-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpuma_models.py
489 lines (398 loc) · 26.7 KB
/
puma_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
#### APIs to model different non-idealities in PUMA forward/backward pass
# tf.cast and tf.stack take up too much memory
import tensorflow as tf
import numpy as np
### Non-ideality models and computation involved in memristor writes
class nonideality ():
# non-ideality models
def __init__ (self, sigma, alpha):
self.write_noise_sigma = sigma
self.write_nonlinearlity_alpha = alpha
print("nonideality sigma: " + str(sigma))
print("nonideality alpha: " + str(alpha))
# model write noise
def _compute_noise (self, grad_ideal, weights, name=None):
# name_scope groups vars and ops within a scope for easy visualization in tensorboard
with tf.name_scope(name, "comp_noise"):
# find stddev of noise based on range of weights
weight_range = tf.reduce_max(weights) - tf.reduce_min(weights)
noise_stddev = (self.write_noise_sigma * tf.sqrt(weight_range)) * tf.sqrt(tf.abs(grad_ideal)) #only interested in magnitude of updates
# generate noise
write_noise = tf.random_normal(tf.shape(grad_ideal), mean=0, stddev=noise_stddev, name="write_noise_gen")
write_noise = write_noise * tf.cast((grad_ideal!=0),tf.float32) # noise is zero for zero grad
return write_noise
# model write asymmetric non_linearity
def _compute_nonlinearity (self, grad_ideal, weights, name=None):
# name_scope groups vars and ops within a scope for easy visualization in tensorboard
with tf.name_scope(name, "comp_nonlin"):
# compute delta
w_max_temp = tf.reduce_max(weights)
w_min = tf.reduce_min(weights)
w_max = tf.cond(tf.equal(w_min,w_max_temp), lambda: (w_min+1.0), lambda: (w_max_temp))
weight_range = w_max-w_min
delta = grad_ideal / weight_range
w0 = weight_range / (1.0 - tf.exp(-self.write_nonlinearlity_alpha))
# compute positive updates
temp = (-self.write_nonlinearlity_alpha) * delta
temp = 1.0 - tf.exp(temp)
update_pos = (w0+w_min) - weights
update_pos *= temp
update_pos = update_pos * tf.cast((delta >= 0.0), tf.float32) # cast to zero for negative delta values
# compute negative weights
temp = (self.write_nonlinearlity_alpha) * delta
temp = 1.0 - tf.exp(temp)
update_neg = (w_max-w0) - weights
update_neg *= temp
update_neg = update_neg * tf.cast((delta < 0.0), tf.float32) # cast to zero for positive delta values
# merge positive and negative updates
grad_nonideal = update_pos + update_neg
return [grad_nonideal, weight_range]
# input is a list of tuples (grad, var) as returned by tf.optimizer.compute_gradient()
# returns updated grad (delta_W with non-ideality) - 1. non-linearity, 2. assymettry, 3. write noise
def apply (self, grads, name=None):
# name_scope groups vars and ops within a scope for easy visualization in tensorboard
with tf.name_scope(name, "puma_non_ideality"):
grads_nonideal = []
weight_range = []
for pair in grads: # grads represents (gradient, weight)
gradient_ideal = pair[0]
weights = pair[1]
# apply non-ideality
gradient_nonideal1 = self._compute_nonlinearity (gradient_ideal, weights)
gradient_noise = self._compute_noise (gradient_nonideal1[0], weights)
gradient_nonideal = gradient_ideal + gradient_noise
# pack grad, weights
pair_nonideal = (gradient_nonideal, weights)
grads_nonideal.append (pair_nonideal)
weight_range.append(gradient_nonideal1[1])
# compute summary (difference in ideal and non-ideal normalized with weight_range)
grad_ideal_list = [grad for grad, var in grads]
grad_nonideal_list = [grad for grad, var in grads_nonideal]
grad_diff = [((tf.abs(grad_ideal_list[i]-grad_nonideal_list[i]))/weight_range[i]) for i in range(len(weight_range))]
grad_diff_mean = tf.stack([tf.reduce_mean(grad_diff_tensor) for grad_diff_tensor in grad_diff])
tf.summary.scalar("grad_diff_mean",tf.reduce_mean(grad_diff_mean,name="grad_diff_mean"))
# log summary of weight_range and grad_ideal(normalized with weight_range)
tf.summary.scalar("weight_range_mean",tf.reduce_mean(tf.stack(weight_range)))
grad_norm = [(tf.abs(grad_ideal_list[i])/weight_range[i]) for i in range(len(weight_range))]
grad_norm_mean = tf.stack([tf.reduce_mean(grad_norm_tensor) for grad_norm_tensor in grad_norm])
