forked from AhmedGehad1/Computer_Vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhoughfinalnotcommentsnoerrors.py
156 lines (138 loc) · 6.76 KB
/
houghfinalnotcommentsnoerrors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import cv2
import numpy as np
import scipy.ndimage
from scipy.ndimage import convolve
from collections import defaultdict
# def get_edges(img, min_edge_threshold=100, max_edge_threshold=200):
# # Convert to gray scale
# min_edge_threshold = 0.2 * np.max(img)
# max_edge_threshold = 0.6 * np.max(img)
# # Edge detection on the input image
# edge_image = cv2.Canny(img, min_edge_threshold, max_edge_threshold)
# return edge_image
# def initialize_parameters():
# a_range = (10, 20)
# b_range = (10, 20)
# theta_range = np.deg2rad(np.arange(0, 180))
# print("Parameters set.")
# return a_range, b_range, theta_range
# def accumulator_filling(edges, a_range, b_range, theta_range, image_shape):
# accumulator = {}
# print("Accumulator initialized.")
# for y, x in np.argwhere(edges):
# for a in range(*a_range):
# for b in range(*b_range):
# for theta in theta_range:
# x_c = int(round(x - a * np.cos(theta)))
# y_c = int(round(y + b * np.sin(theta)))
# if 0 <= x_c < image_shape[1] and 0 <= y_c < image_shape[0]:
# key = (y_c, x_c, a, b, theta)
# if key in accumulator:
# accumulator[key] += 1
# else:
# accumulator[key] = 1
# print("Voting completed.")
# return accumulator
# def find_draw_ellipses(accumulator, image):
# threshold = max(accumulator.values()) * 0.5
# potential_ellipses = [key for key, value in accumulator.items() if value >= threshold]
# scale_factor = 0.1
# for y_c, x_c, a, b, theta in potential_ellipses:
# scaled_a = int(a * scale_factor)
# scaled_b = int(b * scale_factor)
# cv2.ellipse(image, (x_c, y_c), (scaled_a, scaled_b), np.degrees(theta), 0, 360, (0, 255, 0), 1)
# print("Ellipses drawn on image.")
# return image
# def save_result_image(img, path):
# cv2.imwrite(path, img)
# print("Result image saved successfully at:", path)
# def detect_ellipses(imgPath):
# img = cv2.imread(imgPath)
# print("Image loaded.")
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# print("Image converted to grayscale.")
# blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# print("Gaussian blur applied.")
# edges = get_edges(blurred)
# print("Edge detection done.")
# a_range, b_range, theta_range = initialize_parameters()
# acc = accumulator_filling(edges, a_range, b_range, theta_range, img.shape)
# result = find_draw_ellipses(acc, img)
# save_path = 'D:\oneDrive\Desktop'
# save_result_image(result, save_path)
# return save_path
def detect_and_draw_hough_ellipses(image, a_min=30, a_max=100, b_min=30, b_max=100, delta_a=2, delta_b=2, num_thetas=100, bin_threshold=0.4, min_edge_threshold=100, max_edge_threshold=150):
"""
Detect ellipses using Hough Transform.
Args:
image_path (str): Path to the input image file.
a_min (int): Minimum semi-major axis length of ellipses to detect.
a_max (int): Maximum semi-major axis length of ellipses to detect.
b_min (int): Minimum semi-minor axis length of ellipses to detect.
b_max (int): Maximum semi-minor axis length of ellipses to detect.
delta_a (int): Step size for semi-major axis length.
delta_b (int): Step size for semi-minor axis length.
num_thetas (int): Number of steps for theta from 0 to 2PI.
bin_threshold (float): Thresholding value in percentage to shortlist candidate ellipses.
min_edge_threshold (int): Minimum threshold value for edge detection.
max_edge_threshold (int): Maximum threshold value for edge detection.
Returns:
tuple: A tuple containing the output image with detected ellipses drawn and a list of detected ellipses.
"""
# Convert the image to grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Edge detection
edge_image = cv2.Canny(
gray_image, min_edge_threshold, max_edge_threshold)
# Get image dimensions
img_height, img_width = edge_image.shape[:2]
# Initialize parameters for Hough ellipse detection
dtheta = int(360 / num_thetas)
thetas = np.arange(0, 360, step=dtheta)
as_ = np.arange(a_min, a_max, step=delta_a)
bs = np.arange(b_min, b_max, step=delta_b)
cos_thetas = np.cos(np.deg2rad(thetas))
sin_thetas = np.sin(np.deg2rad(thetas))
ellipse_candidates = [(a, b, int(a * cos_thetas[t]), int(b * sin_thetas[t]))
for a in as_ for b in bs for t in range(num_thetas)]
# Initialize accumulator
accumulator = defaultdict(int)
# Iterate over each pixel and vote for potential ellipse centers
for y in range(img_height):
for x in range(img_width):
if edge_image[y][x] != 0:
for a, b, acos_t, bsin_t in ellipse_candidates:
x_center = x - acos_t
y_center = y - bsin_t
accumulator[(x_center, y_center, a, b)] += 1
# Initialize output image
output_img = image.copy()
# Store detected ellipses
out_ellipses = []
# Loop through the accumulator to find ellipses based on the threshold
for candidate_ellipse, votes in sorted(accumulator.items(), key=lambda i: -i[1]):
x, y, a, b = candidate_ellipse
current_vote_percentage = votes / num_thetas
if current_vote_percentage >= bin_threshold:
out_ellipses.append((x, y, a, b, current_vote_percentage))
# Perform post-processing to remove duplicate ellipses
pixel_threshold = 5
postprocess_ellipses = []
for x, y, a, b, v in out_ellipses:
if all(abs(x - xc) > pixel_threshold or abs(y - yc) > pixel_threshold or abs(a - ac) > pixel_threshold or abs(b - bc) > pixel_threshold for xc, yc, ac, bc, v in postprocess_ellipses):
postprocess_ellipses.append((x, y, a, b, v))
out_ellipses = postprocess_ellipses
# Draw detected ellipses on the output image
for x, y, a, b, v in out_ellipses:
output_img = cv2.ellipse(
output_img, (x, y), (a, b), 0, 0, 360, (0, 255, 0), 2)
return output_img, out_ellipses
if __name__ == "__main__":
# save_path = detect_ellipses()
# result_image = cv2.imread(save_path)
image=cv2.imread('D:\oneDrive\Desktop\IMAGE\qq.jpg')
result_image,r=detect_and_draw_hough_ellipses(image)
cv2.imshow('Detected Ellipses', result_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
print("Finished displaying results.")