-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpubs.html
371 lines (353 loc) · 23.7 KB
/
pubs.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
<!DOCTYPE html>
<!--
Transit by TEMPLATED
templated.co @templatedco
Released for free under the Creative Commons Attribution 3.0 license (templated.co/license)
-->
<html lang="en">
<head>
<meta charset="UTF-8">
<title>PeleLM: Gallery</title>
<link rel="icon" href="web_icon.ico" type="image/x-icon">
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="description" content="" />
<meta name="keywords" content="" />
<!--[if lte IE 8]><script src="js/html5shiv.js"></script><![endif]-->
<script src="js/jquery.min.js"></script>
<script src="js/skel.min.js"></script>
<script src="js/skel-layers.min.js"></script>
<script src="js/init.js"></script>
<noscript>
<link rel="stylesheet" href="css/skel.css" />
<link rel="stylesheet" href="css/style.css" />
<link rel="stylesheet" href="css/style-xlarge.css" />
</noscript>
</head>
<body>
<!-- Header -->
<header id="header">
<nav id="nav">
<ul>
<li>
<a href="index.html" class="button special">Home</a>
<a href="pubs.html" class="button special">Publications</a>
<a href="gallery.html" class="button special">Gallery</a>
<a href="help.html" class="button special">Get Help</a>
</li>
</ul>
</nav>
</header>
<!-- Main --> <!-- Main -->
<section id="main" class="wrapper">
<div class="container">
<header class="major">
<h2>Pele Suite Publications</h2>
<section>
<h4>Non-technical Articles on Pele</h4>
<ol>
<li><a href="https://www.exascaleproject.org/combustion-pele-a-new-exascale-capability-for-improving-engine-design/">“Combustion-Pele: A New Exascale Capability for Improving Engine Design”</a> – Exascale Computing Project, 2023</li>
<li><a href="https://www.nrel.gov/news/features/2024/on-the-ground-in-colorado-nrel-is-simulating-sustainable-aviation-fuel-combustion-during-flight.html"> “On the Ground in Colorado, NREL Is Simulating Sustainable Aviation Fuel Combustion During Flight”</a> – NREL Media, 2023</li>
<li><a href="https://ascr-discovery.org/2024/02/flying-green/">“Flying Green”</a> – ASCR Discovery Magazine, 2024 </li>
</ol>
</section>
<section>
<h4>Multimedia/Visualizations</h4>
<ol>
<li>
V0026: Direct fuel injection effects in a supersonic cavity flameholder,
2020 APS Gallery of Fluid Motion (Gallery of Fluid Motion Award Winner) <br>
<a href="https://gfm.aps.org/meetings/dfd-2020/5f5badc3199e4c091e67bc55">https://gfm.aps.org/meetings/dfd-2020/5f5badc3199e4c091e67bc55</a>
<section>
<iframe width="560" height="315" src="https://www.youtube.com/embed/hrwgCJFrIZo?si=VbDrdtvRk8f6o2LZ" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
</section>
</li>
<li>
V0076: Simulation of an RCCI Engine using the Pele Suite of Exascale
Codes, 2022 APS Gallery of Fluid Motion (Milton van Dyke Award Winner)<br>
<a href="https://gfm.aps.org/meetings/dfd-2022/63236765199e4c2c0873f9f6">https://gfm.aps.org/meetings/dfd-2022/63236765199e4c2c0873f9f6</a>
<section>
<iframe width="560" height="315" src="https://www.youtube.com/embed/XNKDs0mkym0?si=_p2sgGCRz_cySXGE" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
</section>
</li>
<li>
V0074: Lighting a Match in a Fire Extinguisher: Oxycombustion in a
Supercritical Carbon Dioxide Turbine, 2023 APS Gallery of Fluid Motion<br>
<a href="https://gfm.aps.org/meetings/dfd-2023/65048294199e4c7ace758fb5">https://gfm.aps.org/meetings/dfd-2023/65048294199e4c7ace758fb5</a>
<section>
<iframe width="560" height="315" src="https://www.youtube.com/embed/1xgEVk5Lkms?si=gIctqfrBdj-kBND6" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
</section>
</li>
</ol>
</section>
<section>
<h4>Publications: Development of the Pele Codes</h4>
This list summarizes the publications that document the development of the Pele codes and introduction of significant new algorithms or features. When publishing research that relied on use of the Pele codes, it may be appropriate to cite one or multiple of these publications depending on the capabilities utilized.