tf.summary.scalar("grad_ideal_norm_mean",tf.reduce_mean(grad_norm_mean))
return [grads_nonideal, grad_diff_mean]
### quantize an input tensor based on dynamic quantization
# for n-bit fixed point have 2^n levels of data from w_min to w_max
def _quantize (inp, precision, name=None):
# name_scope groups vars and ops within a scope for easy visualization in tensorboard
with tf.name_scope(name, "quantize_op"):
# compute variable sused in quantization loop body
min_val = tf.reduce_min(inp)
max_val = tf.reduce_max(inp)
grad_range = tf.subtract (max_val, min_val, name="grad_range")
num_levels = tf.subtract(tf.pow (2.0, precision), 1, name="num_levels")
step_size = tf.divide (grad_range, num_levels, name="step_size") # min + (num_levels-1)*step_size = max
# quantize inp tensor
inp_fixed = tf.round((inp - min_val) / step_size) # tf supports broadcasting scalars (tensor op scalar)
inp_quant = tf.add(min_val, inp_fixed*step_size, name="tensor_quantized")
return inp_quant
### PUMA layers' class defnition based on 1) Fixed-Point 2) Weight-sliced and 3) Bit-streamed computation
class puma_layers ():
def __init__ (self, name, precision=16):
self.name = name + "_puma"
self.precision = precision # number of bits use dfor fixed point representation
# Under construction - wt_slicing, bit-slicing and ADC parameters
# these make sense only when matrix is partitioned into crossbars
# current impl. only considers fixed-point quantization of weights and inputs
self.bit_per_device = 2
self.dac_res = 1
self.adc_res = 8
### puma-dense definition
class dense (puma_layers):
def __init__ (self, inputs, units, name, precision=16):
# compute with quantized weights and inputs
super().__init__(name, precision)
# define layer
self.layer = tf.layers.Dense(name=self.name, units=units, kernel_initializer=tf.contrib.layers.xavier_initializer())
self.layer.build([None, inputs.shape[1]]) #layer build sets up the variable inside class - kernel for eg.
def apply (self, inputs):
with tf.name_scope(None, "puma_dense"): # name modified dense layers as puma_dense
# quantize input
inp_quant = _quantize(inputs, self.precision, "inp_quant")
# quantize kernel
with tf.variable_scope(self.name, reuse=True):
w = tf.get_variable('kernel') # "reuse=True" creates a reference/pointer to the kernel of dense layer
kernel_quant = _quantize(w, self.precision, "wt_quant")
kernel_quantize = tf.assign(w, kernel_quant) # op to quantize kernel
# set control dep - output should be computed after kernel_qunatization
with tf.control_dependencies([kernel_quantize]): #add in a list to make input_arg iterable
return self.layer.apply(inp_quant)
## for DEBUG - validate output of apply function (Essentially, validates if control-dep above works correctly)
def validate (self, inputs):
# expected output - golden output
inp_quant = _quantize(inputs, self.precision, "inp_quant")
with tf.variable_scope(self.name, reuse=True):
w = tf.get_variable('kernel')
b = tf.get_variable('bias')
kernel_quant = _quantize(w, self.precision, "wt_quant")
out_full_prec = tf.add(tf.matmul(inp_quant, w), b) # output with full-precision kernel
out_exp = tf.add(tf.matmul(inp_quant, kernel_quant), b) # output with manual impl. of kernel_quant
out_actual = self.apply(inputs) # output from apply function
# see these for validation:
# out_exp and out_actual should be same
# w1 and kernel_quant should be same (Note: assignment should have happened until this point due to control dep.)
with tf.variable_scope(self.name, reuse=True):
w1 = tf.get_variable('kernel') # reference/pointer to the kernel of dense layer
return [out_full_prec, out_exp, out_actual, w1, kernel_quant]
### puma-conv2d definition
class conv2d (puma_layers):
# creates an op to cpmpute with quantized weights and inputs
def __init__ (self, inputs, filters, kernel_size, name, precision=16):
super().__init__(name, precision)
# define layer
self.layer = tf.layers.Conv2D(name=self.name, filters=filters, kernel_size=kernel_size,
kernel_initializer=tf.contrib.layers.xavier_initializer(), padding='SAME', use_bias=True)
self.layer.build([None, None, None, inputs.shape[3]]) #layer build sets up the variable inside class - kernel for eg.
