-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_box.py
150 lines (130 loc) · 5.62 KB
/
face_box.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from __future__ import print_function
import os
import argparse
import torch
import torch.backends.cudnn as cudnn
import numpy as np
from data import cfg
from layers.functions.prior_box import PriorBox
from utils.nms_wrapper import nms
#from utils.nms.py_cpu_nms import py_cpu_nms
import cv2
from models.faceboxes import FaceBoxes
from utils.box_utils import decode
from utils.timer import Timer
parser = argparse.ArgumentParser(description='FaceBoxes')
parser.add_argument('-m', '--trained_model', default='weights/FaceBoxes.pth',
type=str, help='Trained state_dict file path to open')
parser.add_argument('--save_folder', default='eval/', type=str, help='Dir to save results')
parser.add_argument('--cpu', action="store_true", default=False, help='Use cpu inference')
parser.add_argument('--dataset', default='PASCAL', type=str, choices=['AFW', 'PASCAL', 'FDDB'], help='dataset')
parser.add_argument('--confidence_threshold', default=0.05, type=float, help='confidence_threshold')
parser.add_argument('--top_k', default=5000, type=int, help='top_k')
parser.add_argument('--nms_threshold', default=0.3, type=float, help='nms_threshold')
parser.add_argument('--keep_top_k', default=750, type=int, help='keep_top_k')
parser.add_argument('-s', '--show_image', action="store_true", default=False, help='show detection results')
parser.add_argument('--vis_thres', default=0.5, type=float, help='visualization_threshold')
args = parser.parse_args()
# save file
if not os.path.exists(args.save_folder):
os.makedirs(args.save_folder)
fw = open(os.path.join(args.save_folder, args.dataset + '_dets.txt'), 'w')
def check_keys(model, pretrained_state_dict):
ckpt_keys = set(pretrained_state_dict.keys())
model_keys = set(model.state_dict().keys())
used_pretrained_keys = model_keys & ckpt_keys
unused_pretrained_keys = ckpt_keys - model_keys
missing_keys = model_keys - ckpt_keys
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
return True
def remove_prefix(state_dict, prefix):
''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
def load_model(model, pretrained_path, load_to_cpu):
print('Loading pretrained model from {}'.format(pretrained_path))
if load_to_cpu:
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage)
else:
device = torch.cuda.current_device()
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
if "state_dict" in pretrained_dict.keys():
pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.')
else:
pretrained_dict = remove_prefix(pretrained_dict, 'module.')
check_keys(model, pretrained_dict)
model.load_state_dict(pretrained_dict, strict=False)
return model
def check_photo(img):
print('hello')
if __name__ == '__main__':
torch.set_grad_enabled(False)
# net and model
net = FaceBoxes(phase='test', size=None, num_classes=2) # initialize detector
net = load_model(net, 'weights/FaceBoxes.pth', False)
net.eval()
print('Finished loading model!')
print(net)
cudnn.benchmark = True
device = torch.device("cuda")
net = net.to(device)
#_t = {'forward_pass': Timer(), 'misc': Timer()}
img_raw = cv2.imread('photo.jpg', cv2.IMREAD_COLOR)
img = np.float32(img_raw)
im_height, im_width, _ = img.shape
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
img -= (104, 117, 123)
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).unsqueeze(0)
img = img.to(device)
scale = scale.to(device)
#_t['forward_pass'].tic()
loc, conf = net(img) # forward pass
#_t['forward_pass'].toc()
#_t['misc'].tic()
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
priors = priors.to(device)
prior_data = priors.data
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
boxes = boxes * scale
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
# ignore low scores
inds = np.where(scores > args.confidence_threshold)[0]
boxes = boxes[inds]
scores = scores[inds]
# keep top-K before NMS
order = scores.argsort()[::-1][:2]
boxes = boxes[order]
scores = scores[order]
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
# keep = py_cpu_nms(dets, args.nms_threshold)
keep = nms(dets, 0.3, force_cpu=False)
dets = dets[keep, :]
# keep top-K faster NMS
dets = dets[:args.keep_top_k, :]
#_t['misc'].toc()
for k in range(dets.shape[0]):
xmin = dets[k, 0]
ymin = dets[k, 1]
xmax = dets[k, 2]
ymax = dets[k, 3]
ymin += 0.2 * (ymax - ymin + 1)
score = dets[k, 4]
#fw.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.format('photo', score, xmin, ymin, xmax, ymax))
# show image
if True:
for b in dets:
if b[4] < args.vis_thres:
continue
text = "{:.4f}".format(b[4])
b = list(map(int, b))
cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
cx = b[0]
cy = b[1] + 12
cv2.putText(img_raw, text, (cx, cy),
cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255))
cv2.imshow('res', img_raw)
cv2.waitKey(0)
fw.close()