<ol>
<li><b>Pele Suite: Overall Summary</b> <br>
Henry de Frahan, Marc T., et al. "The Pele Simulation Suite for Reacting
Flows at Exascale." <i>Proceedings of the 2024 SIAM Conference on
Parallel Processing for Scientific Computing (PP)</i>. Society for Industrial
and Applied Mathematics, 2024. <a
href="https://doi.org/10.1137/1.9781611977967.2">https://doi.org/10.1137/1.9781611977967.2</a></li>
<li><b>PeleC: Initial Development</b><br>
Sitaraman, Hariswaran, et al. "Adaptive mesh based combustion simulations
of direct fuel injection effects in a supersonic cavity
flame-holder." <i>Combustion and Flame</i> 232 (2021): 111531.
<a href="https://doi.org/10.1016/j.combustflame.2021.111531">https://doi.org/10.1016/j.combustflame.2021.111531</a></li>
<li><b>PeleC: Performance and GPU Capability<br>
</b>Henry de Frahan, Marc T., et al. "PeleC: An adaptive mesh refinement
solver for compressible reacting flows." <i>The International Journal
of High Performance Computing Applications</i> 37.2 (2023): 115-131. <span
style='font-size:10.5pt;font-family:"Open Sans",sans-serif'><a
href="https://doi.org/10.1177/1094342022112115">https://doi.org/10.1177/1094342022112115</a></span></li>
<li><b>PeleLMeX: Software Development</b><br>
Esclapez, Lucas, et al. "PeleLMeX: an AMR Low Mach Number Reactive Flow
Simulation Code without level sub-cycling." <i>Journal of Open Source
Software</i> 8.90 (2023): 5450. <a
href="https://doi.org/10.21105/joss.05450">https://doi.org/10.21105/joss.05450</a></li>
<li><b>PelePhysics: CEPTR Utility and Chemical Jacobian Capability<br>
</b>Hassanaly, Malik, et al. "Symbolic construction of the chemical
Jacobian of quasi-steady state (QSS) chemistries for Exascale computing
platforms." <i>Combustion and Flame </i>270 (2024) 113740. <a
href="https://doi.org/10.1016/j.combustflame.2024.113740" target="_blank"
title="Persistent link using digital object identifier">https://doi.org/10.1016/j.combustflame.2024.113740</a></li>
<li><b>PelePhysics: Spray, Soot, and Radiation Modules</b><br>
Owen, Landon D., et al. "PeleMP: The Multiphysics Solver for the
Combustion Pele Adaptive Mesh Refinement Code Suite." <i>Journal of
Fluids Engineering</i> 146.4 (2024): 041103. <a
href="https://doi.org/10.1115/1.4064494">https://doi.org/10.1115/1.4064494</a></li>
<li><b>PelePhysics: Use of SUNDIALS Library for Chemistry Integration</b><br>
Balos, Cody J., et al. "SUNDIALS time integrators for exascale
applications with many independent systems of ordinary differential
equations." <i>The International Journal of High Performance
Computing Applications</i> (2024): 10943420241280060. <a
href="https://doi.org/10.1177/10943420241280060">https://doi.org/10.1177/10943420241280060</a></li>
<li><b>PeleC and PeleLMeX: Use of State Redistribution (from AMReX
library)<br>
</b>Giuliani, Andrew, et al. "A weighted state redistribution algorithm
for embedded boundary grids." <i>Journal of Computational Physics</i> 464
(2022): 111305. <a href="https://doi.org/10.1016/j.jcp.2022.111305"
target="_blank" title="Persistent link using digital object identifier">https://doi.org/10.1016/j.jcp.2022.111305</a></li>
<li><b>PeleC:</b> <b>Use of State Re-Redistribution</b> <b>(from AMReX
library)</b><br>
Sanchez, I. Barrio, et al. "A new re-redistribution scheme for weighted
state redistribution with adaptive mesh refinement." <i>Journal of
Computational Physics</i> 504 (2024): 112879. <a
href="https://doi.org/10.1016/j.jcp.2024.112879" target="_blank"
title="Persistent link using digital object identifier">https://doi.org/10.1016/j.jcp.2024.112879</a></li>
<li><b>PeleLMeX: Manifold-based
Combustion Models</b><br>
Perry, Bruce A., et al. “Simulation of a Jet Flame with Inhomogeneous Inlets
Using Tabulated and Neural Network Manifold Models.” <i> U.S. National
Combustion Meeting. 2023</i>. <a
href="https://research-hub.nrel.gov/en/publications/simulation-of-a-jet-flame-with-inhomogeneous-inlets-using-tabulat">https://research-hub.nrel.gov/en/publications/simulation-of-a-jet-flame-with-inhomogeneous-inlets-using-tabulat</a> </li>
<li><b>Pele Suite: Exascale
Performance <br>
</b>Malaya, Nicholas, et al. "Experiences readying applications for Exascale."
