-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVuforia.java
435 lines (360 loc) · 22.7 KB
/
Vuforia.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/* Copyright (c) 2019 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import org.firstinspires.ftc.robotcore.external.ClassFactory;
import org.firstinspires.ftc.robotcore.external.matrices.OpenGLMatrix;
import org.firstinspires.ftc.robotcore.external.matrices.VectorF;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder;
import org.firstinspires.ftc.robotcore.external.navigation.AxesReference;
import org.firstinspires.ftc.robotcore.external.navigation.Orientation;
import org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer;
import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackable;
import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackableDefaultListener;
import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackables;
import java.util.ArrayList;
import java.util.List;
import static org.firstinspires.ftc.robotcore.external.navigation.AngleUnit.DEGREES;
import static org.firstinspires.ftc.robotcore.external.navigation.AxesOrder.XYZ;
import static org.firstinspires.ftc.robotcore.external.navigation.AxesOrder.YZX;
import static org.firstinspires.ftc.robotcore.external.navigation.AxesReference.EXTRINSIC;
import static org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer.CameraDirection.BACK;
/**
* This 2019-2020 OpMode illustrates the basics of using the Vuforia localizer to determine
* positioning and orientation of robot on the SKYSTONE FTC field.
* The code is structured as a LinearOpMode
*
* When images are located, Vuforia is able to determine the position and orientation of the
* image relative to the camera. This sample code then combines that information with a
* knowledge of where the target images are on the field, to determine the location of the camera.
*
* From the Audience perspective, the Red Alliance station is on the right and the
* Blue Alliance Station is on the left.
* Eight perimeter targets are distributed evenly around the four perimeter walls
* Four Bridge targets are located on the bridge uprights.
* Refer to the Field Setup manual for more specific location details
*
* A final calculation then uses the location of the camera on the robot to determine the
* robot's location and orientation on the field.
*
* @see VuforiaLocalizer
* @see VuforiaTrackableDefaultListener
* see skystone/doc/tutorial/FTC_FieldCoordinateSystemDefinition.pdf
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list.
*
* IMPORTANT: In order to use this OpMode, you need to obtain your own Vuforia license key as
* is explained below.
*/
public class Vuforia {
// IMPORTANT: For Phone Camera, set 1) the camera source and 2) the orientation, based on how your phone is mounted:
// 1) Camera Source. Valid choices are: BACK (behind screen) or FRONT (selfie side)
// 2) Phone Orientation. Choices are: PHONE_IS_PORTRAIT = true (portrait) or PHONE_IS_PORTRAIT = false (landscape)
//
// NOTE: If you are running on a CONTROL HUB, with only one USB WebCam, you must select CAMERA_CHOICE = BACK; and PHONE_IS_PORTRAIT = false;
//
private static final VuforiaLocalizer.CameraDirection CAMERA_CHOICE = BACK;
private static final boolean PHONE_IS_PORTRAIT = false;
/*
* IMPORTANT: You need to obtain your own license key to use Vuforia. The string below with which
* 'parameters.vuforiaLicenseKey' is initialized is for illustration only, and will not function.
* A Vuforia 'Development' license key, can be obtained free of charge from the Vuforia developer
* web site at https://developer.vuforia.com/license-manager.
*
* Vuforia license keys are always 380 characters long, and look as if they contain mostly
* random data. As an example, here is a example of a fragment of a valid key:
* ... yIgIzTqZ4mWjk9wd3cZO9T1axEqzuhxoGlfOOI2dRzKS4T0hQ8kT ...
* Once you've obtained a license key, copy the string from the Vuforia web site
* and paste it in to your code on the next line, between the double quotes.
*/
private static final int MAX_TARGETS = 4;
private static final double ON_AXIS = 10; // Within 1.0 cm of target center-line
private static final double CLOSE_ENOUGH = 20; // Within 2.0 cm of final target standoff
// Select which camera you want use. The FRONT camera is the one on the same side as the screen. Alt. is BACK
public static final double YAW_GAIN = 0.018; // Rate at which we respond to heading error
public static final double LATERAL_GAIN = 0.0027; // Rate at which we respond to off-axis error
public static final double AXIAL_GAIN = 0.0017; // Rate at which we respond to target distance errors
/* Private class members. */
private VuforiaTrackables targets; // List of active targets
// Navigation data is only valid if targetFound == true;
private boolean targetFound; // set to true if Vuforia is currently tracking a target
private String targetName; // Name of the currently tracked target
private double robotX; // X displacement from target center
private double robotY; // Y displacement from target center
private double robotBearing; // Robot's rotation around the Z axis (CCW is positive)
private double targetRange; // Range from robot's center to target in mm
private double targetBearing; // Heading of the target , relative to the robot's unrotated center
private double relativeBearing;// Heading to the target from the robot's current bearing.