def apply (self, inputs):
with tf.name_scope(None, "puma_conv2d"): # name modified conv2d layers as puma_conv2d
# quantize input
inp_quant = _quantize(inputs, self.precision, "inp_quant")
# quantize kernel
with tf.variable_scope(self.name, reuse=True):
w = tf.get_variable('kernel')
kernel_quant = _quantize(w, self.precision, "wt_quant")
kernel_quantize = tf.assign(w, kernel_quant) # op to quantize kernel
# set control dep - output should be computed after kernel_qunatization
with tf.control_dependencies([kernel_quantize]): #add in a list to make input_arg iterable
return self.layer.apply(inp_quant)
## for DEBUG - validate output of apply function (Essentially, validates if control-dep ablove works correctly)
def validate (self, inputs):
assert False , "validate function for conv2d deosn't exist"
### convert from float to sliced-representation (NOTE: sliced part represents fixed-part of float data)
def _slice (data, num_slice, step_size, min_val, precision):
with tf.name_scope(None, "slice_op"):
if (min_val != None): # for matrix
data_fixed = tf.cast(tf.round((data - min_val) / step_size), dtype=tf.int32) # fixed_point repr. (unsigned)
else:
# for grad (grad represents change, hence represented with same step size as matrix)
# clip the gradeints to contain within precision (NOTE: this isimportant, as step_size is set by weights and not grad)
data_fixed_tmp = tf.cast(tf.round(data / step_size), dtype=tf.int32) # fixed_point repr. (can be signed)
data_fixed = tf.clip_by_value(data_fixed_tmp, 0, tf.pow(2, precision)-1)
# list of slices starting from least significant slice
data_sliced = tf.stack([tf.bitwise.right_shift(data_fixed,2*i)-(tf.bitwise.right_shift(data_fixed, 2*(i+1))*4) for i in range(num_slice)])
#data_sliced_temp = tf.stack([tf.bitwise.right_shift(data_fixed,2*i) for i in range(num_slice+1)])
#data_sliced = tf.stack([(data_sliced_temp[i]-data_sliced_temp[i+1]*4) for i in range(num_slice)])
return data_sliced
### convert from sliced form to float
def _unslice (data_sliced, num_slice, step_size, min_val): #data_sliced should be list of slices
with tf.name_scope(None, "unslice_op"):
data_val_tensor = tf.stack([data_sliced[i]*tf.pow(2,2*i) for i in range(num_slice)])
if (min_val != None): # for matrix
data_float = min_val + step_size * tf.cast(tf.reduce_sum(data_val_tensor, axis=0), dtype=tf.float32)
else:
data_float = step_size * tf.cast(tf.reduce_sum(data_val_tensor, axis=0), dtype=tf.float32)
return data_float
### define object for bit-sliced representation of delta-xbar data
class sliced_data ():
# default state - each slice has 2-bits of value, 4-bits of carry
# matrix in specifies the shape of sliced storage (self.data_sliced)
def __init__ (self, matrix_in, name, precision=16, num_slice=8, slice_bits=6):
#with tf.device("/device:GPU:0"):
with tf.variable_scope(None, "Sliced_Data"):
# state refers to min_val, max_val, step_size
self.state = tf.get_variable ("State_"+name, [3], trainable=False, dtype=tf.float32)
data_shape = matrix_in.get_shape()
sliced_data_shape = [num_slice] + [data_shape[i].value for i in range(len(data_shape))]
self.data_sliced = tf.get_variable("Sliced_"+name, sliced_data_shape, trainable=False, dtype=tf.int32)
# write data - initialize at crs-sync points
def write_data (self, matrix_in, precision, num_slice):
with tf.name_scope(None, "write_slice"):
# update min_val, step-size based on current data stored after crs-sync
# add +1/-1 to max_val/min_val to allow a dynamic range for const. weight/bias matrix
min_val_temp = tf.reduce_min(matrix_in) # min_val of matrix stored since last sync
max_val_temp = tf.reduce_max(matrix_in) # max_val of matrix stored since last sync
# adding case for constant data (otherwise step_size becomes 0, leading to divide by 0)
min_val = tf.cond (tf.equal(max_val_temp, min_val_temp), lambda: (min_val_temp-1.0), lambda: (min_val_temp))