<i>Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis</i>. 2023. <a
href="https://doi.org/10.1145/3581784.360706">https://doi.org/10.1145/3581784.360706</a></li>
</ol>
</section>
<section>
<h4>Publications: Application of the Pele Codes</h4>
This list includes published works where the Pele codes were used to simulate reacting flows or other physical systems. It is meant to give users a sense of the breadth of potential applications of the codes, and potential contacts if interested in simulating something similar to an existing work. The list includes many publications that are not co-authored by the Pele development team; any questions on these publications should be addressed to the relevant authors. To provide corrections or additions to the list, please use <a href="https://github.com/AMReX-Combustion/AMReX-Combustion.github.io/discussions/3">this GitHub discussion</a>.
<ol>
<li><b>PeleC: Supersonic Cavity-Stabilized Flame</b><br>
Sitaraman, Hariswaran, et al. "Visualizations of direct fuel injection
effects in a supersonic cavity flameholder." <i>Physical Review
Fluids</i> 6.11 (2021): 110504.<br>
<a href="https://doi.org/10.1103/PhysRevFluids.6.110504">https://doi.org/10.1103/PhysRevFluids.6.110504</a></li>
<li><b>PelePhysics: Hydride vapor phase epitaxy</b><br>
Hassanaly, Malik, et al. "Surface chemistry models for GaAs epitaxial
growth and hydride cracking using reacting flow simulations." <i>Journal
of Applied Physics</i> 130.11 (2021).<br>
<a href="https://doi.org/10.1063/5.0061222" target="_blank">https://doi.org/10.1063/5.0061222</a></li>
<li><b>PeleC, PeleLMeX: Reactivity-Controlled Compression Ignition Engines
<br>
</b>Wimer, Nicholas T., et al. "Visualizations of a methane/diesel RCCI
engine using PeleC and PeleLMeX." <i>Physical Review Fluids</i> 8.11
(2023): 110511. <a href="https://doi.org/10.1103/PhysRevFluids.8.110511">https://doi.org/10.1103/PhysRevFluids.8.110511</a></li>
<li><b>PeleC, PeleLMeX: Reactivity-Controlled Compression Ignition Engines<br>
</b>Wimer, Nicholas T., et al. <i>Examination of a Methane/Diesel RCCI
Engine using Pele</i>. No. NREL/CP-2C00-84700. National Renewable Energy
Lab.(NREL), Golden, CO (United States), 2023. <a
href="https://www.osti.gov/biblio/1975823">https://www.osti.gov/biblio/1975823</a></li>
<li><b>PeleC: Oxycombustion in Supercritical CO2</b><br>
Henry De Frahan, Marc T., et al. "Simulation of Methane Oxycombustion in
Supercritical Carbon Dioxide." <i>Turbo Expo: Power for Land, Sea,
and Air</i>. Vol. 87073. American Society of Mechanical Engineers, 2023. <a
href="https://doi.org/10.1115/GT2023-101568" target="_blank">https://doi.org/10.1115/GT2023-101568</a></li>
<li><b>PeleLM: FDF-based Simulations<br>
</b>Aitzhan, Aidyn, et al. "PeleLM-FDF large eddy simulator of turbulent
