ },
+ "reversescale": false,
+ "showscale": false,
+ "type": "contour",
+ "x": [
+ 0.015833684256437684,
+ 0.056875572246384,
+ 0.10683080190597335,
+ 0.1331382386125572,
+ 0.16506027753408292,
+ 0.1658021229910926,
+ 0.23323189289645876,
+ 0.2644175908762265,
+ 0.3138589895822442,
+ 0.34701140984689427,
+ 0.35743796412615136,
+ 0.38959392590704467,
+ 0.40948711496314116,
+ 0.44798780615040656,
+ 0.4726717116974519,
+ 0.5035164496571632,
+ 0.5114877692227677,
+ 0.5795471650862246,
+ 0.5808143891387648,
+ 0.6036793964995847,
+ 0.6110684353074003,
+ 0.630359849425508,
+ 0.6392297322807924,
+ 0.669716499745008,
+ 0.6726766450815258,
+ 0.6808222011656786,
+ 0.7435281257384602,
+ 0.7454617001392468,
+ 0.7695051840189288,
+ 0.830695162394687,
+ 0.8777133320453102,
+ 0.9187552200352566
+ ],
+ "xaxis": "x6",
+ "y": [
+ 0.7027288870821999,
+ 0.7144467000567123,
+ 0.7395142458665667,
+ 0.7662074140900922,
+ 0.7808721328696897,
+ 0.7929630924927731,
+ 0.800827464931477,
+ 0.8038691888459086,
+ 0.8174855005418883,
+ 0.8294161917860436,
+ 0.8380947452182991,
+ 0.8389446905059951,
+ 0.8429055971815752,
+ 0.8517624194151302,
+ 0.8563838420348091,
+ 0.8596838078185782,
+ 0.8601034741266624,
+ 0.875183707875409,
+ 0.876132015812083,
+ 0.8777239752940389,
+ 0.8948541483847852,
+ 0.8957263433574094,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9045625386867897,
+ 0.9174470432736699,
+ 0.9196762030928591,
+ 0.9204153410113451,
+ 0.9275690010126776,
+ 0.9483018131894073,
+ 0.9488029595469605,
+ 0.9605207725214728
+ ],
+ "yaxis": "y6",
+ "z": [
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.28333512688101153,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.39784787794552795,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4037641499510466,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ 0.1907552827778649,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.20307681243216183,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.33330840997266736,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ 0.19103604207409036,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3639219361818585,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.36391860524716446,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.30337436666113177,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.24080227825457184,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42745701777773953,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4633111426794054,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.46330684097155167,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ 0.1862693152521443,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.46330684097155167,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3480318083295157,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.40750648259180683,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.2123846817548284,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.6482633708392243,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.22112929238626436,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.5274133516352982,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.18531875170393172,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.20993148042255388,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258435026582389,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ 0.3258414249026382,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ]
+ ]
+ },
+ {
+ "marker": {
+ "color": "black",
+ "line": {
+ "color": "Grey",
+ "width": 2
+ }
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 0.34701140984689427,
+ 0.3138589895822442,
+ 0.1331382386125572,
+ 0.38959392590704467,
+ 0.1658021229910926,
+ 0.8777133320453102,
+ 0.10683080190597335,
+ 0.40948711496314116,
+ 0.830695162394687,
+ 0.056875572246384,
+ 0.630359849425508,
+ 0.6392297322807924,
+ 0.669716499745008,
+ 0.6036793964995847,
+ 0.5808143891387648,
+ 0.7454617001392468,
+ 0.5114877692227677,
+ 0.7435281257384602,
+ 0.5035164496571632,
+ 0.6808222011656786,
+ 0.5795471650862246,
+ 0.23323189289645876,
+ 0.2644175908762265,
+ 0.4726717116974519,
+ 0.6726766450815258,
+ 0.16506027753408292,
+ 0.7695051840189288,
+ 0.44798780615040656,
+ 0.6110684353074003,
+ 0.35743796412615136
+ ],
+ "xaxis": "x6",
+ "y": [
+ 0.8380947452182991,
+ 0.7929630924927731,
+ 0.8038691888459086,
+ 0.7144467000567123,
+ 0.8517624194151302,
+ 0.9174470432736699,
+ 0.7808721328696897,
+ 0.800827464931477,
+ 0.7395142458665667,
+ 0.8596838078185782,
+ 0.8957263433574094,
+ 0.9045625386867897,
+ 0.9483018131894073,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9488029595469605,
+ 0.8777239752940389,
+ 0.9204153410113451,
+ 0.875183707875409,
+ 0.8294161917860436,
+ 0.9196762030928591,
+ 0.8563838420348091,
+ 0.8948541483847852,
+ 0.8429055971815752,
+ 0.876132015812083,
+ 0.9275690010126776,
+ 0.8601034741266624,
+ 0.7662074140900922,
+ 0.8174855005418883,
+ 0.8389446905059951
+ ],
+ "yaxis": "y6"
+ },
+ {
+ "type": "scatter",
+ "xaxis": "x9",
+ "yaxis": "y9"
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "white",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#C8D4E3"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "white",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "radialaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "yaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "zaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "caxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Contour Plot"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "domain": [
+ 0,
+ 0.2888888888888889
+ ],
+ "matches": "x7",
+ "range": [
+ 2.65,
+ 10.35
+ ],
+ "showticklabels": false
+ },
+ "xaxis2": {
+ "anchor": "y2",
+ "domain": [
+ 0.35555555555555557,
+ 0.6444444444444445
+ ],
+ "matches": "x8",
+ "range": [
+ 0.7027288870821999,
+ 0.9605207725214728
+ ],
+ "showticklabels": false,
+ "type": "linear"
+ },
+ "xaxis3": {
+ "anchor": "y3",
+ "domain": [
+ 0.7111111111111111,
+ 1
+ ],
+ "matches": "x9",
+ "range": [
+ 0.015833684256437684,
+ 0.9187552200352566
+ ],
+ "showticklabels": false,
+ "type": "linear"
+ },
+ "xaxis4": {
+ "anchor": "y4",
+ "domain": [
+ 0,
+ 0.2888888888888889
+ ],
+ "matches": "x7",
+ "range": [
+ 2.65,
+ 10.35
+ ],
+ "showticklabels": false,
+ "type": "linear"
+ },
+ "xaxis5": {
+ "anchor": "y5",
+ "domain": [
+ 0.35555555555555557,
+ 0.6444444444444445
+ ],
+ "matches": "x8",
+ "range": [
+ 0.7027288870821999,
+ 0.9605207725214728
+ ],
+ "showticklabels": false
+ },
+ "xaxis6": {
+ "anchor": "y6",
+ "domain": [
+ 0.7111111111111111,
+ 1
+ ],
+ "matches": "x9",
+ "range": [
+ 0.015833684256437684,
+ 0.9187552200352566
+ ],
+ "showticklabels": false,
+ "type": "linear"
+ },
+ "xaxis7": {
+ "anchor": "y7",
+ "domain": [
+ 0,
+ 0.2888888888888889
+ ],
+ "range": [
+ 2.65,
+ 10.35
+ ],
+ "title": {
+ "text": "qgrams"
+ },
+ "type": "linear"
+ },
+ "xaxis8": {
+ "anchor": "y8",
+ "domain": [
+ 0.35555555555555557,
+ 0.6444444444444445
+ ],
+ "range": [
+ 0.7027288870821999,
+ 0.9605207725214728
+ ],
+ "title": {
+ "text": "ratio"
+ },
+ "type": "linear"
+ },
+ "xaxis9": {
+ "anchor": "y9",
+ "domain": [
+ 0.7111111111111111,
+ 1
+ ],
+ "range": [
+ 0.015833684256437684,
+ 0.9187552200352566
+ ],
+ "title": {
+ "text": "similarity_threshold"
+ }
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0.7333333333333333,
+ 1
+ ],
+ "range": [
+ 2.65,
+ 10.35
+ ],
+ "title": {
+ "text": "qgrams"
+ }
+ },
+ "yaxis2": {
+ "anchor": "x2",
+ "domain": [
+ 0.7333333333333333,
+ 1
+ ],
+ "matches": "y",
+ "range": [
+ 2.65,
+ 10.35
+ ],
+ "showticklabels": false,
+ "type": "linear"
+ },
+ "yaxis3": {
+ "anchor": "x3",
+ "domain": [
+ 0.7333333333333333,
+ 1
+ ],
+ "matches": "y",
+ "range": [
+ 2.65,
+ 10.35
+ ],
+ "showticklabels": false,
+ "type": "linear"
+ },
+ "yaxis4": {
+ "anchor": "x4",
+ "domain": [
+ 0.36666666666666664,
+ 0.6333333333333333
+ ],
+ "range": [
+ 0.7027288870821999,
+ 0.9605207725214728
+ ],
+ "title": {
+ "text": "ratio"
+ },
+ "type": "linear"
+ },
+ "yaxis5": {
+ "anchor": "x5",
+ "domain": [
+ 0.36666666666666664,
+ 0.6333333333333333
+ ],
+ "matches": "y4",
+ "range": [
+ 0.7027288870821999,
+ 0.9605207725214728
+ ],
+ "showticklabels": false
+ },
+ "yaxis6": {
+ "anchor": "x6",
+ "domain": [
+ 0.36666666666666664,
+ 0.6333333333333333
+ ],
+ "matches": "y4",
+ "range": [
+ 0.7027288870821999,
+ 0.9605207725214728
+ ],
+ "showticklabels": false,
+ "type": "linear"
+ },
+ "yaxis7": {
+ "anchor": "x7",
+ "domain": [
+ 0,
+ 0.26666666666666666
+ ],
+ "range": [
+ 0.015833684256437684,
+ 0.9187552200352566
+ ],
+ "title": {
+ "text": "similarity_threshold"
+ },
+ "type": "linear"
+ },
+ "yaxis8": {
+ "anchor": "x8",
+ "domain": [
+ 0,
+ 0.26666666666666666
+ ],
+ "matches": "y7",
+ "range": [
+ 0.015833684256437684,
+ 0.9187552200352566
+ ],
+ "showticklabels": false,
+ "type": "linear"
+ },
+ "yaxis9": {
+ "anchor": "x9",
+ "domain": [
+ 0,
+ 0.26666666666666666
+ ],
+ "matches": "y7",
+ "range": [
+ 0.015833684256437684,
+ 0.9187552200352566
+ ],
+ "showticklabels": false
+ }
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqMAAAFoCAYAAABjWPKCAAAAAXNSR0IArs4c6QAAIABJREFUeF7svQeYHNWZ9/vv6TQ55xwljbJQziCSENEYYzAsxjnsfvvZ68++eH13veHuhcd+7PW3316HxcbYxks0SeQkCSQkoRxHGk3OOafO93lP9amurq5JMJpW22/xiO6prq469Tunuv71njeYfD6fD7wwASbABJgAE2ACTIAJMIEwEDCxGA0DdT4kE2ACTIAJMAEmwASYgCDAYpQHAhNgAkyACTABJsAEmEDYCLAYDRt6PjATYAJMgAkwASbABJgAi1EeA0yACTABJsAEmAATYAJhI8BiNGzo+cBMgAkwASbABJgAE2ACLEZ5DDABJsAEmAATYAJMgAmEjQCL0bCh5wMzASbABJgAE2ACTIAJsBjlMcAEmAATYAJMgAkwASYQNgIsRsOGng/MBJgAE2ACTIAJMAEmwGKUxwATYAJMgAkwASbABJhA2AiwGA0bej4wE2ACTIAJMAEmwASYAItRHgNMgAkwASbABJgAE2ACYSPAYjRs6PnATIAJMAEmwASYABNgAixGeQwwASbABJgAE2ACTIAJhI0Ai9GwoecDMwEmwASYABNgAkyACbAY5THABJgAE2ACTIAJMAEmEDYCLEbDhp4PzASYABNgAkyACTABJsBilMcAE2ACTIAJMAEmwASYQNgIsBgNG3o+MBNgAkyACTABJsAEmACLUR4DTIAJMAEmwASYABNgAmEjwGI0bOj5wEyACTABJsAEmAATYAIsRnkMMAEmwASYABNgAkyACYSNAIvRsKHnAzMBJsAEmAATYAJMgAmwGOUxwASYABNgAkyACTABJhA2AixGw4aeD8wEmAATYAJMgAkwASbAYpTHABNgAkyACTABJsAEmEDYCLAYDRt6PjATYAJMgAkwASbABJgAi1EeA0yACTABJsAEmAATYAJhI8BiNGzo+cBMgAkwASbABJgAE2ACLEZ5DDABJsAEmAATYAJMgAmEjQCL0bCh5wMzASbABJgAE2ACTIAJsBjlMcAEmAATYAJMgAkwASYQNgIsRsOGng/MBJgAE2ACTIAJMAEmwGKUxwATYAJMgAkwASbABJhA2AiwGA0bej4wE2ACTIAJMAEmwASYAItRHgNMgAkwASbABJgAE2ACYSPAYjRs6C//gZ9/7X38/Hcv4Vc/+g7KinIv/wH5CEyACTABJsAEmAATmCWBK1KM9g8O4xsP/TvOVNUFnc6X7t2Fv/va3bM8xdlt/tNfPYOPTl7ALx75NlKSEmb35XnamkTmP/zosZCj6fl8EjH6Sb47Txj4MEyACTABJsAEmMCfAYErToxKoaUXVlKgEvPLKRQjRYzqLZ61jW342vd+gquWVuCfv/tFxETb8EkE5Sf57p/BdcGnwASYABNgAkyACcwTgStKjB45eQEPfusR/Ov3vog7d20zRPDH59/Grms3XDarZaSKUYIl+T3+s4ewduUiFqPzdBHxYZgAE2ACTIAJMIGPT+CKEaPjE0788MePoamta1aWT/2U9c3XblAtgxKLtPL97F/+Br9/5k28+u4h8dGyytKgY5EQ/c2TrwXRzMlKC/K5nMnxaD8dXX2G7Xhm9171mNLau27lIty+c4uwbLZ39sLoHLSNmsxqKa2j3/z87ULMT7bddOcwmRuAFLkff7jxN5kAE2ACTIAJMAEmEEzgihGjUkjt2rF+xn6heivmZIJWiiutsJTbEg45rU3vp7KMzvR4sxWj5Bs7nQCdKzE603PgaXr+qWACTIAJMAEmwATmg8AVJ0alVW+6k9dPScvttdZGGew0mbCifXz/4UeDLJ+TidHZHG+2YpQso7MJzJrO4jnZNP1szoHF6HQjkD9nAkyACTABJsAE5oJAxIpREkvaKW8Jw8jiOZUYJR9V7fTzZGJ0NscLhxiVQlMb+KU/79mcA4vRubi8eB9MgAkwASbABJjAdASuODE602n62Uynz4UYnc3x5kOMGqV20vt06s97NufAYnS6S4c/ZwJMgAkwASbABOaCwBUjRmcbwDQXVj6jaetItYwaDQa2jM7FJcL7YAJMgAkwASbABC4ngStGjNJJziS10/uHToko+Jr6VpEGSm8NnK3PqH4fk4nc2fhbzlTQGrV1Jp09U6ulfrvZnIORP+1M2sbbMAEmwASYABNgAkxgNgSuKDFKDZ9N0nsSfa+9d1gNQJoqmt6oLKaROJtMsFHbZno8o33I89Kmk5pvMTqbc9CniZrNoOJtmQATYAJMgAkwASYwUwJXnBilhs+mHOh0OTOlwJ2pGNUKYnr/cfKM6vdBf1Mif1omyzM6F9H0+k6fLupebj9ZWikpquV2nGd0ppcVb8cEmAATYAJMgAnMlMAVKUZn2njejgkwASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAYjez+49YzASbABJgAE2ACTCCiCbAYjeju48YzASbABJgAE2ACTCCyCbAY1fTfT3/1DIoLsnHnrm1Bvfr8a+/jH370mFh387Ub8M/f/SJiom2R3fPceibABJgAE2ACTIAJXAEEWIwC0IrNf/3eF4PE6JGTF/CTXz2DXzzybaQkJYAEKy1/97W7r4Du4yYwASbABJgAE2ACTCCyCYRVjJKw6+jqE5ZGWn7448fw6ruHkJOVhl/96DsoK8qdV7pGllH9Or04ndcG8sGYABNgAkyACTABJvBnRiBsYrR/cBjfeOjf8Z2v3Y21KxeBRN6zu/cKYXr2Qp36fj6nw/XCc3zCKQTyhtWLVWtpbWMbfvDwo/i373/lsorlnkEH0pPsYR1uI+NuWMwmRNvMYWuHx+vD0KgLKQnhdYsYGHEiPsYqeFwJy4nWQRxtGYDPB/j8DaL39Jf/RV2vrFX+J7cVfypfmNlicNom0H+AyYTAq0m/zhT8OUwYHx5C7bkTMEdFYfG6rWqbRjsa0X3sXdGeN954Ax0dHVi0aBE2bNgg1jmdTrz33nsh6+kz2vbQoUOYmJjAypUrxffo/EzUOP9y8uRJ0L/s7GxcffXViI6ORlvyEvQklKDu3adRsGkXWo/tRdKS7fCabfB4fOKf1+tFylAtNtibxZ7oOBcuXMC9994Lu90u3tN+aX/UVtp/uzUHNQnLYLFEoWXfs1h67R3ISE+DOUppDzVL4qdeUPvC7ULauRfENkb7dUcnon/BTpSkxuA724tn1ndzuNXQhAvvVff6+8ynG38+eP3nQufk9flw8M3dSM8rRPHi5XB7vXB7fHB5fejb+xR8bmfQOVKfJCcno65vAlX9XuQnWrAiwyb6dO/evSH93rdwFxATD0uUSXA99dqTWLL9JiQkpyrrTBDrlc8D761RJkSZTEHXArWVfms8Piivmvfunma4z+8L6nvtuHRVXg9zUoY4Bu13qsXj88FbdwxRHRcxMDAgzks7Zl0ulxjjN954o7obo7ENexzcq25HVPtFRDUeUxnt2LEDNptN5Uo85Vjvz1yO4dQK9Xqktopr1/9Kf0eJsUl86FwCn43196Dj0mn0NF7Cvt/9dA5HFO+KCSgEwipGv///PorvfvMeIeq0098k+H7886fw8N9/RUyNz9cymRj9zK1XC8FMi16MOl308zv3y/CYGwmxlrnf8Sz2OOH0ih9Yq4V+osKzeH3AuMONuOjwshibcCPaZkGUDoXZrNwI53s53jKA422DqsCUolR5VVSnEDnUMPW9Zr1fh85CjoacohSi4qYF5QZGNzd5k5Pr1XUA6s+fQkvtRZRWLofLMYHmuovYcOPtsNqi0Vd9HIOXToob6VNPPaUe7+tf/7oQeK2trXj00UdD1tOKF198UQhCWugG/K1vfSuovXTDf+SRR9R1O3fuFMKx35yMd45fxMJdD8JisaLj3CG4o2yIK1gixJMiSL0omahDuachqG3/9E//JPb3s5/9TAgLWkgI33HHHeiPSsbppLWwW81oeucJrL7tfjjaa5CYmgmL3Y741Ez4YIKXeou6xaeIN8tIN5Jq94Tsl8TPPffcA1+UBb1L70RJajT+bnvJfA879I+58EFtnzgujTO9oJYiVApsej3+/juIS05B0eKVcHt9mBjsRe/B3WIf1CfUN7RQf1C/jNpTUZ+1GZkDF5E5VC36lfpXLtS31Mf9JVfDl5QpxCYJ29OvPYlNd30R9HMlBWrgVVlH/+pOH8FATydstmikZOYgr2wBzFYbSCgqQhSineKfxwdH/Sl4m8+EjEvqD+qXbsQjfeNtECJ3mt8C2qfnzNswDXWJBy56sKGFHmQeeugh8X7fvn3Yvn27ePgiYTnZ2LZvvR/Oiwfg66pXH5AefPBBwVM71iXX8eg0tBdsFdcntZNe6bcrID6lCKXPlet4oK0ebVUnYLbYkFFUhuyyxfi3mxbM+7jjA/75EwibGJVWRxJ65SV5IVZSrZ/mfHXDx7GMDo25LkvzHC6PuJGFc3F7vOKHKhxiS543WYxcbh9s1vAJYmqL0+0VVlG95YP6yB6Gth1t6sfpjmFFcPoUa6gUNVIkqOv028htNWLi44wzEqPixkYC1H/zUiwqgZuatJrSuoNvvoi0jBxUrtmgWFJhgmNiDO+9+CRKlqxEitUnxCjdoOlGLRcSdyTyGhsb8dvf/lZdL8UArXj88cfR0NCgfiaForyhk3Xpl7/8pfq5FI2dEyZ0lu2ExWoVlrTRnlY0nz6M7LU74TNZQNcACZLCsRqUupSbPrVNKx7ksWjnxcXFIEHQZ0rC6aR1GK07jpjYOHg6LyG/tBxelxNulwMjfT2wJyYjLjkDCVn5iM/IhdcLRI10IdkvRrVCjcQ4iXKvyYz+ZZ9GUUoMvnP1/FtGe4cdONQ4qAhRRZH6H3oCVlI5Hklcy/G5+w+/wg2f+zLo4XJssBfdB14WAp6EvFyk4B6ypuBC6gbkjVxC3miNsB7SP7kQX+LcX7gJ3pR8ITCHWmsx2NGExZuvE6JQCE8zvQZEKK07e+AdxCUkISM7F26nC33dHWhvrEN6bj6WbNguBKnLowhReqV/Q+cOwNpbHyKK5bgkMZqx8TbYdA+mRg96QuCefhsY6hIPXPTgpRfZUoyOj48jJiZm0rGdvOMBjJ7fD1dHnTqTQGz0XOVYH7GloDV/m/g9VyzGURAP06o4Va5dMkA4hgdQf2QPYhJTkFNWiaTMHHG90vX8LzdWfJyfC/4OE5iSQNjEKLWKrIxf+95P0N7Ziy/du0sEBcnp+3UrF817kNCV5DPK0/TKuOVpeuPr93T7EMg6qkyLBgtSuuGrgpQsbhrrm7DAaa1xIbvXzeXrPtfeYEl4ihuZfzpU3sjkuoCF1ITDb72EgrKFKKyoVGSof2pf6BkfcO7YhxhqrkGa2SlupiQu6ZVEGN1gSfyNjIzg17/+tbqexJlcyHpGIpGsQtISpD81KVjJqkZCggRNT9IC9KVVqtYhevjqaWlA00dvIzotD+aYeFgTUpEVa8IyZ3VQ26QIlRYuaiNZ9ujmP2BOxoc9VkTHxiCnfCma9z2NHfd+VYgAacUe6ulGX2cT+lobMTE2itjkdGTk5KGw/6xouhRh2v16rLEYWXorsm1OfG/n8nm/vQ1PuIVlNCBEdaKUpqGDHn6Uzxuqz6O9uRErt98At8+L5tceF22XVj86R+oTEqRtUelotBci292JElermJ4n4SbHg+z3vpKrgaRMIT6bjr+P1Kxc5JYtFELUKoSoVpSa0N1Ui7bai9h0w60B9w3/gL505gS62pqw9rpbhBB1euQ/L9pOfIDkoUYxtuiBhtpBY4jaQe0eL16H+LwKIUZDLKOaC4beOj1euC5+CFN3vRCidP5ymp7OXz5Y0Zgn95CoqCghgo3GdsqOBzBWdxKOhtMqIzkjIIUutY8e2mis96YsxEB6pXCPkYJUvKoPlMq13Nd4Ca3nj2LZjlsRE5+oilA5E/JPN7AYnfcL7y/ggGEVo1caXyMxGq5oehajLEanuj7OkBhtHVStokKA+i1R9F5YpcSrsl4RqMp68fn4CNyddeo0qyktH6a4FMNDSuEBtxO+vhb4HKNiu6j4FFjT88XNTOuXp9zgAr5nPS1NqDt/Cpt33i5ubKOdTXAO9Yp9WGMTEJ9VCJPVhtHBfjS//zz5DonP6CZNN1P9ol1PYtEzPqJuMtl35Ab6zxuLb4DXGgerexzxY+2I8rrEA9CwLRUdA+MYH+zFxNgQHD1t2Flih92izFaQb5/ValWPS1YsbVuPTGSgZ3gcxWt3wOJ1oevoG9hyx72qZV3pi0A/eTxudDfXC2FagU5E+32T9e0dSClHdUMLFpaX4affvGvef0JJjO6v7Q/4Jmut7DqLu3wgInFK427Py89g4VXrkZKdh64T72Osrdawn48OWNHvsghBuSVlDBa/F4yWhdueAGdKkeIaEpeCw3vfwvpbP4fY2FhViAYEqWIdPXtoLzIyc1GycHGgH/xi0Tk6jNZzhzHQ14uc4jLYssvgtsZitK0WPXVViHMOwkyPcT6fKkap8V5rDMxrPwWrOUocl64FZfGLdPmX2wlPTwvoOO6JUZi6lHM3Gufa89T6PJOVX465mJLliC5dCff4CIYP7wY8ygydx+OB2ayMUSma5XHainfAE50sBLPdMYiYkXb1IcyVWgzY49F65jC8HhfK19B0vsaf1O9LSmf3D9eXz/u44wP++RNgMapL7URdro/mD0eeURajysXHllHjHyESoxTEJKdBtRZSKXKUV40A9QtRV3stnBc/DNmxqWAZogqDrW2qYWe0H96z74AEqXaJiktBzKrrYbXZ1WARuvFrp+qPvvsqypasQnpGJtqOvo2xnvagfZC/XuHmW2BPTMPEYA/aju+Fc5gEj7KMe4Bxkx0JUS5Yhd3NfxP3mtA55kN+bjYsY73wuQMuMx5LDMzu8Ul/wd2WGPTmrIUzLgOxI21IaT+KKP8NXX5pOLEQHRlXwev1weRxoqT1PVg9jinvCm5E4VzXBHoTSpC7eDVsVjMcfe1wtFVj7Y6bFMso7UHTN1KYyocGr9sJ04ndsGiORdu0j3rRbctAbvkSLFtUhq9tKJz3OxSJ0Q/r+kMtowZCVD4AKeflw/DQIPa+8iyuu/sLcDod6Dl3CBN+QUon4iV/2Jw1GItXsqjQOUeP9SC18xRszsHAuWqjv/xrR7xmxG/+rBCE6j91qt4E98Q4PnztOey8+wtCmKoizwd0XTiK7ovHQ68Hqx0+1+T97YpOgmXBJlgTU5Vj+qe/Rds1FlH3SB9Gj78l/Fpns9AujLzRo/MWIKb8KsBiE8dxDXRi7Nx+9SFRfwwa64PZK+FIzBMCM777POK7zoc0pcVphyO1BIWLV6nXrzbASVpGf3Ati9HZ9CNvOzMCLEZnxmnet2IxqiBnMWo89I43duNcz4Q65Stu+P7pUQrA0ItQZZ1PWBEnjr0qbow0/UlThTQVTtOjYlmxC4glC6nOsnP6TUSN9gprC32HrID0HXq1FC1DbOnKoOlROfXX296CSyePYNstn0bvxePorT4hLJ60D3qlfdCUZ1x6Loo33xLwRSTL6EAP7ElpQQDoBu0Y7BXrpag7tu9tmGNikbNwOS6dOYnO7h7kr9gCn8UO32g/nPYkRDnH4ImywOwahTs6OTD1aDIhq+pFmDwuQx49+RsxGpeDtPajiB9qMmy7tEYdax5Cly0TuUvWi4AdspZZzFHobziHGJ8Dy9ZtCrKMSvcKrdU6yJoNYLjmOGqqa5BSUIaskoWIjosXAqUgORpfXl8w779LJEYP1g8ItSX1VsA3WfqNanyY/S4hYuz5fDh37BB8UWaULbsKLo8XHa0tOH/yCFKW7YDPbAnJ+qD0sXIky8QAkluPwjoxYDgOTSWrYcuvDBGk9ABwcu+bKCxfgILicjFNrfh+++AYG8bFN58U+6cxKTM40DVBi9F475vwwbzyJiSmpCr+qX4hSq807rVcqO3Dx9+Cq7/DcF/IKkNNcztaeofR1dkHx4QTRVffhbyWd1GWHmv4HXtOGeIWb9Zl0QCGB3pRtf9t5G27E063D96RPrgtsfBZbGpgocU1ipSqVyc9X8/K24DoeH80fWgmDML2/R1l8z7u+IB//gTCKka1PqN61MsqS9VE83/+3RB6hixGWYxONe6fen0P2hxWZBQUqYJUnYIXUcF+8UkWOJGmRpmep5ui89TbIUEOMijEW7wa44l56GmqxXBvF4Z7OuAYG8XVJYmiOeQzRzdsWqRvpikpE3GrbgwSARbhh2bCu88+jq277kJ8QiKaP3wFY70dQVHEMjCH9rfsU18NSj8VFACi+gro0lMBqDp+GB6YkLNoJYYdHrTW1+HSiQ+RkJGH9LJlsMYnqe4Jkqnis2qCbbQLCTV7QiKQZXDKaOZijGYtReqlt4QY0kY2y4AbKUZHYrPRlbdBCFAlgEZ5vbjnBay5ZifSUpPVYMBA9oOAC4UqTjXBaIqIU1qtBH0p/8tPisYX1ubP+0/jyIQbh+oHNIIrOHNDUDCd9E32T9OLaHWfD28/+wQ27roDUfZoESD04u/+C3mrdyAxM1/s1+N2wOv2iocrqz06kD7KB6SeelqcszaDgeojnJiJ2FU3CIEop83Jq6Kt5iL62pqxbsdO0LjUWkb7Gi+i6ZiSNkob4PbDH/5QWE+1QUYyEMgXmwzTyl0Bn1Thm4qgAEdtloGet3836bUTlZiBQ1UNiC9dgaqLtTCnlcDkGMDNaQOwmLyGxzcnpCJp3S2Gfd/T148jb7+M/OWbEJdVKK55bfq16O5LsLccDzlfmaHAt3AbTKn5GsuoXpAC37uGxei8X3h/AQcMmxg1yuH5F8B7xqfIYpTF6FSD5VzHMP6/R3+L1OxcFC1aCltMnOIbSjd+bb5EKUz96xz1J+FpCk1TQ7kI6Z8ndyk+PHoco33diE1OQ3R8AmKT0rDUpAhQo8hxEqMkAmx+vzkRVWwy4cArz2H1tuuQlJIqbm5NBxQxOlnk+7JbvyBS7GinOI0ikoXV1v+BCI65eA49Pd0oW70Jo06PsApRLsuWmgtovngWcSkZSCteAJPVDo/LBZ/XA8fwoBDatok+LIyZEJH41C65SIHTO+HD2V4XtucpeW61IkjPwxmbjoGya9TgENfIIM6+9SzW3XY/0lISEGeLCracyUh0ja+vTM2lTdVFswOSg5y2zUuy469Wh0eMHm6gKXNdWieCoc3q4Lesy/ORllF6dbrceO2/H8NVO25ESlYeeobG8cGrz2O4v0eIT5PZCrdzAtboGPi8Xlii42CNjkVCtBll3q6QBweZwUA+FNH4k1P1Y0N9OP3+u9hxx73+3KOKGJV5RtvOH0FH1bGQDA5ynGvHuzZlmHXrfULYKoFAgYh9mW1DWouJU+dbihg1unaikjJxoqkXaYs34PSRw0havAVdx97Cp8qU8TbZ8VOvfUCoTCWrb+BhZcLtRU9PL6qPHoAtPgnR8ckie4NrYgzjwwNIdfagONkekqFAPnwhfxnMRcuD/EUVMRvIH/y/tpfO+D7GGzKBmRIImxilqHltntGZNvgvZTsWoyxGpxrrVZ3DONU2hJqzJ9B4qQq26Bik5xYgr3QhbDGxwpqmJPKWr4oFztnfgbETb4VYRmUuT5rqRM4ijA31wzE+BtfEuBAGOd2nJrfuJGUiac1O1W+u4cwxNFWfw7L1W5FfUqFE25tMaNj/CkZ72ye1jK7+9NfVaVqhbSYFoHEhoHNyOfD2809h86fuxajTq6bkEal5vD60Vp9DZ0M1XC6nEDUuxzjiklKRkJaIeC4vAAAgAElEQVSJlIR4JDQeFEfSplKSaaMc6RVA8VWwXngPUSPdhpZRh8Mhkt+PxmaiN6kc4/1dGO3rEGmcFm28FgnJKUiwWxBnC6QGC0xt+wPPRJaD0MwItB2llgoSoyYgJ9GO+1blzfvP4YjDjSMNFDinHFp50aR1mkSUKlZ7v4VepE1y48Dbr4gHp8ptN2PQ4YbH7RESNipKma4XVlKPCxMjI5gYGYZjfBS5XYpvp9ZCL3PGWtLykbhyhypEKStC/dmTuPrWu8T4UwPtTDRNr+y/v60eNR++EXI9/OM//qOIZDeyjJLojVl5o5JIX6RFUsQoWWRH+nvQ3dYMt8sFt8uJKLMF8V1K+iajWQVLchYuDbphyyrF6SMfYcLpQsmmm7Ck90MRVGd0fPpOytqdqpVcplwi0Tju8mLM5RFjprO5EX3tTYiKMiMmKRnxSWmI9wzBUn9kUsuoZdl1iErOVsSoFKHaohYw4dvb5j+/7bwPdD7gvBMImxjV5hmVCeXn/exneECKsv/Nk6+JrefLfYDFKIvRqcXoCM62D6kBTH09nWiuqUZL/UXExichr6ISeSUVIkm6nL4XCb1dTvR98JyIviWfTbII0lQ5WX1osa/7FEzRceqh5ey469xeePtaxHryraPtpV9d7IK1iC9ejLH+bpzc8zqKFlSi8qoNMIubfiDn6EBzNZqPKfkiaVqU/PGkr2pyTjEqNt8UOO7kSlQVQLTx2EAvKOCn6vRxxGbkIK10cUCM+nNFChcFL8QUsVy0lh7v0RcBx6ghj6il1wFJWfA2nQaazxi2Xe6zZsyGCVsiYhOTkZaTj9TsPCWrwNgAbN4JtFw8hSiLHXExMYhJSIQ9Jg6JBTTlSemeFMGpZkXQiFOtGKVjkYtBdoId96yc33LJdGwSo8calHGnr/alCGyNL6m0lEpfZo0glQnm6099hMaGGhSt3CKyM8BsVYWomsNUFnIgYe7P0Wk0DuOXbEZ8Xjmi4MXZA+8J9usoaMxkgqOvQ8mhaTIhISUdFgpOIr/k0WGceetpeNxKSjEal2Rp1WZG0I93a9FyxJatFPv3jvTD5HXB5PXiyHuvwRITj+zCEtFJFqtNCDpP20UhLA3bXHEV+lxmNLS0w1ayGoODA4hNSEFm7xkkDSgR9/rjx5WuQELFKk3VM6Dj0jmY3A7Ep+fA4bPAE5sMt993XBsEZXKOwnviVXH9h5yv2Yro9Z9ClNUu9i2LWGhTsdHY+9stLEZnKB14s1kQCJsYpTZSlPqhY+dFCdD5LPs5Cz4hbZyvNrMYZTE61Ti90DWCc+0GSe/hQ1drC5rrLqCxugrpOfnIK1+E9PwiUUWFxM5EXzsGTrwXFH1OIiB2wTrYcspCLJIiqGZiBOPnD8Az2BnULHtOKVKWbUXtqY8w1N2BVVt2IDEp2S9CqbygrMykvDYe3YO+puqgfZAbwMLNu2CPSwg+tkaQ6rXp2EAP6o6+B3qVC1kWE0uXIXnBamERFcnL6Z/GShwQo4Eypu6aj+BuC24TbUeiw1K8QhFdLqfIQODtVQS5fonKXQgUr/EHiigWM7rx03c8A8HMtN+lfJZ9iIYtKV2I2OSMbKRk5QprlgxsokCf4PM3ISfBjruW58zmp2xOth11eHCsUYlslw8qgYAdbXlQ4yT4iu+yDyMDPeLBhKoxqX1iscFesgL2gkq/n6i+whPgmxjBxNm9IjBNu8QUVCJ58Xq0VJ9B1eEPsO6am1BQVgH3UB+aP3obzrFhdXMSoqWrtiCjeJE4h676KtSf2C8EqVyiLFY4nC7o61mYk7OQuOIaMb6HT+0RMw3aJbl0CTKWKOVr5eIaG0HHiX2Y6AvedjwqGt0OE9be+Cm8+swfUXj13Rh1usW+bT430lo+hG0sML5pf/aMAqSs2AqLCEoyofrEITgazyLZHlwgxZxeAEvFRlHWlhZtlVJvZx3ctUfUdFBiAxKiizbDklHgzwEcqKgmvu+3ktL7v9k8/8UW5mTw8k6uaAJhFaOREMCkLVNKPanPO3q5epfFqEKWo+mNR1h11wjOd4yollE5rRkIIFGm5dsp0XdDHVrqLyEuMRlZBcVISM9EfGIyTK4JuMdGEBUTD3N0PMwxOouoPLQmDz4FQFFEvsligzU2Hr29PTh/6H0sWLYKi1atU61PikXUX2pQU6mJbqDjAz1wjo3A43IgOi4RSZmh081TGEZFq87tfRFDXa3iPVl3yVIrrbvWomXIXrxGraRDScy1gUCBmyvgHejC6Ik3xX4oqT5Zi9PT08XflpRsxK+6IagDKE2Pd2wYg+0NgqE9JRuIjoPPHidcIqhOmKxGNXpCiaKmpa2tDbm5iiWTjiEtcPS3NT4ZtpKV6OvuxMhgP3q72oV1O798EfIXLBFR53oeWfF23LksPGL0RNOQOA/F0Ky1hAaqMalWTXUK35/f1i9Gz73zrMjhKvuPrOzSGpmy4VZQkI52H/K97Ax3f6d4QCIfY1tcPHp7etFWewHxCUm4ausOJd+n24W6vc+rQlTOAsjjrLvl8+IBiMaGyzmBkf5ejI8NCeumJSEVDXWX0HThFCpXrRelYSkPpy0xVYi1obP7Me5PS0V9SfuU4y931XYkFYaWzKSUZmcP7cOYYxxZxQtQvnIjju55HXnli1FT34ghTxQSipepswkUnT9w9oAoiZ2cnomEpEQkp6YLEdpy6TxOH3gPSxeUwTSojDEZWChnLKx5i2AtX6uOX9VCSi4KlDN4pF+IexNd+wkpwmqvpHJSxrGcPVB8UwPBc9/YyGL0ct33/5L3GzYxGikBTFIw79qxXlSEMkqMfzkGEItRFqNTjatL3aOo6lCSvWvLf9Jf2vyO2opLVPqwq6UJPZ2tGOjpFhVe0nLzYbPHIC4pGXGJSYhLSkF0dCwsNltAAPmVkHNiHEP9vRgdGkBncwM6G2tRUrkMS1ZvFCUv5TSovhyoEKUaC6k2IELe9JTz0C/aNYHJRsfoMI68ogSFaAOKZBCGw56IngkvCitXIKuoAm6DaXrFJ86E4XP74WivDSr1qA1UybzuAfh8SllcoTL9y1BfN3qbm5CcmYnUbIoCNwk/Xe30pgxcoTZSJDYFiGkDpbQlRUu2fwpWSlfln5LubmtFc+0FjI8MY9W1twSbtgBkxttw+5L5F6OtnT14+pW9yMjOQUZWLuKTFPcOKU6Dy4Rqy9T6g+t8Poz2d+PMO8+K72j9dGVGh4TyFUgsXxWUukhaYcWX/OKIqla1XDqHxvMnkZVfjAXLrkJaZrbiHxplwnhvO2o/2C3EP/UBvdIi/aOLl65D0dJ1/uIQMuMEWdL9dem9XjQ31qHm/Gks3XSN8Dd2TkwIn+OBgy+JfWl9OqXvamxaDkq33iqbGjSoR8fH0NPViZyCItHOs4feR0xSCmILFuD9N16BNSUbFlu0eGAbaK1D/qLlKFi0AnZLFJJizIi3mfHRWy8jNiERKzZuR8ehNzDeF5yhQmZ5iIqOR8KmOw1/RvT5S2VFNK37iozC11dM++qGostxy5t2n5GiGaY9kXneYL5mcz/paYVNjEZKAJO8AAaHR7H/ozMhPqN9w7NLZDzTDiOLYDhrwlM7yWKgnZ6ZadvncjvhR3clsKDE58LSF3x2MTYzYnRTZHN5/pPt61zbEBr6JlS7lAyIEaJAY41SxKiufr3/c6oLTxVnhklgDg5gZGgALqcDg7098Pq8SE7LxPjosBCt0TFxGB8dQmJKOhLTMsT0f25xmZqPUE7HS4uoFHuyigt9LvScJipXkaiKBSawTGcTNWGgqxWn3ns+JAhD3oRj07KRVLkJ1WePY2R4EKtJzEWZhZVdWZQpyIHudoyc/QBm51hInXApWGr7xuGABS7HBExRUYhPToPNbhdWtLLFKzA02Ie+znZhoaPob6/HLf7FWy3IMI2qbZRCWZYOlecrBVjJllsRk5YdZOmm5h7d+zrS8kuQWxIowUhnkRpjxR1L51+MdvaP4ZU9h9Dd0Yq+3m6Mj40jIysHCUnJImtCSnomUtOzRJWfgLVejj/lQYn6jyzbk2UwcFHJU3sqPG43TOYoTIyOwGxRfEldDofIhuB2OxFlikJecQXKl65EdEys8OHUPhANdzSi9uAbwueSRKNcZOaImJQcbNx5l2iTdB+Q6afIEkrvyareVFON00f2i3FjtloQbbUhC4p12ChCPi49BxXbbtOI0cD4lseRQX0dzQ2ouXgepRt2oHfUjRP73hIPPfHpWcgrrYTZYhbnRWI0wR6Fgy/+QYjQ3CK69kyo3v1rcRxtcJT2ISftus8bJs7Xr9Smf9L7iCpXjHwIMOFL6+a+2IK8z7767iG1n26+dkOQC99MxagsKX73rVfjzl3bPtHP8WTHpBnS7z/8KH71o++grGjufbflcbMzUw3Los9mhpbF6DRDIFICmPSWUOrYZ3bvVXOgBm5wn2jMh3y5f9iJlATF3ydcy9gElZYzwa53nJrHBpEQHRl3IzEuUHpxHg+vHmpozIW4aEvIA4Ksvz7fbarpHsWlrjFNPLPSAjU1kHYaVaYQ0opSXbCJvv0kBCbGR2GiICRKEm42w2aLDrJeyhuYEKB+URkqQgPTfZJVIPqX5gt9IuqYBC/deC0Wq06cBlpGIm9sdBT9na2oOfqu+EBrWZOWqbSypcheulGICbJCHXrnFSxcvRG5pQuFwDl3+H201FQhNSsHWVYPLM6RoNQ+QRbLG/8KUVblOqSSndTW3vY2dDXWYt01N8JnonAZH8aGBzEx4fDXEzeBPPg6D+5W20ipokgEUZ1xylUql4ceekhM8ZZvvRWx6bmaQCbFqlh/8SxOHfoA5cvXKFWuzGaYzBYU5Wbic5uXzPewA/mMnmkJ+F+6nE709fZgsL8X3Z3tgvfE+DjiExORV1SC3IJSpKQpFl/ipIjRFpzZo9Rkp/6TixTs5rR8WNILhI+zxW5FlMkMs8Ui9mGLiRFJ6y0WC+zRseIBR0S0q64ggepfoz3tqNr3UkikvMyUEJuai97BUdz06c+JhxWyiIogPxn1r/vb5XbC7PfBlCJQa5mXeUgpiGjRdqXOvLTiynMkNxpaSEwf2fM2Vq3fgnffeAkVG3fAG5uCMZdXtIE2k4KVDPKUNu3460/hhts/Kx6G5OwDuSE4hvqCHqZk7l6TxYqsa++b0RgJWEEDeUnVxFF+SzTtiLJrfHXrwhntc6Yb6Wcf5ffo3vvae4dVwTdTMTrT485ku3AcU7ZLrzW07dW7D051LixGZ9DTVzokI8FMF84PHn4U//b9r1yWJyKJjafpFRLsM2p8IdX3jKGmm8SosgTsidrAkYBHX0j+Sk06nskvVe1eQw4UlPpFb/kMWEADQlUmmic3ga62FnR1tKO/p1MIPJvNLlL6kKUxMSkFoyPDiEtIxOjwEKw2G6xWG9weN8xRZqRmZMI70AL4vGrVJJpalxWhitdcg+SCBUHi4vgH76KrrUmIxQUr16KwohIWswWD9efQTWUp/VWhZIQ/3dCtMfGouOHeIDwyYrzj0nkUli5ElM2miiyaSZCLCC5587/hGh8JyhwgjyMr/VDkNomupbvuRxSVd5RuFmrOTh+6OtvR3lyPsZFhIaYpBVJ5WQn+52dunMGv7NxuMub04GyL4qusG3gBKz35Krc2oaWxHs0NteIBo2LJclRULvO7kPiw/0//JTI7kHVUWwWMhHmexudSayeXeNUpZa0vsrB2B5ehpcChk289JY5Dx5A+oyQaaVl/w12wxybipWefwB33fUmxnmsEaCA3qmI51WYKqN3zJyECqR/pAUOOP3pNK65EXGYRHBPj8Hk8Sv13iwWxsbGIS0jCyNAQjh/Yg5VrN6Gm6gxScvJQ39yERdt2iTy5ZI1VxKicTQD6mmpEANTabdcGZiNMJlE6d6D5klqpic5LVjWLzixA+urrZjQAtGJ0bGgQI4N9GBsexuhQP8ZHRvx/D8FiteLJn/0/M9rnTDciYdXR1RcSyKy3Dsq/ly8uw+nztZBW1C/du0u1HmpLdz/+s4cgM/VIa+mZqjrRLL3VldZps+bQ3//6vS+ioblDzaRD62Sp8L7+IfzkV88Io1S03Y4f/vgxbFi9OMgSq9cKM2mDlpnc/jtfu1s9D/pciveHv/8VsV7fbn3GH63Oou8btdVI3Gr3qy+RPtO+nc12YZ2m/8ZD/w45OPSNnq8UStPB0l8oUz2tTLev2XzOYlShxWLUeNQ09oyhrkdJF9PZcAG1Jz6A26nU0aZo4byFK5G/eI3G787vv2cwZT/VuJx00tz/gZyGV3wlA9Pu2r/ppkwBVB2tTejt6kRqejrS07ORU1CMrJzcENcHqmhEyc6p8SaqIx4V5XeRCEx3djXX4sS+V0KaTgFRy67/DGC2we3zihu7DF4aHxsV29tjFIuadBGo8wsL7c5IGBav2YGk3ECwBiUPbz39Iahqj1ziktNRsGIzYtNzxHFokYnIKcip4ch7IvXUVEvp2h1IK1qoWrUVn9/AQ4XL4xGuFnKho6TF2nDDwozZ/KTMybYkRs+1Kr7KcnAFCcag9cono8PDqDp7Am0tTbhqw1Zk5Ragra4KFw6/E9KmxOwilGzcqd29/30gik7v16hY5gMpxLQ+y4fe/BMc/e1i/EirJO2QrP2U4mmwt0ttQ3xKOspWbUVCem4gJ6rMxKArfzra04b6g2+G9K1IwxWfhei4BJjNUbBHUwUpHybGxkBWZI/XDXuUDzbPuHB7EW0xWzACO9KXb4ItJRsuf0omZbZB+Vd14B0UFBWjfNFica7S5cXndqHmvefEQ492IQer2EUbkJRTiOjYQGAibUMV1cZHR8Q/58SYeOCj346h3h4M9HQiOTMbNptNuOTExMWLwEd6MCQ/VbJQ33fV3BVbmExwyXPRTkdL0Xf87CXVWmo0Ja/fp9Ex9Pd1/d/0ndfePYQ7d203FG/6aXIjw5p23YTDAdI7WmE5mQjX9qORSNRrkP96Yjeu3bpaNY4ZaRaZtYj2PRMxahS4fTndEsTvpk97hc7Jz9Wf1070vizzJZJZjCrjiMWo8fXU1DuOw2eq0XD+JMa6Gww3siVnI7diObLzCmGjsoq6YCetpSf4Rjbza1gKOvXG6b9RklWFBGh7SyPGRkeQmZWDorIFyKUUUzTvqKkeo/fDncnR+zpbcPit5ww3LVyyFnmL16o+f1p/QPGjJ/7nF85+94L+potwjg7DNTaMmLhEZJZUikhr7XJ+70sY6lYi+LULif9VN98Pk8UuVkuhS+9pn201Z9DVVIeC8kXipk/+pcqrHan5paLClfCNDhKh04lRK65dMP9idNzpwfm2UTWtU/C48ctSTfYF+lxak4cHB/HhvreFu0PZoqXIzMpGZ+MlOJ0TIjuDPS5RiHLlO5Nb5aWFXXJWLaIaV5FL50/ho33vYtu1NyHWRoFCocLXaPBYbHasv+UB4ZpB/aG1jmrbRN+logadl06LCkeUsYIi3dfvuA1RZpKLgUX6W9Ka3vYmHH33BcNxO+CxYMFN94ksEPoynvtf+AOuvf2zSIhX6sYLa6v/fCntWH9zNbxOh/D5NsfEY8RrRmtzA7pbm8WsAjEnv1vK1kAPYyQyY+ISEJ+cDKvVLiy29D4hJVXMGATVdtJM01PD75nDYgt6K58ejNY3Mzcr3VBI6YWgXnzS52ThpABkuWitlrRustnOqXxGpWWUsh3oz0M/qzpdGybzO9X7ps7EbYDa8uOfP4WH//4rIhPDbC2j+u8Tn5kcdya/21Ntw2L0kxK8TN9nMaqAZTFqPMBeenMvjpw8j9goB1xjQ2KqkIJjaJH+iRSVS1aavp5uMb2WW1iC/CLy4cuA2WoN1Pz2H2Lq0CHjT6X/5zAF8nR1o7OtGf09XaLaUX5hMUoqFiErO0/NXaj1odPepKe7jLRlD2nbo3teQmdznZh+pfOm6XW1RjmAbZ/9G/80PQWiBAJU5HECglFTexsmWCgX6sWzqL90QVjPYmJjkZicCrvNho7zSqUmGUFNU7Lkf0hT+jnly1G+OhAsIQV2T0c7jh96H3GxsYhPSMTqTdeIaX1RulVXDlSKtuBXwOX1iG0VkaYsqbFWXFOhpKCaz4XEaFW7YmHWp1uS7Qgu56q0WJY3pe90drSh9uI51F48j8ycPFy1ZQdssfFB56fuy+DkZJohaSEVJTh9XnS2NqOprhoUFFRUuhDrNm8XPrYfvfUs+rpaDa+R0dFR/PjHPxbT7LIvKcqe/kkxKkrsaiyjsklSDPZ1deDs0Q+x6/a7g3zKteNbjt/pxq2pYiOyShaomRnoeqGMCh+9/ifcfN+XYKNZAv8DX+D8FelIGOj3UswGaMq1UhYMmm0Q+UujY8RMg7r4VbMUzwERHRysqRXXn5nDYgtzIUb1Vkq9GNVPY8tz1065P7t7r2G+85mKUdqn1pqob9N0bZhMjOotv0ZugkbBX9pp9dmKUWr7g98K+HJrL0FyXfikQWGT/V6FVYxGQp7R+fyh1x6LxahCg8Wo8Qhs6hlF26AL77/4W4yPDE0aTbvz/m8JK1Nvd6fw4SMh0NbcCHt0DFLSM5CemSUqxVA0MkXMx8bFiWAlsqaQrx9ZeYQFlfzYvF5MOMbFdOPE+BjaW5vR3d6Cns4OpGVkIj0zR0zB5+YVITklVbV+SmGmvvrtRh/HIipvigfeeAZ9na0hUfAyIGjRpluQVVgsbsx6yygR1ZZQ1EYPV58+hvGBfpQtrBTW5MGBPuG/2tvRDFd/a0gEvxTALpMNXf2jyMjOhdMxgeiYGME8JTUDq9ZvRmFRMY4e2o/G2ku4+TN/JSKm1frzuuwHQWKUgkY8XiEupKij15RYK7aXp837zxOJ0Qsdfl9l3fNJkOVQbx3VWH0D4tSHprpafHRwH7bddIfIEapdDGyj4uNAFgagsaZaCFDyPU5Ly0ReYTEqFi8T1j1lKhvY8/xjGJviGpER8bIv0/LLsGLrzX7/XcVCHZrplXJxKoJtz2svoLRsIRYvXS6yCBiJUPkQtv+1Z9Db2TLpuG1y2LDxls8C5kAS+/aGGrTVXsSWnbfBKsSoplSnrm68yAzgVVo79cNliB71sw1kyA+x7vq/cueKucvi8HGm6fW+mTMRo9R0rWVUO87o+3MhRrXt+O1Tr4tDyGPOJuBIf1FrxeTr7x0KKhRkFPylF6wfR4xqrb7z9SMTNjGqfeJYsaQcf3z+HXz3G/eISkzUcVvXLw9y2p0vIFfKcViMshidaiy29U+gpd+B/a88geH+nqCbmzZP5s0PfDsosEQKgeGhASUKeqAPYyMjGB8nPzLF4kXpkNwut7BukhilgBmywsQlJAgLS2xcgqiylJWTL0Roamo6oixm1VcyIDoD6WCCLKKau5ze4jnt9eefMpQ3dYpMJ6swLdooeF98DgrLFqKscllQdLR2/3K6VxE4yvT6+6+9gI1br0ZaemZQU/o6WnDoredCIrNlBH/xopVYsGorRsj/zuMSFZSSqBKVX1RQmjbKDDE0OIjXX3oG2268FSlpmUF9o/UTDfYZ1YhR0YFAcqwVW8tSp8U11xuQGK3uHDP0F5XHEiJIo4SESNVkdBDv1QAt4Onf/Qo333U/bORfOUWD6TOnw4Gutma0NtYJEVpSXomi0nLkF5UEP2Bo0ojte/kPGJriGpFiVPaly2RHYeVqLFm5RhWiWmuvHC9DA304c/yQsPwvXX4VLBYlv6nT6cRQfz8G+nvhcE7AarGK6P+iknIcfPsF9HS0iIwKRuN2LKUEiemZotiBxFh98rA4t6VXbYCFxK7fxSQwbgMuJ4q7h//BZZrO12WpC3KdkfuWu9AK7NuXZc/psJptAJNejM5kmn6qSo/TBSUb5RY3Sq0khfUXPrsTv336jSD/0E8SrC3b939/+wH8/pk3gwKljIT0JxWj0/GY087X7CxsYlSbZ5Tao/VxmOpJ5XKBmGq/ejP45TRVy3awGGUxOqUYHZhAa78Dx/a8LKarKVL40CElRx9FC1NELQUgbLvtr5Sbmqa+t7yx6kXDx7q2NP5kQZZPXdUWcbvU+Z6FTNOHWNqUFgXdNP1/HHv/DTTXnBeWSjpvmqan86Z/ZOm97rPfxBsvPYNFy1cju6BY8f3zSx1lF4EbuPRfpfVvv/DfuP6mW0XOTFVc+SAsa+88p+R0pOPJeuGUronE/5K1V6OoUonSVgW25nytZpNipaVpVJcHb+5+TkyZFpVWoLCMqvVQXk5NknhdAJPW0kX9lxxjweYwiNEJF4lRJXDOSDnOxDqqClP/mGyovYS3dj+PJauonKriGkHWdxJ1ZI0fGuyHDD4jq3M6+R+XVqB84WJVgArufj9kGfQjrd+H330JHU21htcITdM/++yzog9lXy5asw09/cMi4Kqicjmy8vKVimUmk3B5aWuuR1tTg8gCsWLNBhSXLgBVS+rtasPpY4fR1dmGuNh4JKemIdoeDRc9nJhMqLl4ATkZKRjzR+Hrxy1lVai46X68+ewTSM7IQlpWLqKsFlSfPIpVW64RD38W/xS79NVWp9f95y4fYrTdEyI6tQJAd4FpHw6DLbyBL92yNOtj/VRM9qWpUjt9dPKCmkbRaMrcaJpfb2012j/t6xe/exFfuOcmNRqe2idLk8sApvvuvF4Yx/TR/pPl+ZTR/Ppo/enaQL6dky3aXOeU75wi+OX2k/mUaoO89EJYfz5yWl5mJZDHa2rrCjoW7acgN/OyGQmvCDGampyAh//jj/j+394nIBs50M7p6J/FzubDcdeoOSxGFSo8TW88WNsHHEKMDvd34/3dTxhutGnnZ5CWnR/k26cVoPqAjFlcFuqm8uY1lTVU3tSMBKn2mEFadCoTmUkRh+8+/zshCPTLys03Ire0Uvj8kRVyxbrNojKPmvNeFbg+4W4wOjSE8bERnP9oDxJi7YiOjhFT7bGJKVi1aYdINUXLqYPvod+B+r8AACAASURBVPb8iZDjUSDIDXd/RbVISUFKwST1VSfQ3daIwYFeJKdkILuwHIULV4i2tDTXo/ZCFWounEHpgiXIzi9AQUmFP9hMBjD5/NP0Gv3ng6jGs7F0/i2jJEZruvxiVKN4jLorZKzpraN+wU0WY4fTiYaaiyLFFvUpCT+qAma3R4uI9FiK6o6PF64kUmSGCFBZQEHNlKA8GFDU+htPPzqj4U1R8Nfc+SXx8DY8OIAL506gsa5WWDkpsT9ZOUsWVKKgsATpmdkYHuhGzalDYjwO9PWIdeuvvkFYvbXCrv7SOdRVnRFpunwel2FbKKtCfH4FXF4vGi9dFK4HHo8LRQuXIjktQ0zRU07VIMuo+sATONpkl47RQ51Oi4bMbug/J6I3LZn7wLnZJL3XJsan9mlTONHfRlP/+rRKtJ02JZTR8aXRSftdo9ROWiEpRec3P397iG/ldG2YaoBKkatts9xem86K2vfdb3wW5CYg00/qxaj+XGmfctG6MkyXMmpGF9QsNgqbGNWLPK0p/JOYtGdx7jPa1CgKbkZf/IQbsRhVALIYNR5IJEbbBhzCGkQ3wnOH94pIWlooOXrZ0tWqEFU0Q9C86Yz9yaYbxjO1hgYJUt1OJxXF0zi9jY0O4fyxD9HZ3oKJsRFRCWjhqk1IycwDZYYiayj9e/2Fp5CelYfKFVfB6XTg0L63ReUpSm1DfrNWiw0xvjF4nIG8rbKJPpMZ1vg0LFm+CgsWL0ND9TnUXzyD1qZ6UQK1dOFSVF61SaTTUlM7+e/6e158AoN9gdRBcp/5ZZVYtknJESot1pSPk/xJqR46nUdBSTkqFq8Q/ab4jAYWmuJOirFgfYkikudzmXB5Udc9Hjx+DPpJ36eqNV5a6NXgrUA/hZzHFKoqyOfXH10uXS1CPoNJXCMnD76LjtYW4ZJSXLYAyakZopKUFM2JqelYsGITzDZbqFsBfHA7neLaooXGfX9XCw69aZzR4cY77kVWnlKp6NRH+3HqyIGQ0zObLXB7PCK7QmbJEpSs2IgJj0eIUSWvaeDKpXMjqyiJUXl8rYU/UD9+KjtoaBJ+sS+1ZYGgJUN/Uf+xb6ic/8C52Yzx6fxQZ7Mv3nb+CIRNjOpP0ejp43KU2ZotWv3TwXwkf6U2shhVeorFqPGI7Rh0oH3AbxXUTpXLu4sugES5rfkXvT+ff/WM/DeD/D2VLxpZPqdapz0jvS9eSBOnsZDK5tA0KY0Vl1uJnqeAKxkNTbs4c+IIqs+dFonIt19/s5jqpUo2oj59fzcOvPpHcWiKzKepf4qQJx9CWrbuvBMXL1Shva0V11y/C9l5+fjpv/4AC5csw8133iOEr3Z6lL7TVHMOR/e9ISx9e/fuDd3nLfcjITXdLzj8feMXalQMgKLNz58+jp133IPU7DxNQIoi85KiLVhbHKgLP9vftY+7PYnRen9+25B9GIw5tT/9/Rg0jew/X7KMaq3W07VNO7b0U/JiPGqm6+Xfyjg14eyp46DMD1uuvk4JbPMqvzGyDSLLgf9ikYI6xF/Uf70dNXCRoSAoKmRQWFKB62/9tDjqb/7jYXFKRu4dbp8ZS9dtQ3ffACpXb8KExwun16tE72tca+j75I8qLKMyANB/8SkBTQGRql6TKsjgoCr95+olrfNF1bKTkpW23bFo/gPnphsT2s/D5fM4mzbytqEErhgxeiV2jlEFJn3C2Qmn57I0nUpgxsdQvrfwLQ6XV0SHkr9buBb6QR53eBAbHYguDUdbqA12m1lE52oXizlK+IvN99LaP4Hu4cB0X7B/l+J/aLioosD448mm8rRbB4nWKXxDZZsGByiYo09MidMdlqZcKcckWRaN/FZD2h5s1NXcYgNmHbpJC39MkaPRnzZJTZ8UyNmpvRHL9jVUncD5I/tCapjLspFrt16LyuVr0NfXiw/eewfFFQvwyp+eQuXSFbjlU/eoaXS0FYLOHTuA88cPhpT/lDXvN96ouFAY+vKqkec+vPzMH7B263VIzaSgkQCZeLs5LGKUyoFS4Jx2mYl7RYgvoyaISfaXus9pLOJaAapaBLX+ov7pesr8MDE6JsrMUsCd7Hua5iaWQoT6c4mKBwq/JV3452qvE117ZFqwN578uZiN0NaFl6U4KRPDF775d8LvdPezT0wa+JZfsgD5C1bgwAf7cM1td2PC7VUto6K//QKfWizKnvoPrvqKGohQfYCTcuLBj5pBls+AGlWtpEFuN0G2U2D7wvl3D5nJ76vWcDQfcR0zaRNvM3MCYROj2gCmK8ECaoTMSIzqpwBINF6OhURutC28AoysTKI+slmTl+5ynOwU+6QbFbXDbg0vC4fLA6uZ6rQHC0+rJQp26/zzaembQO+oVowamCynuakbYtcFGem30dy3/Dd3nUXGLwp6e7pw6cI5tDY1ikh7CuRITkkRFVwoar+jo12I0gWVi5FXUITEhCRD+TzTICu6eZJ1SwoMaeESUdvSYqfloTnP6pMHUX3qUIhwlLXSqX44/ZNT/889+QecPHYE6zZtwc7b7hIcgqxnJuDs0QM4d+zDoJr3tJ0UuOt23IaswjLD6WCtEHrnleexZOV6pGXnBCLvAcTbzFhdHJwKaT4uzYERBy619oiyqnTSAaSKwCPRQyUwyTJttlqUlGHRMQoj///01lHpTjHT9gdXYArkiSXN1NLYgOqqMyKFmWN8QmR7EGPB48G1O29BSqpi1VPzvPoFqMj5qj7EKC1Rz05j8ZUijUThS7/9qdhOW59em8nib/7XD9Da3IgXnn5i0pRgecXlWLV1J5547FHc8cBX4fD4xSilUtNkIaDj0E+PUuVsMiuoUoVK5eMHGkihphOkQT8ZctI/eCrf5/FidHTYX0HKIbIDPLBr00y7irdjAjMmwGJ0GlT6tA7zJaJ5ml7pGJ6mNx6gXUNOdAyGTtPP+MrXbagXmfLjkKl7/4YBy0wgfZPDMY7zZ06hvkYpl1m+YJEQmwkJiUFBJ1KU9PR04fyZ06i9dAHkP5eTmy/EQnZuHjJzckXSealiZqKrRcS8v663EKCa9EFaAaTPd0p5Hw+8/oyYUn/88cfVKfUHH3xQpIva9en7kJ1boCSp9/kwMjKC//nVB3Dbp+/BTXeEilFic2T/u6g5d1xYxChJvpz6J8soLZtvuhtpWUpZRb0406578enf4dpdd4qSjpIBnVtCtBkrCxM/bnd/7O+1d3bjl4/9QSROj4+Lx9iY4mdLeVUnxsfFq8vlElHw5AbR29Mt1sXHJyItIwOlFQuQk6v4Uso+CrGMTtM6o6j5vp4uHNy/B1GmKCysXILCkhLExhAzhdrw0DBe/tNTIlMCBRnJh5QQK7qu7KeELvcjg/BoZO5//RmRpomm38kVgxaKyKep+tz8Qtxx918J8fab//yJ+MyoWMKS1ZuwYOVG/P7Xv8B1t34Gltj4gM+o+pCjnIOsNEXvgyyjmmuS3sqa9qpsVT83FpzK/kzo7+1Gd2cbhvr60NPVLjIYkBClAD6bzS5KhJLF9/t/rWTo4IUJzCWBsIlROolIyCeqT50wX8FVLEaVYc5i1PhyJzHaORSIJNdO00/2AzFTn1AjpwOj/csbM93Ejh85iO6ODpRVLETlkuVISUtVBWjdxbOi/jXlNk1ITBalIKnWtSJGlNaOjAyho70NnW1tGBjsR92lahSWlCEjIwuFxaXIycuf3PXAf8LS/0/N0WmQaF3ceLUWIf/7N59+FOOjwyHoqGrSZ7/wTb8QVcQoRX7/7Vc/j41btuG+L35ddcYdGhpER1sLTh07IooHjPa2Gkb7p2fnY8uuuwNTwUZpt/zrLpw5ieqqc7julk/Darer1sj4aDNWFMy/GHW4vUHT9DMZU26PW7hpkC9s9cUqDPb3iweV0rIFSM/OUf01Z3pjC0ndtH8vGutrcR1ZPlNScfHMUZGPlKLwidmiZasFaxKGf3z813jgy98UhxLJ7P2Wc9VHU4pRg5KmWhFIFsimmvOgFGNGyzU33oKFi5eLj9546VkRmKZfrDYbdt71ICwxCXj1pT+hoHQhckuUaHoZwCTTfdF3SQCrllHDNGlKiVC9GA0a734ZS77TvV0d6O/tEiV7R4eHReaC1IxMEUBHqc2SklMRExMb0u71ZfNvkZ/p2ODtIpdAWMUoORprk91fqRi1qRO4Nv389hKLUWPe3cN6MaqTkAaz9tP1nF5wGvmGavdRe7EKZ8+cEKKTqs8sWrI0KPE4TRe+/NRv0dfTGXRosq5sve5mFJZWKBHomhu/diq3s6MdzfV1aGtrwfDQELJzckVy8+LSClit1pDTUQJSAoEf2ghuIT7UPKMBU5LERNHWR/e9LixdcsnOK8D2629FXGJAOEuhS/6vExMOvPz8M0hITMLw0KAoElBSViHEeFZODgZ6uvHR/ndEkna5FFUswZLVm2GPTQiahtWetz5BfNXZkzh2+IDwe0xKSRP/KspLsX1FyXRdOuefO91etMrAuRnsXfLVWnXHx8dQc6EKl6ovCBPfrXfeG5QWa7rdimloE4RF/d3XX8HWa67F8pWr0dXWhD2vvyDScmmX+MQk3PrZL4hI+Oef/W+sWb8ZuXkBS7di8Q5M02vHitiPwTQ9jXkSpLXnjuP0kQ/g9SjuWnSMNRu3YtmqtWoTSBgfPfg+zp48qq6jVE1XbboWGTkFIKbHjn4krMyL12xUq4ZpLftCjPqn6el9YCYjcJUqVtGAYNVakKlML1VK62pvFSmoKKsEWYizc/ORkZWNzJx8kbZKLEYBkRqga0tYjE43Rvnz2RMImxg1yrmlbf58ib7ZI5ufb7BlVOHMYtR4vJEY7Rry+4xO4ecZJFGNTJ7aJO26G5E8Mn3N7XZhYKAPrU1Nwh/v0oXzWLB4CZYsXYGComJNvexAqc2qU0dx6P13xPQ3JYmnKWtKxk9BHiTg7n6QLI6KTNGmsTEKHnE4HWhqqEVtdTW6uzqF5TE1LV34m5YtWCQEg/Q91PqI6v3u1Bu5gb8cffb8k7/FrptvRXZOjhpcpE9LpG0fTWMODQyK86E8mMr+Q/1o//Tk73Hdrjtgj4n3R3HL1D26aXpV/AREunQ96GhtRn9/Dwb7+5CZloJ7b71mfn6MNEch4dQ+aJwnU91M58oR6N/AA4G0ire1NuPdt17DXZ/7gvAnnslC1r933tgtSn5ec90NsFitQoS9/NTj4sGHXCKouhH5b9J4o9eV6zZj5botOHRgv3AxWLV2Y5DfKI1CaR31d0FoFSnZt/7rTfpnktWzsbYau265XUS8T1Xm9sXnn0VpeaUYs/KY5BPfUN8gZheuueUuuH1exd3E72dLolSMKxHApCmqoJ2u9z9JCh9/v19pR0sjLp0/I6beExITkZNfLK6Z9KxsxMUnGOcU1U/pG/xmrC6ef4v8TMYFbxPZBMImRiMb2+VvPYtRFqNTjTISo9poeiORpRVGQfsyEAva75PlqrW5Cd0d7ejq7IDDMSGmWcmnk25mBYVFKCmvUIWXnDZVphD9qXVMJry9+zk01l0S6ZJkdShtyc7Pf+PbsFijVZtlsCUzUI1ILw7ok+7ODpFqqaOtFb29Pbjr3s8LH1Nh5TIoP6k/f/09VlqFn/nDb3D7HZ9Geka6IgZkVLVBaiKtyNKWiVL9+TQ39qf/8Btsu+4mpKRnqamEtNZCfRqhgOD1weMJBApJCypF0y/JV8TvfC4kRjv8D0HTPegEPtdkd9DkF5WWv90v/AnLVq9Gnj8v51TnU3OxCsc+OohNW65GSVm5agkk9+Lf/Mcj4qvagCKqyEWBaGTlvunO+8R4Ofjhfuy6/TOqr25gij7gZ6xvg+wrbd9K62h7Wws+OrAX99xHY3AKxwUT8NLzz2FB5VJRQUpaY50eL0bGxvHfv/kF7vny/whYRv2BVtpji2h6/6K81VtGlfRPRz54FxMTYygqqUDpwkrDqmDamRDpcqOen/8HwchnfFXh5NWCZjsWY1b9j9l+ZU62Hz/xf+ZkP7yTuSPAYnTuWM7pnliMKjjZMmo8rHpGjMRo6Ny8kTFUPx0vb2lk7ay+cA5DQwNCdObmFyAtNR0paWlBlhR9nfmACPVHNtNUIUx4+dkn0N7apAZuyDP51re+JaxVt37mfiEStOUhtelsjKaugwSgX8bue/dNZGblYsHipUGR85Ml+tcHMAXu7sAzv/81bvvUXUhNC+RSDETKa/ZokFMz5Oau8U9945UXhQ9hTn6Rmt9Sb7WdLM2Tx+sNyhFLXEiMLs6bfzFKCfg7h4IziExmCdSPPb34lmJs/wd70VTfgDUbNoka7hSB7/G4MT5GrhDj6OnqEtZ4+pt8hzdt3e4PioMQf2QNdDsd+N0v/110paw1T+8p5ycFotE4o0A0+j157Jf/iQe+8teBXJ4GwW7qmNCmeNL0p5pY3wQM9Pbi/fdex2c+94Dfp9Ov5Awu3bffeBXZ+YWoWLhYPb6bcou6vXjxmSew5bqbER2fIHLlaq8FuUcjARq4HhUWrz/3RyxfvR4l5QuCAgfFPiaxfMqxaxipr+vIFQVzKEZXf2tO75sz3dn4sZ/NdFPebp4IhE2MTjdNL8//LzVfGItRFqNT/QZIMTqdX6d6W9TdUOT3ujracLHqHOprq1FYXIJFi5cjNy9fdUpT968PmFBLLkprqEwr408tYwL2vLEbF8+fCUqZJPMwUru+/nd/r7E8BlIwSVE2U6tk1fnT6OrowJarr1cj6JVbuXH99KmmUV969o9i6jcri/J6Kos2bdOk+Vv92052M//w/T2g2uPL12xQEq2rvrI6n1mDYKZgy6iijuJs4ROjXcOKGDWyjPodFFR2Qay1vsEyp6cPwhJYV3sJtdUXMTw8JFxCyGpKwTMJCUkiJVhmdg6yspUMC9JnlPatRJgrr4/+byW5vIxap/dUuICi27VilPx8r1q7EVk5eYHANJnTU5O2YbK+1vYxtaGnuwt733wF9z34ZTUP6GTXLuUTpWpdK65ap45VEvg0Vf/eW6+KcrC5RWWKUNVlWlBmHXQuIP6ekH3xxvN/xLJV61BasTDIdUbpL4Pvaqb9VaEq103i/rNsDi3yMWu/M09SJ/gw40eUDAe8XDkEwiZGCYE+bRKt0+b2XLqoFD/88WPYsHpxSJ3XcCCkyPoHv/VISC3cy9EWFqMKVbaMGo+unhEXeijp/SQ3DL31U96IyNJEU/AkPhvqapCTmyei1Snoxma3Bd/aDASo/qZGx5HRu/09XSIq3uVwICEpSag4svbQQv6i9I8sVbRQ4MSGLdegp7sT6RmZiEtIAgWaaPOC6gM4VMuhQcDT7379c3zuC19Tb9baoBNJkFIOnTx6WOQHNVqI0SvPP4X1m7cgP19JP0RLUA5RTUw/nXtgCnWyG71CrL72Es6eOS38RpVcqH6po3Mr0B5PBkvR9mK9+j8g1h6FxbnhsYx2j7i1NYCUMRNqlMfw8CBGhwaFWEvPyBJj1TExIdw+qK+zcgoEWxKj8hwn+y0NymiqcQfRitG9b+3GpaqzYhfkN0ouIWSBp2X79beILA70EPDB3vdgj47BqjUbVEEYqHgU+gATnE1VNS2qLintrS04cvB93HXP/YoYnWI5d/Y0GurqcN1Nt6k+q26vIkaPHjogqj8tXb1BU4FJG3gXyCGqrYgkfwPamhpQdfoobrrt7iDBrp2Cn9QCqhOg+u3UUzIBS3LjpjzH2XwYs/67s9l8zrYdP/zjOdsX72huCIRNjE6Vr1NbD54E4LO79+Kfv/tFxEQrN8twLFKI0rEf/9lDWLty0WVtBotRBS+LUeNh1ktidCQ4kMRIgLpdLrQ0N4p/rU0NwvJUWr4A+QVFKCotQwwlJNdN3RlF02otXtrqLFKIUqASldzULumZWcgrKBSpjrQLRe/SlOvI8FDQ+s1XX4+lq9aqvnTSZ1Ofh1PvX0k7qTp/FlVnz4jcn3LRioiLVWdx4sghJCenY2h4AOUVCxEbG4fY+DiRHJ1qhB89tB9XrVmPq9asDYhaQwur3oNQO/0ZyLtK7ZCs3G43fv/Yo7jn818VQkMvMGfqM0r7pKOTZbRyDkXBTH/MXB4fekcD0/Sq9FIfXJQ1Z058hCMffiCE52RLWkYWrr/l04iJTzQUoxojpbIL/wp9aicZSOR2TuDNl/8kXEO0y9KVa7Bh2/UKd58PNdUXUX2hCtfvul31Gw2xxgcGUWjzNVXHyFJZc6kKLY31uH7nzUHjxui821pb8OEH+8Q4lVH8Qox6vKipvgDKULHtxttU32et37K0jIYyV6yeFETVcOk8rr/5U4FgJ2lJFYPRbx01qJqmt4pq/9afR2XOHIrRjQ/NdOjN6XbjBxX/Yl6uHAJXpBjVCtC2zh78+OdP4eG//wpSkubOV2U2XUApqKgN3/vre/H3Dz+K73ztbhajswH4CbZlMWoMT4pRIwFKJQibmxrQ1FCHvt4e5BcUiqjzgqISZGRk6uZXQ6fvtCJKP7Xnv6epNzYSApeqzmDvW6+IhpJFSkbN098Zmdn49L33o7urS2heSoT+ygvPYmhwQETZNzQ0iOh6acG6/W7yIy00FKTBvqXBgUokNCg36eEPPxCJ1anUqGPCIQQvWYJJFF993Y2ijW0tjWIdCXOPxyNu3JQgvWJhpUjJpEREByxck033aznJ91K0awU7nTiJnZdeeE74jeYXlQaltAryjTUoRan6jGoswnF2MxbNoSiY6SVKYrSPxKhOfGrPl9Jc/f7R/xS7pLFAY4Is4mSpJGt3TU0NKiqUALjisgXYcfOdihgNmiKfvEVKyiJlJKrBc+p7k4iop9RFtL/4hCSR01ZaPkmMDg9TAvxncPf9X5xUjGqPru1/fY5auj6am+px7tRx3HrHXdOL0bY2HNq/DzffqeSZVSzDihjt7+/Dntdfwa677g+UmA1KSaa1jAbZRgUHStt08vB+3HLnveJv+aAoRaheYEq/18DYDVSzosBFqqJG+UjpgdZqs4rCBfEJCbh69cKZDpdpt4vZ/INpt7kcG4wf+LfLsVve5ycgEDYxalRqU56HVoyevVCHn/zqGfzikW+HRYySEP3Bw4/i377/FaQmJ+AbD/07i9FPMOBm+1UWo5OI0VEXSJD6b8mgKGOaCq6vv4TMzGwUl5YjL79Q+NpNNmXv/3KQ79/0AQ5+OSqClJS8hm++/JxI6k0R8xQ5T4vWNzSnoASfvfd+sb65uQF/evIP4v0jjzwiBCktskwm5Whcu3GrWu1IpmnST9Fro82VtE6KOB3o60ddTTXGJ8YRbbeL6WAS43Fx8QHL0DSDkKrfzkSM6gVn0M09gEmIJhJDx44eRXd3F7buuEH4jRoFMNHXgizBNDugRLMEJf0ny+jCMIhRN4nRMU/QmJKyXQbXvL77edRePB9SAvOhhx4SgpSqXFG/y2pUX/7b74up+sAynWduIH1YiJDS1KhXHl6U+vOy1KdI/+X14dc//9/47ANfEg8tQam7ZKqxacaIdhqbzvud116G3W7HNTfsnPSblP3hjd0v4KbbP4PUtAw1tRP9xhFXev3N//kR7v/63yllVWWVKv8eFctosBD3DzNxfscOfgCv24kt19wQbBlV/buVHanBV+oYDYhQyppxYO/bghu1kfL5Usqy4cEhUY1pZHgY/9fffmW2P+OTbh+z9R/nbF+z2dH4B/8ym81523kgEDYxSuemr25E6/S13+er4pERa70rgb5t9J3eIcdl6Sb60ZzO/+j/Z+87wOSorqxP5+7JOUkzozDSjHJCAYGEEkJCAgQIiSSCscFmsRebtdde767t3X+x115s7PVikokmI0CAQAIhCQnlnKWRZjRJk3PoHP7vvqpXXVXdPUFqzQym3vdJ0+HVe69uvb516oZzL8vE8luCzC12uefqbnxStHJwMBBribQGm9mAGGvv+BGjue7qFhe63H4c2r8Hp44fwdD8fOTmDUf+8JEwGAziTSeYZdJTopMChIYhvQ6X/MCtL5Q1T9ZYAhlk6eSNg495i5bixIljuGvN/aisLAdxblI/6s8bJZlQsknRuAlYsCQYTyd3n4YAUjpYBjj463ByVsfNhbiAZQdxt698nHDWUQkYyABQEKSIt30RqREAamppxfp17+OWO9YwMCosPzSBSf0555yUl6a0GvUDkk3f6fDC6RMlIwdGAMorzuOrL7fC53airaWJlcjkZTLpCP7AwROM+P6497s/hN5kkcQtXZtuLlK3DwLiuiQwJ8uW52B04/oPGcUSxUury8bKFxJuCfKHOzmw+/KLDTh94hiKxo5nlZ/IkkgW2rbWFkbEb+/qwrzFS5Gckq5InJKD0U/ffwtTZ89Dclp6kOdW3OeSmz4YtoqOtlYcO7AHleUlyMnNx/zFyyXLvrxOvdw6qgbSbKfqgD07vmQhDtcsvI490KofYrlcRqbboqbKbNf8Kmpj9WUgx5e/6Et3rW8/SGBAwSidH1keH/rJE6ipa5JOtz9iMnsj23Br48fxNSqTG3ozau/6NLe7kZIwcDGytMoupxdGgw4WkwBuBqKRou6we5EUF1pxpz/X09blQazVyOQhbz3kK1y2JZZcqMdLL72CkaOKMPOquVJFoohW0DCJTuqbKr8psb/if5EzcIMk3OveFsConE+U3O5E4UQtNTMH8xYsYvykVRXlePeNV5hljCyjvBEXJHFCzpg9BzNmz2U3a1ZNSbIOidn2ERJ+5AlB4YSuBo68TzgbHL/pq8dRA5OgpSpoWZJu+pL8BGH6fQG4fH688MyfseK2NYiNjw9a5HoApBIYlcWvxpj1A2MZ9QfQ5iA0Ku4McV/t2PYlmpqbMH/BQpw8fgR7dmxjhQ4IePLGKb3oIYTc93x/PPioaBlV0ShFkr9kiZU2avhM8fAxx4IFctdX26A36HHFzKuDrnoaT8ZmoJg/NExYkIDsd8UoprxelBSfht3excAnEfknJicjO9MjRgAAIABJREFUISGJhYrQnlbwmkJYD1lG6bsvNqzDqLETkTUkX7H3+akyJgEAzY31OLp/N6gS2MjCsSgcN4ktlzhGWZiJXlUWlANYueVYBKEtTU3Y9Ok6jB4zDtNmXMnGlwNZ9b4fnkbcwNFptvn/LzoD9XEUx5Z/7eMRWvfLLYEBB6OX+wSjOX44y2g0x5ePpSUwCdLQ3PThd9iuA0cRm5KNGHI/y8Aj792dJVQJQoN39FBrk/Cd4nMJZAmf002LEpe+2vK5VGmJgCavfGMymbFo6Q0oHDNW4hP9y5O/ZRYjiiUkwEIufepPbdmK2zCsYDQCfrEijgqMMrygqh9ON0u6kYtYIigPmegEMKpDfU0lMnNyFUIN90DZm4cMDkblsYtySxmfkxgDklPTQXXdN32+Adk5uRg5eoywXgmARbaQ8nhKOSiwERjNil4iSW/1GLnT2x1+CYSdLy3Bpx+vw4SJk3DNgkUMyNADxztvvMKGpOtL15lX3qIY3UOHDqGgoIDFCecMzcMNK++CR+GmDyYrRTKOypN4xF0qnILqoUthWRf3DlmlKZSj9NxZzF98vTIsQhG32p39XJkMxKZWVUcKJ1NFlTDRYsvAKIFUfwCbPv0AheOmIJP4d6UKTNKpsTl2bt6Izq52FI2bzGJu5b9/8qYRGJXKgoqlU6W1yVz2tFep1CwlGN6y6k7mjudVnjxuNyghLI6xYgTDeUki+SlBK3Zv902kfraFj1/qEBd1vOOLf7mo47SDLp8EBgyM9pZnlE59sJQG1cDo5duIkUbWwGh4yTR3eVgiSZ/iQaW7Fr+5Ba28kYAov8nKb3jy5BF+03v/rVeZdVTe6Ma2eNlNGDNuguyGFkDJ2TP4bP2HQpKJrBWNmyhR3hCIIKp3nuShIMMPYx3lVlTF/OKb5qZ6VpGmVpZlnT00DzPnLEJKWoY8b0YCh70Co3L3vOp12bmz2LH1M1aznre8EaOQkpmPuvpaUOgChzo9AdJwpPdkGR09AGCU/R6dfrhcLhBfZ33tBfi8wez6gtGFuG7ZjTi4dw927djWrcIwmy245fY1SEzJkMWMhrFVqyymaiAq7M3QvSzIVcVfy/hNgaamBmz8eB1Wr3lAWbErDP4Mbz0P+srlMbMhFYtkEuCxwAqLv8iswMBoIIDd27cgPiEZo8dPYg9dwhkIjWiyNq57mxHac0uo2rvByoESGBUBqcTJKkv2ojX6/T588sE7SMvMxNVzF0jgtfTMCezZvomFFfBGDBdTZ14Ns4US0IChydHz2Nmu/e/+v6kQheTn/6yYl+ewrP9iN/u8N/zmcs9pdmYqnvntYxiZnzMg5/P3MOmAgVESXnc8o4OFW1R+kTUw2v9bXgOj4WXeQmDULqfYkYUP9NIlz0YOEx8qv7lHsoqyPqJllG5udBMk7tKG+lo0NTQgPSMTU6bPgMUsuPTkt1W6obW3taH03BlUlpchPSMDBYVjQFQ/Es+oDIyy40UAGgSnodn0iju3KA6Py40P33oBnSIoJPcwz9yn5KbV9z0cTAwKU1Up0o6XXPQS52XQUtzZ3o5XnxeyyamRpZgSd6hRyEJLp5OBIIXFqRsLaZAGKoiUYkx6jBogMLpl+y5Q1SSdL0gtJpcrAdKbbl3NSskSXRE1q9XGasiTbI4dO4oxY8dh2swrGQE8ZeizUIQQIKiCgWFc5VzG/AFJfb0UpWFliUz0+Z9+9zge+ad/kVzzPFlOsY/EAflKQsCm/PejjOAJu3WEmFXh98D3OoFTOn/K9Hc6nHjrpadx14P/KPVhe8jhwAdvvIA7H3iE/2wVrBh8XVQW1ciAqABIuUWUsw4I2f+l+HTdu1i+YhUrdMEfKMlr8Ol7r4fdtxMmX4HZ8xazB8ScxCiC0ev+p/9vKgRGN/6TYl7CItR+9NCqkLyVcAuUJzZrADQ6l3DAwGh3PKODhVs0OiK+uFE0N70gNw2Mht8/HIz2mJhEh8sSHuR3MAVNjaKfeGtX4tuwdD5CfFmQYoe5+dhY/OAgwgibBCTOy0GmZD1S15gP854O5WBD8PIGwQuXS8X5s9i8fi0DhE8//TSLVSQwSpncBBCX3XoXyErKrWhqb3GkXy+PK5UDcp7QtXfnl4yzlJK0PvjgA4nsn8pSUjPGpuDGlXfCYrP1CpCqgRqdJVlGR2X2v5u+obEJX+3ezzifKS6UzpHiQkm+vPQmneP3f/gTWEQALlwZ4b/6hjp89MH7uP/bD0nk/xyMymWtBqY95dfL7KLSMOGSw3hWPX333luvMQt1UnKKwlUvX2+P2jvCw1zIceLPQHDTKx+uOBjlQNXlduGT997EHFobZd0HAli/9jUsXLICMcyVHhxd+v2L66DfIsW1h3XT63Q4cfgAqqsqsfTGm0XSfrGvXocv1q9FRelZFlpB+5auKU8spBkf/tHPmfU2MyF68fu2JUIJ1/5ujg0/lKYMh0Xk4FS9tu6YgPr7PP6e5huUYJTzeg4kt+hAX2QNjApXQAOj4XdiS5cXLdwy2oMlVMB7oW5MPrLa1cf6hwGi8nHkFtOgKzBYCrQXRiLFiUnJJrwMYhgXq9zlygCDDIDy7HRpUFEmh/Zsx+G9OxQlSakPT5gi9+O0WXMkVyiPPQ0ndbnhTg3COSCnvy8987/o6mxnN/TDhw9LQxEApvjYtJzhGF44nvGa9jabXg2QCIwWZMb0u5pyeyibXo91a99icZeRznH1XfeyhDXeuGV746efIH/YcIwuLBKS1AJBWqNwEZrhrKWSLFRnr95zHACzvSUeJAejWzd9hgyKVx47MeQ6SOuONJnwY1DQookfhexr+QfS/DJLvwKMitZbCu/4avNGpGfloGj8ZGze8CGW33pnSG159RrIRc//SUlIIudoxfkSRgF37fU3SBZTBlqZWx/45N3XUHOhUlFOldbOWQ8e/P5jMJmtSIuLHnuIdf4v+30P04TOLcF5w1k5u2PxCRdiuGzhrAEvzDMggozipAMGRnviGR1IbtEoyveih9LAqCA6DYyG30IEROmf+gbc5xhS2R00IsG94sartJpK7mqe6KTK1uWr7w6cSkBUllWujvfj4DOstUuMC1RLiuY8KIJRdWY3pxkiMErcpnwNBI4UQaQRfsGC21OQmOASDbILfPjuG6zggJx3VX5THzV+Otz+AK6au4CN3hMglWfTc2xEbvqBAKO0FrsngLdfe4VV9Yp0jrfffS+r8iVhuQBQXX0BX365BatuvyvoopbFTAY7h16CvoBS6ZLJE294GAS3TCKAkuIzOHvmFBYvWyFdh3DJbN2lMfX1oYtbRtlWFx+8woFRDp5PHDmA/bu+ZBZ8CmNRJEmpwDC3zJNllLLquZue9mfxyeMoOXcay1fcFsyUF3+r3LX/EYHRqgrFAwZ5DwiMUnv0J//KHiCSY6LHrmKefM9F3yMv5UD3YSHBjlo441d3YFTdn2OZrIwU5ubX2sVJYMDAKC23O57RVTfMGxT16C9OrJd+lAZGBRlqYDT8XmoVwSh9q07oUMfPqZNxuusfYhGVTSAfNxLPIx9b+F7lPA135+YWIhG1yK1ZES2hKrzIkp1kKIJPTX/J0vPJ2teYEAk4ESilzG5yP1JbefcDSEnLlFz8Ehl9Dz9hpWVUcHVycHr04D5s3/IZc3MSzyZlkxNtFf2jtvqBR7FzxzZkDxmCglFiVr2a3kmSh6xuu+y8yTI6MqP/LaMcjB7avxdbNm2UzpHCH+j8OCsCuenN5KYXkZzP78PvfvM4fvyzfxVCEwgUinGTLF6S8a7KnPGqpCV+OZRgMYLzXnVsMDxEiEvlBRJoHf/3h//Ggz/4Jxj0hojWUfVW6CZ0NeyukcCsKmaVn0sQjAbJ+RXSkE3I9xifSO3V4MCSJzHxsJnn/vx73P/dRxgxv8T4IFpMuUv/y88+RvGpY2y/0m+F9i+/pvEJibjvoe8z+aXGRg+M2m58+tJvlhcxguPD70pH9dUyGg68Epb5phvQLuIyKA4ZUDBKKwln8h4sPKOXKlzteE0CmgQ0CWgS0CSgSSC8BGwrnh0Q0Tg+eFCat68xo+H6a3kul34ZBxyMXvopaCNoEtAkoElAk4AmAU0CXzcJ2G7564As2fHeA4p5u8um5wYzubeW+tfWN7M4UWq/+N0LGIwMQAMi3IucVAOjFyk47TBNApoENAloEtAkoEng4iUQs/KFiz/4Eo60vyuASN664xkNB0bV/R+443otXvQSrgcdqoHRSxSgdrgmAU0CmgQ0CWgS0CTQdwnErXqp7wdF4YjOtwWaNa0NHgloYHTwXAttJZoENAloEtAkoEngGyOB+NtfHpBz7Xjz3gGZV5s0sgQ0MKrtDk0CmgQ0CWgS0CSgSaDfJZB4x6v9PidN2PbGmgGZV5tUA6PaHtAkoElAk4AmAU0CmgQGkQSS7vrbgKym9bW7B2RebVINjGp7QJOAJgFNApoENAloEhhEEkhZ8/qArKb51TsHZF5tUg2MantAk4AmAU0CmgQ0CWgSGEQSSL33jQFZTdPLdwzIvNqkGhjV9oAmAU0CmgQ0CWgS0CQwiCSQdv+bA7KaxhdvH5B5tUk1MKrtAU0CmgQ0CWgS0CSgSWAQSSDjgbcHZDX1f9VqyA+I4LuZVMumH2xXRFuPJgFNApoENAloEvgGSCDzO+8MyFnWPXfbgMyrTapZRrU9oElAk4AmAU0CmgQ0CQwiCWTc+fSArKb+9e8OyLzapBoY1faAJgFNApoENAloEtAkMIgkkLzgBwOympbNfxqQebVJNTCq7QFNApoENAloEtAkoElgEElg6MMfDMhqqp5aMSDzapNqYFTbA5oENAloEtAkoElAk8AgkkDuI+sGZDWVf75pQObVJtXAqLYHNAloEtAkoElAk4AmgUEkgfwffDQgqyn/0w0DMq82qQZGtT2gSUCTgCYBTQKaBDQJDCIJDHv04wFZTdmTywdkXm1SDYxetj1wrKpTMXaA3rH/hBaQv5F9J+si66s8VnF8QDGsMGq4eSL04+tw2h14+5VnMHn6bIyfOgMICN/woQLseOGd8Fp8L3sd/Jz6iH1Zf3EsaQ0BxRjScVK/APzSPMKxLqcTn731Iq5f8122DvUxfho7EAD7K84pfAb4xf78Pesnju+nOaVjAPZe/K6zpQl15WdRX1YMg8mC0VcuhNVqgeXwh0wOhw8fZv+ysrIwb948WK1WuJPz0JV/JeaNTMaK8ZmXbX/9vQ7c2ulGnM0Eo0H3tT7FpnYXkuMt0H+9T6PX16Dd6cG2c8297t/bjjpEQYDiED2NJHwvzijrrD6up3HkKpjrIrkeletvrq+9/gC8AT/TPx//7VnMW3EndBYbnF4/PL4A3D4/3PZOePcJsZSkd8rKyjBs2DBMnjyZfeYetwT+mGT22lB3BqaKg3A6ndi6dStqa2tRVFSEWbNmse/Ns1ZBbzJDpwP0Oh3bp/RXeK98raPvSTKyz+k1Scpt70LJicMoPXEIb//5v3t7WXvsN+JHn/TY53J0KP399ZdjWG3MS5CAxjN6CcKjQ49fEMGoCgQqsKIKeYYDqL0Bp9Jx3QBTxdiyfnLwSn327tiKMyeOYNjIQgwfVYTYuATYYmIYyHO5HHA7XfB4PfD5fPB4PEhKSUVsQqIE6BhEDQNQCeExEKkCmRzkhgOk1FcAl8KYbc0NOLBtE8bPnAOD2QxnZydcbicsMXFIyRyiAp0iMCUwGgZ8qsEr68P6Ao6ONhz5/H0YLDYkDxmGtLzRMMclsDUY64thqRSU/G9+8xtplyxZsoQpep/JhuYxN2B+QQpunaCB0b7+jDQw2leJDY7+lweMRgWKCgLqBSDtDRgNAaLsg3DwVFCC/IFeeDYPamGud/kjOwOjfj98gQC2rV+LwqmzEJeWxcAoA6LeAJpO7UFMw1kGLJ9+Okh9dPvttzOg2WrLQpstEzq9Dikd5YhztWD37t3YsGGDtEkeffRRJCUlwTTxWhiTMkMAKAFROpv2xlp4HHZ4PW6YTEZYbDZYbTHweTzss6bqSjTUVDKFObSgCAXjJ+OeGcOithlHPjYwYLTkCQ2MRu0iRmkgDYxeoiBP19ilEdRAUAFIZfNIwPMiQKoaVMomV9hgw/ZTgVOf14uzp0+gurIMjfV18Ho8MJrN8Pt8SEhOYX+t1hgYjAY0NdQzYJpfUIjhBYVITEljU4eATBlIVQBW0RIpB51qyyezYorHV5w9iZqT+2EKeGAwGKHT6+HQmVFZ24C8wnEYPnYyrLFxIrAMAkwONrn1VA4+6bXPL4LWAFBbVoySg7vgcnQhMSsPKbkjkZo3moFaU30xYi4cCrkhkHVixYoV8BktaCi6EQsLUrByUtYl7qJv3uEaGP16XvNogtHW6jLUnzsqCSI+fQgyCibAYDL3UjgcVvbQXQRe8l4SIA1jGRVwZyhAlrpK4wXnD6py4YFarfsFfRyAx+9n/3ykf6oqcOzALsxaeivsHh8DpE2NjajZuR758XpmFf3gg2C2OX8QbtLFo1kfB73egHRPIxLgZECUAClv3/3ud5knJ2X6ElhTsiRrZ0drE2rLzqGhqhwtDbXIzh/JgGpsfCJc9k74fV543G4g4GefJadlIHNILvvLrckrJkZP34368ae9vNbR7Xb2d0ujO6A22iVLQAOjlyjCM7VBMCopoF6AzL4A1UjWznDz9dYyyrWl5FaSLYjGaG9ugLOrA0azhd0c4pPS0drShAuV53H66GGYLFYUTZiMEaPHSlZQbhEIZzENuvCDYQFKtz53vQfgdbtRvPlduO0dIVcnceQE2PUxOHVwDzJy8zF2xlzojUbBTS9ZPUPBKfvOD2aRECyj4l+/8LfpQjlqzp9GY0UpMkdPQM6QfCSXb2fzv/TSS8xVRpYGAqLkMnPHpKF15AIsGKVZRi/mJ6SB0YuR2sAfEy0wWn1yH2pOHQg5IXNMPMYuuq0PgJQP0YN1VQVIw1lH6bOgAVQ5nhqIyr9VGE3Dea1EM0FbfTXz8AQMJuitsXD5A9j28VrMuWWNBEZd3gAOrXsJ41KMzCvz5JNPsr8UGkQAk3SQYfRs6DNHsLX6yo/AV3EMzc3NKC4uZn39fj8WLFjABJM97zYYzFaUnT6G2vISeN0u5I4sQnrOUKRmZjMXvGAlFVz3wb+iC58Bc/Fz8fUNUQxLKvznoDW3P3f3mf9e0p/TaXP1QgIaGO2FkLrrUlwXBKPnz5xA6ZljqK+uFJ4qUzMw/orZSErNCFotLxKoRowRFUGkfNhIffkTuxrEyt3/brcL+7d8iKbaKsVpDx05FhNmLxYwbACoq72A0uJTOHn0IIrGT0bhuMlISk0Lcc9LbvswLn153GbQtR9A3bljqDqyA62trSwOiv7K46BGL70HMJpRVXYWB7Z8hnEz5yKvaFwoGBWBJrOIKsCqGDNKn8n6ECj1en2oPX8alScOYmamAUbxLsRvCFwoHcPnwJ2QjfkjU3Cz5qbv869IA6N9FtmgOIDA6JeymNHexFWqF+7zuHH4wxfYx2TNO336NANZFI9Nf3MnXcUspBffIgBTGSDl62Y9Za79nqyiHLCJuEwEatI71ZIFzdrZ2oiT2z+Bs6td8X1a4TTs2bcPC2//NrpEy6jTG0BNyRkkXDgAs458RZBiRtkbgwnWmTdDZ6Q4UB0C9hY49q8XlLKqmRJS0WxMRH1VObLzRmDk2ImIS0xSAE/urqex6Nyd7c2oP7UfjrYmZgyIT89B2rAipOYVMrBK7fpxZCWNThvzs43RGaiPo5z69XV9PELrfrkloIHRS5TwH599BRnZQ9DZXIfqsrNhR7vu1nsQl5AEg9EEvZ5CxJWtV277SDGpMh3UWwuqPEGJr4QD2IPbN6Cq5CT7mGKWqJG7h9qoibMwavIsRYyU3+fH6eOHUV56Fm2tzSwGdUjecKSkZ8JstXbrxpcso6rkpzM71qOtpjxiHNSwq5bDlpYtJCEFgKN7tiE1OxcZQ/PDWEeVQFRhQZWAaDApSm41bSs5jIT6kzDJLhnJyZM+Co6hU9mN5poRWgLTxfyENDB6MVIb+GPUYFS9ot6A046GahRv+5A9ZJLljzfuhs4YOQG5k6+KwsmGAaUi9uwLGFVaRYUxOTBjlkRaqQ5w2rvQUFuNjrZWOJ12OOxd7AtvcyUCXhc7H+5hIdBNrcYBXHnrt2RgVIgbPfrxqxifGQuD1xmUgyUWloLpMKblCtZMmvPsPrirTjOLKIF6avTgTpbUTq8O8QVTUDBhSojlU0hU4uci/PU4OnByw+th5Z4/+Wpkj5rI+i0emx6FayMMMe7nn0VtrL4MdOK/BMMKbw6nG7/43QtY/4UQ6vCfP/kWbrl+bsQh3/tkG/7tt8IDFW8P3HE9fvTQqr4sQ+srk8A3EozuO3wa9z0qJKVMGDMCf/nND5GcGB9xY/z+mbfx1zeEQOtlC2fhVz/+FmxWIa5p066jaG5qxJlDO+H3+xiAon+kDMily4CcwYxOpw9enxcBvx8xcbHweX0wGI0wGoyIi0+Ax+OG0WgSPjOaEBMby/ry9xQ3abFYoDcaYDKZYLZYYDSI/U0mmAjoGgzQ6Q0wGgzstUFvQIApLUFlRrKeSuDUH8Anrz8Fj9uFN998U1JulLBDNwpKHpq9ZJUsJkoZH9XZ3o7z506juqqCKWRKgIqJiWNP49lD85GSls5ij6Q4U3nGviyr/8jGN2Fva4oYBzV06jVIyiuUwChl0W9+/w0UTpuF9CH57DwFNzyPEQ265YOxpCIA5clTMve9AFhF66mzC13nDsDXVI2EoSPhScmDLy5dSLgKAHNGJOGmcVoCU1+1qgZG+yqxwdG/JzAqX2UkYMrBqDpBR9IzeaMxfLrgZr70Fib2U+GyF9zT1IJu+uAx8nOQ3NhiZw5E6fN9O7bgfPFppGVmISU1HbaYOBhNRsDvRcURIdyHEiEJNFLjyUgtbmDKCgGMdtZWwNPehNamBrS3tSF16mIWu3lux3oMnTQbaTl5sBr1UjISJR+5T+2A0dPFYkspxpQagVEan7LoRy29R+aKDwWgctd8+b7NaKooZoCZYlBprXRN6B/dV6w5Y+Dze/Gz76y+9MsijjDh3z6P2lh9GejYf16r6E73eGoEJlvaOvC9n/4Bjz20CtMnF4UdlsDo7gMnFVigL/NrfUMl8I0DoyXl1fj5r5/Df/3sOxiZn4OeNpX8exIfPT1lZaRIT0CVzS6cPHEUuzcLYFWucHiyi8liQ0pWPlN6Ho8X4ydNQXZONrxeL3ML+yhonGUvCv/cHg+jL3K7hIx2+oySjSgL0+VwMuAaCPjhdDjYcdTHZDKjs6Od9fP5/Wxsyo50OpwC5VIgAKPRyOKJeKPEJDqeviPAGheXALNfCDv45S9/KfUjQE3xSpTAtPfwCTgcdlgtVhhNFnbctx75EUYUFEl0U9ziSS7wjs421FZVoa7mArZt+gQtTfUMbE+84krcsuZBgaZJTtFEmf4fvczoTehmRaCYu+lJwVJr8Znh1psZoPcH/DBbbbB3dWHGwusRl5IqAkUhFtTZ3oSO2ip0treg3e5Ce5cD9o52JlOdwciAtzUmHg67wIpgtNjgctphtsUiNuDAiHgD1OxD7QELStyxgM6AmxfPxb3XjNd0Sx8loIHRPgpskHRnYPTsJVA76cDcv8c/fY2dEX/oJUsh/b5J12QVTUP22Ol9OuOwwDdMchINyuMihdfiJ3KLqSx5KWgFDVpE9WJ8Jf19/fk/4kJlGa65dhnmzFvM9CENuu6tl3Fo7y4kJsRh9LAhDOBR7DlvHHi7AjoULbsfZza+DrNPZgWlh2SdAd7CeThxaD+yR4xGQWER4ix6GPU6uDrb8eYf/gMLrxB0D1mYSU/yxvX3Fbd+j913WhrqcHTPdjgddjjtdmbM6OpoR1x8HLo6OtBQU4URQ9KRnJigMESQUeWnP/0pG7ayvgMGswXP/OG/+nRtuus86RebojZWXwY68qtFUncCnz97/Dn8+OHbGSagJgen4cbtCTf0ZS1aX0EC3zgwSpuorLJWApNqcCrfGOGekMiq+sQzb0vW1Ba7D2dOn8LGj9aG0ADxJ1RbTCwSklJRX18Hl9OBO9bch9y8fNHCqOS/5EBOTpHEqUNobcHQINGeKc+Ql7I4g+mc6gQlAqPcEkrqtb2jDRcqK1FbQ+6lNrTWnmciIEoR7qbnoDoxNQPT5y2DnpEqCpZWWq/NFgujySzxjBKILj15EDUV51gilC02Hu2dDhRdMQcZQ4YxiyXRkhDgC7rFBUsmvS8//BUaSo5F/I1mzloGvzWOWaJ9AR1TsAEYYE1Igk90vbfUVCBwdhdsEMA22+w6HdzmeLQOmYaA0YaAwQifx4uu9hbYW5vh6GiFo60FLnsHnB2tWFyUjhiTnsmBXGB0o6RrSq1Yl4MafxxuuXoSHlk0VtMnfZSABkb7KLBB0p3A6NY+g9EQMjuU7tyA9trykLPSG00YvXAlTDEyT5UqHNLZ1oSWimIW10jJlXHpOUjKG810kHhbU4yrsG7K3NM8XJTHjTLXtQg0mb4QlIZkMRWAqcjRKfYjCyZZMs+fOc48WZnZOUhIShEo8hydTJfUlxwNuTeQ14zzhnqhh0kXgMPhYHqGLJKkZwigt7v8uDD8WlzY9zkmzVmInJwckS80AAMxjBzaCF9bfVjLqMFoxlUrH4RRp8PpIwdweN8OLFp6IzIyh8BsNcOg08Fg0MOg1+HFp36P9KRYxiwi94rJwej8JTehvKwMa1ZHr677lF99MSA7+9AvFkrzhsMAPYFNtZtec9Ff+mXsdzAqd5Hz5b/05E8jmsMv/RSVI6ifeLozyYf7Tr1xm7t8TGs988ffwu12K9z05NqmzOvktHRMmzEbmVk5SE1NVWafy2hAFBx1kUCmijYkSCMSBoCqwKkigSkArF/3Ljo7O5Cenom0DOHfyYM7UVNxnj1ly2OygpmDAAAgAElEQVSQSDGOGj8Vk69cEBoHqiCUD2Df5g9RW1ESculssQmYufQO6ExmBQgVMtwFIEqv2xsuoGR7+DJxBmsMsuatYglJBDzpn1fMkhfeA8X7v0J81wWkGTxht489MRd1qRNQeXgnWqrPw5KQCr3ZBnN8MvS2BBhiEmDz2DHVJdDOyK3d/CZSajfjlHEE7l08A/9wzfBob9O/+/E0MPr1vMR9A6OhIJTrIEpiunB0BwOVvJlscRg6bT5i07IjCqe9pgwVe0LjDAmUjl58Z0gWvjrekwbm8ZIi1hTBJs8mFwCnBEa5+178TBlrKfQSjaGoOn8OjfW16Ookz4uX/SVKOouric3BH2pJl/K4TvmJlpeX48UXX2QfUR/iCqW29nQHklIyUDhpMoYOGy6AUT0YmKRsem+F8OAu19f0Pi1/NEbPXMT60THV5aU4dXgfezgfOboII0YVIS4unoFR+vf5+6+io7k+rJueztOjsyBv+Ag8uOa2qG3eCY+9EbWx+jLQsSfuUIDR3z31Jn79L9+RwvV6AqPyuThOWHXDvG7jTPuyvm9i334Fo2qrIgmcwN1DP3kCD997U79cSAKjw3KzpLl6ig9Rg1c1GG3s9LJ9s3fnNuzbJcQGqdua7zyC+IREKfFH+D5o2RTeiU3BBRoZYMqPV8SCRgCgPEGJ3x7eeOUFTJk+A4VF4xUxoF3tbfj03ZcErjlZi4lLwLW33Mt4SDl1kyJTXiStb2tqwLaP/saOpDgmUpAEyAmYk4IdNm4mhk2YIVIsiXGdUqY7JRsJn9GNqrn0hGINOqMJaTOXQhebzECnQCDNAakARJtqL+DM7q2YmaGHHn52A+D8e+QaI+smub8+qzXA2dGGuKGFMManwpSYAY/XD5+PQhwCMB77EAsL4kLca9xK3O7R4b2zfty5dC7+675oxbf1XgUR8A6TQNv7AQa4Z6fDC5uF4pp7k/IywIvtZvr2Lg/iY0xS3GF/rZQA0EDIrtXuwfaSZnVduZDTDoWhyoTvoMdGoHKj+EapqehA5Prt7OdvwmPvYL9LipEkyx39rkm3pBVORWbRNNlaBJd5JMuoPAZUTWskB5k0YIiVVOXKl3ug1ImZu995KuK2qKqqAv2jcyBjxuOPPy715cT1W2sCiB01He0ntqNg8nQkpWUjPiWF8S8bfG74Tn+JQFu9Ul+nZKHgqutZngEHo/RTo9fNDXUoP3sK1RVl7M6TN2wk4hMSYLOYcHrflrBrHVY4EdPnLmbXfVxObNS2+YiVQghAf7fSd4OFTC7GMqper9rj2t/n8/cwX7+BUZ6tdtsN80KsoARS3/loa78EA/fFMkoXmIPVY6dKpestT3qq7xDAKLWjB/fi9PEjaGqsh9lsQU5uHiZOm4mcIXnsezX5hhJMRACnCte8rLaHms8uXFZ9mApM/CZB8ZZvv/Yijh85DJsthsWYUhwqJVmZTRZkpiWymFOdTs/4OdsdHqaRzRarEIQf8LMToox5KuFJAJLe22xmpMQYQ8jieaZs+YVatDt8LG6UVXQCYGJZ9wFkDs3HzAVLGSClfwe+3Aid1w1jwItTp07hqlvuQVxapmQRdTrd2PnJOywGlDJZPW6KvXWjq60Zt8yZwmT+3nvvob1doFShOe6//372+qVPd8Bl72KfkZUmYNDDmprL7ph0LnnxBiyZJdDLhLOMNtm9WFfswu03XIf//lbQ5dNfSoHAnJfQ99e00drJzciTR76mpwGPzw+jgaIH+7fRnHE2Y/9OCqChw4XdZcHYxHB6TViUCo6qdZFY3IJ62rs6UXLqGLPe0YZwuZys4AaNQSE/LA7e64XeYESyU2D4CBeb74YRjT4LYywhvUTjWWJiYbHYYDQJTCYUNz+iaAJ7z+NB5YlIcp5Nmoe78KXse7nbnrLZHXacO7QLPo+Lxf4H9Ea49Ra2fq/PB7PFDF+1kOVONHW8kQ4lnUigmtziPC6Tx3rKLaNf1uqRNbIIybkFaDx7CF3N9eyfLS4esYkpsMbEIt5qgjXgRnZ2Ntpbm1FRXo7UtAz4vR4GSGPjhLAHo97A1mSi5FeDHmR8aGmsR1dHG8sJ8LvtSIwxwWKiB0U9HE6Ks3eiqbVDCst659Xno7bvZv46KJOoDdqLgfb8bJ7U62JiRtVTaGC0F0LvoUu/gdFwF5yvjZ5M1GbySz+18CP0JWY03AgEnLfvORpMYGoRKDsUTYU6Qxnguj+7SFRP6kkijqsApmGWJvv+mf99Au1tws1FR/FDASA5wcoUkbyRJc4Yl8oy/8kFRTCIokb1BhMDsALS1gE+N9ztdRHBaKc7gKFjpsFht8Pu6GJxUpRM5PF5GS/rtGsWMyDa2VCNkj2fwyBSotDo1qzhSB5/JQIGMwOklJy169N3WCKV0RrL6srrzWboDWbktp/pVsivfLabnYfP64GHaFgo/sxsg8FKLAYBZCZYsHq5EORONw66aZBVlVOylNe34uPDtbj33nvwuwe1ah59/b1qbvq+Smxw9O90erH7fKv0YC2okmBJTPFdMB5eXDZnsSCIKpXoFVkvNr3/BmKSUxETL5QbpodBih0l8AmdXvhL7CABH3Dmq4ix+b6YZHiGTYfO74NBDwS8Hvi9LvgpSdPnho7G9nrQWFWGhbfeHSyRKRK/C7XbQ8nfOUCl71icJfsHnD2wDRfOBitI8StkNFuRN2Y6dAYTfH4fyg5/yb6Sx+HzBCY1GCVPDk/YDHfF7amj0JE9WYh/t3fA1dEiFAfxeRkDCenfSfOWMau5vbUBfo+bEd37GaB3I8BAPiWL+BnTCrt0fh8lj7A4fgLRZHGlSkwsXIH6sYIhPgmY/+Wx+6K2GWf9RpBNf7fdP71GMWV32fRqNzwZ1tau/xK3LruGser05F3t73P7us7Xb2B0sFhGe8qmJ7D69kdbw9I9hTPnV14GMMo3kwJs9hXR8ptEH202X6xfi8rzZ6WYUXKD8fgmgyUGenMsho8qxNgJk5nFgXN98ptMa1M9tnzwKps9nJt+9LS5GDJ6khQfKhDSc3c9Kb0AHF3tOLdlLbNYqpstMw9JkxcI1lNeUUmMFZV/5tv1JrspUeNZphxIBqDHhTE3i/GmAeaapySm1spSNJw9hNQxM5GYMwJXNETO9DzaoseBsjbccdN1+PX9SpqQr6sy6M91a2C0P6UdvbkIjO4taxPBaKg3R/CwB6usyRMxua4Qil0EK6FtXr8WBZNnIik9SyoHzKnTWLqlSKNGxzV/8YqkWziVEadJ0qUMhWX8PCEGUgxjEFzUYEmX/LMjX36OoSNGIWfYCEiZ8SIQlWJCxapD8upE9J0wtg4Vx/eh/MTeiILNKxiLaXOXMK/S9k/fQnPdhbA6VR5CFGkwtf4iMOpIGy3EqnIWANFiW3/mIAIeJwqmzWGAXOISZQhUpK8Sz419JPtM7CIdE0zwkmgHGCD94dzoxcjP/u226G3OPoy08ydKDtHueEbDxYTK6R5p2p54SfuwtG9s134DoyThcECvv2NGaR3d8Yyq18jXV1PXFJaTNBwYbW4Q3PRxFCcqtovCkr3YlsTpSRxw5HIhV0xsbFzEozg5s6B0go5Fuav0+T/+mh0fLps+MycX0+dei1MnjuNc8WlMmDQN46dcIVkzuFVj5+cfhE1gIiqk+Su/w6qHqEGoHJBSqcD60wcjUjtlXrMSsMRKYJSDUp5JzxKZ9n8AuLqYa4y7x7g1wm+0oK7wRkYLxZOg+F+Kla07tR+djTWYkZeIbAMRVweTGshK4IURO+OvhjtgwKqpOfj+/BG9uFJaF7kENDD69dwPnS4v9ktgVIgDpbLBlDWekJ4t6QJiDSHmDnIhc9YNph8YCJWX5A1g66fvY8SEaUjOzJGspsIxAt8vg64iIG0/vh3uWiFkikAaPSzTP2rWSYthSs4UwCcHoWKyj/Rer0NtSTEaaypxxTXXStnzBEr5cQTg1IlKvGwm0SoRGN2x9llmZSXdwnmlye3O2TbIonvTmodhMlvQ3FiPXZ9/AEdXaHnjnnaBvOY8Vaiif+7YdLSNnC/qJQ4wBY1u1AM1x/ais6YE2bl5SMocCnOWUDpU4lOVx7vKq1JxkCqjuZLfG3jc7E/mRU/fXf0/4fMsepLLpX7/1T/NudQhtOOjLIF+BaNqIMjPpT+z6aMsP1S1uJiypdimPds24eypICURxVdOnXk1xk66gk0bTUBK/KAvPfcUsnOGMI5N4o1rqK9jiUcms5kR47PgdarbzpJdmHpnINntCvLZGQwGFuvEFJnJhPbGGrbWcDyjpPZSsvNZP7Jgnj9/DstXrGLUUGXnz6HL3gWTycI4T33OTgR8TmadDOj00BktSMoajhlzr5ViQgVSeplVVMymL9u/mWXZyhUxrYm4TslVnjZjCQxJWYJFlYCnLLNeer1D4DGU8+/JaUrqJ64SS4EKY/Da9XxNzs42eMoOYaypBVZeE1S8hicb3DjTaYIfOty+fBF+vjIa1WKivTMH93gaGB3c1yfS6iqqa/Hb/32eZYkn2Cww+boU5TS8OiMuNHUhMSUNTqeD8fgOLxyLK65eKBWiUNO5bf/8Y+SPmYSkTAHMysEnhQO5mmvhaakVvvP74KHfZkNFcIlUInPEJFhyx8riQMXa6gyYBl9z6+i5w/tQW1EKi8XKAHPeyCLk5A0L46bnVE7CGCxpzOvGrveejxguwBd28mwZps2czfSLm0KCXHa0trXCaDQgJTVV0JFeDxw+YY0WMTKq3atHglGIB5fHxsrjSBsmrpIqPwlEewKCNPo9iD3/FQwdwYQmSvKs8ZhR3emF0WiGy97JXPIep4PR61GYki0+AT6Xi7nuLTFx8LqcjCrLIMbWCsiXLMMGvPX4j6K2eef+/quojdWXgbb96Oq+dNf69oME+h2M9sM59esUNW1uBjJ3bv0cJw7vZ3Orn9ivv/UuZA/JDZsxL4HUXiYgCf0DeO3FZ3Ht0huRnkmuLR62JYBOIjV2ud0MmBIBPlckgsLSSclGNA6vzMS/2/7x6yyOMlwFpoSUDIyZuVDMtNfBbu/Evp3bMGbiVGRkDUF8ImW5+wQyfq+HxXoRcCVif7u9A6mZQ5Qk9yqyex5LduHoTjSXHo9YDjRj5lIYkymRSYgvY1ZNsc48B6Ouve8zy6j8PDh5f0BvQsfkW0R6qWB9eiGuLRjTlln6OUwuIfmJYrnoZsCtMJ+dqkWL3YM1d92Fn60WrBRa670ENDDae1kNpp52lxdHzjeirbkeez5/X1oa6TweBpOaNRQzF69k4JEe0k+fPMoSC8dPnQUveRZYWI0f7S2NjFqt8vQRWBOTkZAzHLacAhBrBreMth7/Co4L50JEEDfuKuitcTDY4thfESspsuelBCWp7KUA+siySdbP9qYGlrTpdjhQcuwAxl4xG2lZQxRJdXKSJ7mV8NS659ic4RKp6HODNQ5DZiyWzJGkhSlp6NihXTDFJmD4+GkCG4gvgJrqanTaXSjetx3jrlvJOJMTjrwHnd+j8FBx3mqvNRFthdfJ9H5QPIklW2Duagirs6rSJsNhSWGMKFS9T0+JdwaDGEfKkD7jSmUtIMSRCq+FZFUdBd0GgGfujR6Qm/fkjgHZ3lsf1QwIAyL4bibVwOglXpHado/wA31SoOSQl2XjsUx5I0Zh8Q0rhd+1LDspCCKDi+gNqb3D0YX333kDt695QDEmi9SKlEEvfi4Hrryv/LMDX25ApVibnmiZ6Aajrk1PaywvKcaZk8ewaPktwZgu7k7jSQrieyFGTCyvyf+KLjvu2pfHkDWVHEfd8V0M1JMbjAf0k5udWtaiO0GAUg5AJQsps5YCnpNbgeYqdqw8LovOx5OYg47hcxTWUCmeTbSS6t1dyD2/kc0nD1m47777GFVVmzUDlRkzsWxcBu6bMfQSd9E373ANjH49r7nT40dJvQMnDuzAqUO7pGxwSvKj3wX9PqgtvfNhllAouNcD+Pi9NzB15lwkZWaxSnINlaU4s/PTECGY4lOQMmMJYDDB3VKLln3Cb5B0ET0QEiAjfUShPgkzlyuAqIIfVBUfyWu5B134spKfont6xyfvYujw0cgtKGLuddZU1FCUCETZ6rW7PmZJQBS3SvqF9Aq50LmuTBkxDlkTZisMBcTffGjXVky6Zglik9MkejqSqYPkemQvy8bPKpwMy7ntMLUJcaZq/eVMzkdX3sxQMOr1IP2k8IAg11n8PtSWNBLNGRMZEFfExqqTtkR5KGJSRUEQOH/ypvAlMi9mRy/4086LOeySj9n8g9mXPIY2QHQlcNnBKA/+vX/1Erz41gbIKZLkp9KbGvHRPfXojFbX7kFLcyPeevnZiG4bctE4vQE89tN/F8CjOLWCsD4CVZMcYHLQ2GXvwIfvvIWW1iYMGZqP5TcLtYK5e0uaQ3R5hQOd0tz84VcEjuRW27NpHZrqqhQCyswdgbEzF2Lzho9YjGpsXByunr9EATKDpT2FG1BrQ7VUlcmWmMJc9QLoFGLAhPixYI34ypIzOLZnO+ydHSjMSoTeH6TN4ouJGzkJMSMnM8ApxJkK5PeKv/S5oxPe/R+w0nnyRiCWrAoeU4wIRsX4Ne6qFy2t+vN7McJXHcIKwHlGnR4fzgy/CTeMz8D9M3Ojs5m+QaNoYPTrebFr6hrx7CtvUJ1dVndd/vBNZ8RDaepaOuH26/APj/0r+23W19di7d9ewJqHfwxKK9z13nPwelwKvlACc+R5aPAa0aGPRVLAjhSDhwFR8nDwxvk3PUMmwJI1DAmJycHkHFl8N4EpAXQJMd+u2jLoTUZ0tjQz9g6dOYZ9brFakZUrxEEe270V9ZVlzLtEgJRKJlPZTJNOh5wkG+JMvSDxMsfAkzyU+Z2IMq+1sY5RKCWmZaBo+tWwJJAHSXhoJh3m8gpglCylBzeuZWFNsQagMMYJWYQQW5+f6a/F8JljQwwP5s4GJJVuCdFZ3KLa7NahsehGkTRfGSPLZaRIiBLlJoQBBIH5n1aMidrmXfTnXVEbqy8DbXrkyr501/r2gwQuOxjth3MY0CnqO4Ryk0//QUj8Cee2scXEYczk6bhixqyQp9lwVZfCWS9p7CMH9+PY0UMsbiclLQ1tbW2YMnUGhhWMkhST0mUviEYOeuUgNBzQ5YC2qbaKxXtRs8bGIz45nY1z/OgB7Ni8EcNGjEZiSgpiE5IQH58ocN7FxUNvMqGzpREnv1rPEht4IytJ3uSrkJI3Wqq+xK2l3HJKpM+bP3iT3TxSE2IR42pl1gfeTAmpSJy2WKB2Ei2gQiKU4GqXg1OPy4UTmz9EdnIMYk16mKwxQEwSHGmF8OqNUqwqO06KGQ2OZT32AYbF6UIeMDhfqjcA7LFOwdIJQ/HDZVMHdA9+HSfXwOjX8aoB1bX1ePqvr0Dnc0If8IWE0hBfJgHKxCyqPJeJKTOuYr/3g3t3oaqyHPOW3YoupwN73xe4KuX6kicYdhoTcDauCJldlcjx1CiSEOkYbunbVVwFX0I2Zq24mz108n8U10mJPOSOp1Cd1iNb4e9oChG432SDOz4Lbq+XVZ0rnDITw8dOYjpaCHHygUpqUnxszdZ34HN0hoyhMxihswiglsCnJyELnT6DAI51OpgtNsQlpSAuUXCPS2FAol5mD+ciGwjJye1xoau1lYUxBLwumFsqAWcnY/swpg2BIzYbAaMVeqK6MpmIj4+FQ1Hsp87dhbjjQuU6uVy5zuqMzYZ9xBxFFQA1tJZXrBLxp+ycBWvyH1dEzzJ63f/tHpAfwsZ/ELxsWhs8Eug3MNodz2h/kt5HW/TVrULM6Jsv/B86O9rDVgahBKaZcwXOSmocMAqvJdOkIsFJ3efIwX2oqb6Aq69ZiBgiMJZZNCO65hVANBhXyuYNTisCWZWLX2Ux5cfw9V6orEBrSyO6OjrQ3taC5sZGdv6kJNNj9dARJyAg8XPyWMtpy+6BKSZOZhkVraMyqpeOpjqUb18nyUsej6aLSUDSlIWwxiVKgJRTOqmBKcWq1pYVo7W+Fq11F5jitialISErF9bEdBhjEkQgGsyq5+A0vr0c2Y2HpXMgdxy54MgySudCVozPG2Nx/2034KF50VPO0d6fg3U8DYwO1ivT/bo67C7sP1mGC2XFKDlxkD2s8VAa+m2QFY4SX5bd9YjgAQFQUX4eh/ftwrU3rYbb5wfRvx3b9DZzQVOCIW/cgtdlSUFFztXIaD2D1JYzIZY+Dnhdw2chMbdASeWk18Hd1Ya2hjo0V1cgvrMaZop1FBu5+qlxd3rqiPHImjibrXXP5o2IS0nByPFTFeWJnU01aN63kZ3rSy+9xNZDx1NIAukCy6RrYUzKYvGoUqhAGAOqSOsp3ANU+pUlUbIQJtFTJNPPgfrzsDdUwd7eCrfXj0a3niWHERerq6uDhUN0tTQiPj0LVyR5ofN7pfuQXGc5h06BK330JW+8398YPX239C97Lnk9FzPAp9+beTGHacdcRglcVjAarnpRpHOJi7Xhzaf/HcNzI9clvoxyuOihLxAYpRjK0mJs+nhtyDjk6ll138Ms211ecUlRn0Tloo8EWD9+/x1kZOVg7PhJiImLUwLSkEpNSvAZDrBKYDhMnGnY78IBVHGx3MpaW1mKg1s/ZHKQP51z913AHI/4rGGwxsax6k5Gyvg3GJjrX28USK7bqs6itfxUxHi0crsOTq8PcZT0kJrBsj9t8UkwWKyChcBgZoH5ipjSQAD2zk40XihHW1MdmqrKAYMRepMFMckZ0JnMMFljoTfZiFYAiZ4WZLeeirgvPAYryoYtxvVjMnHntJyL3j/f1AM1MPr1vPIU31ja4GCL/2zty2hrFpJl5G3KnOuQO3KckKxI1E9OO9566VksX30PLLEJ8Pj92Pn2/7FD5AmG3OLZ4DXjbDtghg9XpAS5ggkEUlwqAUCiZ3Nlj2NVgyjBxuu0o72pHm6Hnb3PHJKHlMR4eCqOS0uTs3Nw4EuAbvKND7AHW4pl3b11I/RGMwqnzmRxqfR5a/Eh2EuPsPhQCkvgbcWKFezhVD98GkxDxzBrrFBFKiiNSAlQTG2K+lSeNCl4i8TvvG54j32OQFeLUsC0rrELEbAls8+FYQKoOHkA3qozKEwMRcJeSzw6CuYzPUuWXqpGRa9lebO93pD/s7yw13176rjsmchcrT0deynfr39oxqUcrh17GSRwWcGofL0ETG//7n/g5uvn4LtrbpS+IrLZb/3wN4ixWfDnx3/IKhp8nZrEMxoA45MrPnkUTQ117BTyRxaioGgCA6JCi1wij5+zLL9JEoPcerp7xzaUny9BXW0N0jIyWSk9mzUGDpeD0ZTQk3mMLYZVU6KbAfHnZQ/Nx7iJk2Gx2iJbYmVaKZy1Vm2pffnpP+HsmRMsW5ae0uPiEtDR0Y70tBRMHDMqpKY758hLyx2FmJRsVnmJ1k4WAcq0dbqczN1En5nc7bDoIsejDbtqOfRxSSA+1/bWJmaZpRivjrYWVlWJYk6J+sposbKAMVtcIisXajBb0NXeDoPZDGdnJ3Qmcm/FIzW/AD6vX+BLdDnhcTqRYAxgXLwbHR0dKCkpQUpKCjo7OxlwLiwsRJvTi+3nW7Hmzjvwgxu1YPi+/mY1MNpXiQ2O/jyBiXQEhfGUFZ9AQ3UF3G4XElPSkZ0/CqmZFC8Z5Aal16QbNn2yDo0NdUhISkWs3gW9V6CYU7OPnG5yotXhZmWJMxKsyLL4FbHf3oAOHdYU6KzxMBoMsNhiYKOSmIlJSEpJg9VqY1bKtsqzqDq4lfGdEviSJ/XQvJy+rk2fiIU33wm338+A8pE921F5rphVc/N4fUizBJBi8IbErnLw7M8nMFoEk0HgIFUnPUn8nuxsBaooauT2D7ioJLEAKHUJGVKMPX3mKT8Cf8UxZpGluFn6SyCasRYkZCIwbqHKywY0VJSgpfw0kvVuWOEBXS/KV6jq9DJeVFb+mP4S5Z4/AGtcAquupCeuapOZ3T/oPavERBR9Xg9MFhujehKXj8/+75dR24w3PrsvamP1ZaAPH5zel+5a336QwGUHo5w0vrquUbLkcVcGP7+UpHhMKBqBJ375D187MFrVIq8SFAo2BQgauclBnrJXz8DV4bDDT/xGFK9EMUakwOhpmikdMhBQPJIfpeeKUV56DrnDRmDWnHnQ64KlPvtioZXD6eamZrhcDpHfTsduCvSE39ZYj0M7Noa44LgVoXDyLBRNEbJMGfcpz/KX8Qtu+fA1ONsaIsajTVpwMxLSh0hVXIKJU0qXv9frhtvtAcWisvkQgMliZeVD6TUB1+aGahzdtR0zrl3O4l6FxCrA1daE2q+CoQLSwwKVzdPpYErKRPy06zApJwFzR6T2w0/172sKDYx+Pa8n1Sk/cKqcUbaZTWbmzSDeTHrQlZsEFcmZPD6S9JPHjY72dnR0tKH02F6W5MgbxW63Orxw+fVCApHFjJiYOLgcXTCbjAKtGnEWG2heEwNMNB7nUCYQSg+zpPeIX1nv9yDR7GO/f7PZrEi24jRvNPfMZffCEh8PDz0Y+yhkxw8fAoy/merLt9WUo+WkkGhD1lXupqdYTGrJs26AIT5FkVDU09XtKt4HZ8VJRTdjchZsY2ZDZxGoqroOboCvrV7Btyxfd+y8NapwKyFunm4JHOAG7y+q+4kULhZg9xACpz6vV6D9IzAq8lKTbBlAFWgR2Dk+sTp6Lu4Vzwt0iP3dPvi2wP2ttcEjgcsORvmpnq+swZpHHsd//vQBzL9yskIC/VmbPtqir26TgVEV6rxYECqAPlmLkGkv9OtdzCn1PbRvD44eOYhhwwswdcYsxMbGs0l6YwntbVyqvaMdX7z/MrweN3ua5zXdeUnR6fNvRGbeSIncms3Pzy8AlBSfRPnpQ3C3N4SNR6On9Rk33Mue2vlxPDaNFKcAcoVMfeF75V8CmvJ+zGrT2oyD27/A1ctWMiBK3zuaalG7+x0gXe4AACAASURBVBPpItB5kEWCcyka45KRdtVNmJAVj9nDUqK9rf7ux9PA6NfzEtc3NuPlN9YygEfWRrvdzoprkHeEHnzJI5GYlMIKa7AsdwQQn5DIvEPkuaEKccmpaeyfgfhEA0BddQX0RguzrNLDNOO6ZBWURFeyiGzpd+71eAQQyqx77FcucGAyRnYD85DTusjSZ+9sw54NwSx8ssCSTqLGLYxpQ4Zj/Jxlops+wHhQCRTLqeZo3vNffQR7kxBvKm+W5Eykz1wq6o1gPkBQfytf0am46ivQfmQLG4bWRP8o/ICaKTkLcVMXs9cdBzbC21rH4lRJ//DGLbrp196riDGlmYi3lEA1p9SS30fkXjf1vUl5v+GO//B79JeLR0Vt8y797cdRG6svA336k+V96a717QcJ9BsY5bVfZ00bi1uuV9aFpQSmJ555O2w9+Mshg+7KgYabT16HVk1BVdPm6WGJ4dSSeEgYtFp86jiKTx6Rxhw2slCq4KRw83cX50lHd/P90YP7cerkcaSmpWPmVddIJUTl2fXiEMHkpj4kQ507cQDH9mwNkQvRQ01fcBP7nANFuWW0s70dmz9bh+W33o2d619DZ2tjyBh546Yjfzxx7HGQGeQvVYNMXkqQSnuSqGNShAIBCgoqBODo6sLOjeswb8UdElWVs6UONTvXs/nlVZy4a47KDqbNWIrxGhi9qJ+oBkYvSmwDfhAl0FS1usO6e+h3RZZKsrCRR4IeSO2OLpaZ3tnZgaqSM+jsaGWAkgE+vRmZQ/MxceoMxCcKD3S9frjuIc6ej3Vy71aUnRYSEdWNHminLbwVMUmpDIwShRMV5zBaY1mSJa8URTqDQhIazx1FTfExWC0mmGMTYUnJQuLoKWLZ0qA+CmeEkFuKWw9thruhUuH5kVs8kxfew5bKwag81lXeL3XRvUpdJtLcUXIl131c18rPvTtQKul9foAs0YEfF00wOuPb/zEge3rv8wLNotYGjwT6DYzSKRMI/Nmvn8Mzv30MI/OFpA+e5LTqhnkhIPVyiImssD//9XP4r599h62BatHvPnASv/rxt8KGCKi/V79npPeX0mRK9bOP3kVZSXHIaNlD87D81ruU2faSQVSZBS9XPlyxh82cB3Di6BHs270DBaOLMHvuguDNQA5kI8wjgckIILWtqQHV5WeZEie3eGJqBrIki2gwuUpONVVRVoLS4pOYe+1ydtyF0pOoryxhCpdim7KGj0ViRo7K4hkZjFYe2Yn6c0cV8kwdOQFZ4wWKLbkFddv6tezGWDBxGpuPrCBkGSWXHMWa8cZ5Ro3xyci46iYGRq/M1yyjff0JaGC0rxIbHP0JjCq8Qb1YVmdHGz5680UWX65uw8dMxtlzpVh282rEJSQIX6s9QTKEFI6OTsJNcg0pG6O2ogQ15WfRwkICdCwOvGjyLAwpGA+9yYy2lgac2K6kojPHxGPYrOtgTUiRvCVkIS09cwKtzU0YO+Nq6cFW0iUyz4z8PBXWyUAAzfs2wNMSavGUaLFmLGduf2flKdiLhZhK0kO8+Ae9N6XlIm7S/KBXSXzIJpDvFQomSR4gST7dee7CgHuZ2BWX7RfXFvTiqveuy+qXD/WuY5R7vXXvlCiPqA13qRLoVzBKQPDb//Q71NU3SxQYAngKYOLYkf1iGSUwWVZZix89tIrJTg1O1QIlqyg13l9txSWe0d607lz2dHxDXS3WvvYCG4oqbpA7iZ6CeVzSyrseQEp6ZtB2EAEwup0unD19jFVIohaXkIiRReORNSQvGF+kApgH9u3GwX27seC6ZRg+YpTk+uJrDgs8ZWPIAaWgwGSxoNLNRRkfyvvJj21sqMVXX2zAjavpiV/lapdZU5Xu91BLJ3P9nTuKyiNCqTlS4tS4iz29cCrSi6aFWEkPbt/EXPYJqWlIS0uD88zeiDyjsfljkDRmJgOjszQw2pufgKKPBkb7LLJBcQCB0b48gJPbfNvnH+Pc6eMMUJFuo0QcTgMVF5+IVocPt9x+D6wxMewcZcY4VYJOBL0i6Riw7P7KsyekLP/U7KEYVjSFEdhz1/WGD99B4fgpGJI/goUT7PzoZXhFTmVyh3OXOVlOi667S4hPFZkB7F0d+OL9N7D4zgeCcZm8iAcHo6orpTifANC071MGRuUWT3nd+ZRF90iW584TX8FdW6oY0ZCUidixV0EnlkEVxhdMD6w0sgRGhcPU0aLy9YiiU644AjDlnf49imD0zlfCW60v92Z//R5lqODlnk8bv2cJ9BsYlbvpJ40rwGvvbcKPv3c7s0YS4JszcyKmT44ef1mkU1eDS26ZfeyhVWHn5wlY1y+YyQApHT8sN0uy4jZ0BqsEhRBqiB8oP9dhz+4dqL1wgcVbUexTc3MTTJT97nWHWOK4WzgzJxcr7xSUFH8SZ2pG9t7tcuD1F/7CFKy6zVm0DCOLJkjKSQ0gHU47tn2xCZQUNeuqa8Sa98L48hsEd4/zz0Ksr2KcpuIY/hlfq3TzUI7f1dWBd15+Fvd870eS9TNcjGfwnMUYUUUcqPDZqa0fgNzzxIFI/6hxUm1rYioK5t8aYtmgIyk7v66yAk31NUjovMCyY+kmykuj8tjX1IlzEDe0AGMz4zEjT6BY0VrvJaCB0d7LajD1pASfunZZZTRVuUy+Vl6xh95//M7fUHOhUpFAJAdfS1beg7VvvoahecOQmp4hMGDYYljsp9Vmg9UWy+JHicPYZDax5CmTiSjhjAqwVV12Drs2hSYdEhBdtPLbEul8afEZHD+0H0tuuQO1lSU4tn09e2AlDwgBZUqUoipP9HfknBsQk5otgVECpe//9U9Yft8/sHXK9ROPXZeF8SsuHddb9rKTaBcfdEmvcIsnGR/01lgkXX2rjLYP8HU0C5nwHjdgMsOYREYJJVcpf8+5lgXgrdw5PYFSUS0HD5IMDspxoglG7/7bwIDRv92tgdHBpFdoLf0GRuWk9zTx7556E7/+l+8gOTGeue/f+WhrRFd5NIWmBpM9gVEOots6uvDV3mNQx4w2dXHFLNY6DgNABSqP4PcvPf8s6mprYTKbWSZqV1cXYmxWBHwenDx5EhUVFUwRkmLMzMzElClTGH3Jwz94LMRFzeIkRZB35MBe7Nj6edjEH7PFirsfejQUzKoSiMrOn8P+vbvgdXuw9KZbWVUlJQAOJgUpAGkPQDOStZQrzKqK8ziybzdGj52IEYVjg+cpq2kvrEMemyUH40pguvfdv7BtI4/3JJmSK4zaxJsfEmwGinXLxwA6a8tQtffzkO3X5vDANmISiqZdidFpsZiZ3/9g1O7yMSvI17W5PT4YjXqBl/Fr3FxuH8wmg0TX01+nQlWGYiyG/ppOmqfL5UO7U+D+lGfPy8Enf00UdzVVlTh6cC862tvwzjvv4PjxIO8nT8RZ89APQXRN5edLWeEMu8POkpMcdjvzmhHtG2V8E6eom2JSPR54PF5GD0ccpkTr5HI6kWQjIrsAe3AkTlD6vdMDKIG83IKxmDpnCQOV9Ls5tG83LNZY6DwdOH98bwhzB2f/yCiaioyiK4R1OJ3Ys/kTkLW1YOIVSl0kWk556o9orJTkpvQyAY0718HboeQP1RlNiJ+0AJRVz5Gk4jjJYqmElXLQycGopLNDEGbPltIwhygA6r9F0TJ6z+vB/Ij+3Myv3DmpP6fT5uqFBAYEjBKV06//9Bp+9oO7GBjtz2z6vlpG1eCV3Pxvf7RVCilo6vIFOY5DyI57cQXELhcqy7H2zVcjHrBsxW0YUVAoPnTLLIriEaSQPl33NspKzircP3IAdvv9DyM2PlEJwriLR2ZhJVXX1dGJ9evexaJlNyEpMVmheNWgsLv3csAqt7JycFpTXYX9u7YxC8jUGVcjMSUtaBXtA/jk1mIhDxY4+smrcNs7FaTaPPifSK3H33CfghaF3zy4mnc67Iyb1N7ahM6a83B0dcLe2c7qSNsy8lA4dQZi4hMxOi0O0/OSen+ho9ST3KVEYfN1bQSmrWYD44P8OrcupxcxVqOc57xfTken18FMLOv93Ii3st0ZLNErB6F8KfTZ3p3bsG/XdsXqCEySa3rfvn2Sl4I6fOfRn8FHFSpULCJKd71srytClEgXBhh4fe2ZJ9gY8gdQHuNNcZS33v996A1meBl9UwDvvfkSRhWMROWpAyEcorxIx5Ap85CYNwpnjhxA+dmTGDPtSmTmjZCxdajZOYRT5vqNC0ANRulz+4Vz8Nk7pEhXW95YwEgsIUpZSLpNZniQC1aSDIU2KUBxMLtf2T9Ub6itqGHHFz/8t0XRixm9/w1lTH9/becX75jYX1Np8/RSApcVjPalAlNiQhzefe5XyMm8vJyNfYkZ5VbR226YJ7nw1TGm4cBoxPtrGJdWVWUFKsrLmaW0ovQMu2zcLUwuYV627u77H0QaixmN3N5542VQmU55VRPqTS4ncoutWHU3I8CXrItSrJPM4sjcOwE0NjXi04/ew6LrbkRaZmZETlApnlQFZrmbKJxbn76jGLKjB/exmNbxk6cjI2eoVLGFHxNKzyRT/GEomuSAtHTnBrTXljMXGMWpUSMrCYsbtSXAHZ8Jql9PFpWAzwe7vZMlTVHmr0A5E2AxbHEJSYhJSERKWhaSMrJY5Sh5aMKYzDhMz+1/y2gvf9+Dtpvmph+0l6bbhVGmdpuDW0apq7zGkPC2sb4Ob7z8XERd5nK5GB0UtStmzcHUWXNEXsvg1GrLIod4wl9xTlGfEg8mPdQ8/YfH2bfc4kqvKf6TynbSQ64xJhkLr78Jbo+f8Ylu+GgtRhSMwtl9m9lxZE3lMaMEYqkljpmNw/t3I7egEEXThLKhzDWviovn8ahq4alhnzysivvihfh4mdtdjD2lseQP8BKFnXwSVXwn66MI5ZLL9NJAKB8pmmD0gbeODcgP4a+rhZA1rQ0eCVxWMNrdacqBanZmqiLD/nKKp6dserXlkyyjtfXNUghBqGU06KaX1GREV71wZi6XGzu2f4mSkrOIj0/A0KFDWWzi3l3bQ8ji+RN6WkYWVt11LyNv5pZIhbKiRIEvNoJq2JObisrW8YodFHdK7aEf/otgRZCUn7JKitPuwInjR3Hm9AmYzRbMv/Z6xCcmKhRiEMiGd9f3BEKPHtiLwwd2YeSoMSgcP1mwhHJXvGgJ5bQkvE6z8L2KMzRMQpPQB8yCWV9Zis7i/dAFglYcJi/o4M8YCb0tHmarlSU2UIURo9nEzpky/40kY7WVRi5s2XfjtJjRi/q5amD0osQ24AcJYNQvwMEwniDKVH/t5edYWU7SQ/RgzBvPFufvJ0yZjumz57L4T6JWUrfQj+R9gpPzSI/n//hrNgRPDCKvECWAspKdRjNWf/sfGQ8neRXIOvrBW6/g6muX40LxEVQVh7qL/bZERkMVFxfLqsOZ45MRN3wcDFZ6IJW3UE9VuAslxfrL3O1crXAwKn94V+h30eIpabMI8ZwKy6gsfl+1XNX6g99262sRv4ymm/7Bt4NhG/25uZ9dNb4/p9Pm6oUEBgyM9mJtl61LdzyjarDJraPrvxCsa+qY0UYxgSkY+haMDZXUpWQRFb7bu2cXdn61DZMmT0VcfByLbaosP4/iUydC6h/zMpoUMzp7znxMmjJVSWgsA2kN9XV4+9XnJbmRVZBnkI8aM55RJsmfmknxkZWivKwMJ48dZvFaufkjUDRuIpJTUxXZovK4UXncJvtcRmkSyRJaevYM9u3cgvyRRZgwdSYjwVaDTp4MIP0Vxw2S2gcz58mCSUlGxA1IHIZup5O9b29pQmxiElJTUhDTfiHsHsqYtZRxBEZKNJCiqpSewbBjadROF/cz1cDoxcltoI8iMMrd9HIPEOk/csM/9acnkZs7hFV8kycP0rrJQkmWyqvnLcLkK2aKekzIAJeSf2QnGGodlcVKhsn43rNtE04eESr68EQkPtzCG29HWtZQ0Po93gCcbjfef/0lrLjzW/AEAqirKEFTbSW6WhthSUwBhU3ZPJ1hxZ02+0aYqOIS4fEewkzCxY4GQbYYoy4mGwlgNXiOklWUcyPzcw5z7tyxzwwN0ngqyBwGaUYEn93ovmgmMH333RMDsqWfXjluQObVJo0sgX4DozyBacn8Gfj5b4KAiZb20pM/7ZdM+suxERo6vGEtBIKmCgnxlywKpaUlaGtpRkd7B+wUm2jvxIWykoiW0XGTpmLBtdd3H7sJ4Py5YmzZ+BFzOfNWUDQeM+deK9CbIICW5macKz6N6qoqVF+oZDyjwwtGI394QeTx1RnxqnhORdyoqu/OrZvg8/swa+4ioXSpzBJKrnhuAZWD0ODrIAClG9bpw/tQUXIG7a3NyBw6jNWZt8XGwxafwNzpsYmp0JtMaNz/BVwNlRKdDMmCJzMQR1/8pPnixREfHkRhyR8gxEuo2DbqRI2J2QlaBaaL+GFpYPQihDYIDpGD0ZDfB/04AgE899Sf4OjqiGgZvWX1GhB3MrcU+omOSGUGVb4ND0LVQM/lcuLwnu04dfRAUFI6HabNno9R46cJyUtUocgXQENDHXZs3YTrblrNwCi57V3snw9b17+HzBgdvG0NYfWHOT0XSVMWsJRUsRR9WGAaLtRAso6yIy4CjEYEooLsBaJ+4fTloQTyraMAoL144FZvu2iC0YffU5ZE7a8t/tQtY/trKm2eXkqgX8Ho9/75D3B5PHjh9z9hiUvUOHXSw/fe1C+k972US6+71Yk8o2r6JvUAapCj/p4U6avP/hlut4sBUh67xC2bd3/7EcQnJARJjqUscOGFXMkxi6fTBSKbTk7NkJRSWVkpDu7dDZ/Pi+wheRgxqhDpGVSVSDaGoMUuCpSyQ2XHtre14rOP12Lq9NnILygK0qOwLHauOAWFLLiXxHgsxXfBfts+eQ8pGTnIzBuO+NQ0qUIK49YTg/eJY4/GadvxHvzOTkbXQjG41KTqJUYzLFeukh4W6NpQ3BkHmsL7YDQcf82tILw/jTk5JwFXD9dI73v9gxE7amC0rxIbHP3VYDQEkFLloPY2vPjM/7IFq3UZhcLc+9AjMJutkq4QLKPB8+sVEBWRHgd8/HD+vqL0LI4cPoDrV6wWdY0wByOF9/lRX1+HLRvX44bV97ISoG4RiO7b8SUMVhsCZQfZguT6g2L4KeRJb41DytW3CjpCB1AOv6QbdOGThvjZBfU0t2WKOlPS4T1YRlVgVBKbKDQORtXuflGtc5QqgtWL21PRBKPff//UxS3iEo/635vHKEZQe0D/8yff6jUeoVC+vYdP9wtP+iWe9qA+vN/AKF3s1Q/9EpQMtGalUHuXt/6kdor21egLAXTEuUWNcubkUUbNJLdqkjVz9rxrMXrMBCnOR9A7otJSZJZyXRMKLjes/wA66FE0bjyG5g1XJOGw0dSWT1F7hbjkOR1SBEspB8Y+nx8vPfUE7vrO92E0k0teBkBFa6j0mRyMim5/bjHlMVCHvtoMg8WCwqmzBAsHo2gBc7vx1wLhswBM3dv/xoQhz6yVcxt6Z94pAU52QyEwKiVEiO85KKUECem1QNLF+04ZkoC5Iy5v0l209+xgGE8Do4PhKvR9DQyMOsTIxQguavr48IG92Lb5M8UEBESX3XwbclgSZVDnkGVUsuapzHZBsCVF1XSrq2jCstIS7Nq+FavXfCvosuYPuOSm9/tZFab1772Jm+74FtMhbr8PTq8fOzZvQHJOLpwnBSaA3/zmN8zlT03SHwYTUubdwR5gKXGK/kkPsz2ItLdgNARkq6yefBqhnxLYyuPrRTXObwwhsaIR3fTdnEc0KzA9um5gwOiTNynBqJxlpye6R7loeKlwdfhe339Z2hH9BkbpAv/jv/0Z6WlJ+H8/eUBRerM/qZ2ifcl7rk0vn1EVwxNmMURY39RQj+rKcqa0Kduc/gXjh0TFI7lieDZNeHBK7v/33noNV12zEPnDRwYVuSpTM5J1VB0r2tN7vs6mxgbs3LIR1996FztLDioF66fMNS9aQ7llVEiuClpD6XNHlx3bP30f826+gwFPzqUnAE8BlKpfu458BrTXK/gDKZmBXPWBmCT4Jl4fBJgcXDIrh3hjiQhMNTAajd+QBkajIcX+H0MBRvn0EUBpe1sbOtpbUVVRhqG5w5CakSFYRFUPulLSTW+AqOpYGRZjD9gXqioZEF56461Ssib3wjDdwspl+hkAff2vT2HZbXfDbIuVLKNni0+itroaCe4meDpaFHGvXH9QBaSkK5aIIDTUMioBwDBI71LAKD1kK+muxAsgA6OCZVRljJBkJmFS6GrOINBUGdxAGSOA9OFhNlQoBUw0wehjH53u/00M4IkbggV25BzovEy5mgIy3CI5Mw8V7Hnimbc1y+glXsl+A6PVdU1Y+e1/R2t7p6IUqKBMAkgiaqfn/+OyUztdorxCDu+2TnOEx86+PI32ygoqA5Zy5Xzk0D6cOnYMK1bdCRNRqXRj/eQgkx8vpy9S3zzkfeTUI3LXUEdbO7ZsXIflK++WueE50BQz+mWueU5JIger3HLa1dWJHZ99hGtuWi1ZRf0EQEUCawZGVa895cfgKxcyZLllgxLFGDDOHP3/2XsP6DiOM130m4hJGOQMkCAB5pxJkZQoKlCBkpUtWQ5y0Drc5F0/+1q7Z+M9Xvna67feXT8n2bKcZcm2gq2cKFJMYk5gBAgCIHIaTMLkd/7qrp7unh5gQAwHkNV1RGGmp7rCX9XdX39/QmLWaondZKyoFvMpB6c6M5rVS0cHo1kVZ84a49704+DQlPEwECY3B+LaHXlsTBkNqsWIKu5NkplS0qxosK8P777zBj5y/8eEe53cAVIEcnRP4XFG33z5edTPXYiamQ2IxBMYjcUQisaw+62XUZJvR7jzvOb9g1JxOmoaxfuHUqOitRD8/slBaiYOTHLnJf6M5Gk+eR9yVpS3zcEod1SVPw8kkHzyTWCkJ3WoxbVIzLtWcTz1PcOAf7w5e3FGv/ZnIZxhrsu3ts+TutRKCU5Ac9+hprSJeOS/nzzTooPRLCxgzsAojVXtqU7HPug2o53DYbYMmQJMjQgmsmWUGerL7jhqeyipllxFLw6iq+syms+dwfEjh7B81Vqs33SdglVV3ORU4FRxs8+QOU0HRun4c7/9GW6+4z7Yna609qKk8EtV4acyp2+/8DSWb7oBzsJiwfZrDCBKLGno5A4kBjsQj8dZWkEq/HOiqAaJedeJNl8yICoCTgU41WBKdTX95O88OhidvAynogU1GM18DMn4l5J2RTT5YS+gsghs8vub+t4qt0mXvyRTvV/+9Id46FOPwmg0yWIpy2Moi5qUmGDOc/7saZYk5Nqbt4vMqODAFI7H8dbzT2NWXRVC3ReRiEaEaZossM1YgPzGFQqzHvppPK/65L1Vzm6md2AaD4yqbUX5dzUYVbcDTw9w6k02HQqBRfb0ZEtPrC+7Ry69FQZnatxkOSj9x5vnZL7s49T80lPvZK2tiTT0/UeuV4BReUZIjlXSgVG1WSF915nRiUhfu25OwSgNQR5WiQ/pg+xNf1kEoxJ2TItKtYGmDHNqrpBaPa9gMMU7NTk/HTmwH83N5+BwulA/qwGLliyHyWJJYUP5TVE4NanOSd4stc0AtEI2JR8qSqcn3tbJYwfh83iwdvNWTeckpcOSqJpnKnoZcyqC1S5KF7rvXVx/7yclZyduHyq3FeXHRvc/h4TowEROFMSK0j+K28qynKy5T2RDlcyGHGgmbUjT19FtRq/sJqSD0SuT21SflRr0PrMRpTJ1SXCqBKPpwzdJ4FMWSo7fx9567WVUVtVgwWIhzaNk665iSLlHPXea+tn3v4P7PvkFmPJsCBMzGoszm1JS5T/3s/8PNz34WUQjo4gbLUiYrMkXWJX2moO18UgJJgeJRJgsGE2yEZpgVEVWsMxO7cdh6DiZNuNUomE9EmWzVZFglGv8T1kEo3d+5f9mtoGyXOvF7/xvBRj9u8efwDceexRcTT8WM0q//f23nkwZkW43OrlFyjkYndxwp9/ZHUMCMyqU9IAz3U1KrsKRz07RkgYDSnVD4VHs370LZ06dwKq1G7Bg8VKWwz4ZPzM9sFSC0iSYTHtcQy02HhilOfzpmaewfM1m1MykFHqptqPMjour60V7UcUxmXNT56UW9HS0YeH6axVOTEJoGKXdaOBdIbVqOgcmbCAHJg0PernKXuZlL3du0pnRyV+HOhidvAynooXxwKjK7FMxxKS9pPJFOOnAlAEQFdlUfp+iM/p6urHz7Tdw94OfSHn5ljISiVogDkaJiaXPFKP44HtvY92N2xkQJa96AqOxRBye4WHseeNPuO7uj4mxUKWcSSmiV2u80t7vrxCMcsCu1JKJ93fZaBTMqOyezVOMcjBKWemIGeXlrrvuYskB4vWrkKicp4gsop5sNsHoP74mmELkuvzztiS7e6U2o3zMOjOandXLKRgdKz3oB/WtomMopFTRyx2LNNYoI/CZxLaKtvkNLxIJY9/unTh1/CjWbbwWy1auEaFw0l5AbvMpNSeNTcWICjg61cM+k+MaIDXoG8Gx3a9jsKdDkgBlQFl+7W0oqpyRZD5FFpTfQJNB8GUOTOLDhzsuUZxRv9eLmQuWwCVT2Us2pKLKz3voVcQ8ggMTBd+mQgkEyIEJzkJYVmxPhm/izkoi+KS66viBPBqpOszTimo3Nuve9BO+G+lgdMIimxYnqMFoCugax05esoGXvWBzMDqeel64HanV/Qm88fKf0ThvPouTrK7DM85x9T4Do/EE/CMjOPn+DvS0N0tytTndmLX6ethKKiUzoPNNxzHiGcKCNZsU+eiTN1y5l3/q5NVHrpQZnSwYJTqWjWWwA4azO1nILcqOxdX0lJCANEfxhTcC7vKcMaP/8sbUgNF/uElpajCWNz3HLQ/csUUz3JMORrNza8opGM3EQy0708pdK+1DoTEy+aSPOZfCoY4BYpN2I5p0/wAAIABJREFUmQnseW8HLpw9jSXLVrIsJiJeTGFD2XHZnVCt7r+i3zQYWjXopS73vfYsBroFICrPhEK/Fc1YjPnL1sDhyhdV9+k965PB8OXe9UB78zk0HdmH/KISVNfPQcXM2VKcUQ5Kg50X4Du1W3MjWBtWw1InhPbg6jV5DFHmL6+R6lBRhwFYgx5n9AovNR2MXqHgpvg0AqPD8tz04+mlZfb0insQv5fINCNJO0ilDb78BV6hfidgGk/gFz/9IT75uS+mRApR2JfKmFG6R7z3yjOa9yhKB7zgxvtYyk9ml55IoLujDScP7sWmO+4TUimLE5GzlGpHU/kyyUXEVfTy+nKAKs9mJ93buXYoLsaT5o2rxkGHtZjR5DMigUQ0DBx7GYZwIGUnUZSRxNLbpJtiuuRS2WRGv/HmhSnZ0X93o9IJa6w4ozoYzc0S5QyMalHhuZni1e2lbTCZ6Ui6R8jvIuLBiYBPNcCk75S3fv+eXVi/8TqsWneNNCn1jZqjU/UNUGgziXiV6h6huXHZVHFgY53b39WBva89y9rjAaMpPh8FiyZD+cLKevQMjmDe4hWYPW+RyDYomVD5DVXLu56r+0ltf/HMSXS3X8TM+UtQOWM2iqvqJGcpb+sp+JuPKhwQ8uoWwNGwXHNTpNx8RcCprixPYLCsSg96fyVXmA5Gr0RqU38O5XZXgNE0Q9JiTLlSmd+zuNqem+nwe5f69ql8cZbZWSKBSy3NONN0Ejfd/pHUaCEiAE2CPYFVHezvxY4XBDOep556iiUYkd+jqhesRuWC1RIYJUDa3HQcly6cwdobboM5zy7ESVVFB0jOWbyTqoTA58v/8jvueGBU+F18aZc7y04UjDLBJpDwDwGth2AY6U0+R/LLkZizAchzSi/o6XZbNsHoN99OMtO53N1f39qQy+70vjKQgA5GMxDSWFU4GFWr3zWsR8WbpXZrWur7aDSKE8cPY+/OHVixeh1TyfOiCUJVbKh471EATbkDVEa/y54MWmBW+lm88fZ3t2PPq8+yGzzd6HkhFTn9a1y6Dg1L1+ONl55Dw9yFmNEwVxmDVJGFKVVdTzFIOTtBXbJQLdEoOlrO4dK50/AM9mHGvCWom7sQNhdlrEogGgmzvwazVf68G3vl5axympoESikd6EY9A9OEryIdjE5YZNPihPHAaDqiVM0cSi+0MmaUX5yKF2n1/YebBYlAc+fbb6K4pAQLl6yQ7nNJTZLKkUm8d/R0tmP3K88wFTW9MPNCJjzkVV7RuAR1yzbKYhoLsYyHB/vxxu9/iVse/hwsNocsCYkcICfv0KnPhKTzUibMqFxGqWA01XmJek4J7aTWZnFAyocZ8jMAOpGSTTD67R1TA0a/ukUHoxNZ81zUzRkYpcmQmr6+rjLjNFu5EMBk+7g0IGdGVRBUdiNQ9yNXScl/Gx4eRGvLBfR0dWJgoA8NjfOwcs0GmMzmJJCSCE4lYhrzJi7e1CdTR2gifZ/0e393B7vRk00SOQ/xwg3kCYzml9bipT/+Fo986f9BwmBQOjAx2yZl0PukLWny4cJBKbtJy7K5jAYCaD3fhMstF2BzOlFWW4/iiio4CsRwJao14eyG7JknyFkLjKasZ4KB0Wvq9XSgE72OdDA6UYlNj/pjgVFNIJpUxqRmjROvJ4kZVdQV5qu8DlX2ookEfvKD/2AqejNFyBDvTeOB0d7OdqamV9+jeFD72oWrUb1wTdJJkifaEJ2e3vzjr7B00w0oLK2QGFLObqbcR1Rv/8K9jM8rCWKTGahSga02MzpxMJqEyeInbkc6ga1FL+DZDO30/77bMoHes1f1b66bnb3G9JayIoGcglGKKfrrP76Jr37xQUUGpqzMZIoaaR0QUsUlkaJ2zFEt5pPfPIeHBrH73bfRebkDxcUlKC2vxKyGRtTNTGbEUN+UpS41VEFqb3pNcKUGtCkgLdUZKoVVld15+VwC3hG89YefsuGR89CZM2eYep5YUTKQj1nykbDYcONt97JA/FKOelm+eg5Gk0AzmbM+qeoSGVKZQ0PS3koYTe/ldnS1tYDCQo0GA8gvLIIzvwAWmx0Ni1fC7soXly31xs7XS2InVGGwuEyXVOZjgw5GJ3z16WB0wiKbFifIwWg6FpTfC5W/J1XXcsaP7pY8A1M6rY1wmxHOStpcJnDxwnmcOnEUt911f9oQdnIbTG5v6hvx4PVnf5L2HtW4ditKZ84XPegFu1Gegpj/3fXSHzF3xTqUVFZLST3YvUlxT0w+GPjxscCocG/TllMKM6qhoqfetILea6+H6jmVjh3R2HXZBKPf3TU1YPTLm3UwOi1uKLJBXFUwOpb3vFoQH1Rv+um2oPp4dAnoEtAloEtAl8AHQQL/9d7FKRnm/9iklfp0SoaidypK4KqCUV3KugR0CegS0CWgS0CXgC4BLQl8f0/rlAjmS9fUT0m/eqfpJaCDUX136BLQJaBLQJeALgFdAjmXwI/2TQ0Y/fx6HYzmfLHH6VAHo9NtRfTx6BLQJaBLQJeALoEPgQR+sv/SlMzyc+tmTkm/eqfThBklb/ru3kH881c/w0b0j99+Ei+9tQ9VFSX40be+IuWF1RdMl4AuAV0CugR0CegS+MuWwM8OtE3JBD+9ZsaU9Kt3Og3AKHdm+srnH8Ca5fNBKbSe/dMOBkxPnmmRPtttQixIvegS0CWgS0CXgC4BXQJ/uRL4+cH2KZncp1bXTUm/eqfTBIw+9q9P4KtfepAxoPLUoBTy6dvffxqP/+2jKCoQwu3oRZeALgFdAroEdAnoEvjLlcB3/7xvSib35e3rp6RfvdNpAEZ57tf779iCxlk1+OLX/x1ylvQ7P3oGP/jmX+tgVN+tugR0CegS0CWgS+BDIIEv/ksyMUoup/uDf/hyLrvT+8pAAjl1YCIG9PNf+w66egbw2Yduw998/gFw9f3a5fPZd73oEtAloEtAl4AuAV0Cf/kSePrI5SmZ5IMraqakX73TacCM6ougS0CXgC4BXQK6BHQJ6BLgEnj2aOeUCOP+5dVT0q/eqQ5G9T2gS0CXgC4BXQK6BHQJTCMJ/OFY15SM5t5lVVPSr97pNAGj3G5UHs6puqKUhXhav2oh7rntWn2tdAnoEtAloEtAl4AugQ+BBJ47PjVg9O6lOhidbtsrpzaj5EFfX1eJW7eux7d/8DQevudG5lkvD/Okh3aabltEH48uAV0CugR0CegSyL4EXjzRnf1GM2jxziWVGdTSq+RSAjkDo+SoxEM7ERsqB6N6aKdcLrnely4BXQK6BHQJ6BKYegn8+WTPlAxi++KKKelX7zS9BKYFGNWZUX2L6hLQJaBLQJeALoEPlwRePtU7JRO+bVH5lPSrdzoNwCgN4Y8v78S+Q0147H8+jP968jmmpi8uzGcxRx+4Y4tuM6rvVF0CugR0CegS0CXwIZHAa019UzLTbQvLpqRfvdNpAkZpGMSCPvLlbypG9NR3v85ShOpFl4AuAV0CugR0CegS+HBI4I3TUwNGb1qgg9HptsNypqafbhPXx6NLQJeALgFdAroEdAlMnQTeOtM/JZ3fML9U0a880g/98H++9pkxNbWk5f37bz0ptTFe/SmZ5Aes05yBUbkDE3nQ/6WUfn+UTeUXP/4evCMenDlzBkePHoXNZsP69etRWVmJJStWY+OWm5EAkEgACfok/JfR93Nnm9B87iy2bb9Lqi+0Q+entsV/E/pIsHOo8L7H+v7+nh2w5dmxeOVaVj8uns/bYX2qjsXFcfDxyOclHyerJ50rjF1et7/rMk4e2I3N2+8XjiOBuEpe/DtrVyaD5Gcas9g2jT8aRsw3xNozWB2AzSWTh9i/KBu1jJjYeB8AwsEA+i+3orf1PEb6e1C7cAU+etsNuG1B7u2PdrUM4u0LA5O7jPxDMMQiwt5wa83BABjG72K8KtLvWhVF+Wr1Im5bYaMLV41U5GvT0XQEo8EAZiy/BnHaU6prS71XhEYMMMimxz83v/cSFq7dDHdxCYxUywAYDUJdI9WnD4kY9j/zBBpmz8HCxcvQ2DgXFpMBZpMRoWAALz37cyASwOjoKHbs2IHu7m4sX76c/aOy5b7PI26ySNeWYr+mXFsJhGMxHNnzLjpazsFktqC2YS42XXsdts3L/b4bfzdkp8aQNwy30wITCT0HJRSJIxyJId9hyUFvQheDIyEU5uexfZWLMhqOIRpLwGU356K7jPrYcXaS97CMekmttGVeieIgRfqhIs8KydOVq88m4PqDnz+PTz94K0tfzrNIpqt/hUP80J2mg9FJLvmAP4pwKIQf/9e/sZa++c1vsocQFXr43HXXXbBY8/Dxz3wBDpcAhIR/MiAmfRYepPKHEz104/E4fvSf/4bP/be/gdFoSgK6McBmOuCZFgQDGA0E8ec//Ar3PPw5Ceiy/lWgUd62HIAqgKIIHpR1VfOTAeSBnk4cee8dXH/3x1KAqAJciGNhfcnmryW3QNNuRLqbFStsqmiApWEVEiarAggrAbyAfwh8+j2D8A72Y7jnMkb6u1E2oxFFNfUoqKxj/W+sL8T2hbkHBenAqBywpd3aBELP7gRC/mQVsxWJhvVAcS07lvp8TA9M0z1LxwSh8sHxl6U0A+bAUw5I5WC06/wp+L3DmLFMA4zK9i7tGdrLvCjBqIHN+eLeV9GweDlKq2oZ8GQAFKmA9OAfnsSixUtRVlKKpctWMjAai4Tw+1/9FDOqy9HX1Y59+/bh1Vdflfr7+te/zl5SV95wDxwlVdJ1Ln+ZU75sJRCLx/HcL36IhWs3obx2BvLsLtZeidOCW+f/5XoE62B0kg8mjdOnIxjdeW4w+xPNoMVr5xZLtbSIMjk4Ha85zqrqsdLHk9TYv+cMjNIwaIE3r1s65fahcrvVJQtm4wff/Gv2hpOu0Lh/+tuX2c/q+gP+GAb7e/Gbp37MQCiBUV7mz5+PBx98kAGb+x/6JGrrZiaZxoTI+kl/RdAnAtX+vj70dHdheHgIg4ODmDl7NuYtWJICwNRMowJs8gcxDUgO3FTf6WtfTzde+9Oz+OgjX4LBaExhLZUsqRxMy9lF4XMKKJUzmCJrKTyABXjR19mBpsP7sOm2e7WBqFgvCUCF/oV+hHaUjFgCwZZjiFw6zpZieHiY/S0sLGR/jXVLYJy5VDrPPzyIwMgw/CNDCHo9CAV88A70AgYjXMVlcJdWoaCqDs6icgVIp343zyrCnVPgmXnFYDQahuH4KxIQbW1tZew9gSQQIF1xJ/srL0qwmQpKtcBoJkCU6qSA5zRMaZIlTTKkHJD2XDyLkcF+bWZU8fJC4C55PsFPAqRUODC9fPhdVNbOQPXsuUkwSqwoqyOCUwNw+PmfY9ud96Hp/ffwkfsegtVsRFfbRRw/tA9Frjx0d1zC888/z7QkvHzhC19gsl6+9R44SqukPSvXPqivnbdfeBazlqxEeV29QstR6rTitgU6GJ3c4y95ts6MZkuSE2vnvfNDEzshS7U3zSmSWqLQkn/3+BP4xmOPsrjnVLiz9T9/9TMYL/Y5nf/5r30Hjz/26JRjmyyJZ0qaySkYpUX79R/fxFe/+OC4C3y1pKHeeONtOvXv6u+93gh7SH3/O99gQyYmhBgRergTK0qAdObsRmy/+6NJIMPAU1JlPTQ4iN6ebgwODaK3qwuXLl1ERVUN3AWFcLnyUVxWjlmz52gCxCRDJKonM1TNc9AajoRxcPe78HiGcOPt96YFokmVuQyIjqFyHxe8iiYA/T2dOLb7HWwhRlQ2dukBLTcV4HIjIMrBrAyUSoA0AQSPvoa4p1daD1obMpu45ZZbEDHb0Rx1w9PfjYBnGM7CYjiKShnrlJdfAJurEDZ3EczWPBl7KoBetmoyJu+62UW4awpi1u26SGr6QUmFza+XsZhRZqow0gvDqTfZi9N3v/tdicX/8pe/zMB6onE9EmWzNbXzSdCpBKRqMMq+ayDUsbSRmuNWAVO52p5DSjo23NmGzuYzaNxwEwN48pcU6aVF3EeRWJytnzBGgQ2VGFKDAYPnjsBhNaF+8SqFal7NkDa99gxuv+8hDF1ux2B3B7bceCsspKYPePHysz+HMR4GAX0CpPQyVF9fj0ceeYQt05rtn4TR5lKYwMjvB/K9f2T323CWlqOmYb50/VMbBEbvWPiXG7hbZ0az/wScjszoc++eyP5EM2jx7uuWKMDot7//NB7/20clUmo8XEAnc/X8idMt49qYZjCkD32VnIFR+cJpST0ThjIbq0WbrLW9m9mGUNF6K5L3o6briVX9zo+ekdjUTk+Y+BXs2fE6Th49yE6lBz1jmsRyx30fR2VNHQM2Pd3d6OnpYqyn1+NBW9sllJaVI99dgIrKGhSXlaKyqgZmizWFzdSyD83Y9lTAUQp2penYYRw9tBdrrrkes+cuSGH95LahyQd8KhOqtv2U1Ooy+7eU8xMJ9HZ14MLJo1h74+0qICqz+RTbEFhRziYnTQfkx6XPAEI7f8WkLzeboDUhVSmV7tr1DHTa3UVJ0wneF7chjYZh7TuHvN6zkm1luKAGgYpFiNoKmbyubyzGvUtyz1BJYFRcV84xaoG6pJobMHSfhaH1EGPsCCjxQiCdwHq8ZjFQt1Q4zFlD2QWRZDyFT5kA0YmaxI3HlgrzSTKc4dEAjr7xApbd+qCMbZSZw0QjsHWfRN7gRWkdg/nV8JYtZOtIk+AsaaCrBZGhLsxbf73MZlRkRTlwNRhw+o1nse2O+1DkdqPp4G6EAgGsXb8RRUVFDJC++sxPJKnJ7wcFZdVYtOUuROIJxDTsQ7kJD3/ZevV3T2LVjdthd5NaMWkPW+a04q7Ff7kpDXUwmo2nnbKN6QhG/+HbP8j+RDNo8V+++kWp1mSZUV1Nn4HAM6iSMzCawVhyUkUNLsczPuYU/G1b1zEAy1Oa3nPbtWy87YMh9pfsRg/v34WmYwIgpWIym1E/ZzGC4Qh8Pi/aLragvLIalZXVKCotRXllFUpKylg9zgqKz1l2vnRM5kSTzikpBZRK5ydBKK8T8Pvx1ivPo7i0HOuvvVHRl9wGNC27mYnDkgZrmrQ9FYDErpf+gMUbrkN+YYnCsYkznL7LFxAL+hD2DMDsLoaltA5GV7EESuXgUwlKE4geeJ6pop9++mnmVEZFMpswWTC68r4UVT8H1bwtZ9t+2IYupezLhMmCvrm3MyeUrY3FuH9Z7hmqnS2DeKdZZm8l0rVqICcHoowZHeqA8exO5lTzwx/+UJobmZOQfAiMJkQwKle1ywElZxU1wais4pi2pLIfZWacqbKWHZHXUwPSXb97Aivv+ASMFqvM7lp4gbG17kfeUGtK27R+XQ23gtaTtBvEkEYGOuHrPI+FG29iAFVwWpI5MjH7UeDcjhewZdsdKC4ogNVoRG/7RRza/Q7qZs5Gw9z5yDMbcfS9VxH0e1nbbBxONyobFqFi7nIGRokB5XuNX3cchF48eQj954+huKgQRrMF1uIqOGYuAJitcwLlTivuXZp7R1Bmd0v/u8rFG4jAaTcz57FclEg0gUg0Boctd849I/4Ic5jK0RQRjsSZmYo9zzQpkZpN2VuT/c2CCVWuy7oGwWSLymRtRqkNNcmV6/n8JfT3oQSj9XWVUtiG8cAof+vxeP147/0TKTajv3j2TxgdDSESCcHn9bJ/8XgUFosVBUUlKC+vREFREUrKK1FWJtgcckDJAad4KHlcpp6cKEiVe39L/YjtEUNzeN976O7qwIZrb0R5VY02G6ryvGcPyrFU8in1ZR7Nmucl4PUM4dDON7FpO4HCZPvcmaPv0FsI9rSlXGOuRRthqWyQHuKCU4rAlHKbUvocO7cH6LvIVKRkNkGFmD9SRUcLahBs2Cydoz6XMdDRCKrOvsDO47Z/ZO9HoI3aGC6Zj5GyRQyMPrwq96DgrXP92H1JeSNXQIR04DTkh/GwMC8C6dxmlHt6x5feCoMzaU9F9SQOVIMplX4fA4SmU9uPeQPVsB1VqumFszmIO/7OS6hZuBKO4gqZHTGAaBju439Mu45DxfPhKV0geswbEBnqhK/jLBZtvkV0XBJYUeZNL9qN0ufLB99Gw5x5mN04l4FRi9EIq8mIS+dO41zTMQQCPpQWFiDsSc297SgsxZzr70VM5rgYDAbR1daCnvZLGLrcgvrCvBTxGMxWuNdtZyr+MocVD62syfkzKBiKIRSJXfV+yeubPOlzBdT4C3CuvPdJgNFYHCaTMZOAFVmRd7bmWOhS2pRPZnAHWjyTOf2Kz10zu0Bx7lje9Bwj8MQ89P1nT7+CL37qLmZuqP79igf1IT8xp2B0LFV9rtT0E2VG1UwovQE986cdkpr+j6/uhDXPhjybDXaHA06Xm9l5Cg/KpHEhf5Am7Q2FIwq2R6qu/E1xjgZLqgC1sjbovEgkjO7ODnRf7sDpk0ewat1mzF+yQnqIJx/oKsCpBSLFjgQAINbPFLjK2FS6KRIwfu3pJ7H9U19MsRX1tV/AwPFdrA4BJmLxiLUjuzt6IBdeR+rYJABVgFFinOi3UR8Sx16W1LL8Ok8YLfAt2IaIxSmA0bjYDjtP/BcHLL4e1HTuZmCWbCt54XanIWs+OmbcgFsXlOGhlbkHo+9dFJlRmf1quntZCo/Vdhzo0LDVKpsFzLlGaiZTZjMJWJMjSAciBCvNsYsyiJNQV82e8j3I9++lE4cRioRQt2Rd0pktARi9PXCefyftOnpcdeirWAWjUfCYd9nMaHn3eVQ2LED1nMVJZlR0duJMaayvDV3njuGGj3yUAVHhHzGpBhC8CAeDOPTabxAJBRngJ7MI5ry0fDkz4SmZswIxZxEGe7txubWZXY8FxWUoq50BY18LRge6pfNojjxMnLG4BvalW1GVn4eHpwCMjrd22fpdV9NnS5LJdqajmv7gxakBo6tnKcHoWHFGtcCm3KmZJKzHGZ38fs0pGJ1IuITJT027hYnYjPINev8dWyQvObV9ydnugNSRUiWqAUT5kzMdUNX4faC3F4GAnwEzCvFkNBqZWp/9NZmZw1E0GmVqwKBYz+sZxuBAH3wjI4jFoigqLUPdzAYJhHJ7Oy1QySG0ZPep8MjXshfVBqXCVOQxH1M97f1eD/a+/ie4CotQUFwKoyUPJosZhuEuxHovpdg18tA4oYr5CBisiDFnlAQMJjMKK+tgyy8QQaoIMKNhBM8dRHCgkzFk3lAUI7YyWPJLYMxzwGxzIC7wXUhQBAGYkDAYGZgp8l1Crb8lLYgJwIrT7mX46OZleHh17hkqCYxmcqFoaFUTIz1IDPcA/iHAWQSDqxgGMazTWHhxLCipBUDHAp/y+vJrRz0lCZxGw0BgOOlARrFRxZezUDiM/c/9HHM33Sq8BBrNLPrBeGB02FmL7rKVjIUzGg3It1vgshpxfu8b8A/2obCyGtY8O+zOfObQZrU7YDKZUFtRBF9XO07u24H6xgUoLi1FYVEJzGYz6bFpR6H9wOtsKnK7Zf4yMwozYgW1yC8tRUlFDfKLSyS2/9LLP2Pn0UsQjwTBTUz8kTiahuJYtWYt/vmROzJZ/Q9kHR2MZn/ZpiMYPdQ6kv2JZtDiqnp3BrX0KrmUQM7A6HQJej+eN72a+SQA3d07CB7iQf27/GLSBKN8NccKWaMCC/193bjc3oqOi80syDUBrvyCQsZykr2WyWhEMBhgINTAIiYb2AOTjjvdbrjcBcxEoLC4VHCEkgUMl3uCqz3DJSwscw5RqkZFxla2Q9PNOWmOkKysFe6HGKTuy5eY2j4ajrCg4UZfD4yRoMITnlohb2RiRxPFMxAz2xgYJ5BO6k2r3Y7r7vqYFBOVAGVgoAu+i02IBn1sEIY8B0KOEoyMxuDzDCISDiESCjHAHovF2F8CT9FIBPl5RszJF0ZMgcuJoSVma8uWLUxNH4IFJzwG3H/nbfjklmW5vGZZX3suDYHsRjMp43ORmbQyfh3NfmQ6+rRM6xix9fnpFC82dP4gEgRIxWKwuZC3aAsMriKQl3zQH0DT3rdgMBhZfM7q+ctQUFIO2+E/pF1Hb9VyBEvnwDFwAXmeyzCPDiFmL0Lc6oSndA5GhgYR8noQj0YQ8o0gHiMVdQIhTx82fOTjMBuN8HS3ITDcj3DQhwTto0gYTnMcFfGRlJcZDirziitQvOZWFcMvsPqet3+RAmJp71FoqLjVgZHGrahyGPG121eMvygf0Bo6GM3+wk1HMHrk0tSA0RUzdTCa/R02uRY/dGCUxDVWnFE12FTT92pzAgKjSscKpd5Uy9RfzQKFQkG0t7ags72Vxfsk5mVW4zzMWbgENruTrXCKram47ilqf7Eyh42p5gFCBSUo5e2rYjhK6lFV9hvFFGUANSUUT6opAgOF6j2rOtDVdBA9Zw4xNeVTTz3Fass94QsWbEBvfz8Ge7tgMJpQMWM2Gsj0gKvuKaLBQBf69icDjsu7dK/cBlNRhUIGUtgmbnYw6oN/33Ppr67SeiTmXIM1Nfm4fVHuHZj2TgCMTuYWkTGQ1TAMHZNFlRBlcj+om+C2qmRy4dsr2H3SyweZbdBLCRWyn7Stuh0RgxnROJiDBrc7PvLy7zB77fUo8LbD0nsuRQxxowUDC7bD2X0SjoHzqb8TIJ23TXBwUv1K+6v77GEsv+FOmAwGmOJhmKyUTUdweqJ/I+/8kp1Fe5j2MhXuKGavbkD+ok0p5ib04und9TQQi7CXIPpHhcLEkYo/ll+G8PwbMaPQhi9dM2MySzutz9XBaPaXZzqC0aNt3uxPNIMWl89IH1c8g9P1KldBAjkDozR2tf3lVZhPzps8eHFEmagwneOFCOCIfRvo68Xw0AC6L7ehp+syzBYLU/FV19WjdmYDsz2lkmQlxweJSiZSVl8FHK8UhGoxoGr2U4r9KEPgalCcGuU8NfD5qGcAF94R2Cw1+AjFgKCrCsWVVSivmw2H2y2lf+QG+vS3/9BbCPW1MxBADkyk7qTwRQSS0YcHAAAgAElEQVRizIUVcK/aljIU+UtFbNQH7x4BAHV0dKC0tJSBIArdU1BQAIO7HIYlN2FtXQG2zSvL+b4jMEqB769aUaCvsSFpJoA1XXOM11c4RiVr8uOjLUcRaj2uiABALycUG5X+2pffzEAa+dXIndGI4T786jNYcfvHYOo+C9NQOwyBYUTthYxh9FevZOIrOSW8dGgx4P7q5RgtmyuJ2eLrg8XfB3PED7/fj5h3ECUWISUwK2YrLA2rYaqYjfCx11msWyq0d4hR5yHfCldvg7FQeCHiNs/0mVjV4J5ngQRBamH/U+HnxcoaEKlfy8DoF3UwmrXtrwe9z5ooJ9TQ8fapAaNL63QwOqGFykHlnILR6RD0nmQ60QxMYxk3HyADbBkAbTp+mNl4RsNhIW+8wYBYNMrAJ9l8DvT1sJBKFNS+qKSMebS7C5Ley+OqxUUEKDGeImodlwlV1MucCR2beU0aAFA9csQY6O1k3CelQDUkYoiQ6tJoRgxGpuKMx+KIJ2JMFR6NRhCLxhCL0uco+87C4MTjsBuiKLbGGevEi8nhRtXqrbC6KbwTEPD74KXsSd4RRMJhxoiZzCbEYgnkdRwD4jEWvoiAABWu6qTPgyXzhKDnjMkyMoaVErGSipeO24KDsAy1o6+vD6dOnWJggICB2+3GypUrQQr9M0En7rjpenzyBgHU5LIwMHoxO9lLMgGTE5nbeMy3/PckGBV5UAMQHe5BnP5FQsyOOBb0ItzVrGAKaTycZXQsuR6xwhohdidlWBKvRwJ5vRfPouPscZTOmMOYy/zq2QBba6EQuHQ3pzo48birgZI58JQvQmCoD8VD51EUEsAlD9fE21HHFm6LuxFKmFBj9MJhkIFVSudbVINwQS1i8Ri7J7DgDXRtxGOwhP1wD15g1wOzPxUL/x4sboCvoA61RS58/Y5VE1mWD1RdnRnN/nJNR2b0RIdgQpXrsqRWSKurl+kjgasKRscLdC8XQ6686cezGVUvzXgBbffJ4qT5vV784of/DoPJAIcjH6XllSgsKUURpZQsKoLLWQBXgdJWRa7GV3oMp6Y9TALQJN2pAKWa6neVSl7mBU9zVYeOkvchZ1GlwPaKGKNJMEq2dTtefBoLVm1ExDcMo6cTBlnuc8oFHyuqAZzFzOGIHIUIOBpMFhjJEctkYk4nZAdqtFoBg4kBxKinhyFnignpCYQx1N2Bwa52jAb8iEUicJVWsDbMVhsMZjPi0SgikQgWG7rIHUnhBELMFLFpVA6EyhEhMBweRSwaRiwcQTQSYraBxE7NLnFgYbnAUGsVCsvy3LHL+MTDH8f/fmBLzq/o99uGsbt1YmBUQ5Oek3GPCXZV9qKBc+8j1C7EhVUXstuluLG88KxRzhXbkHCXs1BJFB1B6TgH9LU1Y2SwD5HQKDwD/Vh4w92S2YvJ1wvHubdT4q5yR6N2XxwH2r2oKC/DxpKkvap8bEeOHMELL7zAXlgIxJI6vX3QjwOdQRTNmMtYdWtwAMZYCP6Ele0zegEjO2UWQ9TpRkLIBQW3KYY5hj5pPPQCRUCXGH1S1fdHTLgUtmPJ4kX4xidvycn6TUUnOhjNvtSnIxg9eXlqwOjiGh2MZn+HTa7FqwpG5UMby4GJmMpn/7RDchKa3JTGPnsi3vTU0njBbPc3J0NTCA/BBPw+L/q6OjE02I/enk6mlqcHFTkjufLdyLPZWTgoh9PJmELyjif1PXnI0wOKmDkCZdSW0Whin8npm2xJjSYTY++MBhOMBObIC9hkZiyKcNzIHnDkZW80EetHgE9ggjigZJ9V9qBym9Shzlb0XTiOwPAATBYr7AUlKG1cwvJpJ4Pri571MnDrHxnBntefR63DAGNUSAZArCQ9UKkQaMxfsRV57hI2RnWMUK5ilUI1iWGXCBQ3H9mL7ovnUDlnEeyFZXCWCCCUAxDpXMaOxeA+8ypc8QDzyCf1Kz3QyfmIQEafL4x3znSx88mLPhaJsVBQ5ANNTFUsHMSi2mKsmz9TmgMBIQKz5IBCa0mOZL8748cjD92Pr9+19mpuWc22CYySE1MmJdvMZyZ9Cgsu1Byvf/47qbw97/+ZncNDetHeIZnzQuvJbUbZcZMFrrV3IGF1CnuBaynksWt5OLREAu/9/knMXLkZFqudvbxYEjGUtL7LmucJEuTxZDusNegvW44S30XUeZqE+RgM7IVHzlz++te/xvnz56XECkNw4bDfhdmhVpQXu+FEGL6EBZ5QAl1BwGR3EBGPgHcYkdEgLA4Xu7aLCwsxz9jP+uGsPu03YoEJkFJSgnjtUtQV2vBX6+syXooPWkUdjGZ/xaYjGG3q9Gd/ohm0uLBa8MXQy/SRwLQAo8RWqnPDXi0RXUmc0Z/+9mVpOFUVJfjRt76ChplCbEmyGVUXrTiJodAoC7Xk944IIZhCIaa2Jg95k5FUy1FmO0rqayoEUEPM0zvG6Es6Hk8QXDIgTMxKLAaLxYJgIMA+Wy1W5mFPD7REIo6Azwez1YoABeFPxGG15rGML4x5NJrgdLoYM0gAmAFeEcCa4iEYg9q2iLaqObCJKnJiLQkIm8yUEYYAtYW1ExjuxciFI2wOPDQNPUzJE54e8kNhoH3Ay+Zrd7lBAR6J1cxzuFgbpjw7C9FkNFvFUE95MFrz0HOpGb1tLczrnsCpNb8I5jwCIBBCNBGatuQxcB+NJ+Bofher5wtOLupyuOk83txzVADnBhNigRHEwgEGmoixpfZv2rwG16xbzUAshebhhatvI9Eovv3zl/GpL/wNfvy3D1+t7Zq23YPtw9jbpgx6Px7oy/kg03SYTo0faD6KQMsxBkS1GFCt5hxz18BauyAJRCUwKg9DJpxJ60rmMi1H9rFICqQWp4OzbSEU56VKLxIHXm1PIGLMw/KiKGa7BDtOrUJq9O9973sSgzkQjMFuNsBhodBhymIsqYN10XVJkE6Zn8IhBDzDGPWPwHb5BKxRIWSc/GWOvjvX3w2KIlDlzsPHVuQ+pFiu9pAORrMv6ekIRk93TQ0YXVClg9Hs77DJtTgtwCixj/sONeWEGVU7UY2VgUkrzqja2/7IpatrgM2B7fDQIIYG+phtJDGnBC5tDjucznyW116zyGwACLAyG81YnAFBehDTA5QAsRDWSLBZO/P+2+yBSICAe/Jyxx9fIITWzj7GHgb8XskbnYVYCgUYECwuKsDS+Y0KT3gaG7GS9O/M+RYMj0ZR3zifgW+vx8MANKVLJWZ3oK+bMcsrrtkKiy2PAXKaL4F4o4ligALe4SEGfAmUk83oqM8Hm6sAK2/YDgL9xMWRB7UtEWYMFoF2KuFwGFarFSPhOM4MhhFlLwQRIVxPPMbGERkdRTQaQlVhPhbXV6Wob0kFS+rScCSKlw5dwCNf+O/48kc2Tu4qvIKz910awqHL2Q8YnUtAy/sSzIIN8F04An/LsbS2obaaOSw+bDwSZskPrOUzYM4X0sPGiEXXMFOR23PzekwrILqvMVMUMtOgRAC9LcyLnUqPL4LmoRD6Bj2s5oIKJ+ZVJlMI0rVBjnHEltN+oBctzp7TZ1/UAJdZSO5AGbzIkY6YXKpLpSOchzCMCI+OwpInZFuiMGN5dgeM8QjKTGE4ZJkp40Yzgs4yRKyCerG+rhb/6yNCSuJcFkopSWG0rnYh4GS1kKYnNzuS7MwpHJjVMrlUmRORy2gohjwrabomctaV1yXTIrp/Ws2pL0gTadWZxZSp8jjdExnDZOvOq0xvgjXZtvXzr0wCVx2M8tzuXT0DaUeoZhuvbCqZnTURZlQLjKrB6/EO37hqyExGpnk/Eg++9NwzDKCVV1QxIGixWuD3+hi4JJBKfwkQFpVQXFEL3CI4teblIRGLM5BF9pl0J4pSLE2jgYHaRDzBAF4oOMpU29TdQPtZNlx5wG0pxiEM6OofRjgURig8ClLLO135DMTm5dmwfNVqGOIxjAx0p8RX5KFp8ovKsGLddaibNZs5m9C/UyeO4sLZ0+ju6oS7qAQ1dbMwf8lK5nASTQhMJ0vxKWZIGuzrw5+f/ikut7awB7nN6cTcpWux9uY7pCxK7W/8moEWuQOT3GZ0d0s/MzkwWswwW+3Y8tHPMvUrFQZWgj4E9gte1nJZcKcZlMyEp3gOlte48cnrlmSyxFmt837b1QGjWR2k2Nj4z1qhRrDzAkZOvpfyAsCTHRSt3gZzkWDyoY7kwByXUjI1peooBIcpob/WU0cwJNof5zmccBUUw2FK4NLpowiOeDASope2OByufJS4nZhfLgBBNVvOX1C47Eh/4YkkUGRBSuIGihVK11PZks2wlVYxLQZHIyyBA4XLN5AzvUDxjpKmwetFNCE4QvIys7YKn922/mos15htRmIJRCmG1lUulHbUlkOgRvuHUpDmaTDZV2uqgVCM5Ykf//rIzghofmReRCB/MmWyue3lfZ+TJY2ZzJgmeu5cHYxOVGRXvf5VB6N8BtMl6P1EbUa1mNTH/vUJfPVLDzJV/ZmuZAYmNtdx7OTSOZFoZqoxAL/52Y+xdsMmzJm/UGhaaj/ZEX3yegUTAJatKTgqqCEJvDHwaWTPO2Iu6a+Zqeop44wJeVZSs9MxEwO5b70khDPSAqNkOlDXsBB2uwOO/HxYmGrezMbU092Fgwf24dbtd2PfWy+yNsi+j9gisnXjaRBXbN6G2oaFguOUGBf0pd//hoHQ9VtuksLcENhtPrwLo34v/MP9cBSWoLBmFkpnL8ZAbw8unDmB6voGWG0OmPNsOH/iMHyeYay5aTtr49Jrv0QiGkkLRtuMZYhEw4hGKHsVsPbWe4RMTCKVRjLx738eiaDAfBOzRWCW/lGxLL0JcFdgTV0BbppbetUvVHUHRy97cLBDqaanOnKHuIkMSh66ayLnTaTuWAwQC2sU9KFvzwts3XhILwJuZOZhMFtQdu19jBGVA1H+mccXlQSgug5ZbnmDoDY3Gw1oen8XM4WpmjmbdOTwnD2AqI+YZkGCLMoChWmiuJ5xA0KjQZiD/ez6SQtGDUZmD10zdwW6W5oQGOhg7Omrrybj3fKXmfplGzFr4UrJ818rW5kAroUXNmJ95etbZLdgU0PxRMT/gaqrq+mzv1zTUU3/7iFtZ8Xsz17Z4nWrknboV7svvf3MJJAzMJrZcK5+rfG86dVqeHKueuzxJyQ7UbVJgQKMjpFJRsKRGq/B6YDokUP7EQoEsWGz4K0tf5hL56j6VMdslL6zekJlwW+Xt0fhjZLff/Jf/8bsWLnjD/VLanpSMVIoqvs/8aiU+1se17P90iUcPrgft991P44deA+nDu1JWcySilpsvPUB9oDlgckJhLzy/O+wasMWFJaWsbbD4VEcevV3zFxAXUobFqN66UahDbEdPo49r7+IWYuXo6SyFl17X0JosIeBSA4GyEyA5kFxRgtW3yI5dCmjBiS9seO+IYye3o04pczkhTz3Zy6DsWY+AxJTBkY7PTgkgtFMgOSVgNRM2h3vip2oCnK0tw1Dx3cxQMqL0eZE4ZLNsIisqDxlLQNoBGTjCUSGexhkMzoLYTDnKeKXCmAUcFhMOL7zNRRXVKFh4XLWz8W3nmYsulahEGVb7/0szJY8nD26BxeO72fVCGTSP56Vi/5WL1iN+sVrWWrRA2++iNGBdqYhoP2nVtNXzV+L+SvWCQBT5gTIw1LJo1eQ+pjZRIuFgGuhDkbH23oT+l2PMzohcWWt8re/95OstTWRhr763z83kep63RxIYFqBUVKL/+Dnz+PTD96KooKrF5R2IhmYaA0IgP79t55ky6EOQSWB0SsEotRmOjC6d9c7TA2+bMVq1ndGYFRoUKg/DvgUfk6CUfr+k//8NlP7a5WS0grc+/HPKIJ0cyD4sx99D9vvfoCFsqIHak9nG9pbzmN4oBcOlxulVXWoa1wkAVnOih7Ys5PZvy5asVZSw7efPYrmI7vYg5xs88iJg0AkgUkqi7Z/mjFlHNTyMRzb9y5cBUWYMW8xSwXas+8VzXm4l10Pa9kMUa0rjwogVOdAIOYdQujCAcQoh7tYiJkzzV4NY8XsKQWjxzqJGdWyGZWppsdAoBMFpxMCpplcCxorw8cUJ8Z6RHCiY85qxZWyBBCiGYWMwSanJ3/zUUWL5tI62BdsZEwqgVAORr1dbei6eBbrtt7Gjg2cPYzBc0fYHuN7jSIu0D+mNjcYUN24BGuvvYmN5dDOV9HRLHjVyws58i29+QE4XAUsNu7pI/sx0HyU2SSnVrZiwTW3oKq2XghDJQ+xxj3/RftX+o2BUVkjNI5CuxkbdWZU8/q+koM6GL0SqU3+nJa+4OQbuYIWZpfZr+As/ZSrKYEPJRjNpkDPiDYv6ex+pONpKqQDojTG0UAAT//ySdx1/0MoKi5JAaMBvx+BoJ95zo+OBuD3+RmrSPag5JBE6nj6y7zeWagnE3u6m0yktjcw+1L6zkGuxWTGob1C+kG5F29nZyeqq6thNltwwx33wukqYOeR53nL+bNovnABm7fcgKLScgVr2t/Xi8GBfgT8AZD3OXnuOxwuxA1gEQTOnj7BHvjX33KXzCYUOH/oXXSeP56i4uRxJYO2Epjzi2BzuGDOy4PdkY/+nk5cPHsSN9z3SRaOih7inoun4Dl3BARuqBAwcTUug71uoQwAJMFnkpUSuLfAkdclIKrOoGNafguMrtIpY0YJjB5SgVFtgDk+OM0UmBJr6WttYkDRYCEVdjFcjcvZX864j3VtaXnR0zEtoCsfk5y5FhCqyF6TnenlC/Ce2s0O08sLqdB5KDFL7XzY56yVgCiBUn9PB84cfA+1sxqZw5yhtxnGSJA5GZE2gBdup0rfKevXNTdsR33jPBbHtOnoPpw6vA95ZhNMViscBaWoX7EJDqebAVEygaGKz//yR6gocSMSGEGCHOTMFphtLkRNdmy9/T4xDJWofpeBUCl8mghIecgqbkJAZxAYvWa2rqbP1r1cB6PZkuTE2mntFzKM5brUl9py3aXe3zgS0MHoJLfI1fYGJMel1/78PPMSp3/kKOT3+RAOjcJmtzNPejrmLixiYNHlcgIUUF6MSUqe4oxBjAv2oiwDElP7iQ9Bmf6PwOKFY8KDXe74wx00zHkOwFbAnKBG/QEWOqqyuhbzFi5DcVkZfF4vTp84ip6eTvR2dbKxlZVXw2AyIs/mQHA0wDzaQ6Oj7NzqmbNRM2tOMj83BYlKJHDp4DsYajvH1JukCuWFO39Y6pchbDAzOz4Kfh8aDcFdXIK6eYthybMzBis01IWhA69prq5zxc0wFFQwEERg3e8ZhN8zDN/wELNRDYwMIxEOYInoPC2XBYWoIhvY1qFRXA4AH3/oo/jk9csnuYsmfvrrB5twtK0PhWUVyLMnw5Rwm1feogLUiUBO9ifpV65QAyvHQ/L0X2rCyJn3NQdaes2dAiClImNF1d7y3OZZOs5bY29D4gBUyJh/5S8KbOz0IiSyif3vv4LIUI/ixYVYdLLNpGK/9uNMbW5iL0AGuPJM6Ll4Du3nz2CwtwvV9gTc9rwxwWhRdQNj9cPhELv2Dr//HtZsuRW1sxqkiBKCqQvXMgh/yW774rnTSMRiOLL/PazdvJW9KC5cvjp5/YmLkZy2+PIgy+pGYFT6Xbxu3XYz1s9KZm6b+A6a3mfoNqPZX5/paDN6aWBqwOjMEh2MZn+HTa7FDyUYnWg6UC5ift5T3/061iwXDKAnCkYzZaGkZRVPIMYnGgkzIMnCOtmVagat2KbyNtT9qtkofj4Fre9qa2YsEw9dQw93ctwh56WV15KtZdKuUgAHwPt7duD86VNYsGQF6uobUFRalnTO4Pad5LDEACfPIc6DlIv2n+LxrqYD6D17mI2B4k1yNT0HGLVbH4DJ5pTsTnnwfMGOVMj17Tn4KksrqWUzOmq0oTloYaBz1O+D3V0Iu7uIxVClzwS67fEg8tsPpA3tFHFXo7+gAdctqMFDG+ZN7iq8grPfONSEF157h8Ws9Y8MMxtISqRA8VoLSkqRX1wKd5HgWMXS0sqcm/ja86Nq5lFtQ0ur3fv2b5GIhiVbSZ5tiIC5tawORSu2CoYhMvtjhk05SBM/k5PSwMk9CHmHmZ0mOWYPheMIxI3MLpM8xu1OF9vnNocAsi02O0svyyIn2J2w5xewuVK0hYGDryM81IOnnnqKrTUv//RP/yScu/lhWIwG5rREf115ZnQxMHoasxYsgcXbA0/rabbOxI7SniMVPTcJoTZ8cRvMecKLn7uwBDNnz4GzuFQClElMLeg5uAzk8qC50hwEJ/lkylLhXCV7rX6BkF4ceUeJBArsZqzTwegVXDnap+jMaNZEOaGG2gaF5Ci5LjOKhXBqepk+EvjQgdHxHJjSLY0cwKYDoylAc4LIc0xAKaKJsZrUVnfKOBc1+yWRUckfhgf68N7Lv2PAV17sznxce+cnYLbmJdWk4mkHd+8k2gkr126UGKvOi6fR2dwkPWYLK2pRNWcp81DmzkvcASkJIgUJEKN09rVfs9Sc6uKomIGyVTewNihMSRLYCiCUZ2Iaefc3SMSiab3pz5pqYXXkU1orllCAguowW1mDgcVipYw5syMdaYPetw6FcClkxSceuAefvn5pzq/opm4vjnWOMHkFPQPoPbkXsTClmYwyG8PBUBxdPX2oqJ0Jq92BgpIy0BraXPkM7BHAE0BnEhgpQagyVFLfGz9nc6QEAPRiRIUzkOQQVrTmliQQMwigjNtqegcHMNhzGSN9nSjyd2vKqnDeGtgrZrJ9R3OgPUDhxigOpxAfN8LYeL/Xw1JpBv1++EaG0VDsgNNiUDCb8hBexmsehtVsgMUk/AsP9eLcob249o772BijAT9zYEpXZi5ag/olgqORvFC4Mfm1qHAIFCvKmWCjSBlLpiDys2UsKO9DzpTKnZfE24AARuuTcU9zvgGvcoc6M5p9AU9HZrRjaGrAaG2RDkazv8Mm1+KHDoxONLQTiZdniPraf3sIf/v4E/jK5x8YkxlNqtTSL04mwJM/eNStjAc6tTSeHGiI8IM1qTyWpM7I7rT9QhNLVUjZkaxWG2oaFjJmh7M68vM7O1qx99230DBvEUrKKjF4+Ry6WlKdPJyFpVh+80fZ8CRPfJEpFZyRBGBEvxHA6j59EL7uS8L0TWZ4RmMIOYrgKCiBo6BIykmfMFJeeyG3PWVkIltWw+EXWaCmdHFGj4WLYbE5KKCjkB+cWCvKyEPnEjQ1GjHTdwEmxBnjRvaEZIvIQ1QlGtfDUN6ADTMKcfO83Id2OtvrQ1O3D0FPP86//QfNjVa34TaMwgTPYD8DcSNDg/B5hiTASiYc7uJSJkebyw2rw4U8Vz7yHG5YnfmCPCkWLGUAe+/XrA8tMAp3OWzLb4YxEUNoZBAh7xACniF4+nsw6vPC6S5AfkERChJ+xD29TJ7EunMWkmRKdr7zb/tUyjzULKEE1kTVdceBt+HvasHIyAiamppYm9QerZXJVYTC9XcyUExqegrtFBjsxfkj+7Hh1rvEqBIGBAe7MNR8Ar7uNtY8pdd1FJWhdtFa5JcJmdaoqG1eebxShdmBCMTV5/D4pnKQmZzL2DdxZpKgqlJgN2Fdva6mn9zjL3m2zoxmS5ITa+fysHYUi4m1MvHaNYXWiZ+kn3FVJfChA6MTCXpPkpczqcWF+fji1/99XDCqXjHFg2QctlQTpEoMZupeyASYpjzQ1YyoipmRt6nIVKMINi4qecW2+nq60XGpBX3dHYh5OlNBheiZ3LhqC2rmLJZyiHP7PwZOZfaA9N3b1wlvf5fgLAXAXT0bAx4Phvt6WBrUgH+EsZjkvEXxQintKbFqljwbZpgCTF1KcU7loZ0IqFBpRRFLFGAwmWGyWGDNs4spSc2MNaTUpGZfP2KtQmpTeTE6i2Bfs50hhFW1Bbi+seSqXqRajTf3+XG214/zu1/BcFerBPCoLs2RWEt7QQnmbr1PGTVAJuOAz8vU/L4RD/y+EfjpL8Wrpc/eEVgsNiQMCaY+b7BHGKjjIY3kavqgwYrW4VEmT1teHorKKxn4LCwpQ0lFFcvhTmCsbfefERjolnLA01ipHXIWorLs7s+PKUflPk5gkNj343uYcxAvBBCFNK9GmOoWwV5ei6KySilGr8VgwPtvvIiahnmY0UimNkkXQhaD10DqfMHBj4oCgMpil3Jwmawji0ohm0WSHU11VcxUccLNLOTC0dX02b3kdDCaXXlm2lqXZ2rAaFWBDkYzXaNc1ftQgtH6ukrcc5uQSm+sdKDqQP1adc/1yILejwEarxSgpoBTDZUeb3tMYDoG4KTzpX7GA6ay33l/8nMHejqw//XfS9MllS4BDl6CUQMGvKMsyD2BTKvNBld+IbMHdObnw+UuYs5YHaf2YfDyxZTrYO41t6KwWsg5zx/mSfWyCJABHHn+J0xNn64UL78RsUQMkUiUOYORMxSpgwmgERAOeEkFTp5QQVSUFKIg3wWT3QVLfglsNY1inFNgYbkLWxpzz4z+6Z338e6efXBEPYy9JdtaAt5U5GrqEbMQdYCkRcw2OTtRFAWby4V8dyELhUWy11LRk7NNOBRCOBSEp+0sfG2nNcVZsPAaFFXPYGYAHKTJ2UICdvT9ws4X4R/oSgtGl9/5GZgseWkz0iRXF+g6cxidp5IOVfJ9lrA6EC2sRigaQ8DrxVB/D8qqZ2Dx+s2w2xwMaB7c8QoGe7tZX/mFJWwPUMay5euvQ1FxsQhGk1BUzYoS05oErAIQVYLX5DF+XACm6eJuKK5izewFcvDqspqwsTH33vSB0SiC4ST4v1oPKh5W62q1r3k/TmSwPFkcUM7nKG6gcbfgOHMscWdPxd09oh1GMIti1myq0i2kiNbL9JHAhxKMkvj/5vMPsFUYC4yOlcqU243+r6/9PXuIUQpOsnEjj3Y7OV6wEEqUhtMMu83OAA73cM+jh3+cVMEGdoyFWGKaaDMLecSPUegZs9nEQjqU5iwAACAASURBVDKZjWb2O0vtaTKz4+y7WJ+DM8pvffLQbhbfk4rFasPcJStRVlUn7Lo0gHk8hjWdSl9iTllqzzhaTh1G06FdrCuuIidwRM5HpDotrqjBhm0PIBgMYJT+jY6yf2T/R1mkKEyVf6gb5qifHSeARapXYvrofLJZveaeRxXOUVyNyVlWmmPTjucYq+rz+eByCWkc+WdnSRUar71T4UgiZ2XloYMo+sC5E4fgHR7CCoo1qfDmTmBhRT7Wzsi9uvR0aw+aOwdx4r2XEA76FeYIcrZx9U0PMJAdYqCSnOCi8PpGmJ0ssaKeoUEMDvTBYrXCXVgMUt2TjJ0uN7PTZPvLbGb7KOLtQ9RPjkeCzajJ5oKztBZmRz5rj0wbyNaT9i3ZdbJjBiDmHRDOiYWZWQRnq2l9ubMQxencdN9fpaij1bdKDuV2/u77LJUmtUWOR7wtStBAZcU9X2DmBexfPI7mpmM4e+wgbvzop8UmDczLPej3MrtUaisWjeH47rewdMN1KCwuhSO/QOpe/QAnBpWDbLWTVnLMStZVzqZO9hFAzOiGKXJgkt8LJjuPdOcP+yLId9D9cDzwnp0RhCNxhKMxuOy5AylkF1vgEuLg5qKEIjGW8nSyueUnC2blc+31Tg0YLc/P3TrnYm3/EvqYVmA0FwK9EptRPi4t4NrcF2QZi8KjYfZXiPEZRSQSYbE1o1FKN5lgx8kmkUIJER0j1Iuzhz+FVKKwTfQbfafQSQRqSRVNamf6Tr9ZrVYG2FidaAwWiwU+YvJiMQYYCgoKgFGtQOiALb8E7pJyxgRSO/TwpvEIsUYBm8PBYplWVdeitKxCsRRydvbJH/wHhocGQSGnKN/9aCDIxk+Ax2Z3wO20o7K0kKmNycOZF/JOpn+llbW49vaPKjzy5d759JlnuiE7TQIavPDYjytuuAcF5TXKNrjtqQgWiVU9t0c76P2MVVtQNGOeACyRYLKlcFMEpARAa4DBSC8JZqbujYXD2Pvmn7Fk3bUorqwW7F3FfqYKjHYNh9A5HMKeV59hzkEkK26OwAEeMZU33CdkGhnL9IJ+JwZ0NBxCOChEbaD1pD0sOA+JezgSYXuNBE/7mhUCZUajwHKTTXE8ztTyzPbWmED7iT0MmI5X/FEDIshDKBSEy13ImGpXvpuNi/YVsbd0LQT9PuYZnxcV9rmcEabvfI+s+shnkDBZEY3HEYnHcWjnm/D7fVh3M72EaBeuUj/0dpI1JcBusVjZtULzJJBOq792y83MPpqyfEsMKc9yxtX7Gmp9Je7QMAVQDy0NUKE4o3pop/F2Vea/62r6zGWVzZp9vvTaq2z2o26rzGVWHKKEO//47Sfx0ltCKMH/87XPSNpTrXGQud9Pf/uy9NN49a/mXP5S2v7QgdHxvOnV6UDlC60FRltlcdIyeLSk3zeyh86VvCgToGo6egAH9+yQMhdxZw6yISTQSVlnEjEhqww9kBlzazRjlIBwPIauyx0YGuhnYOuW7XfBztS7SRW+EMJpF2PZqI6FwBo5AJksjOmlYN9+7zD6Lp1lY6D89rzcddddzJZxzpI1WLh6swJIEjM30NeH4aF+DA0OIDzcBURDKXFGeYzPZVvvhrushoECFipHnl5U5hzVf+kMus8eRdgn5nC32BCzF2IkLLBgxMaSLMg+Mr+4hDF5xDyTOpvkyV8gyIFr1uIVqJ49V3KyEhytgCVV+dhYn3t1aZ83jJ6RMDovXcDeN17Q3FfL1l+PxsUrJ3Wv0kzKIG9RFleUwjER0zoyMoyBvl50tp5H0NOn2I+bNm1CY2Oj1AIB5hlzFmHe8muYzS+90BHQpfWJxwj0htnLGDG69BJnNlsR8ntwbNdLrA15sHo5I7zyni8wINp89hROH3kflbMa0bhsNWIwpXjBpwhIBiIJXAtxesm5Ls7Atn+gG2cPvof1N98Dl9vNHKNSzBNUNqcctHIWVdHnFVz7etD7SW3rlJN1MJpdeWba2oB/asBoiVMJRuW+JGNpS2le6kyRXIP6+GOPSo7Nmc5fr5eUQM7AKF/gB+7YMuYbRy4WZ6LpQPmYtDbpJTFOWqYAUsshQj3nFFCrEUg8GVw8WfvFZ3+FrsttKSCOs0UPfvpLcLkLNOOESrEPE2Bq29df+RNuuuUOpq7kgdS5OlxSY3OVvxg7kY6T88urv3uCTYmcXUiNyvN3E1hYvnEb8lxFaLvUgs6ONuY8Q85CxaVlLIMTMU++gcvobj7JziXmi4ocaCy56QHYCkoEz3vRA58AyyBlfOrvZTaC/d2dsMf8KLJbYJTBD2NpHayVDbA5KXuTFdY8BwPq8rbUmZgU32UB1wmMrqhxY0tD7h2YCIz2iSqu1nOncGTPW1I4LrPFirlLVmHRqo1p7S+ZUMfZtFpAlED6iIdMKjwMeAb8PvYCQ9m2WFYvsxll5ZUoKCxEb9t5jAwPKPajfB3X3bAdtbOErEaKPSbbT1p7LugbwY7nhPS8FB+U9hkx/dxxixhMx9x1OHfiKIora7Bg/bUsKgCFY+IxO4VrTnalyWTBQ17x65IzqSztaGsTi7fKS+m8VSidt1IIYyVnScXmuQwJjDLQqgCeGdw1UmxRhZ51MJrdJ4UORrMrz0xbG5wiMFosA6Nq3xAau9rReaz5cFZ1/aqFU45tMpX7dKyXMzBKk5eDQPr+2Yduk2w3p6NwMhkTBe0dD2BqMabp7G7UjyehnjJ/PHvoyfLO8xzzf3z6FwzgqVMb8jSaD3zicygpq5Ccb5IAlDOMgM/vxaWLF3Ho/b24/e4HkJ9foLStFJGZoKZWBvBmXr8J4Pj+d9DSlOqFbrba4YmakWezo6q6DhU1daismSHEB2WgUhjHcG8HTrwjqOeJYaV/FFydgdKCYszbej8G+roZ4Bzs62GAtr+ni2UjIk/ugpJyWEIe+C+eZOfwuJjckSp/3lrYZy6Q2Z3K5sHTMopzY4HZBzqQCPqEGKbuciRs+YhFBPOJTXNrceviZPifTPZMNur0+yKgf7xkAGs0u5XOEz+Q/aTX52XZtELBAIaHhhjTSWYMfb3dTJbuggIUF5fClZ+PopJSFBUWoYiC7Be4JUBG4OzlP/4a3ZfbU1TpfD/6w8AnHv0fMFrIgSoZ11QeFJ7vKfV+2/nCL+AX89erJzYSt8BaUY+GpWsE5runDZEAOaYBpvwiWMtmJK9ZDbAnBKZPxj6jz+GuZvibhOxk6v1UMncFyuevlgL8p2ShorBSMIhxV9PpT8bhoGUvpDoYzcYVpGxDB6PZl2kmLQ4Hrr4znNY4Ch0m6bBaW0o/kIZ036Em/PNXPwO7bWzP+/GY1EzkoNcBcgpG5QLnC3jidAs7nEtgOpEMTGoAffsN6xUbtJ2Y0XEZpgwgg+phI5eViEflPI6KYRFInt3vvI4TRw4ye02eTYan8qT2/urLjykcfzyeEfT19aKnuxNDAwPweIYRCoVRXTcDazdsZlmeGL5UZ40RVeNagJSxpokEi1Pa1XaeeacHAn4ERsOonbME85esYll0hExMYlxRWVYmrnLvOncMl08dQEzGQhmtNnhN+bh8+TKKK6vgyC9EQWk5Ckor4CLnG9FhhZg2rTSR3G41Zrajz1mHSCQkBLxPJBAOBpltJAsaH42w2KOOqB+z3EZmoygvAyEDLnhiMJhM+Ojdd05JOtABXwT0jxWDIHNKV0nqbKbqZvaewmdSn5PJAdmAMrvLYECwER0NMtRFphGBgA9+v5/ZDdNsna585lVuJzvggkK4CwuZk57T6VLsd/lLUXKfCsBr38430XTsoOSwxM1GyGSDirOkGtds2YbCYoHl1gSkGi88VLe/uwP73/iDgvWmNodDCcy/6T7Y8t0IDA+gb/+rCiaT6piLKuFeebMoO5mTkShLYlEF84/kS0rgyGssRiqxsPJQYbSn8gpKMOu6uyV1PbOjFTcM/0vyENT5woWe/pYxPijlYHSjnps+a89wHYxmTZQTaujkWeH5n+uyeN5sBRj99vefxuN/+yiKCvLZ8YmA0YmwqLme5wepvykDo2N5ql9NYDqezah68WhT1lWXM1sQTsdXlhdLjG57hhkktB8+E+SzxnyIgbGEf/yNoL5Ul6raesxesAx9fT3wjnjQdvEibA47ysqrGNNVWlHJHJcIhEhhfuRAQCMFqFy1Lw+GPzw4gLbWZvbPACNmz1vIAuJzoMmzJAmOQKr0oKJjEIGBUf8IQn4vopEQjuzbBeS5MHP+IpRUzYDRTAHuhXN5YHYCoYL3NDDyzi+YCMhulUAQFbmK+KJzDosvarRYWRxNUu2ymKNi7FECo+4LO2CMBNj5ZDJAUQHIq5/KaMNmxAprsHlWEe5YVJ7za/7dPQfw1o5dDGySvS45wJGjjc1uE6IvmC2w2SgEixF5tjwYDUbmMU8yILMI+puXZ4Pd6WTRHhxOF5xOJ4wmUiinFk2IJDcfkRjGpCp6qL8Xz/9Wez82zF+MvsERrN6wCSXl1ZKD1biAVAStxN6+/uLvsfn6G1k2rmA0hn27d2Dehq2wuQoQjiXQ9/6riAx1S+tHc6b1o7/2OWuQV7dAGZJJBJHkccz3Ft+r4V2/GnM/zb/zc0nveqqpAqRqMMqqjLlrxgalpKbf2JB7W+VcbXQ9A1P2JT0dMzD96CdJJ9fszzh9i5//3CMKMPp3jz+Bbzz2KBpmClquTMEoAdHu3sGMGNRczu+D2FdOwSgt8N9/K/lw0gKdxJg+/p+/xmP/82HpLSWbgp2MN73WJu0YIvsxbf/cTINajzk/WSPjtUe/tzWfx/5dbzCnHF6s9nzk5RegsLCExfIsLSlHWWUlc1CSB7WXxw3VBKQ8z7lKlS1nT08cfh/N586grn426hvnoaCoVLLHlINQngpUYEdlgFQjd/2rv/sZ1m+7Ew53oQg8kwCUgCcDo2QTyIEpfT/4PBDyK1TEZLv6hS98AQmjBd7l9yhiawp2sEJhzl2BYRSce419l2cd4o5YgYqFCFQuxtaGYty9RBl9IJv7NV1bHX3D6BkOwkoB+615gge7vGTwnjMm3BnnxUcCUzIQKmIwaRRkYnKp5Tz2vavcjwuXrcbytZtw4P19sNocWLRspYKx52vB2VKePla+z2i9n/3Fj3HvJ/6KMeJNZ5pwsbUFCzZsQSgax2g4isF3UgEkRRqg8E+mgnI4V94i5ZGXxwmN0F5igFRIOcv+HnwOhnBAcz/Ri8vc2z7FWE8pL70ajIr2pDwc1NjsqHrVU1dKB6PZvcp0ZjS78sy0NV+Iru7cF1de8qX7Sm1GdSCa3XXLGRidLg5ME83ApBa3+nytdGbacfg0ciulifnJ+9QKxyMHTRw4JWOHJht86YU/oKysHKuv2ZySS14eJF4OOoX2BNU5+6x2JBmLHaVA8+/vRjQcwaprrpOFP1LagwogVOYFz/PJq1T1xPj1nNiLkYFuJIJ+2IrLQXnpnTMXSuwnY69EsCCwoxw8JBA99S4w1CE5uNB8CIgQIA27qzE8c5Og1ieVrJjykv0VnVyibcexKHoxJUQVN3vwmgvQXnsdti8qxydW12T3qsygteFAFMPBzDxRx/WIV4HYDHBsEnCmAcBabZBtr5PZIAt7i2xQd+54G9vvEUN9pWHihcgFwr6UIifEE3jjpedAwLa0qgYv//k5lDbMR15pNUa8frS9/TtUOkzMvpNeJngh22OKyqAGo8wByWBgaUOVTlPCmSNH30akv11zP7kqZ6B27c1jMqMkj0Q0gssn9jD7VTIhcBSWoLBmFsobloy74uo11MHouCKbUAUdjE5IXFmr7A+PR7FkrStFQ06r8g41lje9FnbRVfPZX5ecgtHH/vUJfPVLD0pUOJ8O2WU++6cdOaG6aRNlmoFJLW4a53d+9Ax+8M2/lljbTjG3brpLKiNgqmI/yZ5vaKAXRSXlLKC+HDwKKFHJ4qnB6OW2Szh65BBuu1PO/ilBphbwnCwYffuVFzF34VJU181UeqfL2U5Z/nnOjqqZ0Wg4jAvv/IE9tNUlv34hChasZap4rpIXQKXwnYPTqHcQ8RNvALHUGJcj87YhnFcgni+eI4JQzrJ27XwWW2oFw3UtZrQ1ZEdw3k24fWEZPrGmNvtX5jgtDvmjGBnN0Pg/jUd2JoPWBKYaB9O55aj7kL/shEZDePY3T2HLzbejtKIq1T6ZO5Fxe1IZKKU1P7B3F+x2J+YuXo7f/PInWLXtbgRgRvvrv4LDmJQNT75AYyFWlF5KTIUVcK/algzJJDLBZgqZCkopKl5oIlMeC/gwuO9FBijVpW7j7cz+lXvUc92/3G6UPPDPvf0HhDX2NIHRuuUbx1wONRiloPebpkBNz6+PTPbOZOr4glE4bOacBYSPsDBicdjzko4tkxl/Juf6AhE4HZbxXA4yaSqjOpFonL1s26yTm6OVLpIslWBkasCo3aK8iY0VZ1QNRtX+LlwUan+SLInoQ9PMtACjZMepNiC+WitwpcwoAdHHHn8CP/rWVxRgulOeW3cclfp4wJRCE+184yUM9vdI06dQTFtvvxfFJYJdojpXPDsmEaLCB1KTt7Y0Y+u22xW/jceC8vbHY0YValQZk7p/1zsoKCrCnIXLpKDwgmeyPB6oMjaooLpXOjL1XTiOrhN7pfiUFL6HbP3IWYRKzU0PI2GyyOxFk4wogVIJnI76EO84jainF0GvB/bqRoQr5iFidrAwPwoAK2aQ4uzopd0v4qYqQZ48ExSxqvSPSkfUCW/jDbhlQRkeWZt7MEqhnQIRgk1XVtKelwVnvHSRIji+844Ms33efblNGjwxpis3Xo+amXNSEiIoWFG+n+LA2aaT6O/txop1m/H0b5/Ehrs+hgunjsN48SBrt7+/H6WlQqpWbvPL18+5aCNsVY0MNwoxQIUIFdxkVv6I5NdDLOhD4PJ5hAa74RsaQH55NWqXXAOr0zUmK0r9D7ScQOfx9Ht6ya0Pw+oQnCe0ihqMum1mbJ6CdKBkd0jZiq52IeBkNglZrnJR6LqnfWZOYzN9NcYQjsZhMRnHzxCbpc4JiNJeJrlOpridevaiychPPzfNPS7BYqdc/aJll8F7zdRYOBujvBKb0XRAlMbT5eFMiSBGSZgTBKaUqvG53z7JbD0Fz+gwy5REN2MKwn7fp77IbAMlODoGO0oBw3/6g//A/R//NOLRGAYG+ln8T8oqVFxSivKKapaxSa2SF8Y/vppeDUb5d/LOfv63P8f1t34EZquVxaH0eT0s01RxaTlKq2sFxlQWpF6yI5Uxph3Hd2Og+aTCc5nGxkMCla+5Gf9/e2cCXUWV5vGPNSQhhARZQkJYwyYKLSKLsojYIkpjqw0oHlFp2tGe7p7RwQP28XQ73S0ePba2nqFHGYUZZWRxQMVGbBVRFkFUbFE2RZaEPSwJgeww57vv3Xr33VTVq6q8V5UX/u8cTshLVd17f/erW//67ne/S62zxUIsnvrltEOc//JCk2bUMq01pbbJEg92dYHTrs0fU/O0dOrQvT8RJ7+XeSfDU/MhL2v4X1U1lX+3iQa2LBYr0XmHKf1zqCqFCjMK6ParL6f7RhbEwzRdXaOkvIZKyqM9o14FJhccOdf5g0rVCWy/X25eTyeOh16kWqa0ogGDhlBOXn5Uu7j/OeXT4aKQEOUXDSkQ+ffh4yZRSmo6nSktFTsm8Ur73Pxuht3IuFG2G97e9a2lr9Kw0eNo9aq3qOCq0VS4/XPq2DS0jSyvepfb0KqVqG7VliqzuoSEaNNmIpk9b8N74TzvasZJ8ZvS+doa8TfecYrvQZmflDeKYFvb983ndO2kqZTRJiskRJU8oypB+f/D2zZSsY1N9x71E8pob50iDNP0rm4P1wdjmt41MpwAAnElkHDPqN2qedmSnI7t6ngc49pK5WKxVtPrOzCZTc2rdSsuq7HfT1uLC+V0O5yCh7ee5DRKnE6oqrqajh85RFs2rLVs9pgf30wF/S8zpujVxUaGOAyrYRaULNDeXr5UuHzS0lpTRmameOAeOlhIhw8dpI6dcigvvxv17jdApO6pEx+qXCump9SILyWROmj122+InxmZbUUSe15cc+TwQSFUevTuT7ySOjOrnSF8ZeL6UCzhBdq9+QOxixOLCU6lIz+8+IiFS1FpNTVJSRer4VtnZlGzFi3F9pO8Pemp4uNCyFeUn6WMrHbULqcLpbZpS63btqMfvtlKR4v2UeW5c5QhtkatohYpraji3DmRMJ7DI6orK4SQ5d3i+rZtQiUlJbRixQpRLq+qz8nJodGjR9Op8yl0oCadbrl+FN09ZmCizNXyumcqaon/GR8LDVn369hiUxwR+zBRNB/GQnTRy/PEin79c+0NN1Of/pcbX7MNLHvtZfG7zHTAq9s5jpMZp2ZkUXpmNvHOTJxGiu2m7OxZGjFqLHXqnBdKkK8seCs7W0bLFy2gvoNHUCEL3Koyal52PGrDBI4THTt2LOXn51NVi3RqkhX2ZDcJ7ULG4pJtlG2WRXRNbS3V8m5czZvT+ZoakWmBd17ij/yufW4u5eT3rLvzUrilMj+wbPihrzcIMWpl031GT6KMS5zlq+X7hGNGg5im98vQsZo+/qQb4mr6+LcSV0xWAgkXoxKMnWfUb3hudmDS96Dluqri+XhpFZWWllBpSYnw5LC3pqTkFJ2vPS/ya5aXV4i8jvwALTkd2n4yJSWFUlNTRRoh3l+et9U8d6aUSktOChTqzkUc48afvK7dadLtdxqLPwwPZp08jDF2swkff6q4mHbv3kE7t38jEpb3KCigvuHpdbsdluTiE6er8FUvKnP4bsc2OrB3jxDh2e07UoecXGrfKY/SMkIppfi6+7ZtpgPfbhHij3dgktP07OXiz4Abp1GL1Iyo6X+ul9wznn+yGOdclKeOH6cTxw5TWclJ4aFtyqmbeLV8C57mv0DNU1pRy1bp1Co9XeQtTctsRy25b5o3p7INb4jyWEDw3u+c2onrwD+b5V9GzboOpCF5mTSud2gq2M9PGYtRi5WobsWkZb0VQWonateL/LZbTHdD4vRRM/75YaOIQ4X76c2lr9VZGCZzwBb0G0Cjrp8Y8p6HRWdZaSmtWPY6jbpuPOXkdon8LRyS8f3uHbTt63/QNeNvoeKjhbT7k5WiPLlvPYd4cBYEFr1tu19K3QddTU2aNBX7zbPY5FRXLDj5E/KmR6Y1zKaN1O/UuFC5+YTKU/79yI7P6ejOLyxt+vIb77KcpjdZ+khtU1tAjMbxhoNnNI4wcSkQ8EDANzHqoW5Jccpjj/9RJAPPyMigmqoKY5qSK89C86oRI6lnQR9KS00Ti5GaN1eDxyOTb2s+WE1bP/9MPNB5wYX8sPjhhynvWjT2hgnUu4+6c1B4hXHYoxgScxHPkVyEEfneXKgeO3yIdu/aSXv3fEdTp/9c5KSMEp1KKieul7pDTkzhGjqhzjklp0/QwcL9dPTwQSo5dYqqa6oor2sv6tG3H6WnZ9Cnby+k2urItouSR1bnbtR7xITIHvHhKFopZNWfRkogJTNARfk5qigvp6qKcio/d5Yqzp2lyopy8ZP/JqZ/T50QCeFzW7eg7FQtZRJfq0lTqu0+mDLa59LwPnk0srv/24GWVdaSnhbF1pnpUFhKznaCVi2Hwxj+a96zwqNstU/8zF/9m8hpylbAfb5iyWtClLFnVH5kyqwrh4+kK4eNjOSOZdsJJ6H/4L1V1KFjJ+o7YFAkzjgsHjdv3ECfb15P7TrmUkp1CTWprbQdPyprLtDJczXUIi1DhHpwft3sjp1o8DXjRO5ZKTijhKASGsPefP7oC7es+uB8TRV9++4i4p/6JzOnG/UaEXrpdPqBGHVKytlxEKPOOOEoEEgUAYjRepKV3qmPPnhPiEn+8IIXufUk/z5l2nTqkt/VtqSP17xPWzZ/Kjxw/FCXH7n6NzUtnWb8069EMnOzZPNShEYJz/AWi0IPmu2iFI7TlFP+PIW/eeM6mnT7HZb710euFRGZqvdTFatquWahBOp3PL2+f+/3tH/Pd9SmbZYQ3Yf3fkvFB/cKFDwV36l7P+p22VDxf6Od4YsY7Q/H7RrJ00MVCjHTFntFFn6Fa63G4V4gqio/S8d2f0VnjxVSzblSoqbNqAlvBZrRnsqraqjkZDHdfMM4mjg8Mg1dT3NyfPrZylo6W8Vy28Zn6XjqPlxsVG5RLYrUQsxu/3Ybfbj6HRFvKT2RshGzZ88W98FtU++mvHzOsBBKzr/gP18QoSps6xzbydPonDKLjx3N4Sj9LotO4xRe4FZWdoaWL/1funN6KLeokeqJ+6q2lmqqa+nYsSNUeuokHdrzDVWUnRYviDwbIUPjWQSzZ5s/qa3b0LW33mcs8uOFf5+uX0MTptwjNkAIm07op7a6vua8lKPOuozxlZecpMPbt1DJ4X3ipKbNW9IlXftQ50uHhEJNXHwgRl3AcnAoxKgDSDgEBBJIAGK0nnDLKkMekmee/HfxU8aE8YOVvT3s1exZ0Jt+entoiln/SA9M4YH9tHTRfwshu3DhQuEh5Ycmx9Lxz5tuuZ169e5riDDd2ygfzBHBpXpN63pEQw/ayDHyekteXUg3/fQ2SksLTYObichYq/L1Ff96PKp8uFtdv2jfXvpy8zrK7dqTBl01ItpLq8SnRtVfaYup59Yk64AUtCqLiABR2MiFaXL/dOmJJqLubVvS0O7t62lF7k8/W3k+LEZD5xpa0cY9GstzGv13azGql7diySIq3L9XCEt+kWIblsnl+djfPPJYyNrCYn/z+o/ps0/X1Wk0L3K7bdoMw7sfWuym2OkFor+/u5J6FvSlrj16Ri1qqq49L+JJ5RS79OweObCHtqx5W9SJZxykGOX4Y75Hrx4/mbI75ho29s6bS6n/FUMpq0OOqJ9qo9I2uF5SjJpNoUfx0V4WVI+zw7BcU+OAGHV/z9idATEaX564Ggi4JZBwMSpzct07ZTwtWLKaj4JhdgAAFG5JREFU5F70ekUv69cjKn+n24YEdXxZ1QU6U3KaXpr3fJ0E2yxEeZqdvUJTp02PqiKLRt5H/NDBIiosKqQTxcdpz67tYvU2f1TvakabTLrznpliqjOmh1PzgpoKP5nMXhF2Uowu/p9X6Maf3EZcZh2Rpp0XdW1V7NXzOFnu1198Rgf2fkc3TJoitri0ileNFrWaiFQEpOohlXU3BIfhUQ11Ux1BrQkT2Q8F7dNpUG6IlZ8fFqPnhGc09mKjWCLU/BKaGDU5SB5xsGg//d/rrxrNV2130OAhNOq6GyK5ccO2UVS4n37YvYuOHzsqbK1dh0404EdXWuYalavod+/cTgf276Ux198YdSzvmMTpefR4zh1bN9KurzbVmXGQYQF9fzSc+J/M8vDmskU0aPi1lNmuvYkQjbycCfHrocP18AevghRi1AN8m1MgRuPLE1cDAbcEEi5G3VYo2Y7nHSR4scwLzz4lqq4mSJe79bAYveOu6VRyuoSKigqpqKiIThQXU2HhAcrNy6PcznmUm59Paamp9MlH79PBwkj+xdy8fPEw533j5VRz9LS4Lr7MvKDaFLW+s1JIfYnrL3l1Af34pkmUmZVtfBdril2ea3ecnXCV4i9q2jxcn9LTp+j9lW/QwKuuph4F/bXp9nC7lGnUiGANX1XGu4YrEIkFDIvOcKHG90b2g7CwiUqhpaS9CntHe16STgNz2/hutjxFb4hRrXRHAid8kPmxFj5Sk4PlVz98t4s+XvN3kW5LfgZeMYSGXTM69BJl2Fi0fcrch2roiepFjXr5ukBUXVNN/MJ05z2/iApXqakNTZtLG5KplrZ/uZF2bP00anU9V0XGYve/Yjj1u2KEIUbfe+ctyuvRm3K6hTyvZrbJX1fX1obEqGIfTozAaSxurGtBjMYi5O7vEKPueOFoEIg3Ad/EaENaTR9PiOwZ5c/8//iLWFXPU5UcC8dTgHL7ycy22VRZXSPmUvO65FNubhfKy+tC7TuG9zQ3HmgRAcSr8zkdU5Q3Tx5nCCxlGl15cJrFcNrGdSpi9OV5f6Gpd8+g1PTW9mJU84TaCUpTkWpxvtWxG9d+INIvXTNughH/FxWSEOXZjBUfGlrkFW52ZLFKWDFFCVbVy6sJKr5Ez0vS6LLODUOMuhGh3BTr423iUG1OlGex7bbJDG37aUCWoQ5aaIjYfjUq7td8kZ30jHLPrlj6Og0eOpxyu3Q1xKAUo+q9zcsDi48U0tp3loivZZYKnrHge5M/1996N2VmdzBiUNet/ZCatkyhfoOuMvzjZqKUY1RDC+QiJapeWbMxpt6hFMpFIUbjOYoTQYzGlyeuBgJuCUCMuiWG40EABEAABEAABEAABOJGwDcxyjXmnJ0jh15OQwb1jVsDcCEQAAEQAAEQAAEQAIHkJeCrGOXdjxYt/4BmPTCVUlu5S2WSvIhRcxAAARAAARAAARAAASsCvolRuaq+sa2mh2mBAAiAAAiAAAiAAAh4J+CbGPVexYvzzPKKKvrd06+Ixj8+6z7fPcnsxb7/kWfo8NETUduf+tkby1d9Qo89FWKgbsHqRx247H2FR+ih+ydHFae/VC18bjbCTkw6RNrv3z7cJP76h0fuo1snjLLsOp3rjDsm1GHvR7/rZbjtb/W+4WvBPsx7zQ1X3Za8clXHk5uuG+Z4XJXbR7vtSzdtlJTstqp2Yv9u26hud52s6RWdcMExDZ8AxGgD7CN18HUzaMarKfxA/e3c+fSnOTOpZ9fO8bqsq+vwoPzMi0uN3LP6764u5uJg9WGgCyLZL8MG9xfCqiFwctE0Xw/lhxx/WMzLh/LD9082Fe46V/13XyuuFOa2v/V2si3NmTufXnzq4cDuo6DY2ZXrheuCxe/SA9NvES/lXrjq44dqn3Z1VccDN2LUbRu5DvUd49y2kYXrpi+2G6Jc/70h2g7q1HgJ+CpGda+BihVvZREaPFB269JJfKEOFn6YoRxEfzZxTKAeP31g9Fv4mXlGuQ5Pz1tMcx+dSVmZGdRQRJMfduGmDLM0bnYPfzOx6lQsuKmX22Pd9rdus7APc+JuuepXifVyY1aqHFOld96J8JP1fOSXd9Cjc+eT1cuUWXlu2xiP1Idu26jfY06YuL2HcDwIOCXgmxhVB+aBl/aKWsiEVfbRQlR6lIJ4UzWL7Q3COyvrkd+5g3hzf3fNJtNpc6eG7vY4MzFqNlg3BNHktm2JPt7sxSGWLcvpRfY+9eqeS3OemE+zHpwaqEfRbX+btRH2Udfa3HLVr+D2xdTspSDWNdS/Z7fNoAdmP+tKjLpto5mjxk2oitc2cijWhLFDxQyGLmYTPU7g+iCgEvBNjKpvflwB1cPEN+6ylWsdx/A01i7UBVCsB3giOFi90XfqkO17DB8Pjrv2FNL6z7Y1iJhRMzuF2KhrhboN8RGxbFk+/PnYbTv3kpsHcSLuA76m2/42EziwD3Mxqo/3Tjl58TabzfbYiVHdS+nFE+vWdvTjZZmTJ46xjbWWdN22kc+T55ScOSvGWMxOJmokwXWdEAhEjPKb5tznF9GcX08T051mDy8nlW9sx6jB5Grb/PRMmvVFENM3ujD3EidWH/uAZ9Q7PbeeUf3hLx+SQbwAqa12692SolsuupPXirV4yzvp5DzTC1dVPLm1C7deQ7twMqdxo27baCZeY73Aqb3vto18ru4J5fKWrlxrxOknp3Wh1slKwDcxqt8s6o3g5qZLVtBe6h0EF7PYpSA81/pA6cU74YW5PAcxo97puY0Z9eJJ9V4752e6jfvTr8xj3tN/XUzTbh0XaLiB8xb7c6QXrvV9QXEbT6mS8DL2uG2j1T1gltHDqpfctNGLJ9Uf60ApFysB38SoDliNTfQ7bU+ydHYQYlS+MR85dlKETfCHU0zJFeR+sdPf0huCZ9TLClm/eDW0cuxW0+tTkPrv9RUe8WIRq79jTaU6nXqOV32T5TpuuXqZmtdZxFppbucV9CJGvbZRen29lOm2jWyfcpznLAXwjCbLHdQ46xmYGG2cOOPbqqDEqJ7XL6j4PTVswa8XFjWVi+xNdWrOS+7A+FpFclxNtyF1qtpMxOlTo0HZnN1LM//NzBbUuD7VZjE9b22rdveRbh9W0+ZubcQuB2e8xSi33E0bzY73Yj9u2qjfo4gZTY6xtbHWEmK0sfYs2gUCIAACIAACIAACSUAAYjQJOglVBAEQAAEQAAEQAIHGSiChYtQsZ6UVSEwRNFYTQ7tAAARAAARAAARAwJpAQsUowIMACIAACIAACIAACICAHQGIUdgHCIAACIAACIAACIBAYAQgRgNDj4JBAARAAARAAARAAAQSLkZl3Oi9U8bTgiWraduOH0ypI2YUxggCIAACIAACIAACFx+BhIvRiw8pWgwCIAACIAACIAACIOCUAMSoU1I4DgRAAARAAARAAARAIO4EIEbjjhQXBAEQAAEQAAEQAAEQcErAVzFqta0bVxYxo067DMeBAAiAAAiAAAiAQOMh4JsYlfvgDhvcn26dMKrxEERLQAAEQAAEQAAEQAAEPBPwTYzyqvo5T8ynWQ9OpZ5dO3uuME4EARAAARAAARAAARBoPAR8E6PSM/qziWNoyKC+jYcgWgICIAACIAACIAACIOCZgG9ilGu4fNUntOmL7fT4rPsotVVLz5XGiSAAAiAAAiAAAiAAAo2DgK9iFAuYGofRoBUgAAIgAAIgAAIgEC8CvolRLGCKV5fhOiAAAiAAAiAAAiDQeAj4JkaxgKnxGA1aAgIgAAKJICC3j374/slJvbYgSOfLlq920jMvLqW/PvmvlJWZ4ambnPRDPMrxVDmc1CgJ+CZGsYCpUdoPGgUCvhOwelByTPrSlWvr9RD2vTFJXCCLkTlz59OLTz3sOUOK7MvJE8eIlH9ORJATZPJ506lDNj10/+S4XdesbDNRBjHqpJdwDAhECPgmRrlILGCC6YEACNSXQLwES33rgfPjTyBRfZuo6zIBiFHvHtj4WxCumKwEfBOjcjDYtuMHU1bYgSkxJsQvAI899UrUxf/wyH1RGw/8+cWl9PLrq6KOWfjcbDFNJgdanjZjL8jhoyeIzx94aS+6/5FnxO/yo15XnnfvlPH00O/niUNyOrYTXpR/fPu9USe936VH4W8fbjK9bmIo4apBEPBiW2b2IW3oow1b62TrUG1b2h/yHDvvbX3RqcpQF2HS2XB5/54094VFohDZNwsWv2uMMTddN8zIqKKLRKvf1efGjDsmCG8nf1QP5L7CI6IMLvPPv/8lPffSMuJNVm4cO4x+9/QrpI4pfMzcR2eK3Nd6SICb6WezRblcvwem3yLK5PJlvbi+Zm1/cPokeuf9T0X91L/b2a6TflHHbC5bjumy97md9/zLk6bjrJl4N3uG47nt/F7CkfYEfBOj6Aj/CeieaLOpIx7wjhw7aflwkAOWOkhyS3gw/HDdF/SLuyaKhsnBce6cmYaI5YFOfXDIwVX/js+XDxc+Rv2dB0B+kPHgjnRg/ttQIkv0alt20/Rq6jjdtuMxrZxIHg3t2macmWHhoWPiZdZMjPKLr3wpVV8c9O/kTnxOxKh6/+vT+moZqtjSxzorm9FtRJ/ed9Indp5RFpiyXlYhCcUnS+qEOujjoGq72W0z6IHZz0aJaL1feOxVx2w9hEW/F2KFS+h/Zy5uRLsTjjjm4iYAMdpI+99s8NUHaBaQv507n/40Z6YR86Wf52bA4QG0W5dOpg8qq8FLvX6rlBTDm4AtYxupYSrN8mpbTsRoRWVlnQd2kHF8ydibZuOD2g4rz6iaR9osNEv9Tu8nJ9PpfD57G/kF1qpPnYpRvY2x2mzWj26m6VWRadVWrsPT8xYLz61cgKS2h2el9HHbrl+ks0A9Rxe7fIxdv5j1o5v7NxntH3X2l0DCxai84Xi6dsGS1YRpen862GxQ1Qdos8HEjRjVp3m4ZdLraXZtJ9+pYQW6N9YfcijFLwJ2DzM723IiRg8dLa7zQJcPXClk/Gpnspajh0To4T1+iVGzqXA5NjBbOR2uvsA6FaO6J1T3lDrpu3iLUTPbl/XgPtDDDmL1iy5GO3e8RDDTd0NURTCfo3pfzcQrxKgT68AxTgkkXIw6rQiOiy+BWG/Xcppt2cq1UTtiORWjPDitWrM5anpJHbCcCE8rb6kUDTLWFaI0vrbRUK5m9TCLZVsQo/72oJUo9UOMypdTdQpe9dLVV4zKsYazMDwxZyY9OrduDGks2okQo05SMzntl3iJUTnrJXlAjMayDPzdDQGIUTe0kujYRHpGrdJ0xVOMYsBLImPzWFW7h7jutVFty8r+7KYZuYqYpvfYUcppdvd4rCl5GfPtZppeDf2R1fAiRu1SC6oLc7wsyHHy4i/r7nSa3m4a3qwXY429+vPA7TQ9PKP1v3dwBXsCEKON2ELMguA5sF1O65gFpeueCDvBIHP4SQ+numDJi2eUrzP3+UU059fTjFgppANrvAbq1basFpnotoIFTPWzHe6fdZu/Nl25brWASV1AJr2Odt/FihnV+1BO2V8xoEDM6Dj1jMZamCQXV+pT3k4I6os37V58nIhRWdcDh45F5cxl++7SuYOokpt+0T2jnE3C7QImXczKZwdfuz7J9Z3wxTEXBwFfxag6sMhBhFcbIuVKYoxNn8aZMmkslZWdE+lGZHyVnq7jNz+/jdZs2Gqs1LSaitHP41hR+eGFBV7EKAfr62mmvHgqEkMTV403Aa+2JR+uMrUYUjvFu2dC1zNL5aNmwvBjml4fwzhkh1NHfb19jysxamUzcoGQLs7cElVj3fXUTmosqxMxKsu2Ggv57xzPaZXuyuy+Mpsp02NTVSFulUlBpoLie06uA4EYdWstON6MgG9i1CwWUcYrfrPzB9JjF9Fd8SfgZJqS+4lz7816cKrnXVXiX3NcEQRAAAQSRwAzMIljiyuDgBMCvopRVeSob4hmMTdOKo9j3BEwE6MvvbaSrhs52BCeGJTdMcXRIAACyU3AbkGcvmGI3lIv0/rJTQu1B4HEEPBNjKoB5L2650aljcCqvMR0rn5Vq6T36u5LWLnuT1+gFBAAgYZBQE8I3zBqhVqAwMVFwDcxyljVfHEy9ki+lV41qK8RKH9xdQFaCwIgAAIgAAIgAAIXLwFfxejFixktBwEQAAEQAAEQAAEQMCMAMQq7AAEQAAEQAAEQAAEQCIwAxGhg6FEwCIAACIAACIAACIAAxChsAARAAARAAARAAARAIDACEKOBoUfBIAACIAACIAACIAACEKOwARAAARAAARAAARAAgcAIQIwGhh4FgwAIgAAIgAAIgAAIQIzCBkAABEAABEAABEAABAIjADEaGHoUDAIgAAIgAAIgAAIgADEKGwABEAABEAABEAABEAiMAMRoYOhRMAiAAAiAAAiAAAiAAMQobAAEQAAEQAAEQAAEQCAwAhCjgaFHwSAAAiAAAiAAAiAAAhCjsAEQAAEQAAEQAAEQAIHACECMBoYeBYMACIAACIAACIAACECMwgZAAARAAARAAARAAAQCIwAxGhh6FAwCIAACIAACIAACIAAxChsAARAAARAAARAAARAIjADEaGDoUTAIgAAIgAAIgAAIgADEKGwABEAABEAABEAABEAgMAIQo4GhR8EgAAIgAAIgAAIgAAIQo7ABEAABEAABEAABEACBwAhAjAaGHgWDAAiAAAiAAAiAAAhAjMIGQAAEQAAEQAAEQAAEAiMAMRoYehQMAiAAAiAAAiAAAiAAMQobAAEQAAEQAAEQAAEQCIwAxGhg6FEwCIAACIAACIAACIAAxChsAARAAARAAARAAARAIDACEKOBoUfBIAACIAACIAACIAACEKOwARAAARAAARAAARAAgcAIQIwGhh4FgwAIgAAIgAAIgAAIQIzCBkAABEAABEAABEAABAIjADEaGHoUDAIgAAIgAAIgAAIgADEKGwABEAABEAABEAABEAiMAMRoYOhRMAiAAAiAAAiAAAiAwP8Dn4SfYzPiYRQAAAAASUVORK5CYII=",
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = plot_contour(study)\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "db47b2af-ab28-43d1-8cd8-07934fe1fb86",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "autocontour": true,
+ "colorbar": {
+ "title": {
+ "text": "Objective Value"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "connectgaps": true,
+ "contours": {
+ "coloring": "heatmap",
+ "end": 0.6000000000000001,
+ "size": 0.05,
+ "start": 0.2
+ },
+ "hoverinfo": "none",
+ "line": {
+ "smoothing": 1.3
+ },
+ "reversescale": false,
+ "type": "contour",
+ "x": [
+ 2.65,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 10.35
+ ],
+ "y": [
+ 0.7027288870821999,
+ 0.7144467000567123,
+ 0.7395142458665667,
+ 0.7662074140900922,
+ 0.7808721328696897,
+ 0.7929630924927731,
+ 0.800827464931477,
+ 0.8038691888459086,
+ 0.8174855005418883,
+ 0.8294161917860436,
+ 0.8380947452182991,
+ 0.8389446905059951,
+ 0.8429055971815752,
+ 0.8517624194151302,
+ 0.8563838420348091,
+ 0.8596838078185782,
+ 0.8601034741266624,
+ 0.875183707875409,
+ 0.876132015812083,
+ 0.8777239752940389,
+ 0.8948541483847852,
+ 0.8957263433574094,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9045625386867897,
+ 0.9174470432736699,
+ 0.9196762030928591,
+ 0.9204153410113451,
+ 0.9275690010126776,
+ 0.9483018131894073,
+ 0.9488029595469605,
+ 0.9605207725214728
+ ],
+ "z": [
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.28333512688101153,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.39784787794552795,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4037641499510466,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ 0.1907552827778649,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ 0.20307681243216183,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.33330840997266736,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ 0.19103604207409036,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3639219361818585,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.36391860524716446,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.30337436666113177,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.24080227825457184,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42745701777773953,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4633111426794054,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.46330684097155167,
+ null
+ ],
+ [
+ null,
+ 0.1862693152521443,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.46330684097155167,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3480318083295157,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.40750648259180683,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ 0.2123846817548284,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.6482633708392243,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.22112929238626436,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.4070833316320489,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.5274133516352982,
+ null
+ ],
+ [
+ null,
+ 0.18531875170393172,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ 0.20993148042255388,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258435026582389,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.3258414249026382,
+ null,
+ null,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 0.42621654591235925,
+ null
+ ],
+ [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ]
+ ]
+ },
+ {
+ "marker": {
+ "color": "black",
+ "line": {
+ "color": "Grey",
+ "width": 2
+ }
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 8,
+ 5,
+ 4,
+ 7,
+ 10,
+ 3,
+ 4,
+ 9,
+ 9,
+ 3,
+ 10,
+ 10,
+ 10,
+ 7,
+ 9,
+ 10,
+ 6,
+ 8,
+ 8,
+ 10,
+ 6,
+ 10,
+ 9,
+ 10,
+ 9,
+ 8,
+ 10,
+ 9,
+ 10,
+ 7
+ ],
+ "y": [
+ 0.8380947452182991,
+ 0.7929630924927731,
+ 0.8038691888459086,
+ 0.7144467000567123,
+ 0.8517624194151302,
+ 0.9174470432736699,
+ 0.7808721328696897,
+ 0.800827464931477,
+ 0.7395142458665667,
+ 0.8596838078185782,
+ 0.8957263433574094,
+ 0.9045625386867897,
+ 0.9483018131894073,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9488029595469605,
+ 0.8777239752940389,
+ 0.9204153410113451,
+ 0.875183707875409,
+ 0.8294161917860436,
+ 0.9196762030928591,
+ 0.8563838420348091,
+ 0.8948541483847852,
+ 0.8429055971815752,
+ 0.876132015812083,
+ 0.9275690010126776,
+ 0.8601034741266624,
+ 0.7662074140900922,
+ 0.8174855005418883,
+ 0.8389446905059951
+ ]
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "white",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#C8D4E3"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "white",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "radialaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "yaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "zaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "caxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Contour Plot"
+ },
+ "xaxis": {
+ "range": [
+ 2.65,
+ 10.35
+ ],
+ "title": {
+ "text": "qgrams"
+ },
+ "type": "linear"
+ },
+ "yaxis": {
+ "range": [
+ 0.7027288870821999,
+ 0.9605207725214728
+ ],
+ "title": {
+ "text": "ratio"
+ },
+ "type": "linear"
+ }