max_val = tf.cond (tf.equal(max_val_temp, min_val_temp), lambda: (max_val_temp+1.0), lambda: (max_val_temp))
step_size = tf.divide (max_val-min_val, (tf.pow(2.0,precision)-1)) # step-size of matrix stored since last sync
curr_state = self.state.assign(tf.stack([min_val, max_val, step_size]))
# update sliced storage after crs-sync
data_sliced_tmp = _slice(matrix_in, num_slice, curr_state[2], curr_state[0], None)
data_sliced_updated = self.data_sliced.assign(data_sliced_tmp)
return data_sliced_updated # returns a write op for assigning sliced_data
# update data_sliced with grad computed during back-prop and return data_loss factor for grad
# precisely updating stored weight - not doing now - NEED TO HACK APPLY_GRADIENT
# data_loss per slice increases with increasing (grad_slice+data_slice-slice_max)
def update_data (self, grad_in, precision, num_slice, slice_min, slice_max):
with tf.name_scope(None, "update_slice"):
grad_sliced = _slice(tf.abs(grad_in), num_slice, self.state[2], None, precision)
sign_map = 1*tf.cast(grad_in >= 0, tf.int32) + -1*tf.cast(grad_in < 0, tf.int32) # grad_sliced has signed-magnitude repr. (sign_map is per slice, all slices have same sign)
data_updated = grad_sliced*sign_map + self.data_sliced # this is tensor (sign_map will get broadcast across all slices)
## compute loss_factor per slice
## positive grads
#loss_factor_pos = (data_updated - slice_max)
#loss_factor_pos = loss_factor_pos * tf.cast((loss_factor_pos >= 0), tf.int32) # cast to zero for non-saturating updates
#loss_factor_pos = loss_factor_pos * tf.cast((sign_map > 0), tf.int32) # cast to zero for non-positive grads
## negative grads
#loss_factor_neg = (data_updated - slice_min)
#loss_factor_neg = loss_factor_neg * tf.cast((loss_factor_neg <= 0), tf.int32) # cast to zero for non-saturating updates
#loss_factor_neg = loss_factor_neg * tf.cast((sign_map <= 0), tf.int32) # cast to zero for non-negative grads
## compute overall loss (positive and negative grads) and return updated grad
#loss_factor = loss_factor_pos + loss_factor_neg
#grad_updated_sliced = grad_sliced * sign_map - loss_factor
#grad_updated = _unslice(grad_updated_sliced, num_slice, self.state[2], None)
# reshape slice_min and slice_max for broadcasting
grad_shape = grad_in.get_shape()
shape_to_broadcast = [num_slice] + [1 for i in range(len(grad_shape))]
slice_min_tensor = tf.reshape(slice_min, shape_to_broadcast, "reshaped_slice_min")
slice_max_tensor = tf.reshape(slice_max, shape_to_broadcast, "reshaped_slice_max")
# clip based on slice_bits - update data_sliced and return grad_updated
data_updated_clipped = tf.clip_by_value(data_updated, slice_min_tensor, slice_max_tensor)
grad_updated_sliced = data_updated_clipped - self.data_sliced
grad_updated = _unslice(grad_updated_sliced, num_slice, self.state[2], None)
data_sliced_updated = self.data_sliced.assign(data_updated_clipped)
# compute grad_updated
return [data_sliced_updated, grad_updated]
# for DEBUG - reconstruct the data from sliced_data
def read_data (self, num_slice):
with tf.name_scope(None, "read_slice"):
data_out = _unslice(self.data_sliced, num_slice, self.state[2], self.state[0])
return data_out
## PUMA outer-product storage (models device saturation errors, adds nonideality on quantized example-wise gradients)
class outer_product ():
def __init__ (self, var_list, num_slice=8, precision=16, slice_bits=6, lr=0.01, sigma=0.01, alpha=0.01, ifmixed=False, slice_bits_list=[6]*8):
with tf.variable_scope(None, "puma_sliced_data"):
self.lr = lr
self.num_slice = num_slice # number of slices used to store w/delta_w (depends on number of bits in mvm/vmm xbars)
self.ifmixed = ifmixed # specify if mixed precision slices
if (ifmixed):
assert (len(slice_bits_list) == num_slice), "num_slice and slice_bits_list should be same"
self.slice_bits = tf.stack(slice_bits_list) # number of slice bits in delta xbars
else:
self.slice_bits = tf.stack([slice_bits for i in range(num_slice)])
self.precision = precision