reacting flows." <i>Combustion Theory and Modelling</i>27.1 (2023):
1-18. <a href="https://doi.org/10.1080/13647830.2022.2142673">https://doi.org/10.1080/13647830.2022.2142673</a></li>
<li><b>PeleLMeX: Instabilities in H2/CH4 Flames<br>
</b>Van, Kyuho, et al. "Quantitative studies of instabilities of confined
spherically expanding flames: Application to flame propagation of natural gas
blends with hydrogen at engine-relevant conditions." (2023). <a
href="https://www.researchgate.net/publication/375378762">https://www.researchgate.net/publication/375378762</a></li>
<li><b>PeleC: Oblique detonation waves</b><br>
Desai, Swapnil, et al. "Effects of non-thermal termolecular reactions on
wedge-induced oblique detonation waves." <i>Combustion and Flame</i> 257
(2023): 112681. <a href="https://doi.org/10.1016/j.combustflame.2023.112681"
target="_blank" title="Persistent link using digital object identifier">https://doi.org/10.1016/j.combustflame.2023.112681</a></li>
<li><b>PeleC: Engine Knock</b><br>
Morii, Youhi, et al. "Analysis of knock onset based on two-dimensional
direct numerical simulation and theory of explosive transition of
deflagration." <i>Physics of Fluids</i> 35.8 (2023). <a
href="https://doi.org/10.1063/5.0160236" target="_blank">https://doi.org/10.1063/5.0160236</a></li>
<li><b>PeleC: Oblique Detonation
Waves</b><br>
Ramachandran, Suryanarayan, and Suo Yang. "Micro-jetting and Transverse
Waves in Oblique Detonations." <i>Combustion and Flame</i> 265
(2024): 113506. <a href="https://doi.org/10.1016/j.combustflame.2024.113506"
target="_blank" title="Persistent link using digital object identifier">https://doi.org/10.1016/j.combustflame.2024.113506</a></li>
<li><b>PeleC: Deflagration to
Detonation Transition</b><br>
Ramachandran, Suryanarayan, et al. "A numerical investigation of
deflagration propagation and transition to detonation in a microchannel with
detailed chemistry: Effects of thermal boundary conditions and
vitiation." <i>Physics of Fluids</i>35.7 (2023). <a
href="https://doi.org/10.1063/5.0155645" target="_blank">https://doi.org/10.1063/5.0155645</a></li>
<li><b>PeleC: Supercritical Cool
Flames</b> <br>
Ramachandran, Suryanarayan, et al. "Numerical study of turbulent
non-premixed cool flames at high and supercritical pressures: Real gas effects
and dual peak structure." <i>Combustion and Flame</i> 249
(2023): 112626. <a href="https://doi.org/10.1016/j.combustflame.2023.112626"
target="_blank" title="Persistent link using digital object identifier">https://doi.org/10.1016/j.combustflame.2023.112626</a></li>
<li><b>PeleLMeX: Sustainable
Aviation Fuel</b> <br>
Nadakkal Appukuttan, Sreejith, et al. <i>Simulations of fuel-air mixing in
a 7 element lean direct injection (LDI) aviation combustor</i>. No.
