-
Notifications
You must be signed in to change notification settings - Fork 418
/
Copy pathquant_test.py
308 lines (284 loc) · 11.2 KB
/
quant_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#
# Modifications Copyright 2017-2018 Arm Inc. All Rights Reserved.
# Adapted from freeze.py to run quantized inference on train/val/test dataset on the
# trained model in the form of checkpoint
#
#
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import sys
import numpy as np
import tensorflow as tf
import input_data
import quant_models as models
def run_quant_inference(wanted_words, sample_rate, clip_duration_ms,
window_size_ms, window_stride_ms, dct_coefficient_count,
model_architecture, model_size_info):
"""Creates an audio model with the nodes needed for inference.
Uses the supplied arguments to create a model, and inserts the input and
output nodes that are needed to use the graph for inference.
Args:
wanted_words: Comma-separated list of the words we're trying to recognize.
sample_rate: How many samples per second are in the input audio files.
clip_duration_ms: How many samples to analyze for the audio pattern.
window_size_ms: Time slice duration to estimate frequencies from.
window_stride_ms: How far apart time slices should be.
dct_coefficient_count: Number of frequency bands to analyze.
model_architecture: Name of the kind of model to generate.
model_size_info: Model dimensions : different lengths for different models
"""
tf.logging.set_verbosity(tf.logging.INFO)
sess = tf.InteractiveSession()
words_list = input_data.prepare_words_list(wanted_words.split(','))
model_settings = models.prepare_model_settings(
len(words_list), sample_rate, clip_duration_ms, window_size_ms,
window_stride_ms, dct_coefficient_count)
audio_processor = input_data.AudioProcessor(
FLAGS.data_url, FLAGS.data_dir, FLAGS.silence_percentage,
FLAGS.unknown_percentage,
FLAGS.wanted_words.split(','), FLAGS.validation_percentage,
FLAGS.testing_percentage, model_settings)
label_count = model_settings['label_count']
fingerprint_size = model_settings['fingerprint_size']
fingerprint_input = tf.placeholder(
tf.float32, [None, fingerprint_size], name='fingerprint_input')
logits = models.create_model(
fingerprint_input,
model_settings,
FLAGS.model_architecture,
FLAGS.model_size_info,
FLAGS.act_max,
is_training=False)
ground_truth_input = tf.placeholder(
tf.float32, [None, label_count], name='groundtruth_input')
predicted_indices = tf.argmax(logits, 1)
expected_indices = tf.argmax(ground_truth_input, 1)
correct_prediction = tf.equal(predicted_indices, expected_indices)
confusion_matrix = tf.confusion_matrix(
expected_indices, predicted_indices, num_classes=label_count)
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
models.load_variables_from_checkpoint(sess, FLAGS.checkpoint)
# Quantize weights to 8-bits using (min,max) and write to file
f = open('weights.h','wb')
f.close()
for v in tf.trainable_variables():
var_name = str(v.name)
var_values = sess.run(v)
min_value = var_values.min()
max_value = var_values.max()
int_bits = int(np.ceil(np.log2(max(abs(min_value),abs(max_value)))))
dec_bits = 7-int_bits
# convert to [-128,128) or int8
var_values = np.round(var_values*2**dec_bits)
var_name = var_name.replace('/','_')
var_name = var_name.replace(':','_')
with open('weights.h','a') as f:
f.write('#define '+var_name+' {')
if(len(var_values.shape)>2): #convolution layer weights
transposed_wts = np.transpose(var_values,(3,0,1,2))
else: #fully connected layer weights or biases of any layer
transposed_wts = np.transpose(var_values)
with open('weights.h','a') as f:
transposed_wts.tofile(f,sep=", ",format="%d")
f.write('}\n')
# convert back original range but quantized to 8-bits or 256 levels
var_values = var_values/(2**dec_bits)
# update the weights in tensorflow graph for quantizing the activations
var_values = sess.run(tf.assign(v,var_values))
print(var_name+' number of wts/bias: '+str(var_values.shape)+\
' dec bits: '+str(dec_bits)+\
' max: ('+str(var_values.max())+','+str(max_value)+')'+\
' min: ('+str(var_values.min())+','+str(min_value)+')')
# training set
set_size = audio_processor.set_size('training')
tf.logging.info('set_size=%d', set_size)
total_accuracy = 0
total_conf_matrix = None
for i in xrange(0, set_size, FLAGS.batch_size):
training_fingerprints, training_ground_truth = (
audio_processor.get_data(FLAGS.batch_size, i, model_settings, 0.0,
0.0, 0, 'training', sess))
training_accuracy, conf_matrix = sess.run(
[evaluation_step, confusion_matrix],
feed_dict={
fingerprint_input: training_fingerprints,
ground_truth_input: training_ground_truth,
})
batch_size = min(FLAGS.batch_size, set_size - i)