// eg: a Positive RelativeBearing means the robo
private static final String VUFORIA_KEY =
"AXzDwMD/////AAABmeGIo9ECakApoqY/GSILjDx2vR6RF7aoU4/I80zRX27nOx1p958fztd5/OpV6FpX+hOzTIihozcfioRmPjO+WvDJU9kYAnjweQpT9n7qjynznADLu7K53Nr1Fwr9PESPNV8drz15qhE91rXeSv7wfebyujD77JYGGU3ZPetDQ+JOxJYtuVAtCg36G5jGKctzOew0vgszExFLSGivwMd2lYb93Fya2x6sm7Zl5lZ6Np8dUwp71zHQ36Qfr3V5V+3eDK1uK2OY74ap9q+DFV092f2HjXklGFym5a5IMClfNsAwj/bHt2SFSSFaEFX9xaJMYgZE9ARfAP9AAntZh0GkG9/HhtmR5tuRoemQJ70+UKq6";
// Since ImageTarget trackables use mm to specifiy their dimensions, we must use mm for all the physical dimension.
// We will define some constants and conversions here
private static final float mmPerInch = 25.4f;
private static final float mmTargetHeight = (6) * mmPerInch; // the height of the center of the target image above the floor
// Constant for Stone Target
private static final float stoneZ = 2.00f * mmPerInch;
// Constants for the center support targets
private static final float bridgeZ = 6.42f * mmPerInch;
private static final float bridgeY = 23 * mmPerInch;
private static final float bridgeX = 5.18f * mmPerInch;
private static final float bridgeRotY = 59; // Units are degrees
private static final float bridgeRotZ = 180;
// Constants for perimeter targets
private static final float halfField = 72 * mmPerInch;
private static final float quadField = 36 * mmPerInch;
// Class Members
private OpenGLMatrix lastLocation = null;
private VuforiaLocalizer vuforia = null;
public boolean targetVisible = false;
private float phoneXRotate = 0;
private float phoneYRotate = 0;
private float phoneZRotate = 0;
public VuforiaTrackables targetsSkyStone;
private List<VuforiaTrackable> allTrackables;
public void initVuforia(VuforiaLocalizer.Parameters parameters) {
/*
* Configure Vuforia by creating a Parameter object, and passing it to the Vuforia engine.
* We can pass Vuforia the handle to a camera preview resource (on the RC phone);
* If no camera monitor is desired, use the parameter-less constructor instead (commented out below).
*/
// VuforiaLocalizer.Parameters parameters = new VuforiaLocalizer.Parameters();
parameters.vuforiaLicenseKey = VUFORIA_KEY;
parameters.cameraDirection = CAMERA_CHOICE;
// Instantiate the Vuforia engine
vuforia = ClassFactory.getInstance().createVuforia(parameters);
// Load the data sets for the trackable objects. These particular data
// sets are stored in the 'assets' part of our application.
