-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
43 lines (32 loc) · 1.22 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import random
import numpy as np
import torch
from omegaconf import OmegaConf
# from utils.dataset import VOCDataset
from trainer import build_transform
from evaluator import build_evluator
from config import DATA_CFG, YOLOV1_CFG, TRANS_CONFIG
from yolov1.build import build_model
def fix_random_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if __name__ == '__main__':
args = OmegaConf.load('args.yaml')
if torch.cuda.is_available():
print('use cuda')
device = torch.device("cuda")
else:
device = torch.device("cpu")
fix_random_seed(args.seed)
data_cfg, model_cfg, trans_cfg = DATA_CFG, YOLOV1_CFG, TRANS_CONFIG
model = build_model(args, model_cfg, device, data_cfg['num_classes'], False)
ckpt = torch.load('weights/yolov1_best.pth', map_location="cpu")
model.load_state_dict(ckpt['model'], strict=True)
model = model.to(device).eval()
# trainer = YoloTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion)
# trainer.train(model)
# del trainer
val_transform = build_transform( args=args, is_train=False )
evaluator = build_evluator(args, 'test', val_transform, device)
evaluator.test(model)