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqMAAAFoCAYAAABjWPKCAAAAAXNSR0IArs4c6QAAIABJREFUeF7svQmcJMV95/uru6rv6Z4+5r6HORgY7gEEGoQOjG7WRsh+smV5tVh+u/uQ9aRF9u5qvbZXrPW8Yr27lmXZMrIujG4kY3SAOAQMDMfczH1PT/f0XX1Ud1V11ftE5BURGZmVdfT0FPyLz1BdlXH84xdRmd/8xz8iQ8VisQh6kQKkAClACpACpAApQAqQAvOgQIhgdB5UpypJAVKAFCAFSAFSgBQgBbgCBKM0EEgBUoAUIAVIAVKAFCAF5k0BgtF5k54qJgVIAVKAFCAFSAFSgBQgGKUxQAqQAqQAKUAKkAKkACkwbwoQjM6b9FQxKUAKkAKkAClACpACpADBKI0BUoAUIAVIAVKAFCAFSIF5U4BgdN6kp4pJAVKAFCAFSAFSgBQgBQhGaQyQAqQAKUAKkAKkAClACsybAgSj8yY9VUwKkAKkAClACpACpAApQDBKY4AUIAVIAVKAFCAFSAFSYN4UIBidN+mpYlKAFCAFSAFSgBQgBUgBglEaA6QAKUAKkAKkAClACpAC86YAwei8SU8VkwKkAClACpACpAApQAoQjNIYIAVIAVKAFCAFSAFSgBSYNwUIRudNeqqYFCAFSAFSgBQgBUgBUoBglMYAKUAKkAKkAClACpACpMC8KUAwOm/SU8WkAClACpACpAApQAqQAgSjNAZIAVKAFCAFSAFSgBQgBeZNAYLReZOeKiYFSAFSgBQgBUgBUoAUIBilMUAKkAKkAClACpACpAApMG8KEIzOm/RUMSlACpACpAApQAqQAqQAwSiNAVKAFCAFSAFSgBQgBUiBeVOAYHTepKeKSQFSgBQgBUgBUoAUIAUIRmkMkAKkAClACpACpAApQArMmwIEo/MmPVVMCpACpAApQAqQAqQAKUAwSmOAFCAFSAFSgBQgBUgBUmDeFCAYnTfpqWJSgBQgBUgBUoAUIAVIAYJRGgOkAClACpACpAApQAqQAvOmAMHovElPFZMCpAApQAqQAqQAKUAKEIzSGCAFSAFSgBQgBUgBUoAUmDcFCEbnTXqqmBQgBUgBUoAUIAVIAVKAYJTGAClACpACpAApQAqQAqTAvClAMDpv0lPFpAApQAqQAqQAKUAKkAIEozQGSAFSgBQgBUgBUoAUIAXmTQGC0XmTniomBUgBUoAUIAVIAVKAFCAYpTFACpACpAApQAqQAqQAKTBvChCMzpv0c1/x9x97Bn/9tR/hy3/xKaxZsXjuK6QaSAFSgBQgBUgBUoAUKFOBSxJGR8bG8Yn7v4i9rx+XmvN7H74Tf3jv3WU2sbzk/+PLj+ClXQfxpQc+iQWtzeVlvkipGWT+p7/4qqs2VZ9qYLSavBdJBqqGFCAFSAFSgBQgBd4AClxyMGqBlgpWFqAyzecSFOsFRlWP57FTvbj3M3+Jqy9fhz/59MeQSsZRDVBWk/cN8LugJpACpAApQAqQAqTARVLgkoLRnbsO4qP3PYA//czHcNedt2ol+Ob3f447b982Z17LeoVRJpal30MP3o/rtm4gGL1IPyKqhhQgBUgBUoAUIAUqV+CSgdHMdBaf+8JXcbr3QlmeT3XK+t23b7M9g5Yslpfvwf/6b/GPj/wU//zEDn5oy8bVUl0MRP/+249Jai7q7pBiLoPUx8rpuzCsteORHz9l12l5e6/fugHvv+Mt3LN5vn8IujaIRnl5LS3v6B/8zvs5zHulK9UGrzAAC3IrH26UkxQgBUgBUoAUIAVIAVmBSwZGLZC68203BI4LVb2YXkBrwZUIllZaJoc1rc3+9vOMBq2vXBhlsbGlALRWMBq0DTRNT6cKUoAUIAVIAVKAFLgYClxyMGp59Uo1Xp2SttKL3kZrsZMXWLEyPvv5r0ieTy8YLae+cmGUeUbLWZhVyuPpNU1fThsIRkuNQDpOCpACpAApQAqQArVQoG5hlMGSOOVtiaHzePrBKItRFaefvWC0nPrmA0Yt0BQXfqntLqcNBKO1+HlRGaQAKUAKkAKkAClQSoFLDkaDTtOXM51eCxgtp76LAaO6rZ3UmE613eW0gWC01E+HjpMCpAApQAqQAqRALRS4ZGC03AVMtfDy6aat69UzqhsM5BmtxU+EyiAFSAFSgBQgBUiBuVTgkoFR1sggWzs9s2M3XwV/9MQ5vg2U6g0sN2ZULcMLcsuJtwwKtDpbg3R2UK+lmq6cNujiaYPYRmlIAVKAFCAFSAFSgBQoR4FLCkaZ4eVses+g77EnX7QXIPmtptc9FlMHZ17AxmwLWp+uDKtd4nZSFxtGy2mDuk1UOYOK0pICpAApQAqQAqQAKRBUgUsORpnh5TwOtNSemRbgBoVREYjZ35XsM6qWwT6zjfzZy2uf0Vqsplc7vdSqeyu917ZSFlRb6Wif0aA/K0pHCpACpAApQAqQAkEVuCRhNKjxlI4UIAVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhG67r7yHhSgBQgBUgBUoAUIAXqWwGC0fruP7KeFCAFSAFSgBQgBUiBulaAYLSuu4+MJwVIAVKAFCAFSAFSoL4VIBit7/4j60kBUoAUIAVIAVKAFKhrBQhGq+y+vWcnyiqhKKaWPvgXU0QZiX3qqLAUrXGusiooPFC7hHLLqaJcrS+KLT4N8KzfzPO9b/49Vq29DFfd8BZXf+j6QleeV/VFTQG6tPZ3nn2i1FqEa+Q6WY2/+P99+tipU0gvKKD2s5pKbYe7PjmF2kZ3fqEFykGxbX7tEtuktc9sn9Mv7raL5auavvzUT9G5eBmWr9uk0V9vv7ad5pfWMV2dvMfVdJr+NNoijA9hbIiaO3V5lyvaamlkl6wpVxzfhhnyONW3yxmXYmqnPquT5DHulOXk0vcVN4O/MpNpXDhxEAMnDyMcieGym9+FVHOr03eeWik9r/ze/MaI3/g0JZLOM1ZN//P9G8q65lFiUiCIAgSjQVTySbPPhFH1RB6kWClPmQUEAiedEZ4XzyAWe6fRml9GmwK1R3OBC2p1uVqXY08ZzZQuLl62+0Hpay89h6OHD+C2d70PHZ3dlyiUusFJ4BXbZhWgVCB2w5FJrQr4WAWqfaxa4SrP9VuQvxABSeFlEalsoHDbYfakx7h1ynf3uA62JJBzOEgBQSNnPpfDY9/8Ct770T/gx6XyeApBfU/73DBo55TKLNoaWEXpIKgkjCr9akGuTgu7HqGT1O/E/pPtkkeGt62GyFbvuIFWB6EK5GrGqlVOPp/jAHrhxCHMTE2ia9Vl6Fx5GVItbVKf6caJ1mahW60WlvpN6aBTHevWcLHK/KsPbAx62qV0pEBgBQhGA0ulT7jv3ISvVydI8epFNEgeNU0geNIV7LogV1K7O4964Veuf76VBGqLxwU0iPUqZPjlmStbgtjgVXd6dAS/fPxRLFq6AtfdvF1rvkt/Dg/uXtH1k3ihcwrXW6O2Qy7vje0llVqnBT4BZjyBz6LK2gPpoV07kc9lsenam10/PxHH/IBF6/V0QY85tlQNVLgUBpb1pwyJKtwZBappRFgq6RV19Uv5Zbog1HCsypoKnla1bSLwsWODZ46h/9jrGLtwDl0rL8PClevR0rlIU6YAwmajxd+XbIN842NrpvmBa8/NGpD1Oi8SjAa5ylCachV4Q8LoyNg4PnH/F7H39eNcj4cevB/XbfWeWjh2qhf3fuYvcb5/yJVePcYSbNm4Gl964JNY0NoMDqPiqwpIEk+ydpGeZw7/rg4EUWoR5Zy4yhxplcBpoDZUoXe5NwFzYU8pKPWrc+8rL2H/7ldw2x3vQ9eiJaWh1L6AzhGUavtCxB4LvAJM3SsmqhYbF3znW+1xSxEFxPVlidgt/xLVPpKAQIkvkI+JZcpUpE2nTB2r5wNxyt7VBpf2xhfMO3rbBz+MZKpJhifbN2r2j4feos4umyVQLD2lbnlG7XZpQFOGLXnsGLYowGp+aeXzm0K32mKndQGYCJmyLuIYkPO7p+J15U+mh9F3ZD/OHz2AhcvWoGP5GrQvWen2KKtj2lMjf/h09HD/1j0uV6XP6GZR/+uD5BktLRalKFeBNxyMZqaz+NwXvopt12zCXXfeCgaTf/z5r+DPP/txrFmx2KWPBa6fuvduDqw7dx3EZz//FXz5Lz7F05fK74JR4QJY8Y/euWa7+9P/3OLZ/4FAar7gNECbAtnvuiAH/zlIJtTCnjJtUYHH3RV6oyYnxvHU44+is2cxNm+9Dg2NBnT4dqVZVOWeUhkSXEPeLl/+Bagaqy1yPgvl++hop9LWpwCvfVFXaxGAUTFI1ceCIRckXnQgdesv2ubYV0TvyWM4svcV3Preu10gZ6QT9PDQ2s87KqqpgqD+s9y3KriJXVA0C3DAyugr9bPdCh+4NfSRdfO210ynjCspvY8n1OoL9t5//HWcP7ofuekMetZuRvfazYhG44q31wdoJRs04RAuG40voulepAaPITKTBkIRZJs6MdmzBcVIPPhJ0SPl/yYYrVpDKsCtwBsORhk8fuGvH8bn/+jj3HOpwqkqwfcfewY7XjmAP/n0x5BKxl3pK4ZRDxJVL8DlDEpt3goKDAR2JYlGvjCU044goORXXiD7PQCllJ2SnAG0rbUtdpUedXvV9/re1/Dai89hYVc31m+6EivWrJ9fKNWCjRuiahZLqoCGC5BNilEtUGV2Q52cQuwfCZzmEEjVMSm2QbZBtxCsiOP7dyOTmcKma2+sKH5UB3I2FIoAWAL2nL52vHo2WEr9Yy1qqw4e3VP8QaBPA6IuyBXKEc4z1tiZnc3jzP6X0X/8EFq6FqN7zSa0di2WvaCCt16EV4GZzRGlAKhpi62bmVkso6F3FxoHD7t+/8VQBAMb38OBNCQdlT+5MgqH2Z8Eo6WuInS8EgXecDDKPJt/+eVH7Gl0Jsr/+PIjXJs/vPdul0YqjKrp1Wl6cYqepd1/bpKXGQhK7DN4bUDOxSsB4EnPmBVndJ/wKhmFZp65BEFF+kBW1tyeMgC5Uig9c/IYDu3bjb7eMxxK12+6Aq0L2v37ybbLPQ50I0MFNstX5QIjQXQV6fSA5ZjpHJfhQAuZ4pSzh8Z+QKcbG+44QdUi95Sx10pxtXzR0+g+Zv0Y5DNKJUAqWrx3xzOYnZ3FlTff5gukuvhI+/ymaOuCKJP+VMC02yh4p915ZT0tjTzLsh2dejAMAqKWXY4t8ljT2Sh5ayUQN/rt6MtPc0/o0k3XYNnmaxEKh70h1G8KXtQ6AIDytph5Ovc+wmHz4MGD2LVrF9ra2rB9+3Ykk0lMta1Eeul10vnAZk0PJnW+Nv76P3fRNH2gCwglKkuBNySMfufHT9meTqaGH4zqPJ9+6dmxvgvDdvkWjDoXyYBgJyQLmKNkx7rKqbDgwGCtWqTUV2H1vFT14luq8YFsrkLzmtrjAUy6Ntr1eojp1e6Z6QyH0sMH9iLR0ICNW67Gws5uF5jq2hV0+j6Xy3HAKRQKmM3nUZjNY2pqElOTEwiFQkg1NKK5tQ2pBid0wAWZYqOVeEB5HLihVJXE0cpMqwjqB3SlgNQGMosVBSqW7RDUq/GiJrGe8rZ8MnIe3bcLQ/292HztTWhsaXOtsM9lp5GdmUZuJssXPrH+nRgbQW5mGghHeF8u6OxBsqnZ+Y2WWlWvjHVpRb3vtLp+oZENp3a5TgX2MbMznc9KWRqbrF6Tp+KN8xBP7uHJtI5lpzN46UcPoWvlBixafzmSLe0IhcKKThqPsGCLC8DFY2ZFji3GAFT1DGdG0Xns55iensYDDzxg/wK2bduGO+64A/lYCgPr3y38MkJg5OrlG+XfKwf/+q5NpU7HdJwUKFuBNySMluMZZYox7+h/+ouvSuL96Wc+xmNO1ZcaBqDCqHxtDYhjVUCSV49raw5ojlpmINDzJSnzxFn28CQoFZjHV0S/Puo7dwbHDh1A79nTHBS7Fy9DqqEBjU3NaGpqQTQWRSgSQTQa41CZz+U5YGamJjA9PcWBc3xslE/1zuZnMTnB4tCAYqGAcDiCpuZWzMxkEIsnEI8n0NbegUKxiLGRYYyPjSCWSKC9ows9S5bzHQCa2xYII0GxvEwgNTlBGlnGBVvFXieJG+pKpJV+n5q0LpvLB1ItWIsAYppfLZCeO3EEe3c8i2gsjobmFt7vk6MjmJme4ttBxRJJJBsbOYE0NLXwvyPRGB8bDGRHLvQhlkyiZ9kqLF69Hi0dnYKnNUhMo9FjLqiqACCFkjTeR+Hn4hffKUCtN4jK3lcdEI8PD+D1Zx5DJJbg3tBsJoNEUzPal6xGx7LVSDQ2cxvFvMbfsmZuG7wAVv99w9BhtPbtxujoKB588EF70G/duhUf+MAHUAjHcH7D+/n3KmhKzBkKuQDVOv7X/4pgtIJLGWUpocAbDkbLjRlV9WExpl/40sP4rbverl3wpJZ/8PxUyUFWFsxpgLFChtTaVUtIFS8GJUVwE679TSXtk/IELCBQP1R5YxDULl9bBI9IKV3t+nw0EOvKZbMYvNCP8fQoh8rMVAbMi8qAk3kzGYRGYzEkkilEo1EkkymkGpuQYJDS0IBkqgHxWALxRMJlmrZNRSA7M4Mzp4/j/JnT6D17ColkEkuWr8Lq9Zs4uFpkIoGWUrq8/ZC7JgtuXPBuR97JNKevy8KDAJvwa2JUvSDXBZplwq3UWk9vqwMnKqA7Y8QpKT0yhPHRESDEoLMZLQs6EApHlDX2olfQKXUiPYYzRw/i7PHDHGqXrL4MqzdfwcePa1GQx9S9A2WC5uY9hAx7enCVtnTSTJezMtRtn0rBpgjIYl4xnw2UJuCKedgNGEM4ZjFLN9Z/DoNnj2Po7EkO+Z2rN/B9RBnc+4GpC1hNr6zcJsFbK46J/Ax6Dj7KB/vDDz/Mp+rZ9Pw999yDlStXIhdvxoW173JA0yTMQCBqJiLPaKmzMh2vRIE3HIyWWk1vxYB+/rMf1273pE7R//Spl7B21VIbTNXjB/sEGA0IRRVB3BxDqnoBq4oUy4mhFUftRQJBucoAnVYruwICo4by+FcBLK16U303zHmfVvxA2AtMWR7mZWWe2mOHDyASiWDthsuxbvMV3KsqTod62VINmKo3Cy5QVAa+XJe6D6Z7hbarn3y2lZLjMx1LVF1lcBbSeY5Lx9sWBEx1OkvTv8JUtXjuYtUzqD2+fw+OH9iN1ZuvxOrNW9EkhADYYFUGlOpXuRsjSgeU3Cbh5kAEROOYY3VZQGqKZ8GlpaUMpw5M29+LsbHm3+OD/eg79jrf5L596Sp0rtqABYuWl4ZSMV5UgFIrJtZpqxOK0LX/+wgXZ3m3Mg8pixm1XunOTZjo2uRawBTSzNPrYknZd/+HpukrYS3KU0KBNxyMsvb67TOqg1EGmH//7ce4VOr0PFsQ9dH7nNibd9++TYpHPSTCqCm2esELOgoDee50hb1RQVVpVxAYU+Upty8C90GFgBrEniBe00sWTrVjUT9A2bdDA/04cfQQXt/zCpauWIMNV1yFnsXLjG5UQE7XZj8w9YM615LDEuEB1kVfC26Osa4bBtEGB1s0+6xK40kPprKKwUIBxGngSsA0KJSyhp88tB+Hdr2E1o5OrN96HVo7uhS0N1UvsXDHBljzDxG4vI9pyhbye3pSRcAVp/NdU+pm7+mm2n3zmSAs5Bs4dQx9R/djKj1ibPe07nJEYwklPtWdz/HKGm0VoVvUKDYxgAUnnuY+WvE109iJ4VXb/eNDWQYFTI2Pzpe0gCnoFZ3SlaPAGxJGyxGg2rQ6GPUFoqAUIRQSGJDqGFQDt7FCCNRBhMUQpcbAXNqmApO+C30wXLxgl2jIxQJhvza5tBTsZ55StkUVW0Sz+cprsX7zlU6LSoCpDIvVTeOraqtoKHs0JRNNiBax0+ZqB8wUshXrEw+ppbiPWWXLPwpXeWbNXBWP34/TZ7J2MvwJsZPmeUy00bKPTd8feu0lNLa1Y+M1N6Cp1djNQbJLCXOQwcq94Ehrh8traMnvWCWWy20QFyIJY087LV/quMtTa3pvBW1ESJRsKbLn0Y/j/JF96Duyj2+C37VmE5rbu4NDqekR1rUxNDsDBqWxyQuYjSSRbV6EfMrwkPqtnldXztuDVpjOp62dSl0x6HglChCMVqKakCcIjAZiRB/e8DMxMCgFMiLYVHA5kmmbFbCtgdvmcYENaqfLnFraV6ZtDhR4Wx/EcxqkCVIajwxB6lJBQ7Tcqz1e0/gs79DQAI4d3I99u3bi8q3XYfPWa3ncqkM0emCy6i1nGl9utmKVp7fUhB1FMxcEauJKJa2E6Vydhl7T+HZaAZbstgfc77Rcj2klUHr+zEnsfeFptHcvwuYb3oJ4IiVBqQFRIs5asKiBSqWtXlDpTF8HA9pypu2DwawcMmDbY9uv3zd04PRRnDvwGvd3LtpwJTqXr/dc7CT3hbniXwxTELUS4DvQ3qLKnqK6s9B8wWipPcODnu/fbOl021deihoQjFbZK4f7pzy9DeUWXQ246VkzCJJ4WKnJWkVp2kqCwJCase4BVQMQ/jcb5lEf8YMAY5C+C9If1dRlwIe7tV5gOlsoYN9rL2H/rpf5SvzLr7oOC7sXOQXM2TS+DEgWQblgU0Crar2lakiCKlO18aWKU1TpBn2MqXMjoXhEdXt8mn1rKSfehJw4uA9Hdu/EsvWbcNlV15e5yMmwTQ9gRqXWuGLv4t8GPAq2C7893bR9rfJakC3a7LZfD6XpwX70HtyF0f6zWLzxaizZsLUmK/DLvRZ5pWesOhePA7VA85+f2GFXrYbEBYVRK0zv7vdu1+6IU44WXnWqT2osp8wgaa16e7ratfuj6/ZT9yqXYDSI4m+ANBxG3cQkfRMEBEpJ8WYB1SBANF+A6mKpgB1bDcCJbQ2qzcWsz7MujVfR1ZYywPTo4QN80VM2O4MtW6/jT5hS9VBtkeBRSeyCPaVzneOVe0u1dSgLeSxN3LaKFkj8rdz8atIJ0OWUL9TguSLfDXeiLNYiIfk7IY8LBmUQ3L/zOZw9dghXv/UdWLhoqedz2W1wU1fEe07LOxHA8uIio/VWeIIeVkvlNYyoBCyrgVK21Vbv67tw9sArfAP9xZuvQSRqPMpThm8/D7BhdcDTVKlLkH38f32gtpveW+s47nzbDRJ4sbUcjz35ov1o7qAwGrghARLOR52WWQwiH/nxU9IDfKxjfnuhq80iGA3Q0W+EJFoY1TVMOSPU8gTxRgZVV9sCCnexPKiVAOrFhEUZFTQDUwMuXr/LIDDs5eX06jb7+yBgWgR/stTe13ZiePACn8LfdOU18gXXvFJLcKc0qFaLnrxX2psQIPOfZIUFKjpYmGswVRdvebVDhDgZghTIEVePm62UV8Q73suJ9CheefpnaGlfyJ8G5Vo5zytyyhfBywotEMHQsktaaKWB1tJgWIaH1axUBlS5zzn4ir+tcoFWyH9m/yv88aIspnTJxqsQTzZ6xpXKejjgag0+988s4AlVGL1/VWMYVR8kY1Wlegetz1dsWoM9B47B8qL+3ofvtCFW3DP8oQfvt3fMURc1q15XVqe4kJl9ZouZT57psxc3s+8WdXdwOB4eSdtPekwmEvjcF76Kbddskjyx6gN1gtggniSs9J+6925p5x91EbZqt/qUSBFGWfk6W3VwK5ZrtXvNisVzhm00TV+ltEf6M8pFpswft88Fq0rT5Iu0WFiZJspKJtpqAAAgAElEQVRZq8rsalIlpV1MQNXBQpB+CQJuQUExqA21rDNIv5SqzwWmJcDXC0x1gDs+Noa9r72Es6dOYPnqtdh0xTVobmkty1sqcI92MzILhNwX8sq9pWpfOm1WAM+COqFyNYULuKVzidyDYlvUvhVbows3kB6BKXnmZIvUlfeivlYdlh1s6v7gqztw050fRHNbe1lT956eTs3WR5YNDjjqp+2ddG6olLdR8pj2twG1QijV5Bdhlx1mW0Od2v0C2peuxrIrbkAsnnQ8tnZ+710FdOct39+569pkfFFLGPUCLstWcTragr5X9x2xvaW6KXm1TF0dKgCrn1mex57YgbvufKsW3tRpcp33UfxuemYGn7j/ixDB0gvCxX7SQaLqMf3bb/wYt99yjbT9pPiUyEpgVK13rsMSWJsJRoOQhU8aFUb1P/ggl3YhpyZ5mSUEapW2zCoqCuyNVK1T6qzEhLoCVJ8GBvGaXvJw6upP7wHtJYUKgg6TyTnYJv0spvTAnlexoH0hNl55DZYuX8WTSykFz5ROv7la9OTYIEOKG3AFe8tc+FSqPZ7hC6ZxMtQKFkvHNU9XMgnOhiYLoM3Ok77XeE8nx9N47rEfYN2V12LFZZvEh2YJ0+KmbroQAN02S4H2FXWmtq1xJoOfxktagadThnF/T6nVh7I9+rjS3sN7cXrPDr6B/oqtNyIUiZrboBkd4MTYeu83K56CVc+4dExzJfmf798Q6PoSJFGpfb9FCFrcvVALhioIqvDJjjMP5x/ee7dtkui1ZF/+8ee/gj//7MddD7rxixkVn/SotsPK9xvv3c69mqVs8PI4qhAYJGxAfTBPuTCq5mf6BKk3SH/7pSEYrVLBIxcEz2gZFFUrcAsKJuU2s9agathZlkCSyWXk9M4XsJBK7QxYvG2fnf4NCKdBYdKiRl8o9Rjkaj+dPn6UQ2kun8PylWtw2eYr+ZOkpOxlLnrSgpxgrAs2BcpU2+QHpvq0Dm15l+Vs6q4DXBGInOOqJcDUyCD6Dr6C8YFezOZm0NS5GK2LVqJzzRbZ+6Y8vtLWVn3kpm6Rkwq3ZuZXn30CiVQKG6+90YYpsc+8wwWUze6F8iuZtpfq9NgCSlwIVioWVTznea/aF2JWTQNkMDb3FFVuHFh5vYf24MSu57B88/VYsvlqZ5x7xNZatzu636bu96eDVJbuUoNR1Uupwqg6jW39DsQp9+/8+Clp/3ArTVAYZelFb6JqUykbvGBU9fyqU/8iKIqLv8Rp9XJhVN1bXbygej0mvVy+0KUnGK1SxaMijOqCxcsklLJASLVdU1eZ1QdSo9agGrjNSsWVtk3KV0Yhc2lnUJsuVc+p301RYDBVLriew9s1DuQvxsdGcHDvbhw8sBvdi5ZyKF2+aq0MpfaFX84rfporb6mslVGj12p8GaTNtIow6tiRpt11aSWYLmJmchz7Hv+m9rffs/Ea9Gy8Vva8mUp6xXvaMCXBlW5622nPgZ3PI55qwJrNbPW4rIkDZ056a0xZ36gr7sU8Ylo5X5AnN+kXONUSSlWgd9mo6qj8Tk689gL6j+3HqmtvRefydZp4UqNr1d+hMwwCjEFhzDxYQ89oJdP0amxmEBhl7Rc9o+JgZ/lrAaOiHf/w8L/wKqw6y1lwpP4QRZj8lyd3YMcrB2xw1i3+UoG1EhgVvb6BoKAGiQhGqxTxk/f/Z/QsXoqexUuwiL0vWoKGxkapVBfvlAFAYkGBYUjXJo86KzTFVzVtmWVWVFZbpYtrZR1aaR8FtrNMG1XA8GrVpQinXl1tf68k0LZBueBqwVRTkVrWqWNHcGj/boynx9C1aAlWrF6HZSvXyGBaC2+pQI2yWUHjS50CagumOvR11GR1nd79K1w4uhd9fX344Q9/iOnpaWzbto3/i8QSuOK9v+sNiMruAA5IOeDowLYApBpQ3fXsk0AoZCxs8gRe/9XjDoQ6ACZ6SUuttndsVbeTkqfuRbiz61S10D5pSgY/nb3S6n1JJ3GqXy4nO53BqT0vYnpyHBtufhfCsbi9C4D6uxPHpwioIpx6blVWBGoJo6x55S5gUmE0yDS9CHDquUTnbRTTMPtWLuuRFifptlaywPp3P3QH/uGfHpfiQ6tZ0W7Z9x8/+dv4x0d+Ki2U0oF0tTBaSo/KrrClcxGMltbIN8XhvkmcP3cWfefP8fd0eow/e7utvZ3HsC3s7EKqoRGNjY1IpRoQi8cRCUeAcBjhcJg/mzsSjSIaNeJ+Kn0FhiJvqnEdqcIcz2ZUCn3GObkMi8qEv0CylFV9icRl2jcfcCphjE9zKoZJmZMs/HB3hc82UUEBdzqTwaljh3Hy+GGcO30SK9es548f7VmyDE0trQKduceZdPFWOkKVxe/C7yrZc1N9PZhq5DK9XSJGSE2RtLSgzPrSynXw6R/x6XkGort27bLz3H///Ugmk9j8rt9CvLFZ6h+XV1SJczUgR4FP36l7w5rdLzyNhsZmrNliTTsr8Z22h08PttLUudlA9uYFpJKHU22DkN9sjmtfU7tPJPB0A7PYd452SjozkQO37m2lPMsx2zh87iRe/9VPsfb629C5cr3ZZ4ZoLo+5bosvqc0OgIv1fvF9tYsZZeX6be300q6D9tZGuilzXcyp6m3Vlc/K+tLXfojfvefXYC2MYrb8yac/hlQyzh8pzhYw/dZd79DCstc+n9ZqfnW1fikbFrQavy/dy2r32Pgk2L8vPfBJWOm9YkrFRV4qCKvwb03LW7sSWPWd7r0g1cXKWba4S1rZ72l0BQcIRisQTcxyTJimt04i2ZkZjIwMY2R4EOPpNNJjo5gYT4MttpidzaMwywLLCxgfT9tFZaYmOZQ2Nbcgn88jFosjFovy92g0hmQyhVAohGiMgWsM0VgMsWgMsXiCQ63xvXOMp4lGeNqI+c7ysDSsnLJeGhApg8sCVVUppFYKqLoLeyBDqwjFuOS8mIIIQfvTC/5E7VztVC7qqs4GuLjVn6tyCrMFnDx2CGdOnUDfudOIJ5J8JX5HZw9a29vR0NiEZLIRyVSK3zxaLxd4XopgKtCVJyhL0FPE6yVg9PI7TBhVgUtd1FMintSGLLPDZehyIhp/8d2v49rtd6Clo9OEKSOlHwBbY8hM6doo3zkuezjlfNZUtlWK0fPueg0B9XkFj6qZWd9Oby+nrJO4r6hglwqS9m/M+OPg87/AwmVr0L50lSbEwglPsH96Gi+u87OUF0L9jxrDKKunnE3vxdhIllfcwol91k39q9sqsXTillC6+q34SDGvbmsnESQt6PyD33m/a8P9Ujb4XX8syBVtttKL21kx+z79iQ+BhQlYC7JUGFXbysq0XmIoQ6kto4JeL4OmIxgNqpRHuuMD09ojZUGSWQKD0Hwuj1wui1w2i3w+h1w2xxdksGPs+3zO+jvH/2b1zExP8+OzPA07nuOAOjU1xdMwAObfm3+3tLYhk8ko8GrALINeNlUWjUQ58DLPbYxDLIPaKOLxuAm/xnc2ADMQjkV5GvaPgbKVP5DEypUzKBzpyq4UbB3oKKP2Ku1WeMZXqpJjqgT0ldSqRLPV+nMz0xjsP4exoQto7ehCa9tCpJoFL6NQoQ44y4HNcoDVqxleNrBV3QP95zE8OIDJiXFMTU7wdza1z8Z7a3sHUg1NWNjdg86uRejskffa84ZUd4+JNsj5/KfznbQymDnA4Iht1CEDlTO25U5htZ7a9Sv0e07Tx7H1fR/TgJcOEAOuuFdW1qsgOTo0gL07nsXNd97FjRUBU2yv6AW1muyAnOA5da26L+WRLMOz6Qmrhs6ubbGU36jkJXWt2C8DbE1hRK2O7HgSieYWLNusifkVF2hJeeXYUp32tfaMBro+lJGoVBxqGUVR0ouoAMFolWKfGNTDqFqs9gJZBvO4y6s88+zsrA21HG5zDHhNmGXgms1ygDXAd5bDLf97Ns92A8NMJmMAsgC6DIQ5EBdmDZDmZeZQLBQQMcHW8MzGbI8v+555ngxwNb3AZppEImGAMDvOvcRxRGJRxJlH2PrOBGPPLqwSFEv2YZldEBQmdYBRapiWA7VG+SXJ065Sl7L31FG88uxPwYBUfG25YTvWbjY2oncASCjBB5iDAqvOnrnKy8byeHoUwwMDGBsb5lP8F/p6sWjJcnQvWYYly1fyRVLilLTaf3L8nYqgjldYBE4xlbqqWcRMz9g+W3w3lKpljw+c495R3atp4WJc9tb31RZGA0zXP/2T72LztTfz59oHhlEBqkQIdMeJGqNft8Ld7ruaTdlrwhU8vZClIDlYWaJeL//kW9jy9g8inkz5P/FKG98qnCmE45c6jM5XzGOpczQd91eAYLTKEXJyKACMelz3ra8n0mPY8/JzYO8T42Noam7Fmg1bsGbD5WVbV2voDQQuPlayiwL3+GYNj63lueUe4HwOWdMDzOHV/MfSsWvBdGaKgy3zCFvpuKeYeY5Z2uwM9+LG4wkOq/FEgoc5FGZnbWBlni0Gr8lE0o7NZZ85FJtQy8MZGASboQ/snXmWS75qBLvlgmRZfeLmwJLNkkFSokr+ITszjccf+Tv+Pjo6ioMHD2LlypXo6enhx+/40L9GI/OQesR6quCo85AGAc4g+exyJB3cHafWVypfX+9ZnD9zCmdPn+BhOJ3di7Bk2UosXr4KrQva9TF6ppQOQMotEHXRgqkuxk9Zee4CYf6FD5AWgZO7nuWeUbZwiYXwsBvBdDqNlpYWROIJbOULmKy4Q6MRluVzFTv64hOPYfGKNViy5rLA9Yk2SrGjou2mR9DdHk37FI+qqK2XR9OB2TK8mvYNmtlP9mdrwFRSlmHJ0LlTuHD8EC57yzsNHcWyPbyjsjZub/elCqPitPJcbkFU1gmUEgdWgGA0sFT6hKeGZ6paeMQu6N/9x7/hF3b1deX1N2Pr9W8pz8IS4FteYf6pLwXwZV5eFqPLoJU9t5xB7kx2hsMrh9gZ471QmAVbxMKOZ81wB/Y9y2/kNcIiDG9wjje8rb0DmakpA2IjRvhBOBLmfzP4ZRduHpYQjiDMFqIJ/9jneCzBY4PZ3wxuQ+EQwiH2bixesxawsQsnK4v/x955TK/xHg6H2FHPjmBxyDZs8AUjrFdCvN4C3++GXUzMfwXG7iEeu2x4joRjZhqrIuNibvYws0f4eyo9itOHdnF4eeCBB2zb7rnnHmzYsAFdS1eje/lafqNgmBNCJBJGsWDYx9o9O1sw2hs22sY0YbGcLG3Yjmlm7SgKaQyNmJ6hUJiHiLAbCga+zLsu2S4q5rVQqBJAdXGscbN17vQJ9J4+iaHBAT7lv7CrmwMqs625tY3bFzZjunkbw0Zb2NOHZLyzPslwJPmyPaBUD7MecZCOWDjw9A99FzCVihll44nNmrDfEo9fZ31h9qFhkwPdbEzyPg2xmz15Kt2BvSIe/t8P4F/9mz9EhK0KLwd+xRAA1/S8qa0FYZ7ewApiR32m6y0NnPZ5xaEaijA9C4UiP59Yw02FfmlxmAKvctoiXvrB17DhljvQ1NFt3yA65Qo3KqYefjDKyq71avpaXpOorPpVgGC0yr47w2BUv/6CX6wzGSNuk8EBgwTrxeEkFMLhfa/h4N5XuYfp8ccf5+9sS5WtW7fyC+27Pvhb3NPHTuJsCpxf0DlkgJ+0WBn8As8gg5/kDQBgkMT+tGI/WVlsNT9fte992S5PjYsEvrWG3pJT1DC0NWJ4jZhbKyaXQRQLSWB9YYcmzM7yz6yfWFgDA192YWZ9wUMeeL+xC4zzj/Uh+8z6Y2aG3dAUef9Z4GhBJOtHVo/uxfqUlW8vSAsZsBkKR3h9FtiK72zBWz6X5bAgwi8vQ1nYZpXLx5jlXSsWMZUexmj/GZw8eRIPPfSQbdr27dvB/jW0dqKhbSFvG4u7nJ6Z5qDJFumxmwF+YzCdwSzT2IyBDhWBbD7LwX42nzO0Koa4rSyEg91wxJNJ7i1nkM+0mpnOcM0XLVuBf/+Zz7kCD0Q4E4HG+sFqvaFegBoAaK06Dr++F0cO7MHZUycxPHgBMzPTPK6b/TDZOGKe90QiiXA4ik//2Rd5TLbJbBJ42ecVqW5h9Kow5bE/p1OOxhML4MBT5cEom8E5c/wQBvrOYbi/n0P2dGYSDU0tmJpIIxqJYSY7zVfFsxvEZKoBkxNpJFONfOansbkFk+PjfJeRhuZWfnPR0NzMH2/JZjtGB/ux7V3v5+ltaPJoWzlxo5YO4sp6aTW9mYDFEGfGxzCRHsH05AQyk+M8HIWNwVl2gzs9bfzG87P8lF5gv0/28+H/M35/7GX8FsOIJRvMcBbjRjGWSPKxW+Tn9QKKswW+xyqrk7/CYSQbmpGZGOPQHopEkGxuxWw2y+Gc/UukGo2bPBbClGqwz/lsSydmI7vcTI4NITs1gSWbrsaCRcu1YGv9rtnvjP0LhaPc5lAowt9Zk8zLjT1GCUbLu0xS6mAKEIwG08kzVf+44UUTXwwevvrlL7F7XLDFQuwk1tjUxC/AyWQDXyDBTkvsAj0zOYZiIc9BdMeOHXYx1rYqjW2d3NvAIIKdANlWK2yKOpVKgT3vln3mF+pEkp8k48kEMlMZfoFjXj1+Ic/m+Gp+9mIevaXLV+Addzgr6Hwl8JhqdeeRL+0enFqVF1ms07P8KvuzltktGPLavMDl7xS+cP6UU/FPHo5Sr/I0JdjN9CpPW4X5Ze+ZU/jBP33D0zPKLpTTuQK/cWI7ObS2tfFxx8YqW7VuhFawC2qKwyePB2beTrbVWdT0IoeMd37BZXDN/cNhw5dm3nBZXlP2m2IhGo5Hx/T2eE1JWt/bx70WrLgfx2jwily+BTlso/0Xf/Uk32CfbRnFtnZj20Yx6LK9xAD3IhphKVkObMYNpeUJdTxVuqlg66jovbK/E9qreiTZZwnCzM+sLWd2P+e5zyiDm8vf87vcuLGRYex96Vf8BqN7yQosWrHaaF9jkwI6RX4zxm7iZvMFrhfrV/bYSjYzwM99hQIHz8wUg71JPjOUz2YRjsewsHsJko1NBvyIHkdxqyjrvCRMu7tjQ40FRI4XUJjuNvNlJsYxNtCHUfPfzNQkrzfZ1MJBuaG1HTEWvx5LcoiMJVP8Rh8M1iJsdoONTYPYWEv5u+kwYDeERXaTWnDGC0/Dx3AY4ZCxxR+bHeAQKI0Ds+1sBxZ+c2bE+TMgzeezmGXjx4RjfmOcnbZvWo2+DyHMfkuxBCLROHLTk1zv2Zlp5LJM62nkZ2b4e24mw2+Mks0LMDM1btps3EDz003YmIngcBqOYMfX/nstT5NUFilgjLOidWtEglSkwMgU84BZWY2T0tFjR/D8s0/jox/7uH2M3zWbIGElZ/ke/sbXcOb0Kdcef/fddx/a2trwO793L7q7jVg8ya8RwFPjXNaMqkdGRvHaKy/j1Zd34vf/7b93NucXL9qCf0m/cMJsq+KtsS4convK5XmSvlCt83Ave39tGOIJy05lmmqlvi4FtqoOTmZNG6yDQqGlyre1k/5wD0dfj67Uh6WHsm2Tj3FifQxAhocGued+oK8XfScP8rGuixm9/rZ3Y/GylWhoYJ4toR+UurQLe3RT0CI0CvqKxVlwJv1OLmJZh/bvwejwEK687kbu9TQgSh4fhodJ+M6eFlVgWLdFkrJnpx4shdaLZStTyKo3kQHIkZ99WztoOi67Gh3rr+YQ2nf6ODZcsw2LV66zz0cSAPLqzcVBwm/TAkLZw2amk6DSgUe/tHadVl2u6WXjJkIHsgw2R/rOGv/OnzG8sm0daF7Yg6aOHv7OTto2xArlGBjp9JVch649QlpRG2s8C+PD7k8Fsq3zmzG+nToKs3nMTKSRnRpHdjKNmck08jMZTKdHkJsaRyTRwG9aY6kmxJvaODSH4wyqEzwOOBxL8nf2mf3NQdM+14ptZEBteG8ZWLMZvn/+d28tfYKhFKRAmQoQjJYpmJqcwSh7iUDKYHPPnl148uc/xdtufweu2HoVjxHj6RQoZWlefflFPuVpPf2ETdHfcccdPP2n/+g/a4FLhQkdFrETXF/feRw/dhSHDh7kRm7cuAk3bLvJboaarxSASicssxQRBLQ85QWuPvDlC3DlAqimnlKAqLZJ7ncPLFRhq8TYKhcIpeLmCHYnxscxNDTAV48PDw9h8EIf3waMXZzbOxbyrY2aW5r5IySPvf4aDxMQX1uuvRnsnyG5Q8glwVGAF6s8LWAKYGWnk7QoXWdNbBMA+VdP/pT/rm+6zVwkYrdFjYl0g5qlkhrnJ8GYCqeCN5BXJdhiaWb9riUgU2DK+lmwvp0eG8KFg69gavA8CvksUh2L0NSzAs3L1uOJ738Tay+/Cqs2XynX5UithzQPcOORwzaQWdCowJwJ85b94rsIZc73Mvg5oFhEevgChs6cwNC5k9xbn2pdgNbupWjtWYZEg7mZv6VpIPh0bLX0l9tk9rtdltkb2s/ex5hHdGZ8DDMTo5ieGEV2Ygx55k0eHeAe0kRzGyKJFGINLYg1NCPW2IJospH/HY7GJRiXxrxyPtSdC+XrgJOC/fXP915f5VWTspMCbgUIRqscFcPMM2qVweOGjBe7OLFYwOeffxY7d7yAq66+FuvWr8fqNcajCC0sHRsbxd996a+0Vlx97Q142zve5fiWdBddMyc/+RaL6OvtxZmzp3Ghvx+HDx/C4sVLsGTpMqxdux49i5xtUnQXfOk75YN8OrIC/GWzXSe1MiG0MgB1zqy6+kULSwGoeGF3d4h1edd0VSVg6GmMj/9TuPiXGrZBQHdw8AIusP01BwbR39+LgQv9aG1bwPea7VjYiY6FXWjn751KrLFRO4sd7O89DRZjx+IAuxYv5ztB+HpDhQthtV5Ttb+84LfW6URIfvWlX3Ettl5nALjVPF+vqP27UKDFzO3rbVQ8rt4gamCuP+T6e2/ZjcZj3/w7bP/APWhqW+ANopqpcJc3VIU9IUzADaaO7UEg1AZ3AfbSQ/3oP3EEF04dQbKplcNn+5LlaGrvtiHNKFuAYCG/G4JVgHa8rxIcW95OpSyDy/V5splJTKeHMTM+iunxUeSmp5AZucCn3uPN7Yg1NCHW2MphM9HYimiqGZFkgxDHLZRtDk4RxnXniiDnQq9zzOOfuKHU6Sfw8dRV/y5w2lomzLz2v2pZHJVVAwUIRqsUkcEoe4kxdnKMoOEL3bt3Dw7s34uJdBodCxdixcpVWLJkCQfEM6dP4oVfPYOzp0/xstjWKldftw0MRhPJpGuimp1oxsbG+MrdkZERnO89h4mJce5dXb16DTo6FmL5ipU8NjSRcJ4go16UxYundCWValQwVDmL+QOoQx5ecDTXACqwj2dPe0/DG7m1NpbSQalNBBj9xcFDiRoBKIvhO3PmJM6fPYPec2fQf74X3T2LeQxnV88idHR0orOrmy8S8nv5Qa5fGIna/iBeU0l9nyl3v3TqmK8ElNVQEGu89J8/Bwajd7zvbicu0RxwHDxMIcUpdUsHDjtK7KkKj0ZaoRwl7tMpy7lREuFUmuIVQcj6fYtT6gIcsmpZvPkvvvuPePdH7pWnu9VyXNPy8hS5A3UiiOm9oVYYg9cUu/i9CHZWm3PTGfQeO4Dew/sRTab4E4gWLl+LeIMR0ypDr2qn+ZktDFVA2e4HHaxK8CmWKcKr0YcsdjQzNoCpkSHMTIwhM9yHTHoEkXgSsVQj4o1tiDW3IdG0ALHGZkSTzG7HLjlEQKlLHHfcMSHfjJS6zHnHottzeXYRP/+320oVF/h46pr7AqetZcLMKw/WsjgqqwYKEIxWKeLwpLGi0nqVglLmLT158jgH0LNnzqK/7zxWrlzFV9i2tragpaWNT/mzoHEetJ6f5auQZ2ayYF7UbC6HvvO9WLR4Cd87s6dnERa0t3OQ6O7pllqjgywdPMrApsCnhuaCAqiUVch0SQCoL6U6F3fX8AjaDhHoPTmzOgD1A0Nm9+jIMI4dPYQTx44gPTaGBe0dWLpsBXoWL+Egyha5+fZFJW3QhFCI47AmMKj0na9HVEhba1h+/NFHcPUNt6Czq0eCUWnDdQESLDC2RpcESHygCcAmeO3sJmim522gtetR4hptIJahVortVECU9ddj3/o73PHhj5nxk0YhkmdP9CqK+dVpbjWuU/QQSnGdOoiVp+69YJVtNXZq38sYvdCLjqWr0bN2M199LsOrJh6Vg6cIe2YaETo9ANSGbKF9jofUsHs6PYrJ4X5MDvVhins6Z3jcZrJlIZILOhFrbDOm2uNJw1bJSyu23bLR+U4OVRDaYMOx8528apRtGee+6EnrHqSwM+HaZuZ78t87YV5VXj6Ruu5T1RZRUf7Mzr+sKB9lmjsFCEar1HZoUp6m10Ep/06YwjfSOHecbEo9PT7GgYFtB8W2gjEIt2ivQmaLQdiK/ObmFrQtYMDqnFG8vG6lwVO+qgcuR7jwOfJVALFWZs8YUI19Yn8pDSwFVhYM6Lu8NgAqgoNXPVo7A0JuKQBll6t9e17Dof37MDk5gcs2Xc4BdMnS5SZQ+A/4IOVrS9BBqNB9FYGgZpypY3ROQVQXn2raNDI8gOd/+XPcedeHK/eKWqBj9kyQ6Xmrf7ym50Vvq5PWGdu2l0+40VA9ty/94jEsX78RXctWuqbmxTI5kKlexBoAplGmOn2u96weeukpDJ87jeWXX4vuNZskYBanqh149PLKsq3VhGOKd1EPirJ3km2jlO4/g8nBPoz3nwbbiaCxaxkSTW1ItnUi0brQ3LpNqUfxfnqDqQyYdroikJ+eQj4zbrzPTGFpJI2VyWm0xQqYzIcwmg1hXzqJDGIIx5OIxBoQZVv9JZv4lL91ORGvK9I6CAFgn/6kE5JS5eUTqRs+XW0RFeXPvPiFivJRprlTgGC0Sm2HJo1HZLogVLn79Noqx/29AaHqy2sq2Q9s5GOaT5rMnkCnBcZ6B1CDLErBoYzEfiir7Tozg389pUDa60ZBbBRULz4AACAASURBVMH+Pbvw7C9/js1XXMUhtKvL2oWhcgD1sNoeojq7KwVGqTeqgFv1hsAPhNUblKDQfOjAbv4s+2233O7tFTXFcQOi4OGygE5Y7GPYFGx63tLawk0LuiwNpKlds7E2UGqm/Yf7z+PAK8/jpl+7KziI+nk/NVPeBkQpMa0B4jVFuGRbQz378Jex5rpb0bNmszeElvTUmhAqeWxFELaA03jnwGq31/hu4Ng+jJ45zBdHJVra0di9DA3tPYjE2SM42ZZPZnv5PsJyfKdalvXZrsfsYBE8Z8YGMT1yAew9NzGE3NQEn0mLNS/knuwru2LYssC9N3G2EMajvU2YYfsMFwvIT4wiPz3BQTQSb0CsZSHizQsQb+1EoqXDfPCGce4wwNTwqj77qTIfxOJz+kndeH+VV+DKsmdecB7WUVkJlKvWCrwpYXTnroP46H3GYNyycTW+9MAnsaDVWFWpe4mPGXv37dvwJ5/+GFJJIxbTgFHx5bOro256pESPlgKlksBpX5ndFQUHWbkQKV85QKvxNDlWacDWOqjUUQrczGuuj7KeiCXdBwSqx0df45BHKTaoeJtp59RqLH/59BM/4xe+m265je/h6We7X7meNge1V6g4KNi56gwaH2pqr7ZVhOGSICr0Xzlp9+16GRMTaVx/8228Ax0oFCDSBA/5uG4aXZmeD7B6XusBVfKJIGr9JsRpfV0s676dv+J7Gq+74lrD6+kTI+ry4HmCZ+npdnXBk25K3gDtIjLjaex+4ke45t2/yff61E7HSxDqEQJgpjEeNuGeJteBp/FQCiOudOTMEZx95Sm0r9mC5p4VSC3ocmBVA52G51WoS/gswqdVh/igCbaKfvToq5gePMf3JE20L0GErZ5vbEe0oYXve2rl+7XCc4hhlu9bzf6xx/Sy3VnYVoEHsRwHsUL2hBZnkZsYwezUGLLpQeTSAyhkpxFrXoBkxxL+j20PxV4MRp//zK0lrlrBD6du/uPgiWuYMvPcn9ewNCqqFgq86WD02Kle/PHnv4I//+zHsWbFYnz/sWew45UDEmCKworH2fef+8JX0dPVjj+8926ebFCAUY+9yIXi9Cl037phwucbf97RjxNPuPDB2zLB07pKe4ORcaQUcJfgPbt9Xt5jI0GwumoBoKW8rbUGReYRZXHEb3un94MMygFbR1BROd9hpEC8RKSu/q0UFo1e9C5bLLdUWhEQrZaJZatjSbX53OmT2PPKi7jjAx+yR5cUK2r/vsxxZwO26hWVV7wb9ZhpTMP0G7eb1tpT/cYfBkCarReg3gI5q906EGVpdj75GLqXrcLStRtcq/FtYBQ9fTaABl2Z7h0b6pom9yh7zxM/wpINW9FmPlVImo73g1ARBoU2GJ5LGRI5oArfq8DKpuP7D+zEylvebz5+1z3N74Zcywurwq8CqIot+elJ9O14FC1rrkZi4XJj2yYLnpX3luIEbg+7H9XLnurHgPRCoQXPFLbwEWI8dM2JIRX/Zp7T7GgfcmMDmB44yetMdbOtvjbjxT82bsBq8Urd8p9rUUzZZWSe/a9l56EMc6vAmw5GGVyePNNnw6QKp6LcI2Pj+MT9X8Sn7r0b123dwA8xr+pffvkR25s6OKF/VGPJbitFriWoyPewJ2g6l13RPqksn4KDgJq68ljWwSnBVVYloOvrabVxoyTsBmmXH8zpYEZqd8n+EFhOq4O3OOzINx/6Mt7zgbv5tkzafg1apilZpbBcjmfRxCXH3BpOy5dbdrnprXb+8OGvYdutb0fXoiUmCNbAK+o3PS8ArgXHBnyqwKub5rcQ1aBV7qEz1bdgjn17eM8rmMlksOl6NhXrXrFtAJp7MVCpLZIkr6AKmb4AKXtVWTnHXv0V2Mr5ddve7gCjbZfszXWFBMxmER/rRTg3yXXIxxow2bpCiOWUgVEEStFTOnr2KIaO7UXn5huRamMeUQcoVQ+o6PWUANUGSX8YZdPxw/ueQeOKzYi39iCcaHLBswXTrZjAu+J7+MMoHnzQWTHO9q7+wAc+gP7ZFjyZ3WRDqA5Gre+cxwED+UwaM0OnMd13DKce/Z8lL29BE6Te+idBk9Y0Xebpz9W0PCqsegXedDDKptzZy/Js6oDTklV3TIXXgUphtJy+E+jAGxTcR2oKmQFAxWiSD3DKh20FgsAgz1oyYbDpdw8zXD0SBEB9JuIlOSoFPBcoaWjzR997GDfceAu6Fy8puw1zEUYQCEqVTgiURxGx3DyutpYA4FKQOjtbwHf+8W9x1Q03Y93Gy+U9PbXAp0KjDFoi/BnjXQBGNb5TAVNpQZNw8yNO1RsAK3hdPaD0F9/7OtZs2ooVGy73nqb3jPEssSpeXMHu61X1n1o/8doLGDx7nD8xacHS1WjtWoJwhO0OoeZzFv2EspNoPvpLhLPGIz+t12y8EQOrb0chHDegUusRNX7pIlhODJzDhYOvITM2iMaupUi1dyPZ1oV4S4cE7CqA2p/VKXvFIyp6a3OZCYyf2o/MwBk+LmKNCxBt6kCkgU3VtyGSYrsHGG29K2zsfcseMb1r1y4+Pc9AlE3X759dhgOFZfy4DKL8G9dCJnVhE/v88n+soWf0tj8r50pYs7SZX/7HmpVFBdVGgTcljK5c1oO77jTiXvxglB1X4VWF0QvjFXpGy0CxIF5EDaMEHyGai7I7s2yFJ1x5HCjJkUKFltfHvwGCp0eX0AUuweQIBqAlEbSs2NNSdZYCxplsFt/46t/gfXfdg4VdXdqGVltHkP5T+y0I/NlMKt1wuTtPV79unJQCVF19xnfuOz72zdTEGI7sfhF9p4/xZ3o3NLWie9karL3yBsRiCZ7rhaefwPGjr2NhZw9/DGpLWxva2HPpm1t5X1hw4/zt1Ch6JY10RveJUMU/u8DUwwsrTtsLsCd5OY0CnSl9AUotTV984p+Ry2Wxdss1WLiYwYsAecJiK+2KdXHa2ws4A6fx9sJmpzMYOHMcw+dOYbj3FBraFqKpvQvNXYvR0rmY7zUqxpMmT+5AfPgk9xoeOXKE67xu3ToOa5m2FRhber1reyWvuFHR+8m8tBMXzmFisBdTI/2YzWX5IzaTbd1ItixAYkE3Yk3mVlOCV9nlJQ0IpwxMs+khZMeHkRsf4Y8BzY72G2Caasb1S1PY2Kq/Lj1euBaZkHsvYXEVvXUC0W8BFcIr/6mGMHr7fwt2Yq5xqswTf1TjEqm4ahV4U8IoEy2IZ1SE1b2vH7e1Fhc99Y/nnD4IcsUO2GMVFRUIKi0DAsKlffXWG16RnZb/NFDm8qCzhLmuRpSCNDGDj9/VIgip/CDNC1K/b71mAbl8Hj/+/j8h1dCIm27ZjpZWY8GBbL/5ycewIHWValdJSDQ7yauc+cwv9geDz6cf/SYHUvXV0bMM2971686Ud7GIMyeO4UJ/HwYvnMf0dAYXzveio6sH8UQCLS0L0NregdYF7ViwYCEampvtbZEsFNaBqTX6bahSQFKK/RTjUiuAUrWsC71ncHj3y3wP5Otuf7dnDKlpUhUr2nVT67LX2G9BkwXx40MDGBs4j7GBXkwMDyASi+Pyd/w69wCyNA2vfQ+h2Ryy2Sxf5Mde1t/5VBtG1r1TCUEQPKFieIKyEEmNdWUPmGDe0swI+9ePqeF+sEd7Ni9dh4WXXWvEmLoWMhnQrYdfOabV0Ns9tZ+bTPNHhi4q9OPGtnHXmE1ni/iXcwnkEOfbToVjCYQicYSiMURSLfw59lbcs9dlivXDa597W8CrWOlkqXf899KJ5iBF5uf/QSo1M53l60H++Ykd/Ps//czHbIeVV/XMMXXvZ/4S5/uHsKi7A1/+i0/xdSj0qkyBNx2MlhMzqpOUxYw+++IeG2b70gKMltsHthekwoxCtlKA4Lu8ujSjBDJQBxGlMzqW+7ZBc7Bkm5XKg4CfnKUkfhrJBUPKsSmoPSWtEMbR4df3Y/drO/kuths2b8HS5SvRtqBdapZko4/BDKhy+Rx//vzsbB75XJ6/s211+MWwwC6IRXNj9CK/6IfDYXP6j6+O4Bde9p0aY2G1ieWZLRSMPXPYU2r4Rdb5x/LO5vPG5uSsPqtuNt3L/mZHxDxmGnYkHApjtjDrXGAtb2CB2cpWH886+/WKCznCYZ43PdiH8ycOcE8am/JkTzjbsGEDn/JkrytvuROt7V0c1qLRGF+FbgwHEyGLwHia7R88ivToCNJjI3w7KKYre2dg2tHZg0QygVRjE1INzUg1NCAajyPOnjmeSCIai/K+5MBlQog15MQFRWIcqPU7tOJCdcCqTt+ri6/ENpw5dhAHXn0R7/j135ZW2OvssOuS4kD9FzexJxNNpkeRmZhAZjLNY1Yzk+OYzeUwPTWBXHYGhdlZ/h6LJzEznUE81cDHRSzJdEoh1bwAjQs60NzRDYQjMDbC38n7fvNt7+PjMLnz276no+GtH3LtA+ree1SAZGVKX962qcjHZ3ZqEtnMBPecDp86gLVvuwehSMS+EXFP2Qtgrm6Cr1mhz/cVZf+y05idnuRe2fcs6EM8DBw8eNCept++fTuSySSePzqAXUd7UcxngUgUhdk8ioVZNC3ZiM7r32vrY3vozT/Ez7v+y+2lT+sBU6Te9f8FTFnbZJmf/r9SgeIMaKnZUpbRb61JbS1985T2poPRUqvpGaw+8uOntNs96Qbg+TEVRr2v7oFAJVAiiX9qNlpLx2SWqko2PmBTXEAn1lJWGRrzgoKXvmUlMVBlV1cx1dqvsK6vVmLlO557Fi+98CzOnzvLtyBqbmlBYbZgw2KxWAB7Glg8nsDU5CQKxQIHTw5w+Ry/WCbiSSRTKSSSKX4ha2hs4uUwmOLxZnx/3RDiyTiy09M2FDK4MKaBDahknkEGtLpXKBTmTxqzF0uwUsMsds0oO5lKIjuTE1b+Mtg1lgJzyLVi38x3cJA0QDgRi4N5jJ2FGMaqQfY5EgnzY7YnyARadpxDbqGAUCGHKPJ8exwGo9br93//93n83eDYFKamZ8BiR8+cPMY9cflcFgs6Ojk8NTQ2ItXQhPWbLsdlG7ZwMM7P5vmPN5ubwXg6zR90kZmcxNTUBH/gRT6b5Q+9YB67aDSKdHqMt7OppRX5XA7hSJR7v5me0XiMM/6Czi7c8cEPC1PSQtyjALGsT63p5YO7X8Ng3xkwvRgEtyzoQKHIwJ09/S3M9YswwGZAHE/wun/12Pfwno/+37IHVI3RFABKXshjnLMOvfI8JkaHMTU5jmwmg/GRIX4DwvqkgT19LhxBorEZbFywetkxZkuxGOLjktmbzUzxv3Mzhl4MSidGh5CbyWBqdAjJ5ja0LVmFnnVbEGtoRp6PTWBz/ijYiGH9+dRTT/HuZJDGVprniyG8mOngUJdn+k9PoZDL8rpyM1McKDPM1oJ1vg/xmyOmUTEURjgS4baHwmxT+Tgf/6FYytjDM9mE2ZkphJONSLUbYTSsPfzGKmTcZDGtQsUQCgVj3+pCPmv0Z26GP6t+Jj2AYi7Lx1CoWEAhlzN0AdsjNGXsdR2Joq25BR+5dR2v44EHHuBjir2s1fQnhmbw08Npo5/5rZz5K45E2MBHKN6IZLvp3QsZdlq/H/67BnDya7V7nnzqji+WuqjMyfHM45+0y2Xw+dn/9hV8+g/usT2banieaITlRf2N9263FzbPiZFvskLfdDDK+tdvn1EVRkVXvG5P0rMj+ousexxVAWq6QVkB5VSQpaY/B239VRtVJjCqLfKov2qzlHoqgeJALfPwyn7/n76BY0cO2XuOTk9lEGMXyUIB+dkc4vwRhEUOo8yLmEywC3+BewwZzLFjDJyyMzOYmpzggDYyPMRX7DOQW9CxkD+6tq29gz8VjIGscZV1P0uQQRWbutRJz+oSj4neP5Y+HovzR+C6PftFIBzi0GfXqyxyi0QjTtmSTgwiosjnzbg6zjvGhZ29rIvvNNvWJj3oCaNNncsRTjRi5/NPY9HSFYhEopiaSHMAmJwYR55BfaGIhV3dWLF2g+nhLCISi3G7YrE4f2fwx9IyPOCeXHbRD7P9M9mmQyHuEczNsu8LPI6TwWluhoFJgWvQ0NSMm9/5PrfXUogLlffxLOJfvvX3mBwf4/oxT2NL+0IsWrmWQ2AxBORmZlAMhTCVTvN3Zsu6q2/Cgu4l9spxa0qZWWn/bdyHOGlsb7eR5umv/xXvy2gyiUgihUSqCaFoFEXzxobVxbYRYuMtHI0xMuYAzqeUwxH+zrQJRaL8M9tfk0EYS8PeI9EExgfOYeDYXjR3r8D53c/yx3IyL/hv37qJ9y9bZc683ezF4kXvu+8+zBaK+NpzR4FIDCHzX5jBZDSBUCyOmfQgxo68xoiRAyeDReaBLWSzxrjJZzlIcp2z0xwyw4kWAxKjCcymL6CQnbDhjrU3xOA/ZNxQWXDI/2ZtYl9EGNTOAmyMZ8e5FuA4bYwLdtPGkZKnZ7+DEFYuX4qP/uZdrtX0zKN/zz334OTps3joWz+wBro5e8HGG6urAMQaEGkxHpbBfwvm/4zFTvw51Zg59nTNrgvJ2/5Lzcoqp6DpXzr16pxMfls+Wp5TMXRP3X+8HFsorTnWiqWCREgpXwXOjMxUrlAFxFNBlsrtqzKnr60XpSFGJXNeVYkKqqnflbfMwgIBrdjPSvlqdZMTExgavMDBtPfsGfSdP8fBrqt7EZYuX4FFi5ehvWOhqbuZW4ll5t/ah5waVM+8+Nlux0Us6+zRA9jz/M88p+lvvPM3cebMaQz29+HWd7CYSnlhkLQYyWwzh21xAZDmc6nFRdb0u1lMeeWpi6HMqd/dLzzN+2TLjW+1ggxsT6vRLHXBlNd3zjSzBVnWDYbRduN/xnceacWN9j22fXLaLocAOHUWcXjHLxFNJLHyyht5fdY0/d/8zd+gr6+Pj1Hm4Wae7kKsASOb3mt7fV0r4F2LixzgtuI/xTxsen46PYR032mM951EKBpHc88qNC9djwhfWFXkNwLsHwPhIvu7mOezF+wGhU23M49vcTaHQp59nuGeWuYRnc1No5Bn71kj/fQ4P8YANz85it+//TLetocffphP1bNZDRZawoD0cG4hdmWXuB8nzVfSG7Bp/DP/dpDU+E0Xgf1//o4qrwxO9vjW365ZWeUUlN31j3ZyBqNf+OuH8fk/+rj98Bs/GFXTW55Scf/xcmyhtASjNRkDFxtGLwpc1UQZpxBPfioTrGpj1kUCVB/Asw7NRfPnSms/qJ2YGEfvmdO40H8eJ44d49PMq9asw+Jly7Fy5VokkklptboMmaXBVAuvQaC0Bml++b2v8jhG9dW1dA2u2v4eHNy3C4P9/bj5be8SQCvASnd7gZHxi3YWLwlwZVbqBkFzDAdYpCTCmTU2LAgUYZHZ8Ivvfh3XbL8DLR2dtk3W+UYCaLFeV2yoAttCWifuUIZRGU6V2NiS4CpAsSbtgWcfR/fqjViweAViR55BZPQcj/1lU/XsxaavV65ciWzrEkyseouwX6i5oEi3WEjZ4snqH9dTlMy87PvM2BAmLpzFyPF9iLe0o23FZqQ6l0hAbi1KCr71k3shE1Nv6/RuLAqN8PYxDzDz/lqvR/f0YyCbQDjVzFfes4VLkWQzYs3t3CNsjQn7HKXcIbKPe//07bU5FQNIve9valZWOQVlHv19CUbFB+GwA+XAKEuv7j9eji2UlmC0JmOAYDSYjPPvJS1lp+ChK5V0Lo4HJNOAyebCQs8ybZvMPyYmDTg9fvQIzp4+habmZqxcsw6r1qzHwk4zZk5Y5GNf+CzyERYBWaDiXByNv0Q4Lgm3ApSWC7bZ7DQO7Hwa6eEBjI8MoL17Kf+3YsNVfKERW5T09E9/gvf8xkdMuwxAsJriBX6WZ9Bqiw5GnTI8yhPCEizvnJjHhk/XwidHQafeIs6dOIreU8dxzVvf6V45r3pzTSGt/OK7uo2UXYfHM+xlL6flPdWvpteltfXWLJqaHB3E0Z3PYMvb70Io3Y/EoSe143j8sncil1ogrGhXFhKZXlwzHFrYAkp5cpMKr8pnNsE+fv4Uhk/s5wu02tdeicbu5fbCKb9HhrpX0DswamteLCJSyGFL7iC6C4N2W3OIYFd4A84X2pDPjCGfGUd+iv1LozA9iez4II89jbV2Itq8EPGWTkQb2UM0nCeE8VFTBHb/SQ0XMH3gby/qucqqLPPDf2PXW27MqC49g9Hv/Pgpzyc5zksj66zSN2XMaC37iGA0uJolQapkguB1zU3KeQbWuWlUzUr1gsLz58/h5LEjON97DmMjI1iz/jKsXr8BixYtlcBSyq9O46teznk8rgLtE4/9AKvXbcLKtZeZ088yPFro7ExRO6ClBU7zqm9Naxu6qHk0n21NFCD2g1HTAGvq//t/+yA++PH7NDAqhyA43kwZGo3v3SBpNEn3vQ46hboEwFTB3R9yzdRFYOePv4FNt76b7/mJyWHE+g8jNGNsfF+INyLTsxmFRKMU62rcLLgf8Sm1wdpeSbNNk6d3U4DT6fQILhzYwaF04cbrkWjrkrd8skIZvOqx9iwVbwyULZ8WzI7wfUWn4OwtKkbmib+53OQosmMDyKUH+Tt76hKH0hYDTmMtnTyGtqZbO9319zU7/5RTUOb7vycl91tNb8WI3v3e7fZ2Tyx934VhDp/sxbaF2nbNppLbQZVj45stLcFolT0+HzBqXcCqNH3esgdizkCJ5q0JASsWG1Hq+a8Bi7zEk+liO0V4GxsbwbHDh3Di+FGMjgxj4+YrsHrdZejs6nG8nSU8mUGhVecFnYu8I0OD+OXjj+KDv/kx36l6B0bdcaOqN3FO40ZFYFRg9PnHf4SVG7agZ8Uq40ZB7AufuFEnPtYNnZ7gqsSNSt5iFVxFOxUPqK2VGPogxKOe2L0D8WQjetZvcTb7F8rg24aZC6/Yu/RZBE1POFS8qCXSyXuJApOD5zF8dDdfKNW15S0IhdmCLvX59cKUvGSveePj2nfUgXHRc2ydPvy+s/udLWBMD3AwNSB1gMe+nv7JX9XsLNTw61+tWVnlFDT1XQMirZffPqM6GFXT/96H77S3eyzHDkrrKEAwWuVoIBitTMCKWLOiTJXZd8nl0rDsfOOtWr89LezjtRS9g+PjaRw/fBj79+3mCzk2brkSGzddgUTK9OL4QWkVwOoHpOXCqgXfzz35M/441jWXbba9o6Ie4r6dlt/Ugi/7swb8nDICxKFK8Cg+MUnxamoXJBnlH9v7GjKZKWy67mbPWFYRUvULmypbxCTBurQTgPFrFBc8acFVbL8Ao2cP7sL0xDhWXXOLuXhK/8hQ156i4hS7598CyHoBpAinPmWOnj6Evj2/QuemG9C6YpM7ntRVjuhBFoFaBVST5MWwDuFOTR7zVl7nDCiC62xmHK/+mbMfabXnyaa7H6q2iIryTzzy0YryUaa5U4BgtEpt5wtGndNLlQ24RLLXlDNrWtgcCaSQXC3BsmRZJRPIbXYn9yrABCYJqkyQUGJEVa/l0MAAXt+/Fwf27sKK1WuxYfMVWLZ8pbRS3B7zJmgYhOLsluB453QXVL0dFuQYRcn5XJ5VHwBme4V+/1tfxW/+63/nP1Vvl6GfZtfCp2aa3Q23gnfO7D7PhU8C2IlgyUo4f/okju17DTf92gf940ZrvIjJtbipnBX1SmiACq4XTh7G8PkzWL/tdgfwbLBzFkwx7e2YUNH7qPnbidEUvaJyH9gxngKAavMpgHrhwIuY6D+D7itvRaLV3JnCnqoXPaR6b6lUhxW/rIFPO/xDOF/qv5N/Fy9+9q01Oyk23/O1mpVVTkHjD/9OOckp7UVQgGC0SpEJRqsUsMzslwRnlmuEyW5lMqCkjDZvgALlJAEymLXqnkvt1VVDA/3o6Ow22FDxinp6Gn0g8viRI9j16kt8z81Nl2/lT5IKCp6i53Uu8+jauvP5Z9DQ0IiNV17jTAcrmkjeP2FxiOHps3ykyiIeu4zy40ZtuNUArRiHatU8MT6GnU/8C976/nvmYBGT0emiR9he4CVMsTuLoRwIcvI4C2rsdKKnV7Oi/sKpIxg9fwZrb3ib5LWWFl+54ln13lMxZjQIWEohBFIdZjsED641BphdbPX9+V1Po6FjETo3bVPibR0vqBPe4fbQGmNU1su9IEm5AdNCq5zmhf9wa5lnbe/krR/+es3KKqegsW8bCw7pdekoQDBaZV9UBaP8bFGdAVVmr65yyl1TBcoBTidtacAsByxZg4LYMZ4exTM/ewy9Z0/ZGjAg3Xbr7XwDeBesecGnD5Qyb+krO3egt/csrrvhZhtKxfhEa8GML3gGqdv8LXp5R7WxsAp4T46n8eh3voEP/e4fONPBpjo2dAlTyep+o7WIG5ViN5UV8GIcqrQoSmg7m6J/4jtfx50fudcFozbcWKctG/wu3iImVbMg4Hru4G5kJsaw+ppbvWFU8n7q4l5FOBVvCkQIVLeZUvJY4yUglDK9h08eRN/uZ9B1+U1oW8lCQESgF3Q3IVLUwwJ4q9+d32RlgGqNrec+fUvNznttv/WNmpVVTkGj3/y/yklOaS+CAgSjVYpMMFqlgG/i7C7o840L9YbOILAZBDCDelFZfd/9xt9haOAC7z32xCG2sTZ7JRJJ3POxTyCeSDpeMBH0goChCHlFYGJiAq/sfAF9587hPR+8G8mGlPf0fAXlO1PjxmAUL/i+UG22S8zzs598D5uvuAaLWIiB6OkUQgucRUEKxFWw36jqabXstTydovew1KKo7FQaU2PD2P/8k7jyrb+GJHvOuxSH6r/5feWLmIKvvlfDE/xh1LD35O4diCUbsGj9FQgPHkesd5+zmj7RiGzP5ch2sP5SvbZu76huMZYE6TootCFUjaUV2+2GTF6XOW7O73kOk4Pn0L76CrQuv8z+3vsBAgIwC/G39s2b63fiDajq1P2zn3pLzc7a7R/5Vs3KKqeg4a//ZjnJKe1FUIBgtEqR5xtGheth/k8/yAAAIABJREFUlS15c2YfGhzgz91mj5xkTzxJJBMcqNg/9mxx69GQtVJHAj5P+PQAT/ZQFB9DSsFtKW9qKai18veeOYVHv/tNbon1NBu2sfZHP/pRvsH2jW99O7Zcdb0Tham78LkWU5SGwIGBfvzgkW/hIwx2kwkblOzfgAV8AYG0lBdUjGO0gVOadndmNqyydr+8A+wZ3lded6MLRu1pcb9pdykuVQCEQHGjlcNt/94XMHpivzS6Eq0d6LrmbXxzdAfY1YVUtX0Sk+3NE6beZaBW4zKVkAYFKNnRPb/4IVZsvQmthQnETryo/QVNrX4Lcq1LXCEEkrdaGV+uEAMhPlMKuxCm4h24F+FPjrW2Y32VKfzs5DgGD7/CV9+3Ll2H5sWrEWtqc0JjBI+raLe43ZYI0+rvRh7v3nD69CfZ4rbavDp+59u1KajMUoa+9uEyc1DyuVaAYLRKhc+OzFQ3016jefYaFVOlGvWRfe+uV3HyxDH+b+FCYxP2WDyGxsYmjI2NYWZ6mj9FiD2XPZ5I8GevN7e08OeyNzQ0oMn8zN5ZnkgkUrLhfhBqHNMsE/IhTz/w9INOL+D085yqHtOD+3fjlz/9CX/UIHvkoPW64447+BNtrr3xFly77RZhmyMv0FRiIBWPKL+gm1dMC4Gy2Ry+/bWv4EMf+deIx+PytKWSll1c2TPOszNZ5LJZhCIhRMJRxBIJ43GHirfSAgUbPIU4Rl1aV3r25JZv/QNu2v4OdLE9VIWFNRKE2HbKusxH3CjTdez0YfTteoZ3I3tMJntqD3t0JHulOhahZ9uv8b+N/tDEfeq+04Kb6hkUPZHCU6jU6X/lxoXZIHoxDW0V76pp8MTIIF5/7me4+t0fRmzvvyCcGeVPX3rqqae4N3/79u3YunUr8k1dmFx/myamVQVFd5+JcaGiLXb/K55RGwjFGwzrJiQAUOYyUxg5eQBjZ4/yjerZTUOyrROJFvYUpSi/qWaPB2X18KfYh8IIRaMIRWN82yiWJhQ2zlmSl962wd1PYqzpL/+fm0qe74ImWPi7zvkjaJ5apBv8h3tqUQyVUUMFCEarFJNgtEoBL2L26UwGj/7gO1i0eAkWLV6KlavXIBqN+lrAnsU+MZ5GejyNqclJpMdGjc/pNFh57Ak84XAEqYYGpFLsXwrJZAqhMAOfCELhMIdV5mnN8edHswtpEcVCwdzbsMiBibMRe0a1vaLbnKMDEI5EUCzMuuyMxmLcq2u8ZGRMJOLIZrPuPOEIcnkjj7z5dRGJRAKZTMZYfMMvisY7+xyLx3l7C0UGd9PIpEc4uDDPqPViz79mF/ZwNIFUUwtyuRxvf1NTM7eFXfzZZuDRSBTJVIq3NJlsQLFY4Pqw+qKxOK+PtY3pwoTJ5/OYmpzi2vf19eKtb3snVqxaI4OqeSHtO9+LU8ePou/8OYwMD/HnbM9MZ9Da2o6JiTQi0SjG02O8jxKpFO+zZEMjYtGY0UezeYRDEWQyE/xizp4Tzm5M0qOjiMSiyOdzKM4W0dTahubWVh6OEAkZmg5d6MPGLVdjzYbNDry59uZUFuWocZ0iaJm0oEK57rMDOD7eVI9FTGdf+jkm+k5xSHv88ce57dYz29nfq95t7MnoglHRw+ua4jZyyIuMSsOoCEgidOqmo6UQBQH8LQ/f84/8LSbGRrD2uu3IZaexqXCOt+PBBx/kwM1ezJN/3333oRiJY/zKD7oh12NxlO3lVuJALTu1nkn7Zsta6KcuxpLHhh3rad8UyTcCrI6p0SFkhs4jMzqAXGYS+ZkMPxfEGpsxy27AolH+HXuWPfvH9gnNTY7x808k1YhiPm9CagSReJKdbBCOxhFJNHBgDSdSiMRSCCcSiMQb+Pe//MParabv+r1HLuIVwKnqwt/fPS/1UqXeChCMVjk6zo64L/jeRVqRXAErDeDuDJAkYGVOMqnMqitwpvXKMkRTbzWmZKam8PV/+Fu8+/3/CouXLjNMKbNAr5Yw0JrOTHGQY+/sM/NOsNXgxdkCZmcZVBleOvYHm/oPh8McQNnfDNiY94IZZIcFsO9NwOTHrCusICIDXqNM94sBcsECWOEiyMq32sHrNl2lrK5wJMyr4d+Zx3gafszwpIQ53E1hxy9+yD8zgGEeUgYvzMvEgHPrzW9H95KVvH5m32y+gPxsnmvCYI4BHvvHdGK2ZKen+ZY6uZkZXnc2N4NIxAC/cDjKYT4ajaGlrQ2d3YvR3NJqdp/RsFw2hz2vvoRjR17nULls1Vp0dS9G24J2NLa0SAPb6nIGmOzmIjM1aXvCZ2fzfEyEeH1RxOMJ/shP9h6LJzh4sr6ayWT4XpyTk+NgWzqxshhEd3YvwgLrcaeC5hKY2N5eYbpbmba3gMwYorJnzvpO9K4Z6eVzi+pldco0PYjm+Gfpzj7/E2SG+vDQQw/x57Zbr/vvv5/35+K3vB+xlnZhqt7yaOqm7L2A012vNc1te+dUj6gSblGOR5SlPfTCLxBLNSEaSyKaSGDF0C7eNCu0hP1tQXch3oDxzcb+mdYYkRbK+fSR2l9WIXY5QgL7lCO1zTkRiYBtWaLa4emlt42X+8X52vmehZIUZhmg5jmksrE/m8tyj2o+n+WQmpueQn46g9nZLPKZSTCPbH56Evu+W7tN77s//h3t+Wuuv+z/ym/MdRVUfpkKEIyWKZia/PwYu6BqXh6gUyb/6BjEszLfsquEO/EkWkqykvgp2FJKjyD1etZnZp4t/P/snQeYZUWZ9/+dw+2cZ3p6eiKTAzNMAIZhAEFEREAFxLCIIqAuH6ufLuw+a3xWXF1cvtVVMWBYA6IiSJY05AkMM0zOqadzzrn7e6pOqqpTdU6dc0/3EO59npnuvrfqrbfeqlP1u2+9VTWGX/30B/jUzbcpY0D9yvErI2w9pHI5kHFbW6WrSpaXbtbkJ5biJ2vX5udxdO92l3LFFdNw7qWG14GTwUy+Viax7DDpt295Fbu3b8HCZSuxePlqGlbByRc9wOaHTtk8FFoPswMSTmNwcGHVUNJWhmzegjzgCJ9xMow/eCjhrcl+L7FSu9NbMrz1IJJPvPIY9a4Rryj5ckFelseQ/D778k9b/nrm6C5ZiIFhXP74Ix5c2bhEorMFmKbJDO+ruMTPLidr3MwkLoNbtkna+wySupoocJO6kjqSsJIZM2ZgtKASQ3PXm8v0plW5+F2jUWx7S+OSrTSyLxDOZ1ZdnXaWtzn3BYMt287I9hNHZ1YuO1Zw/Vf88sIklMHv6MgQhnq7QDa5PXnnh/ymAO3Py653Vla0M0WQsOn3t0QgJSEiSgskYDROa9Z3Wsuk/JQvBQAPKvCDGVZNFUDwVWEGOFkdhQKjL1+AEQ8d/MpmB1S5GIUE8+2XXniWnv+4YtVaaWvHKz+s/n7ApzSZpECXLA5w3JJUfSiITicP7UH9ycMYHhqkBVRMn4PZC1foQSgzofKoxU76jt6ivt3dnXjy4Qcwc848rFxjxqcy1XTgzDGWPRmzE6+Zh5VvA4clT4QSxlvJVsOQwT93fJmSz+x2Yj4T2s5qEzeEOkDo1oN//rzq3nZkN5r3bKKnIhAvN/lJYkYJrKXnFWHa+iupJZz4QveZqOyOa1IW7+00vaJcTKL3xiceKHmw5vVwgNZpc8Fza5Xb2YiUfc9Kx4DBeRdiLJfcDe/+IiDGVVq25qCNjQ92gaoETk1lWZ0NG/P9wO6LbJ9gwNQBZGbp31TQbnMmETvWsU8GCREa6us2/pnQOdzbjcHebgz3dVG90rNzkRbLw2v/85U4Z00ne+GFt0UmK4ig9uei8+4GKTeRVm2BBIzG2TscGPUnPk9oUXzoBzr2fOmbkJ8IXdoK+X3FsavcPok9PaXCxKtqDnYQFdP4eS1/+dMf4vobPks3vHi2krIN1I3jZyeV3kGgj+M2VztJNJB4IRmuMn6dDDkReENtVRl9T544gtc2/h2XfOAjKCgs5qri2FvweFrQafc3dioWAdgND47J+JhMzq6hvKFqPewauGDY0Ma1jMwMBg6ImM3NdETuM/OPGnOpnn0+SOxg+aqLkFk0hesy0itA2dhXJn6Uja2kRUk2J4nxoFGBqAF3FpgaPzsOvI60lqPIy8sxdMmIYaR8HkZzjY2MnI6svkz9uBCJwBDKjMOCp9Uq3wZ7pnzZ0ryjqymTHUuFWGWnXY1e1d/ejL62JvS3N2KwtwsD7c00zjQ9Ow9p9F8O0s2/U7PzkEJiuc3Xnz61QjVMB35/2ueMcJ/Jfp36kfEFK/F661ggAaNxtkVDl+kZ9QAAeRE8DSihJgQkWoOwumrMgChLxJTpB1tWdmtg9CrTr45eZamgzilfDmUtTU148fmncdW1H1Oq5iXbD3TD6DxhIMpORpLaqtpI5lVV1UtlK78ldmuiZcnRL4+oL0l/cO8u1Bw7jIsuI9dV8i9xcrbLdByWXPAAK996Itj6Wb+zT4sUABXeUA4gTFX5MmVgYiQUvaFOXfVg2F0Pr3CEcezdtgldp45g1hnzaDwzAdGcqjl0M5plR0N3Ro4Alta4Q9KxQKXc+W4KttJTyfZmHda7KnhWmaV897I/411kZBG5TccPoLO5AbPOWs+HGzDtJ8qzoN/uC8wzxt7Zzn/Of5mR2c2wlaz9hfaVhCzIwdSxnRhOQGI/+9ob0d/WhL62BvqT7LzPKipHVmEZYsUVSMvOtR8m2TjBPmt/jhBGq77wcJwzcLjsNT/8YLiMiVwTZoEEjMZpWhtGVXJ8AMEPVF1QIGcuz1qoIMSa9thJmxMklOUFXrpQOhFwx07eov4nTxzDti2v4cqPyA85VsGVUx+1wb3soQVtjNFUslRtFzlAMp0giC46eoh1CJunsf4UDuzZifUXXabwhjIQx3QEByBZpFN4QzlwZWIEJfYRIcMNv0K8pj0WsHjL6xFuSV4oxwJf0/Bse/IwPY76muN4Y+PfMXfpWZiz1PB4sTrYkCWAYhgPpwVgDqyyXkvxFAC9pXkblO0QAB5crb7XVn8SJ3dtxZKLrxaA12kLHRC15JFSuHqwthY2Jzl5zBHXBaEKAGX6oh1Hy74n8dZa8NzdfArdDSfR11KP4YFeZBeWI6uozATQcnPDpN/swz5EzmD15xtXxjlrOtmrb3skMllBBJ34b2OzWuL11rFAAkbjbAtfGNWR7+tVFSZRVmYYYFRSlDBJKsrxg1I/wFNGk9qTtc8gKeVDuVYnjh7F7p3bcdkH5UH3XrqqPJgsdMg0nUgQDeVVdfURqQFdnkaGlUMv63uCaIBl/MP79+Dgvl247EpyZ7rzsmGJCah0AMpZd3W/51Qp6HK43f6sl5Axlg1zFhQyHYb7jKs/73Hk+5hiSd7ymrHlCF5JWy3u2RpHV0c79mx5mZ5wsOL8S+jxVipvrGxZnvUYsoAr37wUDVhSm1jL4kx9nPhUuQe18dh+tJw6hgXrLrUB0gBJNYhyXlquLDOP4HVl0xt6StrTVZ4cQvlYVB0v6zg9naKr7pjxr/4Eciuq6BmxueXVNM6Te7kef/4Nv/H9LxHC6IzbH9WZISNPc/yeyyOXmRAYnwUSMBqf/dBoLdMr5Pg92Fa2Y4cPoK3FuF6RHCFzxoIl5tmLnrjDA4ScMZQ1FEFBHLGkujNv+tUtrHwvuUHhsbmhES+9+CyuCuEZDQOjgfTzi+30g0gPeNcG4oA6GJDkUky5ZM5/n+E7j9jOKnB98enHUD61CmcsXOqeUz2BjNeWlW9hCGsnDljNGonL8rZESRyntTTNgqSOV1btDQ22JO/wuHtJ3qpvX083Du7chsaTx7Fk7XpUVM+yasqd3EFhjfW8sfGXrJfU9kiaG4lc3jxejmrzkQOa0YJr7aFd6Gysw/xzL+FA1FrqNqDU6FZ2OEGA+rExsZYM93si9Lq9wK4YYO7wexk4GzI6a49QD2jHqSPInz4HOaVVyK2oRt5AE4q7j9nPy1BqNmrzF2IsOY0f5j2vIJZPHVHC6KwvPh7nDBwu+9HvXxYuYyLXhFkgAaNxmrax24kZDSvqb3/6LepOneSyZ2Rm4pLLP4SpVdX2+4zzRyjKGezcs7U50PooN6Gy2dlZUFD1JV0FpIFgzyz3R/d8F5/5/D8hLU0YiD02Yb0dQNTTRqcRZFVQacz4LierA7Icqxp/0Os1R0exfLVzBaHTBwToMvuWDgCySM32fRtSeW62VPfdLc+aXdTDsouTRu0NtUCQA1uTdnhodkCKqxOTkcjq6erA/jc2o+nUSSxYdQ6qz1hkQ6gDUYK32OX9U++AZwGMrSddzhZhz0xggSCf3olL9QRXBh7tG5AEsGytPYb2+hrMWmmctuB4UAOCM7NJia8LH+PqOqTeZzmejTl1YNjsgbbNRM/oOAa62tF2dA+F0KzCUuRVnYHc8ulGe46Po6zzIMq7DrpG/NHkNOwtvwDkJ33ZICreseY9WTz46eiW6Wd/6fTA6JG7EzAallcmKl8CRuO0bJMFo9ZEqCvPHGxIDNzzf3/UPlbFuoqPHMacm1+A62/8nFyi0qMlAVMXmKiVFEHCSRkf8HrJDQWkEhJTAeTTTz6KyqrpWLCI96zZ83UAWSoADCQroDdSxxNptZPMzqczP1d2gGV5cuvSM48+iIrK6Vh2lnMklwMuLNKxQGa0BAds1sRuIqUDsyx8ORaUe0OFzTuMwVXL8uwTI4JoEG+oo68bvi1vrByCgea6kzi48w0M9fdjxoIlqJ5n3Q4lQI89fjEbYViAk13BySybixuPDC7iYdsCQjW4ujcfsZDGhwMIHlQBRJtOHELdwV1Y+h5jo5sIkRwA29DNwKW9OcvsT5JleVamzBvKl8H0BjHUgPHuy0IOLFuSw+lPvbERI0MDyJs6EwXVC7lrba3yFtc+iZTxEezYsYP+I0d0kQspyM+avIVozplJQVR12zDPqO7LhaOE0blffkJ3xow03aHvGVfcJl5vHQskYDTOtmjqHpFiKJlMW1qa6bVr9LaLsVHjRh1mBCC7Vje//Dwaamu4q/jIrSfk9hPyIsfXWAd5iyBEr5CkI62hArklh8jMyo4hj948EyeYSslLgnxMukhgzSQ7lSwWJtjmU8EoubrzL/f/Bh/+6CfpvfLsq3+gH5kZWa5eIAM4Uy1pj1HB9mSBoLZNFCCsC7EqG4j5/SDUljMO1NUcp1+8yC1Hrc2NaKg9STcqrXvPZZg2fSa1Nw+Q7n4diTeUKYiDWXG52nrimUrb6W3w5eGDrYMyNpNxG3PlK2NTTVAC0NpQh5T0NKSlZqK7sw1tzQ04tn8X8otKMGPeEroc76Rm4IwdvdiYRuYZFGMrHchyYjSt+jmAZn7GyXG+JvBeStNTadnOC/w0PKIdTbU4uOk5nPWBj/MgygIyA5tWS9nL9J4gKtTZahs7j9Pu9hcFMZSBq6eZ3k7DyneuUx0dGsShZ/6IKWeeb3tBxd38BFYzBjuwqH0zdW585zvfsccqcrj/pZdeis6UPOyNLQWSzALplGTcuGZevwaMjdCriZPTM5GeFRMcqEn4a4Se0Xn/bFw/O9mvA/9x6WQXmSjPxwIJGI2zi7T3GXeGm7cqGtc9Ajhy5BDu+tbX6VWCRcVFNMA8l4DQ+DhiOTl040AsNxcDvV0UWO+//3564LT1uuWWW+hVdRlZMXqf9sjwCEZGR2k5ZKAZGRmlVxZ2d3dhaHAQwyMjIFde9vb2Yu4Z8/FvX/+muWzDIykLDfwEb5XsLAuJ4OGKSbMnXseIwdKw06NDHCKE+oKSBmB1dXbiD7/5OcoqpqCxvg4DA30gm5vyC4vw1W/fzfUCT7BiJlc2k46Ooj25vzmgFyygUT+h9Yw/48gXpa5e9nz52SfQ2txMr04lCpO76qdOn4mlK9Zwsaki7IX3fjqTv6t/C9DJfu7tgeTB0wFJ5wER4Vb0vjrPor/304FBQ8PujnY89cCvUDalCsPDQxTqi6dMQ9XcecjOsa5OZZ9RHua55XAhXtKyAVt/TneFV9EvnwitND0bhyvzFkpAVJaPXMKw85mHkF9eiZkrzrWfAxGiWW+u86w4AGjJltXFnVfSr1zL9OZ4x46bdp29d9QTb+jB5x9EWkYWvWJ3qKcTSEqmB9SPJ41juK+XNnBxfg4uXVIFssJ2zz332I2+fPlyXHnllWjt6sXfNu+n99hjfAzJaekYGxpAamYMQ/3dSMvMxchAD73TvnzJuZi1/iqm4xj6R7mbfsGdT3Fj72T9se+u905WUYlyNC2QgFFNQ6mStfYSz6h5i7jp9bScnwQaOzs70Nfbg+6uLgwMDtK7rMld5eRea0KWxCs02N9Hl1Meesg4AJi9iq+gpAJp6enU40nu3c7KyqJ3iKelpSM7OxupaanIysxGdiyGrOxsxHJykZOTI8CI20vjgg0OXBi/lgQ4ecjxTsvHovrINY3M59HbMGPXh+E4cvf5qZoTaGyoowDa09ONupoaVFROQ0lpKapnzkb1jNnUdr4wOQFwJ9NZ15PKfpGw+magvC7enVwAZnX98//+HAuXrcCCJc5h2iw4OPUzuzVTeQ7yuL7K9zUeBnkoYJ8Fo1wB1hgFXEvydpnuZ0yEUjeA8kviTn/QB1KzJjh5aD8O7nwdC886BxXTLS+oRz1ldQwDlhxAupflLXPSTxiPJ7/k7oAc+6WD9SCzAG61Efnpfh8YHhrAjqf+jJWXf0zqGXV0cvqTIYtfprfaQwriZsE0n9UHmPekcOsDnjzk87Ykugz2dOHYa0+ip+UUsgvKgOQkpKZlUXBMSc+kxzUlpabh4oJ2WjEyn1jL9AREybWn3ck52F9wJpKTU5CUnIok+jMJySmp2jNhlBuYFv3r37XLjTLhnn+/hBPXPzCEr33vPjz2rHEd7re+ciOuvmy9ssgHH38R//bd+7jPP/3Ry/DFm42rkBOv4BZ4R8Joe2c3br3jv7Br31FqkV/dcwdWLZ+vtM6RE3W4+St3o76x1dURxc9IgiULZuHH3/knFObnorlnRB57I4CpUzgfqXP00AE8/vCf6Mfk2yz5RwYN8qqsqsZV136CXaRUQBNTNZc3jJ9YnfVOyUYSjkfC5jOGcFGUgDpU4XgAUJafeIUb6k+hob4OLU2NdFPYjJlzUFJegZLSMpSVT6HAbr10y7fLEnrQZOWP2nYMyzG2cMNo6HpremTZXrLt1Rdx+OBezJ63CPMWLkVOXj4DGo5uLKwYyvN9jYUT8XP2S47Vu9k2ZC3AAg/XX2z4EIBRAaV+QEr1t/NaGsvjUy0oYtuFzdvZ2oR9b2zCYH8/yqtmYtqc+cjKIYeZC3GgZoVY+GKfJz8wE8HSgUw1zGmBpZ9nlFu+d8IAWBgkuh/Z9hIyYrmYOm+Z4BVV5xFB1OlH4rI8D63UbuJSPWtvMT6U7T8MxLpCNwSZnfXH0Xp4J8oWrkF2Ibm21FnBMoDYEJY90Io5za8p57qetHwcKlvn+pyblegfxjuyuNIoY0aX/NvTSl0n8oNd37qYE//9ex+gfxOYtPjhSzdfo+QGAqObtu3FN758I7Iy5Tf7TaT+70TZ7zgYtb7hrF25kH6zITD5r3f9DP9+502YXT3V1YZixxP/9ssvbmAK00lefv5p7Nq+lctaXFqGCy75AErKys0pVyFZOvELICmhChngGAOrrBxveSpZ7AQnSpV58SRq8nUXCurv78O+PbsodHa0t1OPcW5OHqZMq8K0qmq6JM++ZBBmlKkPYkHrpLSztE3cerwV82vZUdIv/SB4aGAQe97chpPHD9OlyCmVVSivrEJhYSlyCwrspuSgUYBAtn1YhGXLdgDREukAIdssFpC63mOAgvssIJA6efWBlPO4merzMEvOEG3Dif17UH/yKD0mLpZfiKKKqcgrKEJuUQlSU9PsHu8JpJINSMYYIQAa5x10e0dVnkUDeh3wdgDQOU/UGpO4zxj4ki3tkxj97U89gMIp01FYMQN5ZVNMD6kAcAIYGlBn6CTGexrvm+OgNL5ThFLxFAF1Xs4GZkXtepnl1m5/CbHSqcirnO2cjyrRI22kF0uaNroG8f7+frqq1plegoNFq5mwMhM4becJs2GJIVGHT6ONGV32tWfCTJlx53nzG++xZZA5/85v/wxf/tx1NiOwcCorLAGjcTeBS8A7DkYJPH7vR/fjrn+5iXouRTgVLSDCZlCYJeeMesGYbpN1d3agu6uT/iNeoanTnCOdDBnhAdOecpWKunCMLZIHQkmFrIlCVleFZGU8o4MHnEOYARGjEseOHMILzzxFry+sqpqB8oqpyIrFpOZWwZNh1RAgyhIIU6K0rgovoS1C0iYynYJAqapeky2Dq0dAb2l7awtqTx5De2sz6mtPISkpicZIl1RMQWZWDAWFRYjl5iO/oBCZWdlcK7rilgUvfFSQ6oJaFlhcoMg8v6wH0NKce89sQRtumcdRUoYXoHZ1tNLNTR1tLWhvakBXeyuyYjnIjOWioKQEuQXFyCsqRX5xqRRQeUCULMNbnj9hudq2jQWuZod3gE+EMxMCZUdB2Xl9bmkSyqjZvwNtp46hs6kO+RVVyC0qR6yoBHlllfZd6yx8Gro5oO3U3YkjtaFU5qW12sYDaC1PuAigXkBKyuxpPoXGvVsxc/2VlJRZcGb/JiZYUfcY7TDHjx+ny/Rk7wGJGSUbYzvSS3C4eDX9nN01bwaa2ZDKwif5fWx0BN11R9F6eAd2/PY/dKc133RnfuNZ3zQTkWD71y6yxcocTn6wKS7TJ5bo42+lyGF06479uOF2ZxcfUdFvmTz+ajgSSPl33/uAvYxOPvH7lkM+f/y5zbj3u1+igliYFZfp2SV6kra+0zxnlKsEP+17MKCy6n6AK/dgWuIk4Mp/RP/yK8MLmBzFlbhpF+BXTiBYJIPs0cPY8uoruOZj/+BZh6ByGS7wbxcdiGRs7gmCksYICrZebRUKuHXrpwmZhn5u8JfZxYIAx3zGDTMEqLo6O9DR2krCOKSTAAAgAElEQVRjrgmodra3ISUlBdm5eXQVIRbLQ15BofmviJ4wYcthOoQcJNkSzd+F+llPlu7SugGK/PPo5I0KUIWQAbMz2LpaVTErTWLYu9qaqQe1o6UZHa1NGOzrQyy/AMVTKlFUOgUlU6c5wMbGUjKygx/dxC/jO8Bq2IiPI9XwmspiUBk4tiB9bHQMnS0N6G5tRGdjLfq6OpCSmobCyhkomFKNnGKy7G16RW2QlC/P8/DK1se9bC6DWas/OJ5PNViKoQMDXa1o2vc6yhefjdQsY1+ABceW7TKHOrGg+WXl+NWdXoQDxWsNELV20jMbcNn3Bzpa0NdWj96mGvS31iNv+jyUzFqMv93mgFy8c/eSL/0hXhGh8u+6+6N2PtGBRT7wg1G2UGs19ZoPbPCMMw2l6LsoU6QwKgNBC+Y+9w8fnJSGIjr86ZGNXCyHH4xSvX/yR7S0d9G4Ua/gZSKroanNll/XMeRMdpodxxskHTLRhVg/2GPVEid6ucoegCmAU+CyGUCTle3lSbWKfvzhv+CMBYsw5wx3HLAXgEqBSNDHrz7xyPeSrZKrglKhGVymVLVzGHmBoN5MrAOZ0vYIAbfkNAkCqgRM29ta0dnRhq7OdnS1tyMzO5suT+fnFyIzFqMb/GK5eciOGT/JRQgyT6ptX1d9eOhgn1Y/QGVlng5AlXqMzfqNjY+jtaEW7S1NaKo9iea6GuTmF6Kksgpl02agdGqV4zk1BVGAUyxpW3WVeRKdGE8TxDjAdS+Hi+kdCGOPqGJ2wXOQaiI558kEulob0FZ3Cq2njmKgpxOFVbNRWFGFwkpyBmcyA6d6nlJXnVgvKQO4IkAaz6k3kFLZpryuhhOof/MVestSbuUsZBVW2CEIRJQFo4ODg3jttdeoV5TsQ8jPz8eCBQvAwihZbSAv8oPcXz/Y2YLBzlYM93Siu/E4MnIKECupRKysErllVabXNAkP3HCm5kznn2zWh40jDCf7dfTPjsMsjGdU1JfA6/GahsQGpjgaMjIYtZa3P/KBDa6gXxkgxqGzZ9agnlHxW5HftxwxfS0DoyrF4oZPCXn4QROrix9AOWl9IFTQI5QOPhSlA6OPPPgAVp+9DuVT3DHAnHiFgjpl+PVPP5vGU0Yg+GMqHAZ2jeySnB5QadlGG6ADhioE8eTKoJvN39vdhc72dvSQCbarC7093SDvkZ9j42MY6O9DLJaLbAKpOcbP3LwCGqOaRwCWhAAwFbV+tco1UYcBNcM63PuCLVmPl502hAfVbjntJX63B5WN57Tb1ZTX3txAwbSx5ji62ttQXDEV5dNnonz6LGRkZunDqVlJC1w5jx/3GaOfuNTNxHNaHk9Dnhw2OU+rckndaCdyIQC5rant1HG01h6ny/iFU6tRMLUamTnGRjrHI8qDoyq2VAantKrcxiQRoNm/2XJEj/I4Wo/uRWfNIfS1NyKnYgb19KZkxJCamY1zU44jNWmMnl1N/hEgJWeMklNajo8V4fh4EQXO4f5u+o/oNDbYj8yCUmQVlCCrsAyx4gqkpKZzh+Mb7JqEP3xyud/wqP35mrvc8a3ameNIuPnODXbuMDGjCRiNw/iKrJHBqKxBrTJlbvDoq2JIDBozGtSTqgOjsgnSXV9rulJYQs0HWqbzgyVeyMRBqIs9fQhWB+J2bt+GttZmbHiP/OBiroigQKoJd35AxtpXp06qRvVrx7AgyUKQrOywOmsDKgMh8vLdcSSquqq6lOo5ZOUMDg6gt7sb5M52cvQXhdWebsPT2tGO8fEx5OUVIq+wEIXFZTRGtaCkDHn5BcyyMvMsS+JB2S+jNqS6ANXxkLHPDHvgvAEzhrU4z2pcMaj+gErKHB0bQ/2Jw6g/cZQu7ZPwB3KEVPn0GcgvLjN1MnWTek7D3MjkvkrUsoEubLLpeYh1dOVhE2irO0GhtLOpHiPDQ3QjFFnOJxuhklPTpXBqyxZiaI0+qPZ8sjGkMrD1izElG/16musw3N9Dzw4dHh7EjOROzM52Vuys52t4DHipIwfjaZlIzchGenYu0rPzkJadg7RM8+IP1dI99aAantTffnyZ1hykk2jtd17QSRZ5mk13nM/J9NpNLzqoiOPtL4+9gA+9/3y6k15n933kFXgHCowMRt8qnlG/DUhW2MBdd95EPbji32LHe2rjFsyZOU25y454Rt8K8MlBnw/wOSClkVBIopGDe0x0wFBLH0YQ+fW3992LD1x9DYUDJcw4gpWPrieGC8Dg9/z7gSMLES5ZmmX5lREWIl2mCgrxPvrrgKFtEz9PKtfZHUsG8ah6PS8irHZ1kCX/NpCbvFqa6ukmQxK7WlFZheKSMkyZVo2yqdPoWcAqWHTKM6XH5c3kv8jqAqoYRuB3rJTVBUTvKfm7takeDSeOor7mOPq7uzB11lwUllagpHIasmLGLWdOfkdfqx8YAOjvCXVgkj9SyY65ZOImPWHTVMgCT+tZ5GNA3eBI4kvb6k9SMG09dQxZuQUomDodsaIyuiEqLTvmvvOe8eo65elvgjLqzPYTuQfVsQ3jOcU4itv2o7j9gGuIGUtOw+FpF2MsJc2OGSWJnI1M1jYmcYe9E1RK0v76eve1yn5jo+rzc777YtisceV79Sv8GaJe54zKVksJvP7iD4/bOvidSxqXsu+SzJHBKLEXiZt44JGN3OahyY4ZJXp4nTMqwidJL266YjuW+Nn7L1rLxaOeand/AzX6Dj9hSPtTnKDnNaGq+6+GF1Qy2QeFUJcIDQG+mjHAQza0/ObnP8ZV11xPd1bLXrogrFuuxCxKM/tBozUZeimuYTJngd0jcbyAqtvPgnou/eSG8fp62T2MPFtH7svQOIaHhtDS1ICG2lNoa2umO//zC4tROX0mCotLUFo2hcakegEdO0qwkMa9L0C+kU7wZoZY4rc9qy75Dtg4dTc9e2ZnFeF0oK8fjbUn0XTqGJrqauhpB9l5BSgqm4LC8goUlpQb3kQrv2pDFPs+C+uuczzZg+YZ3TSX9kVPJQvzfnDa1daEzsY6ukO/q7mB1ii3dAqy8osQKyhBrKgU6Vk5dn3ly/iSo6OYdnXFyIoxp5I4XXZjVPWRR5EyNiy9m765ZAk6C2ZTvY1Vd/d5os5tgvZ1LjaxktT3XbdEPb0E/GTdf74UMEc0yV/+v+dFIyghJTILRAqjRKvTvZs+MstoCnJgdOLhUxeuRNV9YYvNwE26mkaQJAujq6+egm4ESH/3y59izbnnYd6CxXGBoSccSuyjA4pWtrjAlCO2ACcguAp3mycqr7BfW3vBsJ8dA8Olaa+o5JJd5/tefwGtDadsA06bvRCzl65FVg653texa2P9KTSR277qTqG9vQ19PV2omFqFjOwYCgqKkJOfj5ycPHokFdlYJfM4Os0dxIMqA8jgu/j7OprR01KP0eEhZOYXI1Y8Bcnp6dwxbDIYFuvRSzzIDbXUe0riTtuaGpBXWEyX8/NLy+jGKHL2KbGDAamC/naMJx8radlGtinK8YpqLu1zR1EJy+jCLnX2iwLVl4Hjgb4edLU2oaetmf4b6OlCf08XsvOLKKBm5RXSuNOMWB4ycvLo9ZvijnrWY+06w5XdCGUBvQjnTFhEan8Hphx/Vnk3/UBWCRqmG15B8UB7FkJdh94zl7j87Br1WBt0xlj/ffXO/6CygqR/8Yvug/+D5E+kjd4CkcNo9Cq+tSXWtA+qFRRmRL8J0g2R5jtBM8q3pEyYngqWNd4OoHtQGLXKJeeNHjl8AGvOWU932ZMd0kpbauoUVhe/3uoHbrwtPd2ddlJdE5+OsnXKjNdz6wf7YeWTayWf+8sv6fWS4qu4YhrWXPJh13m5FriQ9GSXf2trE93lT5b5Ozvb0dPdBXLUUFtrE90clZkdQ0ZGBgUzeuVvWjoysrLo1Y5p6WlITcugVzaSM1ZTzWuBSbwm3bCSkoqUlGQkp6UhJTnVPsZK6j1lvWnssGLCzoEX/oaeljqumumxXMxccwky80vsR9kFjvR54j21LsgG0NnaQo+QIuecdrQ2o7u9DQN9vcgpKKTL+2kZGcjOzUd2Xj5ieQXUu5pkHstlAKA5nARc2jfUC+g91Twb1dHJPJrKHFtInGlPRzt6O9vQ39VGj5Lq7+nEQHcXbaOconIgORnpWTH6Ly2WSzcLpaaTWM4MJJM2T0lFcnIqTWfDK2cHozDRNin9HSg7+ozybvrB7BI0VzvxktamJLF/u29kclLc++FFfsOc9ucb7nlFO22UCTfefm6U4hKyIrBAAkbjNKISRuMEUY6ZdGmDq4svTrlrLiknVNGCZJcMTaHaNSCHQvd04/VNr2Dv7p306k9y73xRcQnyCgrosT4ZmZmeLa0DTW7A1a5IYHDkodTPoPKqBbGfJUGzRkJPk5QfRhAjRlt3SdFkUwfxmo+PjlEQGR0bxfiY+fvoKN1FPzZGIIX+Z4AWAZDxcQqE5HPyqj2yH0f3bqMT+/3334+GhgbMnz8f1113Hf183fs+gpIpVW4gtcCJ+Sbm2sQ0DvT39YLcIjYw0IeB/gEMDgxgeGiQ6kv+JlBD3Ff9fX0YGR5Gcmoq+nt7MDIyQmGUeF5HRkepLuQK0PTMTAwPD9EblmI5+RgdG0GOGSpgHGNlQC95JkqnTKMbUoiqjcf24cjW56ic/fv30/qSepLd17mllZh//hXuWFiPjVqmRZ1YStGjZ/49NjJKj+HqIZDe1YGerk70dnViZGQYHc2NSElLowf05xYWUzhPz8pCekYW0jOzkJqWjrTMDKSlZxhgnpZO05M6it5W3vMoxJ6aA61fnuFB0j79tH1Iu4yNjSIpKYXqlZmTS68fNfoRGyvrLovs3O/v7cJgbw+IV3WIbDoaHKS/jwwOgJRDIJx4WEdHRmhdSH3HRkfplxICryPDg/T4KcMmMaoTvWOeXAyRmYWzMtV30zelFKE5vZTeRU/AmAAvKY/8Te6op/fbJxk/yRJ+UrL773s/tibOWdPJfuF/vxqZrCCCnrvtnCDJE2knwQJxw6gVn/mpay/FL//4pH0fvKi7eFj8JNRtUopwwWiEQBcGkNyVDjmtR1gPWUOEBVRj7vAmnfq6WtTWnEBTYwPI5pPOjg4KGWSQJZNXfkEBnfit9wioknP56ExCXAXW7JWUhIyMTIyOjtAJPiU1FVlZ2UhNIz9j1DOVmpqCNLKUmZSEZDKAgzgzkunVpORzuht6fBy9vb0UfnLz8unh7MQbpv2a7LYwJ2ht/SYoYUtzI353370UTgh8EGizoJJMlgQKsrKzqbfRAMkUDA8PIz09g8ICaYfMrCz6Hml74okkE7f9/hCJ906ibTow0E+bPis7hx73RF6xzFTkZKbR43GefPJJu5YERgmsnahtRP/gMLJyYkhPzcA5Gy7EWWvWucDNWkK2zcrEeMo+s/u4uMlJgFwOcM3PhggsjQxjeHAIwyPDGBoeAonpJO/39HRRoOrq6EBzYx0uveqj9AzWXS89htbao1w9CYjefvvttM7nXPN5A7RM2rK6o+OVYzyjoo5mRhv2uBMBzJraeQwTG3LHMTTQj14KbX3Uizo40Ef1J2BO3hsaHKDgPtjfZ0LiMPUeE+AjPwmkZmRl02eT9B/6DKcTz3M2vW6W9CHSFwjIEggkdiOgTyBwoLeHyievrrYWmj9WUET7HwXf1DSMjpAvCGnoamnC0NAAisqnomTaTFRUz0G6ubFJbEvDhv7xs6apaf1IOcSbPk5+Hxs1fx+nX5rIFy7S141/xheuWPMBZPU1S5/Ko2nTMDQG+mWNAC65Wcl4VlIwMjRIx6jxMfLFzJBl/218e6NlPv3jb0b2xL/nh69FJiuIoGe+cHaQ5Im0k2CBuGF0EnR8Sxeh3sBkqe2QhLazSCOhRpLQdosGgsXi/RBSoq5QyXjqTCYZApxkUh4eGqZeo7FRAxSt43Po0SUMjJL3yXtkUiceJzJJjYyOUE8VARyyDDs0NIQU05tGyiATJZnkyK1AFAyGhynsEK8VkUcOZSf5c/PyaEgBiXUlE6LqFaYtAlmaKSCsfYPqqKXfONDd3YVXNj5Lv3wQe5KX5bVJTUmh7xNIIJMweZE0tM2Sk+wJmyxvky8T5EW8QCOjwzQNfX9k1JCRmkohhLxIiAdpW/LqbW9CX0cT3Qjy0EMP2U10yy230LMbS6afgeS0LCp/fGQU02bOxqy585ymVJwKYAGJM0LwjSBrh6jzbHv1JTQ3N+C9V3wEW5/+M9qbavGrX/2KXiFpvQiMEihdcdHVKCibRt9m247fnc98onFSgCFLshnL/MCSxoKv9R2U+0ywMfmMPKfkuSRfVoaHyTNJnnnjuSdHH5F2J4A3SuBqdJR+iaR9jIRCpKYhLSOTPq/EI5mZmY30rGz7mky2bdg2IX2ms7URNUcO0ssDCkrLsWjVOiqDfcnsZ9vCTGiFQrjf50FWdhoCyTM6NITuIzvQd2KvXXRyZg7yF5+LtKIKox3F514CyGz5bFvfft5M5XgV9IP3/s+moFkiSf/U59dGIichJDoLRAajXueMTuah99GZRk+SP4yq5ISAVGf20lIuLFzoCA8KIH4ytQBFUf+w9XTlCyAoXn1PHj+KA/v20HvX5y1YhDXn8keN8BOYYD0NPbX1ixNGg/QDX51C6DKR5Z84uBvbXnqKbgYhnlGyTD9jxgx6gDh5XfDBT6DAPmMzTqC0IYxva08I1cxjJDP0O3nsMHZu24xZZyzEgiXGTTrbX3gEzafUntELP3qbqRQfG8p6+OwSXCBqlm6ah4c5ycYru05GSi69LUP4TOtsV2fJnJVry2diUcVynXpKdGISs58e3bcLe7e+gvkr12LWQueQeE6CC6Sdto8XSF3HeNlleXxpENpIpgNJ8n/WRQej7/vxZr+pYUI+f+LW6EINJkTBd6HQSYHRyTz0frLbUHYDkziBBNOJJw0N7pCL18yomSxYFeypKzhEiVOxtn5CQu18XioGEOILWlY5EuDa8upL2LrpZay74D1YduYqpa2DgBcLIJ6NFwIAJVXx3KjmaxsJqHjprGsHz3I16/3sX3+Dzjb3kuf0OYuwcv2lfMhIGE+oDV9iz3dv/uPqE7CsmuNHsHv769RLv3jFahSXltsF1h7Ziz2bnqZ/E+C2YmMzMzNRUFaJFRd9iPOJsuObBVcO1LFL0A6piXBkQ5kMXiVHVVFJAoza0jlbyEIGnB7rPmuV6boRAylRd8fLz6GsshpTZhjHKTEWMX736Ie6QCqFxnFgsK0BI91tSMnKAfGMpuZaR+DJgZS1p6OnpbPzxeG2CGH0/fduCTW3xJvpsZtXxysikT9iC0wKjJLzRzdt28udzxlxPU6bOJ3rQFnl2MEnvNIRAas44igUCsBkgavETmJ6mX3Rhh3xhQlArwSuvZR/qGVpaShMQmSp+bWXN+L4kcO48JLLMKXSWBYVX7ogZuXz1UUTysLqoQOEOv1Lp59EVRb7WAwNDODI3jfQUl9Dl3pJzPGU6jmYvWiFYxIJGMr0dek3CfnIbVIvPfsEkpOSsPLs81FUYtyWxD3648COFw3vKPvKjOViyXmXI7ewlF+eNzM77eYGQEe++ZnwhcMAWhtJXfqIy/RMctNbyuR1yXbesHTkdJV8+XHai28ltm86Yzevt11XTq6TZuPD96P6jEWYMd85n5OVoAJSmY3kZfFe36GuNrRtfw6j/T1ce8aqFyJ33mq3/VztyQK6+3vmF86dEXwgVeS44qdbI5MVRNDfPqv+0h9ETiJtdBaIG0atQ+TrG1uVWk0pL8a93/2SfYtRdOqffklBYdRLY2PwiapObkGhRWtm1EzmW0Ed8OCF+CKXMPuGM7OrfhoV9tVMgMG2lmY8/8yTiMVyqKc0J8fYpSu+dG0UtHzfxhG7qIcNlGVLYEBVrl89owBQvzKMx1KoqKZnMp688ZbZUFeDzS8+h1XnbMCUqmrOxGydrXK625vR1d6Mgd5uFJZVyuNEmTHKAipelvioOed+ssObDLTccnjoY8dHF6z6eEf5sp3EHGxaFvLwkLJAKnZ9N1Q6+j/3l9/inMuuRkZmtt0OekDqoatYZ1Ohxlf+Rj2iJLyEnI5A4pvJP/IqWH4hMsunMx5Z3sZ86IXQlqb8z0cIo1f+/HWdISfyNA995qzIZSYExmeBuGHUKt4rZjQ+Fd/aues65DcwaXBKqIpFC6zsEO3iteD6aVZaM5ly8vRXzBfBXJWNSye3GaUq6oCTJerQ/r14aeMzmDtvAc674GKFPPNtH+V1ytWtP5duAkHUDxDjBd145MuqLXsuxWV1WTeR6REvhJJyyAH8r73wDK689gbX91sZiIq6yaCLh0Gb3Gz5ShgzC3SBn6dn1NHIyieDUTuVZCMT1VAawyqPH+VsEAJIxT7AYh6JIW1vasCK9RfzcbBex3/Zj7c+kJLNS/XP/p7mvOeee+gxXeRF4pzXrl2LrKlzkL/EOfBd9Pa6+qjkS9fnzonOM/q+7z7qP5xPQIonvnL5BEhNiIzHApHBaDxKvJ3z1nUOBXaz6U78Ye0y0cCqyV5q9SUGCGoTP5jgC9eAU0GB0PpoGCcIHO7YtgU7tm3FwsVLsfoc9xV2OnYIUp5fnwtdngRIZGV5yY8HQP30lsr20dkXQAUYYusbD4SyAMbLNKSeOnEMh/btwgXvvWLSQFQOffIlekd/Ftdkm5X4z2k+rk2EzwN4R9kNV+Ij67SN3pK9G7KNVmG1I79vfOgPWH3h+5GVm8d1fbuUgBuaZF8OBlrr0bLlSdeh92Tj3Q033ID0wgoUryaxzsLLBZ1u21uVujVCGF39meiOifIbu9jPt/z8q0GSJ9JOggUSMBqnkSmM+r2Ckk2Uq/UeukUPrW4S0656nIDqBxvxwKl2HcxCuPSKzEEBcfMrL9JNTmvOPR+r1jq3h0xEWaouo2PjMFDH9RppP1B3Dq+2CQu2YWTqeEH9INK2uyIEQDf/b37yX7j2U5+j561aL9YWYhtxMMUklEGW8x4jRQpRJswwQtzy/GDPDUS895XVRjz2SH4MFT9C+cCySb8uva3n3MdWIpAeeHMbPddz/plrBO8ok9LHXuIIKwLp2PAg6p7x9owWMJ5R94jNPP0KQL3l7Og8o9f+ervf7Dkhn//xH4yTJBKvt44FIoVRr/jRd+qh9/U+MBoUZGjXCJXJ6FRxZA3VK6MBWvek41JGqFiQeupAlGU9T7mKicLPcDrl63j9yPmYm15+AXt37cDSFas4KPUDOuNzj9qZH/nZlftcktirHmEgT6m3hr5edo8Lml190d05VXWVPS+BluUlDzmbn8SIFhaXYu5CZ7OM2DfY9G5AdPDV+oy1I4t/8vcFj6APXLnK50DPPS74wShvHqem6k1C0cePioBojS2njh1Cw8ljWLn+EiWMijGbvH3cusrKqt/4J7p5iSzRk5hRclYsuaSBvPIXr0N25RzpkOU39lmf33I2H3/sN/55fX79b3bEkz103t9/0jluK7SQRMZILRAZjPYPDOFr37sPa1cuxLJFc/C7B5/Bl2+9DlmZ6fj+vQ/gvDVLsWq58UC8k171ncYB2cFeflO+NXwFk2qn1hOvFB5n9kBKyyZntwAPjJICkZ4KcZfNz3xaXwT8wFQHGEfHxkA8pdu2vIrVZ5/nWr4PXYYG4AlVln77iRL0jPLUjRw14AaVJwNJl43M7qgLovHk/8V//wdu/Md/dj0APDiySOkkDQt6coAyQdIHRtm6cuDFGEsFzFKo1ogd5e0r32BlpzH1kEIzc3an2Gay+NmTh/ahtbEOy9ddxMWyin08CDjLYHSwqxUtm5/E+Ai/apdRNh1FZ16oNTh6PQc3r40ORj/+29MDo7/9eAJGtTrCJCaKDEbZDUxE/+/96H7c9S83oTA/F+/kQ+8bGBidTIgL4gONW6+4BYSDa/9jsMwJT/bACDrrViFuQFVMvp4qKpTz85aOjY+DnFG6b+8uLFy8DKvPdjYmcJNjSPlBwYytowogw8oMAn2WHqq2DAO3KsDX9WrycMMAoOYufZ38h/ftRnNjA9ae/x6uu3E2j3NjDouxPOCydXJ6X6hji+zYUPfz7YYvIY0KRpVnekaxVK+n54HtW2hrzztz9YTCKKnR2NAQ+ptO2sc7ZZZNR2peUZBpQ4ohRP8oYfSTv39zEnHHKeo31y87LeUmClVbYEJgtKggF3f99+9w520fozD6Tj70vqErjGfUp0sGAJpoO7cusoWDS7W7RpzIvGulA6nKmoSAVH9A9ffc+llWBTui10RGGSQvWb5/4/VNOHvdBpx5Fn+7SLyyVa0RWK6ZQWWLQPJ8ZKngTWlPjzhNHRCkNvLQSdaHggC2Tv5NLzyD3LwCLFzOH1vDQyOLk3zLqo4tcgOgYMU4Yka5L01smBFz8L0rDTc+CvUR2oDznirGVZpG0naO3fxiW929SgbNb766EflFJaiev1gCozoAr7dMPzo8iO7DO9Bz3LkOlBx8T2JFM4oqnK8/foOS4sH/bISe0U/9YWe0U5imtF9+dKlmykSyybJAZDDKLtNffdl6ujQ/o6oC5Pd38qH3EwKjE9n6IWBs4tRxexTYSZ0tV2fc9IZURVnCTKdVjjg7SihbKkcXoDzke3n1hkdGsOnljThy+ADOPncDzliwyNbMC/S8AM2vqoEA0hQ2GTAaSK+QkPxW8ooS0z796INYvHwVKiqrZN9ZTACSwyj/7Ejgy2WjaDYwTTSMcn1buVs9/FK9PsCPY8/WV5CRlY3Zi8+cUBht2/kS+moPS4ftsvM/jNSsnLiG9JvWRLdM/+k/7opLl7CZf3EtH1MdVk4iX3QWiAxGRZXIsv2td/wXdu07infyofeNE+EZVbSvDihF1zUmQJI2COtBqo49/ADVCxotC/iVI/Na8SAtkRAnmHpBaV9fH1547u/o7uzAeRdegoopU7WgNMzyNQcTrvYNXm+VLYMu+6tgNNmvlWIAACAASURBVEwdZToF9mpKqF4XZnXr8sdf/QTvu+qjyM3Ld7c3LV/HwyfsQmceAhZjuZZ9K3lGJV94JtQ7GiButLmuBod2v4GzL7kiMhg1m5W2ktUmp574Jf37oYcewo4dO+gGpiuvvBLkeCdyC1P+gviuwowSRj/7wO4JmGj8Rf70msX+iRIpJtUCEwajk1qL01jYZMLoaaymq2g/QAurqxoeowFUb3BULLczlfWrt7cHUiJ/AqG0vq4WLz73d5SUVeCCiy9FUlISN2nJ9wUFB0h7IpRmlX8DUdnxdMGopz5xgKTKNoFh1g/0x4H//en/w8duus1uZ/GLglgmK1Lfw2dIledlQxLN51Xx7Bjt7H6m2eeH/ZQrj6lYoE1MUlA1Rqr4l+oVdeGe73HsfO0FICkJS9as555Frq5Km/kffj/YWo9myTmjy5cvp0CaXlSBktWXag/PxojBvz4ToWf0lj/v0dYlyoQ/+bCzahSl3ISs8BaIDEbfrTcwNXVPQMxowPb0A6SA4vSSR1yopzhlPF9EgKosPCI41YE0boKVN4EX6Hp5Dg8f2IcnH/0rLnzv++lGJ+sVFPwkTMYpKpM30R7NuKHW58uAVp08ZKjaTNcrqguz42PjuO9/vocbv/AVd5vYEOZYS7RbaBj1WvoWOowbKKOAUb4Qtr348pxGculh4agPOMvzOQfxuyDd9UwbEra9+DSyc/Mwf7l43qhpjzhgdKSvGw0v/JleBfqd73zH7gvk9iVyCxPZyFS0Qr6jXgaerpEoCfjM6uiW6T/3oBPXqjfxRJPqR1cvjEZQQkpkFkjAaJymVMOo1qMdZ+nvlOyKSVKYMb2AVe5RlcBq3DKNGcali2ICYVsoKPx51ldBhl7w98yTj6KrswOXvP+D3J33E61XKCDVAfgoINAGNY8vAK4+I1VOerTXZMEoKfwXP/wuPvX5L2t5RiODUWGXutMt/cDKMbwK8ox9RfKxwfMYKmmb+sW4ms+1F5DSJH6hDgrA5vqqET860N+PuUtXIje/MMQh+Gov6am//44e60SW6K1l+g0bNtDl+vz5q5Ezkwcx90zlPXd9evX0yCaef/zrvshkBRH0g6sWcMmtPS+PPbuJvv+tr9xI97vovMj+mC079uPH3/knumE78QpngchglBT/Tj5PVGXepu6RQJb3RVTfBIGKm/DE8aorBS6pJ1QyKWmCpRtUw0OqCnpVcKoCSm0A9AAujkc1ganm5AlsfOZJLD3zLCw9c6XdP1TQJEVvHZ009Qlin4mE2iB6qGwikzGZMPrAb+7F1R/7DFJSUqTtqgI7k7HMPHqbl8S+JwdK9cYgO7/XUr3HEU+8zjpxrsJXSE2PrrReApDKbeEPpbVHD2DP1ldRUFqOhavORSwnT3J9KzPuKUGZB9POQ9vRech9fmdSajqmbvgwktOcm7nCTBA3Rgijtz98emD0ng/yMErYhby+ePM1sPa7fOnma3zPRif5fvGHx/FOvdQnTP8ImydSGCVHOLGH3YdV6u2Ur1kFo/FSmsQIEyDSXYqikOjKZiUJgCl3OPE6SkFIGPh1INUDeGUAoYQVBU1zbysmEatiUYCpNvSYM+fzzzyJ7q5OfODqazn7ast5qwCphx5R1CWIjCBAG/UyPaGYR//yO6w8ez0qpjq76Vn9o4NRAcc1wY6DNmvDjQ+MenpHGYEi+rHPFA+UcrjjdTMtpehbjk3VXlLntChvKCXlnji0D0d2b0dySjKmzZmP6XMXIDU1PSSYGjXpqz+BLuZoJ7KDvnDh6rhBlEj/1KroPKNfemT/aZnu7/6AcwGPLMSQhVOVguSUoOM1DfRCn7vvfSDhGY2zJSODUXb3vEynd+o3h+aeYJ5RyzZxw51EQHCZ/jk8U/hnl3ZPK5sM2AQ8pfnVsCaIV9ylrA2Xfvldk5+7ejIvrHc9Jaztgmk5XccFPwCOHzmMvz34R3zwIx/F9OpZbij108O0R1x6RAST7wQd4q3D1ldfQFp6OpaddbbdlioYdYEhk5CHN1OUq53Uy96ObBPEGIFy2Qpgs4oWBgBOBiebt2B8QMpvapKCNDM4SevF6S8APGtWM3NzfS1qDu9HzeG9qJg+C4VlFSibVo28gmIJmDJWlg8P5tjpc4CuBkCI/TJKGP3Kowc0NIg+yXcvn2cLJU60f73rZ/j3O2/C7Grj5BG/4yjZz3fvP5qA0QiaKDIYjUCXt6UIFYyG4jQhk54MdSrpJ3pCaVsESMq13ejoKEZGRzA6MoKRkRGMjY1RWcNDQzh6+CCGR4bpUmJWVhYWLFqK9IxMV9uLACeZZqSQ6prQ/QBTMVGaI7kwCQiTpldeSSydK9bUD8QklfGvn2NKYQ53JifW2uPAE4/8FZlZWdjwHn6XLQsyfBb37BcvSMWbX4QFS9946xBvfoZXuD4+EbvpTxw9jCMH9+CCSz9ol8XqH3o3PWNcp53UO+r5tuCX6qVQJ/GOcuk8jk+i6RRAKrYdD4z8w6uGSd5LKtWfaWSxH8vBWRhHzNZin9f6k8fQVHsCjadOYHhwABXVs5FXWIyisgoUljIH19tHOjEt4wGnOpOsSztB3g0RekY/96vndVSKPM2PbriAg1H2xkg/GBVvlCR/Jzyj8TdRAkbjtGFLEM9oINiUo2AYwAwMlUkOiBKQ7O7uRnd3F3p7emjQPfm7v78fvb096O/rp4k72tsxODBAPTP9fX3Izs6mEJqamoqc3Fz0dHdjeKAXY2OjnMWTk1OQW1CM/MIiFBcXI5YTQ1FRMYpLSpGbmxcAUtlpkr3KRXIDHgeoAQBTArYyWJFOSH5gGRBMdZd5dWFq5xvbsG3ra7ji6mtRVFIqhZm3OpDGC7SnO78nULsAw61td2cnHv/rH3DNP9wSGYyKMK2CUfn99E6NPK8FZYhSCYVem5kEw6mOe3KDpBpI3W2hEf9qfwNyRze7xgThwfQaM/p7e9Bcf4rea9/WVI+O5kaUT5+JrFguCopLkVdchsLScuHoNjWcqqY8Vf8X0//DWfylCvFMoVd86T/iyR4679/u/mcORoN4RolX9N++e5+r7Hfq6m9oIwfM+K6EUfJN5obbjWMvdDqQFaQsS6+EUYYAvWFQYy+jhwBt0GQAU+wjBCxbW1vR3taG9rZWdHV1or21DcTD2dzchNLSMqSlpSGWm4PCgkKkpqchFsuhnk0CndlZ2UjPyEBmZiYyMuTB8U899jD27t6Jjo4O7N9vxAnNnz+f7vCcMWsOFi5Zjr7ePjS3NKGtrQ1tra0YGhxE1fRqlJWXoXrmLEybVuXtDXUBHQOaXt4CDTiVsKTLayqCn2xwj2cZn/Wc2POe5t3mOnkJzDz9xCMURs+/6L1cN9HJLwKJo6P5mx9QKVYU5cAvb1CpzSWUNxGeybhgMuCXEaMstw3++Ot78eFP3ITk5GRqdNZ2ep5Rt1y27VkYdct3uowrHc99kr7FPKvMp7z+vIVd4MqVIWpgGIO8291ch96WOqSkZSCzoBg5JVPsEsXnk7ew20sqa3NHZ586WY+F0MHFPiw+e+RvCqUtjehsbUZHSzN1EqSmpSKvsISCaV5xKfWipqal8/1AeuYD712WMQSrU5Qw+rWnDgVElmiSf+O9c21BYWNGLQEJz2g0bfKug1ExPiRIbEhWZrorlsSGUZMKgyyau9LGs3nIAzbZBXdSBIHM7W9sw8kTx1FXewrZsWykp2egpLQUefn5KCosQn5+AfILChCLxZQ9zTxD3aMnGhUi///mvnvR3NSI+++/n4PR6667jpb16Vv/0TUhEEhubKhHTc1JnKqpQW9vLz5wxVUoLS/nXJ+ywdoRJjmIW5hBuMFfw/vpmixEAZI4VykkecFZQDgJ5Cn1gcI3t72OlzY+jQvfezkWLHKuzRPtrAIiJRD6QeFE1nkSyp5QGPXTH0B7awuee+JhXP2xT7PdnyFEv2OJjKRSaJW2jU7cKCNRAaRe8CZ/NhWQ55LPA+nI0CAOv/QI+jpauDErp3QqZq65BCnp5hdpyZciNyC6E0kh0irJLxTBBaZOg/vBqZWyq72FwmlnWwvamhrQ3txA4TQnvxBFpeVIz85BXmERcguKuPpLsN01FrMZPhmhZ/SbT58eGP3qxQ6Mkrp57aa39sNc84EN0uOeEjCagNFQFrB2wJEjHMhLFrzMChZ31Ykdr7VXtYGJJ8uowFMNgE4JfmWRZfRvf+vrqKiYgqqqKpRXTEVGRjqyYjFkpKdTjyfxhBJvJ/lJvJ2Wp8UCW79wAfHz/7zrm9Ss5CBmciAzeRFP6h133EF//9KdX7VmQhpnOjA4iMGBfgwODdIl/q6uLrS0tuLAvj345A2fodBszpzMD2aSUkx8vPcueHrBieHeWCDMnn7p6UTiojcBB7w8hiGAVtRJBiBjo2N47uknceLYYZx51hpMnTYd5RVTFJ5plxLqMzd9QDgu7+pEwqyG3g4+8EOTDOJlNo+r7gB2bHkN/f19WLv+IgcmWFV8z8i0Him+sqz+4idyWOQeTSeqUfVMeuysd9nUY7lefJZEqD72+vNoO3GAjj9kdYaMP2R1hrxKZy9B5bJzeEiTfKtyvxXQW8ooKRHvO54E6WNEfndHKwXT7vZWGkbV3dGGrvZWZOfkIr+4DDl5+cjKzafxqAUlZZJ+I7T4OBAljP77M4dDzePxZvrX98zhRHidM5qA0XitrZf/XecZFeHS70wxAqs3f+VuXHbhGnoGGck/o6rC/obEw2h8S+6kybSX3c3E/undUDw+Po729nZ0tLehs7ODDs5kaX54eJh6H4nntK+3F+lpaWjvaEdaahp6eropmBIvZv9AP9LN5R+yESknNwcDA4NITkqiG2GGh4eQlpaKsTFjICMwW3P8CEaGh+37ksn71hV15Hq85NQMZMdiaG1pQXp6OlLT0pCZkUnjTQkU5+flo6SkDHPnz6ehAZy/02/SkCzD24O6xwTphgMNeDWfOx4wmXzMbCKdjELApQxow3pKxXzki8DunTtw4tgRtLU0Y/GyFVi34SJ/KA0AhoF0FWbjQHk1gFIJCPHklRBEIL198h/YuxNH9u2h3q815zm367BfOkIf6yTtr95flhxTmf3e/V1FgB6Pay6tlIE2MfEGs4rf/cTvMNTXza3OWGNQVkEJ5l34IZuidUDR9iF71I9R35mRTbqXlSGFTa/xS5jn2TZ3l218SvcBtLeip6sTPd0d6GptQW9nB/r7elFUMRUrz38v43ywRlpH20+sjC5m9DvPHdEjlYhT3XHh7IglJsTFa4F3JYyyMOkHo9Y3ps7uXry8ZZcrxrS1l9+QYzWIn+dQ1XD+cKnZ5L5hA35yeE0IwBJYJTvkCaySf2PWz7ExjI6NgqQh/8hgR4Yw4yeQnJSMfXvexL7dO+nfDQ0N9GdFRQX9eeZZa7H67HV0sxOBUHtGYFRU3VnvGtBdECR8s5eM9tJJIeA5pNJJxKoJV0BYMHUDgKxMc55jLcd7WzS9rDJYGhwawr7dO7Drze245LIrUFbu9pQGgiwf8A4FhgoIdttFHnOpU+ZExJt6wo/CTieOHsIbm15B2ZQpmH3GIpRPnWa3uw6IBt+F7u67ot5sCtHmbFpHP0Emv/fQjvN0B9swowQj2Gvz0hsP/oRm+vrXv27bicSs33777fTvZVfdLB0U5dAo94iqxgH3OOWuN1u4tD9IxhHPccdzrHOEsWLffPV5dDQ34fwrrlWubnxipdPP/GYRv8+/t/H0wOiXNyRg1K9tJvvzdyWMEiNby/R+MCp6Qsky/wOPbLQPuCUw6gmQAekyYPLJ7i+hyyNLRE8/8Td6tBP7mjXnDFz8viuQkekc7yQf/L12yLtzsJOxTGm/MlQTkCVLMS9wRbknIHFnPx9zJ5Xtt4yvDV/hlv5VUPrgH/+XekkXLz2T2yTj1IEjBPq2FFwUoGVlCAuHUeUTgcqoh0vpSQ1L6OnuxNZXXsTI8BDOvfBSZGXzcd3BQFQSRyrtU9HEh9r9QCOG0kgihyY36PJtwn5ufbLnSbVnNDO/GPMu/LD388v0Ylm/8AVDjjbl9fIDUvlzoSnL3W2puJ7OdjTX1+DEgb30tJMLrrreUEMxtnw8Qhj9/gtHQ88p8WT84vn8ucrxyErkjcYC7zoYDRIzanlFP/KBDfa1YGKMqeUZVUJkALoMkDSa1o9KikRxVV2aGxswODhISybL9yXlFZKzl9yKKeFRmAH8INIFfJ6CNVSTDNg739iC40cOorbmBIXsqdOqsXLtOpSUko1X3Djv/C3QrQjTLpCLK7331YgOMDjtwCGL6V19/uknMGfeAlRNn6G1bC+FUVf78RAbGCo14VwHKH1BVFGWzH7Ge3zdVPDiVe72La/iwJ43cd6F78PU6TO4B8XpM/4blVQeRBHpeLDln0sWgdxwKEnrB6DCUrxoHy8A9X5ejNqeJDGjJw9KY0ZLZi/B1KV8zKhqGV71DCvfZ1zQquFGOQwpzklW9R2/8Y2U093RjramOjTX1qCjtRmjI8OYMmM2ps6Yg+Jy49B3r74ZpWf0npdOD4zefl4CRqOa/qOS866DUb/d9KLnk3hGG5ra8I0v3whrN73oGSWN8Y6DUaFCkwnKKq+DV6f3YUopVeqCK1uuOOmJOm159UVsfe0lqaof//TnkZtfwA31bF3VwGl8opdWAzQ5JvKGP75Md9rf/+pnOGvNOThjwSIXkOrAlxdgeG7oCVkHZ6LVr7cLJM3G0AHlqPIePrAHrz7/d5y5eh0Wn7nKDQxe53AqbCXvT5PsAZ0gAJV9eRolu+lffgQDna3c8xkrmYJqaze9pFG9xhbuM8ag2nmEwYXP5/WXk9FrTCKfkR32rQ2n0FRXg56Odho+VVJZhaKyKSidWoXsWK4SPh0odXSJMmb0By8fi4plAsn5x3UzA6VPJJ54C7zrYJSY1OucURFGxV124rmkUXlGJxP2aLeaVNj0q50vSrqehDDAKgoJXKoiA/v2T3/wPXo+6qZNm+g/smP3yiuvpPGxS1eswnkXXMIP/MLmBHFiYWU7Dhb38r48HQOmZgIuHeP+kE3eDriJIRKOsOGREfzh1z/DJz59qwuYXSCmOjInAFiKUD4RZXgCcgAQ1fG+yurD1qmu5gQ2v/QcSsunYNW6C+gRbEyzmTGVjgF9+4vyS42jrfqsTUO66gB7py5mOuGBY/u2mELVL8X29Xw+BM+zS6apT09zLXpa6pGSlg6yPJ9TYngDAwGkhrfTU6aHx9Mrnx94krzkFJKmUyfQXHcS5IpRssm0omoWCsrKUFJRiYysbOUSPPfMSyxCqh3lbvofvXp84ilHUsLnzuFXFU6LEolCOQu8K2E0yj7AbmAKu2mJ6OOHa3HpzAiPvhx/if4pnNrpAaJeKl2bcdLiEN3V2YFf/fSHdBmQHGFlvawdu5VV1bjq2k+Yb/MbIFQQIcKKe0JnpmsZcDIZ5HlFj6sjRAsQxoEf3P1tfP6Ld9IbYDxBLgIYPd3yZaAg6iQClEU6YteSgYWFhC1NDdix5VUMDQ1h9boLUCyGeGh5QuXxoCy6evYJBtHe7gBKv5ZxX3rko4Pr8Y8XOhUx3zz0+egiGZPIZtK+ni70kZvxujvR39uN/u4u9HR10FNMyL32pVOn0bvt6XXLkrGBLZXtE5w2kmc2Shi9d9PpgdGb1yZgVHd+nKx0CRiN09JRwGgQWNNWN+7d9GxJ3hqKn5KY0K7OTnT3dNObQYYGhzAyOkyROzk5iV4ZmpeXhwJ6uD5/Xqh2/SY5oQ6jEhj95b0/8ITRD11nwKjMS8RCjQpOpWlk3lVhEpHunI4gTWtzE5589GFcf8NNdotEBoynGV69vMUcTAidI0w+K09zQx22b3mFHq224uz1qKp2YtusYsiJFTKYkXrOGU+oPoQaKd/pAMp/CVXimMhmypFHdl6wHPjcIshxeEMDAxgeHMTQ4AD9R47CI5A50N+Hwf5+DNKfvXTs6OvuRHZuPrJz8pCdm4ec/ALkkGuVi4qQlW0su3PjjFCkV21VJ5dY8qK8gennm09M8khuFPeZNdWnpdxEoWoLJGA0zt4hO9opjIc0EiCNG0DlWqh0Ix7Ahvo6NDY2oLWlGS0tLRgaHkJ3Vxfy8vJRWFiA1NQ0ekA9OcieHNtElrCHh4boeabkTFFyv33F1EpUVlbSqz9nz5lr37Hs2TQ6dOgzIHsP1/odgwXLn/y3epl+2crVWH/BJdz+4NAAysGCOs5PtbQvh11+WV/lGbVLGwcF0XmLFmHGzDmT6hX1A77IgNicgaVeTc7T5iJSrR32Vj0a6k5RCCUwsnz1uaiaYRw9w39pcSME33+EzzlvmEcfYUqy+ou8viakqsAm0FmgEhzi9LWeTs7InE35/sl/c3H1XZOupfVSPeoex7vJYM+CyGEKkxZUDoL8TY7EI1BJ2nd4yPiMphsaxOjoCJKQhDRyyUh6BvVkpmdmIjM7B6np6cjIzEZGVhZdXie/Z5KfWdmeYQU8iMoHSz/oVJklShj95daT+gNthCk/tWp6hNISoqKwQAJG47Sic+i9G9lc72gQp0YSucae14GqKqmhM5O1ra2VXiF6quYkamtrkZaehuzsGMrLy1FaVo6iomKUlpbSQ+t1X+S80qbGRpw8eRw1J0/i6JHDmDP3DMxfsBALFy32HnA9gNT9kR69spO/bh3YgX/zKy+CbGKSvT550xcomEcDoEapUcliAdMXQgE0NTTirw/8L66/4bPIyc0TvGhqgLBtpQK5OL2hb0UIFXViWg5HDuzBrje20htxFi5diUpzh7zTD5lYTqZTyb5kyPuCPBaUxUoZgNqfe12NGQF88k+lHzAzgMp3MdsyMrvxYObcUe8+aI1/asnRWQN9vfQw+IHeHgz09WFggHgnDU8lgUkSnzlEboob6KdeyqSkZKRlZtLY3jQClRnp9CeBR3KOMoHNVAKcmZlISyf/jN8JjLIvv9FKgvKuIccLNl02UQx2sk2IN0QIcr9+vSbIMBtZ2iiBOjKl3uWCEjAaZwdwXweqAXg+xBkYSAOBKC/d6xQAshx45NAhHDp0gHo/yXL79OpqTJ9ejalTK1FYxN9x7GdK1VWm4qB58MB+HDl8GHv37MKKs1Zhzdpz6K1L0gFa8qY4wan0kkGCLK1yYhA+sP7csW0zjh02jnYit0eRWNFV55yH0lLjkH8WeNlJRQWW/K5yHQBVezhp+YwCcl0UcaTkwoK6Omx57SV66cEFF78PeQWFTDza6YPQoJAbKbSahYv9xAtCd21/HTtffw1Tq2bQ3fElZUzfUMSD8v1DwBGPjXBWSq6vSWDOkM9iqgV/zlPBnv3pqi8nU4JLYlgIu0ageJa8Yj3DgCdbDOnDPZ0d6CU3EXV10FuIyM+RoSF0thv31xOIzIrlUC9lZnY2MrNjpucyi/7MyMxCWibxWmbxQ4eyPupRUgcwVSdMiFKVY5aQkGttj0zsR1F6Fe95dJPftDEhn99++doJkZsQGt4CCRgNbzuaU/duepKWA7+ogFQLRPUBlOi5Z/cuHDl0EPv27cWiJUtQNW069Vbm5ORoWUsFnSTz4YP70dzUROWUlZdj9tx5LpkWLJEg/W2vb8GunW9izpy5uOCii3mYs3JKJlb3NMq8ozno2oqZ6d3Z+HdYsGMrxaVSxHfaMMXUiYMHJgErT7x2lAcWBiK4/LzBOHmSdGTSJrdn7dy+DTl5eViybAWqZ83hHEsqz6otTgEqssmVrYORX63v20G+VQeydPvmtk3Y+fomnLn2PMxftIweWM/2G9n5n4G9oC7oY6wo6cu0TGkey4soxySdG5z4vsXIUTyzli6u54E7BUCyMcvs6ipY7mhroTcLdbW1oLO9ld7RTrydsfwCGntJYy7zChDLy6d/Z8ViSCVXHoeASl53HyxU3IgmG2hDAabMkIJwXbmWqBsj9Ize+s17tOaUqBP9+KvGrVuJ11vHAgkYjbMtWnpHqATdaEvdpXtt76gvjDqSvGJZiefzjde34ujRI5heNR0LFy+hAOj38gJPI69RKrmB6be//Ck6Ozs4keSu+w9f/0lnIxPzKTvZbd70Kt7Y9jqu/tA1KK+o4OcI6cQmAUXJqCsdiF0TdnyyXFDJTBChwFKgWx5mHAMqoc5nKdya6k/VnMCeN3fg0MF9WLr8LCxYvMTY1S0DyziX122TvIOg1UJAshFl26aX6GH1S1euxbKzzqaNJINQWX9wASrXP+VL20YS838pgBpeUB4Wzb6j5Zll5FtdTtPz6QJUlX60CD/wtKzs9PvRsTE01hxHS30tWhpq6Y5zskJRUFKG3KIS5BUUI7eomC6rq15y/Jan9lsOF3MFgT+JlT3PoAoqm+uHrKIegm5cHV285f3ba/2mmAn5/LozKydEbkJoeAskYDS87WjOlp4Rm0TVAOnjmVRk9AVSTRD1gtC2tja8uPFZDAwMYsGChVh+5gpPi+jAp6y8Jx97GHt2vWnffkIKmT9/Pj2Hc9GSZbj0/R9kp09OB2uwJ5ugfvHTn+BDH7kWxaWlAnUZf7KTsD1H6kCo300nfh4SzfwCR7o3MzGzgy+ommnF6qk8VlLvlwB/5CSE3W++gV3b30BJWTnmzJuPeQvM2F1NUFRCsEpfYUZ8p3hCSbW2b34FO7dtxtrzL8YZC5cwfZQHLV0IlX2xce96lx9jZLQL/4T4AjHXHwVEk0Kk86YMdFWeT0cPP/h0P+Hkne62NjTVnkTt8cNobaxD5ay5yC8qpQe7F5ZPsTdFyiBddwoIA3pBYdIes3SVMtO5dPNRNlxdjFyfXh3dTvQ/7agLWNNokn9kuXPTVDQSE1LitUACRuO0IIVR6+W5mz04kIaHUQ9vKCO0p6cHf/3LA1i//gLMmKm+kcIbQMXQe9MYgvK/+cW9aG5qxP3334/9+/fTRARGr7vuOuQXFOAzt94meNx4QmEn3L/+5U9Y3jM8IgAAIABJREFUuWoNqqab39BdkyIzafqBqLBszk0GHHwJHUWSj53YpZNKgAPuGW4wAYZXJiyA2la1bWb8Qtpmx+tbcOTQAXo4P/mCkJdfEN0O+XeB59SwrWHPA3t2YvNLz2LR8lVYsWad2YYWObg3JTkAL3wm9G1ZOAQHqFJAVHsYZcvaji58iAT/vlEXzmsrfV48wNjs5DJodfq/BD7HQeM6608dR9Op4+hoaaKndZDrLMmNQqWVjudOpp8XiLlL8zkNnxkWwgGewtHpIUy/HGltrIYLPfNFeSzSX96sD61HPBk/tGxKPNkTeSfAAgkYjdOoHIwGhFKdGFIvIFVDopHLLyTg7v/4Nj58zUelIErzeuxu8vK2yrL+513fpDqRw+DJkVDkRbyid9xxB/39/975VW7Z0pjonP+dyQn4+xOPIzsnhnPPO58bWNlJ2c6pAkoVTHoAqDQ+k1HRNUnEAZ/cNK8EDKfzhvEmkg1qe3Zux56dO5CSmoaFS5ZhwaKljtU5W/jAMN9Ub/s4zzD2JCbobG/Di08/jvyiYqw570K6q9r5kiKBUOYbjPWrG/qCL8UbMvgniCnKbh8OBO1+JjxJAZffPb2fZuW4uprdWBXvSd5vbaxHW1MD2puNn0nJycgrLKaHupdVVtOzNo0uaNZZ8RzL4mP9pgAl/PlQoT40WhqII5hlGD8N2XFAP23YlDdFeEbnX3eeHhi9amkCRsO2/0TlS8BonJZt7iFnxHm8PL2lJJ+HxzTM8r3n0j3vMSUbhB575CF63mdxaQk9mqm8fAo9fqioqIjComfVfCrOfvyb+wzP6EMPPYQdO3ZQsdbNRKS8z9z6fzgXBAt+BF6bmpuMI6VqTqG0rAznb7hQCavuoZ09zsWhJnbSD5tHnHBEYBWh2C89CwwC30UGifW1pyiA7tuzEwuXLMeipWeivMIYnEWbhIUyS5irvu9gaCVL8ocP7MUFl15h35hk2dOGJOaBco5UYiCE++LhDaFuaLXaTw6hul5QuVxHMTdIOt5PDm5NIHa9Z3Oyoyc5h7O3uwt9Pd3obm9Dd2c7erra6U/yysyKobC0gt4sVFBagRzzsgz5sVSSDVmiXRWwGud0EFd28dmPS9gEZv7s2uiW6f+2q2ECNVWLvmKJcXpF4vXWsUACRuNsCwKj4ktneZ3kmfQYU7NQsVwSJ1hbW4PG+gZ0dXWiob4B5Iy9zs5OulmILMQXFBXSO46zsrLo2aJpaWn08OW01BR6mD05WzQl2fg9OSmJei7IbUsWlGzbugk7tm2hf7LL9OTv6TNmYcasuSBw3N/fh96+PoyPjaG5uZkejk82gJSVV2BqZSU9FH9aVRV3rqXAN5Kr75jJ2WsSCrP07rrujwcIq294QehEAx/Roau7E0cO7sfuN7cjIyMTC5cux8LFy+yuO9EQarcRZ3++Md6u4ErOoXzu8YdRMW26a0ledluSFEJNA7G+MQdk7cdIuSnJSBsAQgU4Y9vHgU01gMq8nyJ4s88lUW2gv5cepURBs7MD/b296G5vQW9PFz0Inuxizy8pRUZGNnLyCxHLz0eM/HSdY2vZQw6dnP7MM82CKwvm/lOA74juL+I0pPBbvQqr0s0RwuijuxvDqhFXvssXl8eVP5E5egskYDROm8pgNDCcCmSqC6lSoPUYN7WHVNO7SuCwp7sbPb096O/ro1cU9pNDngeH6DWfYwB6e3ooLJLjf8iVdmRZsqenG2NjY/SQZ3K7SCyWAxKfOjLUj9HhIc485By/yukzkUXO6iOHRWdkIDsrG7FYDLGcHOqlzczkz/DjoIWbVJ3pT4QrGbDy8MNP5MJpQpzOSu8nU4gIVgwrmLLc0OoFrIboYPDW1FSPo4cP0TNP+/r6MG/+IsxfvBRFxSWhIfRtB5UuyGPALgIwPnZoP17d+DTe/6HrkV9YTIWLUMZ5Bs0PHWBye+3lEGr2AKG/h4dQd38XIdTtdXR7QK3yufqQLz/t7WhvJsvqDWhrbqRneY6Nj9Hjk2zQzCuky+tZOXn0iy3bx8WyxeV13kaGXrYOjI0s6HTZVBLDrDU+aiUy+liApFqzkEfUlFZ+K5G3XvJP2bCtKGH08T3GMX+T/bpsUdlkF5koz8cCCRiNs4s0dQvL9AFGIO2kTMLQAwlbT42CNZI4En1DEZxhsLmxgS7Xkxe5tam03PmGKjsiRQRPJUAKJOeCwbAblSSeTxs4uF/cGxHcQKwBoC6Z3gAqwuGJ40dx9PABCqFZWdmYNXsuZsyZi7JyPkZK1M0PdMVyWHCwCMwF00JdwuTx0ytoPYKm96r35peeQ093Fy5835WWCYyOzhxH5AYkx0o8cDHxpHyTG19DQkCoG4KZmEqmbfwgVA2CPNCeOnoItccOoo0830lAQWk5CksqUFBSjoKSEqSQczvNcn3LFL28zG1POuDp9oKadTfluJ9NYSLQHtNcw6B6RrEHVcWmT4+5KIiXU3fs5tIFCAm75ewZcc6aTvan9jZHJiuIoPcuZE5jCZIxkXbCLJCA0ThNS2BU9dJ52LXy6uqoDa2WQI9vwbIyNUc5zWRcCSJ08hzDTOBSwBGU1QRPiSjX4d+ubVQuUODLdgN1/AAq05OdTI8fPYxDB/bh8MF9mDFrDqZOm46Zs+fSazrZl606V4dgsGvo4iZ/PxCNGiptmwSoS1AQ9Ur/2J9/j+rZZ2DR8rMsvjJ+ChBlvMdbzZLL9mrxPQvzdGIieeDlAVEMCdAv210XIy+/CautsR4H3nwdp44exNSZczF15hxUzpiL5NRUp6ewXkvF2aes3VgdWRDm3mdsKgVPVk/Bayrb5MRwonS0dcY0xZjpM+h5eTX9xktvEPUHW695yKtslU1ujRBGn953emD04gUJGNXFislKl4DROC3d1D0sSPAbWozkrlR62XwGypCVEcoOpkoYX62jp4CZ3MTue/uJ4mxPOXRJbBNnfrl3RUA1U5lAsGaSlleeY0cO2QBKrhsl54HOmbsAaemm94mprkxPPzj0hT0NHV3gGsYWUR0JJRC9X/1VINrcWI/nnngI699zOSoqq5z+yhwUz8Oh/PgjGzbNdhK9pA7EMsvPEhhkYZet4kRBqFU3Eu/55msb6fWZ889cgynVs01bmJb1AVAX2Eo8n77waXs5ndhREUxZ8LTkjQ70YHygl8JyUqwQSanmM2MeT6Ia0VRw5ple8qEKbFWno6hg1FdPawygCeXQqgJVL9m3nhOdZ/TZ/ca1q5P9umi+E6pEyu4fGMLXvncfHnvWuJ70W1+5EVdftl6p1oOPv4h/++599ud+6Se7fm/H8hIwGmerNTIwqg9x+im58USma3BRnjWOWJwycIqUI4ckQT0pwPDeH19odS21O9O2NrgqZIjAaOniet9vp7oX3DGU8frmV7F753Ya90kB9IwFSEtNE03AQZJlUR2Ppl0UU4FI8kUAlb66TXAZe998A4f27cJlH/oYjYdm9RF3y4eHQf+4zHjKtduSg0VDoioUgHQFFrAba45h83NPYNm5F6Bq9nz7VAveo+mW6VruV8CkI8fQ1tbLK72ZjuRwA6nx4djIEEaObMNo4xFukEkun43UM4xbsdiXzGEgGx95SPWBPkaAUpbUOSAgrJ8DQXGqihs+9fRl830uQhjdeKA1zhk4XPYN84z4buv1/XsfoL9+8eZr0N7ZjVvv+C986eZrsGr5fFcBBFx//OuH8Knr3ofC/Fzf9OE0fPflSsBonG3e2MV4RjVJTjOZQrP4cquqqyVVK1EIg0YEnHT6U9Ah9zYHWnJ9g8iRgacMnMzp2SnQy1NoCwDdPPb6llfxxtZNOGvNOThr7blIT0vXAtCwZbrymfoEhmwJIMpsE9ZTSY05wWXs2r4FB/fspMvyK9ca3hIHzhyL8B5Rfjnb0dEdG8p5SYU+oRuvOVHwK9Zpz7bX0NXehjUXvZ+Ga7AAavUZF9RKlszJsjwr24FOZzMSD6IOmPL5GPhk4kHtZX/rvXFg9OSbGDu5i7ZfR4dxLXFBQQH9mVS1BKNT5tNTPMid9MnJycb79n/GYyuim+jNFGFPHDL5zz1A0ANa5WUysOoFqhJIdevMC+BhG/h8hDD64sG2EBNG/FnWn1FkCyHweee3f4Yvf+46zK42bmZi4dSvNMurunblQk9vqp+cd/vnCRiNswdwMBqPrIkCPYlOk1iUlkVk3kl2wheFyDY6ecV2hpEVxONp6Sfz9LoiLL3ASVC0ra0F27ZswrEjB7Fy1dlYsWptOAA15eqApAUUnM01Yc+Vd4I9lVTHoGUEyENOhHjwd7/AjDnzMG/hMuTk5VtFGj/FTTZ2+/kDpw1UpkQvryTbLbzjTy2sZe0iA0azpVzg644JZcs7uHMb+nt6sOTs9RyE2jDNyBNjPY1NR/xyuheAqtLK5TJtwcCn6CUd3foQkoZ68eSTT2LTJmM5dsOGDfRfx8AIdjb2ITM7h54EkpEdw9xV5yOnqNQVUsUCqgs2OYjkiZJN6wWtDvy5YdWzbFIhM7PxQw9QlUBtFibq/flzo1umf/mQcY7sZL/WzS20izxyog7/etfP8O933mTDKFmG37RtL77x5RuRlekOfWL1Jflv/srduOvOm6Se1Mmu29u1vASMxtlyDaxn1EPWWw0A46x2JNlVHkW5p4uZaK3SBQFBPJSGCNcCNLclPhJ5CvhhuIWzJdFoaGgILz77FOrraimAkoPpxZcMfAMtp7OEYwoXvZOSJKbVGNegIq9oO199g0Kll1eZKVzL4ypU1Mrzwt8fRfXMuaieM882v+gR5T2H7t3qDnSa/ZfT2wFFVgUV5AYNBWDjJR35/mEAbB2t34/sfhO9vd1YvPpc+xglFkJleaxd75YX1N4Fb4KpBaPOT4mX00pr9Q8bNnlPqQ279nK9sUpiyB7HyMgw0rb+ibYjewsc8Yzefvvt9P3hNdfb+NbX1Y7DWzdi6twlKK2e42Cd4Fk0eE1EP96jysGcAlZZIFSnN7shOcdZGBBUkOqWa+qq8rzK6kfr6HiFvxAhjP71BcNTPdmvq85fYhdJYPJ7P7ofd/3LTXTZnbx0YNRazt+176hvjOlk1+/tWF4CRuNsNV0YjbOY05tdSY3u44zCKxoeNulE60G2ro84WFFrLAMoK7UEYyWH7fOy7WJdEO28Qe6H3/TyC7jo0ssxZ94CToAv0DFEIzOHbn5lXpaYTM38YM/OEgAQw+TxrVtA2B0aHMT9v/wRPnHzP9ltYJURDAo9vKQCUBvyheV92W58Ox/zzPhsGDJE88+YTnkkC7n3/ZFf/w8++OnbmHhM8WxPEw7NxrO8kirgdGxp6OWVzokZ9U/H1smBUaDu0C5Utu1GCsbxk5/8BA0Nxs0/8+fPx3XXXYexrAIMLX4ffc8CuJO7t9JnunrJKvs9bqFeCqZ8mLwMVvXA0QMamXJVXtQgZbB1pr9bPV4Bpv+4bmb4YV7I+dXv/TgyWUEEffPLt9rJ4/WMJpbpg1henTYBo3Ha8S0Howoo8+DJOC0QT3YJgEqBxwMYpRXzl+tlj6ghVAZXxnuOFuQWrL/9+X5Mm16Ntes2uCrsC1sTCKI6+lOFNYBPrPdE5dHxEos2ZfMc2r8bLQ0NWHv+e3gYlUFdKDgM4qHkreYXHyr3iPLL5E6besMvKWv7K8+hoKgE1QuWuGDUkiOPAVXDI83n4+V0bVzygFY/eSd2bUX5QC1yxvpovKi1TL927VoaNzpaPBPDs9ZyMaJ7Nz6KijmLUDxtphRGpd5MhefUtUTPLacbXcySx/o9/cp4u8Po5iNG7O5kv9bMNmKFySvemFEig3hSj9c00A1QiVc4CyRgNJzd7FwNneLRTnEKFLK/NSHSnsriqixXN5e3UC06kBdUUHWyIdSZ9Pn6sOBTc+I4nnniEbz38qswpXKaq+KTBaKqVo2nfC/goxXVANh4wTJMOVtefp7eCrRkxRq7Pay+4/IwhoVRof46nkq2P3EeWh3PKBOzqZQjeGLJzWoP3/dDXPmZ2/id7eKudWk8qBtGrV37vCdUM51ZJpvXKJbZ9KQA3JO7tyF1bAhVg6eQNMqP2eMp/7+9MwGyqjr3/Qcyz4NAMzRgM9hMyqgNqKDiFTUaY26QJPdl8MagyX2vjCktTepWXiqVqxXLJFX3vRjKxHjfS6JRb/RdEyQaFBGlZWwGmaeGpqEZmlkmgVd7XmvttfZaezh9dvf5nypL+py1vvWt/7fO3r/zrWG3pfNjZtPl9l18ILx88SKt+usfaMo9X9NmRSMzibIp/AgQteKig1E5oPJT915mVAXBJu04U/PBy/t3lpnRFTuPp7qHJK08pcJZ/+29onbTe9Pxc+6eaW9Qsv7+3ctv0cNfv9deTyp+ntSnUq8HGE05AvYXGEZTuiepng5v09UW3IkDoCpS8g+WUdvW+azOhEon47XT8Z4nfruhfgZvbLCOC9q8ie6d81VpqE1BUNVH0/qRICr50BgQhbpFmdY3hF6nmKPk4rf/QsNHjqaBQyr8uChh1LfPZOS1cBisF/Xt2nYMpum5/sjsuH74kOx0wS4ZOtJJMn3vDhrrf7u3bqRDdXto0s23C5uWhCOUNDDqds3fgc9OobMw6fknn7oPpvSDcmoYDdokati5hY7U76arr5tJrQ/volanj9Jl60i0dl3o4pVXEbVpx0An0a7VS6ldx85UPnqCG38G9iLXVQZfY2+KPk5W1KrttaTLijplPfeaJ4yu3FUcGJ18FQ+jUeeMymDTgtffvrTADzbOGU1PKoDRlBoWB0Z1eKXuVPKaEUKlMKqrWowsqHRjEwNVWp9DNMrAACPjxx9+YG+smHbTLSFxTUDWJQzpDnvf3QgQZimrEDArgnDRADYBjC54/WUaP2kq9S8fwsXGOHvJgaACPGVneyp26CdapxrzLFF2zNiASEQr3ltIZeUVNHDYiBCM+kAogG6QuZRtSJJN3QcQroLUYPOTft2oA6F8uROHD9KutR/R2Js/HzqOyoY6hhg/O3eW1r3zZ5r0ua+knp7ngFFox2uSX98ZOGIMo64Bzp7bcDQIJ2iLiLLMjK7afSLlHThZ9UlD+afTJbOCWlkqABhNqWZ8GNWhjJlD2Vhh2srcoAdgZv1hS0UBKMOEQRXGd103ZJnCgB0VtYUMk6pHcWwvefcdateuPV0/PfyUD5UdE5jjOFjSnbQ2pLliw6OfxKyoLJayvmeRTY3b1ttvvkYTp0yn3v36S2BU2DUfucnIadnrF5cFlR40L8leesciceebet8vNwsqALc8Cxpnnarj87uv/5GunXYz9exbpjzOye+TB4DMAfR8BtNbJ8pPq8vg0dsdz+/Aj97s5NjxdtC7GVPmvQ9eeo6mfelb1Kp1G27JgbjZZ93fX6fB46ZQzzJvyYwmKypMu+uyldGAmgAQhd31ys1LTMPu9ih/bBuDb8Ywuqa2ODA6YQhgNP6dubA1WiSMskcuWPK9+MsnlOd/eWeE7W/gnwRx161V9hlj9Q2H7TPE2M/Hjaqg557+nn0MxP7j51NHSAdQsRvI3GCWu+blvSkWgOqyoFL4lTG8kmPDH7y/6G/UrXtPGj/pupAYWhhjaDNONpNBIg7iC2VD248kACsAFwfeQqDSgu/b//UqjRo3kQYNdR5zKUK+PFMpTLH7fYwDo5Kp+qQwypwy4SGr+Xmmjs9/f+3/0g13fpHadezEnxNqC5JuRz0Pj/KMZxhm3XJs3zTrRj0bGz9YSP2GjaIeZYN9GBXBbf/2DXTm+DEaNvkGN+TC9DeTaoy9VjQEg04TPAgGZBvKdCoyq5YBo6UAcWFU0V6WmdGaPSdj396yqDB+sHOEE175UaDFwah4zILs2Aad/NZ6kKHlZfZiZV19C0YLwH5hFzNsJENTOikjP48NoCHgiG4+TqaSpw09fPsaxoBQa6C8/sofqHLMNVQ5JjjnjuuWYC9OJtK3k0VGVNDaRQ9e8IiMsai9SUZWpqlxvSjdFH5GAfP77/yVBgwcQsNHjeX6HGQ4mYykLDPq6udDIPd38IiGOHDIhiTxjvoYxztZ2r/9pxep6rZ7qEtP64k1/NORVDCaCjLZpQXS3fPRB9xbequm9P11o9P+wc/ysofEnzzcQDtWLqEJd3zJj7luM5F8k4+zqDQ+ICbIiro0G78thkxVkNsEMLpub3Fg9JpywGiqm3cBKrc4GBUPsI17BphYXwej9UkyowWgwQKYTDTcogBQb1CKXkYH0Xu2o9vPyL4E1IL25ZFoPHyYXnvp/9Ad93zRPr6JfanAVgZiEU0HN1hBaBOg4/QzAVEBrkL9yRgObfuG2dQQOCeot/rjpfZGkvHXTY8Bo6pD71NmRjM7TireWaOW10vfep1GTayinn2t5QpB9tLTmIVpk+OdQrvfmSn98FFO8s1J3iav2JugiGjZay/Qdfd+jVq1tk4cDV7WOtGav71GU+75J+3ueQ7jmvIQfOXGqeabGV1fd0p/WyhAiXGDuhTAKkymUaDFweiKms307PxX/Gl0S5w4z5lls6JWXXEan52itz73YbRANFggs8ZjJh1c6prhs0tyQjPMUkYIpUDQ1LvieQBTpkjtQ+xra3fRPffdTx06dpTCjahUFiCaKKuaEkT96owcpjAclalsahjdvWMrbd+0gWbddR8HLdGZUQ2Mppo25xE7cWZUtqNesYPfitvajxZTxy7daPi4iXoYjdpRz/yYUO2UTwyZ4qNGFWeYWi7sXrecWrVqRYPGTPbjev7TU7Tyzd/T9PsfSg+ibko0fqaSn/+XHamkzrY2DYx6EJ7lNP2GfcWB0bEDAaO6u3NTf94iYfTVNxdzz5Q1hVHZY8HEgFi2Dhxs9O3XH0u2ZrRlQ6anWriXkf3mACb6q6DKJgYtq+FQ7R3fZuI23Bvvnt076Z2Ff6Gx106k66Z6a9CcNoyzocxNXKZIoe3wCOR6oJj2loGoqr4sOiKMFhNiTx4/Zh/vdPc//lMYRjPLVMbZUCTAqD8umB902uOkVAffqzdk7d25jfbt3EpTbr0rHoxGZjz59aHRxzkFG7r8TKhwrqgtRcS60eBzp9yqv/6RBlROoJ4DhlDj3p1krROdcMf9chBVrtPkp+E9UGuqR4Mmas+v5PmuWRYg9L0QMLqx/nRTM4/d3ugBnYvSLhpVK9AiYTRJZtR0Ol8EVhmMFhM0C5vJ5DDKH1Wp+pshgCo3IzFu63zlPlfybGQalhr219MHi/9Onbp0oRtvvo26dOHXJ6lilCgbKglJ3IyoCiLjgqjMTmZAGQHlhcqovvb739CsO75A3Xv1Do31/Bx8z0QpKYwq4dqJ3mvzf05f/Paj/hmhwZFO4lmjzBFN7Dpaboc7D448KIY3MbFLAyxf2Kc2iZBp1Wan7p3PZRujiNYveoNONR6ivhWVVDHxBiMQZVhOsSZU3KOufka9bYtLhmazXjSAVGfIpjraqQlgdNP+4sDoqP6A0byBcYuD0aRrRmXT+7Jgifb3JcyMJh0IhYPNmFlM0w5o6M8YDpUFlZPwxtPwHM9FcmZ0tnXn9m20esUyatu+PU2+bhoNGFTOqRQ3iylHf8ekMdBGQJznnLGtiIyoyqfMYDRGNjarNj/+4F3q1LkLjZ0QnHrgxVD+nHfVND3zfujHlyQ7moOzRh0XHCVXvv829e47gIZUjgmfNcpuGGLhzx93sqcj8Rna0GNBmTEry3iqIVNyrqkApAHABmVVUKh6ApHppqUwcAaXAxMQ1cKv24BqSr85wOiWA5+a3kkyLXd1WadM7cFYegVaHIzqdtN7a0CfevJB/7inqKzo3xYvp+FXDaJhQwbYaotT/lnDaFPBpg4CtUPL0IBhsTC0RVbMAYC6N8zDhxpo+7attL5mFZUPHkrjxk8yhtDgdi+ordhwExseswTRhLa4SEVtJBLIOxZQpqkrjDO23YYD+2j1sqU0+977JeMzKBkAKh9Rfqd8nE1MxT9rlIXRxsMNtKF6Kd3grZ/1Mp22KvLjnQLoC2cn02xiUk7pR8KvEyHZhicWCrkHcRo+ZckHPtljPxkaZIExDKn66XI1GEvWiyraDZ8/mqzdLNeMbi0SjI4EjGpv8U1doMXBqCVg1DmjMhj984IlVL1qI7fO1AuElTH9xiNP+3Hxzh+1nklrvZLAaGGAk7+rJoFAv5OGlQ2LGY1pvSb5AVBrGn7bts10YF8dnT9/nq4ePZYqR4+jTp35qR9VJjQKQgWuCkOQokDcKX7fjCSIWU3zxwLKCCh0mUd6hJps3GTZ7ut//B3dOOtO6t2nH//1UJ79yUAql80tEowm3TTlrcF0s/DVb//FfgrTwIqR/qkGLuIFRykxWUgVjHrjTjZ97tSRTatHrxvlzyLVTNV/dp5aHdpF9OlRZ1h16kGX7MeBtmcerSl/Jjt7DJQ3GBzAi56eZ9jQrpY2ExsAsPMvk81S4XZ5r6SH3rtFRPtZwuj7qzYb3R+yLjRjUmXWJmEvpQItEkZTahKrehSM6gErVlPsthfv/hzXgFPekCINiyXyIQrUPIMR+JlsCl7Td2V7l4mOHztKWzZ9QhvXr6Weva+kgeWDafjISureo2eo/7q+ZQV7TnekNBkZ5qaCZDErqpK/0EAZeSSU4JSo55YNa+nI4YM0dcZtfpw9f72yysyoa9uHNu7vmGeNZnbwveHxTgyMWm6fOHqUVrz3Ft38hS9zTy/y1ml6MtqahNaI8oBu6SFCZ9QmpiTrRm1/mAyu3d7ZU9R6/UKiz4RNp23a0WdjZxO17yJfC+pFXpotDZ8p6mOe8GQm34zBWlEOFSOOdOLKeWtEjdrlaxYLRp/5X79JdP9IW+mxf/lWWhOon7ECgNGUgnowqj7APW4DGWU4DUjSoEhc5/kbdkCVhnb02U9Tlub6FtFRHfBu37qZalavoFMnT9I1EyfRsOFXU7fuPaT9SQqhUX1qKnDMGmxjZSc1QOjxtiyMqUGkPQWrAAAgAElEQVTWoO0//Obf6QtfeYA6dnIy39Ew2pLOGuUhcv3HH9jroUeOn2KDnjdmuLNGWRhldrmHATU4Q5QDR+aRorEynmxboSl5F8A3L6FWR+vo2LFjVF1dbftfVVVFPXo42dFLw6ZyWcssgDAEiwoQtcvJnu7kGpCvC+Wzon5bzQhGdx46Y3hvyLZYRR/+iL1srcNaEgUAo0lUY+rUHU12tJOYnkwEhgaVDIrEViBkM1Uj+QNQS5Ca1Stpzcpq6j9gkH00k5UJlb10AJoU8jhGkiY/5RnRqFBkDbYsmLHaxFkykAYm47SvBFkDGN22aQPV19XSTbdZxxulhNGk0+bs7nRX7GzPGpUf7+Rnf90s44Lfz6eZX/gKdejknNMYmRk12FEfglR3DSoPqPzh96EsKqup4ogn+wzT5a9Sq4sX6Ne//jUdOHDA9r+yspLmzp1Ll9t3oUsT7uG+4qrHfQbQF56ej4JKds2mY0O+ZtO3LwFR/rPmD6O7D5+Nff/JosLQKztkYQY2MlQAMJpSTDMYTZnt1MBeKhZU9N80s2guX2QOMjDjZ1zMLJvAoBIIvSaYNteuXkkff7SErh41hiZOqaKu3bqHHDHVJmravyjQKIBX0H052CqK+3rIQFKqdcSGrDQwqop9mqysyv83X/s93TjrLntZRqrMaJYw6gaIWy6Q9HgnxTIAEUYbG+pp05qPaert9/owGhz15AwNfwre9y9iE5Mki6k6/D4MroFdVRaVfZ+W/cH27+mnn6azZx0IsrKijzzyiP3vi1Vf8cd2YhC1LBhlJvktTfGzok5Dpjvp7dKhzGv8DUyWnf9xw1VmF2eDUrVHigOjQ3oDRg3C06RFAKMp5VbDaHCDjw2LpQSfAhDqAEhSPHINrG4a3rP3yYa1tOyDxfY60Kk33kzt2jkb1MRXavg1gG0V5DnaZAuOqW1KApY2Myr1KQOgVY0tEyD+7MIF+sPz/05fe/hRe0h4UUh7xJNjR7G5qYhHPAX9Cx9LVbttIzXU1dLkmbOd9aOuGv4z4TUbmewec+tKJUcysU+F0pVld/RHlL1Us8DeuLRw4UJ/mn7mzJlk/Xe5W1+iMbO4r7uf95TAZTjLyV8p+F36Ajaq1oC6IBvaee+ZlmyUcquoAdgv4BgRc7lhP5l+CH569bPcwLSn8VzKO3Cy6oN7tU9WEbUKpgBgNKW0PIwmBFADWjUoEqsnptk9c6OGmU8l3ZntqzL1W+uNa2jr5o300QeL7Wn4qTfOpM6d5Y+Jy6RdUxBVUFMqEFWRWFrANYFRt4xqDJvAoEeATW2DBeOD+/eRdfbo57703/xRHJ0lZdZcchoo4JOdonZbYDcE+VIn3czEZU3dnglj0umP418UkH6y4kNqdcUVVDnheqaseAg+s5kpYsreP+qJgVTZhiav/+zZo667PhT7QCyB0kt71tHlvettZa11o9bLyozar/JxROXXcJlGD77YN6WgGLEOVDySybfpjSAF8Nkfu8SrhlPHiM6noIzBsgC3sLJNIsoSRuuOFgdGB/UEjIq34mL/DRhNGQH2yxQLGJs4+xlqLpazMpG0uBetLNO+qSups5L+3Zxo145ttGzp+9SzV28bQmW74r0O5AFEXXQIa1oIwGV0iopNVDxiZ0eZNgPdJa3rMqRZ2ZE2fZn21+2h5R++R/fM+bofi2gg1WxoSjVt7zjJQiM7TgK/HFfZDGZQL/qRpLxtBlIvE21Zu4JOnzhB42+4JfBBBtTSLKdsh73rJbcL3vVdOPLJLsmsDw3+dvTwM9YMlF767Bxd2rmKLh/cyX+P+lRQ65FT/ffM4E49ze4Z4kqopu5ZT6IynwJ1mvnIVxKzoIJJ2xNtmVZE/316dtP0SY5GTHnLtqsP7CGf+crCNmwkUwAwmkw3v9beOL/sIu7spkBm6m6e4TOADbPeZAKh7t234cB+e02olU+YeuMMupI5P1LmTSZtpwRGFiQ4Hw3sBtDBUAtjJGpdK1dXIk5WMBrloyobrIVkBUzG0U/WP8ufutpdtPTdhfZz6zu5j3oNoK3wgMjqxR5O7wEZO17MgJR/IpJvX5Ih9Y9ZcgutWfouXbx4gSbO+Aduh73ni6+LZJe9U8YFXGYse5DJrkX1N2vFhNLQ+lOrzQvn6fLpRsffzj2pddswmIS3BhmAmkt3IiiGoE8BnVw51c56dwCLywT4NtQZ0JAvxj47BS3L/zJ9qNmF26DU/uNJNwAbGI8o0r87YDSdgtnXBoym1FQLo8UC0NR0m13m05M4rkuZZCTdm+a5c+fo/UV/o8bGwzTz1tnUr7/zRC3VK8u2OdhSNBgL7ARBtWAW4UCTwSjjg8pflQZJlifE0lMD9TJbJ08eozdf/T1NvfE2GjJ8pB/VAP5kUMpnAwNJzKbtHdvC1L9sl71r2POgUEDqukO7Nm+gHZ+soZvv+6qNK1Z7ftuCth58enWdsuGzSZ3P5aAa9Rlni9tlz2d17Xa9wEqmyr2AhsDStGwEcHJAKDSgBFnJB+L6T99nZVnh4qPoi7zPwbtZwuiBExdS3oGTVS/r1jZZRdQqmAKA0ZTSSmG0iQDUFJjMulh8+JRCq4ZgTTYoraj+kFYtX0YzZt1uPylJ94oCGbauVjEN5IT6q+hrEhhLZdsAHDm+lfid1GcPnGQxSpwlVcB4Ynt+XC/TB4sW0oljjVQ14zbq1buP7bYxkGqh0SnAP1ZUlcWUH83kWhD8Yt7lHu0ZnSH1+ibLxh47fJCWvfNfNGzsRBo+dgI3bc+Cp98y267/7xRQymjpZ1Zla1CFo6NsYRRT6D7ciYORmcuWwSNj0qlpAJx+sUiQDH8om1aXNOn7YeQvp0m4RpYwevBkcWC0b1fAqO4+2NSfA0ZTKu7DaBMAaEuFzxA4KeCBDZUJCG7bsokWL/objRk33l4XqnvF0dcEgg26EeyNjwOijGENqxfUvg7aUwGpQrw82GSB2fJn/769tGzx29S3bBBVzZhFV1xxhXq3PQOyfhf9dbARmVMxw+gSnheDaABWrVtVwKf4vHllW2G7NR+9Rwframn8jbfSlWWDtFlSH3A5mAyyytId+hFrSlnwVR7M72npFWDmvFWwJgVTQ8jk6ioaYCbWpZcpFXQqwdP9IKo/0s9cLaLqZQmjh059prssF+TzPl3acHbPnD1PP3rmBfrrIudhCD95/AG6786blG3/fP4r9NuXFvif68oXpBMtzChgNGVA9yqOptBBgmmzcQAp2mZwgTdtmyunhKVE1tSm02RC3Rva4UOH6P1FC+0n5sy49fbQM+NFj+NobALBnn3dGEgEczkB0VAfTbOjDHREjZwobZp0aYFCbzGDa/m0eUMNrVn+EQ0bOZomXH8DtWnTxs2SMlPEqsyp9nzQ6I1GjJvB5h1X4GSH44s74x3HPe19CHaFYP8+ebSRVi99hzp17U5Xjb6WevYpsz3xrkChTC9zhFUA1fxjS3koFab2mTElTvl77aqypbZjptPawoD1q0WQG/+RvGAUaHpNRkKyJrMbaYPphCmIfzfDNaNHThcHRnt35mHUgkvr9ei8OXT0+El6+Ilf0PfnzaEp48PPsLfA9bn/eIO+OfcO6tm9K+2orad5jz9LTz35oLR8+jtkaVgAjKaMMwujOvgwaSoOGOntadFJbaKA8CmFtQwg1Fpj9t47b9HRo410/bSblE9NYjutA0K+rNZJ5qYbHR2TdtNAFwsnsqNJnc+jg2wynnX9SJrJTOy/kEFURSGR3+w6QwH0WD3XraymVR9/SGOunUQTq26k1ldcYQxyHLRxkMW0IB7RZLKO1NeF+VGaEQCHpu1dv+t2baetNcvpijZtaMS1U6hfubPxxQdaIVbcelJDwPQ3VPnZTv4MWBaS+X8znddQmAlQcsCnozq3sFExQ9Bkx7kJuIoH5qu+JyFbrYi+Oy27DUyNRYLRXgyMWvD55L89T499Zy4NG+LsJWDhVHef9bKqVZNGR2ZTdXZK/XPAaMoRYMGoyU07qpnsADTf8MkBhpRIwyppe+SKZz05acl7b9PMWbPtx3fqXnE0N/VB2j+JIyZtFw0UmU6YjOukUOd9aXRtpLVvEpPYbQjHS3nZPBHw166sJgtMR465lsZfN53atm2nzywyEKY8DF9xfBLbV8snFSRy2U0tkJqtI7XbdoVgoc96/2D9Xtq6dgVdunSRBgwZQUMqx9qAHgWlXl88be3+CDvyvd327Dml7A784N/8eafBGabyHfK6a4f1uRFISggxdj3GhlFdCT0a1YsCZMFAljB67NOLJnJnXqZHpyt8m1Zm84dPPU8/ffJBH0b/vGAJVa/aSD9+7AHq2CF6570uk5q58y3UIGA0ZWCTPkHCBEj0rjFZDn1hGemF3tPBQdxmpPYMGtECoHu32rd3D73394U0aPAQe0pe94qju6kPXpsG3eJ/uCgq6EA0C8ASwYnTzTC7yPkRty9NBb0x2jEZG35sDIHUCvi61R/b0/ejrplIk6fNiDmN7rZodGB9AF1+tzUH5LOwx44Jo01TzHmefHv86PJsHT1ykHZvWm/vvh9UMdKG0iv7W+tK3euYMO5CT7di19ayejD1WCBm+8AtVRA2bXljPw606a4ziYA10hHHu6x8VNoxWHLwnQwzoxu2CGe+mgibQZmxV1dwMPrMr16mp37woD3tbr3iwGicLGoGrrdYE4DRlKGNA6MmNzu9O0aIJDcjAQYTgNL7FJRQ2jNsyKh3l4nOnjljQ+jp06fo5lmzqdeVzk7mqJcuA8bW1frB9Mewa+lANAZUMUWVj7Uy2YBl0i8TTTNvi+sgH/Gs2orS0ARIORxz4WfTutX2E5ym3TKbRlSOYTb3KHbga7OWhutIYz+xKQ4AxztuytNlz7ZNtGvzejp35gwNrBhJ5cNHUefu3e1gGoGwZAe+V5fNzMpAV1xDq75m6LYV6a44hfs8FZQaVI4qkiWMzv/Ni4UTKcLyvG99g4PRpJlRC0QPHGw0yqAWpaPNqFHAaMpgmcCoyQ1b7YYWi6KqSj8zgYw4siTNfsaCP4YOVixfRmuWL7On5EdUjta6GudHgJHazQVEmwDaTMd2U0CiOBCybvN440Hq3rOvA0zsTwuTLKlb5uLFi/Thuwvp9KenafY9c/TT9mzWT5pBNARS9qlErlDJNjaFp+39YWaydpX7UXWZTp88QbVbN9LebZuobfsONGTkGBo4fCS1bddeAqUBqfLA6XSIzaSGN0mp16pqLyAtpIABgxr1NEsYPXXuklGbWRfq0r61bzLpmlGAaLZRAYym1FMFo3EAKOyCERLJPS9W9jMh4Rr11LW9ds0q+vD9RTSlajpNrpqujVycGMTxI4Lx9PCfYjrbtF0TQMwK1Ew11upbIMAPgaMsQhFtHzmwlzauWEIWiHqv3mXldM2026hTl+4BlJoAKZP1O3zwAL3zl/+kud/8rh5I3cC7k9nMOaYuhAnrKWPBoQ+7nnVv17xn230/pJECgh0qZM4Z9UCRj4RtjgFt648jBw/Qvh1b7Gn8PgPKqXzkaBowdJgLmkFffUuhjVz85iWvCRmYRmzfM76uai9AEQUSXi7TNJlZ3Sxh9PT54ijRuR2P5lG76b01oXPunulvUMLUfGbDyTcEGE2pqQijJiCgutol+loq4SZlx5jqWWQ+WW+0YOIVdhveunkjfbjkXRpaMZymz7iV2raNPrDYFJCCZjTKJwAloQvK6XIjH7ibdnRcTfve1DDKo4iiDwl1Nu2zkdYMJF04f5YW/efvyPq/9Tp79ix16NDB/ne3Xn3pxs991QElhqpYX1jgkpU7feokvfXGn+jzc79hn03KNB1+tKb7YRSQSg/IjwGGqo1NLLiJYCc/lJ8/BircL3708Tadz+p3bac9WzdSw749VDH6Whp89Wjq2qNX8NSkgGW5jU1+W9yaUga02YPwVV8l4XIQ/7ocv0boepHF5Tu5G5GtP5zhmtEzFwrkpEa/jm15GI06Z1SEUe/v9Zv49a533VqF6foU4xYwmkI8q6oFo3FvhkGTxljGeyn5/mb9lS42gNra1u6mD5csoh49etH0GbdQ127OmjKje4iBIEbqJwQk9gasO24hKzA0bVPb7xjwa9pmcLM1CowfYoPS3HCI+12M0mLnxtX0yfL36dixY/Tiiy/a/y8rK6OHHnrIbrPq9n+k3v3KXYgMWvYfM+l6xv4tgqu1hrRjp040blJVUTY2eV574MwBKQfAcugO6gf0J9rkYDakiZBF9cee848LF87T3m1baNv61dShUycbTAdUjHA0l4xT21pUxlT4nB084o+HJLeGuONVNXij7Zi1YlYqfi8fnprd0U7xW0eNlqoAYDRlZGutQ+9jf+u1OFA68BlQit/n/fX7qGbVcjpz5lMbQvv26x8ZpSwBREZBccMbx5+CgChHiGHpTNrUmJDfQw2FMh79KX4ISP038I/1bUvNMtpaU03V1dW0cOFCv89z586lyspKmnzz3dRv8HBmupl3mG2OBR0WSI8fP0aLF/4/uuf+rzPT705NH+rEDUgF3tjEth5AahByH1gl8fFgkPPf/46Hp+8DqIzOllrlrCOidn6ylg7V19GIcRNp2LiJ1LqNm1GO4wuzKz80TozGSPybhvgDRWfBwA02INx4kX3jde2pPpf5ARhNqibqRSkAGE05PmqPnDO0YHwLduxJrgKxLlAar6S2UjQQs3ehC6n1xv76Ovr4ow/o/LlzVHXDDCofclVkL+JAnyOpQQdTAFDIekRzWl8S+OFX0XSzYDAag2C1/WcjL/THIIrScRMnPpYBC0at/2pqauiNN97wbVqZUStDOtXKjJaV+xDpM5fBtL3X/7raXbR+zQqa/fk5wdfe8ElHntwiHHowGd6VLlnPabDT3g9raF2s25IhCAZ2BPB0hQuATZUtdSxYO/C3f7KGttWspCGjxtHwsROoc7ceoSOixOEYOipKHCWKgaUfb/yPB91lRm/PvQUYFtQWcwtoy2mQ1pPrIWRGDe/5KBZHAcBoHLUkZaNhNNYtNwSgZhcP8w7EvRlHWY7ZM96U4MiO7Vtp3ZqV1Lr1FTR+0hQaPDQ4A07mQ3OGUC0UFwtCmTu36bgrSBwEgjD1RcmuhgZk43nv9k+oZunb9lrRxYsX04EDB+yMaFVVld3cLV98gDp26S7NjIam6jl9A6eql7xL3br3sM8g9d6Vna/Jjhu7XFbZ0YjD8cWxKrbLfR46B5X5VICh4EeTOZTa1jg7zh87Nq6jbWtXUteevWn4uIn2xicWDfklEi7kseLJf/crL30mYz56yJmDq8nQNcm4mtjhOqyB14emDjG/6aAkFDBUADBqKJSqmBxGY6CacKWIfeGI8F9qK2EDMXoU9kjSZkPDftq66ROyDq3v3KUrTZh8vfbxnSY3Ah5KDDqbAP68NjL3R3MTEIU1bV8buwK1qwVviZAGEZPdNz3K0H6btVoIMPzRwlfpSENdyO7QURNozJSZ9vuczYhd9WLZ2h3baMvGdXTb574YAlHWDfWTlHiLso1AAndFbPbhIckDTxWQcv4xqUAZ/Mk2OXEyM5uswv0OjyLeN+fz+tqd9rmlnx4/ThXjJtDQq8dSq1atpGAqG2MCIkYuvTIZo6Eysa7zZsCq84PVSffF0Nny618mmgcY1cmJzxMoABhNIBpbJYBRo9uc9KZpfCHQ+JolfBqDhMwniSPWW3tqd9Gu7Vtp145t1LFTZxpZOZpGVo6hzl26KHtmClysAaNI5BBCBQ6KjLbvvmbwFGxKPk27QkfjjP8440E7DgzHgLWRqWHPDjsebdq1p37lw6h8+BgeRAUI9bvItRFQ/8plS+ho42Gaddd9Acopd74zZ2Qy2nnI4kGH15T4Pg+O8qOXHGhNDqTc9UKaJQ3OJxXHeTCW5ZnSAKglnweS2lB64ugR2rVpPe3cuM5+ytPA4ZVUVu5suGHX6qqBVH9DEH98GF4CQ8V0Y1n9vWA8UBQy+U6ZZFVl16R5VciM6kcJSsRVADAaVzGh/O4jzrEv2lesX8Zaa+7FVVLO5CqkMK+9eUe5JemftfZz546ttGv7Nvv/AwcNpquGjaSK4SOKszM+BQSFLsqGOucSBg0hjA237sbpldWOIQ4e9OPctF0ONjR0YBi6yFMykmZDjzc20pJ336JB5VfR+OumGYFoaDc6B76uJ5LHhdqaCHo74CqBTma6nh3rHugG7/F1pZlXV395ljQFlCp89H0TwNR6ytP+2l20v3Y7DR4xmnr1G0B9Bw+lDh06SdePm8CZydjhFIqooLMVNfYLCao6Hb4NGNVfuFAitgKA0diS8RW0MJrgxq9ySXoB0l3RIvqnBYcY8GkVvXDhAu2r20P1dXvpYMN+OlC/j64aPpIqho2w/++dpWjcP4O+GfUh5Q+BOEBUbCjT6lEgGMwSuk31NmnTYAjxP+wi4SE8kMTiLLyxgPzp6VO0ed0a2rFtM91w62wq89c2Kg6JZwjLa0MGhn77hjDq+6RYTsBqyvZNejyVt95SMqY4O4proF1GWjegWc4H4dcRC32hcozdi59doP17LCjdSScaD9Olixepz8DB1LNvGfXo3cdebxp8b0M/O7nLlQ7Uoms7pkxgNWrcFgJSte0xBQCjKaEB1aUKAEZTDgwpjKaEH+GaG/bQ9A4r1NSCSkz4PHvurA2e1rrP+ro91Nh4xM5+DhxUTgMGDaayAQON1DWFD14XAxEUN0Ejp8SNDQbNsfChbCOBTyxwRIcokqSEG65ehdTtxuyrSXvKMSyBGqMfPQrJotqRVVFBaEN9HX1Ss4oa9u+jayZfT6OvmcTBr7dZSYQY2fPTvTaC9vnpWu99DtJUsKfIjrLT9SGfmDek0Cpti/FWMR5YKJW2ab+pmMJnsr8C5gU6c345U/kH6+uosaHehtOTRxup+5V9qEfvvtSt15XU48q+1KFzV/tcU2tTpfx6LB84OljVXUZ0oKqFRs9Zo3uQero/qp0Hr8c0vf7qiRJxFQCMxlVMKO/DqNGXX9+Y9CKgu4IpzGYNn54bq1dU05aNG+jkyRM+eA4qH0J9+pXpO8iU4Lpl0Efj/sSEINHpgviVwCcTONMCcJHb1YXVpI9pAbRQbcjser6eO3uWFr7xJ2rTpg2NvnYyDR1+NQehkdDnwxOLneLjM/nI6zYOsZDnA48sO+oW5IBW/M5yY0rwkasfVDTJlLIbndRQGh7x7Bhjj4eKhumA2i5fukTHGw/TsSOH6PiRQ3TyWCOdPHaUzp391IbR9h06UvuOnfz/+g0aSv3dx5Q2FagmhVTVtUyB0qFjymRsCxiNdZtDYUMFAKOGQqEYFIACUAAKQAEoAAWgQPYKAEaz1xQWoQAUgAJQAApAASgABQwVAIwaCoViUAAKQAEoAAWgABSAAtkrABjNXlNYhAJQAApAASgABaAAFDBUADBqKBSKZavAiprN9I1HnqYXf/kETRlfma1xWGsyBbw4Wg2OG1VBzz39PerZvWuTtY+GslPgzwuW0L/+7AXbYP9+vWn+z75Pw4YMyK4BWCq4Ajtq6+mZX71MT/3gQe57ePT4SXr4iV/Q+k07bR9w3S14KNBATAUAozEFQ/H0CrAAg4tiej2LZcGK47PzXwGAFisAGbYrxhKxzVDcJjDFwqb4o/DM2fP0o2deoKpJo+m+O28iC1h/+NTz9NMnH8SPjSaIDZowUwAwaqYTSmWkgPfL/fHvfpl+8NTz9P15c5AZzUjbpjRj3fye/Lfn6bHvzMUNrSmFL1BbVla0etVG+vFjD1DHDu0ALAXSudBmZZlR8T0RTgvtE+xDARMFAKMmKqFMJgqwv8h79ehqTxsBRjORtsmNWLGc9/iztL/hiN/2P3/5Tnp03pwm9wUNplfAy6wNHtDXBtK33q2m3XsPIJ7ppW1SCzIYlWW5fz7/FdsvfF+bNDxoLEIBwCiGR5MoIGbSvJsfYLRJ5M+8EesG9+qbi/1MmhfPOXfPtKcC8Wp+CliAsmXHXlq6fD3WjDa/8Nkeq2CU/a5a5QCjzTTALdhtwGgLDm6euibLpHn+Yd1oniJl5osIo1YtcarXzBJK5UEBK3ZsJtSK75NPPY9NTHkITgwfkBmNIRaK5koBwGiuwlE6ziAz2rxjLbvpiUDTvHtYWt5bmbKh5WV+Vhvfz+YZf6wZbZ5xg9dEgFGMgqIogJtdUWTPrFFvE0RZ3172ujPEMzNpi2LI+iHxypuL/ZMRkBktShhSNyqDUeymTy0rDDSBAoDRJhAZTYQVALw0/1Ehnl34k8cfwHrRZhxWKzv625cW2D3AOaPNK5Did9Hynt1QiHNGm1c8S9FbwGgpRh19hgJQAApAASgABaBAThQAjOYkEHADCkABKAAFoAAUgAKlqABgtBSjjj5DASgABaAAFIACUCAnCgBGcxIIuAEFoAAUgAJQAApAgVJUADBailFHn6EAFIACUAAKQAEokBMFAKM5CQTcgAJQAApAASgABaBAKSoAGC3FqKPPUAAKQAEoAAWgABTIiQKA0ZwEAm5AASgABaAAFIACUKAUFQCMlmLU0WcoAAWgABSAAlAACuREAcBoTgIBN6AAFIACUAAKQAEoUIoKAEZLMeroMxSAAlAACkABKAAFcqIAYDQngYAbUAAKQAEoAAWgABQoRQUAo6UYdfQZCkABKAAFoAAUgAI5UQAwmpNAwA0oAAWgABSAAlAACpSiAoDRUow6+gwFoAAUgAJQAApAgZwoABjNSSDgBhSAAlAACkABKAAFSlEBwGgpRh19hgJQAApAASgABaBAThQAjOYkEHADCkABKAAFoAAUgAKlqABgtBSjjj5DASgABaAAFIACUCAnCgBGcxIIuAEFoAAUgAJQAApAgVJUADBailFHn6FAgRXYUVtP8x5/lvY3HPFbuuvWKvrxYw9Qxw7t7Pf+vGAJ/evPXuA8+cnjD9B9d95ER4+fpIef+CR9s+oAAAXFSURBVAV95+ufp7+8s4z+uqiarPqPfPtL9Oj//N+0ftNOv94/f/lOenTeHPtvr943759Nv/vTQr+cZffaMcM5n1785RM0ZXylb+fn81+h3760QGq3wHLBPBSAAlCgpBUAjJZ0+NF5KJC9AhaI/vCp5+mnTz5Iw4YM8MGzetVGH0YtEH3lzcX03NPfo57du9KZs+fpR8+8QFWTRnMwerjxOM3/2fd9OxZs/u7lt+jhr99rQ60Hn3PunsnVsxr1bK+o2UzfeORpGjeqgnvv2fmv+H9b/rD+Wf489x9v0Dfn3mH7hxcUgAJQAAoUTgHAaOG0hWUoUJIKWBlG6+VlK70sqAd7Z8+ds7Oe3583x89MqmCULaMS0wLJ3XsP2O15cMrWM3lP5nNJBg+dhgJQAAoUQQHAaBFER5NQoKUqIEKl108281jfcDiUOY0Do1FLAGSgawKjXvbU8pfNoLbUOKFfUAAKQIE8KQAYzVM04AsUaOYKeFD5pbtncusxRRh95lcv01M/eNCfAjeFUW+dKbvek7WdFEY92QGlzXwAwn0oAAWapQKA0WYZNjgNBfKpQKEzo9Z0+tDyMnt9qCzrmhZGPZuyda/5VBxeQQEoAAWavwKA0eYfQ/QACuRKASu7yG4O8qbJBw/oa29gsl7WZqWyvr38daVeRlLcTS+uGbVg9MDBRn8jlDdlP3HsCPu9JDA6trKCnnnuZfrqfbP8jVJiH3IlMJyBAlAACrQwBQCjLSyg6A4UyIMC7LFN1hrMW6ZPoO279vkQ6WVQrSObrNf9n7+FTp36NLSbXoRRsZ513NM1o4fRuo07EsOodbyTeMxU/369uV38edAUPkABKAAFWqoCgNGWGln0CwrkSAHx6CTRNdVa0xx1Aa5AASgABaBAgRQAjBZIWJiFAlAgUECEUevv8gF9/U1OmBbHaIECUAAKlK4CgNHSjT16DgWaTAEZjLJPX8JxSk0WCjQEBaAAFMidAoDR3IUEDkEBKAAFoAAUgAJQoHQUAIyWTqzRUygABaAAFIACUAAK5E4BwGjuQgKHoAAUgAJQAApAAShQOgoARksn1ugpFIACUAAKQAEoAAVypwBgNHchgUNQAApAASgABaAAFCgdBQCjpRNr9BQKQAEoAAWgABSAArlTADCau5DAISgABaAAFIACUAAKlI4CgNHSiTV6CgWgABSAAlAACkCB3CkAGM1dSOAQFIACUAAKQAEoAAVKRwHAaOnEGj2FAlAACkABKAAFoEDuFACM5i4kcAgKQAEoAAWgABSAAqWjAGC0dGKNnkIBKAAFoAAUgAJQIHcKAEZzFxI4BAWgABSAAlAACkCB0lEAMFo6sUZPoQAUgAJQAApAASiQOwUAo7kLCRyCAlAACkABKAAFoEDpKAAYLZ1Yo6dQAApAASgABaAAFMidAoDR3IUEDkEBKAAFoAAUgAJQoHQUAIyWTqzRUygABaAAFIACUAAK5E4BwGjuQgKHoAAUgAJQAApAAShQOgoARksn1ugpFIACUAAKQAEoAAVypwBgNHchgUNQAApAASgABaAAFCgdBQCjpRNr9BQKQAEoAAWgABSAArlTADCau5DAISgABaAAFIACUAAKlI4CgNHSiTV6CgWgABSAAlAACkCB3CkAGM1dSOAQFIACUAAKQAEoAAVKRwHAaOnEGj2FAlAACkABKAAFoEDuFACM5i4kcAgKQAEoAAWgABSAAqWjAGC0dGKNnkIBKAAFoAAUgAJQIHcKAEZzFxI4BAWgABSAAlAACkCB0lEAMFo6sUZPoQAUgAJQAApAASiQOwUAo7kLCRyCAlAACkABKAAFoEDpKAAYLZ1Yo6dQAApAASgABaAAFMidAoDR3IUEDkEBKAAFoAAUgAJQoHQUAIyWTqzRUygABaAAFIACUAAK5E4BwGjuQgKHoAAUgAJQAApAAShQOgoARksn1ugpFIACUAAKQAEoAAVyp8D/B7Ok8J+HQM52AAAAAElFTkSuQmCC",
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = plot_contour(study, params=[\"qgrams\", \"ratio\"])\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "fa9ec80c-88a5-44dd-bcb6-2b231febc730",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "marker": {
+ "color": [
+ 0,
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14,
+ 15,
+ 16,
+ 17,
+ 18,
+ 19,
+ 20,
+ 21,
+ 22,
+ 23,
+ 24,
+ 25,
+ 26,
+ 27,
+ 28,
+ 29
+ ],
+ "colorbar": {
+ "title": {
+ "text": "Trial"
+ },
+ "x": 1,
+ "xpad": 40,
+ "y": 0.5
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "line": {
+ "color": "Grey",
+ "width": 0.5
+ },
+ "showscale": true
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 8,
+ 5,
+ 4,
+ 7,
+ 10,
+ 3,
+ 4,
+ 9,
+ 9,
+ 3,
+ 10,
+ 10,
+ 10,
+ 7,
+ 9,
+ 10,
+ 6,
+ 8,
+ 8,
+ 10,
+ 6,
+ 10,
+ 9,
+ 10,
+ 9,
+ 8,
+ 10,
+ 9,
+ 10,
+ 7
+ ],
+ "xaxis": "x",
+ "y": [
+ 0.30337436666113177,
+ 0.20307681243216183,
+ 0.19103604207409036,
+ 0.28333512688101153,
+ 0.4633111426794054,
+ 0.18531875170393172,
+ 0.1907552827778649,
+ 0.33330840997266736,
+ 0.39784787794552795,
+ 0.1862693152521443,
+ 0.6482633708392243,
+ 0.5274133516352982,
+ 0.42621654591235925,
+ 0.22112929238626436,
+ 0.4070833316320489,
+ 0.42621654591235925,
+ 0.2123846817548284,
+ 0.3258435026582389,
+ 0.3480318083295157,
+ 0.36391860524716446,
+ 0.20993148042255388,
+ 0.46330684097155167,
+ 0.4070833316320489,
+ 0.42745701777773953,
+ 0.40750648259180683,
+ 0.3258414249026382,
+ 0.46330684097155167,
+ 0.4037641499510466,
+ 0.3639219361818585,
+ 0.24080227825457184
+ ],
+ "yaxis": "y"
+ },
+ {
+ "marker": {
+ "color": [
+ 0,
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14,
+ 15,
+ 16,
+ 17,
+ 18,
+ 19,
+ 20,
+ 21,
+ 22,
+ 23,
+ 24,
+ 25,
+ 26,
+ 27,
+ 28,
+ 29
+ ],
+ "colorbar": {
+ "title": {
+ "text": "Trial"
+ },
+ "x": 1,
+ "xpad": 40
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "line": {
+ "color": "Grey",
+ "width": 0.5
+ },
+ "showscale": false
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 0.8380947452182991,
+ 0.7929630924927731,
+ 0.8038691888459086,
+ 0.7144467000567123,
+ 0.8517624194151302,
+ 0.9174470432736699,
+ 0.7808721328696897,
+ 0.800827464931477,
+ 0.7395142458665667,
+ 0.8596838078185782,
+ 0.8957263433574094,
+ 0.9045625386867897,
+ 0.9483018131894073,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9488029595469605,
+ 0.8777239752940389,
+ 0.9204153410113451,
+ 0.875183707875409,
+ 0.8294161917860436,
+ 0.9196762030928591,
+ 0.8563838420348091,
+ 0.8948541483847852,
+ 0.8429055971815752,
+ 0.876132015812083,
+ 0.9275690010126776,
+ 0.8601034741266624,
+ 0.7662074140900922,
+ 0.8174855005418883,
+ 0.8389446905059951
+ ],
+ "xaxis": "x2",
+ "y": [
+ 0.30337436666113177,
+ 0.20307681243216183,
+ 0.19103604207409036,
+ 0.28333512688101153,
+ 0.4633111426794054,
+ 0.18531875170393172,
+ 0.1907552827778649,
+ 0.33330840997266736,
+ 0.39784787794552795,
+ 0.1862693152521443,
+ 0.6482633708392243,
+ 0.5274133516352982,
+ 0.42621654591235925,
+ 0.22112929238626436,
+ 0.4070833316320489,
+ 0.42621654591235925,
+ 0.2123846817548284,
+ 0.3258435026582389,
+ 0.3480318083295157,
+ 0.36391860524716446,
+ 0.20993148042255388,
+ 0.46330684097155167,
+ 0.4070833316320489,
+ 0.42745701777773953,
+ 0.40750648259180683,
+ 0.3258414249026382,
+ 0.46330684097155167,
+ 0.4037641499510466,
+ 0.3639219361818585,
+ 0.24080227825457184
+ ],
+ "yaxis": "y2"
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "white",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#C8D4E3"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "white",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "radialaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "yaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "zaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "caxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Slice Plot"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "autorange": true,
+ "domain": [
+ 0,
+ 0.45
+ ],
+ "range": [
+ 2.4472442272037753,
+ 10.552755772796225
+ ],
+ "title": {
+ "text": "qgrams"
+ },
+ "type": "linear"
+ },
+ "xaxis2": {
+ "anchor": "y2",
+ "autorange": true,
+ "domain": [
+ 0.55,
+ 1
+ ],
+ "range": [
+ 0.6959407321532602,
+ 0.9673089274504125
+ ],
+ "title": {
+ "text": "ratio"
+ },
+ "type": "linear"
+ },
+ "yaxis": {
+ "anchor": "x",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0.14711458410538816,
+ 0.6864675384377679
+ ],
+ "title": {
+ "text": "Objective Value"
+ },
+ "type": "linear"
+ },
+ "yaxis2": {
+ "anchor": "x2",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "matches": "y",
+ "range": [
+ 0.14711458410538816,
+ 0.6864675384377679
+ ],
+ "showticklabels": false,
+ "type": "linear"
+ }
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqMAAAFoCAYAAABjWPKCAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQeYVOW9/7/be+8Lu/TeQRQVsKBGwUoU27UEwyWa3MT+F0liYqJ45RrN1ehFIjGJBVFBRRBBigjSe0fYyvbed2d2Zv7POzC7O+vuzrwzZ86cM/ud58lzr+zvbZ/fe3Y/8573vMfPYrFYwA8JkAAJkAAJkAAJkAAJeIGAH2XUC9TZJAmQAAmQAAmQAAmQgJUAZZQTgQRIgARIgARIgARIwGsEKKNeQ8+GSYAESIAESIAESIAEKKOcAyRAAiRAAiRAAiRAAl4jQBn1Gno2TAIkQAIkQAIkQAIkQBnlHCABEiABEiABEiABEvAaAcqo19CzYRIgARIgARIgARIgAcoo5wAJkAAJkAAJkAAJkIDXCFBGvYaeDZMACZAACZAACZAACVBGOQdIgARIgARIgARIgAS8RoAy6jX0bJgESIAESIAESIAESIAyyjlAAiRAAiRAAiRAAiTgNQKUUa+hZ8MkQAIkQAIkQAIkQAKUUc4BEiABEiABEiABEiABrxGgjHoNPRsmARIgARIgARIgARKgjHIOkAAJkAAJkAAJkAAJeI0AZdRr6NkwCZAACZAACZAACZAAZZRzgARIgARIgARIgARIwGsEKKNeQ8+GSYAESIAESIAESIAEKKOcAyRAAiRAAiRAAiRAAl4jQBn1Gno2TAIkQAIkQAIkQAIkQBnlHCABEiABEiABEiABEvAaAcqo19CzYRIgARIgARIgARIgAcoo5wAJkAAJkAAJkAAJkIDXCFBGvYaeDZMACZAACZAACZAACVBGOQdIgARIgARIgARIgAS8RoAy6jX0bJgESIAESIAESIAESIAyyjlAAiRAAiRAAiRAAiTgNQKUUa+hZ8MkQAIkQAIkQAIkQAKUUc4BEiABEiABEiABEiABrxGgjHoNPRsmARIgARIgARIgARKgjHIOkAAJkAAJkAAJkAAJeI0AZdRr6NkwCZAACZAACZAACZAAZZRzgARIgARIgARIgARIwGsEKKNeQ8+GSYAESIAESIAESIAEKKOcAyRAAiRAAiRAAiRAAl4joFsZPZtbiPlPv4JHHrgFs2dO9xpAmYZXrt2KN//5OZa8/AQG9UuXKcpYEiABEiABEiABEvBJApqT0aqaOjz8zKs4ciLLDvisGVPwx6fmIiw02PrvXcmokL3fvbwM7772DCaPH65awmztdm7wobtn4vH5c9r+2R0ZdaesaiDYEAmQAAmQAAmQAAlIEtCUjO45eBIPPvoSOkucTTwT42Pw1kuPIS4mSnMy2nnF09bniaOHtEm0O0LpTlnJOcFwEiABEiABEiABElCNgGZktKnZgOcWL7MOvOMKaEcS76/cgJkzpnQro6pR69RQd6Jok2vbSq07QulOWW9xYbskQAIkQAIkQAIk4IiAZmTUdnv+4vHD7W5tdzeA7m7Td7Uns6tb/51v+9vE0dbemBED21ZhHUHsThQ797G7uM63+Tv3rbttAGpvR3DEgT8nARIgARIgARIgAVkCmpFR28romo07ndrz6ayM2iTzT0/PtXvQ6e33VmPGtEnWB4n+smQF1m7aZfdgkcxKpDsyKtreffBkm/jaOOQVltrJsEx/ZCcB40mABEiABEiABEjAWwQ0I6MCQHcPL3XeQypinZFRZ1ZbbfUsWjDP7qEnZ8rakuZoxbO72/Sdb+Pb6uuqbcqoty4RtksCJEACJEACJOBJApqS0Y4DFSuG73y41m7sHaXUGRntTjQ7Viokb8XqLV3ekhd9KC6t7HYPa08y2tXDWJ2Fsru2u9o/Sxn15GXAukmABEiABEiABLxFQLMy2hmITU5tq4zOyGh3K4+OpLfjzzvv3+wqUc7u6ewslJ1v0XfuV8fb95RRb10ibJcESIAESIAESMCTBHQjo53l0xkZdXdl1FnwzooiV0adJco4EiABEiABEiCB3kJAMzIq9kmu3bgT986+tkv2nVc5nZHRnvZ9Hj2VjbDQEFRW1VrPNnXnyXRXZVRmz6iIXbBoKd/e1FuuTI6TBEiABEiABHoJAU3JqO3NS53FsKv9l87IqMhhV0/Tdxa7zlsAbLkXcd/tOuzwqClXZVS00/lJ/u6eptfj6097yTXEYZIACZAACZAACbhBQDMyKsbQ8XinjmNKS0n40YqgszIq6rHFFpVUtFXbnfA6arcr1u7IqKjP0TmjHeVYrOLaPu6s5roxZ1iUBEiABEiABEiABBQjoCkZVWxUrIgESIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbeeWoSIAESIAESIAESEAXBCijukgTO0kCJEACJEACJEACvkmAMuqbebWOqrymBYkxIbofoclsQW2DEXFRwbofi6HVjOYWE6IjgnQ/lqYWE8wWCyJCA3U/FtkBNDS3wt/PD2EhAbJFe2V8fVMrAgP8EBpMXs5MgLqmVgQH+CGEvJzBxRgfIEAZ9YEkdjcEyqj2kksZ1V5OXOkRZVSOGmVUjhdlVI4Xo/VPgDKq/xx2OwLKqPaSSxnVXk5c6RFlVI4aZVSOF2VUjhej9U+AMqr/HFJGdZRDyqiOktVDVymjcnmkjMrxoozK8WK0/glQRvWfQ8qojnJIGdVRsiijiiWLMiqHkjIqx4vR+idAGdV/DimjOsohZVRHyaKMKpYsyqgcSsqoHC9G658AZVT/OaSM6iiHlFEdJYsyqliyKKNyKCmjcrwYrX8ClFH955AyqqMcUkZ1lCzKqGLJoozKoaSMyvFitP4JUEb1n0PKqI5ySBnVUbIoo4olizIqh5IyKseL0fonQBnVfw4pozrKoa/IaG1tLU7lFMDQasKogX0RGxuroyy431U+TS/HkDLaPS+z2Yyi4lLkF5ciIS4GmempMJgDeOi93BRjtM4JUEZ1nsCeus9zRrWXXF+Q0aOnz2L3iSz4RyXC3z8AhtpyTOyfgoljR2kPuId6RBmVA0sZ7ZqXyWTCF99sRYUpBKGxCTDU1yCwsQrXTb0EcdFRfAOT3DRjtI4JUEZ1nDxHXaeMOiKk/s/1LqNiFeeD1RsQlDnaDl5D7nHcc/00hIaGqg/VCy1SRuWgU0a75nXiTDZ2ZJUhIqlPW4AQ0gRLPWZMmUQZlZtmjNYxAcqojpPnqOuUUUeE1P+53mW0qKgIG47mISSxrx28xsoSzBiSiMzMTPWheqFFyqgcdMpo17y+27UX+ZY4BITYf4kLLDuD66dOQUR4iBxoRmuWQFOzAc8tXoYpk0Zi9szpmu2ntzpGGfUWeRXapYyqAFmyCb3LaH19PVZ+uxch6UPsRl5bcBazLx2FhIQESSL6DKeMyuWNMto1r92HjuJElRmhMe3XjdloQFBlDm66ejpXRuWmmUvRK9duxe9eXtZt2bSUBCx5+QkM6pduF1NVU4eHn3kVc2660im5pIz2nB7KqEvTVx+FKKPay5PeZVQQ/fSrjWgIT0ZIdLwVsLGxDv5lWbjn1pnaA+6hHlFG5cBSRrvmVVJWgS+370d4+mD4BwXDYjajrjAb4zKTMG7EUMqo3DRzO9qTwujJut0euAYqoIxqIAme6gJl1FNkXa/XF2TUaDTi2z0HUVRWBfj7IykmEldePL7X7BcV2aeMyl0DlNHueeUWFGPvkZNoDQyGuakBQwdkYOigwXyaXm6KKRLdlTDaVkAfeeAWfLlhB9Zs3IlZM6bg0f+8A4//4W94Yv4cTB4/HLa4Iyey2vry0N0z8fj8Odb/poxyZVSRSarHSiij2suaL8iojWpdQwtaTSbERYdrD7SHe0QZlQNMGXXMSxyXFh0dbQ3kOaOOeXkioicZLa+ssbtdb5PPjjL6j+Vf4eEHbkVYaHCbnNpu41NGKaOemLO6qJMyqr00+ZKMNrWYYLZYEBEaqD3QHu4RZVQOMGVUjhdlVI6XUtE9yahNOm1tdZbRrvog9qPm5BdbV0cpo5RRpeap7uqhjGovZZRR7eXElR5RRuWoUUbleFFG5XgpFe2ujJ7NLcT8p19BUUlFW5fELf0/PjXX+t98mr77THHPqFKzWIP1UEa1lxTKqPZy4kqPKKNy1Cijcrwoo3K8lIp2R0ZtT+W/+9oz1j2k4iP+bee+45RRJxJEGXUCkl5DKKPayxxlVHs5caVHlFE5apRROV6UUTleSkW7I6N/WbIC/TNS7Y55oow6nxnKqPOsdBdJGdVeyiij2suJKz2ijMpRo4zK8aKMyvFSKtpdGS0urbSugooHmGy37CeOHsKVUScSRBl1ApJeQyij2sscZVR7OXGlR5RROWqUUTlelFE5XkpFuyOjtrLi6CfxEXtFx44chMPHz1JGnUgQZdQJSHoNoYxqL3OUUe3lxJUeUUblqFFG5XhRRuV4MVr/BHqljO45eBIPPvqSNXtjRgzEWy89hriYqG6z2fkbz5+enuvU67+8PT0oo97OwI/bp4xqLyeu9IgyKkeNMirHizIqx4vR+ifQ62RU7ONYuGgpXlgwz/qu2Y4bjMU+j84fPZ8NRhnV3gVKGdVeTlzpEWVUjhplVI4XZVSOF6P1T6DXyWjHQ2hF+jrLaeeUdo7XU8opo9rLFmVUezlxpUeUUTlqlFE5XpRROV6M1j+BXiej4vgF8bG9L9bRWxRE/Dsfrm3LdFpKgt0rwbQ8BSij2ssOZVR7OXGlR5RROWqUUTlelFE5XozWP4FeKaMdzwLrSUZtt+jvuOlKu0NsV6ze0rbPtK7RqNlZ0GwwITQ4QLP9c7ZjFosFxlYzgoP0PxaT2QKz2YKgQH9nh6/ZuFaTBYAFgQHyY4kMD4KfZkfWdccsFqC+6fz13moyA/BDYIDeRuEd6OL69ffzQwB5OZUAX+MVFR7k1LgZ1HsJ9EoZdXZltCsZ7SyvLUbxR0mbH7EaERmm//eGmy2AeA96RKhvyKjBaEZYiP7HIv5gityEBMnLqCtltHCV2a538X/9/eATXyrU4Grl5Q8EufDFRY3+aa2NZqMZ4vuqK1/0tDYW0R+9Xu9aZOmrfep1Miq7Z7TzWxWEjC54cSmeeuQu6wNQWv7wNr32ssPb9NrLiSs94m16OWq8TS/Hi7fp5XgxWv8Eep2MOnqaXshqx9vw4hioBYuWtu0TdfT0vZamBGVUS9k43xfKqPZy4kqPKKNy1Cijcrwoo3K8GK1/Ar1ORkXKejpntLOMinjxb797eZk1286cS6qVaUEZ1Uom2vtBGdVeTlzpEWVUjhplVI4XZVSOF6P1T6BXyqj+0+bcCCijznFSM4oyqiZtz7VFGZVjSxmV40UZlePlTvShQ4cg/ueNz7hx4yD+xw9AGfXhWUAZ1V5yKaPay4krPaKMylGjjMrxoozK8XIn+l//+hfeWPYpaozh7lQjXTYmqBG/mvtT3H///dJlfbEAZdQXs3phTJRR7SWXMqq9nLjSI8qoHDXKqBwvyqgcL3eihYy+8PY65DUlu1ONdNnMsFIs/M/rKaMXyFFGpaeQfgpQRrWXK8qo9nLiSo8oo3LUKKNyvCijcrzcibbK6NL1yGtOcaca6bKZoSVYOO86yqg3ZNR2bueajTthe5NRekoinlu8DFMmjcTsmdOlE8oC3ROgjGpvdlBGtZcTV3pEGZWjRhmV40UZlePlTrRVRv++AXktae5UI102M6QIC39+LWXUGzJqO7PzhqunYPFby3Hv7GusZ3WKp9s/Xr0Ff3xqLsJCg6WTygJdE6CMam9mUEa1lxNXekQZlaNGGZXjRRmV4+VOtFVG3/kGeQZ1zw3PDC7EwoeuoYyqLaMdD4sXq6EdZVSc/bn4zeVY9Ow8xMVEuTOvWLYDAcqo9qYDZVR7OXGlR5RROWqUUTlelFE5Xu5EW2V02SbkGfu4U4102cygAiycezVlVEsyypVR6XnsVAHKqFOYVA2ijKqK22ONUUbl0FJG5XhRRuV4uRNtldF/bEZea4Y71UiXzQzMx8KfXUUZVVtGRXu2txct+PW9eH3ZKutt+vjYKDz8zKuYc9OV3DMqPZ17LkAZVRioAtVRRhWAqIEqKKNySaCMyvGijMrxcifaKqPvfos8U6Y71UiXzQzIw8IHr6CMekNGRZsd335ky967rz2DyeOHSyeTBSijepsDlFG9Zazr/lJG5fJIGZXjRRmV4+VOtFVG/7kVeeb+7lQjXTbTPxcLH5hGGfWWjEpnjAVcJsCVUZfReawgZdRjaFWtmDIqh5syKseLMirHy51oq4z+axvyLAPcqUa6bKZfNhbeP5UyShmVnju6K0AZ1V7KKKPay4krPaKMylGjjMrxoozK8XIn2iqj/96OPAxypxrpspnIwsL7LqOMqi2j4ml6sTf0yImsLpM2ZsRAvPXSY3yaXnpKd1+AMqogTIWqoowqBNLL1VBG5RJAGZXjRRmV4+VOtFVG39uBPL/B7lQjXTbTcgYL/+NSyqjaMtpdpsRB+B2PeZLOKAt0S4Ayqr3JQRnVXk5c6RFlVI4aZVSOF2VUjpc70VYZfX8n8vyHulONdNlM8w9YeO8llFGtyKjoh3jKPie/GI/PnyOdUBbgyqie5gBlVE/Z6r6vlFG5PFJG5XhRRuV4uRNtldEPdiEvYJg71UiXzTSdxsJ7LqaMaklGeei99Dx2qgBXRp3CpGoQZVRV3B5rjDIqh5YyKseLMirHy51oq4x+uAd5geqe6JPZehIL755MGaWMujN99VGWMqq9PPmSjJaUVaK11YQ+aUnaA+3hHlFG5QBTRuV4dZTR5uZmVFdXIzk5Gf7+/nIVMdohAauMLt+LvKCRDmOVDMg0nsDCuyZRRrUko+Kd9eLD2/RKTnWAMqosTyVq8wUZraypwdfb9qDREggz/BFqbsZ1l05ESlKiEoh0UQdlVC5NlFE5XkJGA2DGNzv3oKKuCcbgSAQ1V2P04P6YPFrdFTy5nusv2iqjH+1HXvAoVTufaTiGhXdOpIyqLaM9PU0/a8YU/PGpuQgLDVZ1Mvh6Y5RR7WXYF2T0X5+vQ3P8AASEhFkBW0wmBBYdxwO3zYSfn5/2oHugR5RROaiUUTleQkb3HTmG4xXNCElIayvcfO40Zk8di7TkZLkKGd0tgfMyegB5IaNVpZTZchQL75xAGVVbRlXNMhuzEqCMam8i6F1Gq6qq8PG2QwhIGWgHt6kkF3dcPBQpKSnag+6BHlFG5aBSRuV4CRn98ptNaEweCvi135o31lVhbJwfLps4Vq5CRvcooy+uOIj80DGqUspoPoJn54ynjFJGVZ13XmmMMuoV7D02qncZLS8vx4qdJxCS3M9unM1lBZg9sT/S0tpXcbRHX7keUUblWFJG5XjVNBjw5cYtaE61vyXf2liHURFGTJ08Xq5CRvcsox8fxLkwdQW/b9MRPHvHOMooZdT3r07KqPZyrHcZFUTf+XQN0Hc00OGWvCX/GB64+RoEBQVpD7oHekQZlYNKGZXjJVZGd+w/iKyWIARFxrUVNpRk4/rxQzAgI12uQkb3KKOLPjmEgvBxqlLq03gYC24fSxlVQ0YdvXWpY+b5BiblrwPKqPJM3a3RF2Q0p6AYG3bsR0toDPz8AxDYVIVp40dg5KD+7uLRTXnKqFyqKKNyvISMWloNWL1pKyoRisDwaJjqKjAiNRZXX3pRr9mbLUfNtWixZ/SlTw+jIEJlGW04hGd+Shm1Zc3PYrFYXEshS2mdAGVUexnyBRkVVFtbW3GusMT6fzP7piE4uHc9fEgZlbu2KKNyvDoe7VRRUYG6ujokJiYiMjJSriJGOyQgZPS/Vx5BYaS6Wx/S6w/i/80ew5VRNVZGHc4CLwXsOXgSDz76krV1Ryuy4kD++U+/gqKSirbeOirjpWH9qFnKqFYy0d4PX5FRMaKmFhPMFgsiQgO1B9rDPaKMygGmjMrx4qH3crzcibbK6KojKIqa4E410mXT6g7i/902mjLqDRntSuxsGVRL8EQfFi5aihcWzMOgfunWV5Hu3He826OlOsdLzzgvFqCMehF+N01TRrWXE1d6RBmVo0YZleNFGZXj5U60kNGXPzuK4uiJ7lQjXTa19gCevnUUZVRtGW1qNuC5xcswZdJIjBs1GO+v/AZPPXyX9WxRcej9tEvGYvJ4zx/mK+QzJ7+47YB9R7Lp6OfSM1DFApRRFWE72RRl1ElQGg+jjMoliDIqx4syKsfLnWgho4s/P4biGJVltGY/nrqFMmrLnWp7RsXDTAteXIqnHrnL2vbiN5dj0bPzEBcTBXHb/OPVW1Q5+L7z255sD1k9MX9OlzLceTVXrRVcdy4uW1nKqBIUla2DMqosT2/VRhmVI08ZleNFGZXj5U60VUa/OIaSmEnuVCNdNkXI6M0juTKq9spoRxmNj43Cov99Hwt+fa9VRoXwdZRT6axKFBAy2j8jFbNnTreWciSjnasW5YtLK9vE2dhqlmhd3dDaBiOiI/R/1I7ZAjQ2tyIyTP97E1tNFhiMZoSHBqg7GTzQmhiH2DMaGiw/lqBAfb5j23a9NxtM8PfzQ3CQPsfhgenQY5VWXv5+CNZp3tXm1WQwIdDfD3q9Tjrz0vI4hIz+z+rjKI29SNU0J1fvw5M3jaCMqi2jHW/TCxHsKIWO9m0qOUNkV0Y7t91ZnGsajEp2T9G6xCqcL/zyFwc+CInT8i80ZxMn5M1stiAwQP8SYxLfEgAE+Mu/AjQ6PKjjMaXO4vNqnDh3pLbx/PXuzti9OggvNS6uXzFNhJDy45iAr/GK0fCiiJDRV748gdI4lWW0ai+euJEyarsaVLtN3/ny63gGaVpKApa8/IT1gSJPf2T3jDqSUU/31536eZveHXqeKcvb9J7hqnatvE0vR5y36eV48Ta9HC93ooWM/mXNSZTFT3anGumySZV78Pis4VwZvUDO4zJqk07R3lsvPWa9Le/Nj6On6YWsrli9pa2vX2/ZjcED+raJcueVVW+OxVHblFFHhNT/OWVUfeaeaJEyKkeVMirHizIqx8udaKuMrj2J8oSL3alGumxixR48PnMYZVQtGRXtdH4T07uvPaPKk/PdzY6ezhntLKMdY0V9s2ZMUeVBK+mZ3UUByqgSFJWtgzKqLE9v1UYZlSNPGZXjRRmV4+VOtJDRV786hYrES9ypRrpsQvluPHbDUMqomjLaMUtiZfGdD9da/+mhu2e2HbEknUkWcEiAMuoQkeoBlFHVkXukQcqoHFbKqBwvyqgcL3eihYy+tu40KpJUltGyXXj0esqoLXcev03vyuqkOxOLZdsJUEa1Nxsoo9rLiSs9oozKUaOMyvGijMrxcidayOhfv/4BlclT3KlGumx86U785idDuDLqrZXRzhmzPWWfV1iqiT2l0jNKwwUoo9pLDmVUezlxpUeUUTlqlFE5XpRROV7uRNtktCrlUneqkS4bVyJkdDBlVCsyqrUHnKRnlIYLUEa1lxzKqPZy4kqPKKNy1Cijcrwoo3K83IkWMvq/68+gOlVdGY0t3oFfX0cZteWOt+ndmcUaL0sZ1V6CfE1Gja2tiI4I0R5oD/eIMioHWOsyKs4y9vM7fwZqd/+/3Ijdi6aMusdPprSQ0dc3nEFN2mUyxdyOjSnagf+6dhBXRr2xMmq7Jb9m405r83yAye353GMFlFHP8nWldl+QUYPBgL8v/xLfH8sHLMDIgSn49X/ciMjISFeQ6LIMZVQubVqV0dy8fJwrLIHRaERUZAROFdejsLwaIQFAdU2jdX4nxkXhJ5eNwUAVzsG2UaWMys0vd6KFjL7xzVnUpqsro9GF3+NX19jLqKPXj3d2qD89PbftbZLuMNBCWVUnXnNvAAAgAElEQVRWRjsD9vbRTloAr0YfKKNqUJZrwxdk9Nd//j9sPtmIgvogmCx+SIsw4tJ+AfjHol/LwdBxNGVULnlalNGs7FycyS9GWsYABAUH4+0Va7GzLAwtCERM5RmcLvdHRXMgYkNMGJlkxtIFd2Bgvz5yA3cxmjLqIjgXigkZ/dvGs6jrc7kLpV0vElXwPX45Y6Ddyqg4SjK/sLRNMDu/frzjOeeyrzJ3vafqlPS4jHJPqDqJ7KoVyqj32HfXst5ltLS0FA/88T1sybW/NT8huRn/XHAzhgwZoj3oHugRZVQOqhZl9OuN32LAyEkICAjA6axcLF59CEXmOCQZi5GfV4XixsC2QUYHm/DUTQPw5M9ukhu4i9GUURfBuVBMyOibm7JQ31ddGY08tx2PXG0vo527L+T0lSUrrA93i8+CF5fiqUfu0uVLeBylxuMy6qgD/LnnCFBGPcfW1Zr1LqObN2/GL94+hLy6IDsEYnX09fuHYNasWa6i0VU5yqhcurQmo1VVVTj6Qx7S+w+1DuS7Xfvw+o4qNFpC0LclFzvOGGAy24/x2ZkpeGbeLQgKsp/7ciSci6aMOsdJiSgho29tzkJDxlQlqnO6joj87Xj4qgE97hkVL+HZue+49UU7hSXlWLhoKV5YMK9NRjv+PCw02Om2tRhIGdViVhTqE2VUIZAKVqN3Ga2srMR//O5dbO60MjoxuQX/fPZmDB48WEFa2q2KMiqXG63JqOj9+k3fod/wcQgMDMK5ggI8/8k+FJrjkGAoQeG5ShQ1tK+MxoSY8OSNXBmVy7o+ooWM/t+WbDRmqiuj4Xnb8Isru5fRzq8uF/+9+M3lWPTsvLbXqlNG9THHen0vKaPamwJ6l1FB9Dd/XopvT9WjoD4QZguQGtGKqYOCseT5X2oPuId6RBmVA6tFGc0/V4DjZ/KR0qcfQkJC8e6qddheGowmczBiqs4gq9IfZU0BiA81YXx6AF5/6nb075sqN3AXo7ky6iI4F4oJGV3ybTaa+k1zobTrRcLytmH+9P5drozanrNZtGBe26vTO8upaJky6jp/llSRAGVURdhONuULMiqepn/303X4/kgeLBYzRg1Mx6MP3IzgYH3fJnIyhdYwyqgMLUCLMipGUFBYhIKiEjQ1tyAhNhpFNc04lFWMmLBANDa0oKa+Cf3TE3HF5JHo1ydFbtBuRFNG3YAnWVTI6Ntbc9DcX10ZDc39Dv857ccy2pWIiiGJ52+4Z1QyuQzXBgHKqDby0LEXviCjtvE0tZhgtlgQEdp+O1N7xD3TI8qoHFetyqjcKNSLpoyqx1rI6NLvctAyYLp6jQIIyfkO86b2s1sZ7Wr1s2On+DS9qiliY0oRoIwqRVK5eiijyrH0Zk2UUTn6lFE5XpRROV7uRAsZ/fu2XBgGqiujwdlb8fPL7WVU3Hb/3cvLfjQc23GYPGfUnUx3KNsRZFpKApa8/ATSUxLx3OJlmDJppM8c3qoQLreroYy6jVDxCiijiiP1SoWUUTnslFE5XpRROV7uRAsZfWd7LoyDrnCnGumyQVlb8dBlmXwD0wVyqj5NL5aY+2ek4oarp2DxW8tx7+xrrEcUiLO0Pl69xXp8gd6PJ5CekR4sQBn1IFwXq6aMughOY8Uoo3IJoYzK8aKMyvFyJ1rI6LLv89A6WF0ZDTz7LeZeShm15U41Ge24+VashnaU0a6OLHBncrHseQKUUe3NBF+TUZPZjMgwz5+7qLVMUkblMqIFGTWZTNYD7vXwoYyqlyUho//YkQfTkCvVaxRAwJlv8bMpGVwZVXtltCcZ5cqoZ64ByqhnuLpTqy/IqPijvvKbXdh95AzMFjMmjxyIn153qSqHgbvDXsmylFE5mt6U0dyCUny+9RAam1sQHhqCm6eNUe2IJjlK7dFak9H8/HwcPZ2NxPgYjB4+FGFhYa4OTXPlhIy+uzMf5qHqyqj/D1vw4CWUUdVXRkWDtjOxFvz6Xry+bJX1Nn18bBQefuZVzLnpSu4ZVfgypYwqDFSB6nxBRl94ewW+ONqIYkM4zPBDUlAjpmdY8NrTDypASB9VUEbl8uQtGc0rLMOTb63BoYoQ1JqCER1gwNCoRrz+Xzeif1/1jmqSowVoRUZbW1vx9sdrkFVjQnNYIvwsrYhsrsDdV03C2GEDZYelyXgho//clQ/LsKtU7Z/f6S144OK+XBlVe2XUlmWxCvrgoy/ZJd32pJiqM6EXNEYZ1V6S9S6jzc3NuPP3/8TumkQ7uKMiqvCvJ2ciPT1de9A90CPKqBxUb8no+2u34YU1eahqDWnrcEygAU9cnYp5P1VXPmSIaUVG9x0+gQ+/P4HahGEdum9B3+oT+P28O2SGpNlYIaP/2n0OUFlGcWoz7qeMts0L1faManYm+nDHKKPaS67eZXTbtm34zUdZKDRE2MFNDmrE4ptTcN1112kPugd6RBmVg+otGV30zhd4fbcRlk7d/fUlgVgw9xa5QagYrQUZtVgs+OCztdhREwFDRJLd6KPrz+HJG8YhNVWdN1J5Er2Q0X/vOQe/4Vd7spkf1W05uRn3Te7DlVFvrYyqmu1e3hhlVHsTQO8ympOTgyeXrMf2ygQ7uKMjK/E/91+McePGaQ+6B3pEGZWD6i0Z/eCr7/HimmxUGEPbOhwX2IzHr8nAz29T91xJGWJakFHR38/Xb8amfAOaovvadT++JgvPzrkC0dHRMsPSZKyQ0ff3FsB/hLoyaj6xCfdeRBm1TQrVVkbFA0xib+jF44fj8flzNDkpfa1TlFHtZVTvMiqIPvLCUhwp9UexUewZ9UdyUBPGJjRjye9/oT3gHuoRZVQOrLdktK6uDr98dRUOlPqj0hiC+CADJiSb8Majt2papLQio6ez8/CPtd+hKmEkzAHnX/cbYKzHEFMhHr/vNrlJoNFoIaMf7C1AwMgZqvbQdGIT7pmUzpVRb6yMdt4vOmvGFJ4t6sHpTxn1IFwXq1ZDRs1mM44cOYIRI0Z45H3x2YWlWPLxOlTUnb/9mRARgJ/dOgPDB2S4SEV/xSijcjnzloyKXtbX12PTnpM4ll2Ikf1TcfXkEYiKipIbgJPRpaWl1rplnzZvaWmBn5+f9XqtqamBf3AEggP8EBLs/aOo1u/Yj22Hf4AxMAyWViMSIwIx95ZrER8V7iQVbYcJGf1wXyECR6kro63HN+LuiZRR1VdGu5qOHV99NWbEQLz10mOIi/HMLwltXw6e6R1l1DNc3anV0zL63//4HHuP56K4ORRxQQb0S4rAX//fA/D393en212WLSgqRYvBiIH9+ihet9Yr9CUZNRgMHvnS0jGH3pRRNebS1n0n8ck3u3G6wg99ooGByZF45qGbHZ5rKh4IfHvVVpwoqISptRUxIUBaZh8EGZswelAmrpo8Wo3uO9VGbm4uEhISEBkZ6VS8XoKEjC7fX4jg0deo2mXDsY24a0IaV0a9sTLaOdPijUzvfLjW+s9qymjHFVqZdm3l9PL0P2VU1d8tTjXmSRn9cuN2vLZqHxqbTRCro2JlxS8oCNNGJODP/3WPU/2TCWpqMcFssSAiNFCmmE/E+oKMbvhuL3YePI2KOgMykmNw541T0TfV/kEVpZLlyzIqtgI88MJybClsf6gvNaQZv74uE7+4o2fB+eNbK/DxD4GoN5+/BR4T0IyLklsQO2ISgqrzcduEDFwyZrhSaWA9XRAQMvrRgSKEqCyjLUe/wZ2U0baMqLZnVLTYcSVU/Lc3btOLtz0tXLQULyyYZ30Vqe3sU0evIu0osJRRdX+nmcwW1DYYERd1/he2nj+elNGnFy/F7uOlOFbsh3qDH0IDLRiaYMGQPmF4b/HjimOjjPohLETd26jiCWdxO9fdz2frd+D5ZZtwttIfBhMQE2rBrLHReOP3D0nfYnamL74soxt3HMJ//WOf9W5Ex8+9o0x47cl7ul0draysxH2vrMWxhli7cqMiKjFy0hhY/IMwJqAED9yk7u1jZ/LpSzFCRj8+WITQMdeqOqzmI9/gjvGpXBm9QF01GdXKA0xCPnPyi9seouosp13NRtvrSp/+5d14dtFSPDF/DiaP1/63Va6Mqvq7xanGPCmjc595FZtONKGkvl1WwoOAKwf7YfmrTyj+hiTKqHoyKm6l7z50HKVlFda3XqUlJ+Hi8aNczunjL/wdb28ug6nDmUeZsWa8+cQszLhsvFNzWSbIl2V01cZdePrD46gwtJ9lKtjcOtSEvz1xe7dyL95qdPtr21Bist+alh5Yi6mTB8AUHo+xKMA9109zOc8yOeqtsUJGPzlUjLCx6spo0+ENuH0cZdQ271STUa1MdLE1QHxsT/TbJLk7wewoq7a3RVFG1c0mV0ad4/2r597Aeztq0WKyXzm7YWQAlr/yqOL7Aimj6sno6q83A9HpiIw7/7KBuspS+DeU4MZr5V9hWFtbi4f//AFW7quym1jRoRb87ZdTcftM5Y888mUZraqqwpznP8G+ivbb9JGBrXj0qkQ8ft/Mbi9e8QXjF/+zAptK7VdGL0+oROq4yfA3NODiuFbcMWOKc78AGOUSASGjnx4qRvg4dWW08fAG/HQsZbRXy2j/jNS2V4/2JKPiZwteXIqnHrnLeku/q9iK2haXLgA1Con9fP4K3NJTo6+O2vCVsVgXohS61dqZ2fJVa/HXz48jv6b9YaXYUAtunxyLPzz+kCPE0j+3XFhVc2WKxUeFwJVy0p1UsIDZAlTVnb/e3Rm7bJfqamuw69gPSO5nfzemLOc4Lhk7ApGR8g99/vWdT/DGulw0tbZ/cRmSYMY/fncn+vdT/lQENXnJ8lUifuWG7/Hl7iycrvRDVGArpg0Ixrw5s5AU3/M5nNv3H8M7G47gXHMo/P2A9JBG9M1IQWRUOOLNdbj32qkIC9f/U+sJ0farxkowV6oOIaMrDxcjcry6L+yoP7QBs8ek8Db9hURyZfTC+addrXaKVdH5T7+CopKKH817275R8QdKq5/KOgPifWCfpVgZrW9sRUxkkFZRO90vY6sZzQYzosKVf+hn6/ad+Pe6g9h+ogIl9f5ICLdgTJ8QzLl2DGbfcJXit/qaDecfYAoPkR+L+MOrx4/tem9sabV+0QtV4eidc+fOYX9ONWKS0uyQVZcW4KKB8ejTx/5Acme4ZucV4onFH+DQOQPqmv2QEmnGndP7Y+Gv7lFkT2rnPogHvgLFUUVB6u6xdYaFUjENDQ0oKytDeHg4kpKSnOZYU12NvafyIC6J9LhwFFbVITY6GkMz0xEZEaZU97xaj5avdyGjq46UIEplGa07uB63UUbb5qXHZdS2mvizO6/HPz5ahyMnsrq8KGSeanfnqnJlz6itPUe39N3plyfKcs+oJ6i6V6cn94ye+CELJ87VoLiyAQ11NfALDMWQAamI8W/GlZdOcq/jXZTmbXp1btOL439Wb9qBxIFj7bJQkXUIN18z1eXtF+I8y007j8JoaEFyUiKmTR7l8CgiVyeRL9+md5VJT+W0cui9J8amtTqFjH5+tATRE36iatdqD6zHLaOTuTJ6gbrHZVTV7DrRmKOn6YWsrli9pcszTymjTgD2QAj3jDoH1Wg0Yt3m7TAGxyAiJhFN9dUw1pbhmqmTEBcT41wlElGUUXVkVKRk94EjyC6pRWRcMiywoL6yFEP7xGPi2JESGfNeKGVUjj1lVI6XO9FCRr84VoqYierKaM3+r3HzKMqoLXeqyWjn/ZcdJ484Nunj1VtUextTT+eMUkbduaw9U5Yy6jzX1tZWZOcXoqKiAhGRkRjcr69HjuoRPaKMqiejgndJaRnOFZVY96tm9ElFStL5h5n08KGMymWJMirHy51oIaOrj5UidtL17lQjXbZ6/9e4aWQSV0bVXhntSUZtRyctenYe38AkPaW7L8Db9ArCVKgqT96mV6iLTldDGVVXRp1OjAYDKaNySaGMyvFyJ1rI6JfHyxB/kboyWrlvHW4cQRnV1MqoswfPuzPhemNZyqj2sk4Z1V5OXOmRL7yByZVxu1qGMipHjjIqx8udaCGja06UIWHyDe5UI122Yu86zBqeyJVRtVZGe3oi3Za9tJQELHn5CevxSfwoR4AyqhxLpWqijCpF0rv1UEbl+FNG5XhRRuV4uRMtZPSrk+VIVFlGy/d8hRsoo22p08SeUXcmEst2T4Ayqr3ZQRnVXk5c6RFlVI4aZVSOF2VUjpc70UJG150qR/LF6q6Mlu7+CtcP48qoLXeqyag7k4VlXSNAGXWNmydL+YqMbtt9AFt2HYV4V/ro4YNwyzWXwt+//bB9TzLUQt2UUbksyMpodm4hDhz7Aa2tRgzs1wcTRg/90bFT1dXV2HEsG8aWZiQlJmLyyAEIDJQ/81ZuJOpEU0bV4SxaETK6/nQ5Ui7p/m1ZnuhNya6vcN3QBN6mvwBXVRkVr+IsLq20e2q+qdmA5xYvw5RJI9veiuSJxPfGOimj2su6L8jooreW44stx5FXaYLJDPSND8B1lwzAi0/+THvAPdQjyqgcWBkZ3X/kFP7w+qc4mNuAhhYgJcoPD84ciacfvqet0dzCEry4fAvyjFFo8gtBtLkeV2cG4Td33+D0YfNyI1A3mjKqHm8hoxtOVyBtiroyWrRrLa4dQhlVfWXUJp133HQlJo+3f62d2kc7qTfNvdsSZdS7/LtqXe8y2tTUhLt+8wrWH220G96UQcFY8ZdfWt880xs+lFG5LMvI6OPP/x+WbshDq6m9jeGp/li/5Ddt8+uvy9dhVV4wjH7tb2VLMpXjlXsmY1Cm/Bup5Ebj+WjKqOcZ21oQMrrxhwqkX6qujBbuXIsZgymjqssoj3ZS7+KytUQZVZ+5oxb1LqOHDx/GnGc/Qm6l/Xtw02P88f5zN2LKlCmOEPjEzymjcml0VkYrKyvxyz+9h892Fds1EBfuhzcevw6zZ16Buro6/OHDrdhZY//e91BzMx67NBY3Tp8s1zkNRlNG1UuKkNFNZyrQ97JZ6jUK4NyOtbh6UDxv01+grtpteq6MqjrPrY1RRtVn7qhFvctoeXk57n7qTWw71Ww31HEZgfjo5YfQr18/Rwh84ueUUbk0OiujotZf/vZ/sWyTvYwOSvLHp6/8HMMG97c2/Pw7n2FDZRzMaN+nHG+qwjM3DMPl44bJdU6D0ZRR9ZIiZHTL2UpkqCyj+d+vwZWU0bZEqyajokVxO37BoqV2xzjZjn565IFbuGdU4euPMqowUAWqKywuQW1tIwb0S0dISIgCNapfxcO/ex2bDhSjoNoCs+X8nr4Z4+Lw9/9+Uv3OeKlFyqgceBkZFedOP790PbIrzDC0AvERfrj1khT89Q+PtD2g9PWuI3h780mU+yei1S8QYZYmTIiowZ8eugmhoaFynVMgWrz5THxRM5vNSE5OdvtBKsqoAklxsgoho99mVaLf5equjOZtX4PpA7kyakuTqjIqGu3q3NF3X3vmR/tInZxHDOuBAGVUO9OjpLIWf1+5HkdqAmH0D0FqYAPmXDYcV0warZ1OOtmTlpYWPP/mRygpLkWL0YyExHi88Ju7ERER4WQN+g+jjMrlUEZGxQkNn3+9HUdOZlkbCY+IxMP3Xo/w8HC7RrfuO4b9p3NRJx5yigvHTVPHIS0hTq5jCkTnnCvC219ux5nGYAB+GBTegtuumISLRwxwuXbKqMvopAsKGf0uuxL9p94oXdadAjnb1mDagDjepr8AUXUZdSd5LCtHgDIqx8uT0W98sgFrCkNg9Bd/sM5/hqEQLz1wLaKiojzZtMfq5utA+TpQZyeXjIx2rNNkMv3oSKfObRoMBgQHt19XzvZJqbjn3v4Y2w0ZdtVdHlKA5x66zeXjziijSmXHcT1CRrdlV2HgNHVlNHvbl7i8P2XUliHKqOO5qtsIyqg2UtfY2IjnP9iEvc2Jdh2Kaq3Gb68ZgEmj9bnHjTJKGXX2CnNVRp2t31txJSUleOqj3Sj0tz9FIt5Qir/ePRlpaWkudY0y6hI2lwoJGf0+pwqDpqsro2e/+xKX9aOMekVGbQ8xrdm4E7ZXgKanJPKcUZcuIceFKKOOGakRIW5rP/fPddhrSLFrLsZYhT/fOAwjhgxUoxuKt0EZpYw6O6l8VUbF0/+P//s7nAuwv7YTDcV4/b7LXT7qjDLq7MxyP07I6I7cKgyZfpP7lUnUcGbrl5jSL5a36S8wU3VlVBx63z8jFTdcPQWL31qOe2dfY30fPc8ZlZjBEqGUUQlYHg5945NvsL7AD40B7fsqh1vy8d9zZyq+17Kqqgpl5eWIi411+Y+hMzgoo5RRZ+aJiMkvLEV1dSVSkxI8Oied7Y+ScS8sW4mtDSkw+QVYq/WzmHFlWCEW/vx2l5uhjLqMTrqgkNFdedUYeoW6Mnr629W4JJMyqvrKaMdzRsVqaEcZFQ81LX5zORY9Ow9xMfrcPyd9BahQgDKqAmQnmxCro0tWfYOsahMqDAEYGNaMmZeNxyWjBjlZg+Mwsb9uy/bdqDf6IzI2CfW1lbA0VeP6q6d65Aljyihl1NGsFE+Zb/5uJxrMwYiMTURDTQUCjA247qrLvLrP01G/ZX5eUFqJf67ZirxGP+sDTBnhZjw4cxr6pCTIVGMXSxl1GZ10QSGju/OrMfxKdWX01JbVmJxBGdWUjHJlVPr6caoAZdQpTKoGVVbXoKSkHCOGKSehtgFk5+XjWHY5kvq23/avr6lAhKUeUyaNVXyclFHKqKNJdepMFs6WNCIhtf0Bn9rKUiSEtGLi2BGOiuvq59XV1dajneLj493ut7syKvapdz59wNsPerkNxUMVCBndm1+NEVfd7KEWuq72xJbVuKhvDG/TX8Cj6m16cX7czn3HseDX9+L1Zaust+njY6Pw8DOvYs5NV/KcUYUvBcqowkDdqE78kXrln6txJrcINc0WJMRE4A8/v0HRW5bf796P1vA0hITZH4FTmXMIP7lqqstP9nY3bMooZbSnS0Ic0bR1xx4ExPZDUEj72Z9mkwl1BSdw7ZWX+cR75N34tdBtUVdl9PDJLGw/dhZG+CM6JBDXTh6F2Mgw/N/K71BZXYewID+MHJyB22ZcTPYX6AsZ3XeuBqOuVldGj2/+AhP7UEZVXxm1NShWQR989CW7i5DnjHri1xnfwOQZqq7V+vs3V+CLveXIqQ9Dq8UPscFGTO3TjHefn6fYLfS9B46gxhKJyJj2lZlWowF1BSdx/YxprnW8h1KUUcqoo0m1Y/d+NIckIjwypi3U0NyE5vJsXHvFpY6K99qfuyKjh09l469fH0J1aApM/kEIMjUjo7UYTZU1WH3SjGpDEAL9LOgX1Ywnbx2F+26a3mv5dhy4kNEDBTUYPUNdGT266QtMSO9aRrt7fXrHh8DFGP709FyfWcRTdWWUM19dAlwZVZd3d62JVdE7nnoDX+fZv0t7YFQT/v2byzBu3DhFOlpUXIIdh88gfeCotlWPsnNZyEwKx9iRyh8fRRmljDqauDn553Dw1DmkDWi/JV+cexrDMxMwbLA+T5FwNGYlfu6KjL618htsLA9Ha4ezjOObCrD3QCGy6sLsunXnKBOW/v5nit8tUWLsatchZPRgYQ3GzrhF1aaPbPwC49Kj7W7Td3XikHjI2/YRD4GLz+Pz50AIq7ir/MT8OT7x0iDKqKrTT93GKKPq8u6utZycHPz8tfXYWWB/MHd8sBHPzEzBI/cq941c7NE7dioLMfFJqKmuRN+UBFw0frRH/uhQRimjzlxhR0/8gJNncxCbkIqaylIMyEjDhDEjeJu4B3iyMmo0GvHOl99hXYX9F96QihzsOFyFSkOQXWu3jAzGG4/egLg49d9Y5cycUTNGyOihwlqMu0ZdGT288XOMTbOXUdu4u1oZ7erfOsqpmsw80ZbHZdRm7z+783r846N1OHLi/CveuvuMGTEQb730GJ+qVyDblFEFICpUxR1Pv4ENORHWW/S2z+j4Rrz/9E8waJDyDzOJ92THxsa6/Y7snoZPGaWMOnt51DUarV+O0lISHb5Rydk6fTlOVkYFi3fXfoe1eRYYAtv3jMc1FuCHE4U4WN6+Mipu1d8z3h9vPvuALyN0emxCRg8X1WL8Nbc6XUaJwEPffI4xaVFdPsDUlXiKU4cWLlqKFxbMsx6JKT6253D++NRchIV67y1kSvDwuIz2ZPpdDcCX4CqRIHfqoIy6Q0/Zsqs27MSbn+/F2ZpgNLYGICXMgGmDgvDGwp8r25CKtVFGKaPOTjdfPfTe2fHLxrkio0Xllfjrp98i3xSJloAIhLXWYkyMCWgx4r3tRShtCkZ4oAljki14bu41mKjgsXKy49NSvJDRo0W1mHCtujJ64JvPMTpVTkY7H4HpS76kORnlmaPKXaaUUeVYKlHTrsMnsXnPCZgMzRgxuD9unXGJR26fK9FXZ+qgjFJGnZknIoYy6iyp83GuyKiVc309dp3IQXNDPRIT4jFx+ADr3ZH9x87ibH4RAgODMXFEf/Tva//GKLne+Va0kNFjxXWYqLKM7t/wGUZJyihXRlWce2qcOdrxiX5H2wKEHM9/+hUUlVRYKcyaMQV6WRKnjKo4cZ1oSuzrKigqQW1dAwZkpiMqSt8veKCMUkadmPbWELVlVEhZaWmp9WD9pKQkhISEONtVTcS5KqOa6LzOOiFk9HhxHSZdd5uqPd+34TOMTIl0+jY994yqmh7PN9Z534WjZW7x84z05Lan1fS0YZgy6vn55GwL4hWd+w4cQnqfvtbXfxYVFSIiLARjRo92tgrNxVFGKaPOTko1ZfT4iZOoqalDano6mpubUVxYgDGjRyIxMdHZ7no9jjKqXgqEjJ4oqcdklWV07/pVGC4ho4IIn6ZXcF4Iufvdy8vaakxLScCSl59o25CrYFNdViXaz8kvth6NID5dbQruqQ+O5NXT/ZepnzIqQ8uzsTt27sKI0WMRGtr+IMGhA/sxfOggxMS0n8Ho2V4oWztllDLq7DXdovoAACAASURBVIxSS0bFiujhoycw8aLJbV0zGgw4uH8Ppk293Nnuej2OMqpeCoSMniypx8U/ma1eowD2rF+FYckR3R7tZOtMx7uxPGdUoRQJkVuxeovd0/K22+CLFsxT5aysziubMmd12SZCanJ8m8wqhMYj1VBGPYJVutLa2lqcOZuNkWPszxMtLS1BS2MdhgweLF2nFgpQRimjzs5DtWQ0KysLCAxBenofu66dPH4UmX3TFXlVp7NjdieOMuoOPbmyQkZPlzbgEpVldNfXKzG0k4zK9dy3olV9gKm7A1rV2CdqS5uQ0f4ZqW1vLXBWRkW5dz5c+6M9ow3NrZqdEY0trQgPCdRs/5ztmNligcFgRmhIgLNFNBUn9ooePngAF196mV2/cnOyIQ566tO3/b3dmuq4g84YW82wAAgO9JfudnhooHXsevqIsTZeuN4NrWZr/4NcGLuexqxUXw1GM/z9gcAA+bki04fioiI0tzRj0OAhdsX27dmF4cNHIjTM/vB3mbrVjG0xmiFQeZqXWmOKCNXu3yEhoz+UNmDK9equjO78eiWGJNmvjKqVDy22o6qMLnhxKZ565K4f3ZJX8wl6d1ZGRQI736YXq0Na/TS2mBCuU4HryNRiAZqNJoQF61NGxVgOHz6I5JQ0pKWfPx9OCOre3TsxfvxExV4HqvY8bDVZIN4/7oqQhelwXgoZbb5wvQsR9/PzQ2CA3pRa7Vlyvj0h7/4q8DIaDdizexcmT7nM+vCS+JSWlOBcfi4mTJjkncG70KrgFeDnhwAfmV9avt6FjJ4pa8Cl1//UhUy5XmTHupUYnBTe5QNMrteq35KqyajtFvcdN135o9vxasqou3tG1eyru9OKt+ndJahc+dbWVuw/cBAGQysiIiNRX1eLESOGITEhQblGVK6Jt+l5m97ZKafWbXrRH/Gw4NHjJxAZGYXGxkbr6uLECeMRFGT/FiJn++6NON6mV4+6kNGzZY24/AZ1ZfT7dZ9iYCJl1JZp1WRUNNjd7fjOgujJaejoafrO+1rffm81Zkyb1LaaK1ZWi0srdXG8E2XUuZlkMBiQk5uPsooK6yplekoS0tLSnCssGVXX0ITqmgZkpOvnyd7uhkgZ7VlGTSYT8vLzUVhShgD/AKSlJCEzo2+vfA2mmjJqm6/V1dXW61n8T28fyqh6GRMymlXeiKk33K5eowC2f/UpBiSGcWX0AnWPyqhtP6ajV4CKvjg671PJWdLTOaOdZbRjrOgDzxlVMhPO1WUyW1DbYERclPKvOxPCsPm77xGX3AfxSclorK9HYX42RgzMRN++9g9BONfbnqPE7Tdxqzc6Qj+rNJTRHxMQe8XFbeeebj9+v3MP/EIikZiSCjHPSosKEB0WgPFj9Hucl6vXgDdk1NW+aqEcZVS9LAgZzS5vwrSZ6srotq8+Qf8EyqhXVkbVm15sSRDgyqjjeVBYWISc4kpkDGh/or3VaMTZ4wdwzZXTHFcgGUEZlQSm0XBHMlpXV4fdh05g6Cj7ExROHtqDKy67uG0/o0aHp3i3KKNySCmjcrzciRYymlvRhOkqy+jWtZ+gH2W0LXUeXRl1Z4KwrPsEKKOOGR48fBQhscmIjLI/6/Pc2ZMYMbgfYmNjHVciEUEZlYCl4VBHMpqdnY2qFj8kpdhv9yg8l4vMxCiPbQPRKjLKqFxmKKNyvNyJFjKaV9GEK2bd4U410mW/XfsJMuNDeZv+AjlVZdR2PFLHrD1090xdnNkpPdM0UIAy6jgJ584VIL+sFn37D2wLFg8bnT22nyujDvBxz2j3t+lramqw79hpDBkx1o6iWBmdfulk3b2e0vGV1HMEZVSOIGVUjpc70UJG8yubcaXKMrplzcfIoIyquzJq2zuamZ5s9+CP7Qn7vMJSu4Pw3ZlYLNtOgDLqeDaII5a2bNuBpD79EZeQhObGBpzLy8LAPqkY0D/TcQWSEVwZlQSm0XBHK6Oi299u24HwmEQkJKfCbDahpOgcQv3NmDTeXlA1OkRFu0UZlcNJGZXj5U60kNFzlc246sbzb2VU67N5zcfoGxfCldELwFVZGXX0PndHP1drcvhaO5RR5zLa1NSEH7JyUF1dg4DAQPRNS0G/TM8cRE8ZdS4nWo9yRkbFCvuZrByUlJVbD8hPT03BwAH94C9Of+9lH8qoXMIpo3K83IkWMlpQ1YyrVZbRTV9+jD6U0bbUeVxGezpf1NYLNd/A5M6k1VtZyqhcxsQB7uIgc09+KKOepKte3c7IqK03aswr9UbuWkuUUTlulFE5Xu5En5fRFsy4Sd2V0U1frkB6LFdGbbnzuIyKW/TdvXnJ1gk9HSTvzqRXuyxlVG3ijtujjDpmpIcIGRnVw3g83UfKqBxhyqgcL3eihYwWVqsvoxtXU0Y75s3jMsqVUXcuE/fKUkbd4+eJ0pRRT1BVv07KqBxzyqgcL8qoHC93ooWMFlW34Jqb73SnGumy36xegbSYYO4ZvUDO4zIq2nG0J9TRz6WzzAJWApRR7U0Eyqj2cuJKjyijctQoo3K8KKNyvNyJtspoTQuuVVtGv1iBVMpoW+pUkVE+Te/OpeJ6Wcqo6+w8VZIy6imy6tZLGZXjTRmV40UZlePlTrSQ0eIaA667Rd2V0Q1ffISUaK6M2nKniozaGhOv2vzdy8vs5g3PGXXnMuq5LGXUc2xdrZky6io5bZWjjMrlgzIqx4syKsfLnWghoyW16svo+s8pox3zpqqMujNhWFaeAGVUnpmnS1BGPU1Ynfopo3KcKaNyvCijcrzciRYyWlprwE9uvcudaqTLfv35R0iOCuKe0QvkKKPSU0g/BSijzufqTHYeDh39ATExUbhkwghERUU5X1gikjIqAUvDoZRRueSoLaPiZRYHj55Gbn4R+mWkYfzooQgKCpLrtBejKaPqwbfJ6PVekNEkymhboimj6s151VuijDqH/I2/L8fSlbtRXNOK6LAATB6WgEULHkK/vvbvFXeutp6jKKNKUPR+HZRRuRyoKaPNzc14dtFSrNuZjbLaViRFB+L6SwfgxWfmITQ0VK7jXoqmjKoHXshoWZ0Basvous8+AmW0Pc+UUfXmvOotUUYdIy8rK8O1D76EU4UtbcFhwf6Yf+toLFrwn44rkIygjEoC02g4ZVQuMWrK6Kq13+LxxatQXN3a1snU2EA8/8sbcN/tP5HruJeiKaPqgRcyWl5nxA23qXub/qvPliMxkrfpbZmmjKo351VviTLqGPmnX27Er176HNUNZrvg2dMy8X8vPKz47XrKqOOc6CGCMiqXJbVkVLzt6k+vvouX398HU4dLOsAfePreSfjdYw96/C1rcmS6jqaMKkHRuTqsMlpvxEy1ZXTVciRQRtuSRBl1br7qMooy6jhtu/cfwX3/bxnyyo12wXOvH4C/LXrCcQWSEZRRSWAaDaeMyiVGLRkVvXrr3ZX449ItqGlst9GYcH88ed9lePIX6q5+yVFqj6aMukpOvpyQ0Yp6I2bNvlu+sBsl1q5ajviIQD7AdIEhZdSNyaT1opRRxxlqbGzEr377v/hiRyEams0Qr6YfnBqM5x65ET+98WrHFUhGUEYlgWk0nDIqlxg1ZfT0mRzM/+0SHDhbj5ZWC0IC/TBhUCSW/Hk+hg7uL9dxL0VTRtUDL2S0skF9GV2zkjLaMcuUUfXmvOotUUadQ55fUIKPvtiIA8fzkRIfhssnj/aIiIreUEady4nWoyijchlSU0ZFz/YfOoGP12xFbnEN+qXG4I5Z0zFx3Ai5TqscLU4ACAwMtG4joIyqB/+8jLbixp+quzK6ZuWHiAvnyqgt05RR9ea86i1RRp1DXlZVja37jqGspgEh/hYMykzD9EljnSssGUUZlQSm0XDKqFxi1JZRW+/q6uoU3/ctN3LH0eLp/w27DqG4qhbmViMyUlNw2fjRCAsOREhwgOMKGOEWASGjVY2tuEllGf3y0w8RSxltyx1l1K1prO3ClFHH+WlqasKSzzehJioDCA4HzGagqgBXDUnwiJBSRh3nRA8RlFG5LHlLRuV66Z3opR9/icKQPkDYhbONa8swOKwFt18zjTKqQkqEjFYLGb39HhVaa29itZDRsADuGb2AhDKq6vRTtzFfktFzRWXo1ydZcYDHf8jGx4cKgJhUu7oTK0/hl3fOUrw9yqjiSL1SIWVUDntvklGx0unv74/g4GCHkCoqKvDG+gNAov1e1tjqbNx/7RTExXrm5RsOO9aLAoSM1jS14maVZfSLTz5EDGWUK6O94VrTu4yKY1q+2X0Ie46egQGBiA4PwqxLx2NY/z6KpW/LnoP4thhAaKS9jDYW4L6rJiA6OlqxtkRFlFFFcXqtMsqoHPreIKPlNfX4bMseFNU0wWI2YUByDObMuAQhISHdwsrJycE/95cAUQl2MYG1Rbj/kkHI6JsuBVr8ziwpKUFYWBhiYmKkyvbW4PMyasItd6i7MvrFJx8gOpQro7Z5x5VRH74C9S6jG3YcwPJvj6DOFIRqUwiSAxoQF+aHZ++bibSkeEUyd66oBO98ewxIyGyvz9iC/uZSPHDjVYq00bESyqjiSL1SIWVUDntvkNH/+ecqHDGlojUozAon2FCHKTENmH/79d3CamhowN9Wb0NTwiC7mPiKk5h32/UIDQl0GvT2Q6fx5bYDOFkbjOhAE4bHB+DRe663iik/3RMQMlrbbMKtKsvo5x9/gCjKKFdGe8PFqYaMmkwmBAR4ZpP9s298iF2V4ahC+62qfijGvVMycft1UxVJoVhJWLlhK45WWYCIOMDQhNDGctx/3RSkJScq0gZlVHGMXq+QMtp9CsRxaeHh4XYBvi6j5eXl+O3Hu1AXaX/XZqCpCE/NvrzHOyxfb9uDfedqYQyPA8ytCGyowFWjBmDSyCFO7xkVUvvrN77AgZaUNu7haMLsIYF4/G59vHXKWxe1kNE6IaNz7lW1C58JGQ3x557RC9R75cronoMn8eCjL1kRjBkxEG+99BjiYrrem9MxVsTPmjEFf3xqLsJCHe8HUnVmd9GYJ2VU7Is6ceo06usbYDAYkJychJHDhykmpqL+p/73A2xvtt9LFY1G3DKgFY/dd6tieM1mM87mFyG/uMT67urRA/oqfnve1lmujCqWNq9WRBn9Mf7SsjJkZecgIDAIhuZmZGT0RWZGX2ugr8tofn4+/rjuFJpC7b/AxhnK8NtZY5Caar8nvTO9guJSnDlXZN1rOiQzHRERMQgO8HNaRvcePY0FK4+hAva35qfHVWHRz2dydbSH3xZCRutbTLhNZRldteIDRFJGe+/K6NncQixctBQvLJiHQf3SsXLtVuzcd7xbwRQ/z0hPxuTxw9HUbMBzi5chNTkej8+f49U/hs407kkZXf/NJgwbNRaxcfEQq4sF5/JQV12BKZMvcqZrDmOEID7x6nv4tuH8HzPbJxKNeHB0CObOvtZhHVoMoIxqMSvyfaKM2jOrqKzEsROnMGTEaISHR6ClpRlnT59E39Rkq5T6uoyKL8/P/WsdzoXZf3keY8rB0/ffbJVMmY/sOaN7jpzCglUnUAn7Pe7T46vw4twbfrRSLdMXX489L6NmzL5T3ZXRVSveR0QwV0Zt86vXrYwKuczJL26Tyc5y6ujCcySvjsqr+XNPyWhZWRlyCkowdPhIu+Ec3r8bF00Yp9i38L9/thnvHa5HLSLa2unvX4Ln75qK0YMz1ESpWFuUUcVQerUiyqg9/qPHTiA8Jh4JiUltP2hsqEfu2dOYcvFFPi+jYtDb9x/FF/uzUYYo+FvMSLDU4qeXj8LFo4ZIz1VZGRXnqf7mrTU42Nx+4kgoDLh9CPD43d3vWZXumA8WEDLaYDDjpyrL6MqP3kc4ZbRtRvU6Gf3LkhXWwdtWNqtq6vDwM6/iiflzrKufjj6dy5vMFkdFvPbzc8UV6Jtq/5SmEp3JysqCJTAUKalpdtXlZp1BYlw0UlLa9y250564/f/GR+uw+1wTqkwh6BvSjBvG98ft105xp1qvljWazGgxmBEZ5vyDCV7tcA+Ni3GYLRaEhcjvGQ7w99PqsHrsl+16b2oxwd9P3EaVW/HS5aA7dFrcsehqlW/P3r0YPHwMgjodZ3TkwB5MnjQRBpMfRM5Dgvwh3jQUFBSkdxRd9r+mpgbHss8hPDgIgzLSXD5wv6HFhCB/PwQHOT+/xIs7Pv7uKH6oD0aoxYiJycAv7rgeyfHKngjiSuK0fL0LGW0UMnrXf7gyNJfLfCpkNMiPe0YvEOyVMto/IxWzZ063IpCRUbF/9JUlK+z2mFbVGVyejJ4q+MMPp5BfUAiLBfAP8Ef/jL4YMMD+aU132m5oqEdObhbGjJtoV83Obd9i8sWXWV9np+SnprYGdbW1SExMRGiovp8MFTkR2xr8dSpjHfMqRFR8hJTJfmIjg+FCMdlmFI0Xw62uP3+9uzN2RTulUmWlJaXIKyyEydRq3Vc9ICMT0THtkpOfn2sV0fS+7XcsqirKUVJSjKFDhsNstqCluQm5uTloam6C0WhAQnwCBgwcLH0LW6Uhe7UZwUtcH7K/S40GA8rLy6x3p8QWKq184qK0+4yFTUZv94KMhlFG26Zor5RRMXrZlVEhogsWLcWSl5+w7jV19SOePi8qKkJrayv69Omj+ArB8RMncSKnBKmZgxAeFYOG2moU5ZzGuOEDMHTwQFe7/aNy+w4ehMnsj5S0dOsDTMWF59A3LQUD+vdTrA1bRWI1qrbBCC3/QnN20LxN7ywpbcf1ptv0hUUl1rN+k/r0R1hkNOprKlFZmIOrL5vYtvInfgfs3L0XcYnJSEpKQUVFOUqLC3HRhLHWmNoGA7Zv/w6DR4xBTGw8zGYTCvJyYDE246KJ4zSZbPGEvLj9Le70dD4dwNMdlr1NL/oj/raIVWfxZYEf5wkIGW0ymnGHyjL6yfL3EUoZ7b0y6sqeUaVENO9cATZ8vw8hcSnwDwhEU0UxLh47FGOGye8p6u5S+/yrb5CQMQwR0bFtIeLBovqSbMy8VtlzM4tLSlFaWoagoEDr0/QJ8Z75Jk4Zdf4Xq5qR4la1WCGMCNX/lgNZbr1JRjdv343QhAyEhre/GKK6vBiJoWaMGTmsDZ0QocKiYlRWViI6JgbpqSlt+8ez8wpRWlGFAYPb40XBw/t24orLL1H8S7lsPjvGi1cEr/xqI8zh8QgOj4ShphxD+ybikglj3alWqqyMjIqtE3sOHEFZRSWCgkMRHhKICWNHITLC/ngtqQ70omAho81GC+64W93b9B8vfw+hgbxNb5tqvW5l1NHT9EJWV6ze0nYrvqtb865ep0s/+BRpYy4X917aqig6uhMP/nSmIr+MxS+lT1avw5AJ0+y6KG4Lnzm4DXNumelq171ajjLqVfzdNk4Z9XNpv6w2s9l1r1paWvD93kOIzRhhF9BqNMBQno3LL3Hu9IxDx04hJCwK8Un2r/Q9l/0DMtOTrFtwtPJZ/90u1IcmITis/cHJqrxTmDVlNOI99IW789hlZHTLtp3wj4hHYsr5M06bGuuRd/Igbr7hGsWO2tNKbjzRDyGjLa0WzFFZRld8+B5CupBRmaMnPcHDW3X2OhkVoHtKdmcZFQ8svfPhWrv8pKUkSN+uz8vLw7fHchGXMdSurprifExID8fIkfZPprs6IdZu+BaRKf0QFdv+4FJNRSmMNUW49kplDop3tW+ulqOMukrOs+Uoo74vo2IGfbdzH/yjUxEe2b5HtLKkAKnRgRg1bLBTk6ywpAJns3Otx8HZPuJL8uG93+Paq69wqg41goR8r9r0PSIz7H8fN1WXY2A0MGnsKDW6AWdlVPR347bd6D/Cfv9+Ye4ZjB6Q4vB8U1UGo/FGbDJ65z33qdpTIaPBAbB7gMnRYpmqHVS5sV4poyoztjZ3+vRp7PyhCPH97J/Yry7IxpjUMIwbp8y+KbEfddveY0jqOwBRsfGora5AeUEOrr50AhISlH+yXg2WlFE1KMu3QRntHTJaVl6B7fuOIS41AxFRsaitKkNjZTGumXax0/sTxTmjhw8dhH9wKJJS0qwPMxUXFmBQ/3T0y9DOMW1iL/8n67Ygsv8YuwuiobIEI5JCMXaE/WKC/FXjXAlnZbSiogLHsgqQ2Mf+AdWq8hKkRQIDByr3nIBzPddflJBRg8mCu1SW0Y8+eA9BnWTUlW2E+iPedY8poyplUtxCf+ejz5A0dBICQ85vMLeYTSg8uhP333aDYmdzinpLS0tx7ORZVNTUIiEuBuNHDUNcXJxKI1W+Gcqo8kyVqJEy2jtkVMyVispqiD3v1bX1SEqIw8B+faUe6rEdel9ZUQZxTnFQUDBSUjy3z9yd+b1lxz6UtIYgIq79zNSq7KO45YrJHnszW+f+OiujotyX6zej/8hJ8PdvP2It+9RhTL9otMtHS7nDT29lhYwaTcBd96q7Mrr8g39DnNx1//33tyFz9+hJvbHv2F/KqIrZ23/4OPYfP43gyFj4BwSgqaYCI/r3wdQpkz3SC08deu+RzvZQKWVUbeLOtUcZ7T0y6tyM6D5KT29gEqujazdvQ7PJD+agcJjrKzBx1HAMH2z/diV3mfRUXkZG8/ILcPDEWcQlpSEwOBg15SWIjwrBxRo9pcCT3FypW8jowUOHMWasMncnne3DkcOHMH7c2B/JqKtHTzrbrlbjKKMqZ0YcinwmKxtGYyuGDRnk0RVLyqjKyXWiOR7t5AQkHYT0pqfplUiHnmTUNt6GhgbU19cr9hIPGY4yMirqFUdQFRSVwGA0oE9qim63ZMkwUir20KFDEP/zxkdsz+u4RY8ro97IAtv0OAHKqMcRSzdAGZVGpskClFG5tOhRRuVGqGy0rIwq2zpr8xYB7hn1Fnm261EClFGP4nWpcsqoS9g0V4gyKpcSyqgcL8qoHC9fiebT9L6SSY7DjgBlVHsTgjKqvZy40iPKqBw1yqgcL8qoHC9fiuY5o76UTY7FSoAyqr2JQBnVXk5c6RFlVI4aZVSOF2VUjhej9U+ADzDpP4fdjoAyqr3kUka1lxNXekQZlaNGGZXjRRmV48Vo/ROgjOo/h5RRHeWQMqqjZPXQVcqoXB4po3K8KKNyvBitfwKUUf3nkDKqoxxSRnWULMqoYsmijMqhpIzK8WK0/glQRvWfQ8qojnJIGdVRsiijiiWLMiqHkjIqx4vR+idAGdV/DimjOsohZVRHyaKMKpYsyqgcSsqoHC9G658AZVT/OeQISIAESIAESIAESEC3BCijuk0dO04CJEACJEACJEAC+idAGdV/DjkCEiABEiABEiABEtAtAcqoblPHjpMACZAACZAACZCA/glQRvWfw25H0NRswHOLl1l//sen5iIsNFiXo/3LkhV458O11r4/dPdMPD5/ji7HsXLtVvzu5fP5SEtJwJKXn8Cgfum6GUtVTR0WvLgUTz1yl12/bfNszcad1rH86em5mD1zum7G1V1HO+Zr1owpPV5DHedox/refe0ZTB4/XPcsHA1Adg6IufTwM6/iyIks3V/Xjth09XN3efnKNeYKO5bxTQKUUd/MKzr+snP0h1TLCMQfefHRq4Da2Ir3Db+yZAXeeukxxMVEofN/azkHHedSVxLdMUc2yXhi/hxdS1jn/MjOw7O5hVj85nIsenaeNd++/pGZA7b5NGXSSOuXls7/7eusxPjc4SXm1vynX8GiBfN0fY31hjxzjM4ToIw6z0pXkeKXXf+MVGufd+47rsuVUSEEH6/eosu+d54sYpWtYx7EH5SFi5bihQXzdLM62tXKaFf/JituWrywbNePbYVX9stD5/JaHKNSfZKdA119YfGFOeMsT1leXc293sTLWa6M0zcByqi+89dl7zv+ouosQXoabsfbpLZ+6/W2p+0PcGZ6slWuv9q0Ezn5xbpa8e3qj2hXUq3nOSfmWVcrdTJfHnrbqqgrc8B2bYvrefCAPl1u/9DT7yqZvsry6kpG9X6NyfBibO8gQBn1sTyLX1IdJUfPv7S6Wp1asGip7vZa2qaYGM+ps/nYtvuIz+wZ7Uq89DznOsroHTdd2XYbVEZGe9OqqODlyhyw8RTlj5zM1vVecNk/IbK8ulpJ1vs1JsuM8b5PgDLqYznu7kEKPe4b7fxHXc97yzp/SRCrHXoTa66MOt5WIXs73xd+/ciu9HWeR7brOjU5Xld3ClzNnSwv0Y6YVw8++pJdk3p+mNNVdiznuwQoo76bW+vI9PwNurPA2f5odVyx0kv6Oou1Hh/04Z7R9gfQupp3ev6y5M51JLsHUnZl0J2+abGsLK+uxiB+n0y7ZCwfYNJigtknlwhQRl3Cpp9CepbRzk+N6nnVSeRhxeotdk/T+8LKqLgSZJ4M1suV4+hpejHm4tJKu4fr9Dw/3c2LoznQkVdzS8v/b+9eQrWoAjiAn1WPRUQPtAQralNBEEhUi0KKQCQhCq61qiwR3fQQxVtERpShWK0Mk7RFkBm0sdeiQoqoiN5PyJ6SL1ArF0WrOB/Mx3zjd6/36Mk7c77fXXkvZ853zu/MN/OfMzPH3rJOYwvmDrxNPyozo1P5zgzbv6ox6vIx/Xj3M9uXKyCMlju2nZ8Zbd6e6uLanPXdq/4IRZf60lwTMfap/thH6pqJXfnKTbbOaDMsdHGmO+c4HG0faHpVF5p79h3oNWPUbjmnetX3xVGzyrmfqqu9AsJoe8dGywgQIECAAAECxQsIo8UPsQ4SIECAAAECBNorIIy2d2y0jAABAgQIECBQvIAwWvwQ6yABAgQIECBAoL0Cwmh7x0bLCBAgQIAAAQLFCwijxQ+xDhIgQIAAAQIE2isgjLZ3bLSMAAECBAgQIFC8gDBa/BDrIAECBAgQIECgvQLCaHvHRssIECBAgAABAsULCKPFD7EOEiBAgAABAgTaKyCMtndstIwAAQIECBAgULyAMFr8EOsgAQIECBAgQKC9AsJoe8dGywgQIECAAAECxQsIo8UPsQ4ShuBPzQAABq1JREFUIECAAAECBNorIIy2d2y0jAABAgQIECBQvIAwWvwQ6yABAgQIECBAoL0Cwmh7x0bLCBAgQIAAAQLFCwijxQ+xDhIgQIAAAQIE2isgjLZ3bLSMAAECBAgQIFC8gDBa/BDrIAECBMoV+Puff8PD6zaHq+ZcGm6ef22/ox9//n0YX7MpbFy7PFx0/qxyAfSMQAECwmgBg6gLBAgQGFWBicLoqHroN4EuCgijXRy1Qtr85MZt4bkXXx/ozfNPrwpXXH5x72+H/jwclq56Knz13U/9MpddcmF45on7whmnnxZeef3d8OEn34Ybb7i6Vy7+xO137d4fHlq7ub/NuTPPGpgdiTMm6zduC3cunBfuX72hV64q88U3O/vb1j8rlvnx191hycr1Yc++AwPbmHUpZIfUjWkVqIfKX3bt7R0bqu/glq1vDBwr6t/N5nGk+i4fPPRX73teHS+GfYfvum1+uH/J2LT224cTIBCCMGovmBaBeAKJP9WJoAqey5eM9cJo9fvYgrn9W29ViKyH0Rg6myeUGFJnz5rRD7Xx923bd/RPSrGeO+59YmC76oRWr6vexmb7YttjPTH41m8NTgumDyVQgEAVRl97+8PeRWV1URq79uwL28P118zp326P3829+w+GR1Ys6vV8otv09TBaXUyuGV/cq7v6vHNmnCmQFrD/6EK3BYTRbo9fJ1sfTwoPrtkUHhtf3D+5NMNeNesZTzannnJSr5/DwmicGa2XGQYS6x5/fFNYsezW3uc16xlWd/NvB/84fESbO4mv0QRaKpByuz0eQ9Zt2BrWPLA4nHLyyVMKo1M5prSURrMIFC8gjBY/xO3r4LAw2AyjzZnT1DA62SMAxxJGqxNenLWJP4+uXGRGtH27lhZ1WGCyMFqfNa26WN2OnzXz7CmF0XhMuGD2OQPf2+aFaof5NJ1ApwWE0U4PXzcbH8Pgy9t3DMxoDgujzRPHVGZGq3rOmzWjX3+z7mMJo/EZ1fjTPCkKpd3cB7W6fQIThdHq9vr8667s306v310RRts3llpEIFVAGE0VU/64Bf7PmdH67bsqQOYMo/XOD5u9PW4cFRAYUYHJlmhqXrw2H/UZNus5lYvXYceiEeXXbQLTKiCMTiv/aH74sJNOfJ4rvoxUvbjQXCOw2ua33fuPeJu+/sxo8yWFKFzdsq/X3XzL9mizpTt//j2899GX/ZmZlOfbRnOU9ZpAmsBU1wutyn369Q/9VTLqLzRN9Iy5F5jSxkNpAidSQBg9kdo+qy/QXLbpnrtvCe+8/1mo3qaPBau33uO/4/Nhd4zNC6++9cGkYbS5XS+Mrl4Wtrz0Zr/uowXPaka1Xi7W01xmyrIwdmgC+QQmu8CrLlarY8GKpQtDXO6pegmyfjyxtFO+MVETgRMlIIyeKGmfM6nAsKWTmhsMe9YUKwECBAgQINBtAWG02+NXTOuHrTMaZz6W3n5Tb2knt8WLGWodIUCAAAECAwLCqB2iFQITLXpf/9+XvLneiqHSCAIECBAgkFVAGM3KqTICBAgQIECAAIEUAWE0RUtZAgQIECBAgACBrALCaFZOlREgQIAAAQIECKQICKMpWsoSIECAAAECBAhkFRBGs3KqjAABAgQIECBAIEVAGE3RUpYAAQIECBAgQCCrgDCalVNlBAgQIECAAAECKQLCaIqWsgQIECBAgAABAlkFhNGsnCojQIAAAQIECBBIERBGU7SUJUCAAAECBAgQyCogjGblVBkBAgQIECBAgECKgDCaoqUsAQIECBAgQIBAVgFhNCunyggQIECAAAECBFIEhNEULWUJECBAgAABAgSyCgijWTlVRoAAAQIECBAgkCIgjKZoKUuAAAECBAgQIJBVQBjNyqkyAgQIECBAgACBFAFhNEVLWQIECBAgQIAAgawCwmhWTpURIECAAAECBAikCAijKVrKEiBAgAABAgQIZBUQRrNyqowAAQIECBAgQCBFQBhN0VKWAAECBAgQIEAgq4AwmpVTZQQIECBAgAABAikCwmiKlrIECBAgQIAAAQJZBYTRrJwqI0CAAAECBAgQSBEQRlO0lCVAgAABAgQIEMgqIIxm5VQZAQIECBAgQIBAioAwmqKlLAECBAgQIECAQFYBYTQrp8oIECBAgAABAgRSBITRFC1lCRAgQIAAAQIEsgoIo1k5VUaAAAECBAgQIJAiIIymaClLgAABAgQIECCQVUAYzcqpMgIECBAgQIAAgRQBYTRFS1kCBAgQIECAAIGsAsJoVk6VESBAgAABAgQIpAj8B7xIgk0DfEQVAAAAAElFTkSuQmCC",
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = plot_slice(study, params=[\"qgrams\", \"ratio\"])\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "4c59473e-7e65-4f89-a850-3a287805db97",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "marker": {
+ "color": [
+ 0,
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14,
+ 15,
+ 16,
+ 17,
+ 18,
+ 19,
+ 20,
+ 21,
+ 22,
+ 23,
+ 24,
+ 25,
+ 26,
+ 27,
+ 28,
+ 29
+ ],
+ "colorbar": {
+ "title": {
+ "text": "Trial"
+ },
+ "x": 1,
+ "xpad": 40,
+ "y": 0.5
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "line": {
+ "color": "Grey",
+ "width": 0.5
+ },
+ "showscale": true
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 8,
+ 5,
+ 4,
+ 7,
+ 10,
+ 3,
+ 4,
+ 9,
+ 9,
+ 3,
+ 10,
+ 10,
+ 10,
+ 7,
+ 9,
+ 10,
+ 6,
+ 8,
+ 8,
+ 10,
+ 6,
+ 10,
+ 9,
+ 10,
+ 9,
+ 8,
+ 10,
+ 9,
+ 10,
+ 7
+ ],
+ "xaxis": "x",
+ "y": [
+ 0.30337436666113177,
+ 0.20307681243216183,
+ 0.19103604207409036,
+ 0.28333512688101153,
+ 0.4633111426794054,
+ 0.18531875170393172,
+ 0.1907552827778649,
+ 0.33330840997266736,
+ 0.39784787794552795,
+ 0.1862693152521443,
+ 0.6482633708392243,
+ 0.5274133516352982,
+ 0.42621654591235925,
+ 0.22112929238626436,
+ 0.4070833316320489,
+ 0.42621654591235925,
+ 0.2123846817548284,
+ 0.3258435026582389,
+ 0.3480318083295157,
+ 0.36391860524716446,
+ 0.20993148042255388,
+ 0.46330684097155167,
+ 0.4070833316320489,
+ 0.42745701777773953,
+ 0.40750648259180683,
+ 0.3258414249026382,
+ 0.46330684097155167,
+ 0.4037641499510466,
+ 0.3639219361818585,
+ 0.24080227825457184
+ ],
+ "yaxis": "y"
+ },
+ {
+ "marker": {
+ "color": [
+ 0,
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14,
+ 15,
+ 16,
+ 17,
+ 18,
+ 19,
+ 20,
+ 21,
+ 22,
+ 23,
+ 24,
+ 25,
+ 26,
+ 27,
+ 28,
+ 29
+ ],
+ "colorbar": {
+ "title": {
+ "text": "Trial"
+ },
+ "x": 1,
+ "xpad": 40
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(247,251,255)"
+ ],
+ [
+ 0.125,
+ "rgb(222,235,247)"
+ ],
+ [
+ 0.25,
+ "rgb(198,219,239)"
+ ],
+ [
+ 0.375,
+ "rgb(158,202,225)"
+ ],
+ [
+ 0.5,
+ "rgb(107,174,214)"
+ ],
+ [
+ 0.625,
+ "rgb(66,146,198)"
+ ],
+ [
+ 0.75,
+ "rgb(33,113,181)"
+ ],
+ [
+ 0.875,
+ "rgb(8,81,156)"
+ ],
+ [
+ 1,
+ "rgb(8,48,107)"
+ ]
+ ],
+ "line": {
+ "color": "Grey",
+ "width": 0.5
+ },
+ "showscale": false
+ },
+ "mode": "markers",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 0.8380947452182991,
+ 0.7929630924927731,
+ 0.8038691888459086,
+ 0.7144467000567123,
+ 0.8517624194151302,
+ 0.9174470432736699,
+ 0.7808721328696897,
+ 0.800827464931477,
+ 0.7395142458665667,
+ 0.8596838078185782,
+ 0.8957263433574094,
+ 0.9045625386867897,
+ 0.9483018131894073,
+ 0.8961116303610029,
+ 0.8983635553727757,
+ 0.9488029595469605,
+ 0.8777239752940389,
+ 0.9204153410113451,
+ 0.875183707875409,
+ 0.8294161917860436,
+ 0.9196762030928591,
+ 0.8563838420348091,
+ 0.8948541483847852,
+ 0.8429055971815752,
+ 0.876132015812083,
+ 0.9275690010126776,
+ 0.8601034741266624,
+ 0.7662074140900922,
+ 0.8174855005418883,
+ 0.8389446905059951
+ ],
+ "xaxis": "x2",
+ "y": [
+ 0.30337436666113177,
+ 0.20307681243216183,
+ 0.19103604207409036,
+ 0.28333512688101153,
+ 0.4633111426794054,
+ 0.18531875170393172,
+ 0.1907552827778649,
+ 0.33330840997266736,
+ 0.39784787794552795,
+ 0.1862693152521443,
+ 0.6482633708392243,
+ 0.5274133516352982,
+ 0.42621654591235925,
+ 0.22112929238626436,
+ 0.4070833316320489,
+ 0.42621654591235925,
+ 0.2123846817548284,
+ 0.3258435026582389,
+ 0.3480318083295157,
+ 0.36391860524716446,
+ 0.20993148042255388,
+ 0.46330684097155167,
+ 0.4070833316320489,
+ 0.42745701777773953,
+ 0.40750648259180683,
+ 0.3258414249026382,
+ 0.46330684097155167,
+ 0.4037641499510466,
+ 0.3639219361818585,
+ 0.24080227825457184
+ ],
+ "yaxis": "y2"
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "white",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#C8D4E3"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "white",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "radialaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "yaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "zaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "caxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Slice Plot"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "autorange": true,
+ "domain": [
+ 0,
+ 0.45
+ ],
+ "range": [
+ 2.5434570822170417,
+ 10.456542917782958
+ ],
+ "title": {
+ "text": "qgrams"
+ },
+ "type": "linear"
+ },
+ "xaxis2": {
+ "anchor": "y2",
+ "autorange": true,
+ "domain": [
+ 0.55,
+ 1
+ ],
+ "range": [
+ 0.699161887126944,
+ 0.9640877724767287
+ ],
+ "title": {
+ "text": "ratio"
+ },
+ "type": "linear"
+ },
+ "yaxis": {
+ "anchor": "x",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0.14711458410538816,
+ 0.6864675384377679
+ ],
+ "title": {
+ "text": "Objective Value"
+ },
+ "type": "linear"
+ },
+ "yaxis2": {
+ "anchor": "x2",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "matches": "y",
+ "range": [
+ 0.14711458410538816,
+ 0.6864675384377679
+ ],
+ "showticklabels": false,
+ "type": "linear"
+ }