targetsSkyStone = this.vuforia.loadTrackablesFromAsset("Skystone");
VuforiaTrackable stoneTarget = targetsSkyStone.get(0);
stoneTarget.setName("Stone Target");
VuforiaTrackable blueRearBridge = targetsSkyStone.get(1);
blueRearBridge.setName("Blue Rear Bridge");
VuforiaTrackable redRearBridge = targetsSkyStone.get(2);
redRearBridge.setName("Red Rear Bridge");
VuforiaTrackable redFrontBridge = targetsSkyStone.get(3);
redFrontBridge.setName("Red Front Bridge");
VuforiaTrackable blueFrontBridge = targetsSkyStone.get(4);
blueFrontBridge.setName("Blue Front Bridge");
VuforiaTrackable red1 = targetsSkyStone.get(5);
red1.setName("Red Perimeter 1");
VuforiaTrackable red2 = targetsSkyStone.get(6);
red2.setName("Red Perimeter 2");
VuforiaTrackable front1 = targetsSkyStone.get(7);
front1.setName("Front Perimeter 1");
VuforiaTrackable front2 = targetsSkyStone.get(8);
front2.setName("Front Perimeter 2");
VuforiaTrackable blue1 = targetsSkyStone.get(9);
blue1.setName("Blue Perimeter 1");
VuforiaTrackable blue2 = targetsSkyStone.get(10);
blue2.setName("Blue Perimeter 2");
VuforiaTrackable rear1 = targetsSkyStone.get(11);
rear1.setName("Rear Perimeter 1");
VuforiaTrackable rear2 = targetsSkyStone.get(12);
rear2.setName("Rear Perimeter 2");
// For convenience, gather together all the trackable objects in one easily-iterable collection */
allTrackables = new ArrayList<VuforiaTrackable>();
allTrackables.addAll(targetsSkyStone);
/**
* In order for localization to work, we need to tell the system where each target is on the field, and
* where the phone resides on the robot. These specifications are in the form of <em>transformation matrices.</em>
* Transformation matrices are a central, important concept in the math here involved in localization.
* See <a href="https://en.wikipedia.org/wiki/Transformation_matrix">Transformation Matrix</a>
* for detailed information. Commonly, you'll encounter transformation matrices as instances
* of the {@link OpenGLMatrix} class.
*
* If you are standing in the Red Alliance Station looking towards the center of the field,
* - The X axis runs from your left to the right. (positive from the center to the right)
* - The Y axis runs from the Red Alliance Station towards the other side of the field
* where the Blue Alliance Station is. (Positive is from the center, towards the BlueAlliance station)
* - The Z axis runs from the floor, upwards towards the ceiling. (Positive is above the floor)
*
* Before being transformed, each target image is conceptually located at the origin of the field's
* coordinate system (the center of the field), facing up.
*/
// Set the position of the Stone Target. Since it's not fixed in position, assume it's at the field origin.
// Rotated it to to face forward, and raised it to sit on the ground correctly.
// This can be used for generic target-centric approach algorithms
stoneTarget.setLocation(OpenGLMatrix
.translation(0, 0, stoneZ)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, -90)));
//Set the position of the bridge support targets with relation to origin (center of field)
blueFrontBridge.setLocation(OpenGLMatrix
.translation(-bridgeX, bridgeY, bridgeZ)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 0, bridgeRotY, bridgeRotZ)));
blueRearBridge.setLocation(OpenGLMatrix
.translation(-bridgeX, bridgeY, bridgeZ)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 0, -bridgeRotY, bridgeRotZ)));
redFrontBridge.setLocation(OpenGLMatrix
.translation(-bridgeX, -bridgeY, bridgeZ)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 0, -bridgeRotY, 0)));
redRearBridge.setLocation(OpenGLMatrix
.translation(bridgeX, -bridgeY, bridgeZ)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 0, bridgeRotY, 0)));
//Set the position of the perimeter targets with relation to origin (center of field)
red1.setLocation(OpenGLMatrix
.translation(quadField, -halfField, mmTargetHeight)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 180)));
red2.setLocation(OpenGLMatrix
.translation(-quadField, -halfField, mmTargetHeight)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 180)));
front1.setLocation(OpenGLMatrix
.translation(-halfField, -quadField, mmTargetHeight)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 90)));
front2.setLocation(OpenGLMatrix
.translation(-halfField, quadField, mmTargetHeight)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 90)));
blue1.setLocation(OpenGLMatrix
.translation(-quadField, halfField, mmTargetHeight)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 0)));
blue2.setLocation(OpenGLMatrix
.translation(quadField, halfField, mmTargetHeight)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 0)));
rear1.setLocation(OpenGLMatrix
.translation(halfField, quadField, mmTargetHeight)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, -90)));
rear2.setLocation(OpenGLMatrix
.translation(halfField, -quadField, mmTargetHeight)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, -90)));
//
// Create a transformation matrix describing where the phone is on the robot.
//
// NOTE !!!! It's very important that you turn OFF your phone's Auto-Screen-Rotation option.
// Lock it into Portrait for these numbers to work.
//
// Info: The coordinate frame for the robot looks the same as the field.