self.slice_min = -1*tf.pow(2, self.slice_bits-1)
self.slice_max = tf.pow(2, self.slice_bits-1)-1
# instance of nonideality object for delta xbar
self.nonideality = nonideality(sigma=sigma, alpha=alpha)
# instance of sliced data objects for all trainable variables in model
self.num_var = len(var_list)
self.var_sliced_list = [sliced_data(matrix_in=var_list[i], name=(var_list[i].name).split(":")[0]) \
for i in range(self.num_var)] # list of trainable variables in sliced format
# reset sliced storage of all trainable avriables at crs-sync (resets all carries)
def crs_sync (self, var_list): # var_list is list of trainable variables
with tf.name_scope(None, "puma_crs"):
write_op = [self.var_sliced_list[i].write_data(matrix_in=var_list[i], \
precision=self.precision, num_slice=self.num_slice) for i in range(self.num_var)]
return write_op #list of tensors
# update the slice with grad_in
def update (self, grad_in):
with tf.name_scope(None, "op_comp"):
if (self.ifmixed):
grad_updated = [self.var_sliced_list[i].update_data(grad_in=grad_in[i], precision=self.precision, \
num_slice=self.num_slice, slice_min=self.slice_min, slice_max=self.slice_max) for i in range(self.num_var)]
else:
grad_updated = [self.var_sliced_list[i].update_data(grad_in=grad_in[i], precision=self.precision, \
num_slice=self.num_slice, slice_min=self.slice_min, slice_max=self.slice_max) for i in range(self.num_var)]
return grad_updated #list of list of tensors
# for DEBUG - read all slices
def read (self):
with tf.name_scope(None, "read_puma_OP"):
data_out =[self.var_sliced_list[i].read_data(num_slice=self.num_slice) for i in range(self.num_var)]
return data_out #list of tensors
# function to model gradient storage on crossbar
#def _store_gradient (self, grad_ideal, grad_stored, batch_size):
# # input: grad_ideal - current gradeint (from 1 example) that needs to be stored on crossbar (scale, quantzie, non-ideal, model saturation)
# # input: grad_stored- previous state of crossbar
# # downscale gradients by batch_size and learning rate
# num_grad = len(grad_ideal)
# grad_scaledown = [(grad_ideal[i]*self.lr)/batch_size for i in range(num_grad)]
# # quantize gradients - NOT REQUIRED: update module already quantizes gradients based on weight range
# # grad_quant = [_quantize(grad_scaledown[i], self.precision, "grad_quant") for i in range(batch_size)]
# # model non-ideality
# grad_var_pair = zip(grad_scaledown, grad_stored)
# grad_var_nonideal = self.nonideality.apply(grad_var_pair)
# grad_nonideal = [grad for grad,var in grad_var_nonideal]
# # model losses in grad due to saturation in storage
# #grad_nonideal_updated = self.update(grad_nonideal)
# # add new gradient to previous accumulation over batch
# #out = [(grad_nonideal_updated[i]+grad_stored[i]) for i in range(num_grad)]
# out = [(grad_nonideal[i]+grad_stored[i]) for i in range(num_grad)]
# return out
#def apply (self, loss_list, var_list, update_ops, batch_size):
# # input: loss_list - list of example-wise loss for a batch
# # input: var_list - list of trainable variables in graph
# # input: update_ops to specify control dependancy on gradient computation
# ## compute gradient_list
# with tf.control_dependencies(update_ops):
# grads_list = [tf.gradients(loss_list[i], var_list) for i in range(batch_size)]
# ## model device storage (non-ideality and saturation)
# grad_tmp = [tf.zeros(tf.shape(grads_list[0][i])) for i in range(len(grads_list[0]))]
# for i in range (batch_size):
# grad_tmp = self._store_gradient(grads_list[i], grad_tmp, batch_size)
# return zip(grad_tmp, var_list) #return var_val which can be directly used with apply_gradients
# input is a list of tuples (grad, var) as returned by tf.optimizer.compute_gradient()
# returns updated grad (delta_W with non-ideality) - 1. non-linearity, 2. assymettry, 3. write noise
def apply_batch (self, grads, name=None):