NREL/CP-2C00-85119. National Renewable Energy Laboratory (NREL), Golden, CO
(United States), 2023. <a href="https://www.osti.gov/biblio/1995457">https://www.osti.gov/biblio/1995457</a></li>
<li><b>PeleLMeX: Lean H2
Combustion</b><br>
Howarth, Thomas L., et al. "Thermal diffusion, exhaust gas recirculation and
blending effects on lean premixed hydrogen flames." <i>Proceedings of
the Combustion Institute</i> 40.1-4 (2024): 105429. <a
href="https://doi.org/10.1016/j.proci.2024.105429" target="_blank"
title="Persistent link using digital object identifier">https://doi.org/10.1016/j.proci.2024.105429</a></li>
<li><b>PeleLMeX: H2 Micromix
Combustor DNS</b> <br>
Howarth, Thomas L., et al. "Direct numerical simulation of a high-pressure
hydrogen micromix combustor: Flame structure and stabilisation
mechanism." <i>Combustion and Flame</i> 265 (2024): 113504. <a
href="https://doi.org/10.1016/j.combustflame.2024.113504" target="_blank"
title="Persistent link using digital object identifier">https://doi.org/10.1016/j.combustflame.2024.113504</a></li>
<li><b>PeleLMeX: Pool Fires<br>
</b>Meehan, Michael A., John C. Hewson, and Peter E. Hamlington. "High
resolution numerical simulations of methane pool fires using adaptive mesh
refinement." <i>Proceedings of the Combustion Institute</i> 40.1-4
(2024): 105768. <a href="https://doi.org/10.1016/j.proci.2024.105768">https://doi.org/10.1016/j.proci.2024.105768</a></li>
<li><b>PeleLMeX: Gas Turbine
Flame Stabilization</b><br>
Vabre, M., et al. "DNS of ignition and flame stabilization in a simplified
gas turbine premixer." <i>Proceedings of the Combustion Institute</i> 40.1-4
(2024): 105701. <a href="https://doi.org/10.1016/j.proci.2024.105701"
target="_blank" title="Persistent link using digital object identifier">https://doi.org/10.1016/j.proci.2024.105701</a></li>
<li><b>PeleLMeX: Sustainable
Aviation Fuel</b><br>
Rieth, Martin, et al. "Numerical and experimental investigation of single
and multi-injection ignition of F-24/ATJ blends." <i>Proceedings of
the Combustion Institute</i> 40.1-4 (2024): 105341. <a
href="https://doi.org/10.1016/j.proci.2024.105341" target="_blank"
title="Persistent link using digital object identifier">https://doi.org/10.1016/j.proci.2024.105341</a></li>
<li><b>PeleLMeX: Turbulent
premixed flame DNS<br>
</b>Zheng, Jian, et al. "DNS of laboratory-scale turbulent premixed
counterflow flames under elevated gravity conditions." <i>Physics of
Fluids</i> 36.10 (2024). <a href="https://doi.org/10.1063/5.0223680"
target="_blank">https://doi.org/10.1063/5.0223680</a></li>
<li><b>PeleLMeX: H2/NH3 Flames</b><br>
Hardaya, Adi P., et al. "Heat release surrogates for NH3/H2/N2–air
premixed flames." <i>Proceedings of the Combustion Institute</i> 40.1-4
(2024): 105432. <a href="https://doi.org/10.1016/j.proci.2024.105432">https://doi.org/10.1016/j.proci.2024.105432</a></li>
<li><b>PeleLMeX: NH3
Rich-Quench-Lean Combustion DNS<br>
</b>Rieth, Martin, et al. "Direct numerical simulation of low-emission
ammonia rich-quench-lean combustion." <i>Proceedings of the
Combustion Institute</i> 40.1-4 (2024): 105558. <a
href="https://doi.org/10.1016/j.proci.2024.105558" target="_blank"
title="Persistent link using digital object identifier">https://doi.org/10.1016/j.proci.2024.105558</a></li>
<li><b>PeleC: H2 Detonations</b><br>
Salinas, Jorge S., et al. "Non-thermal termolecular reactions effects on
hydrogen-air planar detonation." <i>AIAA SCITECH 2024 Forum</i>.