total_accuracy += (training_accuracy * batch_size) / set_size
if total_conf_matrix is None:
total_conf_matrix = conf_matrix
else:
total_conf_matrix += conf_matrix
tf.logging.info('Confusion Matrix:\n %s' % (total_conf_matrix))
tf.logging.info('Training accuracy = %.2f%% (N=%d)' %
(total_accuracy * 100, set_size))
# validation set
set_size = audio_processor.set_size('validation')
tf.logging.info('set_size=%d', set_size)
total_accuracy = 0
total_conf_matrix = None
for i in xrange(0, set_size, FLAGS.batch_size):
validation_fingerprints, validation_ground_truth = (
audio_processor.get_data(FLAGS.batch_size, i, model_settings, 0.0,
0.0, 0, 'validation', sess))
validation_accuracy, conf_matrix = sess.run(
[evaluation_step, confusion_matrix],
feed_dict={
fingerprint_input: validation_fingerprints,
ground_truth_input: validation_ground_truth,
})
batch_size = min(FLAGS.batch_size, set_size - i)
total_accuracy += (validation_accuracy * batch_size) / set_size
if total_conf_matrix is None:
total_conf_matrix = conf_matrix
else:
total_conf_matrix += conf_matrix
tf.logging.info('Confusion Matrix:\n %s' % (total_conf_matrix))
tf.logging.info('Validation accuracy = %.2f%% (N=%d)' %
(total_accuracy * 100, set_size))
# test set
set_size = audio_processor.set_size('testing')
tf.logging.info('set_size=%d', set_size)
total_accuracy = 0
total_conf_matrix = None
for i in xrange(0, set_size, FLAGS.batch_size):
test_fingerprints, test_ground_truth = audio_processor.get_data(
FLAGS.batch_size, i, model_settings, 0.0, 0.0, 0, 'testing', sess)
test_accuracy, conf_matrix = sess.run(
[evaluation_step, confusion_matrix],
feed_dict={
fingerprint_input: test_fingerprints,
ground_truth_input: test_ground_truth,
})
batch_size = min(FLAGS.batch_size, set_size - i)
total_accuracy += (test_accuracy * batch_size) / set_size
if total_conf_matrix is None:
total_conf_matrix = conf_matrix
else:
total_conf_matrix += conf_matrix
tf.logging.info('Confusion Matrix:\n %s' % (total_conf_matrix))
tf.logging.info('Test accuracy = %.2f%% (N=%d)' % (total_accuracy * 100,
set_size))
def main(_):
# Create the model, load weights from checkpoint and run on train/val/test
run_quant_inference(FLAGS.wanted_words, FLAGS.sample_rate,
FLAGS.clip_duration_ms, FLAGS.window_size_ms,
FLAGS.window_stride_ms, FLAGS.dct_coefficient_count,
FLAGS.model_architecture, FLAGS.model_size_info)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_url',
type=str,
# pylint: disable=line-too-long
default='http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz',
# pylint: enable=line-too-long
help='Location of speech training data archive on the web.')
parser.add_argument(
'--data_dir',
type=str,
default='/tmp/speech_dataset/',
help="""\
Where to download the speech training data to.
""")
parser.add_argument(
'--silence_percentage',
type=float,
default=10.0,
help="""\
How much of the training data should be silence.
""")
parser.add_argument(
'--unknown_percentage',
type=float,
default=10.0,
help="""\
How much of the training data should be unknown words.
""")
parser.add_argument(
'--testing_percentage',
type=int,
default=10,
help='What percentage of wavs to use as a test set.')
parser.add_argument(
'--validation_percentage',
type=int,
default=10,
help='What percentage of wavs to use as a validation set.')
parser.add_argument(
'--sample_rate',
type=int,
default=16000,
help='Expected sample rate of the wavs',)
parser.add_argument(
'--clip_duration_ms',
type=int,
default=1000,
help='Expected duration in milliseconds of the wavs',)
parser.add_argument(
'--window_size_ms',
type=float,
default=30.0,
help='How long each spectrogram timeslice is',)
parser.add_argument(
'--window_stride_ms',
type=float,
default=10.0,
help='How long each spectrogram timeslice is',)
parser.add_argument(
'--dct_coefficient_count',
type=int,
default=40,
help='How many bins to use for the MFCC fingerprint',)
parser.add_argument(
'--batch_size',
type=int,
default=100,
help='How many items to train with at once',)
parser.add_argument(
'--wanted_words',
type=str,
default='yes,no,up,down,left,right,on,off,stop,go',
help='Words to use (others will be added to an unknown label)',)
parser.add_argument(
'--checkpoint',
type=str,
default='',
help='Checkpoint to load the weights from.')
parser.add_argument(
'--model_architecture',
type=str,
default='dnn',
help='What model architecture to use')
parser.add_argument(
'--model_size_info',
type=int,
nargs="+",
default=[128,128,128],
help='Model dimensions - different for various models')
parser.add_argument(
'--act_max',
type=float,
nargs="+",
default=[128,128,128],
help='activations max')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)