# name_scope groups vars and ops within a scope for easy visualization in tensorboard
with tf.name_scope(name, "puma_parallel_write"):
#grad_var_nonideal = self.nonideality.apply(grads)
#grad_nonideal = [grad for grad,var in grad_var_nonideal] #extract grads
grad_nonideal = [grad for grad,var in grads] #extract grads
grad_updated = self.update(grad_nonideal)
var_sliced_out = [grad_var[0] for grad_var in grad_updated]
grad_out = [grad_var[1] for grad_var in grad_updated]
#var_in = [var for grad,var in grads]
#grad_var_out = zip(grad_out, var_in)
# compute saturation stats
sat_stat = _get_saturation_stats_list (var_sliced_out, self.slice_max, self.slice_min)
return [grad_out, sat_stat]
def _get_saturation_stats_var (var_sliced, slice_max, slice_min):
with tf.name_scope(None, "puma_stats_var"):
# reshape slice_min and slice_max tensors for brodcasting
var_shape = var_sliced.get_shape()
shape_to_broadcast = [var_shape[0].value] + [1 for i in range(1,len(var_shape))]
slice_min_tensor = tf.reshape(slice_min, shape_to_broadcast)
slice_max_tensor = tf.reshape(slice_max, shape_to_broadcast)
# find number of values at slice_min and slice_max
sat_identifier_tensor = tf.cast(tf.logical_or(tf.equal(var_sliced, slice_max_tensor), tf.equal(var_sliced, slice_min_tensor)), dtype=tf.uint8)
#return tf.count_nonzero(input_tensor=sat_identifier_tensor, dtype=tf.float16)/tf.size(input=sat_identifier_tensor, out_type=tf.float16)
# return slice-wise stats
return tf.stack([tf.count_nonzero(input_tensor=sat_identifier_tensor[i], dtype=tf.float16)/tf.size(input=sat_identifier_tensor[i], out_type=tf.float16) \
for i in range(var_sliced.get_shape()[0])])
## NOTE: this function is required to make sure var_sliced_out propagates somewhere [else tensorflow deson't update daat_sliced]
## get saturation stats for slices
def _get_saturation_stats_list (var_sliced_list, slice_max, slice_min):
with tf.name_scope(None, "puma_stats_list"):
sat_identifier_tensor = tf.stack([_get_saturation_stats_var(var, slice_max, slice_min) for var in var_sliced_list])
#return tf.reduce_mean(tf.stack(sat_identifier_list))
mean_per_slice = tf.reduce_mean(input_tensor=sat_identifier_tensor, axis=0)
global_mean = tf.reduce_mean(mean_per_slice)
return [mean_per_slice, global_mean]
# ************************* Recycle-bin *****************************
# quantization appraoch with while-loop
# body of loop used in quantize
#def _body (inp_q, inp, min_val, step_size, i, iters):
# x = inp[i:i+1]
# print ("loop\n")
# #x_q = tf.get_variable("quant_val", [1], trainable=False)
# n = tf.round (tf.divide (tf.subtract (x, min_val), step_size))
# x_q = tf.add (x, tf.multiply(n, step_size), name="quant_x")
# return [tf.concat([inp_q, x_q], axis=0), inp, min_val, step_size, i+1, iters]
#
#def _cond (inp_q, inp, min_val, step_size, i, iters):
# return i < iters
# condition of while loop - with lamda
#cond = lambda i, iters: tf.less(i, iters)
## quatize tensor
##inp_q = tf.get_variable(name="quant_variable", initializer=inp, trainable=False) # create a copy of original tensor
#inp_q = tf.get_variable(name="quant_variable", shape=[1], trainable=False) # create a copy of original tensor
#i = tf.constant(0)
#iters = tf.size(inp)
#body = lambda inp_q, inp, min_val, step_size, i, iters: _body (inp_q, inp, min_val, step_size, i, iters)
#c = lambda inp_q, inp, min_val, step_size, i, iters: _cond (inp_q, inp, min_val, step_size, i, iters)
#quant_op = tf.while_loop (c, body, loop_vars=[inp_q, inp, min_val, step_size, i, iters]
# ,shape_invariants=[tf.TensorShape([None]), inp.get_shape(), min_val.get_shape(), step_size.get_shape(), i.get_shape(), iters.get_shape()])
#return inp_q
## pack together example-wise gradients without modifying for memristor nonideality or carry saturation
#grad_tmp_list=[]
#for i in range(len(var_list)):
# temp_tensor = tf.reduce_mean(tf.stack([grad[i] for grad in grads_list]), axis=0)
# grad_tmp_list.append(temp_tensor)
#return zip(grad_tmp_list, var_list)