2024. <a href="https://doi.org/10.2514/6.2024-2783">https://doi.org/10.2514/6.2024-2783</a></li>
<li><b>PeleC: Shock
Wave-Boundary Layer Interactions<br>
</b>Kimmel, Elliot, et al. "Evaluation of Shock Wave-Boundary Layer
Interaction Modeling Capabilities for Use in a Hypersonic Aerothermoelastic
Framework." <i>AIAA SCITECH 2024 Forum</i>. 2024. <a
href="https://doi.org/10.2514/6.2024-2735">https://doi.org/10.2514/6.2024-2735</a></li>
<li><b>PeleC: Rotating
Detonation Engines</b><br>
Valencia, Sebastian, et al. "Flow-field analysis and performance
assessment of rotating detonation engines under different number of discrete
inlet nozzles." Applications in Energy and Combustion Science 20 (2024):
100296. <a href="https://doi.org/10.1016/j.jaecs.2024.100296" target="_blank"
title="Persistent link using digital object identifier">https://doi.org/10.1016/j.jaecs.2024.100296</a></li>
<li><b>PeleC: Engine Knock </b><br>
Yang, Linlin, et al. "Effect of temperature disturbance on end-gas
autoignition and detonation development." <i>Proceedings of the
Combustion Institute</i> 40.1-4 (2024): 105220. <a
href="https://doi.org/10.1016/j.proci.2024.105220" target="_blank"
title="Persistent link using digital object identifier">https://doi.org/10.1016/j.proci.2024.105220</a></li>
<li><b>PeleC: Detonation
Propagation</b><br>
Jun, Daeyoung, Dohwan Kwon, and Bok Jik Lee. "Numerical study on the
reinitiation mechanism of detonation propagating through double slits in a
planar channel." <i>Combustion and Flame</i> 261 (2024): 113271.
<a href="https://www.sciencedirect.com/science/article/pii/S0010218023006454">https://www.sciencedirect.com/science/article/pii/S0010218023006454</a></li>
<li><b>PeleC: Oblique Detonation
Waves</b><br>
Ramachandran, Suryanarayan, and Suo Yang. "Microscopic hypersonic jetting
in oblique detonation waves." AIAA SCITECH 2024 Forum. 2024. <a
href="https://doi.org/10.2514/6.2024-2781">https://doi.org/10.2514/6.2024-2781</a></li>
<li><b>PeleC: Supersonic Flow
Choking</b><br>
Jin, Kaiyan, et al. "Numerical investigation on flow choking induced by
local heat release and large-scale flow separation in a supersonic
combustor." <i>Combustion and Flame</i> 268 (2024): 113627. <a
href="https://doi.org/10.1016/j.combustflame.2024.113627" target="_blank"
title="Persistent link using digital object identifier">https://doi.org/10.1016/j.combustflame.2024.113627</a></li>
<li><b>PeleC:
Deflagration-to-Detonation Transition</b><br>
Cai, Xiaodong, et al. "Deflagration-to-detonation transition and
detonation propagation in supersonic flows with hydrogen injection and
downstream ignition." <i>Physics of Fluids</i> 36.10 (2024) <a
href="https://doi.org/10.1063/5.0228960">https://doi.org/10.1063/5.0228960</a></li>
<li><b>PelePhysics: Stochastic
Fields Turbulent Combustion Modeling<br>
</b>Un, Tin-Hang, and Salvador Navarro-Martinez. "Stochastic fields with
adaptive mesh refinement for high-speed turbulent combustion." <i>Combustion
and Flame</i> 272 (2025): 113897. <a
href="https://doi.org/10.1016/j.combustflame.2024.113897">https://doi.org/10.1016/j.combustflame.2024.113897</a>
</p></li>
<li><b>PeleLMeX: Instabilities in H2/NH3 Flames</b><br>
Lehmann, Terence, et al. "Comprehensive linear stability analysis for intrinsic instabilities in premixed ammonia/hydrogen/air flames.
" <i>Combustion and Flame</i> 273 (2025): 113927. <a href="https://doi.org/10.1016/j.combustflame.2024.113927">https://doi.org/10.1016/j.combustflame.2024.113927</a></li>
</ol>
</section>
</section>
<!-- End Main -->
<!-- Footer -->
<footer id="footer">
<div class="container">
<section class="ack">
<h4>Acknowledgment</h4>
<a href="https://confluence.exascaleproject.org/display/ADSE14">The Pele Project</a> is supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations -- the Office of Science and the National Nuclear Security Administration -- responsible for the planning and preparation of a capable exascale ecosystem -- including software, applications, hardware, advanced system engineering, and early testbed platforms -- to support the nation's exascale computing imperative.
</section>
<div class="row">
<div class="8u 12u$(medium)">
<ul class="copyright">
<li>© The Regents of the University of California and The Alliance for Sustainable Energy. All rights reserved.</li>
</ul>
</div>
</div>
</div>
</footer>
</body>
</html>