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAFoCAYAAAAmSXdBAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Qt4FfWd//FP7gkhhBAgEO4giCIgKIJ3qtYq6trS0lrdtq63Vvt3tWpZxH+7u+5/kbXq1m1Xt97Wuq2r0tpWlKpFRa0IoigocpNbgHBLAiFccj3n/8wJJ8kJgZzJzPmdmTPv8zx9bMj8bq/vnFw++c1MWjgcDosXAggggAACCCCAAAIIIIAAAggggAACCCAQh0AagWIcShyCAAIIIIAAAggggAACCCCAAAIIIIAAAhEBAkVOBAQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW4qDkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkXOAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BAMW6q1gP3Vtfollk/16QJo3XHTTO60IP5Jhu3lOv7Mx/Uzd/7qqZPO9f8BBgRAQQQQAABBBBAAAEEEEAAAQQQQCAlBAgU25SxtrZeP33gKb2ycElMccedNEKPzL1dRYUFkX/vKFCMBnaXXjjFaMi4bMUaXXvb3KNOxssumqJ777pOubnZkc85CRSdtE2JdwmLQAABBBBAAAEEEEAAAQQQQAABBBBoESBQPEIRDc0mjB0ZE8RFw8OKqn361f13aviQUk8Gik8/PEuTxo+OCTytD6JBqJNQ0Elb3msIIIAAAggggAACCCCAAAIIIIAAAqklQKB4pJ4PPTZPyz5eE7MTsW2pX1u0TCOHDThmoJis0yK6Q7FtoGjNpX0I6CQUdNI2WS6MiwACCCCAAAIIIIAAAggggAACCCCQGAECRUnRS50t4raXCR+L/HiXPLe/R2FHl1Ef6xLqlas3tAzZPiA81lyOFSi2n+OxQsHov5fvqowMUVpS3LITs20wGf18dB7XX32Z0Uu7E3P60ysCCCCAAAIIIIAAAggggAACCCCAgF0BAsUjYtYOxSeffUX/MvP6Th9aEm+geKz7Kr644F0NGtAncolyNBBsO66dHYFOAsWO2lpz+8n9T6ptoGlnPnZPQI5HAAEEEEAAAQQQQAABBBBAAAEEEPCXAIHikXod64Es7R9uYh0eT6AYz67H6DH9+hYftduvs0uwo6fZsQLF9kFl+1DweE+qbj82gaK/3tTMFgEEEEAAAQQQQAABBBBAAAEEEEikAIFiB7rRXXptP9U2WIwnUIweM+OKqcfc8RgN6ubMvrHlgSptg8LZcx6Pufy4oxOho0CxowfMHOueih2Nba3/0V//sWVsAsVEvgXpGwEEEEAAAQQQQAABBBBAAAEEEPCXAIFiHPWKBozRy5LjCRTjCeGiYeCxptD+fobHCxTbf679pdvt53OsnY1WP+0/F89a4mDkEAQQQAABBBBAAAEEEEAAAQQQQACBFBAgUIyjiO0DxHgCRac7FOOYVuSQ4wWDbftgh2K8ohyHAAIIIIAAAggggAACCCCAAAIIIHA8AQLFI095/t0rb+sbl52v3Nzso7ziuf9g+2OOdw9F69jDtXUq7ddbt8z6uSZNGN3lJyZ3NVC0cw/FeMJR3mYIIIAAAggggAACCCCAAAIIIIAAAsEQIFA8Eij+9IGn9MrCJUc95bmj+xHGs0PROn06espz+/smRgPB66++LCZUtMa47xe/1d23XqOiwoJjno1dDRStDjt6wnRHT3mO5wEzwXi7sEoEEEAAAQQQQAABBBBAAAEEEEAAAQLFNueA9XTjJ5995aiz4umHZ8U8NCXeQNHqKHrsytUbWvptf3/Djo6xDm5/XEenq5NAsW3oWb6rMtL9se7b2H6O7QNQ3koIIIAAAggggAACCCCAAAIIIIAAAsEQIFAMRp1ZJQIIIIAAAggggAACCCCAAAIIIIAAAq4IECi6wkgnCCCAAAIIIIAAAggggAACCCCAAAIIBEOAQDEYdWaVCCCAAAIIIIAAAggggAACCCCAAAIIuCJAoOgKI50ggAACCCCAAAIIIIAAAggggAACCCAQDAECxWDUmVUigAACCCCAAAIIIIAAAggggAACCCDgigCBoiuMdIIAAggggAACCCCAAAIIIIAAAggggEAwBAgUg1FnVokAAggggAACCCCAAAIIIIAAAggggIArAgSKrjDSCQIIIIAAAggggAACCCCAAAIIIIAAAsEQIFAMRp1ZJQIIIIAAAggggAACCCCAAAIIIIAAAq4IECi6wkgnCCCAAAIIIIAAAggggAACCCCAAAIIBEOAQDEYdWaVCCCAAAIIIIAAAggggAACCCCAAAIIuCJAoOgKI50ggAACCCCAAAIIIIAAAggggAACCCAQDAECxWDUmVUigAACCCCAAAIIIIAAAggggAACCCDgigCBoiuMdIIAAggggAACCCCAAAIIIIAAAggggEAwBAgUg1FnVokAAggggAACCCCAAAIIIIAAAggggIArAgSKrjDSCQIIIIAAAggggAACCCCAAAIIIIAAAsEQIFAMRp1ZJQIIIIAAAggggAACCCCAAAIIIIAAAq4IECi6wkgnCCCAAAIIIIAAAggggAACCCCAAAIIBEOAQDEYdWaVCCCAAAIIIIAAAggggAACCCCAAAIIuCJAoOgKI50ggAACCCCAAAIIIIAAAggggAACCCAQDAECxWDUmVUigAACCCCAAAIIIIAAAggggAACCCDgigCBoiuMdIIAAggggAACCCCAAAIIIIAAAggggEAwBAgUg1FnVokAAggggAACCCCAAAIIIIAAAggggIArAgSKrjDSCQIIIIAAAggggAACCCCAAAIIIIAAAsEQIFAMRp1ZJQIIIIAAAggggAACCCCAAAIIIIAAAq4IECi6wkgnCCCAAAIIIIAAAggggAACCCCAAAIIBEOAQDEYdWaVCCCAAAIIIIAAAggggAACCCCAAAIIuCJAoOgKI50ggAACCCCAAAIIIIAAAggggAACCCAQDAECxWDUmVUigAACCCCAAAIIIIAAAggggAACCCDgigCBoiuMdIIAAggggAACCCCAAAIIIIAAAggggEAwBAgUg1FnVokAAggggAACCCCAAAIIIIAAAggggIArAgSKrjDSCQIIIIAAAggggAACCCCAAAIIIIAAAsEQIFAMRp1ZJQIIIIAAAggggAACCCCAAAIIIIAAAq4IECi6wkgnCCCAAAIIIIAAAggggAACCCCAAAIIBEOAQDEYdWaVCCCAAAIIIIAAAggggAACCCCAAAIIuCJAoOgKI50ggAACCCCAAAIIIIAAAggggAACCCAQDAECxWDUmVUigAACCCCAAAIIIIAAAggggAACCCDgigCBoiuMdIIAAggggAACCCCAAAIIIIAAAggggEAwBAgUg1FnVokAAggggAACCCCAAAIIIIAAAggggIArAgSKrjDSCQIIIIAAAggggAACCCCAAAIIIIAAAsEQIFAMRp1ZJQIIIIAAAggggAACCCCAAAIIIIAAAq4IECi6wkgnCCCAAAIIIIAAAggggAACCCCAAAIIBEOAQDEYdWaVCCCAAAIIIIAAAggggAACCCCAAAIIuCJAoOgKI50ggAACCCCAAAIIIIAAAggggAACCCAQDAECxWDUmVUigAACCCCAAAIIIIAAAggggAACCCDgigCBoiuMdIIAAggggAACCCCAAAIIIIAAAggggEAwBAgUg1FnVokAAggggAACCCCAAAIIIIAAAggggIArAgSKrjDSCQIIIIAAAggggAACCCCAAAIIIIAAAsEQIFAMRp1ZJQIIIIAAAggggAACCCCAAAIIIIAAAq4IECi6wkgnCCCAAAIIIIAAAggggAACCCCAAAIIBEOAQDEYdfb1KvcdqFf3vCxlZqT5eh1MvnOBA4cbI3XOzc7o/GCO8LXA4bomhcJh5edm+nodTL5zgYbGkA7VNakwP6vzgzkisAL1DSHVNjSpRzfOExMnQV1DSPUNTSrA2wS38DbC3DJIXX2T6pvCKsjjZwwT8rX1TWpsCqs73ia4hbcRZgaJU4BAMU4oDkueAIFi8uxNj0ygaFo8eeMRKCbP3vTIBIqmxf05HoGi2boRcOFtVsDsaASKZr0JuPA2K8BoXhIgUPRSNZhLhwIEisE5MQgUg1NrAsXg1JpAMTi1drJSAkUnevbbEijaN3PSAm8nevbbEijaN3PSgkDRiZ79tnjbN6NF4gQIFBNnS88uCRAougTpg24IFH1QJJemSKDoEqQPuiFQ9EGRPDBFAkWzRSDgwtusgNnRCBTNehNw4W1WgNG8JECg6KVqMJcOBQgUg3NiECgGp9YEisGpNYFicGrtZKUEik707LclULRv5qQF3k707LclULRv5qQFgaITPftt8bZvRovECRAoJs6Wnl0SIFB0CdIH3RAo+qBILk2RQNElSB90Q6DogyJ5YIoEimaLQMCFt1kBs6MRKJr1JuDC26wAo3lJgEDRS9VgLh0KECgG58QgUAxOrQkUg1NrAsXg1NrJSgkUnejZb0ugaN/MSQu8nejZb0ugaN/MSQsCRSd69tvibd+MFokTIFBMnC09uyRAoOgSpA+6IVD0QZFcmiKBokuQPuiGQNEHRfLAFAkUzRaBgAtvswJmRyNQNOtNwIW3WQFG85IAgaKXqsFcOhQgUAzOiUGgGJxaEygGp9YEisGptZOVEig60bPflkDRvpmTFng70bPflkDRvpmTFgSKTvTst8XbvhktEidAoJg4W3p2SYBA0SVIH3RDoOiDIrk0RQJFlyA93s3u3bu1bvM21TeF1a+oQMOGDFJeXp7HZ830kiFAoGhWnYALb7MCZkcjUHTP2/o+vnHrdjWFpKKC/A6/jxNwuecdT094x6PEMaYECBRNSTNOlwUIFLtM57uGBIq+K1mXJ0yg2GU63zRc88UmLV29SaGc7krPzlV9zT6V5KXp4nMmKTc31zfrYKJmBAgUzThHRyFQxNusgNnRCBTd8V63YZMWf259H89XRnae6mv2qq/1ffzsSTF/HCTgcsc73l7wjleK40wIECiaUGYMRwIEio74fNWYQNFX5XI0WQJFR3yeb1xfX68/vvGuGnsNVUZ2a3hYvXW9zh09QCeNGun5NTBBswIEima9CRTxNitgdjQCRefe1vfxP735nhp6DlJGTuuVBdXbvtC5I/vrpNGjWgYh4HLubacHvO1ocWyiBQgUEy1M/44FCBQdE/qmAwJF35TK8UQJFB0TerqDyspK/XnJp8oqjQ0Oa6srNKpAOvO08Z6eP5MzL0CgaNacQBFvswJmRyNQdO4d+T6+dKWy+rcGh1av1vfxkQVhnXXaqQSKzpm71AOBYpfYutyotrZeP33gKU2ZOEbTp53b5X5StSGBYqpWNoXWRaCYQsXsZCkEisGpNYFiatfa+kXktaWfKqN/bKB4cPdWndInT2dMJFBM7TPA/uoIFO2bOWlBoOhEz35bvO2bOWlBoOhEr7ntsb+Pb9OYPrma3Ob7OAGXc287PeDdrPXignf1k/ufPCZdaUmxfnX/nRo+pDTmmL3VNbpl1s8144qpcQWEBIrHPzsJFO28ezk2KQIEiklhT8qgBIpJYU/KoASKSWE3Ouirb7+vrdV16jGoOVRsqD2oUOU2XTp5rPr06WN0LgzmfQECRbM1IuDC26yA2dEIFN3xfu2dJSrbV9vyfbyx9qCaKrZq2pnj1bt375ZBCLjc8Y63F7yPlkpk6JfIvuOtuZePI1D0cnWYW0SAQDE4JwKBYnBqTaCY+rU+dOiQ/rp8pSprDquxScrLlE4dPVwnDB2S+otnhbYFCBRtkzlqQKDoiM92Y7xtkzlqQKDoiK+l8eHDh/XuhytUWVOrkMLKyZDGjxqmkcOGxgxAwOWOd7y94B1foBjdiXjz967UywsX65WFS3TZRVN0x03f1I/+8T91xw9maNL40Yoet3L1hpaOr7/6Mt1x04zIxwSKxz8zCRTjfedyXNIECBSTRm98YAJF4+RJG5BAMWn0xgfetbtCtfUhDejXS5mZmcbHZ0B/CBAomq0TARfeZgXMjkag6K63dfmz9SosLOzw+zgBl7venfWGt71AsaJqX8ylz9EAsW2g+N/Pv6pbvnulcnOzWwLG6CXRBIoEip29J/m8xwUIFD1eIBenR6DoIqbHuyJQ9HiBXJxeQ2NIh+qaVJif5WKvdJVqAgSKZitKoIi3WQGzoxEomvUm4MLbrIC9QDEaHEZbtQ8UO5q7dX/Gzdt2RnYpEigSKCb7/GZ8hwIEig4BfdScQNFHxXI4VQJFh4A+ak6g6KNiJXGqBIpm8QkU8TYrYHY0AkWz3gSKeJsVcD9Q3LilXN+f+aDKdzXvxrVe1uXR9951XeT/85TnY1eYS56TffYzfqcCBIqdEqXMAQSKKVPKThdCoNgpUcocQKCYMqVM6EIIFBPKe1TnBIp4mxUwOxqBollvAkW8zQq4GyhGnxb99MOzIvdUtF7Wvy1ZvopAMY7CEijGgcQhyRUgUEyuv8nRCRRNaid3LALF5PqbHJ1A0aS2f8ciUDRbOwJFvM0KmB2NQNGsN4Ei3mYF3A0UH3psnoYO7Kfp085t6ZhAMf6KEijGb8WRSRIgUEwSfBKGJVBMAnqShiRQTBJ8EoYlUEwCug+HJFA0WzQCRbzNCpgdjUDRrDeBIt5mBdwPFHfurozsRrQeyhK9/HnC2JHsUIyjsASKcSBxSHIFCBST629ydAJFk9rJHYtAMbn+JkcnUDSp7d+xCBTN1o5AEW+zAmZHI1A0602giLdZAXcDxehDV15ZuCTSsXXvxHEnjdDK1RsIFOMoLIFiHEgcklwBAsXk+pscnUDRpHZyxyJQTK6/ydEJFE1q+3csAkWztSNQxNusgNnRCBTNehMo4m1WgNG8JBDIQHHZijW69ra5kTpY6fMjc29XUWHBMevSPrX+l5nXx1xj76WCpuJcCBRTsaodr4lAMTi1JlAMTq0JFINTaycrJVB0ome/LYGifTMnLfB2ome/LYGifTMnLQgUnejZb4u3fTNaJE4gcIGidU387LlPaM6sGzR8SGnME3ysa+bbv6Jh4pSJYwgRE3ceHrdnAsUkwSdhWALFJKAnaUgCxSTBJ2FYAsUkoPtwSAJFs0Uj4MLbrIDZ0QgUzXoTcOFtVoDRvCQQuEDRemLP5m07dcdNMyJ1aB8wti9O++O9VLygzIVAMSiVlggUg1NrAsXg1JpAMTi1drJSAkUnevbbEijaN3PSAm8nevbbEijaN3PSgkDRiZ79tnjbN6NF4gQCFyhajwW3XtFAcW91jW6Z9XPd8YMZmjR+9FHS1vFPPvtKy7+XlhTrV/ffGdndyMuMAIGiGWcvjEKg6IUqmJkDgaIZZy+MQqDohSp4fw4EimZrRMCFt1kBs6MRKJr1JuDC26wAo3lJIJCB4tCB/VouXz5eoBi93HnGFVNbwkZrx+K8+Yta7rtYc6jRS/VMybnUNzYpKyNdaWlpKbk+FtUq0NgUklXmjPR0WFJcoCkUUlhSJrVO8UpLoXBYTU1hZWWae19nZ6UrJ8vceClfxAQv0Aq3rF9Im0LhyPd7XokXsN6XoVBYmXgnHlvNXwfxNkIdGSQUCikUFue3IfLIz3R4G9KWTHoXdMs0ti4G8qdAIANFq1Tx7FDsKFBsH0DWNTT5s/I+mvWh2iblZGeIn3l9VLQuTrW2PqSM9DRlZRIed5HQN83qG8IKh8PKySY88E3RujhRK0ysawypW05GF3voSrM0AsWusCWpjRUoNjaG1NAUUp7R8yRJC/bAsA2NYVl/xMPbTDHwNuMcHSXiHQorj58xjMBb3tYfhHLxTjnvnCyTP7sZ4WMQlwUCFyjavYeidclz+x2Ns+97XD+++Soue3b5ZDxWd1zybAjaA8NwybMHimBoClzybAjaA8NwybMHiuCDKXDJs9kicckz3mYFzI7GJc9mvbnkGW+zAozmJYHABYqdPeW5/SXNy1as0ew5j7fcN9H6/JLlq3TvXdepo6dCe6m4qTIXAsVUqWTn6yBQ7NwoVY4gUEyVSna+DgLFzo04QiJQNHsWECjibVbA7GgEima9CRTxNivAaF4SCFygaOFbIeG1t82N1GHcSSNa7odofdw+UIz+20/uf7LD471UzFSdC4Fiqlb26HURKAan1gSKwak1gWJwau1kpQSKTvTstyVQtG/mpAXeTvTstyVQtG/mpAWBohM9+23xtm9Gi8QJBDJQTBwnPSdCgEAxEare7JNA0Zt1ScSsCBQToerNPgkUvVkXr82KQNFsRQi48DYrYHY0AkWz3gRceJsVaB5t/vz5yRi2ZcwrrrgiqeN7ZXACRa9UgnkcU4BAMTgnB4FicGpNoBicWhMoBqfWTlZKoOhEz35bAkX7Zk5a4O1Ez35bAkX7Zk5aECg60bPfFu9ms2eeeUb3P56cUHHmjVfou9/9rv3ipWALAsUULGqqLYlAMdUqeuz1ECgGp9YEisGpNYFicGrtZKUEik707Lcl4LJv5qQF3k707LclULRv5qQFAZcTPftt8W4NFP/1sddUVttHUlobyHBCPx6cu0v33HQJgeIRcQJF++9hWhgWIFA0DJ7E4QgUk4hveGgCRcPgSRyOQDGJ+D4amkDRbLEIuPA2K2B2NAJFs94EXHibFWgTKD7+uspqS5rzxGiOmOD/Ds7ZpXtuvJhAMRmBYm1tvX76wFN6ZeESlZYUR56cXFrSO/JvUyaO0fRp5ybjXGRMjwsQKHq8QC5Oj0DRRUyPd0Wg6PECuTg9AkUXMVO4KwJFs8UlUMTbrIDZ0QgUzXoTKOJtVqBNoPjEQpXV9zM6/ODsnbrnhosIFJMRKD702DwNHdhP0y6YrJ89+pyumX6Rhg8pjTx1ed78Rbr3ruuUm5tt9IRgMO8LECh6v0ZuzZBA0S1J7/dDoOj9Grk1QwJFtyRTux8CRbP1JVDE26yA2dEIFM16EyjibVagTaD45Bsqqy81u0Mxq1z3XH8hgaLpQHFvdY1m3/e4fnzzVZFdiW0DxY1byiMfz7n7RhUVFiTjfGRMDwsQKHq4OC5PjUDRZVAPd0eg6OHiuDw1AkWXQVO0OwJFs4UlUMTbrIDZ0QgUzXoTKOJtVqBNoPjUmyprHGh0+MGZ23TPdRcQKHopUGSHotH3gO8GI1D0Xcm6PGECxS7T+a4hgaLvStblCRModpkuUA0JFM2Wm0ARb7MCZkcjUDTrTaCIt1mBNoHify86Eiiau4ni4MytuufvphIomg4UrfFeXPCulixfpbtvvUa/fOoPkUuei3oW6JZZP9eMK6ZyD8VkvBN9MCaBog+K5NIUCRRdgvRBNwSKPiiSS1MkUHQJMsW7IVA0W2ACRbzNCpgdjUDRrDeBIt5mBdoEik+/o7LQYKPDD04v0z3XnkegmIxA0RrT2o147W1zY4r+9MOzNGn8aKMnAoP5R4BA0T+1cjpTAkWngv5pT6Don1o5nSmBolPBYLQnUDRbZwJFvM0KmB2NQNGsN4Ei3mYF2gSKv7YCxaFGhx+cvln3fI9AMYqeFg6HrQdr80LAswIEip4tjesTI1B0ndSzHRIoerY0rk+MQNF10pTskEDRbFkJFPE2K2B2NAJFs94EinibFWgTKD7zV5VpuNHhB2uj7vnuOexQPKJOoGj09GOwrggQKHZFzZ9tCBT9WbeuzJpAsStq/mxDoOjPupmeNYGiWXECRbzNCpgdjUDRrDeBIt5mBdoEiv+zODmB4nfOIlA0HShaT3m27pW4cvWGDs+3cSeN0CNzb+cpz8l4N3p8TAJFjxfIxekRKLqI6fGuCBTJ5XsFAAAgAElEQVQ9XiAXp0eg6CJmCndFoGi2uASKeJsVMDsagaJZbwJFvM0KtAkUf/O+ytJOkMw9k0WDQ1/onr89k0DRdKB4rJOstrZeP3v0ucgDWoYPKU3GuciYHhcgUPR4gVycHoGii5ge74pA0eMFcnF6BIouYqZwVwSKZotLoIi3WQGzoxEomvUmUMTbrECbQPG3S1SWPsro8IND63TPNVMIFL0SKFrzsJ7+vHnbTt1x0wyjJwOD+UOAQNEfdXJjlgSKbij6ow8CRX/UyY1ZEii6oZj6fRAomq0xgSLeZgXMjkagaNabQBFvswJtAsVnP1BZxolmdyg2rtU9V59BoOilQHHjlvLILsU5d9/IJc/JeDd6fEwCRY8XyMXpESi6iOnxrggUPV4gF6dHoOgiZgp3RaBotrgEinibFTA7GoGiWW8CRbzNCrQJFP/3Q5VlniiTieLgxtW659uTCBQJFJNx2jNmVwQIFLui5s82BIr+rFtXZk2g2BU1/7UJhULavGWr6hpDKu3bS4WFhf5bBDM2IkCgaIS5ZRACRbzNCpgdjUDRrHdngWJFRYUOHTqkbt26qXfv3mYnl4KjdeadgkvucEnPPPOM/vW5j1SWdbLRJQ9u+Fz3XHUagaKXAsWHHpsXmQ6XPBt9L/hmMAJF35TK8UQJFB0T+qYDAkXflKrLE62qqtIbH6xUVV1IoXCactObNGbYAJ0x9qQu90nD1BUgUDRbWwJFvM0KmB2NQNGs97ECrsbGRr2x9BNtrdinhnCastLCGtSnpy4841RlZmaanWQKjUag2FzMSKD4/HKVZY9pU93o01mi/+T+x4PrP9M935pIoGg6UDzeU54vu2iK7r3rOuXmZqfQW52luCVAoOiWpPf7IVD0fo3cmiGBoluS3u3nT28t1rbadOUWtz5wrXHnBl1+2igNGDDAuxNnZkkRIFA0y06giLdZAbOjESia9T5WwLV0xef6YPMedes/rGVCh3Zs1BnD+mjyuLYhkNn5+n00AsU2geILn2hrzilGSzqo7jPd881TCRRNB4pGq8xgKSVAoJhS5TzuYggUg1NrAsXUrvXu3bv16oer1dC79ZcIa8X1e3dpbFGGzjljYmoDsDrbAgSKtskcNSBQdMRnuzHetskcNSBQdMRnu3FHAVdTU5P+9MZfVVkwSOkZrbsRQ42NKj6wVVdeeI4yMjJsj0UDiUCxNVCcM88KFMeavIWiBh3+VLMJFFveimnhcDjMGxMBLwsQKHq5Ou7OjUDRXU8v90ag6OXqOJ+bdbnzS4tXqKnviJjOGvZXalxRus46bbzzQeghpQQIFM2Wk4ALb7MCZkcjUDTrfayA6/evv6V9PWN/DrBm1nPfBn394i+ZnWQKjUag2Boo3ve7FdqWN85odQceXqm7vzGeHYpH1AkUjZ5+DNYVAQLFrqj5sw2Boj/r1pVZEyh2Rc1fbea9/rYqM3oqq6CoZeK1Ozbq0vHDNHzoEH8thtkmXIBAMeHEMQMQKOJtVsDsaASKZr2PFXC988HH+qyyXjnF/VsmVFexQ2N6Z+v8MyaYnWQKjUag2CZQ/P1KbW8bKLp/y0Sp7fa7NGnAQStQHEegaCJQPN59E9u/p8edNEKPzL1dRYUFKfR2ZyluCBAouqHojz4IFP1RJzdmSaDohqK3+9i2fbve/HiNqhszlJaZqcyGWo3oW6gLzzxN6enp3p48szMuQKBolpxAEW+zAmZHI1A0632sgKumpkZ/WbpC5dW1UmaW1NSo0h65unjKeHXv3t3sJFNoNALF1kBx7osrVZ5/qtHqlh78RLOmEyhG0dmhaPT0Y7CuCBAodkXNn20IFP1Zt67MmkCxK2r+a2P9MrF5yzbVNaWptE8PlZa2PqDFf6thxokUIFBMpO7RfRMo4m1WwOxoBIpmvY8XcB0+fFgVFRXau79GvQp7qLi4WHl5eWYnmGKjESi2Bor/9uKnKu9uOFA88In+YfpYdigeeV8FMlBctmKNrr1tboSgs52RG7eU6/szH1T5rsqWL0WdtUmxr1lJXw6BYtJLYGwCBIrGqJM+EIFi0ktgbAINjSEdqmtSYX6WsTEZyH8CBIpma0agiLdZAbOjESia9SbgwtusQGugeP8fP9OO7hOMPpSl//6PNfNrpxAoJiNQ7Cici558pkI6aw6z5z6hObNu0PAhpXpxwbtasnyV7r3rOuXmZh/1Xmh/fDLeLEEfk0AxOGcAgWJwak2gGJxaEygGp9ZOVkqg6ETPflsCRftmTlrg7UTPflsCRftmTloQKDrRs98W79hAcWePifYRHbTot3+5Zn6VQDFKaGyHYm1tvX76wFOaMnGMTh0zQr99caF+fPNVkRDvocfm6dzJYzVp/GgHpY2vqRUgbt62U3fcNCPSoLPAsLPPxzcqRzkRIFB0ouevtgSK/qqXk9kSKDrR81dbAkV/1StZsyVQNCtPwIW3WQGzoxEomvUm4MLbrEBroPizlz7XLsOBYsn+5frx35zMDsUjRTcWKFoPaJl93+ORENF6/ezR5zTn7hsjD2GxLkGeN3/RMXcJunmCWuGl9YoGitEHx9zxgxkdBprtd1Wa2knp5pr93heBot8rGP/8CRTjt/L7kQSKfq9g/PMnUIzfKshHEiiarT6BIt5mBcyORqBo1ptAEW+zAq2B4gMvfa6dhROVlpbW/DRm6z/hcEI/7rvvIwLFNgVPSqBY1LNA9/3it7r71msigaIV2rUNGBN5QlqB4tCB/TR92rmRYToLFNvPxWq/c3dlS/hp/aLEK7ECVsiUl5OhjHTrOfC8UlnACpkyMtKUnckTYFO5ztbarF9mrW/4udkZqb7UwK+vsSmsuoYm5edmGrXI4uuIUW8ng1k/SzU0hlXf1KT8HLPniZN5+7mt5d3Q1KRueBspI95GmFsGiXxNaQqrWw4/Y5iQr28MqakpHPl9jVfiBUx6e/lnqWeeeUYPvrxau3qepjQrSTzyCiuc0I/77Fumuy5nh2LU21ig2PaSZyvMaxvsdXYfQzfflnZ3KLYfu334WX2wwc3p0VcHAo1NIWWkp8v6wwOv1BZoClnfAKR0wuPULrSkUMj6di/+UJDylW7+S3FTSMrMMPdF3Aqqc7L4w4RfTi/rDwyH6xoVCinyRyVeiRew3pd4J9655RdcvM1hSwqHwrK2fLAZwQw7P9OZcY6OYtLbyw/Uaw4U12hP0elGH8rSp+pD3Xn5aC55PnJCGgsU27/NojsDV67eoNKSYv3q/jsjD0lJ9MvuPRQ7CxQTPV/6l7jkOThnAZc8B6fWXPIcnFpzyXNwau1kpVzy7ETPflsuebZv5qQF3k707Lflkmf7Zk5acMmzEz37bfFuNrMCxYcWrFFFrzPsIzpo0bvqA90xjUAxSpjwQDEaHFoDPjL39sglzsl8dfaUZytwtO7nGJ3ra4uWaeSwAS1hZ/sdjslcS1DGJlAMSqUlAsXg1JpAMTi1JlAMTq2drJRA0Yme/bYEXPbNnLTA24me/bYEivbNnLQg4HKiZ78t3q2B4r8vWKs9xZMilzhHL3VO9H+LK5cSKLY5bRMeKFpjtd2NaH389MOzjDzR+VhvT+shMNfeNjfy6fYPWWkfKLY91jr+soumGHl4jP0vLanbgkAxdWvbfmUEisGpNYFicGpNoBicWjtZKYGiEz37bQm47Js5aYG3Ez37bQkU7Zs5aUHA5UTPflu8WwPFn7+6ThXFZ0QewhJ9GEui/9trz1L96NJRXPJ85NQ1Eii2fZtYO/yefPaVyD9df/VlLU9btv9WokVQBAgUg1JpdigGp9ISgWJwqk2gGJxaO1kpgaITPfttCbjsmzlpgbcTPfttCRTtmzlpQcDlRM9+W7xjA8XKPpMT+hCW9g956bVniW6/hEAxeuYaDxSjAx9vl6D9txUtUlmAQDGVqxu7NnYoBqfWBIrBqTWBYnBq7WSlBIpO9Oy3JeCyb+akBd5O9Oy3JVC0b+akBQGXEz37bfFuDRQffv0LVbUNFNOaHwbYcgl0dOdi9CnQLny+aNf7uu0rI9mheOTUTVqgGH3rRJ/+vHX7Hk/cY9H+W5oWiRYgUEy0sHf6J1D0Ti0SPRMCxUQLe6d/AkXv1MLLMyFQNFsdAi68zQqYHY1A0aw3ARfeZgVaA8X/sALFvlOUltY6g3BYCf24564luu3iEwgUvRIoeu2hLcl4MzDm8QUIFINzhhAoBqfWBIrBqTWBYnBq7WSlBIpO9Oy3JVC0b+akBd5O9Oy3JVC0b+akBYGiEz37bfFuDRR/8ZcvtK/fWfYRHbTouXOxbv0ygWKUMGk7FLnk2cFZHLCmBIrBKTiBYnBqTaAYnFrvrzmoukapT1F+cBbNSm0LECjaJnPUgIDLEZ/txnjbJnPUoG2gaF3+aP0vPT39mH2GQiFZ/8vMzDzqGOvfrdfx2juabAo0JuAyW0S8WwPFXy5sDhRN7lDssWOxbr2IQDEpgWL08uZXFi6JjM9DWcx+8fHraASKfq2c/XkTKNo382sLAkW/Vs7evO/7r2e1dvMeNTaFVdgtUzd89WxNmDDBXiccHQgBAkWzZSbgwtusgNnRooHiti0bVVG5T3WN9crLydGg0hINHjy4ZTLV1dV65b2V2l6xTxlp6Tp5WKkuPmt8JDzcuXOnXlz4ofbsO6jcnCxNHjtcU6ecanYhPhmNgMtsofBuDRT/842N2l9qdodij/LF+uGFw2Mued64pVzfn/mgyndVRiY37qQRMbfza5+D/cvM6zV92rlmT5wEjWZkh2J74KcfnqVJ40cnaEl0m2oCBIqpVtFjr4dAMTi1JlBM/VrfOfdJLV63T2uqslXbmK7++Q0aXxLWT/9uKqFi6pff9goJFG2TOWpAoOiIz3ZjvG2TOWpgBYorP1+tPVXVGjJ8tHK7dVNVxS5V7dquU0YN1YABA3TgwAE99Pwi/WVjnSpCBcpUSIMyKjVj8mBNO2OUfvLoy3pjdY3KD2apW2ZIo3vV6c6rztT0i892NLdUbEzAZbaqeLcGio+82RwoWjsUo/dOTPR/u29frB9eEBsoWlffWs8EiYaEDz02Tzt3V+reu65Tbm62rI+t1x03zVD0ln93/GBGSmRiCQ8UuUei2S8wqTgagWIqVrXjNREoBqfWBIqpXeu1a9dq5n/+Wa9vzIpZ6Cm9a/XtswfojhuvSm0AVmdbgEDRNpmjBgRcjvhsN8bbNpmjBvtrDmnpR8s18IRTlJ2d09LXjm1b1C2jQRPHj9Xq9Rt019Pva2Oob8xYX+qzTxeM7qt/fe7jyB/Eoi/rgumbz+uhf7rla+revbuj+aVaYwIusxXFuzVQfPStjTow8ByjBei+7a+6+UuxgWL7CVgB40P/NS+yS9F6zb7vcf345qs0fEhp5OO2AaPRySdgsIQHigmYM10GTIBAMTgFJ1AMTq0JFFO71suXL9fsJxbp7bLWX+SsFffLb9S3J+Zozj/8ILUBWJ1tAQJF22SOGhBwOeKz3Rhv22SOGuyrrtHS5Z/ohDGnx/RTV3tYe8rW6vxzztTbS5br3vlfqDzUM+aY03vs1ZmlWfp/L23X3rrY+y5+5/Q83X/7dPXsGdvG0WRToDEBl9ki4t0aKP7XouZA0eQOxW5b/6qbpx4/UHxxwbtasnxVZIdi+a4KzZ77hObMuqElUGz7eWsHo59fBIp+rl5A5k6gGJBCSyJQDE6tCRRTu9abNm3Sj37+R722IfaHpFOK63T1uQP0oxu+ldoArM62AIGibTJHDQi4HPHZboy3bTJHDQ4crNWSZctVOvRE5XTr1tLX9rJNKsgKacL4U7T2i0264+n3tLEpdofihX2qdcHJfXTvb5dr7d7WP4plpks/OLdQ9/6frysvL8/R/FKtMQGX2Yri3Roo/urtTTo02Oy9CLuVvavvnz8s5h6Kbc8A63Z/bQNE6+OfPfqc5tx9o4oKCyKHEiiafc8wWsAFCBSDcwIQKAan1gSKqV/rWQ/8Wm+vqtD6vdk63Jiu0u4NOqUkrHtvuEhjx45NfQBWaEuAQNEWl+ODCbgcE9rqAG9bXI4Ptu6h+PmaddpVuVf9Bg5VfkGhKnfvUHXFzsjDEvr376+DBw/q5y8s0qtfHFZVqIcy1agBGXv17bOG6dIzRumnj87Xws+rtb0mS/nZIZ3Yq14zrz5HV1ww2fH8Uq0DAi6zFcW7TaD4ziYdNhwo5lmB4nkdB4rRZ4fMmX1jy/0R2weMBIpm3y+MhoAIFINzEhAoBqfWBIrBqPW/PzVPn23YqcamkHrmZ+vay6fwQJZglN72KgkUbZM5akDA5YjPdmO8bZM5ahB9yvOu8jLtrqhSfX2d8nLzNGhAP5WWNt/DzHrV1NToz4tXqryiWhnpaTp5+ABdOHlc5HPWU55ffvsT7dl7QLk52ZoyfoTOnDjG0bxStTEBl9nK4t0aKD7+7mYdHnJe5JLn6Cv6UBaFJbV5WItbn8/Z9I5uOm/oUTsUOwoTrTGtZ4pwD0Wz7xFGQyBGgEAxOCcEgWJwak2gGJxaNzSGdKiuSYX5sQ9oCY4AK41HgEAxHiX3jiHgcs8ynp7wjkfJvWOigWJBXmbcnYZCIaWnx94zMe7GAT+QgMvsCYB3m0Dxr5tVN/Q8owXI2fyObjwnNlDsaBdi20nxlGejJWIwBGIFCBSDc0YQKAan1gSKwak1gWJwau1kpQSKTvTstyXgsm/mpAXeTvTst+1KoGh/FFpEBQi4zJ4LeLcGik++V6a6YcfYoXikLC07Fl36OGvDO7rhnMExOxSteyL+5P4njzoRnn54VuTS59raev30gaf0ysIlkWP+Zeb1mj7N7L0fE3WWGn0oS1vI0pJi/er+O1Va0juCO2XimJRBTVSxgtovgWJwKk+gGJxaEygGp9YEisGptZOVEig60bPfloDLvpmTFng70bPflkDRvpmTFgRcTvTst8W7TaC4uEwNw83uUMza+I6uPys2ULRfxdRpYTRQtLZ6Dh3YT9MumBx50s010y+KPDp72Yo1mjd/UeSx2n5/bHbqnBreWQmBondqkeiZECgmWtg7/RMoeqcWiZ4JgWKihVOjfwJFs3Uk4MLbrIDZ0QgUzXoTcOFtVqA1UPzv98vUMGKqdavE5lsmHrlnYnQ+0Y/d/HzG+kW6jkCxpeTGAsW2N6O0diW2DRQ7epR2Mk5KxvSmAIGiN+uSiFkRKCZC1Zt9Eih6sy6JmNWhw3U6XB9ScWFeIrqnzxQRIFA0W0gCRbzNCnR9tLq6OmVkZCgzM/77IRIodt27Ky0JFLui1vU2eLcJFJeUqemEqV3H7ELLjC8W6e+msEOxJbQNh62ryhP/Ol6gyA7FxPv7eQQCRT9Xz97cCRTtefn5aAJFP1cv/rn/5o9/0bLVZWoISf175unGr1+gfv36xd8BRwZGgEDRbKkJFPE2K2B/tNraWr309sdat2WnQkrT4L499bUvTVBhYWGnnREodkrk6gEEXK5yHtXZjh079Pn6Dao6cEiFebkaM3qUCnv2VncbDx1K7AyT0/szzzyjXy/dpqaRU1t2Jh5zh2Kbpz23Tb9adjDa+Hza2kW6dsrAo57ynByF5I9qbIeitVTrZpVLlq/S3bdeo18+9YfIJc9FPQt0y6yfa8YVU7mHYvLPB0/OgEDRk2VJyKQIFBPC6slOCRQ9WRZXJ/VvT/xOr3++V+sO91RjKF29sw5rXM/DeuCHl6t///6ujkVn/hcgUDRbQwJFvM0K2B/t4f/9i+Yt2aoNtc0B4oCcg5o2plCzv/cV5ebmHrdDAkX73k5aECg60Tt+23eWrdDbK9drXyhH9dk9lBZqVI/QQV0y8QSdM+HkxA3sg54jgeIH2xQeZXaHYtq6RfreGQSK0VPEaKBoDWrtRrz2trkxp2j06Tc+OG+ZYhIECBSTgJ6kIQkUkwSfhGEJFJOAbnDIPXv26O8fflGL9vSOGXVU3j5dM6lIN10z3eBsGMoPAgSKZqtEoIi3WQF7o+3evVs/evRVvVmeH9Pw5Px9euK2izRsyBACRXukCT2aQDExvNbPUs++/leVHcxUTdHwlkHSQ40a1rBNt07/krp165aYwX3QqxUo/o8VKI7+knX3xMiMm++VGLmbYuI+XvOmvkug2HKGGA8UfXBuMkWPCRAoeqwgCZwOgWICcT3WNYGixwri8nQ+/vhj3fvCh1pS1Sum597ZhzV9ZJP++e+/5/KIdOd3AQJFsxUkUMTbrIC90crKynTLI2/oo709YhqOyKvWQ989XWdMHEegaI80oUcTKCaGd/0XG/TC4s+0M9RDdfl9YwYpPlCmv7/k1EBf8WEFir9Ztk0afUHrQ1mOPJwlitXyMJboQ1tc+HxozZv6ziR2KLYYm7qHYmLeZvQaBAECxSBUuXmNBIrBqTWBYmrXeuXKlZo7b4ne2l0cs1Brh+Ilo7J09y3fTW0AVmdbgEDRNpmjBgSKjvhsN8bbHlllZaXufOQVvbYtdofiqYXVeuK2r2jAgAEEivZIE3o0gWJieNesXavfvfepdqunagtibxXT58Bm3fzl8Ro4cGBiBvdBr1ag+NsPy5V+0peOPN45ukWxdYdic9IYdvXzoc/f0DWnD+AeikfOEWM7FK2Hslj3Spw0YbTuuGmGD05RpugVAQJFr1Qi8fMgUEy8sVdGIFD0SiUSN487H/q1VmyrV9nhAh0OZagk55BGFtbr9svHafLkyYkbmJ59KUCgaLZsBFx4mxWwP9oTf3hHz7y9Xtvr8hUKpal3Tq2+flof/eiqC5WTk0OgaJ80YS0IFBNDW1NTo98ueEub9odVnT9Qoazme4dmH9qj0d3qdMvXv6z09PTEDO6DXq1A8dmPypVx0gXRa52N/Ldp1Zu6+vRSAkXTgaI1Xvv7J1520RTde9d1ys3N9sEpyxSTJUCgmCx58+MSKJo3T9aIQQwUt2zZIutJfRkZGZo0aVKy6I2Nu337dj3yu4XaXdOgUFjKy5LOOmmQrr7yK8bmwED+ESBQNFsrAkW8zQp0bbQ3l6zUqg3bIk95Htq/SF+eMi6ue8b5+aEsoVBI5eXlSktLU48ePVRQUNA1PBdaWU/aPnjwYGQuvXrF3sLEur9fZmamioqKRKDoAvYxuti0ZasWvLdcOw7Uqy4tV+lp0oCCTH317IkaPLAkcQP7oGcrUPzf5eXKOvnC5h2I0XsnRnckJujjhlUL9e2JBIrRU8TYDsWOzknrqc8/uf/JyKfGnTRCj8y9XUWFyfui6YP3TSCnSKAYnLITKAan1kELFGf9/Fl9XlalxpCUkS717p6ph++6OvLLQqq/PlmxQnX1YY0YNlC9e8c+pCXV18764hcgUIzfyo0jkxUoWuFEOBxW9+7d3ViGb/pIlrdvgI4zUet8sQItOy+/BorWpd6/eGGRVm7dr7qGsAYX5+ir556sr5w9wc7yXTn2zaWfauFH61V1sEF5ORkaN7iXvvc3U1VdXa1XP1ilXTW1ssLPotxMnTt2pPr166/ueZmujE0nsQL19fXatWuX9u/fH/m5sU9JqRqbwoH3tgLF55aXK/uUi4yeMvWfLdRVBIot5kkNFB96bJ6efPYV44Fi252SdoLMaDueSm30PSsCRbPeyRyNQDGZ+mbHDlKg+Owf/qxn3lyn2tpGhUOhyF9R83PSNbS0UI/cc71Z+CSM1tAY0qG6JhXmZyVhdIb0iwCBotlKmQ649u7dq/+Z/1dt2ronspFk+MA++s6V56mwsNDswpM0mmnvJC3TM8P6NVCc8+R8Pf/BLm093Pzk3sy0kM4Z0KD/vPUSow/f+GLTFs3677f1yf4ealRzSDgqu0I3XHiiDtYf1prqdDUWNt/TL6O2WqXhvfrW1Enq3zd2F6NnTogUmwg7QpsLagWKL3yyUzmnXNjyfGcT1zzXffYXffPU/lzyfOR9ZTRQbLsj0Ro/GZc8b9xSrtlzn9CcWTdo+JBSWXNasnxVp5detw0hCRTNflUmUDTrnczRCBSTqW927CAFij/6f/+h5RsOas1uaX+tZN3uZlxJSEP65ujfbpuhIUOGmMU3PBqBomFwnw5HoNh54az7aVk7gtwI4UwGXNbumn/6xfP64/tl2rS3+X5fw4pC+vrZQ/WPt34rctlkqr9Meqe6ZTzr82OgaO1Am/nYQs1fH7sbc1DeIc399hhdOvXMeJbuyjG/eflt/ftbu1TZ1BxsRl9XjTioHj3zVdlzZMy/Z+3doq+d0l+TJ451ZXw6Ob4AgWKzjxUozvtkp3LHmt2hWPvpQs04tR+B4pHT1Fig6JWHslgB4uZtO1seDNM+YOzo7Wsd87NHn9PMW76t2fc9oTt+MEOTxo/ma50hAQJFQ9AeGIZA0QNFMDSFIAWK35v5oBZ/Uadt1a2/JGSmSxeMTNODd3xDJ5xwgiH15AxDoJgcd7+NSqB47IpZQcPKtZt0qLYhsruvqEe+JowZ5eiyYZMBl3X/2L/75//V+1usJ2+2vs4ZkaEn/+9VGjx4sN9OV9vzNelte3Ip2MCPgWJFRYVu/+WftWBjRkxFSnJq9dB3xurS88zde/mpP76pB96p1qFQ7JUF04ceVGGv7tpfFPtzS2b1Dk0f00eTJ4xJwbPJe0siUGwNFH+3Yqe6jfuy0SIdWvkXfWM8gWIU3VigaLTKxxnMuszaekWfNB0NOo8VErYNHIt6FkSeVE2gaLaaBIpmvZM5GoFiMvXNjh2kQPGmWQ/qxRX1Olgfa/zlUdJzD94W1w3mzVbH3dEIFN31TNXeCBQ7rqy1K3Hh+8uV2b2vuvfqGzmoYtsGFWY26WIHO5ZMBlyrV6/V3947T5/vjg1KxvYL6dl7r9IJI0ak6mndsi6T3imPGccC/RgoNjY26h8f/YOe/eSQqhtag7wJvQ7oidsv1rChQ+NYuTuH/PntZbrv5XUqa2i9JUFRxmFddUqOcvJztTVvkKTWpwt337tBf3vOKRo5PBsRxnQAACAASURBVPX/OOCOsLNeCBRbA8Xfr9yp/HEXm7jSueWZLwdXvK6vjyNQDHSgOHRgP02fdm7E4HiBovW52fc9rh/ffFXk8uiOjq2qafcborOvD7TuQCAUCivd+pO8vfsxY+lDAevG29bL7s23fbjUwE85SLV+9Mn/0fOLd2h9Zesv04W50hVjs/TPd9yo3Ly81D4fwlIoHFa69WhCQ6/83EzlZLX+smNoWIbpooAVtlh/ULJ+Wufrfyzixo0btGHHXvUdemLMJ/ZsXKVxI4eqb79+XVJv/nZrxnvPnl368YPz9Jc1dTFzveTkXN3/o2+quE+fLq3BT41MevvJJVFz9evPGF9s2qzH5y/Vyu2H1RBKU2lBui45bbC+Pe08o18ba/ZX6/H572nJxmrtbcpVQUa9RvfO0q1fPVPlVdVavH6HDmZ2k9KzlVFXrXEl+br4zNONzjFR544f+jV5fvcqyPYsiXXJ8x8+3aX88RebfMizaj5+XdPHlXDJ85Ezgx2K1TXH3HVo7U78/swHVb6r8qg3UvQ+ilbYxSuxAvsPNahbbqYyDf4ymtgV0fuxBA7WNikzI40gIACnSG19KBIydcuJ3bGSikv/81/e0vNvfKZPttSovCZdxblhnVCSqa+eM0rfvvLLqb9DsSmsw/VN6mH46Y8mA8xUPG9Nrsn6WaqhMazaxiYV5Kb+/fTs2H66arU2VNSqqH/svVYrNq/SlDHDNWDAADvdtRxb3xhWfWOTuhvyfuS3C/T4y5+o4mC6rHCtpHtI379yom666pIuzd9vjUx7+83H7flaO57rrafg5vrvZwzrKcrrN5UppHQN7Fuk0tJSt3ni6s/aHb1qfZl27t2vHt1zNf6EwSouLo603b59u9aWlSsjI1P9exdq0IBBCoXTle9D77gwPHaQ9Uc46ynPJry9/LOUFSj+8bPd6j7+y5EwO2z9kUxpij4ZPlEf7//4NX1tLIFi9G2R8EAxuqvv2m9doqeff1UrV2/o8C1p52nLTt7TXbmHYnS8zi6PdjIv2h5bgEueg3N2cMlzcGodpEueP1i+Ql+U79POfbXaX3NAudk5GjGkn/LTDmvahc275VP5xSXPqVxd99bGJc8dW5aVlWnxZ5tUMvyUmAP2bvlUF06Z0OUHtCTjEtz3PvhEazaVRy4bO2nEAJ01abx7J5DHe0qGt8dJEjo9P17ynFCQBHfOJbgJBm7XPd7NIFag+KfPdqvHxK+0CFnXwhxvu5cbn69e/pquPKUvOxSPqCc8UDT79up8tM6e8mwFjvPmL9Ijc29XUWFB7A9vx9nN2PnIHNFVAQLFrsr5rx2Bov9q1tUZBylQrKqq0rsffqr6tFwV9CrRof37FKqr1qSTR2jI4IFdJfRNOwJF35QqqRMlUOyYv6GhQe9+sEKVh8PK71GkpqZGHdq3R6MG9tGEsV1/QCABl9nTHW/D3vVNkR2KBYZ3xptdpXdGI+AyWwu8WwPFl1btVmEkUGyOCiM7FCORYuI+3rf8Vf3NGALF6FlvLFBsfz/Ctm+7ZSvWREK8e++6Trm5ib9O3xrv2tvmRqbQfmckgaLZL4jxjEagGI9SahxDoJgadYxnFUEKFC2PvXv3atPW7Tp4sFY5OVkaMqCfSkpK4qHy/TEEir4voZEFECgem7m2tlbWvdX27T+opsZGDRnYX0OHOHv4AQGXkdO6ZRC8DXsTKBoFJ+Ayyi28WwPFlz/fo56nmb11xr6PXtXlJ/dhh+KR094TgaK1a/Bnjz6nOXffeNSuQLNvT0bzogCBoherkpg5ESgmxtWLvQYtUPRiDUzNiUDRlLS/xyFQNFs/Ai68zQqYHY1Lns16E3DhbVYgNlDsdbrZQLHqQwLFtvX2RKBo7QpcsnyVsR2KyTjhGbPrAgSKXbfzW0sCRb9VrOvzJVDsup3fWhIo+q1iyZkvgaJZdwJFvM0KmB2NQNGsN4Ei3mYFWgPFBWsqVHz6pa3Du3GTxE5uwli57M+aNro3OxSPqCc8UDzek5KjlS8tKdav7r9Tw4ck5ylWyXgDMGb8AgSK8Vv5/UgCRb9XMP75EyjGb+X3IwkU/V5BM/MnUDTjHB2FQBFvswJmRyNQNOtNoIi3WYHWQPHPayrUe9KlzbdMjL6it1BM0McVH/xZlxIotnAnPFCMjnS8eygm4wRkTP8IECj6p1ZOZ0qg6FTQP+0JFP1TK6czJVB0KhiM9gSKZutMoIi3WQGzoxEomvUmUMTbrEBroPjaugr1PWOa0eF3f7BAXxnFDsUourFA0WiVGSylBAgUU6qcx10MgWJwak2gGIxav7N4qV59b6WsX+4GlxTpG5eeowEDBgRj8azSlgCBoi0uxwcTKDomtNVBMr3Lyrbp7Q9W6dDhWpX0LtR5k8epV69etubf0cFbtm7TsjVlqm1oVEnP7pp08nD17NnTcb9udECg6IZi/H0QKMZv5caReLcGiq+vq1DJZLOB4q6lC3QxgWLLqWw0UHzosXnaubsy5l6JtbX1+ukDT2nKxDGaPu1cN95j9JFiAgSKKVbQ4yyHQDE4tSZQTP1aP/I/L+n51z7S5opGHa4Pq6QgQ+NP6KkHZ/5tYJ5wnfpVdm+FBIruWcbTUzIDrnjml2rHJMv7/Y9Was5jr+jzsoPaXxtS/8IMXXT6IP3khzNUVFTUZeb3V6zWk298pvKGfNWmZ6uwqUaTB+TolivPUY8ePbrcr1sNCRTdkoyvHwKu+JzcOgrv1kBx4foq9Z9i3UMxevPExP93x5JXdNHIYu6heOSENhYoRoPDGVdM1aTxo2PeT8tWrNG8+Yt4KItbX2VSrB8CxRQrKIFicAp6nJUSKKb2abBv3z59/6e/0oJPqtXY2LrWcQMy9PdXnalrvm72r8mprZ0aqyNQNFvHZAVcZlfpndGS4d3Y2Kh/+vf/0a8WrNeBulaLk/plaM7/uVSXXHBWl4Dq6+v1wP++rtd256tRmS199G/aqTu+PFpnnTa2S/262YhA0U3Nzvsi4OrcyM0j8G4NFN/4okqlU8z+TFm+ZIEuPKEXgaLpQPF491C0Htzys0ef05y7b1RRYYGb7zf6SgEBAsUUKGKcS2CHYpxQKXAYgWIKFPE4S/jiiy9069zntOjzQzFH9StM0w8uH61/+OF3UhuA1dkWIFC0TeaoQTICLkcT9nnjZHjv379fM//tGf36rfIYvZ7dpPtuOkfXfrNrv4Tv3btX973wtt7bXxzTb37ooH44qVBXXnBm0qtFoGi2BARceJsVaA0U39pQpYFnXtY6fPunPCfg423vvaIvESi2mLNDMRlnP2PaEiBQtMXl64MJFH1dPluTJ1C0xeW7gzdu3Kg7739er66siZn76JIM3TR9om7+ztd8tyYmnFgBAsXE+rbvPRkBl9kVemu0ZHjX1NToHx/+Xz26YHMMxvDe6br3Bxfp69OmdgnJ2oH+0O/f0RtVsZdMlzTt0S3nD9NFZ07oUr9uNiJQdFOz874IFDs3cvMIvFsDxUUbqzTIcKC49b1XNHUEOxSj57SxQNEa0Lq0efacx/Wr++/U8CGlkTlYuxO/P/NB3fy9r3IPRTe/0qRQXwSKKVTMTpZCoBiMWlu/jGzetlNKT9Ogkt4qLo7d5RAMhdRf5Y/v+y+9s3y7Vm5viiy2T3dp3NB8/cesb2v48OGpD8AKbQkQKNricnxwMgIux5P2cQfJ8v7N71/TL194V59uDykUkoq7SeeM6aX/uOe76tu3b5dFn13wjv64cqe2Z/SP9NE9fFCn5B/S7KvO98T3dD8Gig0NDdq5c6cq9x9Q36JC9enTR1lZWV2ukcmGBFwmtSW8WwPFdzZWacjZl8fcQjEcltKOcytFp5/f8teXdd5wAsWkBIptA8TyXZUt77ynH5511H0Vzb4tGc3LAgSKXq6Ou3MjUHTX04u9fbhqnV58f7XW70+X0tI1JK9Rl0wYqosmj/fidJmTA4Ha2lrNefR5fVG2Ww2NIRX1yNWN35iqSROotQPWlG1KoGi2tMkKuMyu0jujJdP7hZfe0Mefb9Ghunr1Kequb1x6lkaPdPZHnVAopD+9vUxrtlaovimkXt2ydPmZYzVs8ABPoPstULR2kz755yVaub1ateEM5aeHNHFoL/3dJWcqNzfXE6bHmwQBl9kS4d0aKL67qUpDz7ncaAE2//VlnTuMQDFpgaLRajNYSggQKKZEGeNaBIFiXEy+PejAgQP62by3tLSmUI3p2ZF1pCukcVl7dPc3zvHErgbf4np44uU7dqquMaxhg5p3svBCoCMBAkWz50UyAy6zK/XGaMn2Pnz4sMLhsLp16+YqiPV9PS0tTfn5+a7267QzvwWKv3tzqZ5fsUd7s3q3LL2ofo9umDJQXzkr+ZeQd1YPAq7OhNz9PN6tgeJ7m/dp+LnWPRQT/3RnKRwZZ+O783X20CIeynLktDZ6ybO7byV6C4oAgWJQKi0RKKZ2rbdv367ZL36s7WmtPzBbKy5qrNQ/X3qiTj7xhNQGCOjqrN2Jh+qaVJjvj0u3AlqmpC+bQNFsCZIdcJldbfJHw9tsDfwUKFpP4/7l7xbq5YqeMUiZatTXB9Tqxq9dZBavC6MRcHUBzUETvFsDxcWb92nEeWYDxQ3vzNdZBIotZ7DRQLG2tl4/feApvbJwiUpLiiP3Uiwt6R35tykTx3APRQdfWFK5KYFiKlc3dm0Eiqld67KyMv3Tn1aqrH2gWF+hf5o2UmNGn5jaAAFdHYFiQAtvc9kEijbBHB5OwOUQ0GZzvG2COTzcT4FiXV2d/usPb2p+RexDbrJCDfr6oDpdd+UFSk9PdyiS2OYEXIn1bd873q2B4pKyfRp5nnXJs7VDMfpq3kmYqI/XvzNfUwb3ZIfiEWCjgeJDj83T0IH9NO2CyfrZo8/pmukXRR7OYj2sZd78Rbr3ruuUm9t8GRwvBKICBIrBORcIFFO71tY99R54/g0trc7T4fTmy64yQ42akFepmd84T0VFsT9Mp5KG9QvD9vJy7a85qG7d8tS/pK8KCgpSaYnHXAuBYiDK7HiRBIqOCW11QMBli8vxwQcO1amsbJsaGmuVm52t/v1K1KNHD8f90kHHAn4KFK0VvPTOR3r2w22qyC5pWVDvup26eeoInX/aWM+XmYDLbInwbvZ+5plntLRsn0adf8XRVzxHS3KsK6EdfH7dovmaTKDYctIbCxT3Vtdo9n2P68c3XxXZldg2ULSe9Gx9POfuG1VUGIxfsMx+2fH3aASK/q6fndkTKNrR8uex6zZt0fPvrNTG/WlqDIU1rEC6fNIonTE2dXcnHjx4UB988rkq99cpr6BAdYcOKyutXlNOPSnyFMdUfxEopnqF3VkfgaI7jvH2QqAYr5Tz46z7Fy7+6DPtq7G+B/RQXd1hZYbqNXn8iY6etOx8Zqnbg98CResPrs+8vkSfle1VTYNUmCOdNqKvvn3hZGVmZnq+UARcZkuEd2uguGzbPo0+/29M3kJRa956SZMGsUOxJZMNW3foNfA6XqDIDkUDBfDxEASKPi6ezakTKNoE8+nh1i9XK1auUmZWpkaPOkHdu3f36Urim/aKzz7X1qp69RkwrKVBdcVOZTdWa+rZZ8TXiY+PIlD0cfEMTp1A0SC2JAJFc96ffb5GG/ccUsnAEa3fAyp3KbN+ny44J/W/B5iTbh3Jb4FidOa7du2S9TOS9ZCb4uJiz1/qHJ23VwMu6w+61kOD7DyMyGpjPcXcy1eReNXb9Hvd2qH44bZ9Ommq2UBx9Vsv6fSBBIrGA0VrwBcXvKsly1fp7luv0S+f+kPkkueingW6ZdbPNeOKqdxD0fS70CfjESj6pFAuTJNA0QVEj3exY8cOPfjsGyqvrFE4JPUpytNt3zhXI0a0/qLl8SXYnt477y9TOL9EufmFMW0rN3+mqWdOsPWDru3BPdCAQNEDRfDBFAgUzRaJQNGc93tLP1J9Th91Kzj6e8C5Z4zzdHBhTsndkfwaKLqrYK43rwVcq7/YpLc+Wa/9tY3KzUzTqNLemnbepOOC7N69W0+/vFTlFTXKykrXmOH9dPWlZyk723u3Y/Oat7kzLXYkK1Bcvr1aYy74m5hPtL+DYvv5Of38qjdf0sQBhdxD8QissUueo4W0diNee9vcmLo+/fAsTRo/OlnnIuN6XIBA0eMFcnF6BIouYnq0qxvufULLNjdoQ01eZIaD8ms1sVT6z5lXqWfP2CccenQJtqe16L0lasorUffCXu0CxU913uRTU36HJoGi7VMmkA0IFM2WnUDRnPe7i5eqLrtYBUWxt7io3Pypzj59rAoLY4NGczNL3ZEIFM3W1ksB186dO/XQS0u1OdxL9RnWz5ohFR/cpukTBuiy8yZ3CFNdXa2Zv3xJf1lzWLtrmwPEk3se1N+eP1x//7eXmsWMYzQveccx3YQdYgWKH5fv1ykXXHHkISzRqDCx//3szT9pQmnHgWLbq3KtZ4VEX20fTmz927/MvD5lNtMZDxQTdkbRccoKECimbGmPWhiBYmrX+qOPPtI//Pf7WrIr9hLnU3vV6N++e5rOPvuslATYuHmLPlm3TQNGnNKyvp2b16lfz2xNPm18Sq657aIIFFO+xK4skEDRFca4OyFQjJvK8YFbysr00ZqtMd8DdmxZp5KCLJ056VTH/dPB0QIEimbPCi8FXC+/vUzPfValAznFbRBCOq97pb5/xXmRy8nbvxZ/+Klu+9U7Wr0v9nMzxqTp/h9O89z9rr3kbfZMix3NChRXlO/X2IuujDzTObExYmv/Kxb+SaeW9ojZodg2MCwtKdav7r8z8vDh6Mt6OLH1uuOmGbJCR+sK3Tt+MCMlNtURKCbzXcDYcQkQKMbFlBIHESimRBmPuYglS5Zo5q8/1PKK2EBxVI9D+r/TR2j6ZV9JWYBPPl2jsh27FUpLV1pYKszP1pTTxik3Nzdl1xxdGIFiypfYlQUSKLrCGHcnBIpxU7ly4PKVa1RWvktKz1R6Wlj5uZk687RxKX/LC1fwutAJgWIX0Bw08VLA9fzrf9XvNksN6bE/X03O3aNbv3puh1eF/HnRUt3x6+XaeqD56pnoa9rIJv3itstVUtL69G0HTK419ZK3a4vqQkdWoLiyfL/GXXRlF1p3vcnKhX/SuHaBYrS3jnYodvRvbQPGrs/EGy0THihGE9hrv3WJnn7+Va1cveG4Kx930gg9Mvd2nvbsjfPDE7MgUPREGYxMgkDRCHPSBlm/fr1u/8/X9fb22L8AT+pzQA/deLYmTJiQtLmZGNi6pMa62Xd6err69etnYkhPjEGg6IkyeH4SBIpmS0SgaN67qmqfwk21gfseYFa6eTQCRbPqXgq4Fi5ert98tF378vq3IGQ31er8Xgf1wxkd/+F6xaq1+uF/vK5Pqgpi4K6dmKm5t37Vc7em8ZK32TMtdjQrUPx0536detFXjU7jk4V/1Nh+sTsUjxcobtxSrtlzn9CcWTe07FqMPlvk3ruuU26u9+7TaQc04YHi8XA7mmgq4dopBMceW4BAMThnB4Fi6tf6nl+8oNdX7tGuw9Y3zzQVZTfovBPz9e93Xq3MzMzUBwjgCgkUA1j0LiyZQLELaA6aECg6wOtCU7y7gOagCYGiA7wuNPVSwFVVVaXHFyzR6n1hHczuqZzGA+qfcVjf/dI4jR01vMPVWU/Wvv/Xr+rFD3ZG7qGYmxHSCT0b9PfTz9AVXzq9CyKJbeIl78Su9Pi9W4HiZztrNMFwoPjxwj/qlH4FHT6UpaPdiFag+LNHn9Ocu29s2TSXSpmX5wLFjsCTeaIydvIFCBSTXwNTMyBQNCWd3HF+t+BNfbSmTCGla/TgPvrWtPO57Cu5JUno6ASKCeVNmc4JFM2WkoALb7MCZkcjUDTr7bWAq7KyUh+t3ayqmkPqlputM04c0umVITU1NVr88RqV7dqnzHTpzHEjNHpkxwGkWd2jR/Oad7I8rEDx850HNPFiszsUl7/+R53cr7utQJEdigbPEusp0PPmL1Iit3+2fdJ0Z5dYWwHn92c+qPJdlRGFyy6aktC5GaT2zVAEir4pleOJEig6JvRFB7t27dKOXXuUnp6hPsU91b9/62UpvlgAk7QlQKBoiyuwBxMomi09gSLeZgWOHs3aSVa+Y4cy0jOUn99NAwcOjFwO7saLQNENxfj7IOCK38qNI/FuVowGiqdd/NXIQ1mir+jDWRL18Yc2A0XuoejGWe+hPtpfw97ZdlPr84MG9Gl5Ak8q3UDTQ2U57lQIFP1SKefzJFB0buj1HtauW6991dUq6lWszIws7dmzS/nd8nTKmJO9PnXm10UBAsUuwgWsGYGi2YITKOJtViB2tK1bt2rrtnLldy9QTm6e9u6tUnZmmsaPG+fK7U8IFM1Wl4ALb7MCrYHimt0HdPrFX1Oa0hRW2Mh/l73+okb3jX+HojVbnvLs4hliBXQ/uf/Jlh47eqy2i8Md1ZU1/uZtOyOP7LZeHd0k83jjdxZAJnLuQe2bQDE4lSdQTO1a79+/X599vlrjTj0t5heGjz9aphHDhqhv376pDRDQ1REoBrTwNpdNoGgTzOHhBIoOAW02x7sVLBQKacnSZRo+cpR69ixq+cSqT1eqV88CDRs2zKbu0YcTKDomtNUBgaItLscH490aKK7dfUCTLp4e2aEY3ZmY6P8u7SBQrK2t108feEqvLFzSUt+2V7a2//y/zLxe06ed6/hc8EIHxu6haC3WCuOsy5nbPsU5eknxnNk3tuwCTCRM+x2G0adQ3/GDGZ2OHz0R+vUtbgkkEzlX+m4WIFAMzplAoJjatd62bZv2VO3VSSePjVnohg3rlJuZoREjRqQ2QEBXR6AY0MLbXDaBok0wh4cTcDkEtNkc71Yw6/526zds1KkTJ8Uo7ijfroM1+3TKmDE2dQkUHYM57ICAyyGgzeZ4twaK63Yf1ORLptsUdHb40ldf1Ki++R3eQ9FZz/5sbSxQPF5wZ+K+idHyWIHi0IH9WhLheANFq92Tz75y1D0UD9U2+rPyPpq19UUzOytD6W1vjuCj+TPV+AXqG0NKT0tTZgbFjl/NP0duLduiAwcPaszYcTGTXrvmcykc1siRJ/pnMcw0boGmUFgNTWHlZrlzb6x4Bs7ISFeOwfHimRPHHFsgGrY0NoWpm6ETpTEUVhPehrQlvFupKyoqtG17mSaedkaM/5bNm7S3qkrjxo13XBfra0lTOKwc6+kavBIuYHmHwmFl451wa2sAk97dcjONrKkrg1j3UFy/+5CmXPI1yeAexSWv/l4jCRRbSmY0UJx93+P68c1XafiQ0phzxuSTnZ3sULQm3f6S50N1TV05/2ljQyASKGamK51E0YaaPw+1dqhY9+POzOAHQH9W8Pizrq+v16crP9GgwUPUr3/z94Hq6r1as3q1Ro8+SQUFPVJx2YFfU8gKFBtDysnOMGaRkZ5GMGVM2/lAzYFiSI2hkHKyzJ0nzmfu3x6sMLEpFIr8wZZX4gXwjjX+dOUK5XXL16gTm/+Q2NjYoJUrPlH/fv1V0s/5g9qamkJqCknZ/GEp8Sd3JOAKKYS3EevmQNGcd7cc736PsALFLyoO6axLvm7M3hpo8au/1wm9u7FD8Yi6sUAxernwjCumHnVpsclA0ek9FE3O1eg7w8ODccmzh4vj8tS45NllUA92Zz3heePmLcrJyVM4HFZt7SENHjRQgwYO9OBsmZIbAlzy7IZi6vfBJc9ma8wluHibFYgdzbqn8uer10hpaUpLS1NTY6NKSko0Yrjz+ydaI3EPRbPV5RJcvM0KNI9mBYobkxQoDidQbCm5sUDRGvFYlza3D/kSeUJ29pTn9vd5fOw383XRuae17Kq0djju3F2pe++6Trm52YmcKn0fESBQDM6pELRAcfPmLdpVWanaw3Xqlperkj7FGjx4cMoX3Loh+5aycqVlpKu0pLeys/lamspFJ1BM5eq6tzYTgaJ177YNm8tUW1sn67L4fn37uBZguCdhpicCRTPO0VHw7th7x44dkU8UFhaqW7durhWFQNE1yrg6IlCMi8m1g/BuDRQ3VRzWOdOsHYptb5cVfSxLlNzdj/+6YJ6GESiaCRSj9ydcuXpDp2+gcSeNiHlYS6cNHBxgBZvX3jY30kP7cdsHim2PtY5v+7QeB1OgqQ0BAkUbWD4/NEiB4oaNm7ShrFx9BwxSUa8+qtqzSxU7t+vE4YMCESoermuK3G8n38P3ZvH528kz0ydQ9EwpPD2RRAeKe/fu1SefrVH3oj7q23+ADh8+qK0bv1BpnyKNOSl4928l4DL7dsDbsHd9k+qbwirI8+7938yKJHY0Aq7E+rbvHe/WQHFzJFD8hsE7KErvLPidhvXO45LnIyem0R2KZt9qjJYqAgSKqVLJztcRlEDRutT3/Q8+Uo/epSrsVdwCs2fnDjUe2qszTpvQOZbPjyBQ9HkBbUyfQNEGVoAPTXSguHbdepVXVuuE0bFPmV/36YeaPHG8unfvHih9Ai6z5cbbsDeBolFwAi6j3MK7NVDcUlWr86Z9w2gBrEBxSK9cAkUCRaPnHYM5ECBQdIDns6ZBCRStS37feW+JRpxyWkyFrH/ftPpjTT3nLJ9Vzv50CRTtm/m1BYGiXytndt6JDhQ/+HC5sroXq3dJv5iFrftsuU49eZSKi1v/uGN25ckZjYDLrDvehr0JFI2CE3AZ5SZQPMJt3UOxrKpW50cCReuS5+ilzYn979sL5mkwgWLLSW90h6J1/8Enn30l5h13/dWX6Y6bZph9FzKarwQIFH1VLkeTDUqgaO1QXPzBh+rVb7C69+jZYlZVuUe1+3Zr8ukTHTn6oTGBoh+q5M4cCRTdcUz1XhIdKK5du07bq2o0cvQpsYHip8t12riT1LNn69fiVLe21kfAZbbKeBv2JlA0Ck6gaJSbQLFNoLitqlZTL/+m0QIsevkFDSRQNBsoRu+lOGhA0B0pmAAAIABJREFUn5iHmUSf/Lx1+x5j9080erYxmCsCBIquMPqik6AEilYx1q3/QlvKd2vg0BPUvUehqvdWaUfZRp0wpFTDhrnzlEMvF51A0cvVcXduBIrueqZqb4kOFK0Hsnyyao16lQxQ7779VV9fr41rP1fvnvmaMC42ZExV47brIuAyW2W8DXsTKBoFJ1A0yk2g2C5Q/NLl3zxqf2K0Isfat+jk828SKMac8EZ2KFo7E63XsXYidvZ5s29RRvOaAIGi1yqSuPkEKVCMhop7KvaqvrFBOTlZ6ltcrBNGDE8csId6JlD0UDESPBUCxQQDp0j3iQ4ULaaKigqt/WKjGhqalJYWVknvPho9emSKCNpbBgGXPS+nR+PtVNBee57ybM/L6dEEik4F7bXHu9nLuuR5+746XXDZN00+5Flvzn9BA4pyuIfikdM24YFidBfijCumatL40R2+W6wnKc+bvyhm96K9txVHp7IAgWIqVzd2bUELFK3VW5c/W/9LS0uL/C8oLwLFoFRaIlAMTq2drNREoBidn3W/WuvrbkZGhpMp+7otAZfZ8uFt2JsdikbBCbiMcrND8Qi3FSiWW4Fim0ueozsSj1URNz7/xssvqLQngWLUOOGBonW58+z7HtePb75Kw4eUdljbjVvK9bNHn9Ocu29UUWGB2Xcko3legEDR8yVybYJBDBT/f3v3Hh9XWe97/Jvm3qbXtGlom94pLb1BtVhAFBRRqIB2W26yEQVR8ZwDG5WDvA7uvfUlu6Lw0vM6Il5w+3JDoZRdBC2iFkGrUCzQG6Xp/Z40TUOSpmnSNJmc1zPtTGamk2TWrJl1mfXJP1qynvU86/17ZmblO89aK2N4PtsRgaLPCmZjuASKNvAC1NTJQDFArL0eKgGXs7MAb4e9CRQdBSdQdJSbQDEuUOzQ5Vc7u0Jx1QsmUCxiheLpOmQ9UGSForNvMLnYG4FiLlY1+TERKAan1gSKwak1gWJwam3nSAkU7ehZb0vAZd3MTgu87ehZb8slz9bN7LQgULSjZ70t3qfMzArF2qYOXX6Nsw9lMYHiWQSK0Ymb9UDR9NTfPRL7+731lxktckmAQDGXqtn3sRAoBqfWBIrBqTWBYnBqbedICRTt6FlvS8Bl3cxOC7zt6FlvS6Bo3cxOCwIuO3rW2+LdEygeau7Qx665vgcxE9c0d/dRkzzpT88vU+VQVihGlBwJFHnKs/U3Clr0CBAoBmc2ECgGp9YEisGpNYFicGpt50gJFO3oWW9LwGXdzE4LvO3oWW9LoGjdzE4LAi47etbb4h0TKB7t0BWxgaJ1Tsst/vjCMlUOIVB0NFCMdLbixdV64KHH44p2200Le336s+Xq0iAnBQgUc7KsSQ+KQDE4tSZQDE6tCRSDU2s7R0qgaEfPelsCLutmdlrgbUfPelsCRetmdloQcNnRs94W755A8bAJFK+9oQcxcYViFv79x988rQoCxai5IysUrb9MaIFAjwCBYnBmA4FicGpNoBicWhMoBqfWdo6UQNGOnvW2BFzWzey0wNuOnvW2BIrWzey0IOCyo2e9Ld7xgeLHPxUTKFrntNziDwSKcWYEipanEA2cFiBQdFrcvf6CFijW19fr7U3bVN/QqNEVIzVv1tkqLy93rwAO9kyg6CC2y10RKLpcAJ90T6DobKEIuPB2ViB5b21tbVq/qVp7a+pUkJ+vD86frcrKSttDI1C0TWhpBwRclrhsb4x3T6BY33JSJlA0CxEjP+YWiNn89+9NoDi4kKc8nwYnULT9kmYH2RYgUMy2sHf2H6RA8fDhw3rg4f/S2ndrVN90UhVDC3XR3PF64K4bVVFR4Z2iZGkkBIpZgvXgbgkUPVgUDw6JQNHZohAo4u2swJm9tbe36+HHlmnFyxtVf7RTpcUDNKNqmO65/Rp96MLzbQ2PQNEWn+XGBFyWyWw1wLsnUDxyzJ1AcVQZgWJkEhMo2no509gJAQJFJ5S90UeQAsUfP/6MHn7yNdU2dkbxq0YW6ptfuEyfv/EabxQki6MgUMwirsd2TaDosYJ4dDgEis4WhkARb2cFzuxt3cbN+vID/6mN+9qjvywtkj5/5XR9977bVVJSkvYQCRTTpkurIQFXWmxpN8I7NlDs1JWfPrVCMbIyMdv/++JzT2tkWQErFE/PYALFtF/KNHRKgEDRKWn3+wlKoBgKhfTvD/9SDy1dH4c+YID0f269QN/8n7e4X4wsj4BAMcvAHto9gaKHiuHhoRAoOlscAkW8nRU4s7cX/vCq/uV7z6um8WTcLz918Vj933+9XaNGjUp7iASKadOl1ZCAKy22tBvhHR8oXvXp66W8PKm725H/fXHFUxrJCsXo/CVQTPulTEOnBAgUnZJ2v58gBYrf+39P6KEn31R7RygKP7h0gO7/3EW6+0vO3lzYjcoTKLqh7k6fBIruuPutVwJFZytGoIi3swJn9vanV17T1x56VtsPdcT98sbLJup73/wcgaLbBbLQPwGXBawMbIp3T6D4Xmunrlpk/m5ybo2iCRRHDGKFYmQqEyhm4EXNLrIrQKCYXV8v7T0ogaIxX/WXN/SvP3pWb+9uC5fArE6cN6lU3//f/6wF8+d4qSxZGQuBYlZYPblTAkVPlsVzgyJQdLYkBIp4OytwZm8NDQ26699+rpfX1aqptSu8wcyqYt28cL7tL1ZZoehsdQm48HZWICZQPN6phZ++4fTKxEiuGFmpmJ1/r/xvAsXYehMoujH76dOSAIGiJS5fbxykQNEU6pnnV+lvazerpfWEhg8p1aUXzdU1H/+Qr2uY6uAJFFOV8v92BIr+r6ETR0Cg6IRyTx8Eing7K5C8t81bduipF/6s2sNHVVRUoFnTqvT566/UwIEDbQ2PQNEWX9LGR48eVVdXl4YPH37G7wkUM+/d1x7x7gkUG4936pP/dGMvz3VOvJtiRLW3uyym9vvf/fdSDR/ICsWIFoGis69/ektDgEAxDTSfNglaoPjXtetVvbdGHZ2dKi4s1Owp47XgvJk+rZ61YRMoWvPy89YEin6unnNjJ1B0ztr0RKCIt7MCvfdm7ivd3Nwc3iBZWJXOOAkU01FL3qa+vl6vrNuq91rblJeXp4qhg3TZ+TM0bNiwaAMCrsx5p7InvHsCxaa4QDHbj2M5tX8TKA4jUIxOVQLFVF61bOOqAIGiq/yOdh6kQPHNTdVauX6XVDH11PXOoU4NqN+tRRdM08xpUxx1d6MzAkU31N3pk0DRHXe/9Uqg6GzFCBTxdlbA2d4IFDPjffz4cT35x9dUEyqTBo88tdOmWk0e2KnPXvlhDTDnr5IIuDLjnepe8I4JFNu6dM1nIisUnQkUX3j2SQ0rZYViZL4SKKb6ymU71wQIFF2jd7Rj8w31wUP14Sd0VY2tdLRvpzszx/rMH1dra/coqaCop/uOVs0uadGij37Q6SE53h+BouPkrnVIoOgava86JlB0tlwEing7K+Bsb7kUKB4+fFj5+fnhFYHmf5382b5jp55as0Pdo+O/6C5t2KnrL5yuCRMmECg6WZDTfREo9gSKzS4FikMJFKMzn0DRhTcBurQmQKBozcuPW2/fvVe/f32TGlqOq0DdGlMxUosunZexS1+8ZmICxSdffEW7ik+diEV/QiFN6zqoG6+6zGtDzvh4CBQzTurZHRIoerY0nhoYgaKz5SBQxNtZAWd7y4VAsampSStWb9DB5uPq6urWyEEFumLeOZo2OeHcMYu0m6u36tn1B6Xy8XG95B/ZrZsvPFsTJ070XKDY2dmpgwcPypxrDxkyROXl5VkUcmfXBIo9geLR9pCuXezsCsXnlz+pISX5uuWWW9yZAB7rlUDRYwVhOGcKECjm9qwwJ0xLnnhJ+452qaWrUObiieH57Zo3foj+182fytmDf+5Pf9XGlqKeS0jMkR49rPePlBZ++KKcPe7IgREo5nyJowdIoBicWts5UgJFO3rW2xIoWjez0wJvO3rW2+ZCoPiz51bprbouHRs0OgxQeLJVUwua9NWrL3LsC/fa2lr9+tWNah8Zv0JxWNMu3fyR90XDOq8EXI2NjfrZb1/X5toWtZ3sVkVZgS6dPV6LP3qB9Unk4RZe8Xab6Ne//rWOtnfpU4tvcnQov1m+lEAxRpxA0dHpR2fpCAQxUGxpaQlTDR48OB0yX7V59W+v6bFXd2lXqFKd4ThRGqzjOruoQQ/ceGn0cgpfHVQKgzUnaSv+vklHOgulsuHSsfc0qvCkFl08V5WVuX3Jt+EhUExhkuTIJgSKOVLILB8GgWKWgRN2T8CVvrd52q15OIWVczS80/dOp6XfA0Wzwu7RP6zTnsJxcYc/uPWgbvtAleafPycdlrTa/G71m3qrpkUqHSKFujSgrVkXTanQRy+YG92fVwKux557Rb/Z1KjD6nlgzIS8I/rudfN07jlT0zp+LzbyirfbNiZQPHYidCpQzJMUewvFyOAS/3vk3zZ+/5tlS1VWMoAViqcNAxkort1QrVvvWhImmDNjih5dcreGD00e3MRua7ZfePkCffvrX1BJScx9z9x+NeV4/0EKFM3y/A2b3lFr63EpL0/d3d2aWDVWVVVVOVvlZS/8Ub9cf0z1MR/+5mAnDajXt66errlze05Ycg2hrq5OOw7WqbH5qMqHDdXZVWdp5MjTN73OtYNNOB4CxRwvcMzhESgGp9Z2jpRA0Y6e9bYEXNbN2tvbtXX7DrUcaw3/8ZqfN0ATJ1TprBS+BMTburedFn4PFGtqavSj36/TgaKxcQwDjx/WFxeM0wVzz7XDY6mtuYR4647dqmloCl9GPGnMKE2bMjluH14IuMzqxO8/81e9VBf/N/1QteqrC0boM1dcbOm4vbyxF7y94BMJFD99XewKxd4Sw8QEMf1/P/fMkyorJlCMCnabxCJAP7v21uj+Jb/Qg/fdrskTxmjFi6u15u3NvYaE5vdVY0dp/tzpam/v0Ld+8EtVVpTrnjsWB0jN3UMNUqD41tvr1d4Z0qw554XRmxoatG/fLp0zZZIqKircLUSWen/plb/p4dVH1KAhcT1MyT+s7914gSZPjj9pydIw2K3DAgSKDoO72B2Boov4PuqaQNHZYhFwWfd+4x9vqju/QDNmnlod9l5DvQ7s3aNZM6b1ewkq3ta97bTwe6B47Ngx/fj5v+qdzkqFTj9J2XhUtO7T1z45T+PGxa9ctGOVibZeCLjM1V0PLn1Zf6iL/3tiiFr1Py4s12c+lju3E/KCdybmjd19mECxtSOkRdd9NmaFYl74AZ/Rn7zT/46uVLT/+xXLntCgIgLFwAaKJiDcc+BQNBBMDBj7m9j9BZD9tef31gWCEig2Nzdr07tbNPv8+Pt87N21UwNCHZo1a6Z1PB+0MKv0vv74y9rc2XOZb6lOaMGwo/ruHdeqpKTEB0fBEK0KEChaFfPv9gSK/q2dkyMnUHRSWyLgsuZ95MgRVW/fpdnnvz+u4Y6tWzSopFDTz5nW5w7xtuZtd2u/B4rm+F/bsEUvvLlTDV3FCuUVqrjrmD40eZiu/9jF4UvuvfTjlYDrx8++rOfebdF7MYsUztIRffef5uq8med4iczWWLzibesgMtDYBIrHTaB4/WczsLfUd7Fi2ZMaSKDYk9kGbYXiIz9bHj74yArDxuYW3XnfD3XPlxeHVyH295PYvisUqAWe/fFk5fcHaus1sLhQI0b03A8jKx25vFMTKJqnqc05f37cSMwqxSN1B3Xeebl76e/v/vKmVr65Q/vbzENZQpo+tFu3fuL9OvdsVie6PC2z1r05GTJfIJYW52etD3bsDYHOzpDaOkIaPLDA0QHlD/DWH1yOHrzPOjPnUiZ4NqFLWamz88RnVBkbbkdnSCdPhjQoh71PnjypUFeXijPwxWR9fb127N6r2ee9L64GNQf262TbMc2c2fclqH15m9Vo5qesrCxj9Q36jjpOdulklzSoxN/nGIdqa7V5937l5xdq3KhhmjxxggbErFj0Sp1PnOxSV5c00GXvI/X1+snvXtemmlad6C5QRWm3PnTuWN10xQLl5/t7LsTW2klvL59LRQLFz9xws6MvhWeffoJAMUY8cPdQNIHgxHGVWnTVJWEGK4GiuZ/iI48tj7vnYmNLh6MTOEidVW/ZrD37DyjPfACEQiobNFAXLrjIkx+kmahLV2enNm1ar2nnTFfZ0J7wdNuWzcpTnqZM7fvb70yMwc19NL7XoIamJoU6QxozplJlZbn/QBo3vd3u24SJ3erWAI99y+62Sy72b752M3dXcbLWA0sKVFx46iFP/HhfwASJrW2dvCc4WKpcfg8+dqxFu/fukwnqQt0hDRs2TFMmTlRJSWnawu3tbdqyZbPmznu/Cgp6Qu93NqxX2aBBGj9hUp/7TuZt7ke3fdtWtba1ht8fu0PdGjN2nEaPzv0Hs6VdiBQb5vL8TpHA0c285G3udXq4rlZtHZ0aMWSIRo0+9ZTsXPpx0nv4YO8+N8IEim0nQ3IjUCwt5JLnyGsqkIGiOXirKxRNmHj/gz/XTx/6Wvjei07/NDU1qXrrNhUWFalq7JicvZ9exLW6ulobt+9TxbgpGlpeoc6ODh3YtUUFXcd19ZVXOM3vWH979u7T/oOHNGLkKA0eOkT1hw7p+LEWzZk1Q0OHDnVsHG51dKytUwX5eSopyp1vEd2y9Hq/XPLs9Qplbnxc8pw5y1zeE5c8O1vdXL0E16xKXL3mbZ0sGKiKsRPDqLV7t6usMKQPLYi/XNmq+I6du1R7+IgqRp+l0tKBOlJfpxPtx3Xe7JkqLe07rEzm/Y8331ZbZ0gzZp66b3bje0dUu3+PZk2fGpgHtFmtQarbZ+KSZ7Mq9b2m5vAq18rRFf3eJzPVseXidm5fgtvQ0BBmHT58eM4uPImdN257e2UOm0CxvbNbix1eobj86SdUUpDHU55PT4TABYrp3EPR7TBx/Tvvat3WPSocUq4BA/J1oqVRY4cN1BWX5s7TqhLfmF5a9Wd1FQ3TmIlnx/1q+/q/6+L3zdbYsfFPPfPKG1smxnHo0CEdOlwvs2KxpKRY48aODUSYaOwIFDMxg/yxDwJFf9QpE6MkUMyEYu7vg0DR2RrnaqB44MABvVW9T+OnzY4D3b9tgy6YNVWVKTyRua9KHDx4ULWH6sL3sBs4cKCqxo1N6VLlRG+zUGDD5mrNmBMfcu7duV2lhd2a1c8l1M7OFv/1ZjdQfGvTu9q2/7BUOkShrpDyO45qztTxOnfaVP9hODBitwKu1tZWrX+nWsfaTsg8lSM/L6SzJ0/QhCpvPbQm0yVwyzvTx2F3f7GBYvTZK5FnsGTxf595ikAxtnaBCxT7e8qzCRyX//bV6GXNyS5ztjv5rbQ3y7afWvmyho2focLSQdGmR3Zs1AdnTdLUqbn5wfbcCy9q1ORZGjRkeBzXzo1rdMGcczR+/HgrjGzrEwECRZ8UKgPDJFDMAKJPdkGg6JNCuTxMAkVnC5CrgaK5mmd7bbPGTY6/L/r+7e9o9uRKTZrU96XJ2apCondjY6M2vbtN0+fE35OxseGIWpvqNC+H75udLePY/doJFM0DeP70xiYNrpounb5fYWfHCZ08vEtXfvD9KQXIThyjl/pwK+D662tv6HhnvsZPnRHmaD12VEcO7NQFc2eovLzcS0QZHYtb3hk9iAzszASKHZ3S4ptuVvQhzuY2O+F4OXv/u2zpEyou0BkrFE1udOtdS8JHNmfGlLjb5GXgcD27i8AFiqYSfRU7MVA091x8fOnKuAKOGV3u2KXPGzdu1Pr9jRoxIf7E6NiRWg3ratQnPnqZZyeXnYH96ZVX1ZE/WGMm9tw3MNR5Ujs2vq5PfuxSDRrUE67a6Ye23hIgUPRWPbI5GgLFbOp6a98Eit6qh1dHQ6DobGVyNVCsqanR2nd3a/y0OXGg+7et14Vzp2vUqFHOQp/uLdG7o6NDr7/xliZNm6GSgT0PY9m25R2VDynRjOn9PyjSlQPxSad2AsVtO3bprb2NGjw6fpXb0drd+vC5VTl9lVS65XUj4DKXpL+1ebvGT4t/aGXtvp0qHzRA582ele7heL6dG95eRAkHil3SdTferPAt2U8nieYek9n897Inn1BRQqDY36I1L/plakyBDBQzhefEftatW6dNNUfPCBSPHj6gEaFmfeLyjzgxDMf72LNnj/6xoVrDKqtUPmqM2ttaVHdgj0aVFemSixc4Ph46dEaAQNEZZy/0QqDohSo4MwYCRWec/d4LgaKzFczVQNHcQ3HN2xvV2lWo4SNPPYzhyKEDGjGwQAveNyd8qbIbP8m8d+3eo30H6zSiolKDygbryOFatbce1fmzZ2rIkCFuDDNn+rQTKJpVrm/tb9bQyviroVpqd+uiaWdpwoQJOeOUqQNxI+AygeKb7+zQhHPivzxoqKvRkPwOzZ0zM1OH57n9uOHtOQRJJlA8GZKuv+mfwysSIz+RFYrZ+vdTS/9LRQPiVyimc1s9L5qmMyYCxXTUHGxjLol4btXfVXbWJA0cNjLcc6izQw2739X8s8dq1qzc/fZl586denfbTrWf6FJBYb7Gjxml951/voP6dOW0AIGi0+Lu9Ueg6J690z0TKDot7s/+CBSdrVuuBopG0dwuqHr7LjWaB2p0d6uyYqRmTJvq6sMaevM2KyrD983uCqm0uEhVVeMCc9/sbM54O4Giub/lS6+tU0nlZBUUlYSH2X6sWXnNNVr44QUqKTn13/jpEXAj4DKv87+8vlaVE89VYXFPTXZv26Rzqio0dcrknC2RG95exDSBYmdMoJjtS50j+zeBYmFCoGiuajU/Vh/860VXq2MiULQq5sL2r61Zq+r9h1QwaJjy8gaos61Fw0sLdM3HP+LqyZFTFE3HOlRWWhh++i8/uS1AoJjb9Y09OgLF4NSaQDE4tbZzpASKdvSst83lQDFWIxQKeeJcOSje1mdidlrYCRTNiKq379Q7O/erM/9UUFUYatf8mVM1flxuP+wj3Wq4FXDt2LVH2/Yc1KDBI1RQXKyWpvdUmt+pC+fPU1FRUbqH4/l2bnl7DSYSKLoxroIkgeLEcZVadNUl4eE0Nrfozvt+qHu+vFjz5+b2LSwIFN2YgWn0uXfvXr27ZauKSopVUV6uGTOmq6CgII09+a8JgaL/apbuiAkU05XzXzsCRf/VLN0REyimKxesdgSKztabgAtvZwWc7c1uoGhGa54gbFYrdnV1qaKigpWJfZTQzYCrrq5Oew/UqCA/X2WDBmrC+CoVFxc7O+Ec7s1Nb4cPtc/uTKDo5s8tt9wS7Z4Vim5Wgr4R6EeAQDE4U4RAMTi1JlAMTq0JFINTaztHSqBoR896WwJF62Z2WuBtR89620wEitZ7DW4LAi5na4+3s96p9MY9FFNRYhsEXBIgUHQJ3oVuCRRdQHepSwJFl+Bd6JZA0QV0H3ZJoOhs0Qi48HZWwNneCBSd9SbgwttZAe/1xlOevVcTRoRAVIBAMTiTgUAxOLUmUAxOrQkUg1NrO0dKoGhHz3pbAkXrZnZa4G1Hz3pbAkXrZnZaECja0bPeFm/rZk60WLuhWrfetSTc1ZwZU/Tokrs1fOhgJ7p2tQ/uoegqP52nIkCgmIpSbmxDoJgbdUzlKAgUU1HKjW0IFHOjjtk+CgLFbAvH75+AC29nBZztjUDRWW8CLrydFaA3LwkQKHqpGowlqQCBYnAmBoFicGpNoBicWhMoBqfWdo6UQNGOnvW2BIrWzey0wNuOnvW2BIrWzey0IFC0o2e9Ld7WzWiRPQECxezZsucMCRAoZgjSB7shUPRBkTI0RALFDEH6YDcEij4okgeGSKDobBEIuPB2VsDZ3ggUnfUm4MLbWQF685IAgaKXqsFYkgoQKAZnYhAoBqfWBIrBqTWBYnBqbedICRTt6FlvS6Bo3cxOC7zt6FlvS6Bo3cxOCwJFO3rW2+Jt3YwW2RMgUMyeLXvOkACBYoYgfbAbAkUfFClDQyRQzBCkD3ZDoOiDInlgiASKzhaBgAtvZwWc7Y1A0VlvAi68nRWgNy8JECh6qRqMJakAgWJwJgaBYnBqTaAYnFoTKAan1naOlEDRjp71tgSK1s3stMDbjp71tgSK1s3stCBQtKNnvS3e1s1okT0BAsXs2bJnBBBAAAEEEEAAAQQQQAABBBBAAAEEck6AQDHnSsoBIYAAAggggAACCCCAAAIIIIAAAgggkD0BAsXs2bJnBBBAAAEEEEAAAQQQQAABBBBAAAEEck6AQDHnSsoBIYAAAggggAACCCCAAAIIIIAAAgggkD0BAsXs2bLnDAo88rPlWruuWo8uuVvDhw7O4J7ZlVcEdu2t0ZfufVg1dQ0aM7pcP33oa5o8YYxXhsc4MihgXs+PL10Z3uOcGVN4XWfQ1gu7amxu0f3/8XN94ys3nPEaXvHiaj3w0OPhYS68fIG+/fUvqKSkyAvDZgwOCKzdUK1b71qS0ms/9n0idmi/+tF9mj93ugOj9V8XVnxjX4uxR/qde2/ToqsuUexncuT3vF/3PSesvr/xWWjtNWZlfps9x9Yj8byS+W3NPtEzlc/v2PmdyvbWR5RbLezM78T35mTv77fdtFD33LE4t9A4Gk8IECh6ogwMoi+ByAcSJ7K5O0/Mid39S36hB++7nRAxd8scPjJzkrPm7c3RICnx3zl++Dl9eO3tHfrWD36plavWJP1SwJwsP/LY8miAbN7bzQ8nuDk9LaIHl/g+b/W1b9p//ydP68FvfpEvFpNMGbu+iV8E8Lls7XVp9f2Nz0Jrvlbnd2I9Ev/N/Lbmb2d+m57MuUFlRTmf972w253f5nzq0OEGzq2tTWu2zpAAgWKGINlNdgTMCdeeA4d0yQdmx/0hmp3e2KsbApEQYvHVl7LqxI0CONxnYoiUeJLq8HDoLgsCva1QNLWfOK4yvPrJ/FD7LOB7eJeRz/NIgGz1D/rE+ePhQ3VlaHZ97bZ35aAJxoqUAAAPWElEQVQ91KnV9zc+C60Vz+r8TAxsE99vrL7/WBtt7m1tZX6bc4A77/uh7vny4uh5PZ/3fc8JK/M78nfTgnkzo+dTVgPJ3JuhHJGbAgSKburTd58CsScDm7buIlDM0fkSOfHYuGVn9Ai5NCJHiy1FL6O78qMLwt9UExLkXq2TBYqpnADnngRHFCuQGKAk+6OzNzFWJ/Y/l+z4JnvNJl4SylUivdcgnfe3iC+fhf3PbbOF1fkdeX+pGjsqvGrrxT+/EV6gEPuFRuQ2O2b/zO/Mze9k7+0EuH3PcyvzO9n7TaJ54iXPXO6c2vsMW6UnQKCYnhutsixgvsla/ttXo0u3+WYry+Au7j7xD8XIByWXRrhYlCx2Halv89FW/e0fmziJz6K1W7vuK1CMXYnMHxhuVcidfhO/PLASKPLFQ/81s+ObuDomWW+Jl9T1P6LgbJHsSov+3t/4LLQ2P9KZ36bN1h37wuca/d2bm/ndf6Bo5fM7MSDr7/VgbTbk3tZW53fiCty+Pk8jvzP1i1whknuCHJGbAgSKburTd68Cvd0snG8Qc2/SJFt5QoCce3WOHFHiSZN5rZsvD3jgUu7UnBWKuVPLTB6JlRUYsf3yeZBaFdL1TfUPfVaJ9h+49HUJYmJrPgtTm9ex5w7m/0dWGPb3hURiSG7eR+5/8Oe9PvCP+Z3Z+Z3s6iP+huvd2Or7d+w9qyN77Ss0T+VLI2uvSLZGoEeAQJHZ4AsB/qDwRZnSGmSy8CFxhWpaO6aR5wTSWcXhuYNgQP0KcA/FfokCuYGVe0RFgJJd2hVIvBQOOh1fs9tUH45E4NJ3EazcY47PwhQmdMImVue31RVfzO/Mze9kezLn9avf2MRDWXphtjq/E3dj5u+TK1bpG1+5QSUlRWf0QqBo/T2HFqkLECimbsWWLgoQKLqI70DXsZeamO7M0+Biv+l3YAh04ZBAsifRsULRIXyHuuktULT6lEiHhks3Dgn0d9P4ZKuV+exPvTj9+Ubu2ffg/V+MPiihr9WJf3h1rc6eNFaTJ4wJDyLV4DH1EefWlv29vyXObz4LrdXf6vxO9E5cocj8tuZvdX7H7j3VVdDWRpRbW/c3v/u6midxta75wuLZlX/RZxZ+OBwu9reaN7ckORo3BAgU3VCnT8sC/FFhmcxXDRKX7nPzYF+Vz9JgE2vNJTCW+Dy9cbJLcBIfsBR7OwsevuTpcmZlcOaz/Na7loT3nfjaT/yDiT+CrJegL9/EQLG/1Z+x+zIj4fXafz36en9LnN98FvbvmbiFlfkdCcEfX7oyvJvEy0GZ39b9rczv2Ic6cZ6XmnU6n4/mgZbJLnU2X1hE5r7p/Tv33sb9E1MrA1ulIUCgmAYaTRBAAAEEEEAAAQQQQAABBBBAAAEEEAiqAIFiUCvPcSOAAAIIIIAAAggggAACCCCAAAIIIJCGAIFiGmg0QQABBBBAAAEEEEAAAQQQQAABBBBAIKgCBIpBrTzHjQACCCCAAAIIIIAAAggggAACCCCAQBoCBIppoNEEAQQQQAABBBBAAAEEEEAAAQQQQACBoAoQKAa18hw3AggggAACCCCAAAIIIIAAAggggAACaQgQKKaBRhMEEEAAAQQQQAABBBBAAAEEEEAAAQSCKkCgGNTKc9wIIIAAAggggAACCCCAAAIIIIAAAgikIUCgmAYaTRBAAAEEEEAAAQQQQAABBBBAAAEEEAiqAIFiUCvPcSOAAAIIIIAAAggggAACCCCAAAIIIJCGAIFiGmg0QQABBBBAAAEEEEAAAQQQQAABBBBAIKgCBIpBrTzHjQACCCCAAAIIIIAAAggggAACCCCAQBoCBIppoNEEAQQQQAABBBBAAAEEEEAAAQQQQACBoAoQKAa18hw3AggggAACCCCAAAIIIIAAAggggAACaQgQKKaBRhMEEEAAAQQQQAABBBBAAAEEEEAAAQSCKkCgGNTKc9wIIIAAAggggAACCCCAAAIIIIAAAgikIUCgmAYaTRBAAAEEEEAAAQQQQAABBBBAAAEEEAiqAIFiUCvPcSOAAAIIIIAAAggggAACCCCAAAIIIJCGAIFiGmg0QQABBBBAAAEEEEAAAQQQ6BFYu6Fajzy2XI8uuVvDhw4O/6K9vUPf+sEvVVlRrnvuWAwXAggggEAOCRAo5lAxORQEEEAAAQQQQAABBBBAwA2BZIGiG+OgTwQQQAABZwQIFJ1xphcEELAp0Njcojvv+6E2btkZ3dOcGVPivgXftbdGX7r3YdXUNUS3WXj5An37619Q24kT4fZf+dy1+t2q17Ry1RqZ391zx3X6l3/9cdx+b7tpYfRb9Mg366Yv07dpZ37MNp+//hNxY/rOvbdp0VWXRPt+5GfL9fjSldF/x+7XJgfNEUAAAQQQQACBrAiseHG11ry9WZ+8/CJ95b5Hwn386kf3af/Bej3w0OPRPseMLtdPH/qaJk8Yo2TnYOa8585brg2vUFwwb2b0HClybhU5p0o8n8vKQbFTBBBAAIGMCxAoZpyUHSKAQKYFImHiPV9erPlzp4d3n/gteORE9sH7vxjdJnJCHBsoHnmvKXrya/Zj9v2fy14Kn/CWlBSF/22Cx8VXXxo+8Y2c9K7btP2Mk2bTPvZE+v4lv9CD990ePrGO7dvs1+zn0V8/Hw4hI5cBZdqJ/SGAAAIIIIAAAnYFzDmMCQ4Tvwg1/71q7Ki486zlv301+uVuX5c8RwLFZJdAm/3G7sfu+GmPAAIIIOCMAIGiM870ggACNgQSw7lkgaJZDWh+Yu/PkyxQjA0lexuSabfnwKHwviInvsm+We/rvyUbjw0CmiKAAAIIIIAAAo4IJDvvStax+RL2/v/4ub7xlRvCX6amEiiaL4Bjv4A1+032xbEjB0onCCCAAAK2BAgUbfHRGAEEnBBIFs7FnrSWFhefcTmNGVeqgWJfl0qb/fR2qU5fgaIZ3613LQnzcCmPE7OEPhBAAAEEEEAgEwJ9BYqJt3Mx/ZnLoc0VJKkEimYbsxrRXD1iruCI/Jj9ThxXGXfrmEwcC/tAAAEEEMieAIFi9mzZMwIIZEgg2UlmskDRXKYcuSQ61UAxcllP5GQ4sV26gWLk0AkWMzQJ2A0CCCCAAAIIOCKQLFCMrCI0lzxHwsDElYUEio6Uh04QQAABzwgQKHqmFAwEAQR6E8jmCsVkYWXsibTdQDFyTMku8aHiCCCAAAIIIICA1wSSBYrmPOb7P3laD37zi9F7QScGism2Sbx1DJc8e63ajAcBBBBIX4BAMX07WiKAgEMCiSefkZNT87TBR5fcHT6xTbyhd+I36ZGnPCfeQ9EEiocON0S/bY9c/nz+7LPD/y2dQPGqj3wgfNL92UWXh+8pZH6SfWvvEB/dIIAAAggggAACKQv0Fih+6d6HFfvwu8jlz5GrPJI9IC8xUOShLCmXgQ0RQAABzwsQKHq+RAwQAQQigVzknoRjRpfrc9d9QitXrYkGimabyOXL5v+b+xZedvF52rHnYDgY7C1QjJzYmn2Zn4WXLwi33bhlZ9qBonk6dOxYzH7NmCNPhKaiCCCAAAIIIICAVwV6u4di7G1czNgf+bev6lfLXlLsl7Wx5z/mKdF33nJtr/eijpx7ca9pr84ExoUAAgj0LUCgyAxBAAFfCqSy4i/2ac2+PEgGjQACCCCAAAIIIIAAAggggIAHBQgUPVgUhoQAAv0LJAaK5jKbVavf0h03Xx1unHhfn/73yBYIIIAAAggggAACCCCAAAIIIJCKAIFiKkpsgwACnhNIFiiae/vU1DVExxr75GbPHQADQgABBBBAAAEEEEAAAQQQQMCnAgSKPi0cw0YAAQQQQAABBBBAAAEEEEAAAQQQQMANAQJFN9TpEwEEEEAAAQQQQAABBBBAAAEEEEAAAZ8KECj6tHAMGwEEEEAAAQQQQAABBBBAAAEEEEAAATcECBTdUKdPBBBAAAEEEEAAAQQQQAABBBBAAAEEfCpAoOjTwjFsBBBAAAEEEEAAAQQQQAABBBBAAAEE3BAgUHRDnT4RQAABBBBAAAEEEEAAAQQQQAABBBDwqQCBok8Lx7ARQAABBBBAAAEEEEAAAQQQQAABBBBwQ4BA0Q11+kQAAQQQQAABBBBAAAEEEEAAAQQQQMCnAgSKPi0cw0YAAQQQQAABBBBAAAEEEEAAAQQQQMANAQJFN9TpEwEEEEAAAQQQQAABBBBAAAEEEEAAAZ8KECj6tHAMGwEEEEAAAQQQQAABBBBAAAEEEEAAATcECBTdUKdPBBBAAAEEEEAAAQQQQAABBBBAAAEEfCpAoOjTwjFsBBBAAAEEEEAAAQQQQAABBBBAAAEE3BAgUHRDnT4RQAABBBBAAAEEEEAAAQQQQAABBBDwqQCBok8Lx7ARQAABBBBAAAEEEEAAAQQQQAABBBBwQ4BA0Q11+kQAAQQQQAABBBBAAAEEEEAAAQQQQMCnAgSKPi0cw0YAAQQQQAABBBBAAAEEEEAAAQQQQMANAQJFN9TpEwEEEEAAAQQQQAABBBBAAAEEEEAAAZ8KECj6tHAMGwEEEEAAAQQQQAABBBBAAAEEEEAAATcECBTdUKdPBBBAAAEEEEAAAQQQQAABBBBAAAEEfCpAoOjTwjFsBBBAAAEEEEAAAQQQQAABBBBAAAEE3BAgUHRDnT4RQAABBBBAAAEEEEAAAQQQQAABBBDwqQCBok8Lx7ARQAABBBBAAAEEEEAAAQQQQAABBBBwQ4BA0Q11+kQAAQQQQAABBBBAAAEEEEAAAQQQQMCnAgSKPi0cw0YAAQQQQAABBBBAAAEEEEAAAQQQQMANAQJFN9TpEwEEEEAAAQQQQAABBBBAAAEEEEAAAZ8KECj6tHAMGwEEEEAAAQQQQAABBBBAAAEEEEAAATcECBTdUKdPBBBAAAEEEEAAAQQQQAABBBBAAAEEfCpAoOjTwjFsBBBAAAEEEEAAAQQQQAABBBBAAAEE3BAgUHRDnT4RQAABBBBAAAEEEEAAAQQQQAABBBDwqQCBok8Lx7ARQAABBBBAAAEEEEAAAQQQQAABBBBwQ4BA0Q11+kQAAQQQQAABBBBAAAEEEEAAAQQQQMCnAgSKPi0cw0YAAQQQQAABBBBAAAEEEEAAAQQQQMANAQJFN9TpEwEEEEAAAQQQQAABBBBAAAEEEEAAAZ8KECj6tHAMGwEEEEAAAQQQQAABBBBAAAEEEEAAATcECBTdUKdPBBBAAAEEEEAAAQQQQAABBBBAAAEEfCrw/wGNLU3EYde2dgAAAABJRU5ErkJggg==",
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = plot_slice(study, params=[\"qgrams\", \"ratio\"])\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "c0d58d0b-8fc7-4513-9d25-c1bf2976e8ed",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "cliponaxis": false,
+ "hovertemplate": [
+ "similarity_threshold (FloatDistribution): 0.009939652683234677",
+ "ratio (FloatDistribution): 0.028109807402351916",
+ "qgrams (IntDistribution): 0.9619505399144134"
+ ],
+ "marker": {
+ "color": "rgb(66,146,198)"
+ },
+ "orientation": "h",
+ "text": [
+ "<0.01",
+ "0.03",
+ "0.96"
+ ],
+ "textposition": "outside",
+ "type": "bar",
+ "x": [
+ 0.009939652683234677,
+ 0.028109807402351916,
+ 0.9619505399144134
+ ],
+ "y": [
+ "similarity_threshold",
+ "ratio",
+ "qgrams"
+ ]
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "showlegend": false,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "white",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#C8D4E3"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "white",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "radialaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "yaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "zaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "caxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Hyperparameter Importances"
+ },
+ "xaxis": {
+ "autorange": true,
+ "range": [
+ 0,
+ 1.0125795156993824
+ ],
+ "title": {
+ "text": "Importance for Objective Value"
+ },
+ "type": "linear"
+ },
+ "yaxis": {
+ "autorange": true,
+ "range": [
+ -0.5,
+ 2.5
+ ],
+ "title": {
+ "text": "Hyperparameter"
+ },
+ "type": "category"
+ }
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqMAAAFoCAYAAABjWPKCAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3X+sVvWB5/EvKlyo3oIXFpAUf6DTAVotHVeh29FhtN2uWNKGWe9iSLYWwxDciVEJhGvjWqfRSyCoaTcSSqR2MkbmmrXTsNI2KYax3QQ1zvqjq25Gqa2roBEtUIUrUjbf0/k++73fe57z47nP5znnPOfNP61wnu855/U99973Pc855xl36tSpU4Y/CCCAAAIIIIAAAggUIDCOGC1AnVUigAACCCCAAAIIRALEKAcCAggggAACCCCAQGECxGhh9KwYAQQQQAABBBBAgBjlGEAAAQQQQAABBBAoTIAYLYyeFSOAAAIIIIAAAggQoxwDCCCAAAIIIIAAAoUJEKOF0bNiBBBAAAEEEEAAAWKUYwABBBBAAAEEEECgMAFitDB6VowAAggggAACCCBAjHIMIIAAAggggAACCBQmQIwWRs+KEUAAAQQQQAABBIhRjgEEEEAAAQQQQACBwgSI0cLoWTECCCCAAAIIIIAAMcoxgAACCCCAAAIIIFCYADFaGD0rRgABBBBAAAEEECBGOQYQQAABBBBAAAEEChMgRgujZ8UIIIAAAggggAACxCjHAAIIIIAAAggggEBhAsRoYfSsGAEEEEAAAQQQQIAY5RhAAAEEEEAAAQQQKEyAGC2MnhUjgAACCCCAAAIIEKMcAwgggAACCCCAAAKFCRCjhdGzYgQQQAABBBBAAAFilGMAAQQQQAABBBBAoDABYrQwelaMAAIIIIAAAgggQIxyDCCAAAIIIIAAAggUJkCMFkbPihFAAAEEEEAAAQSIUY4BBBBAAAEEEEAAgcIEiNHC6FkxAggggAACCCCAADHKMYAAAggggAACCCBQmAAxWhg9K0YAAQQQQAABBBAgRjkGEEAAAQQQQAABBAoTIEYLo2fFCCCAAAIIIIAAAsQoxwACCCCAAAIIIIBAYQLEaGH0rBgBBBBAAAEEEECAGOUYQAABBBBAAAEEEChMgBgtjJ4VI4AAAggggAACCJQqRh/b/aR54Ic/Nts2rTUXnjdr1Ozcu23IPP3cK2brxlvN2ZN7mb0SC7z2m7fM6vVbzE3f+JpZtuTKjm2pPYbu2LRjxPoeun+DuWzB3I5tQztXlPY10c51MRYCCCCAAAJFCBCjRajXYJ1Fxailff/wUbNmw33m3FnTzV3rVppJEydUVpwYrezUseEIIIAAAhkFiNGMUCyWT4AYzefVbGlitD2OjIIAAgggUF6BysboxJ4ec+fmP74dG579Onb8oxH/dnx4ODpTdvmCueaKhZeYG27Z2JiR76xfGfs2cvh277VXLxqxHj+2Zs+a3hjzxuuXmG8uvybz+txZvBdf3j/iKLHj3La6v/F3WdaXNoZbV//SxdG4/tvZzsFeCvHgI7sTfZzv43v2xS7ntvXA24ea7lPaGPaFfoj9+Ke/bGxX2tvuzc6MtmP/3Tbd/7d/Y/5u6GfGGVw8b07s5SNpx5HdT3f5yX3f/i/mvu8/Go15zoyp5j9+9S/M9x58bNR3D7f/cZck2NeFl7nk3ea4YzI8/p957pURX0dx+x83x+E45f3WyJYhgAACCHRKoLIxaq8ZdT8QwzhxMTQ4sCq6VtD/4epHXtzZO/cD9LdvvTMiLsLrVf3gCsMxz/rssoPffdgM3LyicR2se72NZxekaevLMoa/XX6E+1ET/n14Da/bjiVXLWxsW9L2xl0zmnUMf7vSAtT/gkmLURvtre6/26Yw+uKuZw7/LunYsr8AJIVk3HXUdlvsH/+a3LgzqXHbHP7C5i5lcF9T4S9p3//7XebqKy6NruW2+7X7iadGRG+43rjx446TTn2jYz0IIIAAAuUVKF2MhjefhHT+GRj3A2/m9L4RZxHDCEj6IRgua38YDwxuH3V2KQzXpLeh86yv2aFhf7gP7drbCOJW3vYOx/DPDPoBk+fvrdfBd94bdTY6jJGk7c06RqtvUafFqD0z3Or+N9umcH+b/aIUd2wk3ZiX1yBuLpuNER7rWWIx/EXPHb/ha5vNv/2afXLfc+Yriy8v73dFtgwBBBBAoKMCpYvRvHfThz9o434YJ/2QDV/fLJTC8G01RpuFQfj2uD0K/PDOEqNpY+SJTrv+cPlmr7fLhpHSbHvzjJE3xMIwCm9gGuv+2/GbbVN4jIW/CLhtiztjOJYYbXZJRNoZbrs9YTA3C03/O1Kz/bLL+F877tIYexY6z1ntjn73Y2UIIIAAAqUQqHyMhoER98MyKUb9s0OzZkyLrjX1r4UMZ8m9Jd9qjIZno9w40/omj7gsIM+Z0axjjDXGmoWPb+TCo5lPnjGqFKPhLytJgRn+W6sx6n758MMz75lRe/20m7NmZ3P9+Y37hcf/d/+a0LhrT5tdW1uK74ZsBAIIIIBAIQKVj1F3tsq+pe1uAFl06fzYt2H9azCddtYzo+HstBqjceuLe3ZqnhhtFjPtfps+6axmVp88Y1QpRjt9ZjTPmeekt+n9GB3rmdG072AudrmJKU2Kf0cAAQTqJdAVMerfEBPeWGGnM+0aTv8ayKwB1GqM+m9l2m1r9kSArDHa7EYUP9LdhwSM9cxo0rrCL5tm68ozRta5aLbuTr5NH4Zcu64ZbXYNc9r4/nWxWWM06evkV//n12bSxB7z3vtHorvo0956tx7Hjg+bz/7pBSOmhw+uqNcPGPYWAQQQyCLQFTFqd9S9fRje2Z4Uo+4uY/8Hq4ulf/7Vv8Q+IseOZ29+aSVG49aXdPdz1mtGs44x1hi1++72+88++ycjbmKybpu37jQrln0puuM6KTqzjlGVGG12w1R413nWJzX4X7hpZ0D9s/3+2+KtXDNq1xt3N30YxO5rLQxSu9wvnnohupkwbruz3CCV5ZsWyyCAAAIIdJdA18RoszNIfoyGz+GMe5SOm14Xjv50Z43DuGvl7DjN1heuy4aE/ZPnbvosY7QjRu12xT0/0v590iOuwn/PMkYrMRo3by6a2rH/cePH7Xuz4yjuLeq0s4XhMz3D/XHHtT0+7xlYZW4f3G5aOTPqtjnuut648PSf1xt3fIfbbZdp9lzf7vq2yt4ggAACCOQRKFWM5tlwf9m0t347fUam0+tr1Y3X5RdoJZDzr4VXIIAAAgggUB+BrojRtLuAOx2HnV5ffQ7X4veUGC1+DtgCBBBAAIHuEqh8jKadFbXT1ek47PT6uuuQLPfeEKPlnh+2DgEEEECgegKVj9HqkbPFCCCAAAIIIIAAAk6AGOVYQAABBBBAAAEEEChMgBgtjJ4VI4AAAggggAACCBCjHAMIIIAAAggggAAChQkQo4XRs2IEEEAAAQQQQAABYpRjAAEEEEAAAQQQQKAwAWK0MHpWjAACCCCAAAIIIECMcgwggAACCCCAAAIIFCZAjBZGz4oRQAABBBBAAAEEiFGOAQQQQAABBBBAAIHCBIjRwuhZMQIIIIAAAggggAAxyjGAAAIIIIAAAgggUJgAMVoYPStGAAEEEEAAAQQQIEY5BhBAAAEEEEAAAQQKEyBGC6NnxQgggAACCCCAAALEKMcAAggggAACCCCAQGECxGhh9KwYAQQQQAABBBBAgBjlGEAAAQQQQAABBBAoTIAYLYyeFSOAAAIIIIAAAggQoxwDCCCAAAIIIIAAAoUJEKOF0bNiBBBAAAEEEEAAAWKUYwABBBBAAAEEEECgMAFitDB6VowAAggggAACCCBAjHIMIIAAAggggAACCBQmQIwWRs+KEUAAAQQQQAABBIhRjgEEEEAAAQQQQACBwgSI0cLoWTECCCCAAAIIIIAAMcoxgAACCCCAAAIIIFCYADFaGD0rRgABBBBAAAEEECBGOQYQQAABBBBAAAEEChMgRgujZ8UIIIAAAggggAACxCjHAAIIIIAAAggggEBhAsRoYfSsGAEEEEAAAQQQQIAY5RhAAAEEEEAAAQQQKEyAGC2MnhUjgAACCCCAAAIIEKMcAwgggAACCCCAAAKFCRCjhdGzYgQQQAABBBBAAAFilGMAAQQQQAABBBBAoDABYrQwelaMAAIIIIAAAgggQIxyDCCAAAIIIIAAAggUJkCMFkbPihFAAAEEEEAAAQSIUY4BBBBAAAEEEEAAgcIEiNHC6FkxAggggAACCCCAADHKMYAAAggggAACCCBQmAAxWhg9K0YAAQQQQAABBBAgRjkGEEAAAQQQQAABBAoTIEYLo2fFCCCAAAIIIIAAAsQox0DbBN49PByNNW1yT9vGZKD/L/DxyVPm98dOmClnTYBFJHDoyLDp6+0x48aJVlDzYY9+eMJMGH+66Rl/Ws0lNLs/fOIP5qMTJ03vJ8ZrVlDzUU8ZY947PGym8jOu7UcCMdp20voOSIxq554Y1fra0YlRrTExqvUlRrW+xKjOlxjV2dZuZGJUO+XEqNaXGNX7EqNaY2JU60uM6nyJUZ1t7UYmRrVTToxqfYlRvS8xqjUmRrW+xKjOlxjV2dZuZGJUO+XEqNaXGNX7EqNaY2JU60uM6nyJUZ1t7Ua2MTr+jNPM5DO5eF4x+Sf/cMocGz5pzpp0hmJ4xjTGHPnwhOmdNJ4bmERHw4fDH5vxp59uxp/BHWIK4hMfnzInTp40n+jhe4TClxhVqP5xTGJUZ1u7kW2M7nz+gNn/7ge123d2GAEEEECg3AJ/teAc88U5fS1vJDHaMl3qC4nRVCIWyCpgY/TuPa+aF948kvUlLIcAAggggEBHBNZ/6SLzlXn/puV1EaMt06W+kBhNJWKBrALEaFYplkMAAQQQ6LQAMdpp8ezrI0azW7FkigAxyiGCAAIIIFBWAWK0rDPDNaPlnZkKbhkxWsFJY5MRQACBmggQo+WdaM6MlnduKrdlxGjlpowNRgABBGojQIyWd6qJ0fLOTeW2jBit3JSxwQgggEBtBIjR8k41MVreuanclhGjlZsyNhgBBBCojQAxWt6pJkbLOzeV2zJitHJTxgYjgAACtREgRss71cRoeeemcltGjFZuythgBBBAoDYCxGh5p5oYLe/cVG7LiNHKTRkbjAACCNRGgBgt71QTo+Wdm8ptGTFauSljgxFAAIHaCBCj5Z1qYrS8c1O5LSNGKzdlbDACCCBQGwFitLxTTYyWd24qt2XEaOWmjA1GAAEEaiNAjJZ3qonR8s5N5baMGK3clLHBCCCAQG0EiNHyTjUxWt65qdyWEaOVmzI2GAEEEKiNADFa3qkmRss7N5XbMmK0clPGBiOAAAK1ESBGyzvVxGh556ZyW0aMVm7K2GAEEECgNgLEaHmnmhgt79xUbsuI0cpNGRuMAAII1EaAGC3vVBOj5Z2bym0ZMVq5KWODEUAAgdoIEKPlnWpitLxzU7ktI0YrN2VsMAIIIFAbAT9Gjx3/yNy5eYd5fM++aP+/s36lWbbkyqYW7x8+atZsuM+8+PL+psvfu23IPPjI7ujfb7x+ibltdX9tbMe6o8ToWAWFrw8P/vAL5rHdT5o7Nu1obMHF8+aYrRtvjf7bftF89UtfMA8N/TT6722b1pof//SXjS+Uc2ZMjf7uwvNmGbeeyxfMbfz7tVcvMv+5/yvmlv/638yBtw8Z+993rVtpJk2cEI3nf9G5sSZPmWru3vOqeeHNI0IVhkYAAQQQQCC/gB+j9meY/WOD0f0MXLu631y2YO6ogV24Lrx0vln8xYXmd787ZFav32IGB1Y1lvfHy79lvIIYLekx4A7+mdP7oi8W99+LLp0f/fb2zHOvmIHB7Y2gtP+9ZdvQiBg9d9b0RkDaL7bde/aZFcu+3IjJg++8F/378eHhKF5tjPpfmO717t/dF6pd16O79jbGtv9t/1xwwQXEaEmPJzYLAQQQqLuAi1H783Dgnu1m3U3LoxMy7gSLi9PQyf18fWDjreaUmWCmTu6JTsi45cOfiXV3bmX/idFW1Drwmtd+85b51uB2c/fAquiLJYzR8LewuBht9lue3fyk5cN1hf9tz8gO7dobhe/Zk3sbGrxN34EDg1UggAACCLQk4GI0/PlqB7M/1/Y9+9KIdwDdSuJi1F/+J0/sG/EupX3dQ/dviD3L2tKG1+BFxGhJJ9l+sWx+YKcZvH1VFHxxMXr+7JmNa1yyxKhd5oZbNjb2OHxb38VrWoy63yLdtTHuLfwPhk9xZrSkxxObhQACCNRdwI9R/+drWoy6t/HtO4cXXnBBdGbUj9GtP/xHE/489t+5rLt7lv0nRrMoFbBMu8+MZnlbP0+MOhI/XK/84kJitIBjhVUigAACCKQLtHpm1I4cnsyxf+duUrLvVPoxGp7QSd8yliBGS3oMhAezjVN7wfRN3/ha45pRd42oPXNqvxiefu6VEdeM+m/T+2dO7fL+W+2WwF4zmjVGf7b3aXPRBZ8adfkAMVrSg4nNQgABBBAwrV4z6uhOGWPeOzzcuGb0ioWXRG/F25+nr79xsHH3vPv5fd3SxbxVn/G4axqjcRf4ZhyTxdok4ALU3s1uD3r759//xb9tvDUfPkYivCHJj9HwMRZ/fvnF5vDRD2LjNe1t+vA3RPfbIdeMtmniGQYBBBBAoO0CWe+md2/L9y9dPOJxTy5G/+l/PjXi+lL3s9rdXR+e/Gn7jnThgMRoRSY17bR/+JtZEbtFjBahzjoRQAABBLIIZH3OaFyM+o9SjHuGqH+Sxn90YpbtYhljEt+mt2fe3GlosIoVCGM0fAZp+BzQIraWGC1CnXUigAACCGQR4BOYsigVs0xijNpTzw8/9nOzbs3yxsPOi9lM1loFAWK0CrPENiKAAAL1FCBGyzvviW/T+x99Fe6CeyyQ/5zJ8u4mW9YJAWK0E8qsAwEEEECgFQFitBW1zryGu+k741yLtRCjtZhmdhIBBBCopAAxWt5pI0bLOzeV2zJitHJTxgYjgAACtREgRss71Ykx6j8OyN0dNmvGNHPn5h3GfUZ6eXeNLeu0ADHaaXHWhwACCCCQVYAYzSrV+eVS76a3nypwzVWLzOatO82KZV+KHnRuH2Hw6K69sZ/h2vldYI1lESBGyzITbAcCCCCAQChAjJb3mMj0nFF7NtSP0fBz08u7e2xZJwWI0U5qsy4EEEAAgTwCxGgerc4u21KMcma0s5NUlbURo1WZKbYTAQQQqJ8AMVreOU98m95+4sC+Z18yAzevMN/b8aPobfq+Kb3R55iHH5NV3l1kyzolQIx2Spr1IIAAAgjkFSBG84p1bvnUu+nDzyG3m/bQ/RvMZQvmdm4rWVMlBIjRSkwTG4kAAgjUUoAYLe+0p8ZoeTedLSubADFathlhexBAAAEEnAAxWt5jIdM1o/YOev8P14yWd0KL3DJitEh91o0AAgggkCRAjJb3+GgpRrmbvrwTWuSWEaNF6rNuBBBAAAFitJrHQEsx6m5sumvdSjNp4oRq7jlb3XYBYrTtpAyIAAIIINAmAc6MtglSMMyoGLVnPVev32IOvH2o6ercpzGFb98Lto8hKyRAjFZosthUBBBAoGYCxGh5J7ylM6Pl3R22rEgBYrRIfdaNAAIIIJAkQIyW9/jgbvryzk3ltowYrdyUscEIIIBAbQSI0fJONTFa3rmp3JbZGN35/AGz/90PKrftbDACCCCAQHcLLFtwjvnzOX0t7+QpY8x7h4fN1Mk9LY/BC+MFEmP02PGPzJ2bd5jH9+wz7jpR+zn19u8WXTrfLFtyJa4INARsjI4/4zQz+czxqAgETv7hlDk2fNKcNekMwegMaQWOfHjC9E4ab8aNw0Mh8OHwx2b86aeb8WcArPA98fEpc+LkSfOJHr5HKHyJUYXqH8dMjNF7tw2Z82fPNNdctchs3roz+jhQe9MSzxnVTUiVR7Yxav9M47dGyTR+fPKU+f2xE2bKWTzBQgJsjDl0ZNj09fYQoyLgox+eMBPGn256xp8mWkO9hx0+8Qfz0YmTpvcTnBBQHAnEqEI1JUbfP3zUDNyz3ay7abmxZ0P9GOU5o7oJqfLIxKh29ohRra8dnRjVGhOjWl9iVOtLjOp8M91NH8YoZ0Z1E1LlkYlR7ewRo1pfYlTvS4xqjYlRrS8xqvNNfJvePdx+4OYV5ns7fhS9Td83pdes2XCf6V+6mGtGdfNSyZGJUe20EaNaX2JU70uMao2JUa0vMarzTb2b3p4FveGWjSO24KH7N5jLFszVbRUjV1KAGNVOGzGq9SVG9b7EqNaYGNX6EqM639QY1a2akbtNgBjVzigxqvUlRvW+xKjWmBjV+hKjOl9iVGdbu5GJUe2UE6NaX2JU70uMao2JUa0vMarzTYzRpM+pv3jeHLN1463m7Mm9uq1j5EoJEKPa6SJGtb7EqN6XGNUaE6NaX2JU59s0Rt0D73m4vQ6/20YmRrUzSoxqfYlRvS8xqjUmRrW+xKjON9OjneyD7vmDQJoAMZomNLZ/J0bH5pfl1TxnNItS68sQo63bZXklMZpFqfVliNHW7dJemXpm9Lqli7lzPk2Rf48E+DhQ7YFAjGp9OTOq9yVGtcbEqNaXGNX5ZnrO6F3rVppJE/kIQt00dMfINkZ3Pn/A7H/3g0w7NOH0cWblF841n55+Vqbl674QMao/AjgzqjUmRrW+xKjWlxjV+XIDk862diPbGL17z6vmhTePZNr3iWecZjZ/fb6Zfw43wWUBI0azKI1tGWJ0bH5pryZG04TG9u/E6Nj80l5NjKYJtf7vqW/TcwNT67h1eyUxqp1xYlTra0cnRrXGxKjWlxjV+hKjOl9uYNLZ1m5kYlQ75cSo1pcY1fsSo1pjYlTrS4zqfFPPjHIDkw6/20YmRrUzSoxqfYlRvS8xqjUmRrW+xKjOlxuYdLa1G5kY1U45Mar1JUb1vsSo1pgY1foSozrfxLfp12y4z7z48v7YtfMJTLpJqerIxKh25ohRrS8xqvclRrXGxKjWlxjV+fLZ9Drb2o1MjGqnnBjV+hKjel9iVGtMjGp9iVGdLzGqs63dyMSodsqJUa0vMar3JUa1xsSo1pcY1fkSozrb2o1MjGqnnBjV+hKjel9iVGtMjGp9iVGdLw+919nWbmRiVDvlxKjWlxjV+xKjWmNiVOtLjOp8Ux/tZB96/7nPXGQefuznZt2a5dHHgt67bchcsfASPrNeNy+VHJkY1U4bMar1JUb1vsSo1pgY1foSozrfTA+9t6vf/MBOM3j7KnP25F7zzHOvmEd37TV8Zr1uYqo4MjGqnTViVOtLjOp9iVGtMTGq9SVGdb6ZYrRvSq8Z/O7DZuDmFVGMvvabt0bEqW7zGLlKAsSodraIUa0vMar3JUa1xsSo1pcY1flmept+2ZIro7fmz58909j//9juJ82+Z1/izKhuXio5MjGqnTZiVOtLjOp9iVGtMTGq9SVGdb6Z76Z///BR4x6Cf86MqWbbprXmwvNm6baMkSsnQIxqp4wY1foSo3pfYlRrTIxqfYlRnW/mGNVtAiN3iwAxqp1JYlTrS4zqfYlRrTExqvUlRnW+ma4Z5QyobgK6aWRiVDubxKjWlxjV+xKjWmNiVOtLjOp8iVGdbdeMbK8Xtn9uW92fuE/EqHbKiVGtLzGq9yVGtcbEqNaXGNX5Jr5Nz/NEdfBlHdk+KeFbg9vN3QOrGtcEE6PlmC1iVD8Ph44Mm77eHjNunH5ddVwDMaqddWJU60uM6nxTP4HJf9i9bjMYuSwCcTGaddvGembUv0nOrvOh+zckfrBC0vJ2P1av32IOvH0o2vxrr15U+ac/EKNZj8TWlyNGW7fL8kpiNItS68sQo63bZXklMZpFqbVlEt+md3fPxw198bw5ZuvGW6PnjvKnvALuMVxnnfUJ8w8/fsLceP0S883l1zSejOCHmv3/d27eYR7fs6+xQzYIf/HUC9F/u7fp/dDzn6wwlhg9dvyjaN32E7/s48PSojhtebvfs2dNb8Rs1rO75Z1JY4hR/ewQo1pjYlTrS4xqfYlRnS930+tsSzGyjbI7Nu0YcZbRfoKW/XPZgrnGnV3sX7q4aQT6IeeWX7u6P3q9HWtgcHv0qK/JU6aau/e8al5480imfZ94xmlm89fnm/nnjP4ghTA2wwHDD15IW74bno1LjGY6rMa0EDE6Jr7UFxOjqURjWoAYHRNf6ouJ0VSilhcgRlumq8YLs0SYH5tp14za+NyybahxVtyPwCu/uLDlGA3HtbpJZzPzLO+2ceb0vtSbsMo8q8SofnaIUa0xMar1JUa1vsSozjf1mlH/ujt/M3ibXjcp7Ry5WYza0Hvwkd2NVdm37+3b8Fli9NFde0dcf+k+nWusMRo3rt3AuLv4bYxmWd7tJ9eMtvOo6t6xiFHt3BKjWl9iVOtLjOp8M30c6Oc+c5Hxb2TiLnvdhLR75LgYtfN38J33GkHZ7WdGrWmWM8Tttm/3eJwZbbfo6PGIUa0xMar1JUa1vsSozjfTc0bt6jc/sNMM3r4qumEp7qyUbhMZeSwCzWLUnXEM38IOrwm1y8VdM+quMa3KNaPhNaZjMS3qtcSoXp4Y1RoTo1pfYlTrS4zqfDPFaN+UXjP43YfNwM0rohjthh/sOtJyjRwXo+Hd8NPO/qS5/PPzGm+Hu5ue7J6U5W56t82DA6uiG6fS7qb//t/vMldfcemIZ6X6Z4PLNUvZtoYYzeY0lqWI0bHopb+WGE03GssSxOhY9NJfS4ymG7W6RKa36e2jdtx1gfb/d8Nbnq2C8brmAmN5tJMdNctzQ12Mpi1vz9jecMvGxsZyzShHbhYBYjSLUuvLEKOt22V5JTGaRan1ZYjR1u3SXpn5bno/FPxnS6atgH+vj8BYY7Q+Uq3tKWdGW3PL8ypiNI9W/mWJ0fxmeV5BjObRyr8sMZrfLOsrMsdo1gFZrr4CxKh27olRra8dnRjVGhOjWl9iVOtLjOp8iVGdbe1GJka1U06Man2JUb0vMao1Jka1vsSozjc1Rv2bWexm8Ba9bjKqPjIxqp1BYlTrS4zqfYlRrTExqvUlRnW+iTFqQ3Ro194Rn0Ef3tWs2zRGrpoAMaqdMWLsJ+/1AAAeBklEQVRU60uM6n2JUa0xMar1JUZ1vomPdlqz4T7jPoPc3wSeM6qbkCqPTIxqZ48Y1foSo3pfYlRrTIxqfYlRnW+m54xeeN6sEVvAc0Z1E1LlkYlR7ewRo1pfYlTvS4xqjYlRrS8xqvNNfc7odUsXRw8Z9/8Qo7oJqfLIxKh29ohRrS8xqvclRrXGxKjWlxjV+SZeM9rs7Xh7LenrbxxsfGKPbvMYuUoCxKh2tohRrS8xqvclRrXGxKjWlxjV+aZeM/riy/tT137xvDkjbnJKfQELdKUAMaqdVmJU60uM6n2JUa0xMar1JUZ1vqmPdtKtmpG7TYAY1c4oMar1JUb1vsSo1pgY1foSozrflm5g0m0OI1dZgBjVzh4xqvUlRvW+xKjWmBjV+hKjOl9iVGdbu5GJUe2UE6NaX2JU70uMao2JUa0vMarzTXyb/t5tQ+aKhZeMuptetzmMXGUBYlQ7e8So1pcY1fsSo1pjYlTrS4zqfBNj1D7C6eHHfm7WrVluJk2coNsKRu4KAWJUO43EqNaXGNX7EqNaY2JU60uM6nxbvpueO+h1k1LVkYlR7cwRo1pfYlTvS4xqjYlRrS8xqvPlbnqdbe1GJka1U06Man2JUb0vMao1Jka1vsSozpcY1dnWbmRiVDvlxKjWlxjV+xKjWmNiVOtLjOp8E2P02PGPzJ2bd5jH9+wz58yYarZtWmtmzZgW/d2iS+ebZUuu1G0ZI1dOwMbozucPmP3vfpBp2yecfppZ+YXZ5tPTz8q0fN0XIkb1R8ChI8Omr7fHjBunX1cd10CMamedGNX6EqM639S76c+fPdNcc9Uis3nrTrNi2ZfMhefNMs0+JlS3mYxcBQEbo+PPOM1MPnN8FTa3cttIjOqnjBjVGhOjWl9iVOtLjOp8Mz1n1J4N9WPU3mW/+YGdZvD2Vebsyb26rWPkSgnYGLV/pk3uqdR2V2VjiVH9TBGjWmNiVOtLjGp9iVGdb0sxyplR3YRUeWRiVDt7xKjW145OjGqNiVGtLzGq9SVGdb6Jb9M/tvtJs+/Zl8zAzSvM93b8KHqbvm9Kr1mz4T7Tv3Qx14zq5qWSIxOj2mkjRrW+xKjelxjVGhOjWl9iVOebeje9PQt6wy0bR2zBQ/dv4FOZdHNS2ZGJUe3UEaNaX2JU70uMao2JUa0vMarzTY1R3aoZudsEiFHtjBKjWl9iVO9LjGqNiVGtLzGq8yVGdba1G5kY1U45Mar1JUb1vsSo1pgY1foSozrf1Bi1143esWlHYwvc80btI574g4AvQIxqjwdiVOtLjOp9iVGtMTGq9SVGdb6pNzAN7dprtm68tfEIJ/tYp9Xrt5jBgVVcN6qbl0qOTIxqp40Y1foSo3pfYlRrTIxqfYlRnW/io53sXfNrV/ePik4e7aSbkCqPTIxqZ48Y1foSo3pfYlRrTIxqfYlRnW+m54yGb8nz0HvdhFR5ZGJUO3vEqNaXGNX7EqNaY2JU60uM6nybxqj7XPrrli4edWaUGNVNSJVH5uNAtbNHjGp9iVG9LzGqNSZGtb7EqM438ZrRZm/H25uaXn/joLltdb9uyxi5cgI2Rnc+f8Dsf/eDaNsnnnGauWHRuebT08+s3L6UcYOJUf2s8AlMWmNiVOtLjGp9iVGdb+o1oy++vD917RfPmzPiJqfUF7BAVwrYGL17z6vmhTePRPt35oTTzcavzTPzZ/Z25f52eqeIUb04Mao1Jka1vsSo1pcY1fmmPtpJt2pG7jYBYlQ7o8So1teOToxqjYlRrS8xqvUlRnW+xKjOtnYjE6PaKSdGtb7EqN6XGNUaE6NaX2JU55v6Nn3/0sVm2ZIrdVvAyF0jQIxqp5IY1foSo3pfYlRrTIxqfYlRnW/qDUw33LKxsfYbr1/CTUu6uaj8yMSodgqJUa0vMar3JUa1xsSo1pcY1flmfpv+/cNHjX0IvruhiTDVTUpVRyZGtTNHjGp9iVG9LzGqNSZGtb7EqM43c4y6jwE98PahUVtDmOomqEojE6Pa2SJGtb7EqN6XGNUaE6NaX2JU55v62fR3bNqR+Da9PWM6+N2HzcDNKxqfX6/bXEYuswAxqp0dYlTrS4zqfYlRrTExqvUlRnW+3MCks63dyMSodsqJUa0vMar3JUa1xsSo1pcY1flmfptetwmM3C0CxKh2JolRrS8xqvclRrXGxKjWlxjV+RKjOtvajUyMaqecGNX6EqN6X2JUa0yMan2JUZ3vqBgN75pvtmo+AlQ3KVUdmRjVzhwxqvUlRvW+xKjWmBjV+hKjOt/UM6M2Tgfu2W7W3bTcXHjeLN2WMHLlBYhR7RQSo1pfYlTvS4xqjYlRrS8xqvMlRnW2tRuZGNVOOTGq9SVG9b7EqNaYGNX6EqM6X2JUZ1u7kYlR7ZQTo1pfYlTvS4xqjYlRrS8xqvMlRnW2tRuZGNVOOTGq9SVG9b7EqNaYGNX6EqM6X2JUZ1u7kYlR7ZQTo1pfYlTvS4xqjYlRrS8xqvMtTYzajxv91uB2c/fAqtw3SvmvnTVjmrlz8w6z6NL5ZtmSK3PLPfPcK2bLtiGzdeOtHflEqXu3DUXbeNvq/tzbmucFra7n2PGPEj19r5Nmgrl7z6vmhTePRJt25oTTzcavzTPzZ/bm2VSWbSJAjOoPjUNHhk1fb48ZN06/rjqugRjVzjoxqvUlRnW+xGhg68eV/ac1G+4za1f3m8sWzB3zLDy2+0mz79mXzF3rVppJEydE47UaiXk3ptX1EKN5pXXLE6M6WzcyMao1Jka1vsSo1pcY1fl23XNG0+IpD6V75iox2vxMczvPjLq5e3zPvmiavrN+ZeLZ7SzLd9OjyYjRPF+9rS1LjLbmlvVVxGhWqdaWI0Zbc8v6KmI0q1T+5VLPjOYfMv0V9izdg4/sjhY8Z8ZUs23T2uj/+2/T22UOvvOe+e1b75gXX94fLXf/3/6N+buhnxkbK+519tmnSW/Thw/xv/bqRY0zk+51X/3yvzOD33vY2Af5//WKr5rvP/w/orfpf7DzJ43tdHH0+hsHo211b6tnjV+7rtXrt5gDbx+KXu8+NMCu4/cfHje///2HTffL3z67XRN7eqK3zuOizZ59vWPTjsYkPHT/huisrvVsth67cOjkXhe3f+E63L6M9W16/+xtll8Ekpb3Q9U/VtKPzvIuQYzq54YY1RoTo1pfYlTrS4zqfDseo/ZM2qO79jaC0P63/dN39idHxejTz73SuHbThsfuJ56KwtUGqB8iSTHqxrdB5gKnf+ni6IybC8QlVy1sxGXa2/T2NZsf2GkGb18VXVOa5xrTZm/T+/vlL/PW2+9GAetvn4usmdP7om32z/xZR3/b7La++uv/a76y+PLIq9l67Ov862ydy+DAKvPZuXNG/Jvd34HB7Y15aPXMqH3dDbdsNDdev2TUfrgPV0i6tCDujGfc8pwZ1X3z6MaRiVHtrBKjWl9iVOtLjOp8Ox6jNraGdu0ddYNQeANTGBZhyIXR5s6qpt3A1CxiXQClxaidCjvG+bNnRkHr//+0acpyzagf6zZGw5u64m70ctswe9b0EaHob0/ombYet/yab3x9RIzGjeNu+MpyZtSF7p999k9GXDsbt19xXm6fsi5PjKYdlfy7L0CMao8HYlTrS4xqfYlRnW/HY9TFnHub3r1tHoZXO2PUvyzArt+djYsLmiwx6kLu1r++ztx17w8zf1Rqu2LUf7vfHRru+kr/LXT39rk9g5sWo/4ZVTumHcdekhAXoy7E7XJZz4y6s9Lnzpo+IkL9uIzbhvCGr7zLE6O6bx7dODIxqp1VYlTrS4xqfYlRnW8hMep2x78e8XOfuWjU2/R2OXdtZqtnRt21p+4O9nacGXXbffjoB+ZPL5yd+bFM7YrRMNqaHR7+vqbFaHgGtp1nRnuGj464fCBue7Oe6eTM6Akz5aw/PomBP+0XIEbbb+qPSIxqfYlRrS8xqvPteIz+bO/T5qILPhVd99mpGHVRG15vmXZm1N0oFPfMUncG0t3ok2WK4q4vzRuJ4T7Y9bprQ/umfDLaDPcYqqwxal9jrxl116GmXTPqP4fVrsNd25v0Nn3amdGs14A656zLc2Y0y5HJMk6AGNUeC8So1pcY1foSozrfjseou3HF7VKzt8zb9Ta9fxe7vat62tmfNJd/fl50NjMtRt0NSvZGG/vHf9RQeCNWliny7/D276Z3sWz/N+1aTrtM+Egj/4kE/lv4/pMDkqLXPvM0z930/mUPdv6yxKjzaXbNqP33tLvpk85yN7v7nhjNcmSyDDHamWOAGNU6E6NaX2JU59vxGNXtSmdHtmF0xcJL2vIw/M5uuW5teT4ONLybPi6yw+eMhjGa9JzR8N/s+H6c6xR0I/NoJ50tMaq3tWsgRrXOxKjWlxjV+RKjLdiGj3eyQ4TPEQ2HTXuAewubUbqX5InR0m18BTaIGNVPEm/Ta42JUa0vMar1JUZ1vsSozrZ2IxOj2iknRrW+dnRiVGtMjGp9iVGtLzGq8yVGdba1G5kY1U45Mar1JUb1vsSo1pgY1foSozpfYlRnW7uRiVHtlBOjWl9iVO9LjGqNiVGtLzGq8yVGdba1G5kY1U45Mar1JUb1vsSo1pgY1foSozpfYlRnW7uRiVHtlBOjWl9iVO9LjGqNiVGtLzGq8yVGdba1G5kY1U45Mar1JUb1vsSo1pgY1foSozpfYlRnW7uRiVHtlBOjWl9iVO9LjGqNiVGtLzGq8yVGdba1G5kY1U45Mar1JUb1vsSo1pgY1foSozpfYlRnW7uRiVHtlBOjWl9iVO9LjGqNiVGtLzGq8yVGdba1G5kY1U45Mar1JUb1vsSo1pgY1foSozpfYlRnW7uRiVHtlBOjWl9iVO9LjGqNiVGtLzGq8yVGdba1G5kY1U45Mar1JUb1vsSo1pgY1foSozpfYlRnW7uRiVHtlBOjWl9iVO9LjGqNiVGtLzGq8yVGdba1G5kY1U45Mar1JUb1vsSo1pgY1foSozpfYlRnW7uRiVHtlBOjWl9iVO9LjGqNiVGtLzGq8yVGdba1G5kY1U45Mar1JUb1vsSo1pgY1foSozpfYlRnW7uRiVHtlBOjWl9iVO9LjGqNiVGtLzGq8yVGdba1G9nG6M7nD5j9734Q7fvE8aebGxZ+ynx6+lm1s1DsMDGqUB055qEjw6avt8eMG6dfVx3XQIxqZ50Y1foSozpfYlRnW7uRbYyOP+M0M/nM8bXb907sMDGqVyZGtcbEqNaXGNX6EqM6X2JUZ1u7kW2M2j/TJvfUbt87scPEqF6ZGNUaE6NaX2JU60uM6nyJUZ1t7UYmRrVTToxqfe3oxKjWmBjV+hKjWl9iVOdLjOpsazcyMaqdcmJU60uM6n2JUa0xMar1JUZ1vsSozrZ2IxOj2iknRrW+xKjelxjVGhOjWl9iVOdLjOpsazcyMaqdcmJU60uM6n2JUa0xMar1JUZ1vsSozpaREUAAAQQQQAABBFIEiFEOEQQQQAABBBBAAIHCBIjRwuhZMQIIIIAAAggggAAxyjGAAAIIIIAAAgggUJgAMVoYfXet+LHdT5o7Nu2IduraqxeZu9atNJMmTuiunezA3jzz3Cvmhls2Rmu6eN4cs3Xjrebsyb2xa37tN2+Z1eu3mANvH8q0fAc2v/SreP/wUbNmw33mxZf3R9v60P0bzGUL5qZu97HjH5k7N//x+ObYbs7lnB7fsy9a6DvrV5plS65M9PWP43NmTDXbNq01F543K3VO6rpA3u+1924bMg8+spvvEW06YKzn+bNnph7XbVpdbYYhRmsz1bodtQG1ZdtQI5zsF6v9c9vqft1Ku3Bk+0P5W4Pbzd0Dq6IfxvaHzr5nX2oaP9b9jbfeaXxTtO4H33mPWGpybLhQWnTp/Mgs9G52SPmBxS9ayV94/te+C/+1q/ubBn/WOejCL/eWdinv99rwe0ja95SWNqomL/J/CcjyS1ZNWNq2m8Ro2yjrO1D4m2L4DbO+Mvn23H6ze/2Ng42Iz/uDGvdkb+u5+YGdZvD2VdHZ5jBOm73aHd/235N+Ocg32923tI3PgXu2m3U3LW+c2Uz6xdT5X7d0caaz090nln+P8n6vDf35HpHfPHwFZ0bHbhg3AjGqca3NqHE/0PNGVG2wUnY0/MGR5cySPyRnPZKB434Qp53F9/8d3/TY98/s26WTzMJLJuzynHlubtzK91p3CcSSqxZGv+QSUmP/aYPh2A2JUY1hrUeNO7tBjLZ2SITf5PLEKObp5jZGH921d8RlDEkxGp6pJkbTY9Q/85wWo83OVM+c3sclPjHUrXyvda85fPQD88unX0y9Dj39q4gliFHNMcCZUY1rbUZt5bf12uDk3NFWz4y6sx+DA6t4uzPBPO+ZUf/GD39Yzt7FI8f9QpQU8GGM2lF5G7m9Z0bDcLLzMbRrb+KNkTm/bdVucWJUM+XEqMa1VqPmvY6pVjg5draVa0YJ0ezArV4z6tbAmdFk67zXjMYtH3f2OvsMd/+Seb7XtnImtfsFx76HxOjYDeNGIEY1rrUaNe8dnrXCybGzaXfTh2c1eGs+B64xo25YCv3cZRH9SxfHPraFGE33TrubPnzig//fdnT7+Cz3tIP0tdVvibTvteH3iNCbM6NjP2aI0bEbEqMaQ0b91xsVeM7o2A+FpOeMhj9I/EeN+GvO+uzMsW9t9UZIes4oMTr2+Ux7zmgYR+HyN16/hOtFU6Yh6Tmj4feI0Dft2cVjPwK6d4Tw+y3PxG3vXHNmtL2ejIYAAggggAACCCCQQ4AYzYHFoggggAACCCCAAALtFSBG2+vJaAgggAACCCCAAAI5BIjRHFgsigACCCCAAAIIINBeAWK0vZ6MhgACCCCAAAIIIJBDgBjNgcWiCCCAAAIIIIAAAu0VIEbb68loCCCAAAIIIIAAAjkEiNEcWCyKAAIIIIAAAggg0F4BYrS9noyGAAIIIIAAAgggkEOAGM2BxaIIIIAAAggggAAC7RUgRtvryWgIIIAAAggggAACOQSI0RxYLIoAAggggAACCCDQXgFitL2ejIYAAggggAACCCCQQ4AYzYHFoggggAACCCCAAALtFSBG2+vJaAgggAACCCCAAAI5BIjRHFgsigACCCCAAAIIINBeAWK0vZ6MhgACCCCAAAIIIJBDgBjNgcWiCCCAAAIIIIAAAu0VIEbb68loCCCAQKLA+4ePmjUb7jMvvrzfnDNjqtm2aa258LxZHVc7dvwjc+fmHWbRpfPNsiVXdnz9VV3hY7ufNPuefcnctW6lmTRxQlV3g+1GoFQCxGippoONQaAcAq/95i2zev0Wc+DtQ9EGXXv1otL+8K1aHNy7bSgyvW11v2yyXWg+vmdfYx3hHGaNURfP/UsXtyVa4+ar3euIg7XuB995L/Y4tsf7twa3m7sHVqX+YlC14012kDEwAm0UIEbbiMlQCHSTQCcCoR1eVYoDF4DXLV1sLlswtx27P2oM94vEkqsWjgheG2O7n3iqcSY2a4y2eyOLmq9nnnvFDAxujz0TnWeb8izbbjvGQ6BbBYjRbp1Z9guBMQrExaj9gb5l25D55n/6D+a2bz8QrcG91fz8/37V3LFpR/R3F8+bY7ZuvNWcPbk3+m/3A/yrX/5C9BZ13DL272wwPfjI7hHjurew3brXru6PosKetV25/BqzY+dPRuzpd9avjM7g2XW67fG3040Xt01xb5uHZ4n9ffPfcrfrSDqDHHe28sbrl0TBGK7D/b0d04/G1984GPmEvj5AszOAbpyZ0/uidbr/vmT+heaFl14z7iyqv27f8KH7NzQCOst+h/523CsWXmJuuGXjqPn6yy9+Pjou7Nx+du6c2MsH4s5eJh0v4eHfLL7D4zzrcePepo+LU3eshl8D/vHoe47xS5WXI1B5AWK08lPIDiCgEWgWozYm/GBxQRD+nd0q91a0+wEfLuO/bRpGVHgmy/63XXcYfM3OVNm/nz1reiOg7H8P7drbiOQs2+QicXBgVWOcn+192lx0wadM35TeRkC5s5xJbwVbD2dqo8u9JlxHs2i0sZgWMHHj+0eHH0kTe3qi6PvnX/1L42xh3JyHY8atI9zv0Nru039//J/MX137F+YnT+wbdc1lOGbcnIZ/F17ukHTm0xk0C0f/jGmW48a/ZjRLjIbLxB1Xmq9iRkWgGgLEaDXmia1EoOMCSWdG/TM+cWeBwr+L+4Htn+mKC7vwTFbcevyzrmk3lNj9Gbhnu1l30/LousAsEZF0fad9vT1T6V/7mXbtYVzIpW2Hi8YsNxqlRY4fbLNmTIs9AxluT1woJu133Fz6B2/SNaMu0psFuru8wf775gd2msHbVzXOvme57CDOJ+0a3rTjJm3+7L77x52zSFtvx7/gWSECBQoQowXis2oEyiygjlE/cvrO/uSouHCh6cKnlRj138Z11u7sYlpEuAhsdn1n3Nh2HUl3yDc7q3j+7Jkjbg7yA6hZNMYdO+2I0dA53Oa0/bbbFYZi3hi1y/uxFm6TO0seZ+Au04j7t/Csc7MzyXmOm7Tj6L3fHR1xM6C/Xf47BWX+XsC2IaAWIEbVwoyPQEUFqhyjbtvPnTW9cfd0lreC497GTopRO7V57opXx2grb9OHZ1yzxGjSfsedtWwlRv3t+MG/XhfsrJv9YpLlS81/7au/fjO6Btqd6W/luMkSo1nv1M+y/SyDQDcKEKPdOKvsEwJtEFDHaLveprdx8eiuvSMe2RMXRHlj1N58lfY2fd7nTarfpndnFOMeYdTsWtQwRrO8TZ+031mCOJyvuNe4v7M3y/3gH34a3dzkX2fbauD56/rFUy9EXykucls5btJi1I7vbs5SPUGhDV/uDIFAoQLEaKH8rByB8gooYzQMo7iIiruByT+L5eTiblxpdm2gvRM969v0Nkbd28H+jUPuBia7fvssVv8RSna/tv7wH803l1/TuJbRn+Gx3MCU5ZpRu66kRzs9/dwrjbOAcddYxrmF2xw3frjfNuLDdbkbmH71yv5Rj1hqFrDuJrNmz0j97VvvjHpqg3/TWrOvrmj7/tfL0T/7zxZt5bgJjz+3L3Zsd8Y1fKyW/Tf7ujfeeqctz24t73cRtgyBbALEaDYnlkKgVgLNHnpvQyIMwqw3MPmPtbGYcdfLZXm0k3/zlJsU/3XumsHwusJ7v33TiDNsaWe03GOpwnGSHu3UbL/cdjaLrqyPdsr6SUl5HnrvPxjfbmd4x37SWUv7KVLuTzif4XWXcU9gsK+18+U/2sk/e+hcbvrG12KjLVxH0iOv/C/gZk9mcJHoP34qy3HjPw7KboM7m5v0aKciP32rVt/M2NlKCBCjlZgmNhKBags0e/xStfeqHluf9rZ7PRTYSwQQUAoQo0pdxkYAgUiAGK3ugZD2uKrq7hlbjgACZREgRssyE2wHAl0sQIxWb3LjLn2o3l6wxQggUAUBYrQKs8Q2IoAAAggggAACXSpAjHbpxLJbCCCAAAIIIIBAFQSI0SrMEtuIAAIIIIAAAgh0qQAx2qUTy24hgAACCCCAAAJVECBGqzBLbCMCCCCAAAIIINClAsRol04su4UAAggggAACCFRBgBitwiyxjQgggAACCCCAQJcKEKNdOrHsFgIIIIAAAgggUAUBYrQKs8Q2IoAAAggggAACXSpAjHbpxLJbCCCAAAIIIIBAFQSI0SrMEtuIAAIIIIAAAgh0qQAx2qUTy24hgAACCCCAAAJVECBGqzBLbCMCCCCAAAIIINClAsRol04su4UAAggggAACCFRBgBitwiyxjQgggAACCCCAQJcKEKNdOrHsFgIIIIAAAgggUAUBYrQKs8Q2IoAAAggggAACXSpAjHbpxLJbCCCAAAIIIIBAFQSI0SrMEtuIAAIIIIAAAgh0qQAx2qUTy24hgAACCCCAAAJVECBGqzBLbCMCCCCAAAIIINClAsRol04su4UAAggggAACCFRBgBitwiyxjQgggAACCCCAQJcKEKNdOrHsFgIIIIAAAgggUAUBYrQKs8Q2IoAAAggggAACXSpAjHbpxLJbCCCAAAIIIIBAFQSI0SrMEtuIAAIIIIAAAgh0qQAx2qUTy24hgAACCCCAAAJVECBGqzBLbCMCCCCAAAIIINClAsRol04su4UAAggggAACCFRBgBitwiyxjQgggAACCCCAQJcKEKNdOrHsFgIIIIAAAgggUAUBYrQKs8Q2IoAAAggggAACXSpAjHbpxLJbCCCAAAIIIIBAFQSI0SrMEtuIAAIIIIAAAgh0qcD/A9K7fxE8FaxMAAAAAElFTkSuQmCC",
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = plot_param_importances(study)\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "18eaa19d-a495-4cdb-8f0e-b0bb4c59fb98",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "mode": "lines",
+ "name": "Test",
+ "type": "scatter",
+ "x": [
+ 0.18531875170393172,
+ 0.1899949599780256,
+ 0.19467116825211944,
+ 0.19934737652621332,
+ 0.2040235848003072,
+ 0.20869979307440104,
+ 0.2133760013484949,
+ 0.21805220962258876,
+ 0.22272841789668263,
+ 0.2274046261707765,
+ 0.23208083444487035,
+ 0.23675704271896422,
+ 0.24143325099305807,
+ 0.24610945926715194,
+ 0.2507856675412458,
+ 0.2554618758153397,
+ 0.2601380840894335,
+ 0.2648142923635274,
+ 0.26949050063762126,
+ 0.27416670891171513,
+ 0.278842917185809,
+ 0.2835191254599029,
+ 0.28819533373399675,
+ 0.29287154200809057,
+ 0.29754775028218444,
+ 0.3022239585562783,
+ 0.30690016683037213,
+ 0.311576375104466,
+ 0.3162525833785599,
+ 0.32092879165265376,
+ 0.32560499992674763,
+ 0.3302812082008415,
+ 0.3349574164749354,
+ 0.33963362474902925,
+ 0.34430983302312307,
+ 0.34898604129721694,
+ 0.35366224957131076,
+ 0.35833845784540463,
+ 0.3630146661194985,
+ 0.3676908743935924,
+ 0.37236708266768626,
+ 0.37704329094178013,
+ 0.381719499215874,
+ 0.3863957074899679,
+ 0.39107191576406175,
+ 0.39574812403815557,
+ 0.40042433231224944,
+ 0.40510054058634326,
+ 0.40977674886043713,
+ 0.414452957134531,
+ 0.4191291654086249,
+ 0.42380537368271876,
+ 0.42848158195681263,
+ 0.4331577902309065,
+ 0.4378339985050004,
+ 0.44251020677909425,
+ 0.4471864150531881,
+ 0.4518626233272819,
+ 0.45653883160137576,
+ 0.46121503987546963,
+ 0.4658912481495635,
+ 0.4705674564236574,
+ 0.47524366469775126,
+ 0.47991987297184513,
+ 0.484596081245939,
+ 0.4892722895200329,
+ 0.49394849779412675,
+ 0.4986247060682205,
+ 0.5033009143423144,
+ 0.5079771226164083,
+ 0.5126533308905021,
+ 0.517329539164596,
+ 0.5220057474386899,
+ 0.5266819557127838,
+ 0.5313581639868776,
+ 0.5360343722609715,
+ 0.5407105805350654,
+ 0.5453867888091593,
+ 0.550062997083253,
+ 0.5547392053573469,
+ 0.5594154136314408,
+ 0.5640916219055346,
+ 0.5687678301796285,
+ 0.5734440384537224,
+ 0.5781202467278163,
+ 0.5827964550019101,
+ 0.587472663276004,
+ 0.5921488715500979,
+ 0.5968250798241918,
+ 0.6015012880982855,
+ 0.6061774963723794,
+ 0.6108537046464733,
+ 0.6155299129205671,
+ 0.620206121194661,
+ 0.6248823294687549,
+ 0.6295585377428488,
+ 0.6342347460169426,
+ 0.6389109542910365,
+ 0.6435871625651304,
+ 0.6482633708392243
+ ],
+ "y": [
+ 0.03333333333333333,
+ 0.06666666666666667,
+ 0.13333333333333333,
+ 0.13333333333333333,
+ 0.16666666666666666,
+ 0.16666666666666666,
+ 0.23333333333333334,
+ 0.23333333333333334,
+ 0.26666666666666666,
+ 0.26666666666666666,
+ 0.26666666666666666,
+ 0.26666666666666666,
+ 0.3,
+ 0.3,
+ 0.3,
+ 0.3,
+ 0.3,
+ 0.3,
+ 0.3,
+ 0.3,
+ 0.3,
+ 0.3333333333333333,
+ 0.3333333333333333,
+ 0.3333333333333333,
+ 0.3333333333333333,
+ 0.3333333333333333,
+ 0.36666666666666664,
+ 0.36666666666666664,
+ 0.36666666666666664,
+ 0.36666666666666664,
+ 0.36666666666666664,
+ 0.43333333333333335,
+ 0.4666666666666667,
+ 0.4666666666666667,
+ 0.4666666666666667,
+ 0.5,
+ 0.5,
+ 0.5,
+ 0.5,
+ 0.5666666666666667,
+ 0.5666666666666667,
+ 0.5666666666666667,
+ 0.5666666666666667,
+ 0.5666666666666667,
+ 0.5666666666666667,
+ 0.5666666666666667,
+ 0.6,
+ 0.6333333333333333,
+ 0.7333333333333333,
+ 0.7333333333333333,
+ 0.7333333333333333,
+ 0.7333333333333333,
+ 0.8333333333333334,
+ 0.8333333333333334,
+ 0.8333333333333334,
+ 0.8333333333333334,
+ 0.8333333333333334,
+ 0.8333333333333334,
+ 0.8333333333333334,
+ 0.8333333333333334,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9333333333333333,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 0.9666666666666667,
+ 1
+ ]
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "white",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#C8D4E3"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "white",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "radialaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "yaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "zaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "caxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Empirical Distribution Function Plot"
+ },
+ "xaxis": {
+ "autorange": true,
+ "range": [
+ 0.18531875170393172,
+ 0.6482633708392243
+ ],
+ "title": {
+ "text": "Objective Value"
+ },
+ "type": "linear"
+ },
+ "yaxis": {
+ "range": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Cumulative Probability"
+ },
+ "type": "linear"
+ }
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAFoCAYAAAAmSXdBAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3X28lVWd///P2ftwOKiEiAkdbXBgKs1Rs4bUEsPSVIg0Zphxcn7lF0XFGZMQCSj99rACwptsnBEVMZuZHHvQkKaglpXfaCYmGm8wlcaBkSIGS8dMi7uz9/491j7t0z4X+5zrZq+1rrWu9eIfS65rrc96fq5zwfX2uumo1Wo14RcCCCCAAAIIIIAAAggggAACCCCAAAIIIJBAoINAMYESmyCAAAIIIIAAAggggAACCCCAAAIIIIBAXYBAkQMBAQQQQAABBBBAAAEEEEAAAQQQQAABBBILECgmpmJDBBBAAAEEEEAAAQQQQAABBBBAAAEEECBQ5BhAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcQCBIqJqdgQAQQQQAABBBBAAAEEEEAAAQQQQAABBAgUOQYQQAABBBBAAAEEEEAAAQQQQAABBBBAILEAgWJiKjZEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJFjgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSCxAoJiYig0RQAABBBBAAAEEEEAAAQQQQAABBBBAgECRYwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEgsQKCamYkMEEEAAAQQQQAABBBBAAAEEEEAAAQQQIFDkGEAAAQQQQAABBBBAAAEEEEAAAQQQQACBxAIEiomp2BABBBBAAAEEEEAAAQQQQAABBBBAAAEECBQ5BhBAAAEEEEAAAQQQQAABBBBAAAEEEEAgsQCBYmIqNkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkWOAQQQQAABBBBAAAEEEEAAAQQQQAABBBBILECgmJiKDRFAAAEEEEAAAQQQQAABBBBAAAEEEECAQJFjAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQSCxAoJqZiQwQQQAABBBBAAAEEEEAAAQQQQAABBBAgUOQYQAABBBBAAAEEEEAAAQQQQAABBBBAAIHEAgSKianYEAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIFDkGEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCxAIFiYio2RAABBBBAAAEEEEAAAQQQQAABBBBAAAECRY4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgsQKCYmIoNEUAAAQQQQAABBBBAAAEEEEAAAQQQQIBAkWMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBILECgmpmJDBBBAAAEEEEAAAQQQQAABBBBAAAEEECBQ5BhAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcQCBIqJqdgQAQQQQAABBBBAAAEEEEAAAQQQQAABBAgUOQYQQAABBBBAAAEEEEAAAQQQQAABBBBAILEAgWJiKjZEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJFjgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSCxAoJiYig0RQAABBBBAAAEEEEAAAQQQQAABBBBAgECRYwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEgsQKCamYkMEEEAAAQQQQAABBBBAAAEEEEAAAQQQIFDkGEAAAQQQQAABBBBAAAEEEEAAAQQQQACBxAIEiomp2PDlV16VyxbeJJNOOErmXTyzcCBFX1/hGubBgtasWy8rvnyv3Lb8SpkwvseDiikRAQQQQAABBBBAAAEEEEAAgXgBAsXfGW18crNccMWyQcWmnX6SXDt/lnR3d8WratxCBRJXL18ld31xoUw6/qjYkW+8fbU8+O0NRgKMNIFbY9tNz27Zr+bBLLdu2yGXLLhBzn7fSakCS7XmjY9vlluWzZXRo0bGGjU2iFqlWV/iSURksPoa873x8NfncmwN1SO1vryO+YZt43iY89FzZcbUyQPI0/5cpOlXkm0b80e3vfDD0wYcu+0Eiu3sm2QNbIMAAggggAACCCCAAAIIIIBAVgECxUigmDS4ywqedr+0wYlrgWL0bsbdu/fKNdffKWsf2SCfWXDhgKCIQNFuWG0qQE17jA+2veuBYvTOw0a9Jxz7pv6AuJ1QsJ19dfWAcRBAAAEEEEAAAQQQQAABBBBoJUCg6Hig6NJhmyaAitu2EZRGQ8Us6816h2J0rrias9Sm9tFVX9b5B9vP1Hp11TlUoKhrjqzjDBb2Ne50bvyHiXZCwXb2zbou9kMAAQQQQAABBBBAAAEEEEAgiQCBYoZAUQVEO3/xknx05pky95q/kx0vvFQfpfGI6FM/2Trg8enoo6PNQYnaTz3S3PgVvUMyGio0h0Dnnvnu+iPCav7GHLf8w30tH/9t9Uh3I8wb7NHX6OObaQKouG0bdyr+7Oe/7H9UebAASXmvunttv9FxR0/s3yf6e2qjnrFj6o98jz54ZP87H5NYNdc8+cRjB/QwGnyqvqy+/9H9HrNWzouXrOx/5Dxpfc3vpGzVj+hxkabWdgPFpGttDk+XLLpIFi+9QxqPvA/2+PRgx+XbjpnYf2w31984JgcL2xrHUONnsnEsNL+/sLHvTdf+jXx59cP1u2XVr+bjKu7kGTd/4zHtuO0Gq3OwR6pdu4M6zonfRwABBBBAAAEEEEAAAQQQKKYAgWLGQFEFXM0hSXOQ0erfN78Hrnnb5qAqeneTKm2wQFEFNa1CmlZ3w7V6DFoFUl/66kNy2UfOkV179sjSm78iiy4/v/8dhK0CwbiQsPlHJMm20ce5WwWK0fU0gkg1V+OdlnHvKExq1RzkNYeprerKErJF3/HYyqjVXI3jovlYGazWVseQ7UBR/Ww0h3ODHQtxx+WOF16sh4qDvUMx+sjxYD8/0XeQNo675rCx1XE11Ck/LigcKlBMUycfdCnmH7ysCgEEEEAAAQQQQAABBBDwXYBAMRIoDtbQ5vCucYdi9CMtSf/9YHfitQo1hrpDsdWXlqPhWpqAKbr2aGiWJCRsjJFk22hQFnUZaoyHH90o7znp+PpHcuICxcG+Sh3db6j5otuaCBSHCrWSHgeNMcYdNib2wzZDfZSlORDUsdboGEmOy7h3KDaHbWl71yqoi95dmiVQjIbkSfum5mp1jBEo+v5HLPUjgAACCCCAAAIIIIAAAsUUIFCMBIpJHilMGhw2Dpno9kMFJXGhQlxQlzT4anU4t3o8N8mdZq3GiqtT7RMXKA71AZfmOW0EitFgSEfIFjVq/P+Z06fs91XjaAA3mG+aO+2S9Eg561hrUr/mvqYJFBvbLlk8e7+vobeae7BAUX3pPck5oNUdio0eNd/dGt1OR53F/KOIVSGAAAIIIIAAAggggAACCPgkQKDoWKAYDW/S3OGklhIN15J8EKQRchx6yMED3glo+g7FJI88N4eKjR+s6HvxbASK0bvXdIRs0UBvqAAt6d2bvgSKaY7LJI88D3XHY9IPpSS5a7JxDCZ9x2H051dHnT79AUOtCCCAAAIIIIAAAggggAACxRQgUHQsUMzjDsXBwh2TgWKaj7I0/+i1Cj9tBIpJ77Br9dhs0vq4Q3HgSda3OxRb/RHBHYrF/IOTVSGAAAIIIIAAAggggAACoQsQKDoUKLZ6/127dygOdUeUeg/hiSccLUtu/qe6QvSdkCYDxVZ1tboL76ln/1tOPem4AT+nScO9uEd6075DUX3Zu2E02Ec5WgWKg93NGK1P5zsUW/UzerKL82lsn2atQ4XTzY8Zxx2X6v2Y6mNBly28SVo9Ap7m5yIupG+sM+0dikneb9hOnWne6Rj6H2SsHwEEEEAAAQQQQAABBBBAwK4AgaJDgWKrr96mCSTUUpJ+5bn5vY7rvvPvEg1HGo906n6H4lDvRUzyWG+r0G2wICguMBssUHzj4a8fEK5GH81WzkN9jTn6SHaa+hrjnv2+k/o/qjLUV56jH5wx8chzmrUmDRQbx+qD394gty2/UiaM76n/JDYfl+r/X3P9nYOG3YN95bn5a9itejdUQNrOOxRbnbqHetdiXJ1D3aFp948JZkMAAQQQQAABBBBAAAEEEEBgoACBYiRQHOwAMfGV5x0vvDRguubwrvEbOgJFNVb0nW/RuaK/r8IO9Wv1/Y/2v1cxLqBrXsxQXxButmzep1WA0vh3zVbNH71odrp6+ar6/20EeqMPHlm/wy3tV55rUpOX/vcVacwZDQgbczaCvsb/V3VNPvFYWbxk5YCQLOofV18ru+iHQmx+lEXVn3StaQLFJMdl1KLR+8FCwejx0qp3eQeKat1J6mzlnuSDMfwhhwACCCCAAAIIIIAAAggggIBpAQJF08ItxufOoxzQmRIBBBBAAAEEEEAAAQQQQAABBBBAQIsAgaIWxnSDECim82JrBBBAAAEEEEAAAQQQQAABBBBAAAF3BAgUc+gFgWIO6EyJAAIIIIAAAggggAACCCCAAAIIIKBFgEBRCyODIIAAAggggAACCCCAAAIIIIAAAgggEIYAgWIYfWaVCCCAAAIIIIAAAggggAACCCCAAAIIaBEgUNTCyCAIIIAAAggggAACCCCAAAIIIIAAAgiEIUCgGEafWSUCCCCAAAIIIIAAAggggAACCCCAAAJaBAgUtTAyCAIIIIAAAggggAACCCCAAAIIIIAAAmEIECiG0WdWiQACCCCAAAIIIIAAAggggAACCCCAgBYBAkUtjAyCAAIIIIAAAggggAACCCCAAAIIIIBAGAIEimH0mVUigAACCCCAAAIIIIAAAggggAACCCCgRYBAUQsjgyCAAAIIIIAAAggggAACCCCAAAIIIBCGAIFiGH1mlQgggAACCCCAAAIIIIAAAggggAACCGgRIFDUwsggCCCAAAIIIIAAAggggAACCCCAAAIIhCFAoBhGn1klAggggAACCCCAAAIIIIAAAggggAACWgQIFLUwMggCCCCAAAIIIIAAAggggAACCCCAAAJhCBAohtFnVokAAggggAACCCCAAAIIIIAAAggggIAWAQJFLYwMggACCCCAAAIIIIAAAggggAACCCCAQBgCBIph9JlVIoAAAggggAACCCCAAAIIIIAAAgggoEWAQFELI4MggAACCCCAAAIIIIAAAggggAACCCAQhgCBYhh9ZpUIIIAAAggggAACCCCAAAIIIIAAAghoESBQ1MLIIAgggAACCCCAAAIIIIAAAggggAACCIQhQKAYRp9ZJQIIIIAAAggggAACCCCAAAIIIIAAAloECBS1MDIIAggggAACCCCAAAIIIIAAAggggAACYQgQKIbRZ1aJAAIIIIAAAggggAACCCCAAAIIIICAFgECRS2MDIIAAggggAACCCCAAAIIIIAAAggggEAYAgSKYfSZVSKAAAIIIIAAAggggAACCCCAAAIIIKBFgEBRCyODIIAAAggggAACCCCAAAIIIIAAAgggEIYAgWIYfWaVCCCAAAIIIIAAAggggAACCCCAAAIIaBEgUNTCyCAIIIAAAggggAACCCCAAAIIIIAAAgiEIUCgGEafWSUCCCCAAAIIIIAAAggggAACCCCAAAJaBAgUtTAyCAIIIIAAAggggAACCCCAAAIIIIAAAmEIECiG0WdWiQACCCCAAAIIIIAAAggggAACCCCAgBYBAkUtjAyCAAIIIIAAAggggAACCCCAAAIIIIBAGAIEimH0mVUigAACCCCAAAIIIIAAAggggAACCCCgRYBAUQsjgyCAAAIIIIAAAggggAACCCCAAAIIIBCGAIFiGH1mlQgggAACCCCAAAIIIIAAAggggAACCGgRIFDUwsggCCCAAAIIIIAAAggggAACCCCAAAIIhCFAoBhGn1klAggggAACCCCAAAIIIIAAAggggAACWgQIFLUwMggCCCCAAAIIIIAAAggggAACCCCAAAJhCBAohtFnVokAAggggAACCCCAAAIIIIAAAggggIAWAQJFLYwMggACCCCAAAIIIIAAAggggAACCCCAQBgCBIph9JlVIoAAAggggAACCCCAAAIIIIAAAgggoEWAQFELI4MggAACCCCAAAIIIIAAAggggAACCCAQhgCBYhh9ZpUIIIAAAggggAACCCCAAAIIIIAAAghoESBQTMi4ddsOuW7FPbJk0WwZPWpkwr3YDAEEEEAAAQQQQAABBBBAAAEEEEAAgWIJECjG9PPlV16VyxbeJJue3SLHHT1Rblk2l0CxWD8DrAYBBBBAAAEEEEAAAQQQQAABBBBAIIUAgWJCLO5QTAjFZggggAACCCCAAAIIIIAAAggggAAChRYgUEzYXgLFhFBshgACCCCAAAIIIIAAAggggAACCCBQaAECxYTtJVBMCMVmCCCAAAIIIIAAAggggAACCCCAAAKFFiBQTNheHwLFPfuqsndfRUYeMCzhqtjMV4HeSlVe21WRgw+i1772MGnd1WpNfvWbfXLIyK6ku7CdxwIvvbJHDhk1XDo8XgOlJxN4+dW98roDh0m5RLeTifm71a9/s0+6h5elq7Pk7yKoPJHAa7t6pbPcId1d5UTbs5G/Arv2VKRaq8mB3Z3+LoLKEwlwjZ2IyYuNajWRxzdV5RsPVWX7jlq95ju+yPV0O80jUEyoR6CYEIrNrAgQKFphdmISAkUn2mCtCAJFa9S5T0SgmHsLrBVAoGiNOveJCBRzb4G1AggUrVHnPhGBYu4t0FLAE09V5b4Hq/Kzn/cFid3DRd5/Wkk+eDb/AagdYALFhHoEigmh2MyKAIGiFWYnJiFQdKIN1oogULRGnftEBIq5t8BaAQSK1qhzn4hAMfcWWCuAQNEade4TESjm3oK2CnjqmZrc92BFnv9pX5A4fLjI+04tyVnvK8sBI9oamp1FhEAx5jB4+ZVX5bKFN8mmZ7f0b3nhh6fJvItnOncAcbJzriXGCiJQNEbr3MAEis61xGhBBIpGeZ0anEDRqXYYLYZA0SivU4MTKDrVDqPFECga5XVqcK6xnWpH4mKe+UlN7l1Xka3P9wWJXV0ip51SkrNPL8tBByYehg1jBAgUC3SIcLIrUDNjlkKgGE6vCRTD6bVaKYFiOP0mUAyn1wSK4fSaQDGcXhMohtNrrrH96vVzW2uy5v6KqH+qX8OGibznXSWZdkZZRo70ay0+VEug6EOXEtbIyS4hVAE2I1AsQBMTLoFAMSFUQTYjUCxIIxMsg0AxAVJBNiFQLEgjEyyDQDEBUtMmm56uyX3rKrJte9+FP78QQAABXQKdZZHJJ5fkA2eWZdTrdI3KOFEBAsUCHRMEigVqZsxSCBTD6TWBYji9VislUAyn3wSK4fSaQDGcXhMoJuv105v7gsSt2wgSk4mxFQIIJBUol0Xe/c6STD+7JKNHdSTdje0yChAoZoRzcTcCRRe7YqYmAkUzri6OSqDoYlfM1USgaM7WtZEJFF3riLl6CBTN2bo2MoHi0B1RjyCuvq/pnWbDRKacUpKpZ/j3TjMeeXbtp89cPVxjm7NlZP8FCBT972H/CjjZFaiZMUshUAyn1wSK4fRarZRAMZx+EyiG02sCxXB6TaDYutfqowhr1lZk83/23ZHY2Sly6sklmfZ+fx9FJFAM5+eaa+xwes1K0wsQKKY3c3YPTnbOtkZ7YQSK2kmdHZBA0dnWGCmMQNEIq5ODEig62RYjRREoGmF1clACxYFt+en2mqx5oCI/frYvSKw/inhiSaaf5f+jiASKTv4IGimKa2wjrAxaEAECxYI0Ui2Dk12BmhmzFALFcHpNoBhOr9VKCRTD6TeBYji9JlAMp9cEin293r6jJveurcoTP67W/3+pJHLypJKcc3ZJDhldjHeaESiG83PNNXY4vWal6QUIFNObObsHJztnW6O9MAJF7aTODkig6GxrjBRGoGiE1clBCRSdbIuRolwNFPfsEVn0mX3y61eNLJtBEZCODpET31GSD55dksMOLUaQ2GgrgWI4BzjX2OH0mpWmF7AeKL78yqty2cKbZOb0KTJj6uT0FbPHoAKc7MI5OAgUw+k1gWI4vVYrJVAMp98EiuH02tVA8R++WpHv/VvfHWT8QkC3wKQTSnLO1JKMO6xYQSKBou4jxf3xuMZ2v0dUmJ+A9UBRLXXjk5vlgiuW9a/6wg9Pk3kXz8xPoSAzc7IrSCMTLINAMQFSQTYhUCxIIxMug0AxIVQBNiNQLEATEy7BxUBRfSRjyRd66x/H+OziTjl0TDFDn4Qt0rYZjzxro3R+IO5QdL5F2grkGlsbJQMVUCCXQLHZsXHH4qZnt9T/NeFi9qOMk112O9/2JFD0rWPZ6yVQzG7n454Eij52LVvNBIrZ3Hzcy7VAsbdX5P9+vlde+EVN/nR6Wc4+veQjq5M1Eyg62RYjRREoGmF1clCusZ1sC0U5IpB7oLh12w65ZMENsuOFl/YjIVxMd5Rwskvn5fPWBIo+dy9d7QSK6bx835pA0fcOJq+fQDG5le9buhYo3ruuIg88XJWecR3y6U901j+YwS89AgSKehx9GIVA0Ycu6amRa2w9joxSTIFcAsU169bL1ctX9Yu2Cg7VnYtLb/6KLLr8fBk9amQx9TWvipOdZlCHhyNQdLg5mksjUNQM6vhwBIqON0hjeQSKGjEdH8qlQHHHzpp8+vO9dbFPXtkp44/gUWedhw+Bok5Nt8ciUHS7Pzqr4xpbpyZjFU3AeqDIR1nMHUKc7MzZujYygaJrHTFXD4GiOVsXRyZQdLErZmoiUDTj6uKorgSKtZrIZ6/vlW3ba/L+00ry5+eWXeTyuiYCRa/bl6p4AsVUXF5vzDW21+2jeMMC1gNFw+sJenhOduG0n0AxnF4TKIbTa7VSAsVw+k2gGE6vXQkUv/29qvzzv1Rk9MEd8rlPdUrXsHB6YGulBIq2pPOfh0Ax/x7YqoBrbFvSzOOjgPVAUd2huHjpSrlqznkyYXzPADP19efV9z8q186fJd3dXT565lozJ7tc+a1OTqBolTvXyQgUc+W3PjmBonXy3CYkUMyN3vrELgSKL/+qJp9a0it79oh8fE6nHHMUjzqbOBAIFE2oujkmgaKbfTFRFdfYJlQZsygCTgWK6gMt1624R5Ysms17EzMcYZzsMqB5uguBoqeNy1A2gWIGNI93IVD0uHkpSydQTAnm8eYuBIpfWNErT2+uycmTSnLhX/Gos6nDiUDRlKx74xIoutcTUxVxjW1KlnGLIOBUoKg+1rLhsae5QzHjkcXJLiOch7sRKHrYtIwlEyhmhPN0NwJFTxuXoWwCxQxonu6Sd6D4w8eqcvuXK3LQgSKf/eSw+j/5ZUaAQNGMq4ujEii62BUzNXGNbcaVUYshYC1QVHcfXrLgBtnxwkuDyvWMHSO3Lb9yv0ehi0FtfhWc7MwbuzIDgaIrnTBfB4GieWOXZiBQdKkbZmshUDTr69LoeQaKu3aJLPrMPnntNyIX/X9lOelPSi7RFK4WAsXCtXTQBREohtNrrrHD6TUrTS9gLVBslDbUOxTTl88ezQKc7MI5HggUw+k1gWI4vVYrJVAMp98EiuH0Os9A8Ut3V+Rf/71af2eienciv8wKECia9XVpdAJFl7phthausc36MrrfAtYDRb+53K6ek53b/dFZHYGiTk23xyJQdLs/uqsjUNQt6u54BIru9kZ3ZXkFij/5r5pcd3Nv/WvO6qvO6uvO/DIrQKBo1tel0QkUXeqG2Vq4xjbry+h+CxAo+t2/AdVzsitQM2OWQqAYTq8JFMPptVopgWI4/SZQDKfXeQSKvb1S/6rziy/V5C8+VJYzpvCos40jjkDRhrIbcxAoutEHG1VwjW1DmTl8FSBQ9LVzLermZFegZhIohtPMmJUSKIZ1KBAohtNvAsVwep1HoPi1b1TkoW9XZfwRHfKp+Z3Swc2JVg44AkUrzE5MQqDoRBusFME1thVmJvFUwFqgqN6deNnCm+SCvzhL7vrqQ7Lp2S0tyY47eqLcsmyujB410lPS/MrmZJefve2ZuUPRtnh+8xEo5mefx8wEinmo5zMngWI+7nnMajtQ3LGzJp/+fG99qZ/+RKf0jCNNtNV3AkVb0vnPQ6CYfw9sVcA1ti1p5vFRwFqg6COObzVzsvOtY9nrJVDMbufbngSKvnWsvXoJFNvz82lvAkWfutVerTYDxWpV5HM39Mq27TWZdkZJPvSBcnvFs3cqAQLFVFxeb0yg6HX7UhXPNXYqLjYOTIBAsUAN52RXoGbGLIVAMZxeEyiG02u1UgLFcPpNoLh/r//35Zp88nO9sm9fOMeBqZUedmiHLLmarzqb8h1sXAJF2+L5zUegmJ+97Zm5xrYtznw+CVgJFBuPOw/2mHMzGI88Zz98ONllt/NtTwJF3zqWvV4Cxex2Pu5JoOhj17LVTKC4v9sXVvTK05tr2UDZa4DAJ67olDdN4FFn24cFgaJt8fzmI1DMz972zFxj2xZnPp8ErASKroFsfHKzXHDFsnpZSQLMG29fLavuXpt4+7zWy8kuL3n78xIo2jfPa0YCxbzk85mXQDEf9zxmJVAcqL7hR1W54x8rctCBIkuvHiYjRuTRFTNz2nzk2cwKGDWpAIFiUin/tyNQ9L+HSVfANXZSKbYLUSC4QHHrth2yeNkdsmThRTJhfI+sWbdeNjz2tFw7f5Z0d3ftdwxEfz9u+zwPIk52eerbnZtA0a53nrMRKOapb39uAkX75nnNSKD4e/nXfiPyqc/tE/XP2R8py4nvKOXVFiPzEigaYXVyUAJFJ9tipCgCRSOsTg7KNbaTbaEoRwSCCxRVIPj89p0y7+KZ9RZEA8ZoX9TdiepXY3t1d+ONt6528kvUnOwc+amyUAaBogVkR6YgUHSkEZbKIFC0BO3ANASKv2/Cqn+qyA82VuWYozrk43OK994/AkUHfuAslUCgaAnagWkIFB1ogqUSuMa2BM00XgpYCxQb71G84C/Okru++pAM9j7FJI8gtyMdDQgbdc27dKZMOv6o/YZWgeMlC26Qs993Uj1UVPsfecQ4mTF1cjtlGNmXk50RVicHJVB0si1GiiJQNMLq7KAEis62RnthBIp9pOqdierdiV3DRD7nbDIcAAAgAElEQVT3qU4ZfXDx3vtHoKj9x8fZAQkUnW2N9sIIFLWTOjsg19jOtobCHBCwFig6sNZ6CdFAMC5Q3L17r1xz/Z3yyq9/I9//4VP7vXPxt7t7XVmaVKoilWpVujqL9aiQM8AOFVKtiezdV5XuLnrtUFuMlKI+T7B7b1VG0Gsjvq4N+ts9FRkxvCzFi1Rck86/nl17qzK8qyQhn8XV15w/c11NfvWKyIzpHTLllPz7YqICdTHaWS5JOeRmm4B1cMy9vVUplTqks8RZ3MH2aC1pX6UmtVqN6y6tqm4OxjW2m33RVdUB3cV7MkKXTZJxggwUFUzjEea4QDEaQKpHplff/2j/I88EikkOM7bRLUCgqFvU3fEIFN3tjYnKCBRNqLo5JoGiyNcfqMl314u88XCR+Zd3SEdBMxgCRTd/Bk1URaBoQtXNMQkU3eyLiaoIFE2oujMmgWJ7vcgtUFTB3NXLV/VX3zN2jNy2/Mr6h1JM/krzDsXG3Ykzp0/pfxw67p2LJmuPG5vbseOEivP7PPJcnF7GrYRHnuOEivX7PPJcrH4OtZrQH3netr0mn7uh7ymPT3+iU3rGFTRNFBEeeQ7n55pHnsPpNY88h9NrrrHD6TUrTS+QS6AYvctPld14V+GSxbNbvssw/dJa7xH3ledobeoOxZ2/eKn/K9CtatdVW7vjcLJrV9Cf/QkU/elVu5USKLYr6Nf+BIp+9audakMOFKtVkU9/vld27KzJtDNK8qEPlNuhdH5fAkXnW6StQAJFbZTOD0Sg6HyLtBXINbY2SgYqoID1QHGoR4zVF5TV48TXzp8l3d1dxrjVPBdcsaw+fvQjMNHAsHGX4tpHNrTc3liRGQbmZJcBzdNdCBQ9bVyGsgkUM6B5vAuBosfNS1l6yIHig49U5V/ur8ihYzrks4s7pbPgry8iUEz5w+Hx5gSKHjcvZekEiinBPN6ca2yPm0fpxgVyCRQXL10pV805b7/Hm9Xdg9etuEeWLJoto0eNNL74ok3Aya5oHR18PQSK4fSaQDGcXquVEiiG0+9QA8UXX6rJp5b0Sm+vyFWXd8pb/qi4jzo3jmYCxXB+rgkUw+k1gWI4veYaO5xes9L0AtYDxVbvJWyUTaCYvoHNe3Cya8/Pp70JFH3qVnu1Eii25+fb3gSKvnUse72hBorX3dwrP/mvmpx6ckk+cl6xH3UmUMz+8+HrngSKvnYufd0EiunNfN2Da2xfO0fdNgSsB4pqUYM92hz9YIoNgCLNwcmuSN0cei0EiuH0mkAxnF6rlRIohtPvEAPF9Ruq8uV/rsjrRop87pPDZMSIMPrNHYph9FmtkkAxnF4TKIbTa66xw+k1K00vYCVQbLw3cdOzW2IrjL7TMHYHNugX4GQXzsFAoBhOrwkUw+k1gWJYvQ4tUPz1qyKf/Nw+2bVLZM7/Kcs73lYKpuEEisG0mkAxnFYLgWI4zeYaO5xes9L0AlYCxfRlsUcWAU52WdT83IdA0c++ZamaQDGLmr/7cIeiv71LW3logeKtX6rIj56oytv+uCR/MzuMR50bxwSBYtqfDn+35w5Ff3uXtnICxbRi/m7PNba/vaNy8wIEiuaNrc3Ayc4ade4TESjm3gJrBRAoWqN2YiICRSfaYKWIkALFJ35clb9bWZHhw0WWXj2s/shzSL8IFMPpNoFiOL0mUAyn11xjh9NrVppeIJdAUX185ZIFN8iOF17ar2IeeU7fxMYenOyy2/m2J4Gibx3LXi+BYnY7H/ckUPSxa9lqDiVQ3LNHZNFn9ol65PmvZpZlyinhPOrcODIIFLP9jPi4F4Gij13LVjOBYjY3H/fiGtvHrlGzLQHrgWLjK88nvf0YedsxE+Urax6Rq+acJ93dXXLj7atl8onHyqTjj7K1/kLNw8muUO0ccjEEiuH0mkAxnF6rlRIohtNvk4Hi/7xQk6uX9DqFOfEPO2TR3E6narJVDIGiLen85yFQzL8HtiogULQlnf88XGPn3wMqcFfAeqCoPtCyeOnKeoiofl234h5Zsmi2jB41ctCvP7vL51ZlnOzc6ofJaggUTeq6NTaBolv9MF0NgaJpYXfGNxkoLv1Cr2x5vubOYkXks4s7ZdzYDqdqslUMgaIt6fznIVDMvwe2KiBQtCWd/zxcY+ffAypwVyDXQHH0wSNl6c1fkUWXn18PFNWj0M0Bo7tsblbGyc7NvpioikDRhKqbYxIoutkXU1URKJqSdW9cU4Hid79fla+srsjogzvqIZ56byG/8hUgUMzX3+bsBIo2tfOdi0AxX3+bs3ONbVObuXwTsB4oNj/yPGPq5PpjzkceMU7U/16zbr1seOxpuXb+rPoj0PxKJ8DJLp2Xz1sTKPrcvXS1Eyim8/J9awJF3zuYvH4TgaJ6T6F6X6F6b+HH53TKMUeFeUdg8i7Y2ZJA0Y6zC7MQKLrQBTs1ECjacXZhFq6xXegCNbgqYD1QjEKoR6AvW3iTbHp2i/SMHSO3Lb9SJozvcdXL6bo42TndHq3FEShq5XR6MAJFp9ujvTgCRe2kzg5oIlBUX1JWX1R+5ztKcvFHys6uPbTCCBTD6TiBYji9JlAMp9dcY4fTa1aaXiD3QDF9yewxmAAnu3CODQLFcHpNoBhOr9VKCRTD6bfuQPFHT1Tl1i9VZMQIkaVXD5ODDgzH0vWVEii63iF99REo6rN0fSQCRdc7pK8+rrH1WTJS8QQIFAvUU052BWpmzFIIFMPpNYFiOL0mUAyr1zoDxV27RD75uX2iHnmedX5Z3vXOUliYjq+WQNHxBmksj0BRI6bjQxEoOt4gjeVxja0Rk6EKJ5BboKjel3j18lX9oDzu3P6xxcmufUNfRiBQ9KVT7ddJoNi+oU8jcIeiT91qr1adgeKX76nI+h9U5S1/1CFXXd7ZXmHsrV2AQFE7qbMDEig62xrthREoaid1dkCusZ1tDYU5IJBLoKjCxNX3Pyq3LJtb/7qz+qW+8HzJghtkyeLZMun4oxyg8a8ETnb+9SxrxQSKWeX8249A0b+etVMxgWI7en7tqytQ/Ml/1eS6m3ula5jItYs65dAxfIjFtSOBQNG1jpirh0DRnK1rIxMoutYRc/VwjW3OlpH9F7AeKDY+wjLv0pn7BYcbn9xcDxr5ynO2A4uTXTY3H/ciUPSxa9lqJlDM5ubrXgSKvnYufd06AsXeXpFPLemVF1+qycxzynLme3nUOX0nzO9BoGje2JUZCBRd6YT5OggUzRu7MgPX2K50gjpcFMglUFy8dKVcNee8/b7mrO5SvG7FPbJk0ez+OxddRHO1Jk52rnZGf10EivpNXR2RQNHVzpipi0DRjKuLo+oIFNc8UJF136rK+CM65JNXdkqJPNHFVguBopNtMVIUgaIRVicHJVB0si1GiuIa2wgrgxZEwHqguHv3Xrnm+jtl5vQp+92hSKDY3lHFya49P5/2JlD0qVvt1Uqg2J6fb3sTKPrWsez1thso7thZk09/vrdewKc/0Sk943jUOXs3zO5JoGjW16XRCRRd6obZWggUzfq6NDrX2C51g1pcE7AeKCqAwR5tVu9WfH77Tpl38UzXnLyoh5OdF23SUiSBohZGLwYhUPSiTdqKJFDURun8QO0EirWayGev75Vt22ty1vtK8mcfLDu/3pALJFAMp/sEiuH0mkAxnF5zjR1Or1lpegErgWLjvYmbnt0SW+FxR08c8LGW2B3YoF+Ak104BwOBYji9JlAMp9dqpQSK4fS7nUDxW49W5atfr9Q/wPLZxZ3SyYednT5wCBSdbo/W4ggUtXI6PRiBotPt0Voc19haORmsYAJWAsWCmTm7HE52zrZGe2EEitpJnR2QQNHZ1hgpjEDRCKuTg2YNFF/+VU0++dle2btP5KrLO+Utf8Sjzk42uKkoAkXXO6SvPgJFfZauj0Sg6HqH9NXHNbY+S0YqngCBYoF6ysmuQM2MWQqBYji9JlAMp9dqpQSK4fQ7a6D4hRW98vTmmpxyUkku+EsedfbhiCFQ9KFLemokUNTj6MMoBIo+dElPjVxj63FklGIK5BYoqvcoXnDFsgGqd31x4X4faikmu5lVcbIz4+riqASKLnbFTE0EimZcXR2VQNHVzuivK0uguOFHVbnjHyty0IEiS68eJiNG6K+LEfULECjqN3V1RAJFVzujvy4CRf2mro7INbarnaEuFwRyCRRVmHjjrasHvCtRfeH5kgU3yJyPniszpk52wca7GjjZedeyzAUTKGam825HAkXvWtZWwQSKbfF5tXPaQPG134h86nP7RP3zkgvKMumEklfrDblYAsVwuk+gGE6vCRTD6TXX2OH0mpWmF7AeKO7evVeuuf5OmTl9yn53Iw729ef0ywpzD0524fSdQDGcXhMohtNrtVICxXD6nSZQVHcmrvtWVXbsrMnxf1ySy2fzqLNPRwqBok/daq9WAsX2/Hzam0DRp261VyvX2O35sXexBawHiuqLz4uXrpSr5pwnE8b3DNBVdylet+IeWbJotoweNbLY8gZWx8nOAKqjQxIoOtoYA2URKBpAdXhIAkWHm6O5tCSB4pM/rsqaB6ry8/+p1WcfOVLk/17VKQeP4kMsmtthdDgCRaO8Tg1OoOhUO4wWQ6BolNepwbnGdqodFOOYgPVA0YU7FJvf33jc0RMHPHrdqj+Nmtc+sqH+259ZcKGTj2VzsnPsp8tgOQSKBnEdG5pA0bGGGC6HQNEwsEPDDxUoPvOTmnx9bUX+e1tfkNg9XOT97y3Lme8tyfAuhxZBKYkECBQTMRViIwLFQrQx0SIIFBMxFWIjrrEL0UYWYUjAeqCo1rFm3XpZff+jubxDUd0FuXjZHbJk4UX1OyRVLRsee1qunT9Lurv3/1t6I0w86e3HOBkiNh8XnOwM/ZQ4OCyBooNNMVQSgaIhWEeHJVB0tDEGymoVKD7/05p89esVeW5rX5DY2Sly2iklmfb+cv1DLPzyU4BA0c++ZamaQDGLmp/7ECj62bcsVXONnUWNfUIRyCVQVLh5feVZBYjPb98p8y6eWe9xNGCMNj66vcsHBic7l7ujtzYCRb2eLo9GoOhyd/TXRqCo39TVEZsDxe07arLmgYpserovSOzoEDl5UknOnVaSQw7m8WZXe5i0LgLFpFL+b0eg6H8Pk66AQDGplP/bcY3tfw9ZgTmB3AJFc0saeuQbb19d36ARKKp3Ol628CaZd+nM/T4So7ZT26+6e23/oD1jx8hty6/c7/2Pea2neV5Odi50wU4NBIp2nF2YhUDRhS7Yq4FA0Z513jOpQHH3rk75xrqa/OiJqtT6skR527El+dPpJXnDWILEvHuka34CRV2S7o9DoOh+j3RVSKCoS9L9cbjGdr9HVJifgPVAcaiPsthgUAHhkUeM6398eahAsdX7HqOPa/92d6+NshPNUamKVKpV6eosJdqejfwVqNZE9u6rSncXvfa3i8kqVxnD7r1VGUGvk4F5vtVv91RkxPCyECV53siY8l95ReS+h2ry2BMi1WrfxhOOFPnQtA4Z/wfFXnuIq1MXo53lkpT5I7vw7d/bW5VSqUM6S5zFi97sfZWa1Go1rruK3mhR19dcYxe5zQd0dxZ5ecbXFmSgqFST3KHYKlCMBpAEisaPUSZoIUCgGM5hQaAYTq/VSgkUi93vV18TefjbNfnXfxepVPrWeniPyPSzOuStbyn22kNeHYFiON0nUAyn1wSK4fSaQLHYvSZQbK+/1gNFVa66S3Dyice2fMS4veXE7532HYqt7mhcvHSlXDXnPOcee+Z27Pj+F2ULHnkuSifj18Ejz/FGRdqCR56L1M3fr+W3u0TWfasi31lflb17+/79Ya8XOWdqWd55Qqn+zkR+FVeAR56L29voynjkOZxe88hzOL3mGjucXrPS9AK5BIrqQyhfWfNIPZRr9WXl9MtIvkfcV56jjzSrj8csXrKy/72JcV+FTl6J/i052ek3dXVEAkVXO6O/LgJF/aYuj0ig6HJ30te2Z4/IN79blW9+tyK7dvftP/b1HTL9rJK8+c29MuqgYVLm0cj0sJ7tQaDoWcPaKJdAsQ08z3YlUPSsYW2UyzV2G3jsWngB64Fi45HhTc9uaYl73NET5ZZlc2X0qJHG8Ju/MB2dLxooqiLUv7t6+ap6PTbqy7pwTnZZ5fzbj0DRv55lrZhAMaucn/sRKPrZt2jVvb0i3/5eVR58pCKv/abvdw8d0yHTzyzVv95cKok0f+W5GKtmFYMJECiGc2wQKIbTawLFcHrNNXY4vWal6QWsB4rpS2SPpAKc7JJK+b8dgaL/PUy6AgLFpFLF2I5A0e8+qvcifu8HVVn7zar86pW+zzYfcnCHfODMkrz7xJKUy79fH4Gi371OUz2BYhotv7clUPS7f2mqJ1BMo+X3tlxj+90/qjcrYD1QVO8kXHX32vqqLvzwtP6Po5hdZhijc7ILo89qlQSK4fSaQDGcXquV+hIoqvcAXv/3vbL1+b7QjF/7Cxw8qkOmnlGSU99Vks6mILGxJYFiOEcNgWI4vSZQDKfXBIrh9Jpr7HB6zUrTC1gNFKPvH4x+8CR9+ezRLMDJLpzjgUAxnF4TKIbTa18Cxb37RL6wolee20KY2OroHDlSZOrpZTljSmnIg5dAMZyfbQLFcHpNoBhOrwkUw+k119jh9JqVphewFiju3r1Xrrn+Tpk5fUr/153VB1KuW3GPLFk02+g7E9Oz+LkHJzs/+5alagLFLGp+7kOg6Gffslbt+h2KvRWRv72tV575SU0OPEBk4dxOecNYPlGcpd8EilnU/NyHQNHPvmWpmkAxi5qf+xAo+tm3LFVzjZ1FjX1CEbAWKKqPsSxeurL+ZecJ43vqvq3+XSjwJtbJyc6EqptjEii62RcTVREomlB1d0yXA8VqVeTmlb3y1DM1GTFC5BMf65QjeggTsx5NBIpZ5fzbj0DRv55lrZhAMaucf/sRKPrXs6wVc42dVY79QhDIPVC8bOFNMu/Smf13LYaAbmqNnOxMybo3LoGiez0xVRGBoilZN8d1NVBUYeKKOyvy+FNVGT5cZMHlnTL+jYSJ7RxFBIrt6Pm1L4GiX/1qp1oCxXb0/NqXQNGvfrVTLdfY7eixb9EFCBQL1GFOdgVqZsxSCBTD6TWBYji9Vit1MVCs1URu/3JFNj5ela4ukfl/3SkTjiRMbPfIJFBsV9Cf/QkU/elVu5USKLYr6M/+BIr+9KrdSrnGbleQ/YssYDVQVHcjbnp2y5Cexx09UW5ZNpd3KmY46jjZZUDzdBcCRU8bl6FsAsUMaB7v4mKg+A/3VOR7P6jKsGEiH5/TKW+eSJio4xAjUNSh6McYBIp+9ElHlQSKOhT9GINA0Y8+6aiSa2wdioxRVAFrgWJRAV1aFyc7l7phthYCRbO+Lo1OoOhSN8zX4lqgePfXKvKd9VUplUTmXtopb30LYaKuo4BAUZek++MQKLrfI10VEijqknR/HAJF93ukq0KusXVJMk4RBQgUC9RVTnYFambMUggUw+k1gWI4vVYrdSlQXH1fRR7+Tl+YOGdWWU44thRWMwyvlkDRMLBDwxMoOtQMw6UQKBoGdmh4AkWHmmG4FK6xDQMzvNcCBIpet29g8ZzsCtRMAsVwmhmzUgLFsA4FVwLFbzxUlW88WJGODpGLP1qWSScQJuo+EgkUdYu6Ox6Boru90V0ZgaJuUXfHI1B0tze6K+MaW7co4xVJgECxQN3kZFegZhIohtNMAkV63STgQqCo7kpUdyeqMHHW+WU5eRJhoomDlEDRhKqbYxIoutkXE1URKJpQdXNMAkU3+2KiKq6xTagyZlEECBSL0kkR4WRXoGYSKIbTTAJFeu1QoKjel6jem6h+feS8spx6MmGiqQOUQNGUrHvjEii61xNTFREompJ1b1wCRfd6YqoirrFNyTJuEQQIFIvQxd+tgZNdgZpJoBhOMwkUg+71Dx9TjxZXZecvak45nDejLKe/hzDRZFMIFE3qujU2gaJb/TBZDYGiSV23xiZQdKsfJqvhGtukLmP7LkCg6HsHm+rnZFegZhIohtNMAsXgel2riTy+qSr3PViVn/+PW0GiasbMc8py5nsJE00fmASKpoXdGZ9A0Z1emK6EQNG0sDvjEyi60wvTlXCNbVqY8X0WyCVQ3L17r1xz/Z2y9pEN0jN2jNy2/ErpGXto/d+d9PZjZMbUyT6b5lY7J7vc6K1PzFeerZPnNiEfZcmN3sjEm56uyb3rKvLT7X1B4ohukdOnlOT9p5Xr/9uFdygaWTiD7idAoBjOQUGgGE6vCRTD6TWBYji95ho7nF6z0vQCuQSKN96+Wo48YpxMfe+Jct2Ke+T8GafLhPE9svHJzbL6/kfl2vmzpLu7K/1qAt+Dk104BwCBYji9JlAsRq+f3twXJP73tr4gcXiXyHtPLclZ7yvLgQf8fo0EisXod5JVECgmUSrGNgSKxehjklUQKCZRKsY2BIrF6GOSVXCNnUSJbUIVsB4ovvzKq7J46Uq5as559bsSmwPFrdt21P//kkWzZfSokaH2JPO6OdllpvNuRwJF71qWuWACxcx0Tuz43NZa/YvJW5/vCxK7holMOaUkU88oy0EH7l8igaITbbNSBIGiFWYnJiFQdKINVoogULTC7MQkBIpOtMFKEVxjW2FmEk8FnAoUuUOxvaOIk117fj7tTaDoU7faq5VAsT2/vPZWAeKaByqy+bm+ILGzU+pfTJ72/rKMet3gVREo5tUx+/MSKNo3z2tGAsW85O3PS6Bo3zyvGQkU85K3Py/X2PbNmdEfAeuBoqJZs269bHjsaVl0+fnyd3d+vf7I8+iDR8plC2+SmdOn8A7FjMcPJ7uMcB7uRqDoYdMylkygmBFuiN1efqUm962ryr/9sCrVqv7xm0csl0XefWJJpp9VktGjOmInI1CMJSrMBgSKhWll7EIIFGOJCrMBgWJhWhm7EALFWKLCbMA1dmFayUIMCOQSKKp1qLsRL7hi2YAl3fXFhTLp+KMMLDOMITnZhdFntUoCxXB6TaCor9ev/UZk7Tcr8t3vV6W3V9+4rUYqlUROnlSSc84uySGj44PExhgEimb74tLoBIoudcNsLQSKZn1dGp1A0aVumK2FQNGsr0ujc43tUjeoxTWB3AJF1yCKUA8nuyJ0MdkaCBSTORVhKwLF9ru4Z4/Ig9+uyLcerYr63+rXmyZ0yMxzyjLhyORhX/uVxI9AoBhvVJQtCBSL0sn4dRAoxhsVZQsCxaJ0Mn4dBIrxRkXZgmvsonSSdZgQIFA0oZrTmJzscoLPYVoCxRzQc5qSQDE7vLoL8dvfq8qDj1RE3Z2ofh35Bx0y4wNleetb3AoSG6skUMzeb9/2JFD0rWPZ6yVQzG7n254Eir51LHu9BIrZ7Xzbk2ts3zpGvTYFrAeK6ivP6l2Jk044SuZdPNPmWgs/Fye7wre4f4EEiuH0mkAxfa/VexHX/6AqDzxcFfW+RPXr8Dd0yLnTSnLCsaX0A1rcg0DRInbOUxEo5twAi9MTKFrEznkqAsWcG2BxegJFi9g5T8U1ds4NYHqnBawHikoj+v7EaaefJNfOnyXd3V1OY7leHCc71zukrz4CRX2Wro9EoJi8Q7WayMbHqnLvuqr84sW+IPGwQzvkg2eX5MR3lKTDzZsSByyQQDF5v33fkkDR9w4mr59AMbmV71sSKPreweT1Eygmt/J9S66xfe8g9ZsUyCVQjC5IffX56uWr6v/6uKMnyi3L5sroUSNNrruQY3OyK2RbWy6KQDGcXhMoJuv1rl0iX1jRK1u39QWJo14ncs7Uspx6stt3JEZXR6CYrN9F2IpAsQhdTLYGAsVkTkXYikCxCF1MtgYCxWRORdiKa+widJE1mBJwIlC88fbVsurutQSKbXaZk12bgB7tTqDoUbPaLJVAMR5w126RG/6+V57/aU1GHiQy9YyynDHFryCxsUoCxfh+F2ULAsWidDJ+HQSK8UZF2YJAsSidjF8HgWK8UVG24Bq7KJ1kHSYEcgkUm+9IVIuy/chz8yPXae6IbOx31xcXyqTjjzLRj7bG5GTXFp9XOxMoetWutoolUByab+9ekev/ru/OxEPHdMiiuZ31uxN9/UWg6Gvn0tdNoJjezNc9CBR97Vz6ugkU05v5ugeBoq+dS18319jpzdgjHAHrgWLeH2XZum2HLF52hyxZeJFMGN8jKtzc8NjTse9wbA4hCRTD+QFxdaUEiq52Rn9dBIqDm+7bJ3LjLb3y3NaaHHJwhyz8eLn+T59/ESj63L10tRMopvPyeWsCRZ+7l652AsV0Xj5vTaDoc/fS1U6gmM6LrcMSsB4o5s2rAsTnt+/s/8J0NGBsVZ/a5roV98iCy/5SFi+9Q+ZdOpM7FPNuZODzEyiGcwAQKLbudW9F5KZbe2Xzf9bqdySqOxPVHYq+/yJQ9L2DyesnUExu5fuWBIq+dzB5/QSKya1835JA0fcOJq+fQDG5FVuGJxBcoKje16h+zbt4Zv2fjTsmBwsJmwPH0QePlMsW3kSgGN7PiXMrJlB0riXGCiJQ3J+2WhX529t75cfP9r0zceHcThn7ev/DRLVSAkVjP0rODUyg6FxLjBVEoGiM1rmBCRSda4mxgggUjdE6NzCBonMtoSCHBIIMFI88YpzMmDo5NlBUYePipSvlqjnn1R+PbhU+/nZ3rzPtrFRFKtWqdHX6+TECZyA9KKRaE9m7ryrdXfTag3a1VaL6ZvHuvVUZQa/rjipMXPWPNXnqGZER3SLz/rpDxh7WFrFTO/92T0VGDC9LMeJRp2idK2bX3qoM7yoJZ3HnWqO9IHUx2lkuSZlma7d1bcC9vVUplTqks8RZ3LXe6K5nX6UmtVqN6y7dsA6OxzW2g03RWNIB3Z0aRwtvKGuBYiOMu+AvzpK7vvqQbHp2S0vtNB9JydKuNHcoqrsTL1lwg+x44aX9pmq8RzOeuIUAACAASURBVJFAMUsX2KddAQLFdgX92Z9A8fe9ag4Th3eJfOzSDnnj4f70MkmlBIpJlIqxDYFiMfqYZBUEikmUirENgWIx+phkFQSKSZSKsQ2BYjH6ONgqCBTb66+1QLG9MvXtneUdio3Z4x6P1ldltpG4HTubm4978cizj13LVjOPPPe51Woit95Vkf94oipdXSLz/7pTJhxZvDtAeOQ528+Jj3vxyLOPXctWM488Z3PzcS8eefaxa9lq5pHnbG4+7sU1to9do2ZbAtYDxehjxM0LVV9SXn3/o7FfXG4HJ+4rzypwVDXcsmyujB41csBUBIrtyLOvTgECRZ2abo9FoNgXJq76p4ps+FFVhg0T+ficTnnzxOKFiepIJFB0++dRZ3UEijo13R6LQNHt/uisjkBRp6bbYxEout0fndURKOrUZKyiCTgVKDa+prxk0ez9wjyd8Cq4vOCKZfUho49YEyjqlGYsUwIEiqZk3RuXQFHkrn+uyPc3qHeQiXzskk5561uKGSYSKLr382eyIgJFk7pujU2g6FY/TFZDoGhS162xCRTd6ofJaggUTeoytu8CTgWKKszb8NjTRu9Q9L1hQ9XPya7I3R24NgLFcHodeqD4T6sr8uj31UvuRS6f3SnHvrW4YSKBYjg/12qlBIrh9JtAMZxeEyiG02sCxXB6zTV2OL1mpekFrAWKQ33gpFF2z9gxctvyK+tfVOZXegFOdunNfN2DQNHXzqWvu91AccfOmtz3YLX+7kGff82ZVZZ3HF/8T6TyyLPPR2m62gkU03n5vDWBos/dS1c7gWI6L5+3JlD0uXvpaucaO50XW4clYC1QbLAO9Q7FsOj1r5aTnX5TV0ckUHS1M/rryhoo/uLFmty3rio/fKxafwehr786OkQu/mhZJp1Q/DBR9YhA0dcjNX3dBIrpzXzdg0DR186lr5tAMb2Zr3sQKPraufR1c42d3ow9whGwHiiGQ2t/pZzs7JvnNSOBYl7y9udNGyi++FJNvvFQtf4Bk+rvbkp827ElOXdqSY7oKfbjwva7o39GAkX9pq6OSKDoamf010WgqN/U1REJFF3tjP66CBT1m7o6ItfYrnaGulwQIFB0oQuaauBkpwnSg2EIFD1okqYSkwaKL79Sk/sfrMq//rAqlUrf5Op9gx+aVpY/OIIgUVM7jA9DoGic2JkJCBSdaYXxQggUjRM7MwGBojOtMF4IgaJxYmcm4BrbmVZQiIMCuQSKQ71PMfrVZQfNnC2Jk52zrdFeGIGidlJnB4wLFF/5tcgD36zI+n+rSu/vgsSj39wXJE44kiDR2cYOUhiBom8dy14vgWJ2O9/2JFD0rWPZ6yVQzG7n254Eir51LHu9XGNnt2PP4gtYDxR3794r11x/p5z09mPkbcdMlK+seUSumnOedHd3yY23r5bJJx4rk44/qvjyBlbIyc4AqqNDEig62hgDZQ0WKL72G5G136zIo/9alX37+iZ+04QOmTG9XP8nv/wUIFD0s29ZqiZQzKLm5z4Ein72LUvVBIpZ1Pzch0DRz75lqZpr7Cxq7BOKgPVAsfmjLAr5uhX3yJJFs2X0qJGy8cnNsvr+R+Xa+bPqASO/0glwskvn5fPWBIrtd2/vPpFHv1+VBx+pyKuvtT9eniOoOxHPnVqWt76FIDHPPuiYm0BRh6IfYxAo+tEnHVUSKOpQ9GMMAkU/+qSjSgJFHYp+jME1th99osp8BHINFEcfPFKW3vwVWXT5+fVAUT0K3Rww5kPi76yc7PztXdrKCRTTiv1+e/VY8P/7flXWPVIR9biwz7/GH9Eh50wty3HHECT63Mfm2gkUi9LJ+HUQKMYbFWULAsWidDJ+HQSK8UZF2YJAsSidjF8H19jxRmwRroD1QLH5kecZUyfXH3M+8ohxov73mnXrZcNjT3OHYsbjkZNdRjgPdyNQTN809aGS9RuqsvabVXn5V7X6AIcc3CEfOLMk7z6xJOVy+jFt7BH3DkUbNTCHPQECRXvWec9EoJh3B+zNT6BozzrvmQgU8+6AvfkJFO1Z5z0T19h5d4D5XRawHihGMdQj0JctvEk2PbtFesaOkduWXykTxve4bOZsbZzsnG2N9sIIFJOTVqtS//LxAw9X5aX/7QsSDx7VIdPOKMnkd5Wk09EgsbFCAsXkvS7ClgSKRehisjUQKCZzKsJWBIpF6GKyNRAoJnMqwlYEikXoYrI1cI2dzImtwhTIPVAMk93MqjnZmXF1cVQCxfiu1GoiG35UlW88VJVfvtgXJL5upMjZp5fltFNK0tkZP4YLWxAoutAFezUQKNqzznsmAsW8O2BvfgJFe9Z5z0SgmHcH7M1PoGjPOu+ZuMbOuwPM77IAgaLL3UlZGye7lGAeb06gOHjzVJC48fG+IHHnC31B4kEHipz1vrK8d3JJujz73hOBosc/qBlKJ1DMgObpLgSKnjYuQ9kEihnQPN2FQNHTxmUom0AxA5qnu3CN7WnjKNuKAIGiFWY7k3Cys+OcZpZnflKT+9ZVZMvzfcEWv+wKHDBC5P2nleWMKSUZPtzu3LpmI1DUJenHOASKfvRJR5UEijoU/RiDQNGPPumokkBRh6IfYxAo+tEnHVVyja1DkTGKKmAlUGx+T2Ic5HFHT5Rbls2tf/WZX+kEONml8zK59XNba7Lm/oqof/LLvsCIbpHTp5TqYaL63z7/IlD0uXvpaydQTG/m6x4Eir52Ln3dBIrpzXzdg0DR186lr5tAMb2Zr3twje1r56jbhoCVQNHGQphDhJNd/kfB8z+tyZoHKqLuTFS/1Ac/Jp9ckg+cWZZRr9NXH48867N0fSQCRdc7pLc+AkW9ni6PRqDocnf01kagqNfT5dEIFF3ujt7aCBT1ero8GtfYLneH2vIWIFDMuwMa5+dkpxEz5VA/3V6Tr6+tyFPP9AWJpZLIu08syQfPLsnoUR0pR4vfnEAx3qgoWxAoFqWTydZBoJjMqQhbESgWoYvJ1kCgmMypCFsRKBahi8nWQKCYzKkIW3GNXYQusgZTAtYDxbjHn3nkOXurOdllt8u65/YdNbl3XVWeeKraHySe9Ccl+eBZJTl0jP4gsVEngWLWjvm3H4Gifz1rp2ICxXb0/NqXQNGvfrVTLYFiO3p+7Uug6Fe/2qmWQLEdPb/25Rrbr35RrV0B64HiYMvbvXuvXLfiHjl/xukyYXyPXYWCzMbJzl4jd/6iJveurcp/PFkV9VXhjg6RSW8vyblTS3LYoeaCRAJFez12ZSYCRVc6YacOAkU7zi7MQqDoQhfs1ECgaMfZhVkIFF3ogp0aCBTtOLswC9fYLnSBGlwVcCZQVEBr1q2X57fvlHkXz3TVy+m6inyy2/R039eSt2136yMnKkh8+3ElOWdqSXrGmQ8SCRSd/hE0UhyBohFWZwclUHS2NdoLI1DUTursgASKzrZGe2EEitpJnR2QQNHZ1mgvrMjX2NqxGDA4AacCxa3bdtTvUlyyaDZfec5wKBbxZPf05r4gces2t4JE1Z7j/7gkH5pWkiN67AWJBIoZfjA834VA0fMGpiyfQDElmMebEyh63LyUpRMopgTzeHMCRY+bl7J0AsWUYB5vXsRrbI/bQemOCRAoOtaQdsop0snuua01WX1fRbY+3xckdg0TmXJKSaaeUZaDDmxHqRj78g7FYvQxySoIFJMoFWcbAsXi9DJuJQSKcULF+X0CxeL0Mm4lBIpxQsX5fQLF4vQybiVFusaOWyu/j0BaAacCxRtvX12vn0ee07axb/sinOxUgLhmbUU2/2dfkNjZKXLqySWZ9v6yjHpdNpci7kWgWMSutl4TgWI4vVYrJVAMp98EiuH0mkAxnF4TKIbTawLFcHpdhGvscLrFSm0LWA8Uh/rK87TTT5Jr58+S7u4u2w6FmM/nk91Pt9dkzQMV+fGzfUFiuSzy7hNLMv2skoweZf+RYtcPCAJF1zukrz4CRX2WPoxEoOhDl/TUSKCox9GHUQgUfeiSnhoJFPU4+jAKgaIPXdJTo8/X2HoEGAWBwQWsB4o0w5yAjye77Tv6vpb8xI+rdZhSSeTkSSU55+ySHDKaIHGwo4VA0dzPkWsjEyi61hGz9RAomvV1aXQCRZe6YbYWAkWzvi6NTqDoUjfM1kKgaNbXpdF9vMZ2yY9aii1AoFig/uZ9stu7V+T6v+/tf+9hGlr1teQT31GSD55dksMOJUiMsyNQjBMqzu8TKBanl0lWQqCYRKkY2xAoFqOPSVZBoJhEqRjbECgWo49JVkGgmESpGNvkfY1dDEVWUVQBAsUCdTbPk93efSJfWNErz21J/zXmd7ytJOdOLckbxhIkJj0cCRSTSvm/HYGi/z1MswICxTRafm9LoOh3/9JUT6CYRsvvbQkU/e5fmuoJFNNo+b1tntfYfstRfQgCuQSKW7ftkEsW3CA7XnhpP+Pjjp4otyybK6NHjTTmv/HJzXLBFcvq48fN17yt2t7l9zzmdbLrrYj87W298sxPanLgASIL53YSDho7evsGJlA0DOzQ8ASKDjXDQikEihaQHZmCQNGRRlgog0DRArIjUxAoOtIIC2UQKFpAdmSKvK6xHVk+ZSAwpID1QHH37r1yzfV3yklvP0ZmTJ1svT0qzFy87A5ZsvAimTC+R9asWy8bHnt60I/BqN9/4+Gvl0nHHyWN2scdNsbJL1HncbKrVkVuXtkrTz1TkxEjRD7xsU45ooc7DU0f2ASKpoXdGZ9A0Z1e2KiEQNGGshtzECi60QcbVRAo2lB2Yw4CRTf6YKMKAkUbym7Mkcc1thsrpwoE4gWsB4rqK8+Ll66Uq+acVw/0bP9SAeHz23f2B4LRgDGunrgAMm5/k79v+2SnwsQVd1bk8aeqMny4yILLO2X8GwkTTfa4MTaBog1lN+YgUHSjD7aqIFC0JZ3/PASK+ffAVgUEirak85+HQDH/HtiqgEDRlnT+89i+xs5/xVSAQHIB64Fi4y6/mdOn1O/6s/3rxttX16ecd/HM+j9VwHnZwptk3qUzE9UT3d92/UPNZ/NkV6uJ3P7limx8vCpdXSLz/7pTJhxJmGjreCBQtCWd/zwEivn3wGYFBIo2tfOdi0AxX3+bsxMo2tTOdy4CxXz9bc5OoGhTO9+5bF5j57tSZkcgvYD1QFGVmOddfioQPPKIcf2PW6cJFNX7FG+8dfWAdzz+dndvenVDe1SqIpVqVbo6S4Zm+P2w9/xLTf7thyLDOkUuu6hDJv6h8SmZoEmgWhPZu68q3V3mew18vgLqM0e791ZlBL3OtxGWZv/tnoqMGF4W/vOMJfAcp9m1tyrDu0rCWTzHJliaWl2MdpZLUqbZlsTzm2Zvb1VKpQ7pLHEWz68LdmbeV6lJrVazct1lZ0XMMpiAzWtsumBf4IDuTvuTFmjGXALFPD/KkvUORRUmLl6yUm5bfuWAR7VDDBS/dl9NvvdvIqWSyJxZHfKWNxXoJ8KTpRAoetIoDWUSKGpA9GgIAkWPmtVmqQSKbQJ6tDuBokfNarNUAsU2AT3anUDRo2a1WSqBYpuAju9OoNheg6wHinl/lCXLOxQHCxPbo9e/t43bsVffV5GHv6P+66sKE8tywrH853b9nYwfkUee442KsgWPPBelk8nWwSPPyZyKsBWPPBehi8nWwCPPyZyKsBWPPBehi8nWwCPPyZyKsJWNa+wiOLGGMAWsB4p5f5Ql7ivPKnBcff+j/Y81t3rM2dVDxfTJ7hsPVeUbD1ako0Pk4o+WZdIJhIl5HQsEinnJ25+XQNG+eZ4zEijmqW93bgJFu955zkagmKe+3bkJFO165zkbgWKe+nbnNn2NbXc1zIaAXgHrgWLeH2VRfCokvOCKZXXJ446eOOCdiNFAUT0iverutQPUe8aO2e/RZ71tyTaayZOduitR3Z2owsRZ55fl5EmEidm6pGcvAkU9jj6MQqDoQ5f01UigqM/S9ZEIFF3vkL76CBT1Wbo+EoGi6x3SVx+Boj5L10cyeY3t+tqpD4E4AeuBoiooz4+yxIH4/PumTnbfWV+Vu79WqdN85LyynHoyYWLexwmBYt4dsDc/gaI9axdmIlB0oQt2aiBQtOPswiwEii50wU4NBIp2nF2YhUDRhS7YqcHUNbad6pkFAbMC1gPFxleVNz27peXKoncMml1+sUZPcrL7jyeqct+DVdmxU33qId2v82aU5fT3ECamUzOzNYGiGVcXRyVQdLEr5moiUDRn69rIBIqudcRcPQSK5mxdG5lA0bWOmKuHQNGcrWsjJ7nGdq1m6kHAloD1QNHWwkKcZ6iT3RM/rsp966rys5+nDxKV5cxzynLmewkTXTmuCBRd6YT5OggUzRu7NAOBokvdMFsLgaJZX5dGJ1B0qRtmayFQNOvr0ugEii51w2wtBIpmfRndbwHrgSJ3KJo7YFqd7H78bE3uXVeR53/aFyQOHy5y+qklOfN9ZTlghLlaGNmsAIGiWV+XRidQdKkb5mshUDRv7MoMBIqudMJ8HQSK5o1dmYFA0ZVOmK+DQNG8sSszECi60gnqcFHAeqA4GIL6WMt1K+6R82ecLhPG97ho5XxNzSe7zf9Zk6+vq8iW/+4LEru6RE47pSRnn16Wgw50fikUGCNAoBjOIUKgGE6v1UoJFMPpN4FiOL0mUAyn1wSK4fSaQDGcXhMohtNrVppewJlAUZWuPtby/PadMu/imelXwh6iTnbPbanI2oc75LmtfUFiZ6fIe95dkg+cUZaRI0EqigCBYlE6Gb8OAsV4oyJtQaBYpG4OvRYCxXB6TaAYTq8JFMPpNYFiOL0mUAyn16w0vYBTgeLWbTvqdykuWTRbRo8i/UrTTvVI89fur4i6M7EeJJZFTjm5JNPPLMuo16UZiW19ECBQ9KFLemokUNTj6MsoBIq+dKr9OgkU2zf0ZQQCRV861X6dBIrtG/oyAoGiL51qv04CxfYNGaG4AgSKDvZ21y6Rz/9tr2zfkf4DKqWSyLvfWZLpZ5XkkNEdDq6OknQIECjqUPRjDAJFP/qkq0oCRV2S7o9DoOh+j3RVSKCoS9L9cQgU3e+RrgoJFHVJuj8OgaL7PaLC/AScChRvvH11XSLkR5537xG57uZe2faz9GHiO9/RIWecVpM/fOOw/I4oZrYiQKBohdmJSQgUnWiDtSIIFK1R5z4RgWLuLbBWAIGiNercJyJQzL0F1gogULRGnftEBIq5t4ACHBawHigO9ZXnaaefJNfOnyXd3V0Ok5krbe9ekev/vle2Pl+rP6a8aG6nHDom+V2GnOzM9ca1kQkUXeuIuXoIFM3ZujgygaKLXTFTE4GiGVcXRyVQdLErZmoiUDTj6uKoBIoudsVMTVxjm3Fl1GIIWA8Ui8GmfxX79ol8YUWv/OeWmow8SGTh3E4Z+/rkYaKqiJOd/r64OiKBoqud0V8XgaJ+U5dHJFB0uTt6ayNQ1Ovp8mgEii53R29tBIp6PV0ejUDR5e7orY1rbL2ejFYsAQJFB/rZWxH529t65Zmf1OTAA/rCxDeMTRcmEig60EiLJRAoWsTOeSoCxZwbYHl6AkXL4DlOR6CYI77lqQkULYPnOB2BYo74lqcmULQMnuN0BIo54jO18wJWA8WNT26WC65YJnd9caFMOv6oAThD/Z7zim0UWK2K3LyyV556piYjRoh84mOdckRP+jCRQLGNJni4K4Gih03LWDKBYkY4T3cjUPS0cRnKJlDMgObpLgSKnjYuQ9kEihnQPN2FQNHTxmUom0AxAxq7BCNgNVCM++hK3O8XrSu1msjtX67IxserMny4yILLO2X8G7OFiQSKRTs6hl4PgWI4/SZQDKfXaqUEiuH0m0AxnF4TKIbTawLFcHpNoBhOrwkUw+k1K00vYC1QbHyMZd6lM/e7O7FRtrpL8cZbV8sty+bK6FEj06/Goz1UmHjnVyryg41V6eoSmf/XnTLhyOxhIoGiR83XUCqBogZET4YgUPSkUZrKJFDUBOnBMASKHjRJU4kEipogPRiGQNGDJmkqkUBRE6QHwxAoetAkSsxNwGqguHjpSrlqznkyYXxPywVv3bZDrltxjyxZNLvwgeI/3FOR7/2gKsOGiXx8Tqe8eWJ7YSKBYm4/Q7lMTKCYC3sukxIo5sKe26QEirnRW5+YQNE6eW4TEijmRm99YgJF6+S5TUigmBu99YkJFK2TM6FHAtYCxd2798o1198pM6dPGfIOxdX3PyrXzp8l3d1dHjGmK/Xur1XkO+ur0lkW+dglnfLWt7QfJhIopuuB71sTKPreweT1EygmtyrClgSKRehisjUQKCZzKsJWBIpF6GKyNRAoJnMqwlYEikXoYrI1ECgmc2KrMAWsBYqKd8269fL89p0y7+KZLbXVOxSPPGKczJg6ubDdWH1fRR7+TlVKJZHLZ3fKsW/VEyYSKBb2kGm5MALFcPpNoBhOr9VKCRTD6TeBYji9JlAMp9cEiuH0mkAxnF4TKIbTa1aaXsBqoNi4S1GV2XwXYuPf/+znvyz0+xMfeLgq966r1MPEObPKcsKxpfQdG2IPTnZaOZ0ejEDR6fZoLY5AUSun84MRKDrfIm0FEihqo3R+IAJF51ukrUACRW2Uzg9EoOh8i7QVyDW2NkoGKqCA1UCx4afuVLx6+aoBnJ9ZcGFh70z86faaqDDxsU3V+povuaAsk07QGyaqcTnZFfAndJAlESiG02sCxXB6rVZKoBhOvwkUw+k1gWI4vSZQDKfXBIrh9Jpr7HB6zUrTC+QSKKYv0889dr5QkzUP/D5IVKuY9Vdledck/WEigaKfx0jWqgkUs8r5tx+Bon89a6diAsV29Pzal0DRr361Uy2BYjt6fu1LoOhXv9qplkCxHT2/9iVQ9KtfVGtXgEDRgPf/vlyTe9dW5Qc/qkqtJtLRIfKud5bknKklOeRgfe9MjJbOyc5AMx0dkkDR0cYYKItA0QCqw0MSKDrcHM2lEShqBnV4OAJFh5ujuTQCRc2gDg9HoOhwczSXxjW2ZlCGK5QAgaLGdr7ya5H7H6rI+g1VqVT6Bn7bsSX50+klecNYc0FiYwmc7DQ20/GhCBQdb5DG8ggUNWJ6MBSBogdN0lQigaImSA+GIVD0oEmaSiRQ1ATpwTAEih40SVOJXGNrgmSYQgoQKGpo62u/EVn3rYp89/tV2bevb8A/mtAhf35uWSaMNx8kEihqaKJnQxAoetawNsolUGwDz8NdCRQ9bFrGkgkUM8J5uBuBoodNy1gygWJGOA93I1D0sGkZSyZQzAjHbkEIECi22Wb11eZvfqcqe38XJB7+hg75sw+W5di32gsSCRTbbKKHuxMoeti0jCUTKGaE83Q3AkVPG5ehbALFDGie7kKg6GnjMpRNoJgBzdNdCBQ9bVyGsgkUM6CxSzACBIpttvqiK/qSxDGHdNTfkXjyn5Tq70zM4xcnuzzU85mTQDEf9zxmJVDMQz2/OQkU87O3PTOBom3x/OYjUMzP3vbMBIq2xfObj0AxP3vbM3ONbVuc+XwSIFBss1s3r6zIUW/qkNMml6Sz3OZgbe7Oya5NQI92J1D0qFltlkqg2CagZ7sTKHrWsDbKJVBsA8+zXQkUPWtYG+USKLaB59muBIqeNayNcrnGbgOPXQsvQKCYoMVr1q2Xq5evqm857fST5Nr5s6S7uyvBnnY34WRn1zvP2QgU89S3OzeBol3vvGcjUMy7A/bmJ1C0Z533TASKeXfA3vwEivas856JQDHvDtibn2tse9bM5J8AgWJMzzY+uVluvHW13LJsroweNVJuvH11fY95F890rtuc7JxribGCCBSN0To3MIGicy0xWhCBolFepwYnUHSqHUaLIVA0yuvU4ASKTrXDaDEEikZ5nRqca2yn2kExjgkQKMY0RAWIRx4xTmZMnVzfMhowutRPTnYudcNsLQSKZn1dGp1A0aVumK+FQNG8sSszECi60gnzdRAomjd2ZQYCRVc6Yb4OAkXzxq7MwDW2K52gDhcFCBSH6Mru3XvlmuvvlJPefkx/oLh12w5ZvOwOWbLwIpkwvsepnnKyc6odRoshUDTK69TgBIpOtcN4MQSKxomdmYBA0ZlWGC+EQNE4sTMTECg60wrjhRAoGid2ZgKusZ1pBYU4KECgmCBQnDl9ikw6/qj6ltFA8cVX9jjYVkpCAAEEEEAAAQQQQAABBBBAAAEEEBhM4NBRw8FpQ4BAMUGgONQdigSKbRx97IoAAggggAACCCCAAAIIIIAAAgjkIECg2B46gWKMn0/vUGzvUGBvBBBAAAEEEEAAAQQQQAABBBBAAAEE4gUIFGOMfPrKc3y72QIBBBBAAAEEEEAAAQQQQAABBBBAAIH2BAgUE/itWbderl6+qr7ltNNPkmvnz5Lu7q4Ee7IJAggggAACCCCAAAIIIIAAAggggAACxRIgUPSsn2nCTXV35QVXLOtfIWGo281++ZVX5bKFN8mmZ7fUC73riwv7PwYUrbzxBfK1j2zo/63m7dXHgy5ZcIPseOGl/t8/7uiJcsuyuTJ61Ei3IQKsrvlnNa5P0eMkbvsAOZ1acvRn9TMLLpQZUycPWmPzOV5t1Lx9tPfq93vGjpHbll8pE8b3OLVuihFJc05v9mocM+rf8R8w3T2S0vx9rHkVjfN985/Z6vU6q+5eO2CxcecKd2WKXVm753Slc+GHp8m8i2cWG8rT1bXz97Hon8nRP8/pvdsHRdpzetpzgdurpzoEsgsQKGa3s75n2sev1YnxjYe/vh5KNU564w4bw19irHcufsJGfxofAIp+TTw6grpQ/dJXH5LLPnJO/W5ZdWwsXrKyP1iI2z++IrawJRDtlfq53fDY04MGCarXP/v5L/tDqbjtba2DeVoLqKBA/VIXj42Aad6lM1v+xwJ1HrjlH+6T//MXZ9WD/+j2cfvTA3cE0p7TG5U3X6DwHwHd6We0krR/H2vs3xxWRAPFxnnC3VVTmRJIbcCabwAAECNJREFUc05X2/NntD/HTdq/j8X9mUzv/el92nN69M94f1ZKpQjoFyBQ1G9qbMR2PxDDH2zGWtP2wOovMdetuEeWLJpdDxLS/kEV/UsNgWLbLbE2gPq5fH77zv6gP23von8JslY4E8UKqJ/LxUtXylVzzuu/g7D5YjRugOh5IO7iJW48ft+eQNZzeuPPeVXpUP9hwd5KmKmVQJa/jzWOiQWX/aUsXnqHNP+HhTTnBTqSn0CWczp/986vX2lnTvv3sbg/k+l92g7kt33ac3r0WMmvcmZGIH8BAsX8e5CoglYBU9rggb+wJqLOZaNWoVCafkWPhegjzzwWm0tbE00a7XPcX1Cjg6r9d/7iJR6NTKRtd6NW5+g0FxiNn+Mli2fX72iMPkLL4852+5lmtizn9OZzQZrjJE1dbNu+QJa/jzWfC0YfPLL+epNooNj8yDOPO7ffJxMjZDmnRx975XFnE53RM2bav4/F/ZlM7/X0xfQoWc7p0ddU8Pcx011ifJcFCBRd7k5TbY2T3czpU/oflUsTKHIXk9uNVv1Zff+jA0KhpIFikrsZCZ3c7X/0v4omDRQbf1ElLHa3t9G71FSlSYKi5ouUoYIFNZY6b/BuVPeOgbTn9OjdDkmOE/dWHUZFaf8+Fr2rLe4cH/0PCWGo+rHKrOf0xuoavVd/lx/qXbp+aBSvyqx/H2tIDPVnMr1393hJe05vtT1/H3O3v1RmXoBA0byxlhmy/NeTxsTR9+tpKYhBtApkuZtFFZD03Zit/hKsdQEMllkg7X8Rj07EfyzITG98xyx3szQXFfcfC1o9fmd8UUyQSCDtOb3VRznURLxHMRG31Y3S/n2s1UfSGgUP9vG1aLBhdYFMNqhAu+d0NTCPSrp7gLX797G4P5PpvZu9T3tObxUoxv2HIjdXTlUI6BEgUNTjaGWUtO93UEURJlppTduTZHnfVtIwURVHoNh2i4wNkPadPdFC4v4Ca6xwBo4VyPK+reigQ12A0PvYFuS2QZZzenOx3KGYW+sSTZzl72ONgZNceBIoJmqD9Y1Mn9OtL4gJBwiY/vsYgaK7B1zac3qru1mj78x2d7VUhoBeAQJFvZ5GR4v7AlX0dmvuXDLaDq2Dx30RNPoIVNydSw8/ulHe9IeHZ/oQhNaFMVisQNxXBaO9b/56uxqcxyxiiXPdYKgvgkYfgYp+vT36++qcrn6p9yk2es+HO3Jt76CTx53T4x5/I1B0s6+NquL+PjbUa0Zafb193bf/Xc6fcXp9+DSvs3FbqZjVxX3lubn3SuBra/+f/Nm090h3d1f/e3Cb359ZTCU/VxX397FW11mD/ZlM7/06BuLO6a16v3jJSrlt+ZX1ay3+zPar31SrV4BAUa+n8dGaX/AbfRQqerJr9QgVL4013qLME0Rf7tz8KFQ0VBrsEarGy77VH4wXXLGsvxYem8vcFis7Nvcr+k7EuN7zDkUrLco8SSNYWvvIhvoYze9EbBUqRc/bzdvzsaXMbchlx6HO6QSKubRE66RD/X0sTaAYPUeoIgd7FFrrAhgsk8BQ53Q1YLT3Q53TMxXATkYFhvr7WPQ6K+7PZHpvtFXaB09zja0mb96ev4trbwcDeiRAoOhRsygVAQQQQAABBBBAAAEEEEAAAQQQQACBvAUIFPPuAPMjgAACCCCAAAIIIIAAAggggAACCCDgkQCBokfNolQEEEAAAQQQQAABBBBAAAEEEEAAAQTyFiBQzLsDzI8AAggggAACCCCAAAIIIIAAAggggIBHAgSKHjWLUhFAAAEEEEAAAQQQQAABBBBAAAEEEMhbgEAx7w4wPwIIIIAAAggggAACCCCAAAIIIIAAAh4JECh61CxKRQABBBBAAAEEEEAAAQQQQAABBBBAIG8BAsW8O8D8CCCAAAIIIIAAAggggAACCCCAAAIIeCRAoOhRsygVAQQQQAABBBBAAAEEEEAAAQQQQACBvAUIFPPuAPMjgAACCCCAAAIIIIAAAggggAACCCDgkQCBokfNolQEEEAAAQQQQAABBBBAAAEEEEAAAQTyFiBQzLsDzI8AAggggAACCCCAAAIIIIAAAggggIBHAgSKHjWLUhFAAAEEEEAAAQQQQAABBBBAAAEEEMhbgEAx7w4wPwIIIIAAAggggAACCCCAAAIIIIAAAh4JECh61CxKRQABBBBAAAEEEEAAAQQQQAABBBBAIG8BAsW8O8D8CCCAAAIIIIAAAggggAACCCCAAAIIeCRAoOhRsygVAQQQQAABBBBAAAEEEEAAAQQQQACBvAUIFPPuAPMjgAACCCCAQFACa9atlw2PPS3Xzp8l3d1dQa0962I3PrlZbrx1tdyybK6MHjUy6zDshwACCCCAAAIIIKBJgEBREyTDIIAAAggggAACKiy8evmqfoiesWPktuVXyoTxPf3/LkmguHv3Xrnm+jtl3GFjZN7FM9uGbRXI6Z6jVZFq3sVLVu5noLZtzH/S24+RGVMnD7lGAsW2DwEGQAABBBBAAAEEtAoQKGrlZDAEEEAAAQQQCFGgEY797Oe/HHAXnQrCLrhimXxmwYX9oVmSQFG3YV6B3MuvvCqXLbxJZk6fsl9ouHXbDlm87A5ZsvCiAYHrYMEkdyjqPioYDwEEEEAAAQQQyC5AoJjdjj0RQAABBBBAAIG6wFB34qkAcfX9j/YHjY1A8bijJ8rSm79S31/978bjvI0QUv375iBS/f/oHZB3fXGhTDr+qP4uqJDukgU3yI4XXuofd8HfnCcLrr21/9+p37jww9Pkso+cU78LsnGH4GCh4423r66P1bhTMq6G6CExWICqxt35i5fqj37veOHFAXVH1x6trVWtrQLKqIdat447PjnsEUAAAQQQQACB0AUIFEM/Alg/AggggAACCLQtEA3dmgds3KU379KZ9fCvEcg1h4XN4Zp6r2Krx4GjwVwjLFuyeHZ93Oj/VzU8/OhGedMfHi4v/erX+72DMDpHtE61f6vam9//2GrOKGaroC9656La5pH1/yEX/9X0+u7RcbMEitF5bTzi3faBxAAIIIAAAggggIAnAgSKnjSKMhFAAAEEEEDATYG4oCoanrW6Y2+w8Ktx96AaY/HSlXLVnPMGPB7cHGQOFWoO9Q7F5ncYRoNNtZ+6u1LdRbhrz57YGlp1qJVPkkewVS1HHjGu/qh0lkCxef9GXUnmdfMooyoEEEAAAQQQQMAtAQJFt/pBNQgggAACCCDgmYCOQDF6J2D07sHoo7vNRM2PL6t3FTY/Aj1UkNbqLsjmYLNn7KEDHomOq2GoR4mjj323Cj+bH/Vu1N14RDltoNiofe0jG/Y7mpofL/fsUKNcBBBAAAEEEEDAGQECRWdaQSEIIIAAAggg4KtA2keemx8bVmtOEigO9QGTRjjYbqDYHDK+7ZiJAz6akuYjKtE+Nq/vj448vP6hlsYj4Gpb5ffgtzcM+Bp0s2nWQDHJF6R9PeaoGwEEEEAAAQQQyFOAQDFPfeZGAAEEEEAAgUIIZPkoi3qMWL0vUf1K8shzNISLwg0Vaqrxr1txjyxZNFtGjxpZ37XVHYrq3zd/NGbTs1vqjzurOlu9YzFN8xr1TT7x2AHvcxwsDG0nUJwwvqceUqpffIQlTZfYFgEEEEAAAQQQSCZAoJjMia0QQAABBBBAAIFBBRqh2M9+/sv+rzWrjRuP8TZ/jTn6DsVWj0y3Cvta3cWnxldzNt4zeMEVy6R5rsZHWVQt6uvPjQ+4DBUoNoJDFSZGvyIdV8NQh0gjdB1zyCj58+mn1WturmPcYWP6w7+G22CPPEc/2tLwevyp5/rvcmyM0fzxG7W2L331ofoXrhthLoc1AggggAACCCCAQHoBAsX0ZuyBAAIIIIAAAgi0FGh8wbnxmz1jxwx4jFf9++g26t81grPGfkPdPXj18lX9c0fHj76HsPl9gc3zNr93sdVjwSo43Pj45gHhaGPSJGtshdMIKl/831/tZ9IcYjY8GmOoOwxbfUylea3KYf6c8+RLX31Qliy8qP/DNa3e+9gcMHIYI4AAAggggAACCGQTIFDM5sZeCCCAAAIIIICAMYHBAkVjEzIwAggggAACCCCAAAIpBAgUU2CxKQIIIIAAAgggYEOg3fcV2qiRORBAAAEEEEAAAQTCFSBQDLf3rBwBBBBAAAEEHBOIPpbMB0UcaxDlIIAAAggggAACCNQFCBQ5EBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgsQCBYmIqNkQAAQQQQAABBBBAAAEEEEAAAQQQQAABAkWOAQQQQAABBBBAAAEEEEAAAQQQQAABBBBILECgmJiKDRFAAAEEEEAAAQQQQAABBBBAAAEEEECAQJFjAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQSCxAoJqZiQwQQQAABBBBAAAEEEEAAAQQQQAABBBAgUOQYQAABBBBAAAEEEEAAAQQQQAABBBBAAIHEAgSKianYEAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIFDkGEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCxAIFiYio2RAABBBBAAAEEEEAAAQQQQAABBBBAAAECRY4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgsQKCYmIoNEUAAAQQQQAABBBBAAAEEEEAAAQQQQIBAkWMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBILECgmpmJDBBBAAAEEEEAAAQQQQAABBBBAAAEEECBQ5BhAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcQCBIqJqdgQAQQQQAABBBBAAAEEEEAAAQQQQAABBAgUOQYQQAABBBBAAAEEEEAAAQQQQAABBBBAILEAgWJiKjZEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJFjgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSCxAoJiYig0RQAABBBBAAAEEEEAAAQQQQAABBBBAgECRYwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEgsQKCamYkMEEEAAAQQQ+P/bsUMaAAAAhmH+Xc/CBJQfNUcjQIAAAQIECBAgQIAAAUHRBwgQIECAAAECBAgQIECAAAECBAgQ2AKC4qYyJECAAAECBAgQIECAAAECBAgQIEBAUPQBAgQIECBAgAABAgQIECBAgAABAgS2gKC4qQwJECBAgAABAgQIECBAgAABAgQIEBAUfYAAAQIECBAgQIAAAQIECBAgQIAAgS0gKG4qQwIECBAgQIAAAQIECBAgQIAAAQIEBEUfIECAAAECBAgQIECAAAECBAgQIEBgCwiKm8qQAAECBAgQIECAAAECBAgQIECAAAFB0QcIECBAgAABAgQIECBAgAABAgQIENgCguKmMiRAgAABAgQIECBAgAABAgQIECBAQFD0AQIECBAgQIAAAQIECBAgQIAAAQIEtoCguKkMCRAgQIAAAQIECBAgQIAAAQIECBAQFH2AAAECBAgQIECAAAECBAgQIECAAIEtIChuKkMCBAgQIECAAAECBAgQIECAAAECBAKRUYfUc9etcQAAAABJRU5ErkJggg==",
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = plot_edf(study)\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "a8d969a2-9a81-475f-84f9-efd497123d23",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "cliponaxis": false,
+ "hovertemplate": [
+ "ratio (FloatDistribution): 0.02501996521889943",
+ "similarity_threshold (FloatDistribution): 0.06169046073051812",
+ "qgrams (IntDistribution): 0.9132895740505825"
+ ],
+ "marker": {
+ "color": "rgb(66,146,198)"
+ },
+ "orientation": "h",
+ "text": [
+ "0.03",
+ "0.06",
+ "0.91"
+ ],
+ "textposition": "outside",
+ "type": "bar",
+ "x": [
+ 0.02501996521889943,
+ 0.06169046073051812,
+ 0.9132895740505825
+ ],
+ "y": [
+ "ratio",
+ "similarity_threshold",
+ "qgrams"
+ ]
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "showlegend": false,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "white",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "#C8D4E3",
+ "linecolor": "#C8D4E3",
+ "minorgridcolor": "#C8D4E3",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "white",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#C8D4E3"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "white",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "radialaxis": {
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "yaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ },
+ "zaxis": {
+ "backgroundcolor": "white",
+ "gridcolor": "#DFE8F3",
+ "gridwidth": 2,
+ "linecolor": "#EBF0F8",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#EBF0F8"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ },
+ "bgcolor": "white",
+ "caxis": {
+ "gridcolor": "#DFE8F3",
+ "linecolor": "#A2B1C6",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#EBF0F8",
+ "linecolor": "#EBF0F8",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#EBF0F8",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Hyperparameter Importances"
+ },
+ "xaxis": {
+ "autorange": true,
+ "range": [
+ 0,
+ 0.9613574463690342
+ ],
+ "title": {
+ "text": "Importance for duration"
+ },
+ "type": "linear"
+ },
+ "yaxis": {
+ "autorange": true,
+ "range": [
+ -0.5,
+ 2.5
+ ],
+ "title": {
+ "text": "Hyperparameter"
+ },
+ "type": "category"
+ }
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAFoCAYAAAAmSXdBAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3X/sHtV9L/hDWrBD6phfDcghJYG9uiA20LKi8W6WXtSyagulrdBaZUPVciFAQDeCBYKMpaAVkYxFgCWbXCgh0OSqieh6RVux0Eaie4nYRu6ikoYIwVUDN6iJBWldCrTBJg1ezdPMV/MdP79nnpnzeZ6X/4rxzDmfeX3m+Mc7Z2YOO3jw4MHkBwECBAgQIECAAAECBAgQIECAAAECBKYQOEygOIWSQwgQIECAAAECBAgQIECAAAECBAgQGAgIFN0IBAgQIECAAAECBAgQIECAAAECBAhMLSBQnJrKgQQIECBAgAABAgQIECBAgAABAgQICBTdAwQIECBAgAABAgQIECBAgAABAgQITC0gUJyayoEECBAgQIAAAQIECBAgQIAAAQIECAgU3QMECBAgQIAAAQIECBAgQIAAAQIECEwtIFCcmsqBBAgQIECAAAECBAgQIECAAAECBAgIFN0DBAgQIECAAAECBAgQIECAAAECBAhMLSBQnJrKgQQIECBAgAABAgQIECBAgAABAgQICBTdAwQIECBAgAABAgQIECBAgAABAgQITC0gUJyayoEECBAgQIAAAQIECBAgQIAAAQIECAgU3QMECBAgQIAAAQIECBAgQIAAAQIECEwtIFCcmsqBBAgQIECAAAECBAgQIECAAAECBAgIFN0DBAgQIECAAAECBAgQIECAAAECBAhMLSBQnJrKgQQIECBAgAABAgQIECBAgAABAgQICBTdAwQIECBAgAABAgQIECBAgAABAgQITC0gUJyayoEECBAgQIAAAQIECBAgQIAAAQIECAgU3QMECBAgQIAAAQIECBAgQIAAAQIECEwtIFCcmsqBBAgQIECAAAECBAgQIECAAAECBAgIFN0DBAgQIECAAAECBAgQIECAAAECBAhMLSBQnJrKgQQIECBAgAABAgQIECBAgAABAgQICBTdAwQIECBAgAABAgQIECBAgAABAgQITC0gUJyayoEECBAgQIAAAQIECBAgQIAAAQIECAgU3QMECBAgQIAAAQIECBAgQIAAAQIECEwtIFCcmsqBBAgQIECAAAECBAgQIECAAAECBAgIFN0DBAgQIECAAAECBAgQIECAAAECBAhMLSBQnJrKgQQIECBAgAABAgQIECBAgAABAgQICBTdAwQIECBAgAABAgQIECBAgAABAgQITC0gUJyayoEECBAgQIAAAQIECBAgQIAAAQIECAgU3QMECBAgQIAAAQIECBAgQIAAAQIECEwtIFCcmsqBBAgQIECAAAECBAgQIECAAAECBAgIFN0DBAgQIECAAAECBAgQIECAAAECBAhMLSBQnJrKgQQIECBAgAABAgQIECBAgAABAgQICBTdAwQIECBAgAABAgQIECBAgAABAgQITC0gUJyayoEECBAgQIAAAQIECBAgQIAAAQIECAgU3QMECBAgQIAAAQIECBAgQIAAAQIECEwtIFCcmsqBBAgQIECAAAECBAgQIECAAAECBAgIFH98Dzz1zefTpdfuSl/8zPZ09pmnHnJnPPzYk+neL/1xuu/2G9LJJ21x52Qs8Oprb6Rrtt+dzv65U9P1V27rrNLyHqpO+KmbLk8XnX9OZzW0OdGLL+1NV910Z7r6d38z7DW06WEsAgQIECBAgAABAgQIECBA4F8FBIoCxaVbC30FigXk/v1vpVvueDD97ff+Lt2z67p09OZNYX0FimFbp3ACBAgQIECAAAECBAgQILBQAYGiQHGhN1gfgwsU21EXKLbjaBQCBAgQIECAAAECBAgQILBsAgLFOQPFcY9A13/trs/vTk994/m08+aPph23fSE989wLg1kvOG9ruvXGy9LGjUesu6/qj86ecdop63a7VQOz3/zlDw8eS937yr618e75T38y1XzlbrpHH9+zbv56XePm2/Hx3047P/sHadIYxQSFw8vf35d+d9svp+tu+dyg5qrDt/7Li4PHzssfo3wK30/e/sDQ48paS+NRY40bozinGqa9770/vVbX5R+5YOxj1ON2KDa9/mpNRY1Vg2GP6pfHl85bjj/2kEf2q/fqH3/1L9IDX3l0QLZzxxXpcw88vNaj0rG8/mGPdxfH1OuYteZh9+So+7/a42HXX3iX11PUVh9n2X4zdz0ECBAgQIAAAQIECBAgQKArAYHij6VnfYfiqF1wZSBywnuOXQueymCjGmiUxxXTV0PF4tg//fM964KfekBZDc2GhW7TzlfU8Ol7H0qXXHTe2nshh9U1br5pxygDxSLgqdZcDb2G/ffq+/tGhXVlYFs+Yjxuh+K0Y1TrmhQiVhfrpECxyfVXa6q+m3HYvTvsv5UhajV8qwar48LA+nsgi/Gf/MtvrQtXh805quZhgXx57K/+0tZ14xbHFqFu8W7Tco7q9Q/bSVm/J0att65+ozUPAQIECBAgQIAAAQIECBBYJgGBYi1QHNfc+g6vIujY/cgT63YPDgtV6uFGOUf92DIYKXaHVT8MUw/IJj3SO+18o661qGvHzvvXQs1J8w0bpz5GGSgWOxTruzLLnXuT/vuwMYtx64HSuHqnHWPex30nBYpNrn9UTfWw7M0DB0Z+lKZ+b4zbaTurwbAwfdQYZY+2XXju4IMv0wR+w8Yv773qdRX/bdRHeb76xFPp320985Bdwcv0m7prIUCAAAECBAgQIECAAAECixYQKNYCxVm+8jxqZ1Q9NBoV8NXPHxZQVgOTctxxgVEZ3BWPWNc/CjIq3Kk//luMUQ1PpwkUJ43RRqA4KnisB03j6p12jFnDtLJPfQSK9Z6/+o9vDB6DrwfTxXH1ALFJoDjq8fLqjs5JgWL5Je56wDjsN75RgXtxbDUo3nL8cYMP4xSP4Uf+yvaif/M3PgECBAgQIECAAAECBAgQmFdAoNggUKyHZHtf+fuhQc6oQLEeotTf+VZvavlI8LyBYn2+8ud//w//uO4R61l2KE47RtNAsTi/DIlG3exlkDXpcfT6+x6r45VjRAsUq2H0t7/zvcE7H4eF4/VdsfMGimWAXA0P59mhWAaK03iPem9j2b9qCD7sXYzD3iE572+cziNAgAABAgQIECBAgAABAqssIFBsGChWd0397ff+Lu15+tmhj/ROs2Nw3A7F6k06acfgLDsi7/3SHx/yoY5ZAsVRgdQiHnketbuwvoDn2aFYH2OagGvYbxyrsENxUmBbfX9oVzsUJ/0mXtZx3DFHHbJzd9K5fp0AAQIECBAgQIAAAQIECBBYLyBQbBgoVt/9VgSK5Tvhqszj3mlYfVfhpA/DlGPOGyjWQ75p65oU0A0LSxcRKI7bTVf1HveuvWnHiBQozvrId7Vf4zxGPYY86V2O8wSK496hWMz35v4DacsJx418N2I9cP/Wc/81/cLWM9b9bjdt7/0hQYAAAQIECBAgQIAAAQIECIwXECg2DBSL08sgsPoV50mB4qgv2paPPdcfV61+VXeeQHHYfOO+DjztOxSnHaPwmPbjK6Vd/fgydPrGt/7mkF2VRVhU/Ci/RjwqLJ12jEiB4rAvgw/7GvKorzwP26VaWI4K+Yb99+ojxvO8Q7GYb9g9Wn9vYnld9S9vF2vits9+Od388UsG90H9oyzTfPTFHxYECBAgQIAAAQIECBAgQIDAdAICxRYCxUkflBj1bsRRH4wY9q64aQO+Mrh74CuPHnIHDJuvPlcR1JzzoQ/O9JXnacZoI1AsL2jYB2DqYW79HXrl+yc3bjxiMMykMeYJFIf1rWreNFAta9r7yr51vR0VZNePH/YOwUm79uofXimDvLpvMfbdt/6H9KXdX03z7FAsL2jYh17q9+2oj8FUjxtmVQ8hp/st0lEECBAgQIAAAQIECBAgQIBAXUCg2MI9MSmUGbVbroWphw7R9XyLug7jrheYJ+RkSIAAAQIECBAgQIAAAQIECBBoW0Cg2FB00uPHxfBdB3xdz9eQ0OlTCggUp4RyGAECBAgQIECAAAECBAgQILBQAYFiQ95JuxMFig2Bnb4mIFB0MxAgQIAAAQIECBAgQIAAAQI5CAgUc+iCGggQIECAAAECBAgQIECAAAECBAgEERAoBmmUMgkQIECAAAECBAgQIECAAAECBAjkICBQzKELaiBAgAABAgQIECBAgAABAgQIECAQRECgGKRRyiRAgAABAgQIECBAgAABAgQIECCQg4BAMYcuqIEAAQIECBAgQIAAAQIECBAgQIBAEAGBYpBGKZMAAQIECBAgQIAAAQIECBAgQIBADgICxRy6oAYCBAgQIECAAAECBAgQIECAAAECQQQEikEapUwCBAgQIECAAAECBAgQIECAAAECOQgIFHPoghoIECBAgAABAgQIECBAgAABAgQIBBEQKAZplDIJECBAgAABAgQIECBAgAABAgQI5CAgUMyhC2ogQIAAAQIECBAgQIAAAQIECBAgEERAoBikUcokQIAAAQIECBAgQIAAAQIECBAgkIOAQDGHLqiBAAECBAgQIECAAAECBAgQIECAQBABgWKQRimTAAECBAgQIECAAAECBAgQIECAQA4CAsUcuqAGAgQIECBAgAABAgQIECBAgAABAkEEBIpBGqVMAgQIECBAgAABAgQIECBAgAABAjkICBRz6IIaCBAgQIAAAQIECBAgQIAAAQIECAQRECgGaZQyCRAgQIAAAQIECBAgQIAAAQIECOQgIFDMoQtqIECAAAECBAgQIECAAAECBAgQIBBEQKAYpFHKJECAAAECBAgQIECAAAECBAgQIJCDgEAxhy6ogQABAgQIECBAgAABAgQIECBAgEAQAYFikEYpkwABAgQIECBAgAABAgQIECBAgEAOAgLFHLqgBgIECBAgQIAAAQIECBAgQIAAAQJBBASKQRqlTAIECBAgQIAAAQIECBAgQIAAAQI5CAgUc+iCGggQIECAAAECBAgQIECAAAECBAgEERAoBmmUMgkQIECAAAECBAgQIECAAAECBAjkICBQzKELaiBAgAABAgQIECBAgAABAgQIECAQRECgGKRRyiRAgAABAgQIECBAgAABAgQIECCQg4BAMYcuqIEAAQIECBAgQIAAAQIECBAgQIBAEAGBYpBGKZMAAQIECBAgQIAAAQIECBAgQIBADgICxRy6oAYCBAgQIECAAAECBAgQIECAAAECQQQEikEapUwCBAgQIECAAAECBAgQIECAAAECOQgIFHPoghoIECBAgAABAgQIECBAgAABAgQIBBEQKAZplDIJECBAgAABAgQIECBAgAABAgQI5CAgUMyhC2ogQIAAAQIECBAgQIAAAQIECBAgEERAoBikUcokQIAAAQIECBAgQIAAAQIECBAgkIOAQDGHLqiBAAECBAgQIECAAAECBAgQIECAQBABgWKQRimTAAECBAgQIECAAAECBAgQIECAQA4CAsUcuqAGAgQIECBAgAABAgQIECBAgAABAkEEBIpBGqVMAgQIECBAgAABAgQIECBAgAABAjkICBRz6IIaCBAgQIAAAQIECBAgQIAAAQIECAQRECgGaZQyCRAgQIAAAQIECBAgQIAAAQIECOQgIFDMoQtqIECAAAECBAgQIECAAAECBAgQIBBEQKAYpFHKJECAAAECBAgQIECAAAECBAgQIJCDgEAxhy6ogQABAgQIECBAgAABAgQIECBAgEAQAYFikEYpkwABAgQIECBAgAABAgQIECBAgEAOAgLFHLqgBgIECBAgQIAAAQIECBAgQIAAAQJBBASKQRoVocy/f+3AoMzjNm+IUK4aawJF//Qu5m3xgwM/SungwXTkxp+MeQErXvW+1w6kYzZvSIetuEPEy3/zwI/S2wcPpndZexHbl/a9fiAds2lDOsziC9c/ay9cy9YVbO3F7d+bb/0ovf2jg+ld7/R3zohd/IfX30pHbTo8vcMffBHbl2XNAsUs2xKzKIFizL6VVQsU4/ZPoBi3d0XlAsW4/RNqxO3dYO0JFMM20NoL27pB4dZe3P4JFOP2rqhcoBi7fzlWL1DMsStBaxIoBm3cj8sWKMbtn0Axbu8EirF7J9SI3T+hRtz+WXtxeydQjN07gWLs/gkUY/cvx+oFijl2JWhNAsWgjRMoxm5cSkmgGLuFdijG7Z9QI27vhBqxe2ftxe6fMD9u/wSKcXtnh2Ls3uVavUAx184ErEugGLBplZLtUIzbP4Fi3N7ZoRi7d0KN2P0TasTtn7UXt3fC/Ni9EyjG7p8dirH7l2P1AsUcuxK0piKQ2nD4O9KmIw8PegWrXfYbP/ih3gW9BQ788O2U0sG04fCfCHoFq112sfZ+6sjDfZQl4G3w1g/fTgetvYCd+9eS33jzh+mnNh7uoywBO2jtBWxapWRrL27/3vqXt9PBtw+mDUf4O2fELv7Tm/+S3rXxJ9JhPsoSsX1Z1ixQzLItMYsqAsV7vv5SzOJVTYAAAQIECBAgQIAAAQIECBwicOnW96WfOfqdZAisExAouiFaEygDxa99e19rYxqIAAECBAgQIECAAAECBAgQ6Edg04afTP/Htv9WoNgPf9azChSzbk+s4gSKsfqlWgIECBAgQIAAAQIECBAgME5AoOj+GCUgUHRvtCYgUGyN0kAECBAgQIAAAQIECBAgQKB3AYFi7y3ItgCBYratiVeYQDFez1RMgAABAgQIECBAgAABAgRGCQgU3RujBASK7o3WBASKrVEaiAABAgQIECBAgAABAgQI9C4gUOy9BdkWIFDMtjXxChMoxuuZigkQIECAAAECBAgQIECAwCgBgaJ7Y5SAQNG90ZqAQLE1SgMRIECAAAECBAgQIECAAIHeBQSKvbcg2wIEitm2Jl5hAsV4PVMxAQIECBAgQIAAAQIECBAYJSBQdG+MEhAoujdaExAotkZpIAIECBAgQIAAAQIECBAg0LuAQLH3FmRbgEAx29bEK0ygGK9nKiZAgAABAgQIECBAgAABAqMEBIrujVECAkX3RmsCAsXWKA1EgAABAgQIECBAgAABAgR6FxAo9t6CbAsQKGbbmniFCRTj9UzFBAgQIECAAAECBAgQIEBglIBA0b0xSkCg6N5oTUCg2BqlgQgQIECAAAECBAgQIECAQO8CAsXeW5BtAQLFbFsTrzCBYryeqZgAAQIECBAgQIAAAQIECIwSECi6N0YJCBTdG60JCBRbozQQAQIECBAgQIAAAQIECBDoXUCg2HsLsi1AoJhta+IVJlCM1zMVEyBAgAABAgQIECBAgACBUQICRffGKAGBonujNQGBYmuUBiJAgAABAgQIECBAgAABAr0LCBR7b0G2BQgUs21NvMIEivF6pmICBAgQIECAAAECBAgQIDBKQKDo3hglIFB0b7QmIFBsjdJABAgQIECAAAECBAgQIECgdwGBYu8tyLYAgWK2rYlXmEAxXs9UTIAAAQIECBAgQIAAAQIERgnUA8VXX3sjXbP97vTMcy8MTvniZ7ans888dSTgiy/tTVfddGfa+8q+kccXx3z63ofSzpuvSEdv3qQZQQQEihk3qr5Qi1I/ddPl6aLzzxlU/fBjT6ZP3v7A2hWccdop6Z5d1w1+XizwC87bmr70f/7Z4Of33X5D+uOv/kV64CuPDn6+5fhjB//t5JO2pHKes3/u1LVfL8793W2/nK675XODhV/8/NYbL0sbNx4xOP+uz+8+ZKx3H3VsuufrL6Wvfftff6PwgwABAgQIECBAgAABAgQIEIgrUA0U9+9/K91yx4Np61mnD3KJIgjcsesLaef2jw6yhfqPMmu4/mPbBqHjU998Pu3Yef8hWUQRTpZ5hkAxzr0iUMy0V+VCPeE9x6brr9yW6gu3vhCLn9/1e7vXBYrve+9Pr4WAxUJ+7M//Ml1y0XlrgeDL3983+PU3DxwYBJBFoFjMVS768vzy16u/Cex+5Im1sYu5ix8feP8HBIqZ3k/KIkCAAAECBAgQIECAAAECswpUA8X6TsJ6TlEfu9gEtefpZ9eyg1HH26E4a1fyOF6gmEcfDqminvTXF16xQ7D4UQSAxY9hgWIZAA67xHHH1+eq/7z4TaEIFIvdkNX/98Ajz5neTMoiQIAAAQIECBAgQIAAAQJzCFQDxWqOUGYB9WyiOkU9UCx+bdjxAsU5GpPBKQLFDJowrIRJyX+xCN9/4glrjz9PEygWx1x67a616eqPSJcB5KRAsfxNoHx8unwc+p8OHLRDMdP7SVkECBAgQIAAAQIECBAgQGBWgXqgWH1acVRAWM4x7JFogeKsHcj3eIFipr1pe4fiNI9IzxIolmzV8PEXPvzzAsVM7ydlESBAgAABAgQIECBAgACBWQWa7FAs5qp/+6H4b9VvQxQ/t0Nx1q7kcbxAMY8+HFLFsJedFl9Guvp3f3OwK7G+1bhI+Z/6xvPr3qFYfeS5fnz1seVi8uIditMGil994qn0bz7w3sFLVwWKmd5AyiJAgAABAgQIECBAgAABAg0FmrxDsT51kR8UX3Muvu1Q/YiLQLFhk3o6fWSgWHyYY8dt96dPXH3x0K/19FTvSk1b/bz6L2w9Y3Dt/9MvnL32mHP1S8uXf+SCVP/ISjVQLIO/Rx/fMxjnf/z5D6bX3/jB0ABy0iPP9Ueni7mLdzl6h+JK3Z4ulgABAgQIECBAgAABAgSWXGCWrzyXGcbOHVcMvupc/zHqfYsCxZg3kUAxSN+m+XrSd7778tpHWvq4LIFiH+rmJECAAAECBAgQIECAAAECixGoBorFDMXms+IJx2eee2Ew4Rc/s30tPBwWKFY3QtUfda6PVYxXblhazNUYtU2BsY88F40/50MfHJost1mEsSYL1APF+sIrP4yyceMRkwdb0BECxQXBGpYAAQIECBAgQIAAAQIECPQgUA8UeyjBlJkKjA0Ui3T5yw8/Pnjsuc+gKlM7ZdUEBIpuCQIECBAgQIAAAQIECBAgsDwCAsXl6WXbVzL2kefqNtb6xGecdsrg/XtHb97Udk3GCyogUAzaOGUTIECAAAECBAgQIECAAIEhAgJFt8UoAV95dm+0JiBQbI3SQAQIECBAgAABAgQIECBAoHcBgWLvLci2AIFitq2JV5hAMV7PVEyAAAECBAgQIECAAAECBEYJCBTdG6MExgaK5YdAHn18T9py/LHpvttvSFuOPy7dcseDaetZp6eLzj+HLIE1AYGim4EAAQIECBAgQIAAAQIECCyPgEBxeXrZ9pVM/Mrz+088IZ3/ix9Kn773oXTJReelk0/akp765vNp9yNPpFtvvMzHWtruSODxBIqBm6d0AgQIECBAgAABAgQIECBQExAouiVGCYz9KMuO2+4ffOG52JVYDRSLrz8XP9958xU+yuLeWhMQKLoZCBAgQIAAAQIECBAgQIDA8ggIFJenl21fyVyBoh2KbbdhOcYTKC5HH10FAQIECBAgQIAAAQIECBAoBASK7oNRAmMfeX74sSfTnqefTTd//JL0uQf/aPDI89FHbUrXbL87bbvwXO9QdF+tExAouiEIECBAgAABAgQIECBAgMDyCAgUl6eXbV/JxK88F7sRL71217p5v/iZ7ensM09tuxbjBRcQKAZvoPIJECBAgAABAgQIECBAgEBFQKDodhglMNUjz8WHWKo/PPLshhomIFB0XxAgQIAAAQIECBAgQIAAgeURECguTy/bvpK5AkUfZWm7DcsxnkBxOfroKggQIECAAAECBAgQIECAQCEgUHQfjBKYK1As3614642XpY0bj6BLYCAgUHQjECBAgAABAgQIECBAgACB5REQKC5PL9u+kkMCxWL34VU33Zn2vrJv5Fxbjj823Xf7Dan+KHTbxRkvloBAMVa/VEuAAAECBAgQIECAAAECBMYJCBTdH6ME5tqhiJPAMAGBovuCAAECBAgQIECAAAECBAgsj4BAcXl62faVTPzKc9sTGm95BQSKy9tbV0aAAAECBAgQIECAAAECqycgUFy9nk97xQLFaaUcN1FAoDiRyAEECBAgQIAAAQIECBAgQCCMgEAxTKs6L1Sg2Dn58k5YBorLe4WujAABAgQIECBAgAABAgQIrJbApVvfl37m6Heu1kW72okCYwPF/fvfSrfc8WB69PE9qfwQy5bjjxv8t61nnZ4uOv+ciRM4YHUEikBxw+HvSJuOPHx1LnqJrvSNH/xQ74L288AP304pHUwbDv+JoFew2mUXa++njjw8HbbaDCGv/q0fvp0OWnshe1cU/cabP0w/tfHwdJjFF66H1l64lq0r2NqL27+3/uXtdPDtg2nDEf7OGbGL//Tmv6R3bfyJdJg/+CK2L8uaxwaKd31+d3r/iSek83/xQ+nT9z6ULrnovMGXnZ/65vNp9yNPpFtvvCxt3HhElhemqO4FikCx+HHc5g3dT27GxgJF//SuMWMvA/zgwI9SOngwHbnxJ3uZ36TNBPa9diAds3mDQLEZYy9nv3ngR+ntgwfTu6y9XvybTrrv9QPpmE0bBIpNIXs439rrAb3FKa29FjE7HurNt36U3v7RwfSud/o7Z8f0rUz3D6+/lY7adHh6h0CxFU+DpDTVV56LXYnVQPHFl/YOfr7z5ivS0Zs3cSQwEBAoxr4RBIpx+ydQjNu7onKBYtz+CTXi9m6w9gSKYRto7YVt3aBway9u/wSKcXtXVC5QjN2/HKufK1C0QzHHVvZfk0Cx/x40qUCg2ESv33MFiv36N51doNhUsL/zhRr92bcxs1CjDcV+xrD2+nFva1Zrry3J7scRKHZv3uaMAsU2NY1VCIx95Pnhx55Me55+Nt388UvS5x78o8Ejz0cftSlds/3utO3Cc71D0T20TkCgGPuGECjG7Z9AMW7visoFinH7J9SI27vB2rNDMWwDrb2wrRsUbu3F7Z9AMW7visoFirH7l2P1E7/yXOxGvPTaXetq/+Jntqezzzw1x+tRU48CAsUe8VuYWqDYAmJPQwgUe4JvaVqBYkuQPQwj1OgBvcUphRotYnYd1VsUAAAgAElEQVQ8lLXXMXjL01l7LYN2OJxAsUPsBUwlUFwA6ooPOTFQXHEflz+DgEBxBqwMDxUoZtiUKUsSKE4JlelhAsVMGzNFWUKNKZAyPkSokXFzJpRm7cXtXVG5tRe3fwLFuL0rKhcoxu5fjtULFHPsStCaBIpBG/fjsgWKcfsnUIzbu8E/rHzlOWwDhRphWzcoXKgRt3/WXtzeWXuxeydQjN0/gWLs/uVY/dhAsfia81U33Zn2vrLvkNrPOO2UdM+u63zlOceu9lSTQLEn+JamFSi2BNnDMALFHtBbnFKg2CJmx0MJNToGb3k6gWLLoB0OZ+11iL2Aqay9BaB2NKRAsSPoBU0jUFwQ7AoPOzJQ3L//rXTLHQ+mrWed7uMrK3yDzHLpAsVZtPI7VqCYX0+mrUigOK1UnscJFPPsyzRVCTWmUcr3GKFGvr2ZVJm1N0ko71+39vLuz7jqBIpxe1dULlCM3b8cqx8ZKL762htpx233p09cfXE6+aQtOdaupswEBIqZNWTGcgSKM4JldLhAMaNmzFGKQHEOtExOEWpk0og5yxBqzAmXwWnWXgZNaFCCtdcAr+dTBYo9N6Dh9ALFhoBOP0Rg4g7FbRee64vObpypBIpAasPh70ibjjx8quMdlJeAQDGvfsxSjUBxFq38jhUo5teTaSsSakwrledxQo08+zJNVdbeNEr5HmPt5dubSZUJFCcJ5f3rAsW8+xOxurHvUHz4sSfTnqefTbfeeFnauPGIiNen5g4FikDqnq+/1OGM+U/1sye+O/36B0/Iv9CUkkAxRJuGFilQjNu7onKBYtz+CTXi9m6w9l4/kI7ZtCEddljs61jF6q292F239uL2T6AYt3dF5QLF2P3LsXofZcmxK0FrKgPFr3370I/4BL2kxmVfe+4HBIqNFQ0wSUCgOEko718XKObdn3HVCTXi9k6gGLt31l7s/gkU4/ZPoBi3dwLF2L3LtfqJjzz7KEuurcuvLoHioT0RKOZ3ny5jRQLF2F0VKMbtn1Ajbu8EirF7Z+3F7p9AMW7/BIpxeydQjN27XKv3UZZcOxOwLoGiQDHgbbsUJQsUY7dRoBi3f0KNuL0TKMbunbUXu38Cxbj9EyjG7Z1AMXbvcq1+4g5FH2XJtXX51SVQFCjmd1euRkUCxdh9FijG7Z9QI27vBIqxe2ftxe6fQDFu/wSKcXsnUIzdu1yr91GWXDsTsC6BokAx4G27FCULFGO3UaAYt39Cjbi9EyjG7p21F7t/AsW4/RMoxu2dQDF273Ktfuwjz9dsvzs989wLQ2s/47RT0j27rktHb96U67Wpq2MBgaJAseNbznQ/FhAoxr4VBIpx+yfUiNs7gWLs3ll7sfsnUIzbP4Fi3N4JFGP3Ltfqx+5QzLVodeUpIFAUKOZ5Zy5/VQLF2D0WKMbtn1Ajbu8EirF7Z+3F7p9AMW7/BIpxeydQjN27XKsXKObamYB1CRQFigFv26UoWaAYu40Cxbj9E2rE7Z1AMXbvrL3Y/RMoxu2fQDFu7wSKsXuXa/UCxVw7E7AugaJAMeBtuxQlCxRjt1GgGLd/Qo24vRMoxu6dtRe7fwLFuP0TKMbtnUAxdu9yrX5soPjiS3vTVTfdmfa+su+Q+r1DMdeW9leXQFGg2N/dt9ozCxRj91+gGLd/Qo24vRMoxu6dtRe7fwLFuP0TKMbtnUAxdu9yrX5koLh//1vpljseTFvPOj397OmnpC8//Hj6xNUXp40bj0h3fX53OudDH0xnn3lqrtelrh4EBIoCxR5uO1OmlASKsW8DgWLc/gk14vZOoBi7d9Ze7P4JFOP2T6AYt3cCxdi9y7X6sV953nHb/YMQsfjx6XsfSjtvvmLwVeenvvl82v3IE+nWGy8bBIx+ECgEBIoCRSuhHwGBYj/ubc0qUGxLsvtxhBrdm7c5o1CjTc1ux7L2uvVuezZrr23R7sYTKHZnvYiZ/uH1t9JRmw5P7zjssEUMb8wVFJgqUDz6qE3pts9+Od388UsGgWLxKHQ1YFxBN5c8RECgKFC0MPoRECj2497WrALFtiS7H0eo0b15mzMKNdrU7HYsa69b77Zns/baFu1uPIFid9aLmEmguAjV1R5zqkeeLzr/nMFjzu8/8YRU/O+HH3sy7Xn6WTsUV/veOeTqBYoCRUuiHwGBYj/ubc0qUGxLsvtxhBrdm7c5o1CjTc1ux7L2uvVuezZrr23R7sYTKHZnvYiZBIqLUF3tMaf+yvOrr72Rrtl+d3rmuRfSluOPTffdfkM6+aQtq63n6tcJCBQFipZEPwICxX7c25pVoNiWZPfjCDW6N29zRqFGm5rdjmXtdevd9mzWXtui3Y0nUOzOehEzCRQXobraY04dKK42k6ufRkCgKFCc5j5xTPsCAsX2TbscUaDYpXa7cwk12vXsejShRtfi7c1n7bVn2cdI1l4f6u3MKVBsx7GvUQSKfckv77xTvUPRTsTlvQHavDKBokCxzfvJWNMLCBSnt8rxSIFijl2ZriahxnROuR4l1Mi1M5PrsvYmG+V8hLWXc3fG1yZQjNu7onKBYuz+5Vh9NoFi8aGXHbu+kHZu/+jMj1JXz91y/HHpljseTFvPOn3wvsdZfxRfsL7r93ane3ZdN/gAzaJ/FO+mLH5cf+W2hU417zz797811rPq9aN0RLrn6y+lr31730KvJdLg1577gfTrHzwhRMlFIHzc5g0halXkegGBYuw7QqAYt39Cjbi9KyoXasTtn7UXt3fWXuzeCRRj90+gGLt/OVY/9pHnIoQ650MfTGefeerCa88xUCwuunhv5PUf29aKwbCP2cwb9M3akHnnESjOKr3+eIFiMz9nTycgUJzOKdejBIq5dmZyXUKNyUY5HyFQzLk742uz9uL2TqAYu3cCxdj9EyjG7l+O1Y8NFIuQ78sPP54+cfXFaePGI3Ks/5CaJgVgs1xE+SEageLoHZ92KI6/o6qBYnlvPvr4nsFJn7rp8rG7aKc5vvC/9Npdg/HOOO2URjtr7VCc5XeHvI4VKObVj1mrESjOKpbP8UKNfHoxTyUCxXnU8jjH2sujD/NWYe3NK9f/eQLF/nvQpAKBYhM95w4TGPvIc/lV52EnNgkvit1yD3zl0cGw5Reji/9dfeS5OObl7+9Lf/u9v1v7svTdt/6H9KXdX01FIFP90vS4R56rX6cu5rjgvK3p1hsvGwSk5Xm/dt5/n2777JcHgcyVv/1r6fN/8H8Pgpnf/8M/W6uzDIC+892XB3WXjyhPG2AWc111051p7yv/+jhw6VfM8c///GZ6459/MPK6qvUVdb1zw4bBY8jDgqliF+Qnb39grWVf/Mz2we7KwnPUPMXBdafyvGHXV5+jvBaPPB+6UqqBYnWX6DRh9aTj2348X6AY9w8JgWLc3hWVCxTj9k+oEbd3g7X3+oF0zKYN6bDDYl/HKlZv7cXuurUXt38Cxbi9KyoXKMbuX47Vd/6V5yIE2f3IE2uhXvHz4sexR737kEDxqW88v7bjqghX/vTP96T7br9h8I7FatgyLlAsxy9CtTLE2XbhuYOdYWXI96u/tHUtIKyGNEVd9Ueei3M+fe9DaefNVwzesThLqDPqkefqdVWP2fvK3w9CyGp9ZcB3wnuOHdRcXNOO2+4f7CItflRrK2r9m//6vfTL55498Bo1T3Fe9b2TpcvOHVekD/7bk9f9WnG9O3bev9YHOxTHL+syUKz2qfzI0bjH0CcdP+zXm/4GI1BsKtjf+QLF/uzbmFmg2IZiP2MINfpxb2tWoUZbkt2PY+11b97mjNZem5rdjiVQ7Na77dkEim2LGq/zQLEIzIpAsf7Rk/o7FOthSz2Mqwdv5e7GSR9lGRVEliHPpECxuGWKMd5/4gmDULL6vyfdTtO8Q7EauBaBYv1DNcPeNVnW8L73/vS6sK9aT91z0jzl8df8zm+sCxSHjVN+xMYOxUPvgDJQHNa3YfdDOcKk48uwudzxWpx3+UcuaPRxH4HipBWc768LFPPtzTSVCRSnUcrzGKFGnn2ZtiqhxrRS+R1n7eXXk1kqsvZm0crrWIFiXv2YtRqB4qxijp8kMPEditXHdKuDtfXIc/kIcj08azNQrD5iXQ1ehoU20wSKZRj3v16xLd36v39psDuwDCTHgbcVKA7rSfk+vurjyNUeTQoUqzsbi2soxike7x4WKJZhanGcHYrjl1g1UBxmvOfpZ9d261ZHqu+ELXtSHv+t//Liup2+9d23kxb+sF8XKM6jlsc5AsU8+jBvFQLFeeX6P0+o0X8PmlQg1Gii1++51l6//k1nt/aaCvZ3vkCxP/s2ZhYotqFojKrAyECx+u68nz39lHUfZ2nr68/1OervUCwKLd9VOO8OxfJdjOV7E9vYoVjW/drr/5z+7X/zM1PvCmsrUKwHU6Nu6eq1TgoU6zsh7VBs5zeKRe1QrAeK9cBxno8oCRTb6XkfowgU+1Bvb06BYnuWXY8k1OhavN35hBrtenY5mrXXpXb7c1l77Zt2NaJAsSvpxcwjUFyM6yqPOvajLKPezVd/D+IsgF994qn0bz7w3sGOvq4CxTKYrL9/cNIOxfLjJ1vPOv2Qr/GWOwHLj5dMYzDsfYuzBn31ayjmLd+VeMzRmwZlFO+LLH5MGygWxxbvUCzfyzjpHYrlI87FOySLOcp3XXrk+dC7YFHvUBy1g7HYVVqG8NPck9VjBIqziuVzvEAxn17MU4lAcR61PM4RauTRh3mrEGrMK9f/edZe/z1oUoG110Sv33MFiv36N51doNhU0Pl1gakCxaOP2jT4CvLNH79k8CGSYWHGtLRFqHbptbvWDi/f+7aodyhWv65cfBn62GM2p5//udMGocukQLH86EpZb/lYcVH8PKFqGQYWX2eufuW5GK8MgSa927A4tjpO8fPql7Krj0NXv2g9LrgsdrPN8pXn6iPkRf8EiqPv/lm+8jxuN239q9DDPs5T/4DQtGuyPE6gOKtYPscLFPPpxTyVCBTnUcvjHKFGHn2Ytwqhxrxy/Z9n7fXfgyYVWHtN9Po9V6DYr3/T2QWKTQWdP3WgWN09WP/4yLiPSawKcVuPfS+TVxFI3fP1l9LXvr1vmS6r0bVUA8V6EFwNqItJ6oHipOPrIXB9vFkLFyjOKpbP8QLFfHoxTyUCxXnU8jhHqJFHH+atQqgxr1z/51l7/fegSQXWXhO9fs8VKPbr33R2gWJTQedPHSjWD6yGF+WOuGk+RLKM5MN2aFZ3Qg675qZhTwRHgeKhXaoGirn3UKCYe4dG1ydQjNu7onKBYtz+CTXi9m6w9l4/kI7ZtCEddljs61jF6q292F239uL2T6AYt3dF5QLF2P3LsfqxX3nOsWA15SsgUBQo5nt3LndlAsXY/RUoxu2fUCNu7wSKsXtn7cXun0Axbv8EinF7J1CM3btcqxco5tqZgHUJFAWKAW/bpShZoBi7jQLFuP0TasTtnUAxdu+svdj9EyjG7Z9AMW7vBIqxe5dr9RMDxfJrxuUFrPrjzrk2Moe6BIoCxRzuw1WsQaAYu+sCxbj9E2rE7Z1AMXbvrL3Y/RMoxu2fQDFu7wSKsXuXa/VjA8UiTNz9yBPpnl3XDb7uXPwo3xW4c8cV6ewzT831utTVg4BAUaDYw21nypSSQDH2bSBQjNs/oUbc3gkUY/fO2ovdP4Fi3P4JFOP2TqAYu3e5Vj8yUCw/wnL9x7YdEhw+9c3nB0HjrTdeljZuPCLXa1NXxwICRYFix7ec6X4sIFCMfSsIFOP2T6gRt3cCxdi9s/Zi90+gGLd/AsW4vRMoxu5drtWPDRR33HZ/+sTVF6f615yHfeU41wtUV3cCAkWBYnd3m5mqAgLF2PeDQDFu/4QacXsnUIzdO2svdv8EinH7J1CM2zuBYuze5Vr9yEBx//630i13PJi2XXjuITsUBYq5trPfugSKAsV+78DVnV2gGLv3AsW4/RNqxO2dQDF276y92P0TKMbtn0Axbu8EirF7l2v1Y9+hOOrR5uLdit/57svp+iu35Xpd6upBQKAoUOzhtjOldyiGvwcEinFbKNSI2zuBYuzeWXux+ydQjNs/gWLc3gkUY/cu1+onvkPxmedemFj7Gaedsu7DLRNPcMBSCggUBYpLeWMHuCg7FAM0aUyJAsW4/RNqxO2dQDF276y92P0TKMbtn0Axbu8EirF7l2v1Y3co5lq0uvIUECgKFPO8M5e/KoFi7B4LFOP2T6gRt3cCxdi9s/Zi90+gGLd/AsW4vRMoxu5drtXP9VGWXC9GXf0KCBQFiv3egas7u0Axdu8FinH7J9SI2zuBYuzeWXux+ydQjNs/gWLc3gkUY/cu1+oFirl2JmBdAkWBYsDbdilKFijGbqNAMW7/hBpxeydQjN07ay92/wSKcfsnUIzbO4Fi7N7lWv3YR57v+vzudM6HPnjIV55zvRh19SsgUBQo9nsHru7sAsXYvRcoxu2fUCNu7wSKsXtn7cXun0Axbv8EinF7J1CM3btcqx8bKL740t705YcfT5+4+uK0ceMRuV6DujIRECgKFDO5FVeuDIFi7JYLFOP2T6gRt3cCxdi9s/Zi90+gGLd/AsW4vRMoxu5drtXP/ZVnX3bOtaX91SVQFCj2d/et9swCxdj9FyjG7Z9QI27vBIqxe2ftxe6fQDFu/wSKcXsnUIzdu1yr95XnXDsTsC6BokAx4G27FCULFGO3UaAYt39Cjbi9EyjG7p21F7t/AsW4/RMoxu2dQDF273KtXqCYa2cC1iVQFCgGvG2XomSBYuw2ChTj9k+oEbd3AsXYvbP2YvdPoBi3fwLFuL0TKMbuXa7Vjw0U9+9/K91yx4Pp0cf3pC3HH5vuu/2GtOX44wb/betZp6eLzj8n1+tSVw8CZaDYw9TZTvmzJ747/foHT8i2vmphRf+O27whRK2KXC8gUIx9RwgU4/ZPqBG3dwLF2L2z9mL3T6AYt38Cxbi9EyjG7l2u1U/8yvP7Tzwhnf+LH0qfvvehdMlF56WTT9qSnvrm82n3I0+kW2+8zMdacu1sD3UVgdSGw9+RNh15eA+zm7KpgECxqWB/5wsU+7NvY2aBYhuK/Ywh1OjHva1ZhRptSXY/jrXXvXmbM1p7bWp2O5ZAsVvvtmf7h9ffSkdtOjy947DD2h7aeCsqMPajLDtuu3/whediV2I1UCy+/lz8fOfNV6SjN29aUTqXXRcoAqnih11uMe8NgWLMvhVVCxTj9q6oXKAYt39Cjbi9G6y91w+kYzZtSP5dFa+P1l68nlUrtvbi9k+gGLd3ReUCxdj9y7H6uQJFOxRzbGX/NQkU++9BkwoEik30+j1XoNivf9PZBYpNBfs7X6jRn30bMws12lDsZwxrrx/3tma19tqS7H4cgWL35m3OKFBsU9NYhcDYR54ffuzJtOfpZ9PNH78kfe7BPxo88nz0UZvSNdvvTtsuPNc7FN1D6wQEirFvCIFi3P4JFOP2rqhcoBi3f0KNuL0brD07FMM20NoL27pB4dZe3P4JFOP2rqhcoBi7fzlWP/Erz8VuxEuv3bWu9i9+Zns6+8xTc7weNfUoIFDsEb+FqQWKLSD2NIRAsSf4lqYVKLYE2cMwQo0e0FucUqjRImbHQ1l7HYO3PJ211zJoh8MJFDvEXsBUAsUFoK74kBMDxRX3cfkzCAgUZ8DK8FCBYoZNmbIkgeKUUJkeJlDMtDFTlCXUmAIp40OEGhk3Z0Jp1l7c3hWVW3tx+ydQjNu7onKBYuz+5Vi9QDHHrgStSaAYtHE/LlugGLd/AsW4vRv8w+q1A+mYzRuS7+3F66NQI17PqhULNeL2z9qL2zuBYuzeCRRj90+gGLt/OVY/MVAs3qP4ydsfWKt9y/HHpvtuvyGdfNKWHK9HTT0KCBR7xG9haoFiC4g9DSFQ7Am+pWkFii1B9jCMUKMH9BanFCi2iNnxUNZex+AtT2fttQza4XACxQ6xFzCVQHEBqCs+5MSPsux+5Il0z67r0tGbNw2oXnxpb7rqpjvTzh1XeI/iit889csXKMa+IQSKcfsnUIzbu6JygWLc/gk14vZusPZ8lCVsA629sK0bFG7txe2fQDFu74rKBYqx+5dj9SMDxVdfe2PwNefrP7btkOCw+FBLETTeeuNlaePGI3K8LjX1ICBQ7AG9xSkFii1idjyUQLFj8JanEyi2DNrhcEKNDrEXMJVQYwGoHQ1p7XUEvaBprL0FwXYwrECxA+QFTiFQXCDuig49NlDccdv96RNXX3zI483FLsVP3/tQ2nnzFWs7F1fUz2VXBASKsW8HgWLc/gkU4/auqFygGLd/Qo24vRusPTsUwzbQ2gvbukHh1l7c/gkU4/auqFygGLt/OVY/MlDcv/+tdMsdD6ZtF557yA5FgWKOrey/piKQ2nD4O9KmIw/vvxgVzCwgUJyZLJsTBIrZtGKuQgSKc7FlcZJQI4s2zF2EUGNuut5PtPZ6b0GjAqy9Rny9nixQ7JW/8eQCxcaEBqgJjH2H4qhHm4sPtXznuy+n66/cBpTAmkARSN3z9Zc6Eznh3RvSlR8+qbP5ln0igWLcDgsU4/auqFygGLd/Qo24vRusPTsUwzbQ2gvbukHh1l7c/gkU4/auqFygGLt/OVY/8R2Kzzz3wsS6zzjtlHUfbpl4ggOWUqAMFL/27X2dXN9vnbVFoNiitECxRcyOhxIodgze8nQCxZZBOxxOqNEh9gKmEmosALWjIa29jqAXNI21tyDYDoYVKHaAvMApBIoLxF3RocfuUFxRE5c9p4BAcU64TE4TKGbSiDnKECjOgZbRKQLFjJoxYylCjRnBMjtcqJFZQ2Yox9qbASvDQ629DJsyZUkCxSmhMj1MoJhpYwKXJVAM3LzcShco5taR2eoRKM7mldPRAsWcujF7LQLF2c1yOUOokUsn5qtDqDGfWw5nWXs5dGH+Gqy9+e36PlOg2HcHms0vUGzm5+xDBSY+8lx8lOWi889hR2CigEBxIlHWBwgUs27P2OIEinF7V1QuUIzbP6FG3N4N1p53KIZtoLUXtnWDwq29uP0TKMbtXVG5QDF2/3KsfuJHWS69dtda3Zd/5AIfYsmxi5nUJFDMpBFzliFQnBMug9MEihk0oUEJAsUGeD2fKtTouQENpxdqNATs8XRrr0f8Fqa29lpA7GkIgWJP8C1NK1BsCdIwawJTP/L86mtvpGu2353Kj7QIF91FdQGBYux7QqAYt38Cxbi9KyoXKMbtn1Ajbu8Ga88OxbANtPbCtm5QuLUXt38Cxbi9KyoXKMbuX47VTx0ovvjS3nTVTXemva8c+gVf4WKOre2+JoFi9+ZtzihQbFOz27EEit16tz2bQLFt0e7GE2p0Z72ImYQai1DtZkxrrxvnRc1i7S1KdvHjChQXb7zIGQSKi9RdzbHHBooPP/Zk+uTtD6zJDAsOi52Lt332y+nmj1+Sjt68aTUVXfVAQKAY+0YQKMbtn0Axbu+KygWKcfsn1Ijbu8Has0MxbAOtvbCtGxRu7cXtn0Axbu+KygWKsfuXY/U+ypJjV4LWJFAM2rgfly1QjNs/gWLc3gkUY/dOqBG7f0KNuP2z9uL2TqAYu3cCxdj9EyjG7l+O1U/9yHOOxaspLwGBYl79mLUageKsYvkcL1DMpxfzVGKH4jxqeZwj1MijD/NWIVCcV67/86y9/nvQpAJrr4lev+cKFPv1bzq7QLGpoPPrAgJF90RrAgLF1ih7GUig2At7K5MKFFth7G0QgWJv9I0nFmo0Jux1AKFGr/yNJrf2GvH1frK113sL5i5AoDg3XRYnChSzaMNSFXFIoFj/mvOoqz3jtFPSPbuu897Epbodml2MQLGZX99nCxT77sD88wsU57fL4UyBYg5dmK8GocZ8brmcJdTIpROz12HtzW6W0xnWXk7dmK0WgeJsXrkdLVDMrSPx65m4Q7EIGHfcdn/6xNUXp5NP2hL/il3BwgQEiguj7WRggWInzAuZRKC4ENbOBhUodkbd+kRCjdZJOx1QqNEpd6uTWXutcnY+mLXXOXlrEwoUW6PsZSCBYi/sSz2pQHGp29vtxQkUu/VuezaBYtui3Y0nUOzOehEzCRQXodrNmEKNbpwXNYtQY1Gyix/X2lu88SJnsPYWqbvYsQWKi/Vd9OgCxUULr974AsXV6/nCrliguDDaTgYWKHbCvJBJBIoLYe1sUIFiZ9StTyTUaJ200wGFGp1ytzqZtdcqZ+eDWXudk7c2oUCxNcpeBhIo9sK+1JMKFJe6vd1enECxW++2ZxMoti3a3XgCxe6sFzGTQHERqt2MKdToxnlRswg1FiW7+HGtvcUbL3IGa2+RuosdW6C4WN9Fjy5QXLTw6o0vUFy9ni/sigWKC6PtZGCBYifMC5lEoLgQ1s4GFSh2Rt36REKN1kk7HVCo0Sl3q5NZe61ydj6Ytdc5eWsTChRbo+xlIIFiL+xLPalAcanb287F3fX53YOBrr9y29gBBYrtePc1ikCxL/nm8woUmxv2OYJAsU/9ZnMLNZr59X22UKPvDsw/v7U3v10OZ1p7OXRhvhoEivO55XKWQDGXTixPHQLF5ellK1fy4kt7045dX0g7t3907aveAsVWaLMfRKCYfYtGFihQjNu7onKBYtz+CTXi9m6w9l4/kI7ZtCEddljs61jF6q292F239uL2T6AYt3dF5QLF2P3LsfpDAsVXX3sjXbP97vTMcy+MrfeM005J9+y6Lh29eVOO16WmOQWGBYrTDtX3DsWHH3syffL2BwblXnDe1nTrjZeljRuPGFn+uOOLEPWBrzy6du4XP7M9nX3mqdNShDxOoBiybYOiBYpxeydQjN07oUbs/gk14vbP2ovbO2F+7N4JFGP3T6AYu385Vj9xh2KORatpeoEiNNvz9LNp07uOTA/9yf+TLv/IBenf/9avrAuNy/CtGPWWOx5Mjz6+Z12Q9uRffmvw8/KR5yRXRbcAABybSURBVCJ0vOqmO9PeV/alLccfm+67/YbBbsY+A8Wnvvl8uuv3dq+F3JN2VY47vgjVf/8P/yxd8zu/MQgkm4Ss03eq/yMFiv33YN4KBIrzyuVxnh2KefRhniqEGvOo5XOOQDGfXsxaibU3q1hex1t7efVjlmoEirNo5XesQDG/nkSvSKAYvYMT6i934VV32BVhWvGj2HFX7kjdduG56aLzzxkanlXDufL46z+2bXB+MdaOnfcPQsV3H3VsuufrL6WvfXtfJ6q/ddaWdOWHTxrMVdT4/hNPGFxD8aMeGNYLmuX4+jV3cnE9TCJQ7AG9pSkFii1B9jSMQLEn+BamFWq0gNjjEEKNHvEbTm3tNQTs+XRrr+cGNJheoNgAL4NTBYoZNGHJShAoLllD65dT7lAc9/hvNTCc9A7FelC3f/9bg12NW886Pf3Ch3++l0CxWkMZKI7bVTjr8dXQtNiJuaw/BIpxOytQjNu7onKBYtz+CTXi9m6w9rxDMWwDrb2wrRsUbu3F7Z9AMW7visoFirH7l2P1AsUcu9JiTaMCxfo7AotHoYtHmqcJFHc/8sS69xOWu/36DhSLXZblew6nCRQnHV99tNs7FFu8KQ3VuoBAsXXSTgcUKHbK3epkQo1WOTsfTKjROXlrE1p7rVH2MpC11wt7K5MKFFth7G0QgWJv9Es7sUBxaVv7rxc2LFAsAsCXv79vLRS0QzGNfU+iR56XfJEsweUJFGM3UaAYt39Cjbi9KyoXasTtn7UXt3fWXuzeCRRj90+gGLt/OVYvUMyxKy3WNCpQLKYodiSWj/+e8J5jBz8fFp4Ne4di+c7FVXiHYmFVf+diiy3KZiiPPGfTipkLESjOTJbVCQLFrNoxUzFCjZm4sjtYoJhdS6YuyNqbmirLA629LNsyVVECxamYsj1IoJhta8IWJlAM27rpCh8WKNa/0nzsMZvTz//caWtfcS4/5FLMUDzquwxfea7vyhz3lefC5/En/ypd+dsXDpBLr507rlh7pHo6/VhHCRRj9atarUAxbu+KygWKcfsn1Ijbu8Ha8w7FsA209sK2blC4tRe3fwLFuL0rKhcoxu5fjtULFHPsStCaikCqr688F2TVIPSC87Ye8p7H6mPe444vd20++vietU54h2LQm3JFyhYoxm60QDFu/4QacXsn1IjdO2svdv8EinH7J1CM2zuBYuze5Vq9QDHXzgSsq+9AMSBZViXboZhVO2YqRqA4E1d2BwsUs2vJ1AUJNaamyvJAoUaWbZmqKGtvKqZsD7L2sm3NxMIEihOJsj7ADsWs2xOyOIFiyLblWbRAMc++TFuVQHFaqfyOEyjm15NZKhIozqKV17FCjbz6MWs1Qo1ZxfI53trLpxfzVGLtzaOWxzkCxTz6MG8VAsV55Zw3SkCg6N5oTUCg2BplLwMJFHthb2VSgWIrjL0NIlDsjb7xxEKNxoS9DiDU6JW/0eTWXiO+3k+29npvwdwFCBTnpsviRIFiFm1YqiIEikvVzn4vRqDYr3/T2QWKTQX7O1+g2J99GzMLFNtQ7GcMoUY/7m3NKtRoS7L7cay97s3bnNHaa1Oz27EEit16tz2bQLFtUeMJFN0DrQkIFFuj7GUggWIv7K1MKlBshbG3QQSKvdE3nlio0Ziw1wGEGr3yN5rc2mvE1/vJ1l7vLZi7AIHi3HRZnChQzKINS1WEQHGp2tnvxQgU+/VvOrtAsalgf+cLFPuzb2NmgWIbiv2MIdTox72tWYUabUl2P4611715mzNae21qdjuWQLFb77ZnEyi2LWo8gaJ7oDUBgWJrlL0MJFDshb2VSQWKrTD2NohAsTf6xhMLNRoT9jqAUKNX/kaTW3uN+Ho/2drrvQVzFyBQnJsuixMFilm0YamKECguVTv7vRiBYr/+TWcXKDYV7O98gWJ/9m3MLFBsQ7GfMYQa/bi3NatQoy3J7sex9ro3b3NGa69NzW7HEih26932bALFtkWNJ1B0D7QmIFBsjbKXgQSKvbC3MqlAsRXG3gYRKPZG33hioUZjwl4HEGr0yt9ocmuvEV/vJ1t7vbdg7gIEinPTZXGiQDGLNixVEQLFpWpnvxcjUOzXv+nsAsWmgv2dL1Dsz76NmQWKbSj2M4ZQox/3tmYVarQl2f041l735m3OaO21qdntWALFbr3bnk2g2Lao8QSK7oHWBASKrVH2MpBAsRf2ViYVKLbC2NsgAsXe6BtPLNRoTNjrAEKNXvkbTW7tNeLr/WRrr/cWzF2AQHFuuixOFChm0YalKkKguFTt7PdiBIr9+jedXaDYVLC/8wWK/dm3MbNAsQ3FfsYQavTj3tasQo22JLsfx9rr3rzNGa29NjW7HUug2K1327MJFNsWNZ5A0T3QmoBAsTXKXgYSKPbC3sqkAsVWGHsbRKDYG33jiYUajQl7HUCo0St/o8mtvUZ8vZ9s7fXegrkLECjOTZfFiQLFLNqwVEUIFJeqnf1ejECxX/+mswsUmwr2d75AsT/7NmYWKLah2M8YQo1+3NuaVajRlmT341h73Zu3OaO116Zmt2MJFLv1bns2gWLbosYTKLoHWhMQKLZG2ctAAsVe2FuZVKDYCmNvgwgUe6NvPLFQozFhrwMINXrlbzS5tdeIr/eTrb3eWzB3AQLFuemyOFGgmEUblqoIgeJStbPfixEo9uvfdHaBYlPB/s4XKPZn38bMAsU2FPsZQ6jRj3tbswo12pLsfhxrr3vzNme09trU7HYsgWK33m3PJlBsW9R4AkX3QGsCAsXWKHsZSKDYC3srkwoUW2HsbRCBYm/0jScWajQm7HUAoUav/I0mt/Ya8fV+srXXewvmLkCgODddFicKFLNow1IVIVBcqnb2ezECxX79m84uUGwq2N/5AsX+7NuYWaDYhmI/Ywg1+nFva1ahRluS3Y9j7XVv3uaM1l6bmt2OJVDs1rvt2QSKbYsaT6DoHmhNoAwUWxtwwkAnvHtDuvLDJ3U13dLPI1CM22KBYtzeFZULFOP2T6gRt3eDtff6gXTMpg3psMNiX8cqVm/txe66tRe3fwLFuL0rKhcoxu5fjtULFHPsStCaikBqw+HvSJuOPDzoFax22QLFuP0XKMbtnUAxdu+EGrH7J9SI2z9rL27vhPmxeydQjN0/gWLs/uVYvUAxx64ErakIpIofx23eEPQKVrtsgWLc/gsU4/ZOoBi7d0KN2P0TKMbtn7UXt3cCxdi9EyjG7p9AMXb/cqxeoJhjV4LWJFAM2rgfly1QjNs/gWLc3gkUY/dOqBG7fwLFuP2z9uL2TqAYu3cCxdj9EyjG7l+O1QsUc+xK0JoEikEbJ1CM3biUkkAxdgu9QzFu/4QacXsn1IjdO2svdv+E+XH7J1CM27uicoFi7P7lWL1AMceuBK1JoBi0cQLF2I0TKIbvn0AxbguFGnF7J1CM3TtrL3b/BIpx+ydQjNs7gWLs3uVavUAx184ErEugGLBplZI98hy3f3Yoxu3dINR47UA6ZvOG5EOz8foo1IjXs2rFQo24/bP24vZOmB+7dwLF2P2zQzF2/3KsXqCYY1fURIAAAQIECBAgQIAAAQIECBAgQCBTAYFipo1RFgECBAgQIECAAAECBAgQIECAAIEcBQSKOXZFTQQIECBAgAABAgQIECBAgAABAgQyFRAoZtoYZREgQIAAAQIECBAgQIAAAQIECBDIUUCgmGNXAtb08GNPpk/e/sCg8gvO25puvfGytHHjEQGvZHlLfvW1N9I12+9Ozzz3wuAiv/iZ7ensM0+deMF3fX53ev+JJ6SLzj9n4rEOWJzALGvsqW8+ny69dtdaMdbk4voyzcizrr1izT3wlUfXhp52rU5Ti2NmF5hl7VVHL9eh/s1u3tYZTddeUcenbrrcn39tNWTGcWZde/v3v5VuuePB9OjjewYz6d2M4C0ePsvae/Glvemqm+5Me1/Zt64Cf3dpsSEzDjXr2qv+veWM005J9+y6Lh29edOMszq8DYFZ1l4xX339+TtLG11YrTEEiqvV74VcbfGPprt+b/faHx7FHyrFj+uv3LaQ+Qw6u0D5l+ytZ50++IdR8YfHjl1fSDu3fzSdfNKWoQNW/zLhL+Wzm7d5xqxrrOjd+97704PAuOz9Ce851ppssylTjjXr2iv+Ivj7f/hn6Zrf+Y3B/ykzzVqdshSHzSEw69orp6iG+v5yPgd8C6fMuvaKKf39pQX4loaYde3V+91SGYaZQ2CetVefxv+ZPQd8S6fMuvaKv3PuefrZtc0k9Z+3VJZhphCYde2V4eP1H9s2+DdD0fsdO+9P991+w8h/H05RhkNWTECguGINX8Tl1v/Qr/9BtIg5jTmbQBFKfPreh9LOm68Y/D+Gs/zF21/qZrNexNFN15i/3C2iK9ON2WTtFTPU/7I33ayOaktgnrVX9vyma/6XtOO2L6TyL+pt1WSc6QTmWXsCxelsuzhq1rVX/Dn3ne++7P8466I5E+aYZ+1Vh6yfn8ElrVQJs669+u+b/h3Y3+0y69qr//tgln8f9neVZs5NQKCYW0eC1TPsNx47avJr4rA/3Kf9h5NAsd9+trHGpu11v1e6nLM3WXuFiP+3uL/7Yp61V/3z7+ijNg1eMyFQ7KeH86y9+usG7M7vp3fzrL1677Ycf6xdNv20b/DnVvXJpaKMWf4e4u+dPTUupaEbDib9u658ZPZXf2nrINDXv/76N+vaG7bhYJa12t+VmjknAYFiTt0IWEv5l75tF5679j6+SX/wBLzM8CUXf8DsfuSJde+2nPYPDH8x6Lf9TdeY/6e43/7Nu/aq77TxyGw/PZx17RW7SXfcdn/6xNUXDx4Vsru0n76Vs8679srzyzW4c8cVU71vuN+rXa7ZZ117w44v/qFc/L3Hu9y6vzearD27E7vvV3XGWddecW55zmuv/3P6f/+/byXvUOyvh7OuvWH/Zp/234f9XaWZcxMQKObWkWD1zPP/Ige7xKUod9b/x6p60QLFfm+BJmvM7rZ+e1fM3mTtFecLpfrr4axrb9SHBYorEAp338ema6+o2J9/3fetGlCU730u/tu4/7N6WAji985+etfkzz2PW/bXs3LmWf/cG/b7pDC/vz7O8+de9Z35ZeV25/fXw4gzCxQjdi2zmmd910Zm5a9EObO+U0OgmNdtMc8aEybm0cMma6+8AqFGf72cZ+2V1Qo0+utbGUDN++5ga6/f3g0LKSbttq+v1fqO4f6vaHUqmPfPvUk9Xh3Bfq90lj/35tnR2O/VLffs8669aqBc/Ll5yUXn+SjLct8qrV6dQLFVztUcbNavga2mUr9XPemrX+Me7RJm9Nu7YvZJa6zo0cvf37f2SLu/lPffs+pfzm6548E06gvr9bVX/PzxJ/8qXfnbFw6G8Nhlv72cde1VqxUo9tu7Wf/cK/r12J//5eAfUuXa27HrC2nn9o/6h1UPrZx17dX/TzQfI+uhaT+ectLaK39vLF6XdNH55wzOsjuxv37VZ5609uo7EOt/B7VDsb9ezrP2qtV63Lm/3kWeWaAYuXsZ1V7dLn3BeVvXvasvozJXupTyL3DPPPfCwKH6CN6w0KK+Bd4Lzvu9fcatsfpf5uovpy8q17/++jfL2iv/Mvjo43vWCva4bH+9K2aeZe0JFPvtVX12ay+vfsxazaxrr3q897jNqt3u8ePW3rBAUQDcrn/T0catvXpgWP97i7XXVL/Z+bOuveq/GTzq3Mx+Vc8WKK5q5103AQIECBAgQIAAAQIECBAgQIAAgTkEBIpzoDmFAAECBAgQIECAAAECBAgQIECAwKoKCBRXtfOumwABAgQIECBAgAABAgQIECBAgMAcAgLFOdCcQoAAAQIECBAgQIAAAQIECBAgQGBVBQSKq9p5102AAAECBAgQIECAAAECBAgQIEBgDgGB4hxoTiFAgAABAgQIECBAgAABAgQIECCwqgICxVXtvOsmQIAAAQIECBAgQIAAAQIECBAgMIeAQHEONKcQIECAAAECBAgQIECAAAECBAgQWFUBgeKqdt51EyBAgAABAgQIECBAgAABAgQIEJhDQKA4B5pTCBAgQIAAAQIECBAgQIAAAQIECKyqgEBxVTvvugkQIECAAAECBAgQIECAAAECBAjMISBQnAPNKQQIECBAgAABAgQIECBAgAABAgRWVUCguKqdd90ECBAgQIAAAQIECBAgQIAAAQIE5hAQKM6B5hQCBAgQIECAAAECBAgQIECAAAECqyogUFzVzrtuAgQIECBAgAABAgQIECBAgAABAnMICBTnQHMKAQIECBAgQIAAAQIECBAgQIAAgVUVECiuauddNwECBAgQIECAAAECBAgQIECAAIE5BASKc6A5hQABAgQIECBAoB+BV197I12z/e70zHMvpC3HH5vuu/2GdPJJWxZWzP79b6Vb7ngwbT3r9HTR+ecsbB4DEyBAgAABAgQiCQgUI3VLrQQIECBAgEAIgYcfezJ98vYH1mr91E2XZxtGFbXuefrZdOuNl6WNG4/I3veuz+8e1Hj9lds6qbXLQLEMS6//2LZ09pmnrl1f0aPdjzyR7tl1XTp686ZOrtskBAgQIECAAIFxAgJF9wcBAgQIECBAYAECT33z+bRj5/0L30HXtPRIgWIZ7m278Nx1gVtTg3Hn5xAoLvL6jE2AAAECBAgQmEdAoDiPmnMIECBAgAABAhMEhgWKxX+76/d2p0t/61fS9f/bfxyMUD62+9fPvrC2q/GM005Z241WDbS+892X0wNfeXRw3uUfuWDdLr3yuEcf3zP49eoYxc/L4PDXzvsf0tXb7xocs/3jH0m7PvuVdVdS7qYsdgKWc0073rBHkOu7Nat1Vx9fLua44LytI3dK1q+vavDiS3vTVTfdmfa+su8Qm2F+dZt6K+s1F79eugzbRVgPHcs+FzsNi1C5qKs4/2dPP2VdndVxh11fWed//ou/PmQXabU/dfdh8xdzffEz2zsLYv0GQYAAAQIECCy3gEBxufvr6ggQIECAAIGeBEYFipdeu2tdGFgGQ9WgrfpYbzVoKgOhMtQqduoV7/UrjznhPceuhYz1x2TLkKweRI7aofj5P3gknXfOf7f2fsKippe/v28t8Bs23rBjqo/qFnX+X49+Lf3PF/y79OaBA4N3IVYf762fX2/dsDCvDBN37rhiEJbVLYb5jbsl6m71sHDaQLHocz0gLWp9/Mm/Slf+9oWDEuq1j3vkufpYet2pfq8VP6/P77Hpnn4jMC0BAgQIEFhSAYHikjbWZREgQIAAAQL9CozboVh9F165m2zUf3vnhg1DPwpSDQL3vvL3aceuL6Sd2z+6FgDWw6lRweG0jzwX4den730o7bz5isF7/IadV72WQr8eGFY7Upxf7LisvguxmKN+HdVzhgVuk+oY5Tfs7pgmLJzmmGE9HXU3FuHg+088YRAMTxMoDgtiR+2QrN5Tk2z7XS1mJ0CAAAECBKIJCBSjdUy9BAgQIECAQAiBRQeK1dDq29/53uCjHfUPq1TDqlkDxWGP4FYfrZ0U5L36j2+sCyDrTas/Ul3++rgvNw8L3KrXWI5RHLfjtvvTJ66+OG05/ripv9I8LHSbd4di8Wj7sI+olLsHqx7lrtFpAsUiPK4Gu+U41YB2WKApUAzx24YiCRAgQIBAGAGBYphWKZQAAQIECBCIJBA5UCwfxf3VX9q6toOwHki1ESgW/Zzla81dBIr1sK7NQLEIP//0z/es+1BP9fF2gWKkFa5WAgQIECCw2gICxdXuv6snQIAAAQIEFiSw6ECxrUeeizrruxuH/bdZA8WCddIjz9X3Ak7ThkU/8rzIHYqjvlA97H2Z9a9YV3vtkedp7hTHECBAgAABAosWECguWtj4BAgQIECAwEoKLDJQnPQhkgJ82EdZhgV4o+osvk583+03DN7JWIZh3/jW36z9t0k7FIv3LBZh2VPfeH7dF6vLj7IUj+4WX2au7oIs5rnnP/1J+ve/9SuD9zTWfzT5KMvWs04fvKdw0o9qwFc6fvL2B9a+8jzqAzjVY4Y9cjzsvPLx5/KR52HHlDXM+lGW+iPXHnme1Hm/ToAAAQIECMwiIFCcRcuxBAgQIECAAIEpBMovIJeHfuqmywdh1qQPsJQhWvW48qMijz6+Z93M5Refy/9Yf+fhGaedsu4dfuM+vlJ9n2FZa/Uaivca3nj1xen3//BP1z78Mk2gWNRWf1di9SvTZUD4zHMvrF1b/SvU1Yse9UhwGbDufWXf4PDqGPVHlie1r+5488cvSUV91UCyXnf9mFEfZamfV9RZ/igf/a5eS9nD//wXf53qYXDVtf7eSe9QnNRlv06AAAECBAg0FRAoNhV0PgECBAgQIEBggQKzBmILLMXQBAgQIECAAAECBAYCAkU3AgECBAgQIEAgYwGBYsbNURoBAgQIECBAYEUFBIor2niXTYAAAQIECMQQECjG6JMqCRAgQIAAAQKrJCBQXKVuu1YCBAgQIECAAAECBAgQIECAAAECDQUEig0BnU6AAAECBAgQIECAAAECBAgQIEBglQQEiqvUbddKgAABAgQIECBAgAABAgQIECBAoKGAQLEhoNMJECBAgAABAgQIECBAgAABAgQIrJKAQHGVuu1aCRAgQIAAAQIECBAgQIAAAQIECDQUECg2BHQ6AQIECBAgQIAAAQIECBAgQIAAgVUSECiuUrddKwECBAgQIECAAAECBAgQIECAAIGGAgLFhoBOJ0CAAAECBAgQIECAAAECBAgQILBKAgLFVeq2ayVAgAABAgQIECBAgAABAgQIECDQUECg2BDQ6QQIECBAgAABAgQIECBAgAABAgRWSUCguErddq0ECBAgQIAAAQIECBAgQIAAAQIEGgoIFBsCOp0AAQIECBAgQIAAAQIECBAgQIDAKgkIFFep266VAAECBAgQIECAAAECBAgQIECAQEMBgWJDQKcTIECAAAECBAgQIECAAAECBAgQWCUBgeIqddu1EiBAgAABAgQIECBAgAABAgQIEGgoIFBsCOh0AgQIECBAgAABAgQIECBAgAABAqskIFBcpW67VgIECBAgQIAAAQIECBAgQIAAAQINBQSKDQGdToAAAQIECBAgQIAAAQIECBAgQGCVBASKq9Rt10qAAAECBAgQIECAAAECBAgQIECgoYBAsSGg0wkQIECAAAECBAgQIECAAAECBAiskoBAcZW67VoJECBAgAABAgQIECBAgAABAgQINBQQKDYEdDoBAgQIECBAgAABAgQIECBAgACBVRIQKK5St10rAQIECBAgQIAAAQIECBAgQIAAgYYCAsWGgE4nQIAAAQIECBAgQIAAAQIECBAgsEoCAsVV6rZrJUCAAAECBAgQIECAAAECBAgQINBQQKDYENDpBAgQIECAAAECBAgQIECAAAECBFZJQKC4St12rQQIECBAgAABAgQIECBAgAABAgQaCggUGwI6nQABAgQIECBAgAABAgQIECBAgMAqCQgUV6nbrpUAAQIECBAgQIAAAQIECBAgQIBAQwGBYkNApxMgQIAAAQIECBAgQIAAAQIECBBYJQGB4ip127USIECAAAECBAgQIECAAAECBAgQaCggUGwI6HQCBAgQIECAAAECBAgQIECAAAECqyQgUFylbrtWAgQIECBAgAABAgQIECBAgAABAg0FBIoNAZ1OgAABAgQIECBAgAABAgQIECBAYJUEBIqr1G3XSoAAAQIECBAgQIAAAQIECBAgQKChgECxIaDTCRAgQIAAAQIECBAgQIAAAQIECKySwP8PuDBYmMHJdIcAAAAASUVORK5CYII=",
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = optuna.visualization.plot_param_importances(\n",
+ " study, target=lambda t: t.duration.total_seconds(), target_name=\"duration\"\n",
+ ")\n",
+ "fig.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs/Readers.ipynb b/docs/Readers.ipynb
index 6144667..12a2e63 100644
--- a/docs/Readers.ipynb
+++ b/docs/Readers.ipynb
@@ -7,6 +7,11 @@
"metadata": {},
"source": [
"# Data Reading examples\n",
+ "\n",
+ "\n",
+ "--------\n",
+ "\n",
+ "\n",
"pyJedAI needs as input a pandas.DataFrame. In this notebook we provide some examples of data reading and transformation to DataFrame.\n",
"\n",
"![reading-process.jpg](https://github.com/AI-team-UoA/pyJedAI/blob/main/documentation/reading-process.png?raw=true)"
@@ -41,8 +46,8 @@
"metadata": {},
"outputs": [],
"source": [
- "d1 = pd.read_csv(\"./data/cora/cora.csv\", sep='|')\n",
- "gt = pd.read_csv(\"./data/cora/cora_gt.csv\", sep='|', header=None)"
+ "d1 = pd.read_csv(\"./data/der/cora/cora.csv\", sep='|')\n",
+ "gt = pd.read_csv(\"./data/der/cora/cora_gt.csv\", sep='|', header=None)"
]
},
{
@@ -202,8 +207,8 @@
"metadata": {},
"outputs": [],
"source": [
- "d1 = pd.read_json(\"./data/cora/cora.json\")\n",
- "gt = pd.read_json(\"./data/cora/cora_gt.json\")"
+ "d1 = pd.read_json(\"./data/der/cora/cora.json\")\n",
+ "gt = pd.read_json(\"./data/der/cora/cora_gt.json\")"
]
},
{
@@ -363,8 +368,8 @@
"metadata": {},
"outputs": [],
"source": [
- "d1 = pd.read_excel(\"./data/cora/cora.xlsx\")\n",
- "gt = pd.read_excel(\"./data/cora/cora_gt.xlsx\")"
+ "d1 = pd.read_excel(\"./data/der/cora/cora.xlsx\")\n",
+ "gt = pd.read_excel(\"./data/der/cora/cora_gt.xlsx\")"
]
},
{
@@ -1179,7 +1184,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -1193,12 +1198,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019, 23:11:46) [MSC v.1916 64 bit (AMD64)]"
- },
- "vscode": {
- "interpreter": {
- "hash": "cac59bda82d2eee8acda0b767173e62dfe62cb7fb40b3eb8d3fb22b85c150c43"
- }
+ "version": "3.7.6"
}
},
"nbformat": 4,
diff --git a/docs/WorkFlow.ipynb b/docs/WorkFlow.ipynb
index a9f0ff4..9c22bf4 100644
--- a/docs/WorkFlow.ipynb
+++ b/docs/WorkFlow.ipynb
@@ -8,7 +8,10 @@
"source": [
"\n",
"# User-Friendly Workflow\n",
- "
\n",
+ "\n",
+ "\n",
+ "----\n",
+ "\n",
"\n",
"In this notebook we present the a __user-friendly approach__ in the well-known ABT-BUY dataset. This is a simple approach, specially developed for novice users in ER."
]
@@ -72,7 +75,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 1,
"id": "4583ae66-fdc5-4e17-a297-83d7b59e79b8",
"metadata": {},
"outputs": [],
@@ -92,7 +95,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 2,
"id": "81b21794-778c-451b-b323-77b47022b915",
"metadata": {},
"outputs": [],
@@ -100,16 +103,14 @@
"from pyjedai.datamodel import Data\n",
"\n",
"data = Data(\n",
- " dataset_1=pd.read_csv(\"./../data/D2/abt.csv\", sep='|', engine='python', na_filter=False).astype(str),\n",
+ " dataset_1=pd.read_csv(\"./../data/ccer/D2/abt.csv\", sep='|', engine='python', na_filter=False).astype(str),\n",
" attributes_1=['id','name','description'],\n",
" id_column_name_1='id',\n",
- " dataset_2=pd.read_csv(\"./../data/D2/buy.csv\", sep='|', engine='python', na_filter=False).astype(str),\n",
+ " dataset_2=pd.read_csv(\"./../data/ccer/D2/buy.csv\", sep='|', engine='python', na_filter=False).astype(str),\n",
" attributes_2=['id','name','description'],\n",
" id_column_name_2='id',\n",
- " ground_truth=pd.read_csv(\"./../data/D2/gt.csv\", sep='|', engine='python'),\n",
- ")\n",
- "\n",
- "data.process()"
+ " ground_truth=pd.read_csv(\"./../data/ccer/D2/gt.csv\", sep='|', engine='python'),\n",
+ ")"
]
},
{
@@ -122,7 +123,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 3,
"id": "94f6212e-3d0d-4b89-b213-d06cfbb553c9",
"metadata": {},
"outputs": [],
@@ -137,7 +138,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 4,
"id": "1a3675c9-a30f-4c20-a91c-affe3e09f14c",
"metadata": {},
"outputs": [],
@@ -173,7 +174,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 5,
"id": "1f3f7c12-fcae-4175-bb5c-3d4989372107",
"metadata": {},
"outputs": [
@@ -181,112 +182,87 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "# Q-Grams Blocking Evaluation \n",
- "---\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Q-Grams Blocking\n",
+ "***************************************************************************************************************************\n",
"Method name: Q-Grams Blocking\n",
"Parameters: \n",
"\tQ-Gramms: 3\n",
- "Runtime: 0.4150 seconds\n",
- "Scores:\n",
+ "Runtime: 0.2410 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
"\tPrecision: 0.08% \n",
"\tRecall: 100.00%\n",
"\tF1-score: 0.17%\n",
- "Classification report:\n",
- "\tTrue positives: 1076\n",
- "\tFalse positives: 1282428\n",
- "\tTrue negatives: -124652\n",
- "\tFalse negatives: 0\n",
- "\tTotal comparisons: 1283504\n",
- "---\n",
- "# Block Filtering Evaluation \n",
- "---\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Block Filtering\n",
+ "***************************************************************************************************************************\n",
"Method name: Block Filtering\n",
"Parameters: \n",
"\tRatio: 0.8\n",
- "Runtime: 0.1270 seconds\n",
- "Scores:\n",
- "\tPrecision: 0.06% \n",
- "\tRecall: 99.91%\n",
- "\tF1-score: 0.12%\n",
- "Classification report:\n",
- "\tTrue positives: 1075\n",
- "\tFalse positives: 1757290\n",
- "\tTrue negatives: -599515\n",
- "\tFalse negatives: 1\n",
- "\tTotal comparisons: 1758365\n",
- "---\n",
- "# Block Purging Evaluation \n",
- "---\n",
+ "Runtime: 0.0990 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 0.12% \n",
+ "\tRecall: 100.00%\n",
+ "\tF1-score: 0.24%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Block Purging\n",
+ "***************************************************************************************************************************\n",
"Method name: Block Purging\n",
"Parameters: \n",
"\tSmoothing factor: 1.025\n",
- "\tMax Comparisons per Block: 9191.0\n",
- "Runtime: 0.0330 seconds\n",
- "Scores:\n",
- "\tPrecision: 0.05% \n",
+ "\tMax Comparisons per Block: 22500.0\n",
+ "Runtime: 0.0250 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 0.14% \n",
"\tRecall: 99.91%\n",
- "\tF1-score: 0.10%\n",
- "Classification report:\n",
- "\tTrue positives: 1075\n",
- "\tFalse positives: 2232151\n",
- "\tTrue negatives: -1074376\n",
- "\tFalse negatives: 1\n",
- "\tTotal comparisons: 2233226\n",
- "---\n",
- "# Cardinality Edge Pruning Evaluation \n",
- "---\n",
+ "\tF1-score: 0.28%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Cardinality Edge Pruning\n",
+ "***************************************************************************************************************************\n",
"Method name: Cardinality Edge Pruning\n",
"Parameters: \n",
"\tNode centric: False\n",
"\tWeighting scheme: JS\n",
- "Runtime: 2.7430 seconds\n",
- "Scores:\n",
- "\tPrecision: 4.58% \n",
- "\tRecall: 98.61%\n",
- "\tF1-score: 8.75%\n",
- "Classification report:\n",
- "\tTrue positives: 1061\n",
- "\tFalse positives: 22121\n",
- "\tTrue negatives: 1135640\n",
- "\tFalse negatives: 15\n",
- "\tTotal comparisons: 23182\n",
- "---\n",
- "# Entity Matching Evaluation \n",
- "---\n",
+ "Runtime: 3.0797 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 4.74% \n",
+ "\tRecall: 97.30%\n",
+ "\tF1-score: 9.04%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Entity Matching\n",
+ "***************************************************************************************************************************\n",
"Method name: Entity Matching\n",
"Parameters: \n",
- "\tMetric: sorensen_dice\n",
- "\tEmbeddings: None\n",
- "\tAttributes: None\n",
- "\tSimilarity threshold: None\n",
- "Runtime: 30.4935 seconds\n",
- "Scores:\n",
- "\tPrecision: 4.58% \n",
- "\tRecall: 98.61%\n",
- "\tF1-score: 8.75%\n",
- "Classification report:\n",
- "\tTrue positives: 1061\n",
- "\tFalse positives: 22121\n",
- "\tTrue negatives: 1135640\n",
- "\tFalse negatives: 15\n",
- "\tTotal comparisons: 23182\n",
- "---\n",
- "# Connected Components Clustering Evaluation \n",
- "---\n",
+ "\tTokenizer: white_space_tokenizer\n",
+ "\tMetric: dice\n",
+ "\tSimilarity Threshold: 0.5\n",
+ "Runtime: 10.4458 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 77.78% \n",
+ "\tRecall: 1.95%\n",
+ "\tF1-score: 3.81%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "***************************************************************************************************************************\n",
+ " Μethod: Connected Components Clustering\n",
+ "***************************************************************************************************************************\n",
"Method name: Connected Components Clustering\n",
"Parameters: \n",
- "Runtime: 0.0060 seconds\n",
- "Scores:\n",
- "\tPrecision: 0.09% \n",
- "\tRecall: 99.81%\n",
- "\tF1-score: 0.19%\n",
- "Classification report:\n",
- "\tTrue positives: 1074\n",
- "\tFalse positives: 1152097\n",
- "\tTrue negatives: 5677\n",
- "\tFalse negatives: 2\n",
- "\tTotal comparisons: 1153171\n",
- "---\n"
+ "Runtime: 0.0000 seconds\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n",
+ "Performance:\n",
+ "\tPrecision: 90.48% \n",
+ "\tRecall: 1.77%\n",
+ "\tF1-score: 3.46%\n",
+ "───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────\n"
]
}
],
@@ -296,7 +272,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 6,
"id": "f01b9916-c30f-4409-b634-45cbcdb3270f",
"metadata": {},
"outputs": [
@@ -336,52 +312,52 @@
" 0.167526 | \n",
" 100.000000 | \n",
" 0.083833 | \n",
- " 0.414992 | \n",
+ " 0.240996 | \n",
" {'Q-Gramms': 3} | \n",
" \n",
" \n",
" 1 | \n",
" Block Filtering | \n",
- " 0.122198 | \n",
- " 99.907063 | \n",
- " 0.061136 | \n",
- " 0.126996 | \n",
+ " 0.238795 | \n",
+ " 100.000000 | \n",
+ " 0.119540 | \n",
+ " 0.098999 | \n",
" {'Ratio': 0.8} | \n",
"
\n",
" \n",
" 2 | \n",
" Block Purging | \n",
- " 0.096227 | \n",
+ " 0.277537 | \n",
" 99.907063 | \n",
- " 0.048137 | \n",
- " 0.033007 | \n",
+ " 0.138962 | \n",
+ " 0.025035 | \n",
" {'Smoothing factor': 1.025, 'Max Comparisons p... | \n",
"
\n",
" \n",
" 3 | \n",
" Cardinality Edge Pruning | \n",
- " 8.747630 | \n",
- " 98.605948 | \n",
- " 4.576827 | \n",
- " 2.743003 | \n",
+ " 9.037939 | \n",
+ " 97.304833 | \n",
+ " 4.739058 | \n",
+ " 3.079692 | \n",
" {'Node centric': False, 'Weighting scheme': 'JS'} | \n",
"
\n",
" \n",
" 4 | \n",
" Entity Matching | \n",
- " 8.747630 | \n",
- " 98.605948 | \n",
- " 4.576827 | \n",
- " 30.493534 | \n",
- " {'Metric': 'sorensen_dice', 'Embeddings': None... | \n",
+ " 3.807797 | \n",
+ " 1.951673 | \n",
+ " 77.777778 | \n",
+ " 10.445795 | \n",
+ " {'Tokenizer': 'white_space_tokenizer', 'Metric... | \n",
"
\n",
" \n",
" 5 | \n",
" Connected Components Clustering | \n",
- " 0.186095 | \n",
- " 99.814126 | \n",
- " 0.093134 | \n",
- " 0.005996 | \n",
+ " 3.463993 | \n",
+ " 1.765799 | \n",
+ " 90.476190 | \n",
+ " 0.000000 | \n",
" {} | \n",
"
\n",
" \n",
@@ -391,22 +367,22 @@
"text/plain": [
" Algorithm F1 Recall Precision \\\n",
"0 Q-Grams Blocking 0.167526 100.000000 0.083833 \n",
- "1 Block Filtering 0.122198 99.907063 0.061136 \n",
- "2 Block Purging 0.096227 99.907063 0.048137 \n",
- "3 Cardinality Edge Pruning 8.747630 98.605948 4.576827 \n",
- "4 Entity Matching 8.747630 98.605948 4.576827 \n",
- "5 Connected Components Clustering 0.186095 99.814126 0.093134 \n",
+ "1 Block Filtering 0.238795 100.000000 0.119540 \n",
+ "2 Block Purging 0.277537 99.907063 0.138962 \n",
+ "3 Cardinality Edge Pruning 9.037939 97.304833 4.739058 \n",
+ "4 Entity Matching 3.807797 1.951673 77.777778 \n",
+ "5 Connected Components Clustering 3.463993 1.765799 90.476190 \n",
"\n",
" Runtime (sec) Params \n",
- "0 0.414992 {'Q-Gramms': 3} \n",
- "1 0.126996 {'Ratio': 0.8} \n",
- "2 0.033007 {'Smoothing factor': 1.025, 'Max Comparisons p... \n",
- "3 2.743003 {'Node centric': False, 'Weighting scheme': 'JS'} \n",
- "4 30.493534 {'Metric': 'sorensen_dice', 'Embeddings': None... \n",
- "5 0.005996 {} "
+ "0 0.240996 {'Q-Gramms': 3} \n",
+ "1 0.098999 {'Ratio': 0.8} \n",
+ "2 0.025035 {'Smoothing factor': 1.025, 'Max Comparisons p... \n",
+ "3 3.079692 {'Node centric': False, 'Weighting scheme': 'JS'} \n",
+ "4 10.445795 {'Tokenizer': 'white_space_tokenizer', 'Metric... \n",
+ "5 0.000000 {} "
]
},
- "execution_count": 8,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -417,13 +393,13 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 7,
"id": "4dad448b-4871-4064-9ae6-ddab6b6149e9",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAIpCAYAAAAb9bTHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACAi0lEQVR4nO3dd3hUZdrH8e8kJPQmKCgiCuot6tpwxbKKBTuW9bWsBXtd6+5a1t5ddxXbujZsiL2vumJZu66gxorG2wZKF5EaCGnz/vGcgUlIIEAyZ2by+1xXrjlz6jPzZObc89REMplERERERLJfQdwJEBEREZHGUeAmIiIikiMUuImIiIjkCAVuIiIiIjlCgZuIiIhIjlDgJiIiIpIjWsWdABFZMWb2NWDAtu7+frTuEeAPQDnQyd0ro/UzgFWAnu4+bQWvtz1wN7A28ClwO3AfcKe7n7xSL2bZ194ReGMpu7zl7juu5DVWBfZ193vq2XYXcAJwh7ufUmfbq8Bg4FRgK+Ao4FB3f3Rl0tPINN+ffj0zexMYBGzj7qNX8txFwBnuPix6fjQZym8RaZhK3ERy15jocYu0dTtEj21S682sLyFoG7eiQVvkSmB94FugZCXOsyJ+Af4d/b0Xrfs5bd27K3NyMzPga+CgBnZ5Knrc18wSacd1IgRKNcDTwMdReiauTHpWwrvR9X9tgnN9Clyd9vyn6NyfNsG5RWQFqcRNJHeNBo4EBgCY2brAGoQgogDYlhDcDYj2f38lr7da9Li/u38XlcBkhLuPBfaHWqVvn7j7/k10idUJwW1DXgdmEt7f3wIfROt3B4qAd9x9KnBL9BcLd7+oCU+3IbAw7dyvE94HEYmRAjeR3JUqcUsFZoOix8cJ1aXbAjcCW0brRwOYWTvgqmifVQglKH919zej7fcTqt8uB04E5gPtCMENwLdmdjkwvm6CzGyn6NybA3OAR4Hz3X2BmX0Yre/u7rPM7BbgdOAKd7/UzNYHHHjD3Xde3jfDzNYAbgN2jdL8CHCOuy+Mtp8DnAz0IpTgjQQuBNZicTXs7maWdPdE+rndvdLMnovel/1ZHLjtEz0+FV3jfmpXXQ4Ergc2BaoJeXC6u38X7Z8EFrp7m+j5H6J0j3D3o6N1FxLyoScwA3gIOM/da+p5D94kqioFNiBUbdY1wt2PNrMNgX8SAtFC4PMobR+Z2fho39ZRGnciVJHXqipdWn6nvb4vo33+Rgj+nwJOSOWLiCwfVZWK5K7PCQHKhmbWhsXVpDcDcwmBGyxZ4vYk8CdCIDGGcON+1cy2q3P+i4FvCMHGC8C8aP2rhGrFWsxs22jb1sCHQCVwJourGUcRAoQdo+fbR4+p6+4SPf5nqa+6HlH15TPAfsBYYAohKLwt2j4E+AchAH2d8N33V8L7MJ8lq1/r82T0uH90zkJgLyCZ9hrT01QAPMfi9+NbYA9ClWpjX9dhhKCnLfAm0B44O5WGZUhVbf4beDFt/YTo/Xoa2Jnwfn0TpfPeaJ9Xosea6Phf6knbsvI7ZW3gTkKgXwQMJZQUi8gKUOAmkqPcvYrQ1qwVsAmhpGUe4Sb6HrCGma1NCNwWAJ9FwdmehBv1Bu4+CDglOscVdS7xkLvv6O5HuPuJwKRo/YkNNLy/nBCYnRyddwNCsLJn1LEhFTzsYmadozQngYFRELTCgRuhRGgr4BF3H+jumwD/A440s1WAvtF+9xCCu22Bswilez8DqSrGpVW/vkIoVepvZusRSrW6AWPcvb42bR0JJUxfA4e5+1aEDgyXmlljazu+JbyvA91992gZYL1lHejur7v7/tHr+Sla/TEhEGwD3EDIq20JwfvM1Hmj/AaojM4xtp5LLCu/U9oTXv9OhOAZFv+YEJHlpMBNJLelqkt/D/QB3nf3auDtaP1QoAvwUdTDdOto/TPuXhYtj4weU9tSlrdNXOr4BwGi8z+dtu0DQlXfLoTAKVUi1YHQkWIn4Ad3/9rMdjazZ9P+llV1ulH0eKiZJaMqum0JAelmUTomE6pGfwVuJQS5XzT2xbl7BaHkEUKJ177R8hKlbdH+s4EHgI2ByWb2MaGa9qMo6K5P3SraDwnVuKeb2QfAddGmNo1Nt5kdQaging0c5O4Lo6rMJ4EiM3uKEJR3XZ7zsuz8Tvdy9JgqqW29HNcRkTQK3ERyW2rIh5Oix1TA9lb0eHKd/ZZoF5UmWef5nOVMy1LPHbXJehnoDxwS7X9NtP00Qnu7VGnbWoSSsdTfWsu4dlH0+DWLqwdTfwuiErGNCO9TqnrvbuCxRr62lFR16X4sbt/2ZAP7AhwN7AbcQQhWLgDGmtmaafukfw/XCmjM7M+EKtJNCdW+l0abagV4DYnasd0RPT3W3X+I1nchtG28htAG7RAWl6g2VmP/lyrSAtXUY6PSLyJLUuAmkttSAVnX6DEVuH1IqB5dI3qeKj37JHr8vZm1j5aH1tknpXo505I69xEA0fkPqHPuUWn7jHX3D4CpwOHR+v8AuPv97p5I+7t/Gdf+Knr8Lqoa/D2ho8O7wBdRqdPdwPfufgDQG6ggdGSAxUHIsr4TXwLKCKV5GwAl7j6+vh2jzhbDgV3c/VR334hQOtUJGBjtVk4o9eoePd+qzmmOjR7PjN6DNWik6P1/glBV+Q93T29bN5jwHrzi7pcA3wPd65wiydLfj8bkd+o8ItJEFLiJ5DB3n8TikpKFRFWnUbVo+gCsqRvp24TSuPWBr83sLcJAupXAJSuZnKsJAdAd0Xm/JrSZesHdU43/X4r2KWRxkPlO9LyMULq0Il6JrjfEzD4jdNw4FzjY3ecRgtj/A/5tZi8R2noVp6VhevS4vZn9z8za1neRqIrxRRaXGNVbTRqZQui8cJ6ZfWBmrxN68i4APor2+TR6/K+ZPc7iADblx+jxP2b2PqE9IoTq5WW5hDCkRw2hXV6q2vmutPMeEKXrY6LSPjNLnXs6Iaj8XzQES12NyW8RaWIK3ERyXypA+6DOEAup6tIfozHGiKorhxB6nhYQSn4+AAanZl9YUe7+KqHX5PuExu7FhOFIDkrb5xcWBy3v1Ennays6RET0uvYkVI32JZQmPUXUDs3dnyJUW44j9L7tAowAjom2l0bPq6NjOy7lck82sFw3TXMJ7fleANYlDMvyIbCPu6cCp5OBzwgzYHQjzM6Q7ixCR5NVCVXJ50frt1lK+lJ6RI8FhGrdVLXzblHbuQsJvUU3JwSwqd60qXNfTmiT2J/Qq7Xu61tmfotI00skkyrFFhEREckFKnETERERyREK3ERERERyhAI3ERERkRyhwE1EREQkRyhwExEREckRCtxEREREcoQCNxEREZEcocBNREREJEcocBMRERHJEQrcRERERHKEAjcRERGRHKHATURERCRHKHATERERyREK3ERERERyhAI3ERERkRyhwE1EREQkRyhwExEREckRCtxEREREcoQCNxEREZEcocBNREREJEcocBMRERHJEQrcRERERHKEAjcRERGRHKHATURERCRHKHATERERyREK3ERERERyhAI3ERERkRyhwE1EREQkRyhwExEREckRCtxEREREcoQCNxEREZEcocBNREREJEe0ijsBIpKfzGxt4Hvgi7TVCeBmd793Oc/VGxgFVAMnu/v7TZXOlsDM1gGud/f/izstIrJyFLiJSHNa4O6bpZ6YWS9grJl95O6fL8d5dgKmuvvgpk5gC9EHsLgTISIrT4GbiGSMu08ys2+B9YHPzew44I+EZhszgNPc/Wszux9YBegHzANWBzqb2RvuvpOZnQicQSiBmxYd902d414AegALgN8CPYHHgenAPtHz4939dTNbH/gX0AFYA/gUOMTdy82sHLgW2DXadrO73wRgZucDRwFVwLfA0e4+u6HXlf5emNmOwHXAJKBvlM6j3b3UzIqBvwODgELgE+AMd59jZuOBMcAmwAXu/kzaOTcA7gHaEEo37wbujB57mdnL7r67mW0bnb89UANc5u4vmNnRwKFRuntFaTvK3ScvK29FJDPUxk1EMsbMtgHWBcaY2SBC0LO9u28O/AN4Om33du6+kbsPBC4B3omCtp2Bc4Gd3H1T4GHgWTNL1DnuvOj55sA2wJbAn4B57r4tcDPw12ifE4AR7p5K3zrA3tG21sAv7r4dcCBwrZm1MbN9gaOBbdx9Y2AccFojXle6LYBh7r4JcB8wMlr/V0IwOCB6jZMJwWPKWHfvnx60Rc4Bnnf3AcBewA5AEjge+D4K2rpG1xrq7lsA+wK3m9la0Tm2A0519w2BEuCWBtIuIjFQiZuINKe2ZvZptNwK+AU43N0nmNnphCDpf2aLavFWMbNVouV3GzjnHsBj7j4dwN3vN7ObgbUbOO55d68EpppZGfBStP57QukcwHnArmZ2LqE0cA1C6VvKv6PHjwmBXHtgMPCEu8+M0vFnADP7R0Ovy91/rZO2z9z9nWj5XuBfZtYNGAJ0idIEUAz8nHbcO9TvGeABM9sK+C+hlK4mLR0QgtjVCcFual2SUIIH8Iq7fxMtDyeUPopIllDgJiLNqVYbtzoKgZGpkjEzKyAETDOj7fMaOK6+moIEUNTAcQvrPK+s5/hHCN+HjwP/AdaKzpmyAMDdk1GwkyCUiCVTO5hZF0KwtazXla6qzmtIEKp/C4Ez3X1UdI4OhOrPlHrfm6i6cz1Cte4uwKVRtWi6QqA0KslMpX0NQhXy4XXSVBClR0SyhKpKRSQurwCHmtnq0fOTgdcacdzLwCFmtiqAmR1DaEf23UqkZXfgCnd/jBCMDSQEOEvzX+AAM+sUPb8M+DPL97o2M7NUSdeJwHvuPovwGk8zs+Io8BsO/G1ZL8LMHia0zXuU0MZuDtCbEIylAtvRwHpmtkN0zGaE9nlrRNt3iTqRpNL+/LKuKyKZo8BNRGLh7i8TGsi/amafA4cBB7h7chnHvQrcCLxuZl8S2pMNcfealUjOBcAzZvYRcAfwFqG6c2npeJHQVuw9M/uC0NnhwuV8XVOBq6Pj9weGRuuvBMYTOiV8RSiJ+0sjXseVwOFm9hmhA8Mz0Wv5Eqg2sw8I1dX/B1wX7TeS0N7tx+gcE4GRZlZKqH4+qxHXFZEMSSSTS/2OFBGRZhD1Kr016tiQFaJepQe6+5C40yIi9VOJm4iIiEiOUImbiIiISI5QiZuIiIhIjlDgJiIiIpIjFLiJiIiI5IgWMQBvSUmJGvKJiIhIzhgwYECivvUtInADGDBgQLNfo7S0lP79+zf7daTxlCfZSfmSfZQn2Un5kn0ykSclJSUNblNVqYiIiEiOUODWVMpn0+vdc6F8dtwpkRTlSXZSvohIrsqC76+sDtzMbKCZvRktr2tm75rZO2Z2ezR/H2Z2qZl9YGb/M7OtYkusj6LTpLfBX4otCVKH8iQ7KV9EJFdlwfdX1gZuZnYucDfQJlp1A3CRu29PmLdvPzPbAhhEmBD6D8C/4kgrAJ+MrP0o8VOeZCflS/bJglIEqYfyJftkwfdXNndO+B44gDABMsAAwmTJAKOA3QAHXokmb/7JzFqZ2aruPr3ZUzdiXxj31uLnBUXh8af34bLOi9f33AR2uzJ6ktZBJJFYznVp6xu7rsFzLm2/prxOU72e9M1LOefTJ8KEMYvXL8qT0bXzpPfW8H93139+aXpPHQ8TRi9+nsqXCXXyZZ1BcNRzmU2bBOmlCJseEndqJEX5Er+69/rC4vA4YUxs319ZG7i5+1NmtnbaqkQUoAHMBToDnYAZafuk1jd/4LbD2TDxA6hcEJ7XVEaPVbX3m/o5PLBfsydH6rEoTyprr58wGm7Kmnm9W55UflTXyZdxb8EV3aGwKAR3hUUNLLcKX54rulxQFJ4XFkFBq0YsN/b6RQ3/4Mh26aUIChCyRz7lSzIZ7o/VleE7oKZ68XJ1Ze1t1VVp6+s+Tz9HVeP3rXe/qmVfr6Ks9uuorqj9CFDUFnY4J2NvZdYGbvWoSVvuCMwC5kTLddcvobS0tImTsyrttrue3u/8hYLq8iW2JimgvMu61BR3WrQmfWt4WHJ4uUT6fsnGHZN+7kR9x9TaNVnPtoaOX9q1l3bu9NfR0Oup5zzR9kR95651fMPvS6J6Ia0WzqS+22cSqG7dlWTqF5NkTKK6gsKl5AsUkKAm+jKurGev3JBMFJIsaBX9FZFMtIJFz1uRTKRtK2gFBYWL9qu1PlG4aDl9fTJRGJ2vKO18RSQLCqPz1b8+WVAEicXpWH3MFbT/5bNF6a4pKKIAqPlpNAVppQhlq23JT4Nuzvwb2UKt9daZtP/5o0XPF+fL+6Tny/xumzBl4EVQU0Ui9ZcMj6Qth/XV9e+XrK61rvY+1Q2cK22/tOPrnqvBdOShmsI2TPjd9cwv7w5NHmfUL5cCt0/MbEd3fxPYE3gD+A74h5ldD6wJFLj7L/Ud3CxjrvTvD6t3hyeOgqq04K1VGxIHjaCt7dH015Rl85cazJNWypP4LCVfsD2gpib6hVyx+FfvMpcr6/nVXlHPcj371ru8vNdPW07dzKqroXphfO/zCiiIguWCOkFz+58/ov8T28WRJCE9X2rX5LSb8Tn9Xjw4jiStnETh4hLtgla1S7ELihp4Xs9+i9atyDmKoKBwKdsaOOe4t+G506Aq7bPdqg0FB42gTzPcV5Y2jlsuBW5/AYabWTFQCjzp7tVm9g7wPqGjxakZT1X57PBPkCgIv45qKsNzNSaNj/IkOy0rXwoKoKAYWuVoieiiqqD6AsfGBpFLCUobs7w816wog4VzlvKCErlb9ZvLkknqrdFIadsNitsvO7hZalBSN3BaziBoua+XOi5r+0MuWzIZXkOiMvb7SlYHbu4+Htg6Wv6G0IO07j6XAZdlMl21fPIAVMyHnr9hoh3HWn4PTP0iP9ok5CrlSXbK93xJJBa3hcsVDZSCkioFlXgoX7JPFn1/5XD4myVad4LdroIT36Ks50A48c3Qi7R1x2UeKs1EeZKdlC/ZJ70UtLA1JApUOp0NlC/ZJ4u+vxLJehuM55eSkpKk5iptmZQn2Un5kiXu3xvGvwc9f8NP6aUIa/8Ojn4h7tS1XMqXrJapuUobmmReJW4iIi1VFpUiSBrliyxFVrdxExGRZnToI7WfFxTCtqeHP4mP8kWWQiVuIiIiIjlCgZuIiIhIjlDgJiIiIpIjFLiJiIiI5AgFbiIiIiI5QoGbiIiISI5Q4CYiIiKSIxS4iYiIiOQIBW4iIiIiOUKBm4iIiEiOUOAmIiIikiMUuImIiIjkCAVuIiIiIjlCgZuIiIhIjlDgJiIiIpIjFLiJiIiI5AgFbiIiIiI5QoGbiIiISI5Q4CYiIiKSIxS4iYiIiOQIBW4iIiIiOaJV3AlYHmZWBIwA1gaqgROAKuB+IAmMBU5195qYkigiIiLSbHKtxG0voJW7bwtcAVwN3ABc5O7bAwlgvxjTJyIiItJsci1w+wZoZWYFQCegEhgAvBVtHwUMjiltIiIiIs0qp6pKgXmEatKvge7AEGAHd09G2+cCnes7sLS0tNkTV15enpHrSOMpT7KT8iX7KE+yk/Il+8SdJ7kWuP0JeNndzzez3sDrQHHa9o7ArPoO7N+/f7MnrrS0NCPXkcZTnmQn5Uv2UZ5kJ+VL9slEnpSUlDS4LdeqSmcCs6PlX4Ei4BMz2zFatyfwTgzpEhEREWl2uVbidiNwr5m9QyhpuwD4CBhuZsVAKfBkjOkTERERaTY5Fbi5+zzg4Ho2Dcp0WkREREQyLdeqSkVERERaLAVuIiIiIjlCgZuIiIhIjlDgJiIiIpIjFLiJiIiI5AgFbiIiIiI5QoGbiIiISI5Q4CYiIiKSIxS4iYiIiOQIBW4iIiIiOUKBm4iIiEiOUOAmIiIikiMUuImIiIjkCAVuIiIiIjlCgZuIiIhIjlDgJiIiIpIjFLiJiIiI5AgFbiIiIiI5QoGbiIiISI5Q4CYiIiKSI1pl6kJm1ge4EmgL/M3dP87UtUVERETyQcYCN+DvwC1AErgL2DKD1xYRERHJec1WVWpmI8xstbRV7YHxwA9Am+a6roiIiEi+as4St+HAk2b2b+AmQjXpE0AxcFEzXldEREQkLzVb4Obu75rZjsApwFvAZe6+3cqe18zOB/YlBIC3Ree+n1AFOxY41d1rVvY6IiIiItmmuXuVtgPuBfYDDjazx82s94qeLAoEtwW2AwYBvYEbgIvcfXsgEV1LREREJO80Zxu3C4HRwMfA7939ROA64AEzu3gFT7s78AXwDPA88AIwgFDqBjAKGLwy6RYRERHJVs1Z4nawu28MbEKoLsXdP3T3nYDJK3jO7oTeqAcBJwMPAQXunoy2zwU6r1SqRURERLJUc3ZOmGVm5xKqS8elb3D3e1bwnDOAr929AnAzKydUl6Z0BGbVd2BpaekKXrLxysvLM3IdaTzlSXZSvmQf5Ul2Ur5kn7jzpDkDt98DhxMCqX800TnfBc40sxuA1QlDjLxmZju6+5vAnsAb9R3Yv3//JkpCw0pLSzNyHWk85Ul2Ur5kH+VJdlK+ZJ9M5ElJSUmD25qzV+mvwD+b+JwvmNkOwAeEat5TCaV5w82sGCgFnmzKa4qIiIhki0zOnNAk3P3celYPynhCRERERDJMk8yLiIiI5AgFbiIiIiI5otmrSs1sA+B3wD2E8dc2AY5z93o7EYiIiIhI/TJR4nYnsAAYQhiH7VjgmgxcV0RERCSvZCJwa+PuDwG7AY9Hw3YUZeC6IiIiInklE4FbazPrAewN/DdabpuB64qIiIjklUxVlf4IvOvuXwEfAjdl4LoiIiIieaXZAzd3vx1o5+5HRqs2d/fhzX1dERERkXzT7IGbmXUAbjGz18xsFeCaaJ2IiIiILIdMVJXeAswGegDlQCfgrgxcV0RERCSvZCJw29zdLwQq3X0+YeL5zTJwXREREZG8konArbrO80KgJgPXFREREckrmQjc3jazvwNtzWx34GlAsyaIiIiILKdMBG7nAfMI7dyuBj4HzsnAdUVERETySrPPVQpc4e7nA1dm4FoiIiIieSsTJW5DMnANERERkbyXiRK3H8zsFeBdQpUpAO5+QwauLSIiIpI3MhG4/Ro9rpO2LpmB64qIiIjklWYP3Nz9GAAz6wMUuft3zX1NERERkXzU7IGbma0L/BtYAygws1+Avd396+a+toiIiEg+yUTnhFuBf7h7V3fvDFwF3JaB64qIiIjklUwEbj3cfUTqibvfB6yageuKiIiI5JVMBG6tzGyV1BMz6446J4iIiIgst0z0Kv0nMNrMHoueHwLcmIHrioiIiOSVZi9xc/e7gJOAYqANcIq7397c1xURERHJN5noVdoLOMjd/2hmBvzdzL5096krcc7VgBJgV6AKuJ9Q/ToWONXda1Y+5SIiIiLZJRNt3EYAqaE/fgTeBO5d0ZOZWRFwJ7AgWnUDcJG7bw8kgP1WOKUiIiIiWSwTgVt3d78FwN3L3f0mYPWVON/1wB3A5Oj5AOCtaHkUMHglzi0iIiKStTLROaGVma3h7pMBzKwHoWRsuZnZ0cB0d3/ZzM6PVifcPdVLdS7Qub5jS0tLV+SSy6W8vDwj15HGU55kJ+VL9lGeZCflS/aJO08yEbjdAHxqZi8R2qENBs5ZwXMdCyTNbDCwGfAAsFra9o7ArPoO7N+//wpesvFKS0szch1pPOVJdlK+ZB/lSXZSvmSfTORJSUlJg9sy0av0XkKw9gnwEbC7uz+8gufawd0HufuOwKfAkcAoM9sx2mVP4J2VTbOIiIhINmrWEjczSwCF7v65mY0j9AJd2MSX+Qsw3MyKgVLgySY+v4iIiEhWaLbAzcw2BF4ETjOz14APCFWl7czsBHd/dWXOH5W6pQxamXOJiIiI5ILmrCq9DrjQ3V8A/kDokLAxsD1wWTNeV0RERCQvNWfgtpa7PxQt7wQ86+417j6BBnp+ioiIiEjDmjNwq05b3hZ4O+15m2a8roiIiEheas7OCb+a2aaEITpWJxok18y2BSY143VFRERE8lJzBm4XAP8lVIue6+5lZnY2cCGwfzNeV0RERCQvNVvg5u6jownm27n7rGj1/4Ct3P3b5rquiIiISL5q1nHc3L0CqEh7/r/mvJ6IiIhIPsvEJPMiIiIi0gQUuImIiIjkCAVuIiIiIjlCgZuIiIhIjlDgJiIiIpIjFLiJiIiI5AgFbiIiIiI5QoGbiIiISI5Q4CYiIiKSIxS4iYiIiOQIBW4iIiIiOUKBm4iIiEiOUOAmIiIikiNaxZ0AERERaXl+nFHG8Hd+4NlPJlO2sIr2rVux/+ZrcML2fenTrX3cyctaCtxEREQko97wn/njgx9TWV1DVU0SgHkLq3j0gwk8VTKJ247Ygp1stZhTmZ1UVSoiIiIZ8+OMMv744McsqKxeFLSlVNUkWVBZzR8f/JgfZ5St0PnHjBnDNttsw9ChQxk6dCgHH3wwI0eOXOH0/ulPf6KioqLebU8//TSvvfbaCp97RajETURERDJm+Ds/UFlds9R9KqtruPudcVy5/8YrdI2tt96aG2+8EYCKigr22GMP9ttvPzp16rTc50qdpz4HHHDACqVvZeRU4GZmRcC9wNpAa+Aq4CvgfiAJjAVOdfel/0eIiIhIszrmvg94w6ev0LFVNUlGjv6RkaN/rLV+J1uV+47ZarnONW/ePAoKCjj66KPp3bs3s2fP5q677uKyyy7jxx9/pKamhrPOOouBAwfyxhtvcOutt5JMJtloo424/PLLGTx4MKNGjeKtt95i+PDhVFZW0qdPH2688Ub+9a9/0b17dw499FCuvfZaSkpKABgyZAhHHXUUf/3rXykuLmbSpEn8/PPPXHvttWy00UYr9J6k5FTgBhwBzHD3oWa2CvBp9HeRu79pZncA+wHPxJdEERERidPo0aMZOnQoiUSCoqIiLr74Yu6++26GDBnCrrvuysMPP0zXrl255pprmDlzJkcccQT//ve/ufLKK3niiSfo1q0bw4cPZ+rUqYvO+cILL3DcccfRp08f3J158+Yt2vbGG28wceJEHn/8caqqqjjssMPYeuutAVhjjTW44oorePzxx3nssce44oorVuq15Vrg9gTwZLScAKqAAcBb0bpRwG4ocBMREYlVQyVjG1/6MvMWVi3z+A6tWzH28t1X6NrpVaUpd999N+ussw4A33zzDSUlJXz++ecAVFVV8csvv9CpUye6desGwAknnFDr+PPPP58777yTu+66i4033pjBgwcv2vb999+z5ZZbLgoUN910U77//nsA+vfvD0DPnj35+OOPV+j1pMupwM3d5wGYWUdCAHcRcL27p1o3zgU613dsaWlps6evvLw8I9eRxlOeZCflS/ZRnmSnfMyXQWu346Vv5lCdbHifwgTsuHa7FXrtP/74I3PmzFni2LKyMsaNG0dlZSXt27fnt7/9LQcddBALFy7kySefZMaMGcyYMYMPPviAjh07Mnz4cAYNGkRFRQVff/01TzzxBHvvvTf77bcf9957LyNGjGD69OlUVVXRrVs3XnvtNQYOHEhVVRXvv/8+m222GbNmzWLixImUlpYyYcIEZs2atdL5mVOBG4CZ9SaUqN3m7g+b2T/SNncEZtV3XCribU6lpaUZuY40nvIkOylfso/yJDvlY76cu1oZr9/0Dgsqqxvcp7hVIefsu8UKjec2Z84cOnXqtMT71r59e/r27Uu/fv3o168fF110EVdffTXz5s3jsMMOY6ONNuKqq65i2LBhFBQUsOGGG7Lvvvty8803s8EGG7DzzjszbNgwAFZddVUOO+wwHnzwwUVt3KZMmcJll11GZWUl++23H0OGDOHdd9+ld+/e9O/fn+nTp9OlS5dG5WeqrVx9EsnkUkLeLGNmPYA3gdPc/bVo3fPAsLQ2bm+4+2Ppx5WUlCQHDBjQ7OnLxw9YrlOeZCflS/ZRnmSnfM2X+sZxA2hVkKCosCCrx3HLRJ6UlJQwYMCARH3bcq3E7QKgK3CxmV0crTsTuMXMioFSFreBExERkSy0k63GS2dtz93vjOOZTyZRVlFF++JW/H7zXhy//TqaOWEpcipwc/czCYFaXYMynRYRERFZcX26tefK/Tde4bHaWirNnCAiIiKSIxS4iYiIiOQIBW4iIiISn/LZ8Ohh4VGWSYGbiIiIxMdHwdf/AX8p7pTkBAVuIiIiEp9PRtZ+XEljxoxhm222YejQoQwdOpQDDjiAM844g4qKipU678SJEzn44IMB2HnnnVm4cGFTJHe55VSvUhEREclxI/aFcW8tfl5YHB4njIHL0iY/WmcQHPXcCl2i7pRXf/nLX3j99dfZY489Vuh82USBm4iIiDS9hw6Cb19Z9n7VFbUfU8a9VTuQA1hvNzj8ieVKRkVFBT///DOdO3dm2LBhfPTRR9TU1HD00Uez55578tlnn3HNNddQU1NDjx49uP766/n888+59dZbSSaTlJWVMWzYMIqKipbrus1FgZuIiIjkldGjRzN06FBmzJhBQUEBBx98MBUVFUycOJFHHnmEhQsXcvDBB7PddttxySWXcMMNN9CvXz+eeOIJvv/+e7799luuu+46evTowR133MFLL73EPvvsE/fLAhS4iYi0OPeOvZeNu23MVqtv1eA+H0z5gLEzxnLsxsdmMGUtW97ly7JKxvwleOIoqCpfvK5VGzhoBNjKVWmmqkpnzpzJsccey5prrsk333zDl19+ydChQwGoqqpi0qRJ/PLLL/Tr1w+Agw46CIApU6Zw9dVX065dO6ZNm8YWW2yxUulpSuqcICLSwmzcbWPOfutsPpjyQb3bP5jyAWe/dTYbd9OI9pnU4vKlfDYUFEKiAFq1DY8FhU06LEjXrl257rrruOiii+jevTsDBw5k5MiRjBgxgj333JPevXuz2mqrMX78eADuuusuXn31VS6++GKuueYarr32WlZbbTWyaV53BW4iIi3MVqtvxfWDrq83SEgFB9cPun6pJT/S9FpcvnzyAFTMhx4bw6EPh8eK+U3WuzRl3XXXZejQobzxxhu0a9eOww47jAMOOACADh06cPnll3PBBRdwxBFHUFpayqBBg9h33305/PDD+cMf/kBZWRk///xzk6ZpZSSyKYpsLiUlJckBAwY0+3VKS0vp379/s19HGk95kp2UL9khPRjoOKsjc7vMzb/gIAe1mHx55FDosx1s/UcoKICaahh9G/z4Pzj0kbhT16BMfH+VlJQwYMCARH3b1MZNRKQFWli9kG5tu3HEhkdw2uunsXabtRm3YBy7rr0rH077kA+nfRh3Elu03635O0597VQ26rgRXuZcus2lbNlzy7iT1bTqBmcFhbDt6eFPGqTATUQkT82tmMuEuRNq/f005ycmzJ3Az/N/JsniGpfSeaUAPP/983ElV+pRMqsEgHPePocL372QXh170btj71p/a3ZckzU7rElxajw0yWsK3EREclQymWRG+YwlArOJcycyYe4EZi6c2eCxhYlC1uiwBp2KO/HdrO/o27Yv4xaMY/e1d6dXh14ZfBVSn0nzJvHy+JdZtXhVJpdPpl2rdsytnMu42eMYN3vcEvsnSNCjfY8lArrUcqfiTjG8CmkOCtxERLJYdU01U+dPXSIo+2luKDlbULWgwWPbFLapdfPu3bE3a3Vci94de9OzQ09e+vZ9LhvzVxZOOoYPZ69N+87jGVXzEJcNvJZ9bIcMvkpJ97y/zd2fj2ThpKMpjfJlYa+HuOS317NJz7WXKEWdMHcCU8umLvr7cOqS1dydW3emd4clA7reHXuzartVKUior2KuUOAmIhKziuoKJs6byIQ5aSVnc0OQNnHeRKpqqho8tmNxx0XBWK0ArdNarNp2VRKJets3c+cHL/PPsZdSMelwKsrWBmDe7LWpqDqU86vOZfLsyzlpq92b4+XKUiwtXy6vupTTN64/XyprKpkyb0q9Qd2keZOYvXA2sxfOZuyMsUsc27qwNWt2WLPeoK5Xh14UFTbtjAF5N15dhilwExHJgHkV85YIylLL08qm1WpvVteqbVetNzDr3bE3nVt3bvC4hjzvb/PPsZeyYOJhVM/vW2tbRVlfqicexj+5lDU6t1XJWwatTL4UFRSxVqe1WKvTWkucN5lM8suCX5YI6NKr1L+f/T3fz/5+iWMLEgX0bNezVlCXHtx1LO643K8zNV5dQ71k03vVypIUuImINIFkMsmv5b/Wbm8WVWdOnDuRX8t/bfDYwkQhq7dfvVZQtugm2WFN2hW1a9K0Pvjpu1RMOnyJ4CClen4/KiYdzkOfvqvALYOaK18SiQSrtluVVdutyhY9lpwBIP1HRXpQN3HeRKaUTWFy2WQml01mzNQxSxzbpXWXekvqenfs3WCJb/p4dXWDt6YYr27ixInsu+++bLTRRovWDRw4kNNOO40ff/yR0047jeefr78TzjPPPMMzzzxDMpmksrKS0047jd/97ncrlI7mosBNRKSRqmuqmTZ/2hIlZ6memvOr5jd4bHp1VO9Otdubrd5hdYoKmn4C65qaJHMXVjFrfgWz5lcyc34FsxdU8skXm1NRVbPUYyvK+vLhpwkOmfV+k6dL6vfh+E2pWcbQqhVlffl0bAH/G/ALXdoV06VdEV3aFdG2qLDBavFl6VDcgf7d+tO/25Jjk1VWVzK5bHL9gd3cicxaOItZC2fxxS9fLHFsqo1lfUHd5j02XyJ4a8pBhtddd11Gjqw9kO+zzz7LAw88wK+/1v8jau7cudx222385z//obi4mGnTpnHQQQfx5ptvUlCQPW0AFbiJiKSpqK5g0rxJ9Q6hMWneJCprKhs8tmNRx0VBWSowS920Vmu32go3AE8mk5RVVDOzLAReM6NAbHFAVsmsBbXXzVoQlpcVCCxNdTLJmHENlxRKPMorazjs7tqlX8WtCujStigK5IoXLXdtV0zndkV0abs4yEstd21XTJuigqUGfEWFRfTp1Ic+nfossS2ZTDJ9wfQGq2BnLZzFd7O+47tZ3y319Rz3ynFLfZ5u+17bc9vg25Z6voZ07tyZBx98kF133bXe7cXFxVRWVvLII4+w0047sdZaa/Hf//6XgoICxo8fz0UXXURlZSXV1dXcddddzJ8/nwsuuIDq6moSiQQXXXQRG2ywATvttBN9+/alX79+HHPMMVx88cUsXLiQ1q1bc+WVV7L66quvUPpTFLiJSItTVlm2RFA2ce5Efpr7E1PLpi61vVn3tt2XbG/WcXF7s6XdBJPJJOWVNbUDrwYCsdkLKkJAFi1XVq9YBNahdatFN+yu7Yrp3LaIl7+c2qjztS0q5N6jf7tC15Xld+z9H7KgsnqZ+7UqSDCgT9dFQfzM+ZVUVNXw89yF/Dx34XJdMxXwLQ7wwnKXdkV0jv5nurRNW44Cv7bFoYRvtXarsVq71RjQY8nZiU589UTen9y0JbYVNRUkk8llli5+9913iyaTB7j++uvZaaedlnpM69atGTFiBCNGjOD444+nsrKSE044gcMOO4y///3vnHjiieywww6MGDGCr776iscff5wjjzySwYMHU1paygUXXMDTTz/NlClTePrpp+natStnnXUWQ4cOZdCgQbz//vtcf/31DBs2bKXeAwVuK0i9YrKP8kRSkskkMxfOrDWERqq92YS5E5ba3qwgUcAa7ddYIjBLlZyl2pstrKqOgq1KZs6tYPS0cmbNn7MoEJs9Pz0gCyViqRvsimhbVEjXdkV0bldM13a1S1ZSN93UjbVruyI6R6UqRYVLlvJd9OwXPPrBBKqWUhzXqiDBgQPWZJt+3VYovbL8/m9Ar0bly6FbrcWV+9eeaL68srr2/1v0o6B2KWz9/48rEvC1blWwKIjrHP3PLS7VC4+/73k5x/QtrvXDoU1RIbC4ZPu1H1/jri/uYt0u6/L1r1/TvW13ZiyYQUVNRb3XHTNlDAMfHhg+jx16L/EjqmeHnkD9VaX1Oemkk5g/fz7rr78+J554IuXl5VxyySUAjBs3jkOOPITWfVozbtw4Nt98cwC22mor+vfvz9/+9jd++9vfhvtK9VimTp0KhIntu3btCsA333zDnXfeyd13300ymaRVq5UPuxS4raBUr5hzNr+KMaVdefaTyZQtrKJ965/Yf/M1GNh/Jtd9cpF6xWSQ8iQ7pQLqHsUbMfydH5bIlxO278u0ii+XO6CuSdYwrWxavR0Bfpr7E2WVZQ0eW1xQvCgQ69WhN91ar07nop60T/SksGYV5pYnQ+A1u4Jvp1by4fwKZs2fycz5PzM7KuFoTMlIvdduVVDnJlcn8Gq7+Ma3qOSjbdGiG15TOGH7vjxVMomqmoZfQ1FhAcdvv06TXVOWbWXypU1RIat3bsvqndsu1zUXVFQvCuhSPzjSf3yk1s9aUFnrx8jCqhqmzVnItDkrFvB1bVdMq/bfM6n4Hga0+RP9Cjaj76rOK79cx9H9rqRfl3VYkPyZudXT+LViMlPKFjdfmFMxh29nfsu3M79d4vyFiUK6V3Rn1uxZXPn+lUsMRly3o8+dd965aPnLL7/k/PPP5+GHH6ZDhw706tWLbqt0Y9gnw1i9R2/+fMdzvD+vOwu+G0NxTTmrt+nO7f8ewYvFT3L6GqfTvXt3gFrt4fr27cuxxx7LFltswffff8+HH678VHJ5Mcm8mRUAtwGbAguB4919UaV6c00yX3u8ncW9gIrb/0Bxr4caHG9Hmo/yJPt8MOUDznj9z8z58Q9UzOtbqzShVUGC4g4/0KnPo9yy8w1LlJZWVlcuam+2qCNAFKBNmjupwV/lAG0K29GlaHU6FvakDatRWNOdZEU3Kheuwrz57Zg9P5SYzVvY8BhpS9OqIJEWYIUSrlolYQ0EYstqU5Qpb/jP/PHBj6msrlkiT4oKC7jtiC3YyVaLMYUtUy7kyxJV/nVK8upra5naXlEdSpwL231Pm14PUz7pMKrn91t07obWt25VsOiHTIe2FbRpO5uC4hnUtPqFisR05tdMY3blVGZX/kLNrBqqnq2i6OglO/x0a9ONX677hX1v3HeJ3rCrtFmFJ598koceeog2bdpQXV3NgQceyKx1unDLOxdR+VwnklWtSRYWUbXl4RQXfUvBJw+zRps+rNq2IxdddBG/+c1v2G677XjvvfcAmDBhApdddhkLFy6kvLycCy+8cFHJ3dIsbZL5fAncDgD2dfejzWxr4Hx33y+1vTkCtx9nlLHHTe9QUfRNrX+y9H+64sr1eems7enTrX2TXlvqpzzJTj/OKGPPO+8j0ePBBr6kHyI5Yy8u3msA5Uznxzk/MX72T0ycO4GfF0wjScNVi4U1nUhUdaNq4SosLO9KTUU3aiq6kazsRrK6HbDsAKkgQa3G3F3S2vHUF4h1bltE1/bFtC9e8V582eLHGWXc/c44nvlkUlQK2orfb96L47dfR5+RGOVrviSTSRZUVvPmj+9z1YcXcML6l9Cj9ca1ejzPml/B+LLP+SZ5G53nHsv8Oeswa/5ytPFMVFJQNJNE8a8UFM2gqM2vFLeZSaJoBtUFM0gmGv6h1qawLb2int9rdw7tVouT3Tn/sSlUJKbTptejGbuvtITA7QbgA3d/NHo+yd0XTbbXHIFbehuRwnbf0rb3A9RUdKegeDpV8/uSrOpEAlilfTG9uiw5BlOioRtKnRvB0m8LibSlZd9AEiSWOGFjjlvq/onluPYy9oAlXj71vQMNnWvc9DKmRe00Eq1m0apjKTXlq1PQZgpVc/uTrOoCQI9Obei7at0PWFO8hsacZck9G773ZzJNy9gr0fjr1T3XN9PmMmX2Amj1K0WdxlI5d2MSyQQFbSZR0HraUl4/JJMJkpWdqansTk3FKiQrulFT2Y2ailWoqewGNa0XXzUBndrUbfuVHoiFgKtzWuPrLu2K6di6FQUFuR2ANYXS0lL6919yOAiJVz7my/K2R04FfDOjkrzZdXpSz15QycyyOtW5URBYO+CrIdFqDgXFMygo+pVE8QwKogCvoHgGicLyBtOTTBaQrOpAolUZVfPWp7DtT4uCuIbaHa6MpQVu+dLGrRMwO+15tZm1cvcVqwNphGc/mbyoGDtZ3YFEQSWFbaYAUNThm0X7zQW+bripjTSlYiiu0466sN1PABR1/nzRuplAyazMJavFK4Li7oufFnf+pNbmZE0hNZWpoGwVaiq60Sa5Gh1a9aRb6550bdeWLl0XB2INNc7v1LaIQgVgIlmvMW1Zt1p9q0WBXSKRoF1xK9oVt6JXl8a34Usmk8yvqF6iurZudW6qF/evC2Yxs3IqZTVTSRZGwVzRr1GgN4dE0RwAijqWsnD6zotqD6pqkjzzyaQmDdyWJl8CtzlA+rwbBXWDttLS0ia9YFlau5hEYRnJ6tZUz1+HwnY/UDlrIDUVqy7avmWvtH+0JEsZaCDZwLP6jlj61mWde+nH1b9liSESlnLhpQ2n0ND1lud11Hf+sdMW/1oqKJpBUZdPqJ6/FoXtfqJy1uYkKxdHdRv2aL3E8Uu/amNSt/yl1w0XeK94SXhD/0Urf8JlnyuZWHKfb36p3Xi5sN0PtGo/jspZm7Nw+u4kqzoBBSSAhw/uQ4fWBbRqMACrAcrDXxIog4VlMJXwJyuuvLy8yb8nZeUpX5pGAbAKsEoRUEQo7iEBFEd/7YGuwDqhDV9VkrkLazjqqfDjn0QlrTp+Rpuez1M5e3OKuo6hen6/RcFb2cKqjOVTvgRu7wH7AI9HbdyWGMK5qYua27f+iXkLq6J67kdYMPHIJeq9q+f3o0PrVjwyVI3hM2HjS19elCfF3d5mwYSjG8yTZ49SnmRKKl8gtGkr6jqahdN3pqjrGApmb0l1VIXdvnUrttkiM79YZUn5WCWXD5Qv8erwwuRwX2n7E617jFp0r6+a+5ta95X2rVs1aT6VlJQ0uC175nBYOc8A5Wb2P+BG4E/NfcH9N1+D4vY/LNH7pXp+P8onHUabXg9T3P4Hfr95r2WcSZqK8iQ77b/5GrQqSNQKoCt+2W1RnhS2+55WBQnli4hknWy8r+RFiZu71wAnZ/KaA/vP5NlfH2LBxNq95GBxhrZd8yG26r9pJpPVoilPstMJ2/fl6a/eItGj4S++5LQjOH77QTGnVESktmy8r+RLiVvGTa/8jtM3vpziyvWXaI/TqiBBceX6nL7x5UyvXPocbdJ0lCfZaVrFl3Tq8yjJaUeQKF+31rZE+bokpx1Bpz6PMq3iy5hSKCJSv2y8r+RFiVscUr1i9uiXn+Pt5CLlSXYaO2Mst+x8Az2KN2ogXwYxrWIrxs4Yu9ThAUREMi0b7yt5MY7bsjTXzAl1qRFp9lGeZCflS/ZRnmQn5Uv2yUSeLG0cN1WVioiIiOSIFlPiFncaRERERBorr6e8EhEREWkJVFUqIiIikiMUuImIiIjkCAVuIiIiIjlCgZuIiIhIjlDgJiIiIpIjFLiJiIiI5AgFbiIiIiI5QoGbiIiISI5Q4CYiIiKSIxS4iYiIiOQIBW4iIiIiOUKBm4iIiEiOUOAmIiIikiMUuImIiIjkCAVuIiIiIjlCgZuIiIhIjlDgJiIiIpIjFLiJiIiI5AgFbiIiIiI5olXcCRARWRYzSwJjgeo6m/Z39/EZSsPewEB3v8TM9gUGu/sZTXTu4cAd7l5iZncDj7r7f5vi3CKSXxS4iUiu2Mndf4nx+r8FVgFw9+eA55rw3LsCd0bnPr4JzysieUaBm4jkNDM7CrgU2ARIAh8Bf3P3B8xsH+AioBiYD5zt7u+bWSvgH8AQoAr4H/BH4AKgu7ufFp37MqA7MBI4GSg0s9nAt8CB7j7EzNYEbgfWBhLACHe/zszWBl4DXgQGEoK+C939sTrpvxpYA3jIzI4E/g7cGr2O16O/bYAi4GzgJGCDaPuh7l5jZttGx7UHaoDL3P2FlX93RSTbqI2biOSKN8zs07S/ZwDcfQTwPiEQuwV4Jwra1gOuAfZy982BE4Gnzaw9IUgbAGwKbAx0BA5p6MLuPga4A3jM3S+ss/kh4A13/w2wHXCEmf0h2tYXeNndtwLOi9JY99wXApOBw6PrpFsHeM7dNyIEgTcDhwIbAdsDW5tZV+A+YKi7bwHsC9xuZms1/FaKSK5SiZuI5IqlVZWeDHwGLCAEZBCqH1cHXjOz1H41wLrAYGCkuy+I1h8Ci0rYGi0KArcDdgNw99lmdj+wJzAaqCSUuAF8TFTVuhwqgeej5e+B/7n7nOjak6PzbUN4nc+mvc4koQTyp+W8nohkOQVuIpIPegBtgNaEascfgELgNXdfVJJmZr0JpVtVhOAmtb4HoQYiSajuTClexnUL6uyfWlcULVe4e020XPfcjVHh7sm055X17FMIlLr7wNQKM1sDmL6c1xKRHKCqUhHJaWZWBDwCXAJcDjwSrXsd2M3MNoj22wv4nBDg/Rc4zMxam1kBoY3aoYRgZ4CZJaLStN3SLlXF4oAMAHefSyhZOzW6RmfgSODV5XwZS5x7OYwG1jOzHaI0bEZog7fGCp5PRLKYStxEJFe8YWZ1hwO5ANgJmOrudwOY2f7A1e5+rpmdCDxqZglCcLSvu5eZ2Z2EzgQlhFKwNwnt49oTqjm/BSYR2s6lSsleI7SRq4iOSzkc+JeZHUMooXsIuB/osxyv7VngMTNb7h6l7j7dzP4PuM7M2hB+kA919x+X91wikv0SyWRy2XuJiIiISOxUVSoiIiKSIxS4iYiIiOQIBW4iIiIiOUKBm4iIiEiOyKlepWZWCAwHjDAm0smELvQvEHqBAdxed0oZERERkXyQU4EbsA+Au29nZjsCVxNGFb/B3Yc1dFBJSYm6zoqIiEjOGDBgQL0DdudU4Obuz5pZauLkPsAswvQ2Zmb7EUrdzooGxaxlwIABdVc1udLSUvr379/s15HGU55kJ+VL9lGeZCflS/bJRJ6UlJQ0uC3n2ri5e5WZjQD+SRjo8gPgHHffgTDNzaVxpk9ERESkueTsALxm1hMYA2zr7pOidRsC/3T3XdL3LSkpSbZr167Z01ReXk6bNm2a/TrSeMqT7KR8yT7Kk+ykfMk+mciT+fPn50dVqZkNBdZ0978B84EawhQ0p7v7B8Au1J6KZpFMFDWrSDv7KE+yk/Il+yhPspPyJfvEXVWaU4Eb8DRwn5m9TehNehYwAfinmVUCU4ET40ueiIhIE6iuhlGj6P7KK7DbbrDnnlBYGHeqWrYsyZOcCtzcvQw4uJ5N22U6LSIiIs2iuhp23x3GjKF7WRncdx8MHAgvv6zgLS5ZlCc5FbiJiIjkvVGjYPRoKCsjATBvHrz1Fuy1F/Tp07hzrGj79ZVp957P15wwAd5+G6qqFufJmDEhr4YMWbE0rCAFbiIiItnk44+hrKz2uqoqeOWVeNIj9Ssrg08/VeAmIiLSok2YsOS61q3h+ONhk00af55EvZ0Sm++4fL7mp5/CHXfAwoWL17VvD5tttmLXXgkK3ERERLLFV1/BAw+E5TZtSC5cSKJ9+9Ce6uab1cYtLtXVMHYsjBlDsqxscZ7suWfGk6LATUREJBtUVsKRR0JFBRx1FBx4INNffZXVdt1VvUrjVlgYOiKMGhV7nihwExERyQbXXAMlJaEDwi23QKdOzOjXj9U0jlt2KCyEIUNiz5Ocm/JKREQk73z0EVx5ZVi+/37o1CnW5Ej2UuAmIiISpwULYOjQ0I7qrLNgxx3jTpFkMQVuIiIicbrgAvj6a9hgg1BdKrIUCtxERETi8sYbcNNNof3UyJHQtm3cKZIsp8BNREQkDnPmwNFHh+WLL4Ytt4w1OZIbFLiJiIjE4ayz4KefQsB2wQVxp0ZyhAI3ERGRTPv3v8NE5a1bhwF3i4riTpHkCAVuIiIimTR9Opx4Yli+9lrQOG2yHBS4iYiIZEoyCSedBD//HIb9OOOMuFMkOUaBm4iISKY8+CA88wx07BgG2i3QbViWj/5jREREMmHCBDjttLB8881haiuR5ZRTc5WaWSEwHDAgCZwMlAP3R8/HAqe6e01caRQREVlCTQ0cc0wYAmTffRcPAyKynHKtxG0fAHffDrgIuBq4AbjI3bcHEsB+8SVPRESkHv/6F7z2GnTvDnfdBYlE3CmSHJVTgZu7PwtEXXHoA8wCBgBvRetGAYMznjAREZGGuMN554Xlu+6CHj3iTY/ktJyqKgVw9yozGwH8HjgQ2NXdk9HmuUDn+o4rLS1t9rSVl5dn5DrSeMqT7KR8yT7Kk2ZSVcXahx9O2wULmLXffkzZYANYjvdZ+ZJ94s6TnAvcANz9KDM7DxgDpE/s1pFQCreE/hkYJ6e0tDQj15HGU55kJ+VL9lGeNJOrroIvvoA116TL/ffTpUuX5Tpc+ZJ9MpEnJSUlDW7LqapSMxtqZudHT+cDNcBHZrZjtG5P4J040iYiIlLLxx/D5ZeH5fvug+UM2kTqk2slbk8D95nZ20ARcBZQCgw3s+Jo+cn4kiciIgKUl8ORR0JVFZx+OgxW82tpGjkVuLl7GXBwPZsGZTotIiIiDbr4YvjyS1h//TCtlUgTyamqUhERkaz39tswbFiYFeGBB6Bdu7hTJHlEgZuIiEhTmTsXjjoqzEl6wQUwcGDcKZI8o8BNRESkqfz5zzB+PGy+eaguFWliCtxERESawn/+A3ffDa1bw8iRUFwcd4okDylwExERWVm//ALHHReWr7oKNtoo3vRI3lLgJiIisjKSSTjlFJg2DbbfHv70p7hTJHlMgZuIiMjKeOQRePJJ6NAB7r8fCgvjTpHkMQVuIiIiK2rSJDj11LB8443Qt2+86ZG8p8BNRERkRSSTcOyxMGsW7L334jZuIs1IgZuIiMiKuOMOeOUVWGUVGD4cEom4UyQtgAI3ERGR5fXtt3D22WH5jjtg9dXjTY+0GArcRERElkd1dZgdYf58OOwwOOiguFMkLYgCNxERkeVx3XXw/vuwxhpw661xp0ZaGAVuIiIijfXZZ3DJJWH53nuha9d40yMtjgI3ERGRxli4EIYOhcrKMODu7rvHnSJpgRS4iYiINMall8IXX0C/fqG6VCQGreJOwPIwsyLgXmBtoDVwFTABeAH4Ntrtdnd/LJYEiohIfnrvvRCsFRTAAw9A+/Zxp0haqJwK3IAjgBnuPtTMVgE+Ba4AbnD3YbGmTERE8tO8eaEXaU0NnH8+bLtt3CmSFizXArcngCej5QRQBQwAzMz2I5S6neXuc2NKn4iI5JtzzoHvv4dNNgnVpSIxSiSTybjTsNzMrCPwHDCcUGX6ubuXmNmFQFd3Pzt9/5KSkmS7du2aPV3l5eW0adOm2a8jjac8yU7Kl+yjPKlf+7ffZq2TTybZqhXjnniChWYZvb7yJftkIk/mz5/PgAED6p2KI9dK3DCz3sAzwG3u/rCZdXH3WdHmZ4B/1ndc//79mz1tpaWlGbmONJ7yJDspX7KP8qQev/4Kl18OQOKqq+i7//4ZT4LyJftkIk9KSkoa3JZTvUrNrAfwCnCeu98brX7ZzLaKlncBGn61IiIijXXaaTBlSmjTdvbZy95fJANyrcTtAqArcLGZXRyt+zNwo5lVAlOBE+NKnIiI5InHHoNHHoF27WDECCgsjDtFIkCOBW7ufiZwZj2btst0WkREJE9Nngx//GNYHjYM1l033vSIpMmpqlIREZFmlUzC8ceH9m277w4nnRR3ikRqUeAmIiKScvfdMGpUmIP0nnsgUW/HPpHYKHATEREB+OEH+NOfwvJtt0GvXvGmR6QeCtxERESqq8PsCGVlcPDB8Ic/xJ0ikXopcBMREbnhBnj3XejZM5S2iWQpBW4iItKyffEFXHRRWL7nHujWLd70iCyFAjcREWm5KirgyCPD44knwl57xZ0ikaWKbRw3M9sHOAAwoBr4GnjC3V+JK00iItLCXHEFfPoprLMOXH993KkRWaaMB25mZsD9wEzgBeBRoBDoC5xhZpcBx7v7V5lOm4iItCCjR8Pf/haG/BgxAjp2jDtFIssUR4nbRcBh7j6unm23mlk/4Arg8MwmS0REWoyyslBFWlMD55wD228fd4pEGiXjgZu7D627zswKgAJ3r3L371HQJiIizemvf4Vvv4WNNw7VpSI5IrbOCWa2k5l9Fj3tD0w0s23iSo+IiLQQr74Kt94KRUUwciS0aRN3ikQaLc5epdcBxwC4+5fAXsCNMaZHRETy3cyZcMwxYfnSS2GzzWJNjsjyijNwK3b3j1NPouXWMaZHRETy3RlnwKRJMHAgnHde3KkRWW5xBm7zzWyP1BMz2wWYF2N6REQknz31FDz4ILRtCw88AK1iGxFLZIXF+V97JvCMmVUByejvgBjTIyIi+WrqVDjppLB83XWw/vrxpkdkBcUWuLn7GDNbC/gNUBVWecXSjjGzIuBeYG1CtepVwFeEceGSwFjgVHevab6Ui4hITkkmw6wIM2bA4MFwyilxp0hkhcXZq7QAOCv6Gw/8xcwKl3HYEcAMd98e2AO4FbgBuChalwD2a6Yki4hILrrvPnj+eejcGe69Fwo026Pkrrh7lW4CbEUIuPZg2b1KnwAujpYThJK6AcBb0bpRwOAmT6mIiOSm8ePhzDPD8q23Qu/esSZHZGXF2cZtF2ALoMTd55jZbsCnSzvA3ecBmFlH4EnCLAzXu3sy2mUu0Lm+Y0tLS5so2Q0rLy/PyHWk8ZQn2Un5kn3yMk9qaljrmGNoP28ec3bbjUlbbAE59hrzMl9yXNx5EmfgVunuNWHqUnD3hVFHhaUys97AM8Bt7v6wmf0jbXNHYFZ9x/Xv33/lU7wMpaWlGbmONJ7yJDspX7JPXubJjTfChx9Cjx50evBBOq26atwpWm55mS85LhN5UlJS0uC2OKtKx5rZqUChBXeyjBI3M+sBvAKc5+73Rqs/MbMdo+U9gXeaKb0iIpIrvvoKzj8/LA8fDjkYtInUJ+7hQG4EegDvAS8DZyzjmAuArsDFZpZq63YmcIuZFQOlhCpUERFpqSorYehQWLgQjj0W9tkn7hSJNJk4hwOZAxwHYGYJoJW7Vy7jmDMJgVpdg5o+hSIikpOuugo+/hj69AnVpSJ5JM7hQH5nZhdFJWUlwGwzOySu9IiISB748EO4+mpIJGDECOjUKe4UiTSpuIcDGQ3sD0wFNgT+EmN6REQkly1YEKpIq6vhrLNgkCpjJP/EGbgVuvt/gV2BZ919PLCsAXhFRETqd/754A79+4dSN5E8FGvgZmZbAXsDr5jZxkBRjOkREZFc9frrcPPNYeL4kSPDRPIieSjOwO1q4GHgnqi07XnCgLoiIiKNN3s2HHNMWL74YhgwIN70iDSjOHuVPg08nbZqXXevjis9IiKSo846C376CbbccvHYbSJ5KuMlbmb2bzPbvO76VNBmZlua2XOZTpeIiOSgZ5+F+++HNm3ggQegSC1uJL/FUeJ2CjDczFYFXgC+I3RK6EuY+WAWcFIM6RIRkVzy889w4olh+dprQ6cEkTyX8cDN3ScDe5vZQOBA4FCgBvgGONPdx2Q6TSIikmOSSTjpJJg+HXbaCU4/Pe4UiWREnG3cxgAK0kREZPmNHBmqSTt1ClWlBXH2tRPJHP2ni4hIbvnpp8UlbDffDGutFW96RDJIgZuIiOSOmpow9MecObDffnDUUXGnSCSjFLiJiEjuuPXWMNjuqqvCXXeFOUlFWpDY2rgBmNmBwGbANcB+7v5InOkREZEs9vXXcN55YfnOO2G11eJNj0gMYitxM7O/EoYGORhoC1xqZhfHlR4REcliVVVw5JFQXh4ef//7uFMkEos4q0r/AOwFlLn7DGBr4LAY0yMiItnqb3+DDz+E3r1DhwSRFirOwK3S3Remnrj7LKCyMQea2UAzezNa3tzMJpnZm9HfIc2SWhERiUdJCVxxRVi+7z7o0iXW5IjEKc42bhPMbG8gaWatgbOBH5d1kJmdCwwFyqJVA4Ab3H1Ys6VURETikaoaraqCM86AXXaJO0UisYozcDsNGAlsQgjCRgOHN+K474EDomMhBG5mZvsB3wJnufvcpk+uiIhk3EUXwVdfgVmoLhVp4WKrKnX3ye6+C9AJ6Oruv3P3ZZa4uftT1K5S/QA4x913AH4ALm2WBIuISGa99RbccAMUFoYJ5Nu1iztFIrGLrcTNzHoCRwOrRM8BcPdzl/NUz0Tt4wCeAf5Z306lpaUrkszlUl5enpHrSOMpT7KT8iX7ZFueFMybxzqHH05xMsn0E0/kl44dIYvSlynZli8Sf57EWVX6HDCRUPW5Ml42s9Pd/QNgF6Ckvp369++/kpdZttLS0oxcRxpPeZKdlC/ZJ+vy5PjjYdIk2GILVr3pJlYtLo47RbHIunyRjORJSUm9oQwQb+BW7O4HNMF5TgH+aWaVwFTgxCY4p4iIxOWFF+Cee6B161BF2kKDNpH6xBm4lZjZxu4+dnkPdPfxhHHfcPePge2aOG0iIhKHX34JpW0AV18NG20Ub3pEskycgdt7wKdmNoW0zgbu3je+JImISGySSTj5ZJg2DXbYAc46K+4UiWSdOAO3ywgzJaxsGzcREckHDz8MTz0FHTrA/feH3qQiUkucgduv7v54jNcXEZFsMXEinHpqWL7pJlhnnViTI5Kt4gzc/mNm1wNPAelTX30cX5JERCTjkkk49liYPRuGDAnLIlKvOAO31ITy/5e2LgmojZuISEty++3w6qvQrRsMHw6JRNwpEslasQVu7q5ycBGRlu7bb+Hss8PyHXdAz57xpkcky2U8cDOzc939H2Z2S33b3f2MTKdJRERiUFUVJpBfsAAOPxwOPDDuFIlkvThK3GZHjzNiuLaIiGSL666D0aOhVy/4Z72zFYpIHXEEbicBd7r75TFcW0REssGnn8Kll4ble++Frl1jTY5IriiI4ZpqdSoi0pItXAhDh0JlJfzxj7DbbnGnSCRnxFHi1sbMNqeBAE7DgYiI5LlLLoGxY2HddeEf/4g7NSI5JY7ArS9h7Lb6AjcNByIiks/efTe0bSsoCBPIt28fd4pEckocgdtX7r55DNcVEZE4zZsHRx0VBtw9/3zYZpu4UySSc+Jo4yYiIi3R2WfDDz/Appsu7pggIssljsDt7RiuKSIicRo1Cu68E4qLQxVpcXHcKRLJSRkP3Nz9zExfU0REYvTrr3DccWH5yithk03iTY9IDotzrtIVZmYDgb+7+45mti5wP6Fjw1jgVHeviTN9IiKS5tRTYcoU2G47+Mtf4k6NSE7LuTZuZnYucDfQJlp1A3CRu29P6Km6X1xpExGROh59NPy1bw8jRkBhYdwpEslpORe4Ad8DB6Q9HwC8FS2PAgZnPEUiIrKkyZPDALsAw4ZBv37xpkckD+Rc4ObuTwGVaasS7p6MlucCnTOfKhERqSWZDO3aZs6EPfaAE0+MO0UieSEn27jVkd6erSMwq76dSktLmz0h5eXlGbmONJ7yJDspX7JPU+dJl8ceY/WXXqK6Uyd++Otfqfr66yY7d0uiz0r2iTtP8iFw+8TMdnT3N4E9gTfq26l///7NnpDS0tKMXEcaT3mSnZQv2adJ8+T77+H66wEovOsu1hs0qGnO2wLps5J9MpEnJSUlDW7Lh8DtL8BwMysGSoEnY06PiEjLVV0dZkcoK4NDDgl/ItJkcjJwc/fxwNbR8jeAfs6JiGSDYcPgvfdg9dXhX/+KOzUieSfnOieIiEiW+uILuPjisHzPPdCtW7zpEclDCtxERGTlVVTA0KHh8aSTYM89406RSF5S4CYiIivv8svhs8+gb99FHRNEpOkpcBMRkZXz/vtw7bWQSITZETp0iDtFInlLgZuIiKy4sjI48kioqYFzzoHf/S7uFInkNQVuIiKy4s49F777DjbeGK64Iu7UiOQ9BW4iIrJiXnkFbrsNiopg5Eho3TruFInkPQVuIiKy/GbOhGOPDcuXXQabbRZnakRaDAVuIiKy/E4/HSZNgq23DtWlIpIRCtxERGT5PPkkPPQQtGsHDzwArXJyEh6RnKTATUREGm/qVDj55LB83XWw3nrxpkekhVHgJiIijZNMwgknwIwZsOuucMopcadIpMVR4CYiIo1z773wwgvQuXNYTiTiTpFIi6PATURElm3cODjrrLD8r3/BmmvGmhyRlkqBm4iILF1NDRx9NMybBwceCIcdFneKRFosBW4iIrJ0N90Eb78NPXrA7berilQkRgrcRESkYV9+CRdcEJaHD4fu3eNNj0gLlzeD75jZx8Cc6Ok4dz8mzvSIiOS8igoYOhQWLoTjjoN99ok7RSItXl4EbmbWBki4+45xp0VEJG9cdRV88gmsvTbccEPcqRER8iRwAzYF2pnZK4TXdIG7j445TSIiueuDD+Caa0J7tvvvh06d4k6RiACJZDIZdxpWmpn9BtgauBtYDxgFmLtXAZSUlCTbtWvX7OkoLy+nTZs2zX4daTzlSXZSvmSf9DxJLFjAOgceSOtx45hx1FH8fN55Maeu5dJnJftkIk/mz5/PgAED6u0FlC8lbt8A37l7EvjGzGYAqwMTUjv079+/2RNRWlqaketI4ylPspPyJfvUypMzzwzjtm24Id3uuINuChxio89K9slEnpSUlDS4LV96lR4LDAMwszWATsCUWFMkIpKLXnsNbrklTBz/wAOgoE0kq+RLids9wP1m9i6QBI5NVZOKiEgjzZ4Nx0Qd8i+5BAYMiDc9IrKEvAjc3L0C0FDeIiIr48wzYcIE+O1v4fzz406NiNQjLwI3ERFZQdXVMGoUa9x+O7z4IrRuHapIW+n2IJKN9MkUEWmpqqth991h9Gg6lZWFdWutBeutF2+6RKRBCtxERFqK6mqYOBF++CH0Gn35ZXjrLaiqYtG4A1OmwKhRMGRInCkVkQYocBMRyRfJJPz6awjKUsFZ+uOPP0LVMvptlZXBp58qcBPJUgrcRERySXk5jB9ff2A2bhzMmbP041dfHdZZB/r2DUHcM8+EuUhT2reHzTZrzlcgIitBgZuISDapqYHJkxsuNZs8eenHd+gQgrK+fRcHaKnHtdeGtm0X75tq4zZmDMmyMhLt28PAgbDnns36EkVkxSlwExHJtFmzGg7Mxo+HioqGjy0shD596g/M1lkHunUL84s2RmFhaOc2ahTTX32V1XbdNQRthYVN8SpFpBkocBMRaWoVFaE9WUPB2cyZSz9+tdXqD8r69oU112zaoToKC2HIEGb068dqmlpJJOspcBMRWV7JJEybFoKw+gKziRPDPg1p23bp1ZkdOmTspYhIblHgJiJSn7lzQyBWX6nZuHGwYEHDxxYUhPHQGio1W221xldnioikUeAmIi1TVVWY3qmhUrNffln68ausUjsYS1/u3RuKizPzOkSkRVHgJiL5KZkMwVdDw2b89FPoVdmQ1q1DIFZfqdk660Dnzpl7LSIiEQVuIpK75s9vuDrzhx/CYLINSSSgV6+G25r17BmqPEVEsogCNxHJnGhC8+6vvAK77bbsoSeqq2HSpIZLzaZOXfr1OndueNiMPn2gTZumfX0iIs1MgVtTWN6bkTQ/5Un2SRvstXtZGdx3H2y1FTz6aMNDZ/z4I1RWNnzOoqLFY5rVF6B17Zq51ycikgEK3FZWfTejgQPDoJZxBwrJ5OK/mpqGH5e2rTH7rOzxTb1PVRUMGwY//ED3hQvhrrvCjfzMM0PVV2qYhvThGhqzbnn3j2td3NdvaN3338Pbb0NlZZjQfN48eP310MNyaXr2bLjUrFev+D9nIiIZlBeBm5kVALcBmwILgePd/buMXHzUKBg9GsrKFt+M3ngDzKBTp3iDmKWNI9VCJCDMw/j113DKKXEnR+pTXBw+L/WVmq29NrRrF3cKRUSyRl4EbsD+QBt338bMtgaGAftl5MqffBIaSKerqQmlC9mioCA0xK7vcWnbmmqfTFwjfZ/PP4dPP13yfRgwALbYIiynxtBKH0urMeuWd/9sWhf39b/6Ch56qPZ0Tu3bwyOPwD77ICIiy5YvgdvvgJcA3H20mW2ZsStvvnm4+cybt3hd27Zw9dUwaFC8QUwi0TIH+XzhBTj00Np50qEDXHYZDBkSW7JavOrqMARH3QnN99or7pSJiOSMfAncOgGz055Xm1krd69KrSgtLW2eK6+9NmttvDFtPv+cggULqGnblvJNNuGnXXddetubmpoopUsZR0pWTH15svHG/LT22tBc/wfSODfdRId33qFw7FiqN96YedtvD998E3eqBCgvL2++70lZYcqX7BN3nuRL4DYH6Jj2vCA9aAPo35yTJ7/7Lowaxc+vvspqu+5K+z33pL8aTMdLeZK9Nt6Y0tLS5v1MynJTnmQn5Uv2yUSelJSUNLgtXwK394B9gMejNm5fZPTqhYUwZAgz+vVjNX3AsoPyRERE8lC+BG7PALua2f8IHQmPiTk9IiIiIk0uLwI3d68BTo47HSIiIiLNSRPxiYiIiOSIRLIFDNJaUlKS/y9SRERE8saAAQPqHc+rRQRuIiIiIvlAVaUiIiIiOUKBm4iIiEiOUOAmecHM9L8s0gj6rGQf5Ul2MrOsnDNS/yzLwcwS+oBll1R+REPCYGY94k2RgG5E2cjMCiF8Vsysk5m1iztNLV3qnpL2/dUm7jRJEOVLVnYCUOeERqrz4eoEbA2UuPuMeFMmAGa2JXAQYWzCS9y9LOYktVh1PivrA73c/Y2YkyURMzuM8Fl5x91viDs9AmbWhzAWqQMPuXtlzEkSFgXSpwOfufsrcacnRb+KGyntRnQe8CRwMbBprIlqodJLc8ys0MxuAa4FOgC9gN3jSpssKtFZ08xuBUYAx5hZ37jT1dLULfU0s75m9iEwEPgR2NzMNB9chtX5/kqY2fnA/cAGwImAPisxqFstamanAvcAg4E/xpKoBihwa0DdalEzKzCzM4H+wNHA58A20S8lyYC61aKRbsAa7j7Y3U8FXiPkS6840tgS1RMgdAauBz4DTotW72BmrTOdtpbKzArTfmym3vf1gP+4+5nA34GvgUNjSmKLkwoM6nx/9QJ2AHZz998TPjNDzKxtDElskdKqq5Np6zYE9gcuJXyHzTWz0xo4RcYpcKuHmbVy92RUcrCemfWMPmwDgNfcfTJwO+GX62+ztQFjvoiqptNLPQ81s8fM7AhgOvAbM9sq2n0csCGwSyyJbWHMLJGWL1tGQUIC2Ah4wN1LCMH0HoR8kWZiZm3MrDuAu1ebWUczuwP4p5kNBqqA/aLtU4BKYDMz2ya2RLcAqbaEqcDAzLYzs7vMbGugGpgHbBvt/hhwFPCbONLakqS1+Uzd6/ua2X5mtgqwFlDq7t+5+7fAKOCAaFvsFLixKOIuMrPjAdy9KvoSPBd4Efi7mQ0FHgWGRPuMJVTN/Q5YM6ak5z0zOxTYO1pe08wuBnYDngMOBg4HLgNui25AxxICh03MrGssic5zZra+me0J4UvPzNYxs5HAvcANQD/gKeDC6JCJQB9CSagaXzcDM2tFaIvTJXr+O0J+fAv8J1p+m1BycL6Z/YlQ0jMP2D6ONLcEUcB8YbTc3cxOJFSHlgFHEEp1XgLOjNqD7k24Lx8SHaNCgWZgZrsCO0bLhVFp2oPACYT7/DvArma2afRjdEOgGDglnhTXpsCNRRF3JTATwMzWBu4DViX88nmMUM89HZhtZg9FbUVeAbYE1DuriZlZEYC7PwI8aWa9gZ0IpZxPu/tDwC2EwO0J4CrgOEIV0HXAKu4+M460twBJYBqAmf2eUC36OrAV8D0wFHgYGGxmDwFnA28RvigXxpDevBX96Cx09ypC0LzQzAYQagd6AHe6+7+BF4ArgF2BH4C1gd8TArvpcaQ9n0WBNO7+X3e/0MzWIPzIPwMY5u5/IlSL9gDGEPLnb8CbhO+0fqmanzjSn6/SAuEJwBvRKASHENqwDXL3IYQ2hhsDFxFKP0cDMwgxQXXGE12PFh241dMd/kUzexiYBMwm3GSqgI+Ab4B93f1E4FlCZt8DzCVE4tKEUr2qzGxf4A7CTel/wMeEL7Uu7v5f4GdCidvzhDY7mxOCuA+j4/WLtQmkt2OLqg4SZnY14X0uAGa7eznwX6A9oT3VTsB77r4n8ClQDqjErYmk2uVE1aLt3L2a0GlqEFACvMfiNmznA6cC6xKCtQ+A2wg/PD/JeOLzVFQa3SEKpFPrBgFfuvuzQCmwSbTpfUIJ6e8IpT0vEj5LNxN+CKW3hZOVFDXrSAXCBcBhhB+ZPxACuX2ibecBj7n7U4SCgD8BzwAHEOKC2LXY4UCiLvHHu/vOZtYFuAT4K+EDM5IQJPwZuMXdPzGzHQjVpKmquoMJN6dL3f3lGF5CXklruJtqB7Im8Djh5nMZ8AChFKeMUHLzrru/EJXEVbr71Kj4eyDwsLv/kPEXkafSv/DMbHvC//45hNK17YC9gJ7Av4BfCZ13it39X1GPue2BBcAZ7j4p868gf0XVOFcTeiQ+Sah2u4YQCKxG+Dw85O4fmdnm0XdZO0INQg93Hx5T0vNOVD19GOH+MYdwT/mQ8KPzQULJ2nuEBu/HufvP0XeWu/tPZrYPoRT0Hnd/L47XkI+s9vBEqxI6G6xF6GC4GqGUswOwJ3Cau5eb2aOEKu5iQin1EcC17v505l/Bklpc4BYVP1dFy18QikinAGe5+2lmtimhfc4A4CygLWGoibnRL9rUeTZ1988ynf58VOeDtTYhP9oDrwK3u/vdUZuqE4FzCcXX4wmN3ytiSXQLUCdf1iNUHcwhlOIcCqxB+JV6NKEN1bPAI4SgbWF03CrAqu7umU5/vjOz3xCCtDcIPzjfI7QvPADoSggUBgIf6cdl80ndU6Ig+i+EauhehFKa9QhjS15DqC3YELgLGO3u/4wnxS1D+vdX2rrTgQuAvu6+IGozPYfwWTka+Mrdb6lzTPtsGxe0xQVu6aJfOJcBdxJK045z9+lmdj2wCiHi3gu4PxW0Re1JsqKeO5dFJWzrRtVuWOj+fhmhBOcVQhX0R4QvvF2jX0FPE4K5p9z951gS3sJEpTMJQtuczu7+VzPbG/i7u29sZiWEgC4BzHP3t9OOXeKLU5ZfqsQz7bEfsA7hPb8FOMjdx5rZVYT2OUcTSquvJVTRzY0r7S2Jma1DKME5Hpjm7hdZGJbobkJ123GE+8oZwAJ9NppH3e8dMzsc2Jkw4PT90XfWxe7+opntCBxIqLb+HJjg7rPqO082aXGBm5ntRPhVVBY93krogDCa0P6mhNAZ4QrgGJXoND0zax8tng78N6rG2ZvQ1uMCQhuD/wOOJPTiqXL3P5vZaoS2VKnSnPQ2C9LEop7UBxBK0jYHnnX3N6NtbxOqf74Gtnb3f8SUzLxW3/+4mV1AqNp5mtBsYA13/3O0rYxQNT3Z3admOLktQtSgvdrdf4me70FoQzid8FnpAXQH7nP3bywM5Lqnuw8xs16p5gLZHBjkKjPbAljf3R+Nnl9G+DHzV0JN2n2EdmpnuPt20T6HAW+l5UvW31fyOnCrWzpmZj0JHQpuAGa6+8dmtgmhIWL/qL3UP4Cr3P3LtOOyPiNzQdTT6k+E3rqXADcRGrCfS2gkXUxoe/Az4RfQFEIx9lGEnok10Xg7yo9mFFWLTgQmA39x93vN7ApC9fXthFKFM4DfEnpiTYwtsXmqnlKDUwg9pa+O8ucYQtD8NeHHzYvu/oSZbZT+3SVNL2rvfAAhGKggDB8x0t2fj7ZvSRi38GdCE4IioF80hJQCtmZQp1nHL4T20H8j/Pj/iTBQ+0HAeHc/ysw+ITTDuSuuNK+MvO5Vmla9uYWZdSBkXk93fy0K2rYhtAX52szucvcJ7n5o6ovPFo/UryBhJZhZcdQI92QWl970I5R6TiIMLfESoYfPQ4QOIHsT2kZ94u5nuXtV6oOp/GgaqSEL6qzrTvjSW5fQ6H2vaNOthED6KkLpwrWEIQz6RMfl9XdJppjZ3lFVaFH0/DALU4ctAE42szWi5gXjCdU/HQhDrXSJTvFVdJx6UzchiwZrjXxL6KDzFLAZIW8+ivbrQBjkuIbQzq2ruy9IBW2wxMwJshLS7tE1FmY36kQYAWJPD4NMr074vmrj7oOAH6J21EMIhTg5Ka9K3MxsZ0IR9lvR8/0JPUPHE6pD9yC0N3jE3R82s0sJ7XKGmVk3jyaM1y+iphEFBhcQJhk/Kfrya0MI0DYgtGnbBjjM3Yea2d+A+YSg7Ql3H5Z2LuVJE4ny5RxCydl9hImttwUmRVU7xxOq4IYShvH4k7u/Hh27M6Hr/M6EX7MHuPu0TL+GfBNV8fyZ0Dv3c8KPmmcInT0uc/dHzOwGwg/Pw6J8uJAQUL/s7vNjSnpeq1u6HzXX6ED4cdnb3VNjFb5DaFd4FKHTzoWEGoKqek4rTSxqr74bMAz4hdD06TTC+GtnEILtrQlDEp3i7rOj43LyvpIXgZuZdXT3uWZ2MiGSPozwK+gp4J/u/qqZXQN0BoYTqnt+JjTuPdfdv47Ok5OZmI0szHhwNPAFcI27/2pmBwI3u3svM3uJMF7RV4Tq0w6EgXTfBxJpHyxVizahKF+GEvJlJrA+ITj4P0LPqgcJVdYPExq+dwcucPdNo+O3J/TunQNc5BrkeIVFpWLFhNLLzYF/RdWdQwiB9HBCM4I57n5e1IHndcKNqQtwuYexDBedT5+VpmFmmwO/uPuE6PluhB87rYFL3P1NMxsBvEyY0u0EQrOPH4G/pXW6Up40Mas9PFErQtOnXoTvrNnu/l8LA4NfTiisKSQM9fF1euepXJbTgZuFoQauBHoD/3P3a6NfP68TxmE7i/BrdUq0/9eEdjnFQB93/ziWhOc5MzuP8N5vlfbFt4a7Tzaz1wntPiYR2uacSqjCPo/QtvD7aH8F0U3MzK4lvN/rpRqum9mThF5wgwnBwyNRD8VhwA7u/lszW9fdv0s7T0f1VGw6ZvYOIWhLNai+Cpjv7teY2UDC52S4u79nZn0IPUrfSrt5KThoQlEHtheB69394qjn4UmEdraHEapHzyG0x72TMPj3MKB9qr2n8qTpmVmRLx6YvZjQLvo7QoD2PqEGYXPgS8KPoQcIw68c6r54OKJ8uLfkbOAWBQe7E9pGvUiox36AMIzE+YQP2d+AfxNGc9+PUC13nKf1FK3bgUFWnC0ermAt4DV3Xy9qc3Aj4ZfQn6Nfsk8QqkqfAp5x9/vjS3X+S8uXdYA33b1PlC9XEcYpPI1QGv1nQgeEjoSOCa/44l6kOf9ll21S3z1R6cARhDlFDyIMbHylu0+L8ulkYGN3P7K+4zOe8DxnYQic/xJKpK+JHgcTmgjsTahyG04YcPpYoJW735Z2vD4rTcjMdiHMwFKetm43wvfW3wjtQTclzHL0OqEQ4AxCG/6K1HH5FEznZIPiqPfn3oQbyz+ihp8LgQJ3/x8hCt+ZUCXam9DgfVNC1U6t4T30xbfiUg2g0ztxRDeTn4AnLAxw/DhQ6tFwBe7+CaF69CrgyPSgTQ3cm8ZS8mUcIV/GEaoVfnT3E9x9oYdx8W4n9FL8xt0vSAVt0Tl0I2oCVnvqsOro8RlgKmEw8Kvd/bRUu0F3n0P4oXN13XPpu6tpmNlxZna8mXWNVnUj1Ni8QPiO+orwQ2YLdz+eMODxHkB/d78rPWgDfVaakoVZjY4gBGmY2csA7v4K4btqe0IJ2zhC842LCR1DKgmD5penOpbkS9AGOVriZmEC8r0JJW6PECbl3ZXQRqcXYdqQFwiNqkeb2VpRMKFfQ00oveg6bV36zBQfEwZqfSx6XuzuFWbWBugUBQt59UsoGzQiXyYQPhtP1t1W5xh9VpqI1R6uoIjQiaomrdRtI0KbzyM8TN+mz0QGmFlHwr1iE+BRdz8lWv8Yof3aOoReijMIpW9fEDpYXeju36SdR/nVRKJenycSOhV+TShRO57QGeoZ4At3P9/MNiSUfF5MmGrvCEITgudjSHZG5UQJR92SmOim9AGhc8GTwOvu3tfdDwXWJDRGfIxoQmsFbU3PzM4FRkTLa5jZLWbW2cPUL6mu8zcTShEASCvtXOhhnj4Nt9LEGpkvlxHaIALQQNCW0Gdl5dniOXhTQdt5wP3AX82sa1qp25eEeS2vjn7g6DORAVFbzUsI7dQGmdkfzaw/cBuh2cAHhNK1b4A7gKfd/SAPva8TaedRfjWB6PNxL6Hz4OaE4bq+IEwEfwah1+7RZtYuKgmtJpS6fePuZ/visfRyIrZZUVn94tJu7EvcQNx9MqG6523CCOKY2XGECL3a3W9Kr+pp6DyyfKLSAgi/dLY0s3UJjXTnuPvsqLQndTMaAXSL8mWR1Jec8qPpLGe+3AOsbmbHNHQ+3YhWjpkl6pbCWJgncU1C6cFuwJ8tjJuXMoww+n4hkkmlwLuEoW9+JOTDXoQmHe8S2rZ1c/c7omrtVCGAPiNNKKoWXRM40N1vAk53939HNTPPETojtCWMv/aqmY0mTIE4zKPhcOr+UMpXOVFVamHw1iMJwxN87IsH1u1KGEF8D0L99q/ADR4N7yHNy8LwKwcTPlRbA0enNQQtcvfKqKPC5PpKdaR5NDJf+hDGbVO+NLE61dI9CU057iN0/igj/GDenlCac7O7z1BHg+aV1kGnIKqiHujuY9K2b04ohb6NMLPLTYC7+971NT2QpmdmexKG59opCsASUV6tBaxNGLR9G3c/0cwGA9Pd/bPo2BZVVZ11gVvdLzAzuwQYSAjaKoEPPW0ogugDdwlwj7u/EK1rUZmYSVEPuFMI04hcQpjupTvwGaFXz3jguqhR9RJfmPGkOv8pX+KTuskAJ6caqptZa+BSYD3CgKyPE8Zf+zvwV3d/0MxuAv7t7m/UOZ/ypIlE+VCTHnhFTQZKgX198Rie7YBDCVO4HWlmWwHl7v55tF33lGZmZpsSeune7u5fR7UIVYSOORMIpZ/HA//wtHlFoeXVEGRNVWlatWi1mRVFDQ8hNEz8hDBR7BnAlVFD3pTP3P33aUGbirCbiNWe5gULcySeRBgV/O6ouvpqwphThxJ6im5AGE8HULVoc1C+ZJ/ofTzTzI6NVh1FmG7nFEIpzm8I7XEeBLawMHZbkjDCe33nkpUQ3UMKCQNLJ8ystZntY2YDooKBhwht2ACIqtreAX4xs77u/kEqaIu2657SRJbS/qws+hsU3ccro/d9HeArd//C3c9MBW0Q8qUl5k3sJW71tAPZktBOZwah1GA0sBHQI1o/DLjP3T+scx79Sm0G0S/RdQlThmxDGEV/cLRtMGHcvJuAUe5+RVzpbGmUL9knajN4mrsPMLO7gFc9zISwGiGongNcQRhhf5JrMvhmYWG8wqHufoWZ3Un40fIJof3aH4B9CaPt3+TuH6b17NU9pJlZ7VkPBhKqo2elbR9MyKMFhBK2owmlbX9293nRPi0+n2IvcUvPRDP7F2FqiqGEUoINCWPqjCdURdxOqP5Zog1bS8/IpmBm+0VVz6nnRxEGNDwLeJPw5VdkZoOiXfYnlITuAlyfdlzs/1f5RPmSXcxszaj34arR8+5mdgewFdDazP5I+NF5eXRIgvDDc1NgS3d/xd2/jDowKE+aiJmtamY9PIxXeLOZdSPc/DcgBNE3EgbWPYzw+dgdao2nl+r5m6jv/LJizKxdVCuQGlNyAzN7hPD52NbMOqf29TCF27mE9p+/A65w9xNTQVu0T4u/18fypZFe1WNmnc3sJMJ8lQsIXYDbE7rGTwR2IBSfFgEvuPvBrul2mpSZdYgWNwf+FFUzdCO0+TjF3Y8FxhIGQbwauMzMXiF01X7H3ee7+3xbSi9gWX7Kl+xjZmcTqjvbu/v0aPW+QAcPY4D9HyGgHg28GZW8vUQIGMYRpttbVPKgPGlS6wA3mVkPQrvCewmDs15BKBCAMEXif4EKwkCtSwRqLbHqrZm1B4aZWV8L8+0eQ5jycH9CG9D1UjtGpZ+/uvtIdz/d3d+P1usHTpqMvhnp7dii54WEjgdDgcfd/WxCF+wBhA/VGMJUPOXufr0vHjBU3eWbQFRyMBK4x8zOdPfLCDf9vQgfpm8JpZ0QqnoOIpT0/AE4z90P92huPlBg0FSUL9nHzIZE7dJWAw5z9+vSNrcGPjaz9u7uhLZSt7v7HwkDhO9HKBUdAMwDBQdNJf1e4O4fEHpRjyEMGzGGEBzcCfQ3s4OATdz9C0JJ9CbRccqLJma1ZwiZTvjB8iWwI2FmowLCjCDFwNlmtn+0b3V959F3WG0ZCdzqvvlm9gczew24y8PUFe8AfaNfPqMI47Xs6O7vARd7NMF1Wg8SdZtfCVEVzbWEX6QfEH6F7hL16rkPOIRwg1kH2NnMVgdOIEz1Uu3u0zxMXaVfQk1I+ZLV+gMd3f1cd59sZlua2Ytmtj4whTBUwS5mtgGh5qBz9H3VDvgLoW3un929JK4XkE9s8TRGqUKADaPS6JuASnf/mDA4ez9CgHYRYTT+XaNTdANmRyVA0kRs8fiFqXv9RlF73BGEz8nX7j6cMED+ZYRZKzoQer8vQQFb/Zq9c4LVnuqlgJBZqxNKCv5NiLqfJtR33+Xu75nZUOCNVKlB3Q4MsnLMrC9hgvdhHoYlKCCUDNzg7mPM7AHCB6qS8KU3GPiIMPH1r3GlO98pX7JPncbUnxICg/UIpWePuft90bY/EOZH3ogw3+iLqeOBHu4+NfOpzz9mth3wq7uXRs83BP4B9ASecPe/m9lthIGn/2ph8O+9gQOBdmkN3I8kDC1VGssLyXNRdfXlhI44TxBKOIcAx7r7zhYmjj+WEEDf6O4vx5bYHNQsgZtFc1KmPe8IXEtoG9IbmE2Isn8f/fUhtHGbQ7hpaVDQZhT9Wj2MULL5JGHIgi0I07rMBy4ARgLHeRhPZ820ILrF9+hpLsqX7GZhgNAHCYH01WnrhxBG3Z9BmM4t9UO13jlgZfmZWW/gfELQfLGHOagvJnQ8uAeYRhjj6z1Cs4H3Ce0/7wO+jaqwW+y4X83Jlhx79UDCcDiPE9oTnkKY8P06M3uXcP+/Cxjt7tPiSHOua/LqFAujtj9lZrea2dbRB24EofHu+4SM3A1Yxd2PIHTRvpAwwO51vnjEcfXsaSbRh+y/hF+pDwH3u/sG7r4voY3IJMIEy6m5XiemesApOGg+ypd4pb5z0h43iEp4AHD3UYSAIBUs72dmLxMavs9x9wUeTRwf7a+gbSWlNR+4Byh1913dPTX23ZdAL0Jg9iWhQ8jvCO3bjgSec/cXUkEbtNxxv5pTWnX1jlF19ceE2ScmufsUwrSUa5jZtoTmHv8BXksFbWqzvvyarMTNwvhr1xIaTv8L6ELoGdqGMGZOabQ+AVxM6GmyKtFo4io5yLyopGCoux8SPf8LIUAY6tEUSZJ5ypfMito5dfUwcHH6+tuAt939UTNr7e4LzWxjQnD9P0IHqpvc/d3Mp7plSGs+cJ27PxytOxTo4u63WxhW4k13vzPa93hCM5tX086hpjZNyBbPupJ63IjQhGA8ofbsakJbwjbufraZdQL+CPzs7vfWPU/mX0Hua8oSt22B4e5+iruPJRRdDyfMmfgosD6wnocRqp8n9MS610OX34lpRdgK2jLnbeArM3vJzJ4mqrL2xfNaqtQzHsqXDDCz4mhxXWBfM+tkZufb4tkPXiPMg0wUtBVE323/BF529wNTQZs6gzSbHwk//Aea2e/M7GFCe7X3o+23AEeb2Qbu/gNwbXrQBqoWbUqWNjNR2vu6J/Cou59AiCmOJXSw2srM9vUwzd4dCtqaTlOWuH0MnB51Ltie0CPuLcIgoMcCxxHGzrmxbkNqlbLFJ6oKOhe43t3fidYpP2KmfGl+UWePPxEGYx1OaB/1LosDgy+BtYD7Cd9dibrvv/Kk+UW9p28izBByQqohu5mtAcwEzgRecvdP045RYNBMoh+O5wE/E0pDDye0za0AbiZ8nh4DBhGG8nom/Vjly8pb6cAt9cVlZpcS2hqkirM7uvtcM3uS0BPuI0JD6wfTGu/qSy9mdT9IypPsoHxpHlHJ2L+Ad939oagN7jxCu5vvCD8wVyUMs3JEtN8xcaVXggaaDxwFXJoeGEjTSru/p6pF9yQUxqxCGGP1VUIv9/0IwdoXhODtSnd/Pa5057vlCtwsjFE0ndAQt9LMity9Mtp2CmE6qn97NDmvme1MKDW42OvMLSrZpW7PIMkOypemk3bzGUIYW20wYcDvi4FXCCU3kz2MM4WZnUcY9Pgv7v5RTMkWIGon9SdCqVs5Yf7Ka6LG7yrJaQZ1fyyaWRvCdJP3epgHdm/CNG+fEkaEOJjQtv0WD2OwSjNpVOBmZn2ASwjjr/1IGMrjDHefGW3vSIi42wInERon7k6oZrjd3Z9PO5c+YCKSMfUFv2Z2N1BCGF3/HsIQLAcQRnafQiiVSw3BMtzTZqKQeKQ1H7guvW2hSqKbj5l1J0wZNoUw7up6hHv/IDNrTRjYOAlcA7R299nRcRp2pRkts0GtmfUitPH41N33ItRtzyTMCdfKzK4EniUMijicMMBuB+ATd98rFbQpI0UkDmnDFRxlZjeZ2SbAdYSp9sYRSgzOdfcnCL3fVyEEbQMIP0g7xZFuWcL/3H0/BW3No24HGzMbCDxHaELwGaE927tAwsyOcPeFhJmOxrh7eVrQVqBhV5rXMkvczOwIYEN3vyBtXWvCL9VjCePofOANDKSnqh4RyaS6PxLNbFXCgJ/TgMlAD8L8lYMJtQJXEQK4ddz9l7TzbAwkozHCJEvontK0ooAtmfZ5WcPDtG6Dge3d/dJo/Z2EplIvAY+4e+/YEt3CNbYLe6v0J1Gk/RSwj7s/7+7TGuoOrw+YiGRKdFNPRm3ZiqLV3YAX3f1kYCFh+I8dCSO7DyK0zd2qTtBW4O5jFbRlH91Tmpa710Sfl35m9jgwwswOJnxGCqJBdSEM/l0RlXjuCRqaKC6NKXHbi9AA8X53Hx9l1J8IX3iFhMFz32n2lIqINMDMeqSX+ke93DcAXnX3e6Mb0YHAbYTBjHcjjMf2lfvikfVFWoK6pZZR58JjCG3WygiBWQVh7l0nNB/YljCe5FuZT7Gka0yJ238J3eMPMrM+UXHqXoRfqc8Cs0xTVohIDCxMiTSU0GgaM9vQzO4lzNhyB3CxmW0DTCX0fPsZ2J4wRNEbCtqkJUnVjKW1+9wlavr0ObCJu78S9Qj9iVA6fT6hWdQ4YBsFbdmhsb1KVwf+DKxD6O77NXCFu//crKkTEWlAVKq2lrsfF/V+WxPYlFBy8Gd3/9jC3Ml7A/8HPB0dqloCaVHqaffZk9CbuithaJXjCTNUTHP3i8zsREIgd1qd86h9YRZY3nHc2gJruvu30XP16hGRjKozfuQEwsTi+xM6GjwB7EwYouDaqO3OD8DZhDEm06uHNDSRtChmtjZh5IefgG/c/cHoB1ArwuwUkwhtPzsD//AwE1KtuUnjSbmkW6759dx9gYI2EYlDWjVPKmjblzDrwc2E9mpdCT1Gv4iW94sO3Q14Lq16qDA6j25CkrfSmzBFTQoOInxOPiYMcbNrtHkk8FtCifW5gEXDrrwHiz8n+rxkjyabq1REpDnUU83TijC3aAVwK2G6qsMJA4DvATwPbE4YuuDB1LEqMZCWKBoOZx5hhpBN3X1vM9sQOBV4wd1HmdlphDagI4G5wJ5qTpC9FLiJSE6IZnC5mlDVczFwq7t/GJW8Xe3uvzGzkYShit5291/jS61IvMxsR+B0Qs3as4QfOpsCb7r7S1FP0h0JA1FX+eI5xIcAnqpdk+yjwE1Esk49wxXsQpi15SPCkAVXA+Pd/c6oCrUCOIRwU5qRdpxK2SSvRbMb/ZXQC3SSu99oZusAtxM+J9WEdp9dCb1HNwWuBFoDPd390+g8mt0oR7Ra9i4iIpmV1h7t94QG0x8TqnI+c/caM3sf2N/MtgVWIwxb8KK7L4iOS2jaHclXaR0GjgWOBJ4BJhI+CwAGtE1Vd0bB3caETgkbAb3cfSxhmBxAAVsuUeAmIrEzs3UJU1LNd/dqM/stcCGwgDAA+AHAo8DvzOw9d38uCt72JcxhWRqdRwGb5L20/+/1CZO+f15nlxJgspnt7e7/IYxz2Nbd3zCz/0WzH0mOWq5epSIiTcnM1ooGzL0DeAQ4NNq0D2G2lkMJE1zf4O5PEkZw38vM2rv7dHe/x91Lo15zqhaVvJeq0jSz/oQ2al9Ezwujxz6EntT3AJeY2XOEWQ8egDBlpaaqym0K3EQkFmbWA7gb+MjdBwPXAk9Gm0cBm5rZA4QJ4Tc1s6OBxwht28rSzqNSNslrZtbOzA5JXxeVMv9CmMoNoDh6XA/Yz93/S+htfY27D4mqRlPH6rOSw9Q5QURiYWYHAJu7+8V11q9CGL7gNEJj6mnAfYSg7XrddKQliTrfrEv4/z8x6kldCNQABwFHAIemfsyY2c3AD+5+c53zaNaDPKE2biISlyqgT2ow7+gGlSBU8xRFfzcB3wDHuftnsaVUJAZRaXIN8I2ZvQicBHyY1nnnScLcu3dHbT73AKYQ2oPWoqAtf6jETURiEXVAOBB4xt1Hp61/ltCm7W0z2yTV8Dpql5O6kYm0CGa2HnABoWnTusAwd3/azFq5e1U0IPUWhPZu/3P3d6Pj1OYzT6nETUTi8glhfKmDzGyqu4+PRnBvRxi2gLSgLVXNoxuR5K0GqjNPBia4+yVm9n/AiWb2XBS0Fbp7FfBB9Jc6j6akzGMqcROR2JhZB+AvQH+gJ6GH3N/dfWKsCROJUdT+swwYA1wBPO7u70alzk8Sqkuvrec4lbK1AArcRCR2ZtYWWMvdPXquEgPJe2bWhjAW2/fuXhYN5fEg8ClhZoMSwlAekwjz8/YizDE6CThP7dZaJgVuIpJVFLRJSxENiXMioQPOe8BvgTXd/Z9m9m9gNvAE8BtgANAZuCi9Tai0PArcREREMqSeeXhHEsZb25PQvvNOwqDTtxBK3aa5+ztm1tvdJ6Qdpx84LZQ6J4iIiGRI2lAeBwJtgfsJQ9+UE0rePgbeASYDNwAjo+cTo+MK3b1aQVvLpRI3ERGRZpKaXirVaSAaYPpRwiDT44G/AXsTJoH/O7Aq8HtgQ+BGd/8o86mWbKYSNxERkWaQXp2Z1uNzQ8LMBienDT79AaF929PA7cA/3L0ydRxomipZTCVuIiIizcjMriBUh35AaL/2EtDf3avN7DxCydvLwA7u/lzacWrHJktQ4CYiItIEomnbku6ejErKOgO3AaWEtmwfE6alOoEwmPSzwDnAHe7+ZNp5NB6bNEiBm4iIyEqqUy26hrtPNrP2hAF0XyHMwbsF8CLwT8K8o5sB96SmqRJpDAVuIiIiTSCaCeRiwtAeDwNvAmcCRihZewO4itDpYHqdY1XKJo1SEHcCREREck1ULZr+fFvCsB1jgQOBHYCOhOrRVwmdD94H5qQHbanzKGiTxlKJm4iISCPVM7zHAOBzwmC5M4HfufsYM/sj0Bt4PFp/MGHO0fFxpFvyhwI3ERGR5WRmPYFLgUHAu8B1wGDgYHffycyKCRPCj3D3p9KOW9SBIYZkSx5QVamIiMhSmFlhneeDgVuBr4FNCZPCn+nutwPdzOw4d68AzqgTtCXcvUZBm6wMBW4iIiJLkTZN1e5mZsD3QA0wOxoo91Wg0Mz2Ac4A1oyOGx8dp0F0pcmoqlRERCSNma0LTAPmR4PkbkKYN3QG0BO4g9BTtAC4B/gJOBTo7e5/jyfV0lKoxE1ERAQws7XM7F5CYPYIIRiDMHfoa+5+CHAhMJDQrm1twoC6BcBT6UFb3V6nIk1F/1giItLimVkP4G7gI3cfDFwLpNqnlQNVANFguf2idQ8CP7p7tbsvjM6TGt5DU1VJs9Ak8yIiIrAdMMbdb4uevxdNXdUJmAX0M7MDgTlAJ6CsvhkPFLBJc1OJm4iISChR65NWxZkwsyJgZ2Ae8BqwP3AMcK67fxJLKqXFU+AmIiICU6K/rSCUnEU9Ro8Cprr7y8Dp7n5oNMBuIsa0SgumwE1ERAQ+AX4FDjKztQHM7DSgHfADgLvPjNYXaGgPiYuGAxEREWHRJPF/AfoThv34Avi7u0+MNWEiaRS4iYiIpDGztsBa7u7R8wJ1OpBsocBNRESkAQraJNsocBMRERHJEeqcICIiIpIjFLiJiIiI5AgFbiIiIiI5QoGbiIiISI5Q4CYiIiKSIxS4iYiIiOQIBW4iIiIiOeL/AeSu1AEjOS3tAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAIpCAYAAAAb9bTHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACTwUlEQVR4nOzdd3xT9f7H8Ve6KC17yhLF8RXBgSi4ELfiRO91gOJe133Vn3uv68B53bj33lfcCwegdaL1o6IiIAqy6R75/fE9oWlpoXTkJO376YNHTk5OzvmkX5N88p2RaDSKiIiIiCS/tLADEBEREZH6UeImIiIikiKUuImIiIikCCVuIiIiIilCiZuIiIhIilDiJiIiIpIiMsIOQEQaxjn3A+CArc3s02DfE8DBQDHQwczKgv3zgS7AGmb2VwOvNwK4F1gL+Aq4E3gAuNvMTmjUi1n1tbcH3lvJIR+Y2faNvEZ3YB8zu6+Wx+4BjgXuMrN/1XjsLWBn4CRgGHA4MMbMnmxMPPWM+cH46znn3gdGAluZ2eRGnjsTONXMbgjuH0GCyltE6qYaN5HUNSW43Sxu33bBbXZsv3NuAD5p+7WhSVvgCmB94CcgrxHnaYi/gZeCfx8H++bG7fuoMSd3zjngB+CAOg55LrjdxzkXiXteB3yiVAk8D3wRxDOrMfE0wkfB9Rc0wbm+Aq6Ku/97cO6vmuDcItJAqnETSV2TgcOAoQDOuXWB3vgkIg3YGp/cDQ2O/7SR1+sR3I42s5+DGpiEMLNpwGioVvv2pZmNbqJL9MInt3V5F1iI//tuAUwN9u8GZAKTzOxP4NbgXyjM7MImPN2GQEncud/F/x1EJERK3ERSV6zGLZaYjQxun8Y3l24N3ARsHuyfDOCcywGuDI7pgq9BOdfM3g8efxDf/HYZcBxQCOTgkxuAn5xzlwG/1QzIObdDcO4hwBLgSeA8Mytyzn0W7O9mZoucc7cCpwCXm9klzrn1AQPeM7MdV/eP4ZzrDdwB7BLE/ATwf2ZWEjz+f8AJQB98Dd4jwAXAmlQ1w+7mnIuaWST+3GZW5px7Ofi7jKYqcds7uH0uuMaDVG+6HA6MBzYBKvBlcIqZ/RwcHwVKzCw7uH9wEPdDZnZEsO8CfDmsAcwHHgPOMbPKWv4G7xM0lQIb4Js2a3rIzI5wzm0I/BefiKYD3wSxfe6c+y04tk0Q4w74JvJqTaUrK++41/ddcMx/8Mn/c8CxsXIRkdWjplKR1PUNPkHZ0DmXTVUz6S3AUnziBivWuD0L/BufSEzBf3G/5Zzbpsb5LwJ+xCcbrwLLgv1v4ZsVq3HObR08tiXwGVAGnEZVM+NEfIKwfXB/RHAbu+5Owe3/VvqqaxE0X74A7AtMA+bgk8I7gsf3Aq7DJ6Dv4j/7zsX/HQpZsfm1Ns8Gt6ODc6YDewDRuNcYH1Ma8DJVf4+fgN3xTar1fV1j8UlPW+B9IBc4KxbDKsSaNl8CXovbPzP4ez0P7Ij/e/0YxHl/cMybwW1l8Py/a4ltVeUdsxZwNz7RzwTG4WuKRaQBlLiJpCgzK8f3NcsANsbXtCzDf4l+DPR2zq2FT9yKgK+D5GwU/ot6AzMbCfwrOMflNS7xmJltb2aHmtlxwOxg/3F1dLy/DJ+YnRCcdwN8sjIqGNgQSx52cs51DGKOAsODJKjBiRu+RmgY8ISZDTezjYFPgMOcc12AAcFx9+GTu62B0/G1e3OBWBPjyppf38TXKg10zq2Hr9XqCkwxs9r6tLXH1zD9AIw1s2H4AQyXOOfq29rxE/7vOtzMdgu2AdZb1RPN7F0zGx28nt+D3V/gE8Fs4EZ8WW2NT94Xxs4blDdAWXCOabVcYlXlHZOLf/074JNnqPoxISKrSYmbSGqLNZfuB/QHPjWzCuDDYP84oBPweTDCdMtg/wtmVhBsPxLcxh6LWd0+cbHnPwoQnP/5uMem4pv6dsInTrEaqXb4gRQ7AL+Y2Q/OuR2dcy/G/VtV0+mg4HaMcy4aNNFtjU9INw3i+APfNLoAuA2f5H5b3xdnZqX4mkfwNV77BNsr1LYFxy8GHgYGA384577AN9N+HiTdtanZRPsZvhn3FOfcVOD64KHs+sbtnDsU30S8GDjAzEqCpsxngUzn3HP4pLzz6pyXVZd3vDeC21hNbZvVuI6IxFHiJpLaYlM+HB/cxhK2D4LbE2oct0K/qDjRGveXrGYsKz130CfrDWAgcFBw/NXB4yfj+9vFatvWxNeMxf6tuYprZwa3P1DVPBj7VxTUiA3C/51izXv3Ak/V87XFxJpL96Wqf9uzdRwLcASwK3AXPlk5H5jmnOsbd0z853C1hMY5dwa+iXQTfLPvJcFD1RK8ugT92O4K7h5lZr8E+zvh+zZeje+DdhBVNar1Vd//l0rjEtXYbb3iF5EVKXETSW2xhKxzcBtL3D7DN4/2Du7Has++DG73c87lBtvjahwTU7GascTOfShAcP79a5x7Ytwx08xsKvAncEiw/38AZvagmUXi/j24imt/H9z+HDQN7ocf6PAR8G1Q63QvMN3M9gf6AaX4gQxQlYSs6jPxdaAAX5u3AZBnZr/VdmAw2GICsJOZnWRmg/C1Ux2A4cFhxfhar27B/WE1TnNUcHta8DfoTT0Ff/9n8E2V15lZfN+6nfF/gzfN7GJgOtCtximirPzvUZ/yjp1HRJqIEjeRFGZms6mqKSkhaDoNmkXjJ2CNfZF+iK+NWx/4wTn3AX4i3TLg4kaGcxU+AborOO8P+D5Tr5pZrPP/68Ex6VQlmZOC+wX42qWGeDO43l7Oua/xAzfOBg40s2X4JPYfwEvOudfxfb2y4mKYF9yOcM594pxrW9tFgibG16iqMaq1mTQwBz944Rzn3FTn3Lv4kbxFwOfBMV8Ft287556mKoGNmRHc/s859ym+PyL45uVVuRg/pUclvl9erNn5nrjz7h/E9QVBbZ9zLnbuefik8pNgCpaa6lPeItLElLiJpL5Ygja1xhQLsebSGcEcYwTNlXvhR56m4Wt+pgI7x1ZfaCgzews/avJTfGf3LPx0JAfEHfM3VUnLpBpxvtPQKSKC1zUK3zQ6AF+b9BxBPzQzew7fbPkrfvRtJ+Ah4Mjg8fzgfkXw3PYrudyzdWzXjGkpvj/fq8C6+GlZPgP2NrNY4nQC8DV+BYyu+NUZ4p2OH2jSHd+UfF6wf6uVxBfTM7hNwzfrxpqddw36zl2AHy06BJ/AxkbTxs59Gb5P4kD8qNaar2+V5S0iTS8SjaoWW0RERCQVqMZNREREJEUocRMRERFJEUrcRERERFKEEjcRERGRFKHETURERCRFKHETERERSRFK3ERERERShBI3ERERkRShxE1EREQkRShxExEREUkRStxEREREUoQSNxEREZEUocRNREREJEUocRMRERFJEUrcRERERFKEEjcRERGRFKHETURERCRFKHETERERSRFK3ERERERShBI3ERERkRShxE1EREQkRShxExEREUkRStxEREREUoQSNxEREZEUocRNREREJEUocRMRERFJEUrcRERERFKEEjcRERGRFKHETURERCRFKHETERERSRFK3ERERERShBI3ERERkRSREXYAItIyOefWAqYD38btjgC3mNn9q3mufsBEoAI4wcw+bao4WwPn3NrAeDP7R9ixiEjjKHETkeZUZGabxu445/oA05xzn5vZN6txnh2AP81s56YOsJXoD7iwgxCRxlPiJiIJY2aznXM/AesD3zjnjgZOxHfbmA+cbGY/OOceBLoA6wDLgF5AR+fce2a2g3PuOOBUfA3cX8HzfqzxvFeBnkARsAWwBvA0MA/YO7h/jJm965xbH7gdaAf0Br4CDjKzYudcMXANsEvw2C1mdjOAc+484HCgHPgJOMLMFtf1uuL/Fs657YHrgdnAgCDOI8ws3zmXBVwLjATSgS+BU81siXPuN2AKsDFwvpm9EHfODYD7gGx87ea9wN3BbR/n3Btmtptzbuvg/LlAJXCpmb3qnDsCGBPE3SeI7XAz+2NVZSsiiaE+biKSMM65rYB1gSnOuZH4pGeEmQ0BrgOejzs8x8wGmdlw4GJgUpC07QicDexgZpsAjwMvOuciNZ53TnB/CLAVsDnwb2CZmW0N3AKcGxxzLPCQmcXiWxvYM3isDfC3mW0D/BO4xjmX7ZzbBzgC2MrMBgO/AifX43XF2wy4wcw2Bh4AHgn2n4tPBocGr/EPfPIYM83MBsYnbYH/A14xs6HAHsB2QBQ4BpgeJG2dg2uNM7PNgH2AO51zawbn2AY4ycw2BPKAW+uIXURCoBo3EWlObZ1zXwXbGcDfwCFmNtM5dwo+SfrEueWteF2cc12C7Y/qOOfuwFNmNg/AzB50zt0CrFXH814xszLgT+dcAfB6sH86vnYO4BxgF+fc2fjawN742reYl4LbL/CJXC6wM/CMmS0M4jgDwDl3XV2vy8wW1IjtazObFGzfD9zunOsK7AV0CmICyALmxj1vErV7AXjYOTcMeBtfS1cZFwf4JLYXPtmN7Yvia/AA3jSzH4PtCfjaRxFJEkrcRKQ5VevjVkM68EisZsw5l4ZPmBYGjy+r43m1tRREgMw6nldS435ZLc9/Av95+DTwP2DN4JwxRQBmFg2SnQi+RiwaO8A51wmfbK3qdcUrr/EaIvjm33TgNDObGJyjHb75M6bWv03Q3Lkevll3J+CSoFk0XjqQH9RkxmLvjW9CPqRGTGlBPCKSJNRUKiJheRMY45zrFdw/AXinHs97AzjIOdcdwDl3JL4f2c+NiGU34HIzewqfjA3HJzgr8zawv3OuQ3D/UuAMVu91beqci9V0HQd8bGaL8K/xZOdcVpD4TQD+s6oX4Zx7HN8370l8H7slQD98MhZLbCcD6znntguesym+f17v4PGdgkEksdhfWdV1RSRxlLiJSCjM7A18B/m3nHPfAGOB/c0suornvQXcBLzrnPsO359sLzOrbEQ45wMvOOc+B+4CPsA3d64sjtfwfcU+ds59ix/scMFqvq4/gauC548GxgX7rwB+ww9K+B5fE3dmPV7HFcAhzrmv8QMYXghey3dAhXNuKr65+h/A9cFxj+D7u80IzjELeMQ5l49vfj69HtcVkQSJRKMr/YwUEZFmEIwqvS0Y2JAUglGl/zSzvcKORURqpxo3ERERkRShGjcRERGRFKEaNxEREZEUocRNREREJEUocRMRERFJEa1iAt68vDx15BMREZGUMXTo0Eht+1tF4gYwdOjQZr9Gfn4+AwcObPbrSP2pTJKTyiX5qEySk8ol+SSiTPLy8up8TE2lIiIiIilCiVtTKV5Mn4/OhuLFYUciMSqT5KRyERFpsKRO3Jxzw51z7wfb6zrnPnLOTXLO3Rms34dz7hLn3FTn3CfOuWGhBWsT6TD7Q7DXQwtBalCZJCeVi4hIgyVt4uacOxu4F8gOdt0IXGhmI/Dr9u3rnNsMGIlfEPpg4PYwYgXgy0eq30r4VCbJSeUiItJgyTw4YTqwP34BZICh+MWSASYCuwIGvBks3vy7cy7DOdfdzOY1e3QP7QO/flB1Py3T3/7+KVzasWr/GhvDLpc1ezgCvHUJ/PlN1f204H/v2spk1yuCO3GDdiLxA3giq7ev2v767os/Jyvua/Q5mzv2el77+eNg5pSq+7H3yszJ1ctl7ZFw+Msrnl9ERJZL2sTNzJ5zzq0VtysSJGgAS4GOQAdgftwxsf3Nn7htdxbMmgplRf5+ZVlwW179uD+/gUf2a/ZwpBaxsqitTB7eN/HxiBd7r1SUVd8/93u4bRhk5UBm8K+u7Vofy4XMttW3M3MgLWkbFpJHrN/h2o9CdsdVHy8ioUnaxK0WlXHb7YFFwJJgu+b+FeTn5zdxON3J2WY8/SadSVpF8QqPRkmjuPN6VGR1aOLrysqkly4he+FPRKr97+L5MlmXyswOy/fEP1q1ueK0f5HY49H6Pyf2eKSu59T63OgKx0VWcu7qz69jusLg8Uhtr7fOtYpXfDzSgNiXX7uihIyShdRSX1elYJ7/18Qq09tQmZ5NNKOt385oS2VGW6Kx7fRsohnZtW5XZsSeF2ynB4/FttOzIS29yWNOtA6/TaTP7A+Z/d59LFlrVNjhSJzi4uJm+P6Sxgi7TFIpcfvSObe9mb0PjALeA34GrnPOjQf6Amlm9ndtT26WOVcGDoRe3eCZw6E8LnnLyCZywEO0dbs3/TVl1ex1lUkyqqNc2O9u6L8NlBX4GuzSQigL/pUG+6ptxx+3iu2yQtIqSkirKIHSZhrFmpEd1O7VUuNXbTs3qCGMbQc1gsu3c4Pj47dzEpMYTjkLgD5/vUufUWc0//Wk3jSPW/IJex63VErczgQmOOeygHzgWTOrcM5NAj7FD7Q4KeFRFS/2H6yRNCrTMkmrLPP3NdVBeFQmyamucikvgXbdge5Nf83KSp8o1kz8SgtrbMf+FQXH1bVd8/mF/vzlxVC0sOnjB0hvU0fiVzMJrCPxW6GZuS28dJLv+7n8Gln+duYU9TsUSXJJnbiZ2W/AlsH2j/gRpDWPuRS4NJFxVfPlw/5DfI2NmOWOZk27D/781o+Y2+Sg0MJq1VQmySmMcklL80lLVg7kdmv680ejQQK3qiSwsEZNYh2JY23bFSX+X/Gipo8/pqK0+i34BG+7/2u+a4pIgyR14pYS2nSAXa+ELU+kwAxGjoPJd8CMT8KOrPVSmSSnllgukUhVYkjXpj9/NBrUGK4qCVzVdlyTc+yxkiXVm63jZbaFsc/A2iOa/jWJSKMocWusMU9Uv5+WDluf4v9JOFQmyUnlsvoikaDpsy3kdGn689vEoN9hSdW+9Cz454NK2kSSlMbJi4i0VsVL/HyHkTSikWAQREUZFNY6xktEkoASNxGR1irW77DnYGZuc20wSCEK718bdmQiUgclbiIirVWs3+FxH1DQZ1s49Hm/f/FMmPPNyp8rIqFQ4iYi0lqNeQK2PrlqdYm1R8Cw44EovHTiiqtbiEjoNDhBRESq7HQx/DjRT9Xy8c2aEkQEmDG/gAmTfuHFL/+goKSc3Da/M3pIb44dMYD+XXMTGotq3EREpEqbdrDPf/32B9fBXC23JK3bezaX3W+exJNTZ7KspJwosKyknCenzmT3myfxns1NaDxK3EREpLoB28Nmh/sJeV86CSorwo5IJBQz5hdw4qNfUFRWQXll9fWayyujFJVVcOKjXzBjfkHCYlLiJiIiK9r1CmjfG2bn+YmSRVqhCZN+oayicqXHlFVUcu+kXxMUkRI3ERGpTXZH2Ptmv/3ulTB/eqjhiIThxS//WKGmrabyyigvfDk7QRFpcIKIiNRl/d1g44PhmyfhpZPhiP9VjUAVaWGi0Sgz5hfyzezFfDtrEd/MWsyykvJ6PbegtH7HNQUlbiIiUrfd/wPT34XfP4HP7oXhx4UdkUijRaNRZi0s4ptZi/lm9iK+nbWYb2cvZmlxwxKw3KzEpVNK3EREpG45XWCvG+GpQ+HtS2H9XaHzWmFHJVJv0WiUPxYXB8mZr0n7dvZiFhWuOE9hzw5t2KhPJzbu25GN+nTkf9/M4cWvZq+0uTQjLcJ+Q/o050uofr2EXUlERFLTwL1h0H7w3Qvw8qlw2EsQiYQdlUit/lpS7JOzWYuCZs/FzC8oXeG4rrlZPkHr24mN+3Rko74d6dkhu9oxA7rn8r9v51C+kpHVmelpHDNi7SZ/HXVR4iYiIqs26nr45QP49QP44mEYenjYEYkwb2kJ385exLezliyvTZu7tGSF4zrnZLJR305s1KfD8hq1Xh2ziaziB0j/rrnccehmnPjoF5RVVFarectIi5CZnsYdh26W0El4lbiJiMiqtesOe1wPzx0Nb14I6+4MHRPXPCSyoKCUb+MGDnw7ezFzFhevcFz77IygqbOqybNv57arTNLqsoPrweunj+DeSb/ywpezg5UTMthvSB+OGbF2wldOUOImIiL1M/gfMO05sNfg1dNh7NNqMpVmsbiwjG9n+4ED02Yv5ptZi5m1sGiF49q1yWBQ7w7Vmjz7d81pcJJWl/5dc7li9GCuGD2Y/Px8Bg4c2KTnXx1K3EREpH4iEdjzRpjxMfz0JnzzFGxycNhRSYpbWlzGtNlLqg0cmDG/cIXj2mamMziuqXOjvh1Zu2suaWmt68eDEjcREam/Dr1gt//ASyfCxHNgwA7QvmfYUUmKKCgp57s/lvDNrKAmbfZifpm34nJRbTLS2LB3h2DQgE/U1unejvRWlqTVRombiIisnk3H+ibT6e/A/86Agx5Vk6msoKi0gu/nLKk2uvPnecuI1phZIys9jYG92rNR345s3KcTG/XtyLo92pGZrsmea6PETUREVk8kAnvfAndsCT+8Ct+/6KcLkVaruKyCH/5cyrezFvm+abMW89PcZVTUmP8sIy2C69W+2uCB9Xu2JytDSVp9KXETEZHV16kf7HK5r3H731mw1naQ2zXsqCQBSssr+fGvpUF/NN8vzf5cusIktelpETZYo321gQNujfZkZ6aHFHnLoMRNREQaZuiRflLe3ybB6+fAP+4NOyJpYmUVlfz017LlCdq02YvJn7OU0orKasdFIrBej3ZBc6dP1Dbs1YG2WUrSmpoSNxERaZi0NNjnVrhzG/j2GRi0P2ywR9hRSQNVVEaZPm9ZtVUHvv9jCSXllSscO6B7Lhv36cjgPh3ZuG8nBvXuQG4bpRSJkFJ/ZedcJvAQsBZQARwLlAMPAlFgGnCSma34f5mIiDS9LgNgp4vh9XPh1X9D/62gbeewo5JVqKyM8svfBVVTcMxazHd/LKGobMWlnfp3zWGjPh2X90sb1KcDHbIzQ4haIMUSN2APIMPMtnbO7QJcBWQCF5rZ+865u4B9gRfCDFJEpFUZdpxvMp05Bd64EEbfHnZEEicajTJjfmEwstMnat/9sYRlJeUrHNu3c1s2Ctbt3LhPJwb36UCnnKwQopa6pFri9iOQ4ZxLAzoAZcCWwAfB4xOBXVHiJiKSOGnpsM9tcNe28NWjMHg/vySWNMiM+QVMmPQLL375R7C80u+MHtKbY0cMWOXyStFolFkLi/hmll914NtgQtulxSsmab06ZlfVpPXtxEZ9OtIlV0lasotEa06oksScc/2Al4B2QDdgL+BZM+sdPL4jcJSZHRr/vLy8vGhOTk6zx1dcXEx2dnazX0fqT2WSnFQuyacpyqRr/sP0+OYOynJ68svuj1OZmdg1HFuCz2YVctUHf1FeEaUi7us5PQIZ6REuGNmTLfr677NoNMrfhRX8+HcJP82v+re0ZMXeQp3bprNe1zas37UN63Vrw7pds+jSNtXqbpJDIj6/CgsLGTp0aK2TI6Zaqf0beMPMzguSuHeB+J8H7YFFtT0xEeuKhb1+maxIZZKcVC7Jp0nKZP0rYN4nZM75Cvf747DXjU0TXCsxY34B/3l8EiXlK1aoVEShojzKle/P5eAt+vH7wkKmzV7M38tKVzi2S24WG8eN7tyoT0d6dmjT5Ot3tlaJ+PzKy8ur87FUS9wW4ptHARbg+7d96Zzb3szeB0YB74UUm4hI65aeAaPvgLtHwuf3+Ul51x4RdlQpY8KkXyirWPnYutKKSh6ePGP5/Y5tM4NBA1VNnr07ZitJa8FSLXG7CbjfOTcJX9N2PvA5MME5lwXkA8+GGJ+ISOvWcxBsdxa8/x94+WT41yeQpSbT+njxyz9WmMS2NpnpEW4+aAgb9elIvy5tlaS1MimVuJnZMuDAWh4amehYRESkDtueAfmvwF/T4N0rYff/hB1RSiioZZRnbcoro+y5ca9mjkaSlRYHExGRppWRBfveBpF0mHwn/D4l7IhSQn0nsM3NSqk6F2liStxERKTp9R4C25wGROGlk6CsOOyIkt6I9bqt8piMtAj7DemTgGgkWSlxExGR5jHyHOi2Psz/CT64JuxoktqshYVM+XXBKo/LTE/jmBFrJyAiSVZK3EREpHlkZsO+twMR+PhWmP1F2BElpSXFZRz94OcsKChl4BrtaZuZTkZa9QEHGWkR2mamc8ehm61yEl5p2ZS4iYhI8+k3DLY8EaIV8NLJUL7ivGOtWVlFJSc99gX211LW7dGOJ4/fitdPH8GYYWvSrk0GEaBdmwzGDFuT108fwQ6uR9ghS8jUw1FERJrXjheCvQZzv4NJN8AO54UdUVKIRqNc8vJ3TPrpb7rmZvHAEVvQsW0mHdtmcsXowVwxerAmq5YVqMZNRESaV1aOH2UKMGk8/Dkt3HiSxIRJv/D4lN9pk5HGhMM3p1+X5l+aUVKfEjcREWl+a20LWxwDleXw0olQUb85y1qq16fN4T8TfwDgxgM3ZbM1O4cckaQKJW4iIpIYO18KHfvBnK/hk1vDjiY0X89cxOlPfUU0Cmfv7jSZrqwWJW4iIpIYbdrD3rf47fevgXkWbjwhmLWwkKMf+pziskoO2rwf/xq5TtghSYpR4iYiIomz7k4w5FCoKPGjTCsrwo4oYZYUl3HUg5/x97IStlm3K1fuN1jrjMpqU+ImIiKJtetV0L4XzJoKU+4OO5qEiE378eNfy1i3RzvuOGQomen6CpbVp/9rREQksdp2gr1u9tvvXA7zp4cZTbOLRqNc/NKK036INIQSNxERSTy3O2x0IJQXwcunQmVl2BE1mwmTfuGJqZr2Q5qGEjcREQnHqGshtzvM+Ajy7g87mmYRP+3HTQdp2g9pPCVuIiISjpwusMd4v/3WJbDo93DjaWJfxU37cc7uG7DHRpr2QxpPiZuIiIRn0GgYuA+ULoNXToNoNOyImsSshYUcEzftxwkjB4QdkrQQStxERCRce4yHtp1h+rvw1WNhR9NomvZDmpMSNxERCVf7nrD7tX779fNhyZxw42mE+Gk/1tO0H9IM9H+TiIiEb+MDYf3doWQxvPrvlGwy9dN+TGPST3/TrV0W92vaD2kGCUvcnHP9nXMPO+eecc5tlqjriohICohEYK+boE0H+HEifPts2BGttns+/IUnps70034cpmk/pHkkssbtWuAu4EbgngReV0REUkGH3rDbVX574v/BsrnhxrMaJn5bfdqPIZr2Q5pJsyVuzrmHnHM94nblAr8BvwDZzXVdERFJYUPGwYDtoWghvPZ/YUdTL7FpP0DTfkjza84atwnAs865M51z6cAVwDPAq8CFzXhdERFJVZEI7H0rZObC9y/C9y+FHdFKzVxQyDEPfUZJeSUHb6FpP6T5ZTTXic3sI+fc9sC/gA+AS81sm8ae1zl3HrAPkAXcEZz7QSAKTANOMrOWu3aKiEhL17k/7HIZvHYW/O8sWGuEn6w3ySwuik37Ucq263bjitGa9kOaX3P3ccsB7gf2BQ50zj3tnOvX0JMFieDWwDbASKAfvs/chWY2AogE1xIRkVS2+dHQfxsomAuvnxt2NCuITfvx01w/7cfth2ymaT8kIZqzj9sFwGTgC2A/MzsOuB542Dl3UQNPuxvwLfAC8Aq+2XUovtYNYCKwc2PiFhGRJJCWBvv8FzLawjdPgb0edkTLRaNRLnpxGh/9rGk/JPGa8+fBgWY2GNgY31yKmX1mZjsAfzTwnN2AzYEDgBOAx4A0M4tN+LMU6NioqEVEJDl0XQd2DLpEv3o6FC0KM5rl7v7wF578TNN+SDiarY8bsMg5dza+ufTX+AfM7L4GnnM+8IOZlQLmnCvGN5fGtAcW1fbE/Pz8Bl6y/oqLixNyHak/lUlyUrkkn6Qtk47bs1aXQbRd8B0LnzmFP7c4P9RwJv22jGs+8NOUnLVtN7IL/iQ//89mu17SlksrFnaZNGfith9wCD6Ruq6JzvkRcJpz7kagF36KkXecc9ub2fvAKOC92p44cODAJgqhbvn5+Qm5jtSfyiQ5qVyST1KXSff74e4RdP7lZTpvcySss2MoYXz5+0Ju+HgyAOeO2oBjR67T7NdM6nJppRJRJnl5eXU+1pyjShcA/23ic77qnNsOmIpv5j0JX5s3wTmXBeQDqTfdtoiI1K3HBjDyHHj3Cnj5NDjxU2jTLqEhzFxQyLEPf05JeSVjhvXj+O007YeEozlr3JqFmZ1dy+6RCQ9EREQSZ5vT/Jxuf34D71wGe1yfsEvHT/sxYr1uXL6vpv2Q8GjssoiIJL/0TBh9B6RlwNR74LePE3JZTfshyUb/94mISGpYYyMYcabffvlkKC1s1svVNu1Hh2xN+yHhavamUufcBsC2wH34+dc2Bo42s1oHEYiIiNRpxFmQ/wrM/R7eu6pqUfpmED/tx72Hb6FpPyQpJKLG7W6gCNgLPw/bUcDVCbiuiIi0NBlZsO9tEEmDyXfAzM+a5TKvfTuHayb+AMDNB23Kpv06Nct1RFZXIhK3bDN7DNgVeDqYtkN1zSIi0jB9hsLWp0C0El46CcpLmvT0X/6+kH8/9RUA543agFEb9WrS84s0RiIStzbOuZ7AnsDbwXbbBFxXRERaqu3Pg67rwt8GHzTVVKErTvtxnKb9kCSTqKbSGcBHZvY98BlwcwKuKyIiLVVmW9j3diACH90Ec75u9Ck17YekgmZP3MzsTiDHzA4Ldg0xswnNfV0REWnh1twShp8A0Qp48SQoL23wqcoqKjnxsTx+mruM9Xtq2g9JXs3+f6Vzrh1wq3PuHedcF+DqYJ+IiEjj7HQRdOoPf30LH9/coFNEo1EufGEaH/88n27t2nDf4Zr2Q5JXIn5O3AosBnoCxUAH4J4EXFdERFq6rFzYJ1hd8YPr4K/vV/sUd33wC099PpPszDTuPXxzTfshSS0RidsQM7sAKDOzQvzC85sm4LoiItIaDBgJQ4+EyjI/yrSivN5Pfe3bOVz7+g9EInDTgZr2Q5JfIhK3ihr304HKBFxXRERai10uhw594I8vYPLt9XrKF3HTfpy7u6b9kNSQiMTtQ+fctUBb59xuwPOAVk0QEZGmk90B9r7Fb797Ffz900oPn7mgkOOWT/uxpqb9kJSRiMTtHGAZvp/bVcA3wP8l4LoiItKarLcLbDIWKkrgpZOhsmaDj7e4qIwjq037MUjTfkjKaPa1SoHLzew84IoEXEtERFqz3a+G6e/AzMkwdQJseUK1h2PTfvysaT8kRSXi/9a9EnANERERaNsZ9rrJb79zGSz4dflDNaf9uP8ITfshqScRNW6/OOfeBD7CN5kCYGY3JuDaIiLS2mywJwz+B0x7Dl4+BQ5/BSIR7vxg+vJpP+47fHP6dta0H5J6EpG4LQhu147bF03AdUVEpLUadR388j78NgnyHuR/Wbtz3etGJAI3HzSETTTth6SoZk/czOxIAOdcfyDTzH5u7muKiEgrl9sN9rgenj2Kijcu5NqiDKAL543agN0HrxF2dCINloglr9Z1zn0HfAXkOeemO+c2aO7riohIKzdofwoH7E562TIui0xg7LB+HDtC035IakvE4ITbgOvMrLOZdQSuBO5IwHVFRKQVW1xczuF/HcSiaC47pH/N5Wt9q2k/JOUlInHraWYPxe6Y2QNA9wRcV0REWqnS8kr+9Wgen81vw4Sc4wDIePM8WPpnyJGJNE4iErcM51yX2B3nXDc0OEFERJpJNBrlwhe/5ZPpftqPMcf+H6y7CxQvhlfPgKi+giR1JSJx+y8w2Tl3hXPuCuAT4M4EXFdERFqhOz+YztOfz6qa9qNLLux9M2S1B/sffPd82CGKNFizJ25mdg9wPJAFZAP/MjMlbiIi0uRe/eaP2qf96NgXdg0W8Hnt/6Dg79BiFGmMZp8OxDnXBzjAzE50zjngWufcd2bW4I4GzrkeQB6wC1AOPIhvfp0GnGRmlY2PXEREUknejIWc8fTXAJw/auCK034MPcLXtv36IUw8G/55f+KDFGmkRDSVPgT8EGzPAN4HGvxucc5lAncDRcGuG4ELzWwEEAH2bXCkIiKSkn6fX8hxD39OaXklY4evyTEj1l7xoEgE9r4VMnP8qgr5ryY+UJFGSkTi1s3MbgUws2Izuxno1YjzjQfuAv4I7g8FPgi2JwI7N+LcIiKSYhYXlnHkg1OZX1DKdut35/J9BtU97UeXtWGnS/z2/86AwgW1HyeSpBKx5FWGc663mf0B4Jzria8ZW23OuSOAeWb2hnPuvGB3xMxiQ4SWAh1re25+fn5DLrlaiouLE3IdqT+VSXJSuSSfVC2TsoooF709h+nzilmrUyanDs3lpx9t5U/qMIL+3TYm5+9vWPT0ScwZfnFigm2AVC2XlizsMklE4nYj8JVz7nV8P7Sdgf9r4LmOAqLOuZ2BTYGHgR5xj7cHFtX2xIEDBzbwkvWXn5+fkOtI/alMkpPKJfmkYplEo1HOee4bvv6zmO7t2/DYCdvQp1Pb+j25xwNw1zZ0+u01Om1zFKy3S/MG20CpWC4tXSLKJC8vr87HEjGq9H58svYl8Dmwm5k93sBzbWdmI81se/wSWocBE51z2weHjAImNTZmERFJfne8X33aj3onbQDd1oUdzvfbr5wGxUuaJ0iRJtasiZtzLuKcyzCzb4B7gdlASRNf5kzgMufcp/gpR55t4vOLiEiSefWbP7j+jappPzbu22n1T7LlSdB7M1gyG95K3uZSkXjN1lTqnNsQeA042Tn3DjAV31Sa45w71szeasz5g1q3mJGNOZeIiKSOVU77UV/pGbDv7XD3dpD3AAzaDwbo60SSW3PWuF0PXGBmrwIH4wckDAZGAJc243VFRKSFip/245C6pv1YHT03hJFn++2XT4HSgsYHKdKMmjNxW9PMHgu2dwBeNLNKM5tJHSM/RURE6hI/7cfI9btz2cqm/Vgd2/4bem4Ei2bAO5c3/nwizag5E7eKuO2tgQ/j7mc343VFRKSFKS2v5IRH85g+r4AN1mjPbWOHkJHeRF9h6Zkw+naIpMOUu2HGp01zXpFm0JyJ2wLn3CbOuW3xE+5+AOCc2xo/SEFERGSVotEoF7zwLZ/+Mp/u7dtw3xFb0D47s2kv0msTX/NGFF4+GcqKVvkUkTA0Z+J2PvA28C6+r1uBc+4s4H+Ahu+IiEi93PH+dJ7Ja+C0H6tj5NnQzcH8n+H9/zTPNUQaqdkSNzObDPQBegTLXAF8Agwzsw/qfKKIiEjgla+rpv245eAGTvtRXxltYPQdEEmDT/4Ls+ueBFUkLM06j5uZlZrZorj7n5jZT815TRERaRnyZizgzGf8tB8X7DGQ3QY1cNqP1dF3c9jyRIhWwosnQXlTTz0q0jiJWGReRERktfw+v5BjH86jtLySQ7dck6O3beS0H6tjhwugywCYlw8fjk/cdUXqQYmbiIgklcWFZRzx4FQWBNN+XLp3E037UV9ZOX5iXoCPboQ53yTu2iKroMRNRESSRmzaj1+aY9qP1dF/axh2HFSWw0snQUVZ4mMQqYUSNxERSQrRaJTzm3vaj9Wx0yXQcU348xv4+Jbw4hCJo8RNRESSwh3vT+fZvFm0zUzn/sO3aL5pP+qrTTvY51a//cG1MPeHcOMRQYmbiIgkgerTfmzKRn2TZGXEdXaAzQ6DilLfZFpZserniDQjJW4iIhKqmtN+7JqIaT9Wx65XQvveMPtzmHxn2NFIK6fETUREQjNjfkF4037UV3ZH2Ptmv/3uFTB/eqjhSOumxE1EREKxuLCMIx/8LLxpP1bH+rvBxgdDeTG8dDJUVoYdkbRSStxERCThSssrOf7Rz8Of9mN17P4fyO0Bv38Cn98XdjTSSiX5u0RERFqa2LQfk39ZQI/2bbg/7Gk/6iunC+x5g99+6xJYOCPceKRVUuImIiIJdft7Py+f9uO+w7egd9jTfqyODfeBDUdDWQG8cipEo2FHJK2MEjcREUmYl7/+g/Fv/ph8036sjj2uh7Zd4Jf34ctHwo5GWpmMsAMQEZHWIW/GAs5K5mk/6qtdDxh1HTx/DLxxAay7M3ToHXZUKWfG/AImTPqFF7/8g4KScnLbZDB6SG+OHTGA/l1zww4vaanGTUREml38tB/jtuyfnNN+rI6N/gnrj4KSJfDK6WoyXU3v2Vx2v3kST06dybKScqLAspJynpw6k91vnsR7NjfsEJOWEjcREWlWiwpLl0/7sb3rziV7b5i8037UVyQCe90EbTrCT2/AN0+HHVHKmDG/gBMf/YKisgrKK6snvOWVUYrKKjjx0S+YMb+gQeefMmUKW221FePGjWPcuHEceOCBPPJIw5u0//3vf1NaWlrrY88//zzvvPNOg8/dEGoqFRGRZlNaXskJj+bFTfuxWfJP+1FfHXrB7lf7pbAmng0Dtof2PcOOKulNmPQLZRUrnwevrKKSeyf9yhWjBzfoGltuuSU33XQTAKWlpey+++7su+++dOjQYbXPFTtPbfbff/8GxdcYKZW4OecygfuBtYA2wJXA98CDQBSYBpxkZpoZUUQkZNFolPOerz7tR7s2KfW1s2qbHgLTnoPp78JrZ8FBGqwQc+QDU3nP5jXoueWVUR6ZPINHJlefcmUH150Hjhy2WudatmwZaWlpHHHEEfTr14/Fixdzzz33cOmllzJjxgwqKys5/fTTGT58OO+99x633XYb0WiUQYMGcdlll7HzzjszceJEPvjgAyZMmEBZWRn9+/fnpptu4vbbb6dbt26MGTOGa665hry8PAD22msvDj/8cM4991yysrKYPXs2c+fO5ZprrmHQoEEN+pvEpNo76FBgvpmNc851Ab4K/l1oZu875+4C9gVeCC9EEREBuO3dn3nuixSd9qO+IhHY+xa4YyvIfxm+exEGjQ47qlZv8uTJjBs3jkgkQmZmJhdddBH33nsve+21F7vssguPP/44nTt35uqrr2bhwoUceuihvPTSS1xxxRU888wzdO3alQkTJvDnn38uP+err77K0UcfTf/+/TEzli1btvyx9957j1mzZvH0009TXl7O2LFj2XLLLQHo3bs3l19+OU8//TRPPfUUl19+eaNeW6olbs8AzwbbEaAcGAp8EOybCOyKEjcRkVC99NVsbnjLT/tx65ghqTntR311WhN2uQz+d6avdVtrBOR2DTuq0NVVMzb4kjdYVlK+yue3a5PBtMt2a9C145tKY+69917WXtsPivnxxx/Jy8vjm2++AaC8vJy///6bDh060LWrL7tjjz222vPPO+887r77bu655x4GDx7MzjvvvPyx6dOns/nmmy9PFDfZZBOmT/dr2g4cOBCANdZYgy+++KJBrydeSiVuZrYMwDnXHp/AXQiMN7NY78alQK2fDvn5+c0eX3FxcUKuI/WnMklOKpfk05Rl8t3cYs594w8Ajt28K30jC8jPX9Ak505auVuxZvch5M77ksVPncAfWzWuViWmJb5XRq6Vw+s/LqFiJQNx0yOw/Vo5DXrtM2bMYMmSJSs8t6CggF9//ZWysjJyc3PZYostOOCAAygpKeHZZ59l/vz5zJ8/n6lTp9K+fXsmTJjAyJEjKS0t5YcffuCZZ55hzz33ZN999+X+++/noYceYt68eZSXl9O1a1feeecdhg8fTnl5OZ9++imbbropixYtYtasWeTn5zNz5kwWLVrU6PJMqcQNwDnXD1+jdoeZPe6cuy7u4fbAotqeF8t4m1N+fn5CriP1pzJJTiqX5NNUZfLb3wVc9czHlFfCYVv157x9knjh+KbW8z64cxs6/v4mHbc+EjbYo9GnbInvlbN7FPDuzZMoKquo85isjHT+b5/NGjSf25IlS+jQocMKf7fc3FwGDBjAOuuswzrrrMOFF17IVVddxbJlyxg7diyDBg3iyiuv5IYbbiAtLY0NN9yQffbZh1tuuYUNNtiAHXfckRtu8Euede/enbFjx/Loo48u7+M2Z84cLr30UsrKyth3333Za6+9+Oijj+jXrx8DBw5k3rx5dOrUqV7lGesrV5tINIXmnnHO9QTeB042s3eCfa8AN8T1cXvPzJ6Kf15eXl506NChzR5fS3yDpTqVSXJSuSSfpiiTRYWl7H/HJ/zydwHbu+7ce9jmLWcEaX19ege8cR60WwNOmgJtOzXqdC31vfKezeXER7+grKKy2pQgGWkRMtPTuOPQzdjB9Qgxwrolokzy8vIYOnRorb94Uu0ddT7QGbjIOfe+c+59fHPpZc65T4EsqvrAiYhIgpSWV3L8I3n88ncLnPZjdQw/HvoOg2V/wpsXhB1N0trB9eD100cwZtiatGuTQSTi+7SNGbYmr58+ImmTtmSQUk2lZnYacFotD41MdCwiIuJFo1HOff4bpvzqp/144MgWOO1HfaWlw763w13bwpePwqD9Yd2dwo4qKfXvmssVowc3eK621qoV/hwSEZGmdNu7P/P8F7Npm5nO/UdsQa+OLXDaj9XRfX3Y/ly//cppULI03HikRVHiJiIiDVZz2o/BfVrwtB+rY+tTodemsHgmvH1p2NFIC6LETUREGuSz3xbwf8/4ebAu2nNDdtlQyz0tl57hm0zTMuGze+HXSWFHlLyKF8OTY/2trJISNxERWW2//V3AcQ9/TmlFJYdt1Z8jt1kr7JCSzxqDYbuz/PbLJ0NpwxZNb/FsIvzwP7DXw44kJShxExGR1bKosJSjHvyMhYVl7OC6c/FeG7aeudpW17ZnQI9BsPA3ePeqsKNJTl8+Uv22kaZMmcJWW23FuHHjGDduHPvvvz+nnnoqpaWljTrvrFmzOPDAAwHYcccdKSkpaYpwV1srHfYjIiINET/tx8BeHfhva532o74ysmD07TBhJ5h8h1/HtN/qLZLe4jy0D/z6QdX99Cx/O3MKXBrXR3LtkXD4yw26RM0lr84880zeffdddt999wadL5kocRMRkXqJn/ajZ4c23H/E5q132o/V0XsIbHMqfHQTvHQSHD8JMrPDjqr5PXYA/PTmqo+rKK1+G/PrB9UTOYD1doVDnlmtMEpLS5k7dy4dO3bkhhtu4PPPP6eyspIjjjiCUaNG8fXXX3P11VdTWVlJz549GT9+PN988w233XYb0WiUgoICbrjhBjIzM1frus1F7zgREamX/8ZN+3Hf4Zr2Y7WMPBfyX4W/f4QProWdLwk7ohZt8uTJjBs3jvnz55OWlsaBBx5IaWkps2bN4oknnqCkpIQDDzyQbbbZhosvvpgbb7yRddZZh2eeeYbp06fz008/cf3119OzZ0/uuusuXn/9dfbee++wXxagxE1EpNW5f9r9DO46mGG96m6ymzpnKtPmT+OowUcBftqPG4NpP/6raT9WX2a2H2V6/27w8S2w4T6+Jq4lW1XNmL0OzxwO5cVV+zKy4YCHwDWuSTPWVLpw4UKOOuoo+vbty48//sh3333HuHHjACgvL2f27Nn8/fffrLPOOgAccMABAMyZM4errrqKnJwc/vrrLzbbbLNGxdOU1DFBRKSVGdx1MGd9cBZT50yt9fGpc6Zy1gdnMbirn9G+5rQfO2vaj4ZZczhs+S+IVsCLJ0F54zrLp7zixX6liUgaZLT1t2npTTotSOfOnbn++uu58MIL6datG8OHD+eRRx7hoYceYtSoUfTr148ePXrw22+/AXDPPffw1ltvcdFFF3H11VdzzTXX0KNHD5JpXXclbiIircywXsMYP3J8rclbLGkbP3I8w3oNqzbtx+Ga9qPxdrwIOq8Nc7+Dj24MO5pwffkwlBZCz8Ew5nF/W1rYZKNLY9Zdd13GjRvHe++9R05ODmPHjmX//fcHoF27dlx22WWcf/75HHrooeTn5zNy5Ej22WcfDjnkEA4++GAKCgqYO3duk8bUGJFkyiKbS15eXnTo0KHNfp38/HwGDhzY7NeR+lOZJCeVS3KIT9LaL2rP0k5LqyVtCwtK2f/OT/j17wJ23KAH94wbqhGkTeHXSfDQXpCWAcd94Od7q0OLfq88MQb6bwNbnghpaVBZ4UfezvgExjwRdnR1SkSZ5OXlMXTo0Frn2FEfNxGRVqK0opRZy2Yxc8lMfl/6OzOXzqR3+94c+9axZEWyKIuW4To7nv/5ed7+/V3e/raAWeVprNWvO8fs0pM/CmbRObsz7TLbad62xlh7BGx+NHx+nx9lesw7fqWF1qZmcpaWDluf4v9JnVrh/ykiIi1XYVlhteQslqDNXDKTOQVziFJ7K0tx1HcQ/37B93y/4Hu/MxOye8F84Pi3715+bGZaJp2zO9MluwtdsrtU327TeYV9uZm5SvRq2uUyP1XGnK/g0//Ctv8OOyJJEUrcRERSzNLSpdUSst+X/s7vS/z9eUXz6nxeWiSNPrl9WLPDmvRr349+7ftRXF7Mw98/zDadt+GjhR9x9OCj+fLXSt744WeysorYYcO2kF7AwuKFzC+ez8LihRSWFzK3cC5zC+vX7yczLXOFJG+FZK9tF7q08ftbRaLXpj3sfTM8+g947z/g9oTu64cdlaQAJW4iIkkmGo2yqGTR8oRs1tJZVbVnS2aysGRhnc/NSMugb7u+rNlhTdZsX5WgrdlhTXrn9iYzvWoS0VfsQy7NO5eS2YfwzNdrkduxP/8tuZelv48hWrQdtx62OTsNXHEEaXF5MQuLF7KgZAELihawsGRhtcRuQfGC5bcLihdQVF7EX4V/8VfhX/V6/VlpWbXW6K2wr00XurTtQk5GTmomeuvuDJseCl896ptMj3rdNxeKrIQSNxGREESjUf4u+rtabVl8LdrSsqV1Pjc7PZu+7fuyZvs1l9eexRK1njk9Sa/Hl//dU9/gv9MuoXT2IZQWrAXAssVrkV42huw+j7NN+9NqTdoAsjOy6dWuF73a9arXay0qL2Jh8cJqyVzNxG/5bQMTvS5tq5ppY4ld5+zOdM3uukLil1SJ3m5Xws9vw6ypMOVu2OrEsCNqdg2ZR1CqKHETEWkmFZUV/FX4V1VSFtfvbNbSWRSVF9X53NzM3OqJWfuqBK172+6NSjxesQ/577RLKJo1lorCAdVjLlyH4tlj+aTvLbxifdjbbdfg68S0zWhL23Zt6d2ud72OjyV61ZK8GrV4y/eVLKSovIg/C/7kz4I/63X+NultfGIX10Rba41esN02o23zJXptO8NeN8GTY7h/6vUM7tqbYeuPrvPwlpDQxOYRjI1eril+tHPYkjHJVOImItIIZZVlzFk2Z3ltWXzt2aylsyirLKvzuZ3adPIJWYd+KzRrdm7TudmShUe/+ojS2YeskLTFVBSuQ+nsQ3jsq4+aJHFbXaub6BWWFS5vrq2Z2NWW+BVXFK92ordCLV6Q9NWs5WtQorfBHrDRAQz+6WXO+uQSxrdbg2G9t1zhsGRKaBojfh7BmslbzXkEG2LWrFnss88+DBo0aPm+4cOHc/LJJzNjxgxOPvlkXnnllVqf+8ILL/DCCy8QjUYpKytjl7G7cNa05EoylbiJiKxCSUUJs5fOXt6sGUvKfl/6O38s+4OKaEWdz+3etnu1hCyWqPVr348OWR2aPNZoNEpRWQWLCstYWFi6/HZhYRmLg9u8rzelvHLlc3iWFgxg2vep8RWRk5lDTmYOfdr1qdfxsUQv1jw7v2j+ShO/kooS5hTMYU7BnHqdPzs9u85+eZ3bdKZr2+qJX05mDux+LcOmv8f4P+dw1runMn6n25o8oUkmtSVvTfka1113XR55pPpEvi+++CIPP/wwCxYsqPU5S5cu5Y477uB///sfWVlZ/PXXXxxwwAFc98R1zZZkNkRqvCtFRJpZYVmh71+2dOYK/c7+Kvirzmk0IkToldurWkIWX3uWk5nT4JjKKypZVFTGoiDhWlhQWu3+osJSFhaUsaioeoJWWl7Z4GvGKygtb5LzJJvVSfSi0ShF5UUr1uLFJ37BoIz4Gr3VTfS6ZHeh89rr0vnv6QxctpgT3/4Xe621G71+/Ijn5m/PyzNeZ/S6o/lp0U/8vOhn0iJpRIgQiQT/iFTfV+M2jbQV9seOJ8Lyx9MifoLlFc4X9xxg+WPLj4+/RnDsNVOv4cu5X67y9R/95tErvR9vy15bMn7k+KrXUjOmSISyyjKi0SjlleXVXkPHjh159NFH2WWXXWo9d1ZWFmVlZTzxxBPssMMOrLnmmrz99ttkZWVx1jpncdThR9E/py+dCv7kyPGXc8kn19L9g+7c8sotRCIRLrzwQjbYYAN22GEHBgwYwDrrrMORRx7JRRddRElJCW3atOGKK66gV6/69Q2ti1ZOaEIteobrFKUySU5hlcuS0iXVJp+NT87+Lvq7zuelR9Lp3a53tX5mse0+7fvQJr3NSq8bjUZZWlLOooKgFiyWfBVUJWCLisqqkrHCUhYVlLG0pGGJU1ZGGp1zMumck0WnnEw6tc2ic24mnXKy6JyTyQ1v/khJPZK7dm0ymHbZbg2KobWKJXo1k7lqiV+NQRmlla18zdImFl0UpezeMiJrVDVXZ+ybQVp7n9gV31xMzr9zak12KxdWUjK5hLLpZVABOdvmkDssl0VPLKLN0DaU9C+m13clLMptx3qzNuSIg45g5513Jj8/nwsuuIDnn3+eDTbYgE8//ZTOnTtz+umns99++zFy5Eg+/fRTnn32WW644YZVvgatnNAMkrHDYmunMklOsXLpmTWICZN+4cUv/6CgpJzcNr8zekhvjh0xgL9Kv2uScolGoywsWVgtIYufTmNRyaI6n5uZlrm8liw+OVuz/Zqs0W4NMtP8NBrFQTPkoqJS/ppfhs1c4GvDCktZXFRWLRmL7VtUWLbKpsnapEWgY1ufgHWMS8Q6BwlYx+A2fn+nnEzaZqavtI/V7wsKeXLqzJXGlJEWYb8h9Wt6lCqRSGR5jV6/9v1WeXw0GqWwvLAquVv4KwsnnsX8yhLe79CZrzOibBTNYuMNDyAajVIZrSRKlGg0yvL/gu3KaGXV/vh9RCEKldT9ePz+Sir98bHHarkGUOdza7tGXccXlvnXnpuZS0FZAR2zO/r3WpTa44udbyWvpyKtgopuFWSNy1q+H1h+HEB5pf9RVPZ0GZRCpHuE9K3TiRZFSdsljYxdMojOj7LsqWUU9yqmfG45lT0riRDhj0FtOD6aw8SpC9liiy0AGDhwIH/+6ftMdu7cmc6dOwPw448/cvfdd3PvvfcSjUbJyGh82qXErYFio2L+b8iVTMnvvMKX0fCBC7n+ywtTvhNpKlGZJKfBXQdz6rtnsGTGwZQuG7A8WVhWUs6TU2fy/Pcf0KH/k9y6Y/0W3K6MVjKvcF6tzZozl85kWdmyOp/bNqPt8qbMvu370a1NbzpmrEFO2hpEKjqwuKjS134tLGPa7FI+KixjYeFsFhX+trx5sqis7v5sK5OblU6nGgnW8hqxGglY7H6H7EzS0pp+gMKxIwbwXN5syivrfi2Z6WkcM2LtJr+2VBeJRMjNzCU3M5d+z58Ev34AwNTsNjwcKef4hct4ukM7Tn/3RoYVl/gndVkXhh8HRCA+QY9E/L747eWPR1by+KqeQzOcM8LUxT9xlj3EhEH/Yljn9Zm66CfO+uEB/jPwUIZ1cvW8zoqPz/rrb8545zae3uny5Y9HgShQCWx35wm8v/Odft/OEZ8IRiJ89+MvXHbdPUy49WJy2mZTUlbOcS8dy8V//cmdOe3Y6PtlPL1JJzb9vJAHI+VsUDabz89cj536lpCfM5xu3boBkJZWtZ7vgAEDOOqoo9hss82YPn06n332GY3VIppKnXNpwB3AJkAJcIyZ/Rx7vLmaSqvPg1Q1Oisr9xey+jzGKYMv4/hhamZIJJVJ8pkxv4BRdz9ApOejFM8eS0XhOssfS8+ZTnafx4n+dSgTjz+S/l1zAT+Nxp+Ff1ZLyOIHBRRXFNd5vbbpuXTJ6k37jDXIpicZld2grBulxZ1ZVpjD4kLfJLmkuIyGfPxlpEVWSLRqJlydVqgZy6RNRnJNrPqezeXER7+grKKyWs1bRlqEzPQ07jh0M3ZwPUKMsBX69UN4/ECmpldyVo9ujJ/7N8OKS5ia3aba/ZagrtfUFK911rJ0zvikI0/vWvsghG1e6M7H+9W+wsgz09vy2I85ZGdEqYjCPwcUcdC6RbxS2pbzP+/IgJIyekQqGbNDERd16ELPl0toWx6hvMv6XHjldWy00UZss802fPzxxwDMnDmTSy+9lJKSEoqLi7ngggsYMmTIKl/DyppKW0ritj+wj5kd4ZzbEjjPzPaNPd4ciduM+QXsfvMkSjN/JLvP48u/kGJfRMWzx5JVtj6vnz5i+ZeRNC+VSXK68MVveXLqTKLZP9col59o2/dxSv4eSRpZbNCvlN7dCpix5HfmFMymPFp3/670aHvSyrtRUdqF0qIulJV0obK0K5VlXaEih+W/zFehQ3YGnXOzqhKutrHkq6pPWKe2cQlabha5WStvhkwlM+YXcO+kX3nhy9lB7XQG+w3pwzEj1tZ7JCRTv7yXs768ifFz59We0GSvz7BO6+PbEqNxt1TfB3U8TgOeU5/rUO/nTI0WclblHMZHejKMtrU8XsRZzGM83RkWbdMEsTXubzA1WshZ7agjyezO+CH/ZtiQY2hKrSFxuxGYamZPBvdnm9nyzhnNkbjFvozKK6P+C6jfI1QW9yAt+0/KlzqiFZ2IAD06tGGtFT4Ao3Fb0RqPRGs7bIXH6hrhVnt5rux5Qdt/raerfsUVHonW9siqrhf3aHQlr32F663snr//1+JiFheVEQUi6ctIb/s7lWVdSMtcQEVRP6IV7YgAHXMy6dG+9s7kK38/1PE3X83j42Ou9zNWEldd51r9eFf2nDqeVY/Pj5kLC5cfFkkvJC37T6jMgrRiVpb/VJZ1WJ6MRUu7Lt+uLO0KldnVjs3OTAuSqyDRyq3e/BjrJ1a1P4sO2RlkpKfVcfXWRwN5wrd8eokBBzLszSugPK5mOSObqbtexFm/PJ3yU4KkUn/ksMqkNQxO6AAsjrtf4ZzLMLNmG8v+4pd/LG9eiFbkEkkrJT1nFgCZHb9bftxCYOHi2s4gTS4TMjKr70pv46vDM3J/W76vAPi17gnrpYml11Zxk15MNAqVpZ2XJ2OVpV2JlHcjN60nnTLXoEtOu2oJWF39wzrnZJGdmVzNkCINMW3+NJ8AzP3Vr1kaSaMyLZO0yjJIS2dYm+6MHzmeafOnpXTiVp9kbFivYUnxGpOxTFpK4rYEaB93P61m0pafn9+kFyyIG6YfSS8gWtGGiqJ+pOf8TtmiIVSWdYOoT5YH9ciupWYhUstWLY+ttEkmshr3IrVur3jGmo+t4tg6Hq7v9ZrqNUQi8Mnvhcvvp7X5i6wuH1FesB4ZuT9RumBbKkvWWP741mvW3Zy28r9PHfsb1HS2etdf+SXqOtfqHb/S69dZ2Ct/7R/8sozyoMYtrc0ftOn2HmWLNyWjwzcUz/nn8j5vbTMjPDtmLdLqPF9Z8K8QSoFSWLQIFq306lJfxcXFTf45Katnq/StYBEUfHQXOaWFFHdaj9kDj6NP/j1kL/qJwo/vpv0Ot7NV+lYqqwRJxjJpKYnbx8DewNNBH7dvax7Q1E0AuW1+Z1lJedB/6kmKZh22Qn+qisJ1aNcmgxePVGf4RBh8yRvLyySz8+SVlsnD41QmiRLfxy2r64cUzRpHReE6lC/daHm5RIrX5Z9D12TQhhuGHW6rpabSJPLVGjDkStpueSJlZrTd5SiYfAe5Mz5RGYUlwWWSl5dX52MtpYPHC0Cxc+4T4Cbg3819wdFDepOV+0u1hACqFmjO7vM4Wbm/aB6kBFKZJKdjRwwgq90qyqXdL5p6QiRmzBOw9ckQm1YiLR22PsXvl3AkUZm0iBo3M6sETkjkNYcPXMiLCx6jaFb16Q2g6gupbd/HGDZwk0SG1aqpTJLTX6Xf0aH/kyyZcSiR4gHED4CIFK9L9K9D6dD/Sf4qHUZ/wu/TIiKSzFpKjVvCzSv7mVMGX0ZW2fpk1JggMyMtQlbZ+pwy+DLmlf1cxxmkqalMktO0+dO4dccbmXj8kYwZtibt2mQQwS+nNGbYmkw8/khu3fFGps2fFnaoIiJJr0VMB7IqzblWqeZBSj4qk+Sn/lTJR2WSnFQuyScRZdIapgMJTf+uuVwxejBXjB6sN1iSUJmIiEhLpaZSERERkRTRappKw45BREREpL5a9JJXIiIiIq2BmkpFREREUoQSNxEREZEUocRNREREJEUocRMRERFJEUrcRERERFKEEjcRERGRFKHETURERCRFKHETERERSRFK3ERERERShBI3ERERkRShxE1EREQkRShxExEREUkRStxEREREUoQSNxEREZEUocRNREREJEUocRMRERFJEUrcRERERFKEEjcRERGRFKHETURERCRFZIQdgIjIqjjnosA0oKLGQ6PN7LcExbAnMNzMLnbO7QPsbGanNtG5JwB3mVmec+5e4Ekze7spzi0iLYsSNxFJFTuY2d8hXn8LoAuAmb0MvNyE594FuDs49zFNeF4RaWGUuIlISnPOHQ5cAmwMRIHPgf+Y2cPOub2BC4EsoBA4y8w+dc5lANcBewHlwCfAicD5QDczOzk496VAN+AR4AQg3Tm3GPgJ+KeZ7eWc6wvcCawFRICHzOx659xawDvAa8BwfNJ3gZk9VSP+q4DewGPOucOAa4HbgtfxbvBvKyATOAs4HtggeHyMmVU657YOnpcLVAKXmtmrjf/rikiyUR83EUkV7znnvor79wKAmT0EfIpPxG4FJgVJ23rA1cAeZjYEOA543jmXi0/ShgKbAIOB9sBBdV3YzKYAdwFPmdkFNR5+DHjPzDYCtgEOdc4dHDw2AHjDzIYB5wQx1jz3BcAfwCHBdeKtDbxsZoPwSeAtwBhgEDAC2NI51xl4ABhnZpsB+wB3OufWrPtPKSKpSjVuIpIqVtZUegLwNVCET8jANz/2At5xzsWOqwTWBXYGHjGzomD/QbC8hq3egiRwG2BXADNb7Jx7EBgFTAbK8DVuAF8QNLWuhjLglWB7OvCJmS0Jrv1HcL6t8K/zxbjXGcXXQP6+mtcTkSSnxE1EWoKeQDbQBt/s+AuQDrxjZstr0pxz/fC1W+X45Ca2vye+BSKKb+6MyVrFddNqHB/blxlsl5pZZbBd89z1UWpm0bj7ZbUckw7km9nw2A7nXG9g3mpeS0RSgJpKRSSlOecygSeAi4HLgCeCfe8CuzrnNgiO2wP4Bp/gvQ2Mdc61cc6l4fuojcEnO0Odc5GgNm3XuEuVU5WQAWBmS/E1aycF1+gIHAa8tZovY4Vzr4bJwHrOue2CGDbF98Hr3cDziUgSU42biKSK95xzNacDOR/YAfjTzO4FcM6NBq4ys7Odc8cBTzrnIvjkaB8zK3DO3Y0fTJCHrwV7H98/LhffzPkTMBvfdy5WS/YOvo9cafC8mEOA251zR+Jr6B4DHgT6r8ZrexF4yjm32iNKzWyec+4fwPXOuWz8D/JxZjZjdc8lIskvEo1GV32UiIiIiIROTaUiIiIiKUKJm4iIiEiKUOImIiIikiKUuImIiIikCCVuIiIiIimiVUwHkpeXp6GzIiIikjKGDh1a64TdrSJxAxg6dOiqD2qk/Px8Bg4c2OzXkfpTmSQnlUvyUZkkJ5VL8klEmeTl5dX5mJpKRURERFKEEjcRERGRFJGSiZtzbrhz7v0a+8Y65z4NKSQRERGRZpdyiZtz7mzgXvxC0bF9Q4CjqVpTUEREJHVVVMCrr9Ltzjvh1Vf9fQlXkpRJKg5OmA7sDzwC4JzrClwNnA5MCC8sERGRJlBRAbvtBlOm0K2gAB54AIYPhzfegPT0sKNrnZKoTFJykXnn3FrAk8A2wHPAeUAR8KSZbVnz+Ly8vGhOTk6zx1VcXEx2dvaqD5SEUZkkJ5VL8lGZJI92779PnzPPJK2oaPm+aHo6BVtsQfkaa4QYWeuV8eef5H72GZG4WraKnBz+GD+eZdtv3+TXKywsbLHTgQwF1gPuxDedbuicu9nMTq95YCKGU2vYdvJRmSQnlUvyUZkkkccfh7ikDSBSUUG7yZNDCkhqk15URL/586EZ3jcrmw4kpRM3M5sKDIKqWrjakjYREZGUUFkJb7+94v42beCEE2DTTRMekgBffQV33QUlJVX7cnNDKY+UTtxERERalMsug8mTfb+pNm2IFhURyc31/aluuEF93MJSUQHTpsGUKUQLCqrKZNSohIeSkombmf0GbLmqfSIiIinjmWfg8sshLQ1efhkqK5n31lv02GUXnyAoaQtPerofiDBxYuhlkpKJm4iISIvy1VdwxBF+e/x42GMPAOavsw491PcwOaSnw157hV4mKTePm4iISIsydy7suy8UFsLhh8Ppp4cdkSQxJW4iIiJhKS2Ff/wDfv8dttzSd4CPaC55qZsSNxERkTBEo3DyyfDRR9CnDzz/PGguPVkFJW4iIiJhuOMOmDDBJ2svvgi9eoUdkaQAJW4iIiKJ9u67cNppfvu++2DzzcONR1KGEjcREZFE+uUXOOAAPzfYuefC2LFhRyQpRImbiIhIoixdCvvsAwsWwJ57wpVXhh2RpBglbiIiIolQWQnjxsF33/n1LR9/XJPqympT4iYiIpIIl1wCL70EnTv7lRE6dAg7IklBStxERESa21NP+WbRtDS/ve66YUckKUqJm4iISHP64gs48ki/feONsMsu4cYjKU2Jm4iISHP56y8YPRqKiuCoo+DUU8OOSFKcEjcREZHmUFIC++8PM2fC1lv7CXe1nJU0khI3ERGRphaNwoknwiefQN++8Nxz0KZN2FFJC5ARdgAN4ZwbDlxrZts75zYF/gtUACXAYWb2V5jxiYhIK/ff/8L990Pbtn4k6RprhB2RtBApV+PmnDsbuBeIrcR7C3CKmW0PPA+cE1JoIiIi8PbbcMYZfvuBB2CzzcKNR1qUlEvcgOnA/nH3Dzazr4LtDKA44RGJiIgA/PwzHHigX87q/PPhoIPCjkhamJRL3MzsOaAs7v4cAOfc1sDJwE0hhSYiIq3ZkiV+OauFC2HvveGKK8KOSFqglOzjVpNz7iDgAmBPM5tX2zH5+fnNHkdxcXFCriP1pzJJTiqX5KMyaaSKCvqecgrt8/MpXnddZlx0EZVmjT6tyiX5hF0mKZ+4OecOBY4HtjezBXUdN3DgwGaPJT8/PyHXkfpTmSQnlUvyUZk00vnnw/vvQ5cuZL/+Om6ddZrktCqX5JOIMsnLy6vzsZRrKo3nnEsHbgXaA8875953zl0WclgiItKaPPEE/Oc/fsH4p5+GJkraRGqTkjVuZvYbsGVwt0uIoYiISGuWl+dXRAC4+WbYaadQw5GWL6Vr3ERERELz55+w775QXAzHHAMnnRR2RNIKKHETERFZXbHlrGbPhm23hdtv13JWkhBK3ERERFZHNAonnACffgr9+vnlrLKywo5KWgklbiIiIqvjllvgwQf9clYvvww9eoQdkbQiStxERETq68034cwz/fZDD8Gmm4YajrQ+StxERETq46ef/BJWlZVw0UVwwAFhRyStkBI3ERGRVVm82C9ntWgRjB4Nl14ackDSWilxExERWZmKChg7Fn74AQYPhocfhjR9fUo49H+eiIjIylxwAbz2GnTt6gcjtG8fdkTSiilxExERqctjj8G11/rlrJ55BtZeO+yIpJVT4iYiIlKbzz6Do4/227feCjvsEG48IihxExERWdGcOX4QQkkJHH88/OtfYUckAihxExERqa64GPbbD/74A0aM8LVtWs5KkoQSNxERkZhoFI47DqZMgf79tZyVJB0lbiIiIjE33giPPAI5OfDSS9C9e9gRiVSjxE1ERATg9dfh7LP99sMPwyabhBuPSC0ywg6gIZxzw4FrzWx759y6wINAFJgGnGRmlWHGJyIiKcYMDj7YL2d1ySXwj3+EHZFIrVKuxs05dzZwL5Ad7LoRuNDMRgARYN+wYhMRkRS0aJFfzmrxYth/f7j44rAjEqlTyiVuwHRg/7j7Q4EPgu2JwM4Jj0hERFJTRQWMGQM//ggbbwwPPaTlrCSppdz/nWb2HFAWtytiZtFgeynQMfFRiYhISjr3XN+3rVs3PxihXbuwIxJZqZTs41ZDfH+29sCi2g7Kz89v9kCKi4sTch2pP5VJclK5JJ/WWCYdX3qJ3uPHE83I4PcbbqCwqAiS7G/QGssl2YVdJi0hcfvSObe9mb0PjALeq+2ggQMHNnsg+fn5CbmO1J/KJDmpXJJPqyuTKVPg0ksBiNx2G/0POyzceOrQ6solBSSiTPLy8up8rCUkbmcCE5xzWUA+8GzI8YiISDKbPduvjFBS4peyOv74sCMSqbeUTNzM7Ddgy2D7R2BkqAGJiEhqKCrySducObD99nDLLWFHJLJaUm5wgoiISIPElrP67DNYay145hnIzAw7KpHVosRNRERah/Hj4dFHITcXXn7ZjyQVSTFK3EREpOV77TU45xy//cgjsNFG4cYj0kBK3EREpGX74Qc/yW40Cpdf7vu4iaSo0AYnOOf2xq+A4IAK4AfgGTN7M6yYRESkhVm40C9ntWQJ/POfcOGFYUck0igJT9yccw6/KPxC4FXgSSAdGACc6py7FDjGzL5PdGwiItKClJfDQQfBTz/BJpvAgw9CJBJ2VCKNEkaN24XAWDP7tZbHbnPOrQNcDhyS2LBERKRFOftseOst6N7dL2eVmxt2RCKNlvDEzczG1dznnEsD0sys3Mymo6RNREQa48EH4aab/HQfzz0H/fuHHZFIkwhtcIJzbgfn3NfB3YHALOfcVmHFIyIiLcSnn1athnD77TBiRLjxiDShMEeVXg8cCWBm3wF7ADeFGI+IiKS6WbP8qNHSUjj5ZDj22LAjEmlSYSZuWWb2RexOsN0mxHhERCSVFRXB6NHw11+w445w441hRyTS5MJM3Aqdc7vH7jjndgKWhRiPiIikqmgUjj4a8vJgwAB4+mktZyUtUpiLzJ8GvOCcKweiwb/9Q4xHRERS1bXXwhNPQLt2fgRp165hRyTSLEJL3MxsinNuTWAjoNzvstKw4hERkRT16qtw/vl+jrbHHoPBg8OOSKTZhDmqNA04Pfj3G3Cmcy49rHhERCQFff89jB3rm0qvuMKvkiDSgoXZVHo90B3YAogAuwO9gFNDjElERFLFggU+UVu61K+QcP75YUck0uzCTNx2AjYD8sxsiXNuV+CrhpzIOZcJPASshV/39Fgz+6GJ4hQRkWQTW85q+nQYMgTuv1/LWUmrEOao0jIzq4zdMbMSfF+3htgDyDCzrfHLZV3VBPGJiEiyOussePtt6NHDD0bIyQk7IpGECLPGbZpz7iQgPVh4/gwaWOMG/AhkBP3mOgBlTROiiIgknfvvh1tu8dN9PP889OsXdkQiCRP2dCA3AT2Bj4E3aHj/tmX4ZtIfgG7AXjUPyM/Pb+Cp66+4uDgh15H6U5kkJ5VL8kmVMmn7xRf0P/54IsAfF1/M4i5dIAXibqhUKZfWJOwyiUSj0dAuHuOci+CbOhtUU+acuxEoMbPznHP9gHeBjcysGCAvLy86dOjQpgu4Dvn5+QwcOLDZryP1pzJJTiqX5JMSZfL777DFFjB3Lpx6qq91a+FSolxamUSUSV5eHkOHDq2102aY04Fs65y70DmXBeQBi51zBzXwdAuBxcH2AiAT0NQiIiItRWGhX85q7lzYeWe44YawIxIJRdiLzE8GRgN/AhsCZzbwXDcBmznnJuFr2843s4KmCFJEREIWjcJRR8GXX8I668BTT0FGmD19RMIT5v/56Wb2tnNuAvCimf3W0Al4zWwZcGDThiciIknhP//xyVr79vDyy9ClS9gRiYQmzBq3dOfcMGBP4E3n3GB8E6eIiIj38stwwQVVy1ltuGHYEYmEKszE7SrgceA+M/sNeAW4MMR4REQkmXz3HRxyiN+++mrYe+9w4xFJAmEuMv888HzcrnXNrCKseEREJInMn++Xs1q2DMaMgXPOCTsikaSQ8Bo359xLzrkhNffHkjbn3ObOuZcTHZeIiCSJsjI44AD45RcYOhTuvVfLWYkEwqhx+xcwwTnXHXgV+Bk/dccAYBSwCDg+hLhERCQZnHEGvPce9OwJL76o5axE4iQ8cTOzP4A9nXPDgX8CY4BK/LJVp5nZlETHJCIiSWLCBLjtNsjKghdegL59w45IJKmE2cdtCqAkTUREvEmT4KST/PZdd8FWW4Ubj0gSCnNUqYiIiDdjBvzjH75/27//DUceGXZEIklJiZuIiISroMAvZzVvHuy6K1x3XdgRiSQtJW4iIhKeaBSOOAK++grWWw+efFLLWYmsRKjvDufcP4FNgauBfc3siTDjERGRBLvySnj2WejQAV56CTp3DjsikaQWWo2bc+5c/NQgBwJtgUuccxeFFY+IiCTYCy/AxRf7OdqeeAIGDgw7IpGkF2ZT6cHAHkCBmc0HtgTGhhiPiIgkyrffwrhxfvuaa2CPPcKNRyRFhJm4lZlZSeyOmS0CysILR0REEuLvv/1yVgUFfi3S//u/sCMSSRlh9nGb6ZzbE4g659oAZwEzQoxHRESaW2w5q99+gy228BPuajkrkXoLM3E7GXgE2BgoACYDh4QYj4iINLfTT4f334devXwft7Ztw45IJKWEuXLCH8BOzrkcIN3MljbmfM6584B9gCzgDjO7rwnCFBGRpnL33XDHHdCmjU/a+vQJOyKRlBNa4uacWwM4AugS3AfAzM5uwLm2B7YGtgFy8M2uIiKSLD78EE4+2W/fcw8MHx5uPCIpKsym0peBWcD0JjjXbsC3wAtAB0A9XUVEksVvv/nlrMrL4cwz4bDDwo5IJGVFotFoKBd2zn1lZps20bkmAP2BvYC18UnhBmYWBcjLy4vm5OQ0xaVWqri4mOzs7Ga/jtSfyiQ5qVyST3OVSaSggLUOPZRsM5Ztuy0z77wT0tOb/Dotld4ryScRZVJYWMjQoUNrHbUTZo1bnnNusJlNa4JzzQd+MLNSwJxzxUB3YG7sgIEJmNgxPz8/IdeR+lOZJCeVS/JpljKprIQDDwQzWH992r3yCgM7dWraa7Rweq8kn0SUSV5eXp2PhZm4fQx85ZybQ9z8bWY2oAHn+gg4zTl3I9ALyMUncyIiEpYrroDnnoOOHeHll0FJm0ijhZm4XYpfKaHRfdzM7FXn3HbAVPykwieZWUVjzysiIg303HNw6aWQluaXswoGoIlI44SZuC0ws6eb6mQNGY0qIiLN4OuvqwYgXHcdjBoVbjwiLUiYidv/nHPjgeeA+KWvvggvJBERaZR582DffaGw0K9FesYZYUck0qKEmbjFFpT/R9y+KNCQPm4iIhK20lL45z9hxgwYNszP16blrESaVJgrJ6wd1rVFRKQZnHqqn2i3d2+/MoKmsRBpcglP3JxzZ5vZdc65W2t73MxOTXRMIiLSSHfe6Ze0atMGXnzRJ28i0uTCqHFbHNxqug4RkZbgvfd8bRvAfffBFluEG49ICxZG4nY8cLeZXRbCtUVEpCn9+isccIBfzurss+GQQ8KOSKRFSwvhmuqpKiLSEixdCvvsA/Pnwx57wNVXhx2RSIsXRo1btnNuCHUkcJoOREQkBVRW+rnapk2DDTaAxx/XGqQiCRBG4jYAP3dbbYmbpgMREUkFl17qByF06gQvveSXtRKRZhdG4va9mQ0J4boiItIUnnnGr0OalgZPPQXrrx92RCKtRhh93EREJFV9+SUcfrjfHj8edt013HhEWpkwErcPQ7imiIg01ty5fjmroiI44gg4/fSwIxJpdRKeuJnZaYm+poiINFJpKfzjHzBzJmy1Fdx1l5azEgmBmkpFRGTlolE46ST46CPo0weef96vkCAiCafETUREVu722+Hee/3aoy++CGusEXZEIq1WaIvMNzXnXA8gD9jFzH4IOx4RkRbh3Xer+rLdfz9svnmo4Yi0di2ixs05lwncDRSFHYuISIsxfbpfzqqiAs49F8aMCTsikVavRSRuwHjgLuCPsAMREWkRli71I0gXLIC99oIrrww7IhGhBSRuzrkjgHlm9kbYsYiItAiVlXDoofDddzBwIDz2mJazEkkSkWg0GnYMjeKc+xC/VFYU2BT4EdjHzP6MHZOXlxfNyclp9liKi4vJzs5u9utI/alMkpPKJfnEl0n3W26h2913U9GhA78+9RRl/fuHHF3rpfdK8klEmRQWFjJ06NBa59tJ+cEJZrZdbNs59z5wQnzSFjNw4MBmjyU/Pz8h15H6U5kkJ5VL8lleJk89BXffDenppD/3HOvuvHPYobVqeq8kn0SUSV5eXp2PpXxTqYiINJEvvoAjj/TbN94IStpEkk7K17jFM7Ptw45BRCSlVFTAxIl0f/FFP0dbUREcdRScckrYkYlILVpU4iYiIquhogJ22w0mT6ZrQYHf17Ej/Pe/Ws5KJEmpqVREpLV69VX45BMoKGB5mlZW5ifdFZGkpMRNRKS1+eYbOPtsGDfON43GKyqCr74KJSwRWTU1lYqItAazZsHjj8Ojj8K331btj0T8IvIxubmw6aYJD09E6kc1biIiLdXixfDAA7DjjrDmmnDOOT5p69IF/vUv+PBD2GEHaNeOaCQC7drB8OEwalTYkYtIHVTjJiLSkpSWwhtv+Jq1l1+G4mK/v00b2HtvvyLCqFGQleX3v/kmTJzIvLfeoscuu/jHtEqCSNJS4iYikuqiUZgyBR55xE+gO39+1WPbb++TtX/8Azp1WvG56emw117MX2cdemiiV5Gkp8RNRCRV/fSTX0f00Udh+vSq/YMG+YEHY8b4JlIRaTGUuImIpJJ583yt2qOP+lq2mF69YOxYX7u2ySaah02khVLiJiKS7AoL4ZVXfFPoG29Aebnf366dbwI99FA/yEB900RaPCVuIiLJqKIC3n/f16w99xwsXer3p6fDHnv4ZG3ffSEnJ9QwRSSxlLiJiCSTr7/2ydrjj8Mff1TtHzbMJ2sHHQQ9eoQXn4iESombiEjY6pocd8AAn6wdcgisv3548YlI0lDiJiIShsWLfRPoo4/6JtHY6gVduvhatUMPha220iADEalGiZuISKLEJsd95BE/OW5Jid/fpg3ss49P1nbfvWpyXBGRGpS4iYg0p2gUJk/2NWt1TY77z39Cx46hhSgiqaNFJG7OuUzgfmAtoA1wpZm9HGpQItK6/fSTT9YefRR++aVqvybHFZFGaBGJG3AoMN/MxjnnugBfAUrcRCSx6poct3fvqslxN95Y/dZEpMFaSuL2DPBssB0BykOMRURak8JC31/t0Ufh9df9/GugyXFFpFlEorGRTC2Ac649vqZtgpk9Htufl5cXzUnAJJXFxcVkZ2c3+3Wk/lQmySnly6WigpwpU+j46qu0f/NN0gsLAYimp7Ns221ZsvfeLN1hB6Jt24YcaP2lfJm0UCqX5JOIMiksLGTo0KG1Vs23lBo3nHP9gBeAO+KTtpiBAwc2ewz5+fkJuY7Un8okOaVkuUSj8M03tU+OO3w4HHookQMPpH2PHrQPL8oGS8kyaQVULsknEWWSl5dX52MtInFzzvUE3gRONrN3wo5HRFqQmTOrJsedNq1qvybHFZEQtIjEDTgf6Axc5Jy7KNg3ysyKQoxJRFLV4sXw7LM+Wfvgg+qT4x58sE/YttxSgwxEJOFaROJmZqcBp4Udh4iksNJSP7jg0Uc1Oa6IJK0WkbiJiDRINAqfflo1Oe6CBX5/JOJHgh56qB8ZqslxRSRJKHETkdbnxx/hscdWnBx38OCqyXH79QsvPhGROihxE5HWYe7cqslxp06t2q/JcUUkhShxE5GWq7AQXnrJJ2tvvFF9ctx//tMna9tvr8lxRSRlKHETkZalogLee88na889B8uW+f3p6bDnnr4pdO+9IQGTcouINDUlbiKS+qJR+Prrqslx58ypeiyYHJeDDoLu3cOLUUSkCShxE5HUFZsc95FH4Lvvqvavs07V5LjrrRdefCIiTUyJm4iklkWLfBNozclxu3b1tWrjxvlaNg0yEJEWSImbiCS/0lKYONEna6+8Un1y3H339bVru+2myXFFpMVT4iYiyWllk+PuuKNP1vbfX5PjikirosRNRJKLmZ8c97HHNDmuiEgNStxEJHxz58KTT/ratc8+q9rfu7cfYBCbHFdEpJVT4iYtU0UFTJxItzffhF13hVGjNMlqMogvl5EjobjYjwqNnxy3fXu/PqgmxxURWYESt6agJCG5VFT4jupTptCtoAAeeMCPMnzjjYaVSzRaNXIxtq37q3+/ogLOOgu+/55uxcXw3/9W/Y0zMmCvvXyypslxRUTqpMStsZo6SYiprPTnru3fyh5rzn+pct2iIli6FIAI+Jnz33nHJwNpaauXeEizWD5RR1oaHHssXHGFJscVEakHJW6NNXEiTJ4MBQVVScJ77/kJQHNzG56sSNMrLW3c82PzgkUiVf90v/73Z86EGTOq/02jUejbV0mbiEg9tYjEzTmXBtwBbAKUAMeY2c8JufiXX/qFrONVVq74BdUQ6ekr/ktLq31/c/8L67oNufY778Dxx0NBQdXfMjcXHnrIN2M3JPGQxnv1VT8iNLZ2KPhy2XTT0EISEUk1LSJxA0YD2Wa2lXNuS+AGYN+EXHnIEP/lE/9l1LYtXHst7LBD45IVaZiDD/ZN1lOmEC0oIJKb65uvR49W38MwjRrly6FmuYwaFXZkIiIpo6UkbtsCrwOY2WTn3OYJu3JdX0YnnqgkISzp6b6P4cSJzHvrLXrssosGjCQDlYuISKNFoi2gE7Zz7l7gOTObGNz/HRhgZuUAeXl50ZzmHKVWUUG7SZNInzaNisGDWTZihL6MkkRxcTHZ2dlhhyE1qFySj8okOalckk8iyqSwsJChQ4fW2k+npdS4LQHax91PiyVtMQMHDmzeCAYPJj8/v/mvI6tFZZKcVC7JR2WSnFQuyScRZZKXl1fnYy2lI9XHwB4AQR+3b8MNR0RERKTptZQatxeAXZxzn+CniDoy5HhEREREmlyLSNzMrBI4Iew4RERERJpTixicsCp5eXkt/0WKiIhIi1HX4IRWkbiJiIiItAQtZXCCiIiISIunxE1EREQkRShxkxYhWK9WRFZB75XkozJJTs65pFyoWv+zrAbnXERvsOQSK49gZDHOuZ7hRiSgL6Jk5JxLB/9ecc51cM4143IyUh+x75S4zy8tkZAkgnJJykEAGpxQTzXeXB2ALYE8M5sfbmQCEKxPewB+ipuLzawg5JBarRrvlfWBPmb2XshhScA5Nxb/XplkZjeGHY+Ac64/fkorAx4zs7KQQxKWJ9KnAF+b2ZthxxOjX8X1FPdFdA7wLHARsEmoQbVS8bU5zrl059ytwDVAO6APsFtYscnyGp2+zrnbgIeAI51zA8KOq7WpWevpnBvgnPsMGA7MAIY457SWUoLV+PyKOOfOAx4ENgCOA/ReCUHNZlHn3EnAfcDOwImhBFUHJW51qNks6pxLc86dBgwEjgC+AbYKfilJAtRsFg10BXqb2c5mdhLwDr5c+oQRY2tUS4LQERgPfA2cHOzezjnXJtGxtVbOufS4H5uxv/t6wP/M7DTgWuAHYExIIbY6scSgxudXH2A7YFcz2w//ntnLOdc2hBBbpbjm6mjcvg2B0cAl+M+wpc65k+s4RcIpcauFcy7DzKJBzcF6zrk1gjfbUOAdM/sDuBP/y3WLZO3A2FIETdPxtZ5jnHNPOecOBeYBGznnhgWH/wpsCOwUSrCtjHMuElcumwdJQgQYBDxsZnn4ZHp3fLlIM3HOZTvnugGYWYVzrr1z7i7gv865nYFyYN/g8TlAGbCpc26r0IJuBWJ9CWOJgXNuG+fcPcG62hXAMmDr4PCngMOBjcKItTWJ6/MZ+64f4Jzb1znXBVgTyDezn83sJ2AisH/wWOiUuLE84850zh0DYGblwYfg2cBrwLXOuXHAk8BewTHT8E1z2wJ9Qwq9xXPOjQH2DLb7OucuAnYFXgYOBA4BLgXuCL6AjsInDhs75zqHEnQL55xb3zk3CvyHnnNubefcI8D9wI3AOsBzwAXBU2YB/fE1oep83Qyccxn4vjidgvvb4svjJ+B/wfaH+JqD85xz/8bX9CwDRoQRc2sQJMwXBNvdnHPH4ZtDC4BD8bU6rwOnBf1B98R/Lx8UPEeVAs3AObcLsH2wnR7Upj0KHIv/np+EX/98k+DH6IZAFvCvcCKuTokbyzPuMmAhgHNuLeABoDv+l89T+HbuecBi59xjQV+RN4HNAY3OamLOuUwAM3sCeNY51w/YAV/L+byZPQbcik/cngGuBI7GNwFdD3Qxs4VhxN4KRIG/AJxz++GbRd8FhgHTgXHA48DOzrnHgLOAD/AflCUhxNtiBT86082sHJ80lzjnhuJbB3oCd5vZS8CrwOXALsAvwFrAfvjEbl4YsbdkQSKNmb1tZhc453rjf+SfCtxgZv/GN4v2BKbgy+c/wPv4z7R1Yi0/YcTfUsUlwjOB94JZCA7C92EbaWZ74fsYDgYuxNd+Tgbm43OCioQHXYtWnbjVMhz+Nefc48BsYDH+S6Yc+Bz4EdjHzI4DXsQX9n3AUnwmLk0oNqrKObcPcBf+S+kT4Av8h1onM3sbmIuvcXsF32dnCD6J+yx4vn6xNoH4fmxB00HEOXcV/u+cBiw2s2LgbSAX359qB+BjMxsFfAUUA6pxayKxfjlBs2iOmVXgB02NBPKAj6nqw3YecBKwLj5Zmwrcgf/h+WXCg2+hgtrodkEiHds3EvjOzF4E8oGNg4c+xdeQbouv7XkN/166Bf9DKL4vnDRS0K0jlginAWPxPzJ/wSdyewePnQM8ZWbP4SsC/g28AOyPzwtC12qnAwmGxB9jZjs65zoBFwPn4t8wj+CThDOAW83sS+fcdvhm0lhT3YH4L6dLzOyNEF5CixLXcTfWD6Qv8DT+y+dS4GF8LU4BvubmIzN7NaiJKzOzP4Pq7+HA42b2S8JfRAsV/4HnnBuB/3////C1a9sAewBrALcDC/CDd7LM7PZgxNwIoAg41cxmJ/4VtFxBM85V+BGJz+Kb3a7GJwI98O+Hx8zsc+fckOCzLAffgtDTzCaEFHqLEzRPj8V/fyzBf6d8hv/R+Si+Zu1jfIf3o81sbvCZZWb2u3Nub3wt6H1m9nEYr6ElctWnJ+qOH2ywJn6AYQ98LWc7YBRwspkVO+eexDdxZ+FrqQ8FrjGz5xP/ClbU6hK3oPq5PNj+Fl9FOgc43cxOds5tgu+fMxQ4HWiLn2piafCLNnaeTczs60TH3xLVeGOthS+PXOAt4E4zuzfoU3UccDa++vo3fOf30lCCbgVqlMt6+KaDJfhanDFAb/yv1CPwfaheBJ7AJ20lwfO6AN3NzBIdf0vnnNsIn6S9h//B+TG+f+H+QGd8ojAc+Fw/LptP7DslSKLPxDdD98HX0qyHn1vyanxrwYbAPcBkM/tvOBG3DvGfX3H7TgHOBwaYWVHQZ3oJ/r1yBPC9md1a4zm5yTYvaKtL3OIFv3AuBe7G16YdbWbznHPjgS74jHsP4MFY0hb0J0mKdu5UFtSwrRs0u+H88PdL8TU4b+KboD/Hf+DtEvwKeh6fzD1nZnNDCbyVCWpnIvi+OR3N7Fzn3J7AtWY22DmXh0/oIsAyM/sw7rkrfHDK6ovVeMbdrgOsjf+b3wocYGbTnHNX4vvnHIGvrb4G30S3NKzYWxPn3Nr4GpxjgL/M7ELnpyW6F9/cdjT+e+VUoEjvjeZR83PHOXcIsCN+wukHg8+si8zsNefc9sA/8c3W3wAzzWxRbedJJq0ucXPO7YD/VVQQ3N6GH4AwGd//Jg8/GOFy4EjV6DQ951xusHkK8HbQjLMnvq/H+fg+Bv8ADsOP4ik3szOccz3wfalitTnxfRakiQUjqffH16QNAV40s/eDxz7EN//8AGxpZteFFGaLVtv/48658/FNO8/juw30NrMzgscK8E3Tf5jZnwkOt1UIOrRXmNnfwf3d8X0I5+HfKz2BbsADZvaj8xO5jjKzvZxzfWLdBZI5MUhVzrnNgPXN7Mng/qX4HzPn4lvSHsD3UzvVzLYJjhkLfBBXLkn/vdKiE7eatWPOuTXwAwpuBBaa2RfOuY3xHREHBv2lrgOuNLPv4p6X9AWZCoKRVv/Gj9a9GLgZ34H9bHwn6Sx834O5+F9Ac/DV2IfjRyZWBvPtqDyaUdAsOgv4AzjTzO53zl2Ob76+E1+rcCqwBX4k1qzQgm2haqk1+Bd+pPRVQfkciU+af8D/uHnNzJ5xzg2K/+ySphf0d94fnwyU4qePeMTMXgke3xw/b+FcfBeCTGCdYAopJWzNoEa3jr/x/aH/g//x/zt+ovYDgN/M7HDn3Jf4bjj3hBVzY7ToUaVxzZubOefa4QtvDTN7J0jatsL3BfnBOXePmc00szGxDz5XNVO/koRGcM5lBZ1wT6Cq9mYdfK3nbPzUEq/jR/g8hh8Asie+b9SXZna6mZXH3pgqj6YRm7Kgxr5u+A+9dfGd3vcIHroNn0hfia9duAY/hUH/4Hkt+rMkUZxzewZNoZnB/bHOLx1WBJzgnOsddC/4Dd/80w4/1Uqn4BTfB8/TaOom5ILJWgM/4QfoPAdsii+bz4Pj2uEnOa7E93PrbGZFsaQNVlg5QRoh7ju60vnVjTrgZ4AYZX6S6V74z6tsMxsJ/BL0o94LX4mTklpUjZtzbkd8FfYHwf3R+JGhv+GbQ3fH9zd4wswed85dgu+Xc4NzrqsFC8brF1HTCBKD8/GLjB8ffPhl4xO0DfB92rYCxprZOOfcf4BCfNL2jJndEHculUkTCcrl//A1Zw/gF7beGpgdNO0cg2+CG4efxuPfZvZu8Nwd8UPnd8T/mt3fzP5K9GtoaYImnjPwo3O/wf+oeQE/2ONSM3vCOXcj/ofn2KAcLsAn1G+YWWFIobdoNWv3g+4a7fA/LvuZWWyuwkn4foWH4wftXIBvISiv5bTSxIL+6rsCNwB/47s+nYyff+1UfLK9JX5Kon+Z2eLgeSn5vdIiEjfnXHszW+qcOwGfSY/F/wp6Dvivmb3lnLsa6AhMwDf3zMV37j3bzH4IzpOShZiMnF/x4AjgW+BqM1vgnPsncIuZ9XHOvY6fr+h7fPNpO/xEup8Ckbg3lppFm1BQLuPw5bIQWB+fHPwDP7LqUXyT9eP4ju/dgPPNbJPg+SPwo3uXABeaJjlusKBWLAtfezkEuD1o7twLn0hPwHcjWGJm5wQDeN7FfzF1Ai4zP5fh8vPpvdI0nHNDgL/NbGZwf1f8j502wMVm9r5z7iHgDfySbsfiu33MAP4TN+hKZdLEXPXpiTLwXZ/64D+zFpvZ285PDH4ZvrImHT/Vxw/xg6dSWUonbs5PNXAF0A/4xMyuCX79vIufh+10/K/VOcHxP+D75WQB/c3si1ACb+Gcc+fg//bD4j74epvZH865d/H9Pmbj++achG/CPgfft3B6cLyS6CbmnLsG//deL9Zx3Tn3LH4U3M745OGJYITiDcB2ZraFc25dM/s57jztNVKx6TjnJuGTtliH6iuBQjO72jk3HP8+mWBmHzvn+uNHlH4Q9+Wl5KAJBQPYXgPGm9lFwcjD4/H9bMfim0f/D98f92785N83ALmx/p4qk6bnnMu0qonZs/D9on/GJ2if4lsQhgDf4X8MPYyffmWMWdV0RC3huyVlE7cgOdgN3zfqNXw79sP4aSTOw7/J/gO8hJ/NfV98s9zRFjdStOYABmk4VzVdwZrAO2a2XtDn4Cb8L6Ezgl+yz+CbSp8DXjCzB8OLuuWLK5e1gffNrH9QLlfi5yk8GV8bfQZ+AEJ7/MCEN61qFGnKf9glm9hnT1A7cCh+TdED8BMbX2FmfwXldAIw2MwOq+35CQ+8hXN+Cpy38TXSVwe3O+O7COyJb3KbgJ9w+iggw8zuiHu+3itNyDm3E34FluK4fbviP7f+g+8Pugl+laN38ZUAp+L78JfGnteSkumU7FAcjP7cE//Fcl3Q8bMESDOzT/BZ+I74JtF++A7vm+CbdqpN76EPvoaLdYCOH8QRfJn8Djzj/ATHTwP5FkxXYGZf4ptHrwQOi0/a1MG9aaykXH7Fl8uv+GaFGWZ2rJmVmJ8X7078KMUfzez8WNIWnENfRE3AVV86rCK4fQH4Ez8Z+FVmdnKs36CZLcH/0Lmq5rn02dU0nHNHO+eOcc51DnZ1xbfYvIr/jPoe/0NmMzM7Bj/h8e7AQDO7Jz5pA71XmpLzqxodik/ScM69AWBmb+I/q0bga9h+xXffuAg/MKQMP2l+cWxgSUtJ2iBFa9ycX4B8T3yN2xP4RXl3wffR6YNfNuRVfKfqyc65NYNkQr+GmlB81XXcvviVKb7AT9T6VHA/y8xKnXPZQIcgWWhRv4SSQT3KZSb+vfFszcdqPEfvlSbiqk9XkIkfRFUZV+s2CN/n81Dzy7fpPZEAzrn2+O+KjYEnzexfwf6n8P3X1saPUpyPr337Fj/A6gIz+zHuPCqvJhKM+jwOP6jwB3yN2jH4wVAvAN+a2XnOuQ3xNZ8X4ZfaOxTfheCVEMJOqJSo4ahZExN8KU3FDy54FnjXzAaY2RigL74z4lMEC1oraWt6zrmzgYeC7d7OuVudcx3NL/0SGzp/C74WAYC42s4S8+v0abqVJlbPcrkU3wcRgDqStojeK43nqtbgjSVt5wAPAuc65zrH1bp9h1/X8qrgB47eEwkQ9NW8GN9PbaRz7kTn3EDgDny3gan42rUfgbuA583sAPOjryNx51F5NYHg/XE/fvDgEPx0Xd/iF4I/FT9q9wjnXE5QE1qBr3X70czOsqq59FIit2mopH5xcV/sK3yBmNkf+OaeD/EziOOcOxqfoVeY2c3xTT11nUdWT1BbAP6XzubOuXXxnXSXmNnioLYn9mX0ENA1KJflYh9yKo+ms5rlch/Qyzl3ZF3n0xdR4zjnIjVrYZxfJ7EvvvZgV+AM5+fNi7kBP/t+OpJI+cBH+KlvZuDLYQ98l46P8H3buprZXUGzdqwSQO+RJhQ0i/YF/mlmNwOnmNlLQcvMy/jBCG3x86+95ZybjF8C8QYLpsOp+UOppUqJplLnJ289DD89wRdWNbFuZ/wM4rvj27cXADdaML2HNC/np185EP+m2hI4Iq4jaKaZlQUDFf6orVZHmkc9y6U/ft42lUsTq9EsvQa+K8cD+MEfBfgfzCPwtTm3mNl8DTRoXnEDdNKCJurhZjYl7vEh+FroO/Aru9wMmJntWVvXA2l6zrlR+Om5dggSsEhQVmsCa+Enbd/KzI5zzu0MzDOzr4Pntqqm6qRL3Gp+gDnnLgaG45O2MuAzi5uKIHjDXQzcZ2avBvtaVSEmUjAC7l/4ZUQuxi/30g34Gj+q5zfg+qBT9QofmOFE3fKpXMIT+5IBToh1VHfOtQEuAdbDT8j6NH7+tWuBc83sUefczcBLZvZejfOpTJpIUA6V8YlX0GUgH9jHqubwzAHG4JdwO8w5NwwoNrNvgsf1ndLMnHOb4Efp3mlmPwStCOX4gTkz8bWfxwDXWdy6otD6WgiSpqk0rlm0wjmXGXQ8BN8x8Uv8QrGnAlcEHXljvjaz/eKSNlVhNxFXfZkXnF8j8Xj8rOD3Bs3VV+HnnBqDHym6AX4+HUDNos1B5ZJ8gr/jac65o4Jdh+OX2/kXvhZnI3x/nEeBzZyfuy2Kn+G9tnNJIwTfIen4iaUjzrk2zrm9nXNDg4qBx/B92AAImtomAX875waY2dRY0hY8ru+UJrKS/mcFwb+Rwfd4WfB3Xxv43sy+NbPTYkkb+HJpjWUTeo1bLf1ANsf305mPrzWYDAwCegb7bwAeMLPPapxHv1KbQfBLdF38kiFb4WfR3zl4bGf8vHk3AxPN7PKw4mxtVC7JJ+gzeLKZDXXO3QO8ZX4lhB74pHoJcDl+hv3ZpsXgm4Xz8xWOM7PLnXN343+0fInvv3YwsA9+tv2bzeyzuJG9+g5pZq76qgfD8c3Ri+Ie3xlfRkX4GrYj8LVtZ5jZsuCYVl9Oode4xReic+52/NIU4/C1BBvi59T5Dd8UcSe++WeFPmytvSCbgnNu36DpOXb/cPyEhqcD7+M//DKdcyODQ0bja0J3AsbHPS/0/69aEpVLcnHO9Q1GH3YP7ndzzt0FDAPaOOdOxP/ovCx4SgT/w3MTYHMze9PMvgsGMKhMmohzrrtzrqf5+Qpvcc51xX/5b4BPom/CT6w7Fv/+2A2qzacXG/kbqe380jDOuZygVSA2p+QGzrkn8O+PrZ1zHWPHml/C7Wx8/89tgcvN7LhY0hYc0+q/60P50Ihv6nHOdXTOHY9fr7IIPwQ4Fz80fhawHb76NBN41cwONC2306Scc+2CzSHAv4Nmhq74Ph//MrOjgGn4SRCvAi51zr2JH6o9ycwKzazQrWQUsKw+lUvycc6dhW/uzDWzecHufYB25ucA+wc+oZ4MvB/UvL2OTxh+xS+3t7zmQWXSpNYGbnbO9cT3K7wfPznr5fgKAfBLJL4NlOInal0hUWuNTW/NLBe4wTk3wPn1do/EL3k4Gt8HdL3YgUHt5wIze8TMTjGzT4P9+oETJ6F/jPh+bMH9dPzAg3HA02Z2Fn4I9lD8m2oKfimeYjMbb1UThmq4fBMIag4eAe5zzp1mZpfiv/T3wL+ZfsLXdoJv6jkAX9NzMHCOmR1iwdp8oMSgqahcko9zbq+gX1oPYKyZXR/3cBvgC+dcrpkZvq/UnWZ2In6C8H3xtaJDgWWg5KCpxH8XmNlU/CjqKfhpI6bgk4O7gYHOuQOAjc3sW3xN9MbB81QWTcxVXyFkHv4Hy3fA9viVjdLwK4JkAWc550YHx1bUdh59hlWXkMSt5h/fOXewc+4d4B7zS1dMAgYEv3wm4udr2d7MPgYusmCB67gRJBo23whBE801+F+kU/G/QncKRvU8AByE/4JZG9jROdcLOBa/1EuFmf1lfukq/RJqQiqXpDYQaG9mZ5vZH865zZ1zrznn1gfm4Kcq2Mk5twG+5aBj8HmVA5yJ75t7hpnlhfUCWhJXtYxRrBJgw6A2+magzMy+wE/Ovg4+QbsQPxv/LsEpugKLgxogaSKuav7C2Hf9oKA/7kP498kPZjYBP0H+pfhVK9rhR7+vQAlb7Zp9cIKrvtRLGr6weuFrCl7CZ93P49u77zGzj51z44D3YrUGNQcwSOM45wbgF3i/wfy0BGn4moEbzWyKc+5h/BuqDP+htzPwOX7h6wVhxd3SqVyST43O1F/hE4P18LVnT5nZA8FjB+PXRx6EX2/0tdjzgZ5m9mfio295nHPbAAvMLD+4vyFwHbAG8IyZXeucuwM/8fS5zk/+vSfwTyAnroP7YfippfL/v717j7ZzvvM4/s7FJVqUjmHIhSX6JVWZsjDNUEZTrfulCStTqpJSOi5LdRg0rKEx0XTqWpchKU2KEpdG624oCaUR9+pHpxrkIlSVugbJ/PH97ebpllSynH2ec87+vNbKSvY+59nrSXae83z37/e91PIX6eHKdvV/koU4V5MrnLsDoyXtFDk4fjQZQJ8p6ZbaTrYbakngFmUmZeXx6sB4MjdkAPAKGWXvU34NInPcXiVvWm4K2kLl0+q/kiubU8mWBVuSY13eAE4EJgNjlP10+leC6Lav6GkVvy9dW2SD0ClkID2u8vzuZNf9l8hxbo0PqkudAWsrLiIGACeQQfNY5QzqsWThwURgAdnjawaZNnAfmf/5Q+C3ZQu7bft+tVK8v/fqCLIdzlVkPuHh5MD3CRExnbz//w/wS0kL6jjn7q7Dt1Miu7ZfExHnRcQ/lQvuMjJ59z7yjdwZWFvSAWSJ9klkg90JWtJx3JU9LVIustvJT6k/Bi6VtKmkPckckbnkgOXGrNc5jQo4Bwet4/elXo2fOZXfNy0rPABIuokMCBrB8l4RcQuZ+P6qpDdVBseX73fQ9iFV0gcmAk9K+rykRu+7J4ANyMDsCbIgZDsyv+0rwDRJP2sEbdC+fb9aqbJdvWPZrp5FTp+YK2k+OZZy/YgYRqZ7/By4oxG0OWd9xXXYiltk/7XxZOL0D4CPkZWhq5I9c54sz/cCxpKVJutQuol75aDzlZWCAyXtXx4fSwYIB6qMSLLO5/elc5U8p7WUjYurz58P3C3pyohYRdLbEbE5GVzfSxZQnSVpeuefdXuopA9MkHR5eW4U8DFJF0S2lbhL0kXle79GptncVnkNp9p0oFgydaXx+yfJFILZ5O7ZODKXcFVJ34qINYBvAC9ImtT8Op3/N+j+OnLFbRhwsaTDJT1OLl1fTM5MvBL4BLCJskP1DWQl1iRlye+cyhK2g7bOczfw64i4OSKupWxZa8lcS6961sPvSyeIiJXLHwcDe0bEGhFxQiyZfnAHOQeZErT1Lj/bzgVukTSiEbS5GKRlniE/+G8bEdtFxOVkvtp95evnAF+NiE0lPQ2MrwZt4G3RjhSVyUSVf9ddgCslHULGFKPJAqttImJP5Zi9Cx20dZyOXHGbBRxZigu2JyvifkE2AR0NjCF755zZnEjtVbb6lK2g44DvSbqnPOf3o2Z+X1qvFHscQzZjvZjMj5rOksDgCWAgcCn5s6tX87+/35PWK9XTZ5ETQg5pJLJHxPrAy8DRwM2SHq4c48CgRcoHx+OBF8jV0C+TubkLgbPJ6+knwA5kK6/rqsf6ffnwPnTg1vjBFRGnkLkGjeXs1SX9OSKmkpVwM8lE6ymV5F3/0KtZ84Xk96Rr8PvSGmVl7AfAdEk/Ljm4r5F5N/9HfsBch2yzckD5voPrOl9Ly0gfOAg4pRoYWMeq3N8b26K7kIsxa5M9Vm8jq9z3IoO1x8jg7TRJ/1vXefd0KxS4RfYoepFMxH0nIlaS9E752uHkOKqfqgznjYidyFWDsWqaLWpdS3NlkHUNfl86TuXmszvZW2042fB7LHAruXIzT9lniog4nmx6fKykmTWdtgElT+oYctXtLXJ+5ekl+d0rOS3Q/GExIlYlx01OUs6B3Y0c8/Yw2RFiPzK3/RxlD1ZrkeUK3CJiEHAy2X/tGbKVx1GSXi5fX52MuPsBXyeTE79AbjNcIOmGymv5AjOzTrO04DciLgEeJLvrTyRbsOxLdnafT67KNVqwXKzKJAqrRyV9YEI1t9Ar0a0TEX9HjgybT/Zd3YS89+8QEauQjY0XA6cDq0h6pRzntist9IEJtRGxAZnj8bCkXcm97ZfJmXB9I+I04HqyKeLFZIPdjwIPSdq1EbT5jTSzOlTaFRwUEWdFxBbABHLU3u/JFYPjJF1NVr+vTQZtW5EfSNeo47ztfe6VtJeDttZoLrCJiG2BaWQKwSNkPtt0oFdEHCDpbXLS0f2S3qoEbb3ddqW1PnDFLSIOAIZIOrHy3CrkJ9XRZB+dB7SMRnre6jGzztT8ITEi1iEbfi4A5gHrkvMrh5O7At8hA7iNJP2h8jqbA4tLjzDrInxP6VglYFtcuV7WV451Gw5sL+mU8vxFZKrUzcAVkgbUdtJtbnlL2PtWH5RI+xpgD0k3SFqwrHJ4X2Bm1lnKTX1xyWVbqTz9ceBGSYcBb5PtP3YkO7vvQObmbtMUtPWW9LiDtq7H95SOJWlRuV42joirgMsiYj/yGuldmupCNv9eWFY8dwG3JqrL8qy47UomIF4qaXZ5o44hf+D1IZvn3tPyMzUzW4aIWLe66l+q3DcFbpM0qdyIRgDnk82Mdyb7sf1aWtJZ36wdNK9aluLCg8mctdfJwGwhOXtXZPrAMLKf5C86/4ytanlW3G4ny+NHRsSgspy6K/kp9XrgT+GRFWZWg8iRSAeSSdNExJCImERObLkQGBsRnwGeJyvfXgC2J1sU3emgzdpJY2eskvf5uZL69CiwhaRbS0Xos+Tq9AlkWtTvgc84aOsalreq9B+AbwIbkeW+vwFOlfRCS8/OzGwZyqraQEljSvVbf2AouXLwTUmzImcn7wZ8Cbi2HOpdAmsrS8n7XI+spl6LbK3yNXJCxQJJ346IQ8lA7oim13F+YRewon3c+gH9Jf22PHZVj5l1qqb+kc+Rg8X3JgsNrgZ2IlsUjC+5O08D3yJ7TFa3h9yayNpKRGxIdn54FnhK0pTyAagvOZ1iLpn7uSbwXeUkpL+aTVrPmVvVCs3Xk/SmgzYzq0Nlm6cRtO1JTj04m8xXW4usGH2s/HmvcujOwLTK9lCf8jq+CVmPVU1hKikFI8nrZBbZ4ubz5cuTga3JFevjgChtV2bAkuvE10vX0WGzSs3MWmEp2zx9ydmiC4HzyHFVXyYbgH8RuAH4NNm6YErjWK8YWDsq7XBeIyeEDJW0W0QMAf4N+JmkmyLiCDIHdDLwZ2AXpxN0XQ7czKxbKBNcxpFbPWOB8yT9qqy8jZP0qYiYTLYqulvSH+s7W7N6RcSOwJHkztr15AedocBdkm4ulaQ7ko2o39WSGeK7A2rsrlnX48DNzLqcpbQr+Bw5tWUm2bJgHDBb0kVlC3UhsD95U3qpcpxX2axHK9ON/oOsAp0r6cyI2Ai4gLxO3iPzPtciq0eHAqcBqwDrSXq4vI6nG3UTfT/4W8zMOlclH20fMmF6FrmV84ikRRFxH7B3RAwD/p5sW3CjpDfLcb08dsd6qkrBwGjgK8B1wBzyWgAIoF9ju7MEd5uTRQmfBDaQ9DjZJgdwwNadOHAzs9pFxGByJNUbkt6LiK2Bk4A3yQbg+wJXAttFxAxJ00rwtic5w/LJ8joO2KzHq/z//gQ59P3Rpm95EJgXEbtJ+jnZ57CfpDsj4t4y/ci6qRWqKjUz60gRMbA0zL0QuAIYVb60BzmtZRQ54Pr7kqaSHdx3jYiPSHpR0kRJT5aqOW+LWo/X2NKMiM3IHLXHyuM+5fdBZCX1RODkiJhGTj34EeTISo+q6t4cuJlZLSJiXeASYKak4cB4YGr58k3A0Ij4ETkQfmhEfBX4CZnb9nrldbzKZj1aRKwWEftXnyurzH8gR7kBrFx+3wTYS9LtZLX16ZJ2L1ujjWN9rXRjLk4ws1pExL7ApyWNbXp+bbJ9wRFkMvUC4Idk0PY933SsnZTim8Hk//9DSyV1H2ARMBI4ABjV+DATEWcDT0s6u+l1PPWgh3COm5nV5V1gUKOZd7lB9SK3eVYqv84CngLGSHqktjM1q0FZTV4EPBURNwJfB35VKd6ZSs7evaTkfH4RmE/mg/4VB209h1fczKwWpQBhBHCdpF9Wnr+ezGm7OyK2aCRel7ycxo3MrC1ExCbAiWRq02DgvyVdGxF9Jb1bGlJvSea73StpejnOOZ89lFfczKwuD5H9pUZGxPOSZpcO7quRbQuoBG2NbR7fiKzHWsZ25mHAc5JOjogvAYdGxLQStPWR9C7wQPnVeB2PpOzBvOJmZrWJiI8CxwKbAeuRFXJnSJpT64mZ1ajkf74O3A+cClwlaXpZdZ5KbpeOX8pxXmVrAw7czKx2EdEPGChJ5bFXDKzHi4hVyV5sv5P0emnlMQV4mJxs8CDZymMuOZ93A3LG6FzgeOettScHbmbWpThos3ZRWuIcShbgzAC2BvpLOjcifgq8AlwNfArYClgT+HY1J9TajwM3MzOzTrKUObyTyX5ru5D5nReRTafPIVfdFki6JyIGSHqucpw/4LQpFyeYmZl1kkorjxFAP+BSsvXNW+TK2yzgHmAe8H1gcnk8pxzXR9J7Dtral1fczMzMWqQxXqpRNFAaTF9JNpmeDfwXsBs5BP4MYB1gH2AIcKakmZ1/1taVecXNzMysBarbmZWKzyHkZIPDKs2nHyDz264FLgC+K+mdxnHgMVW2hFfczMzMWigiTiW3Qx8g89duBjaT9F5EHE+uvN0CfFbStMpxzmOz93HgZmZm1gHK2LbFkhaXlbI1gfOBJ8lctlnkWKpDyGbS1wP/DlwoaWrlddyPzZbJgZuZmdmH1LQtur6keRHxEbKB7q3kDN4tgRuBc8m5o/8ITGyMqTJbHg7czMzMOkCZBDKWbO1xOXAXcDQQ5MrancB3yKKDF5uO9SqbLZfedZ+AmZlZd1O2RauPh5FtOx4HRgCfBVYnt0dvI4sP7gNerQZtjddx0GbLyytuZmZmy2kp7T22Ah4lm+W+DGwn6f6I+AYwALiqPL8fOXN0dh3nbT2HAzczM7MVFBHrAacAOwDTgQnAcGA/Sf8SESuTA+Evk3RN5bi/FDDUcNrWA3ir1MzM7G+IiD5Nj4cD5wG/AYaSQ+GPlnQB8PGIGCNpIXBUU9DWS9IiB232YThwMzMz+xsqY6q+EBEB/A5YBLxSGuXeBvSJiD2Ao4D+5bjZ5Tg30bUO461SMzOziogYDCwA3ihNcrcg54a+BKwHXEhWivYGJgLPAqOAAZLOqOesrV14xc3MzAyIiIERMYkMzK4ggzHI2aF3SNofOAnYlsxr25BsqNsbuKYatDVXnZp1FP/HMjOzthcR6wKXADMlDQfGA438tLeAdwFKs9yNy3NTgGckvSfp7fI6jfYeHlVlLeEh82ZmZvDPwP2Szi+PZ5TRVWsAfwI2jogRwKvAGsDrS5t44IDNWs0rbmZmZrmiNqiyxdkrIlYCdgJeA+4A9gYOBo6T9FAtZ2ltz4GbmZkZzC+/toFcOSsVowcBz0u6BThS0qjSYLdXjedqbcyBm5mZGTwE/BEYGREbAkTEEcBqwNMAkl4uz/d2aw+ri9uBmJmZ8Zch8ccCm5FtPx4DzpA0p9YTM6tw4GZmZlYREf2AgZJUHvd20YF1FQ7czMzMlsFBm3U1DtzMzMzMugkXJ5iZmZl1Ew7czMzMzLoJB25mZmZm3YQDNzMzM7NuwoGbmZmZWTfhwM3MzMysm3DgZmZmZtZN/D9zR8Qj8TwmZwAAAABJRU5ErkJggg==",
"text/plain": [
"