// The robot's "forward" direction is facing out along X axis, with the LEFT side facing out along the Y axis.
// Z is UP on the robot. This equates to a bearing angle of Zero degrees.
//
// The phone starts out lying flat, with the screen facing Up and with the physical top of the phone
// pointing to the LEFT side of the Robot.
// The two examples below assume that the camera is facing forward out the front of the robot.
// We need to rotate the camera around it's long axis to bring the correct camera forward.
if (CAMERA_CHOICE == BACK) {
phoneYRotate = -90;
} else {
phoneYRotate = 90;
}
// Rotate the phone vertical about the X axis if it's in portrait mode
if (PHONE_IS_PORTRAIT) {
phoneXRotate = 90;
}
// Next, translate the camera lens to where it is on the robot.
// In this example, it is centered (left to right), but forward of the middle of the robot, and above ground level.
final float CAMERA_FORWARD_DISPLACEMENT = 4.0f * mmPerInch; // eg: Camera is 4 Inches in front of robot center
final float CAMERA_VERTICAL_DISPLACEMENT = 8.0f * mmPerInch; // eg: Camera is 8 Inches above ground
final float CAMERA_LEFT_DISPLACEMENT = 0; // eg: Camera is ON the robot's center line
OpenGLMatrix robotFromCamera = OpenGLMatrix
.translation(CAMERA_FORWARD_DISPLACEMENT, CAMERA_LEFT_DISPLACEMENT, CAMERA_VERTICAL_DISPLACEMENT)
.multiplied(Orientation.getRotationMatrix(EXTRINSIC, YZX, DEGREES, phoneYRotate, phoneZRotate, phoneXRotate));
/** Let all the trackable listeners know where the phone is. */
for (VuforiaTrackable trackable : allTrackables) {
((VuforiaTrackableDefaultListener) trackable.getListener()).setPhoneInformation(robotFromCamera, parameters.cameraDirection);
}
}
public double getYPosition() {
// WARNING:
// In this sample, we do not wait for PLAY to be pressed. Target Tracking is started immediately when INIT is pressed.
// This sequence is used to enable the new remote DS Camera Preview feature to be used with this sample.
// CONSEQUENTLY do not put any driving commands in this loop.
// To restore the normal opmode structure, just un-comment the following line:
// waitForStart();
// Note: To use the remote camera preview:
// AFTER you hit Init on the Driver Station, use the "options menu" to select "Camera Stream"
// Tap the preview window to receive a fresh image.
double yPosition = 0;
// check all the trackable targets to see which one (if any) is visible.
targetVisible = false;
for (VuforiaTrackable trackable : allTrackables) {
if (((VuforiaTrackableDefaultListener) trackable.getListener()).isVisible()) {
targetVisible = true;
// getUpdatedRobotLocation() will return null if no new information is available since
// the last time that call was made, or if the trackable is not currently visible.
OpenGLMatrix robotLocationTransform = ((VuforiaTrackableDefaultListener) trackable.getListener()).getUpdatedRobotLocation();
if (robotLocationTransform != null) {
lastLocation = robotLocationTransform;
}
break;
}
}
// Provide feedback as to where the robot is located (if we know).
if (targetVisible) {
// express position (translation) of robot in inches.
VectorF translation = lastLocation.getTranslation();
//return y position
yPosition = translation.get(1) / mmPerInch;
}
// Disable Tracking when we are done;
return yPosition;
}
public boolean targetsAreVisible() {
int targetTestID = 0;
// Check each target in turn, but stop looking when the first target is found.
while ((targetTestID < MAX_TARGETS) && !targetIsVisible(targetTestID)) {
targetTestID++ ;
}
return (targetFound);
}
public boolean targetIsVisible(int targetId) {
VuforiaTrackable target = targets.get(targetId);
VuforiaTrackableDefaultListener listener = (VuforiaTrackableDefaultListener)target.getListener();
OpenGLMatrix location = null;
// if we have a target, look for an updated robot position
if ((target != null) && (listener != null) && listener.isVisible()) {
targetFound = true;
targetName = target.getName();
// If we have an updated robot location, update all the relevant tracking information
location = listener.getUpdatedRobotLocation();
if (location != null) {
// Create a translation and rotation vector for the robot.
VectorF trans = location.getTranslation();
Orientation rot = Orientation.getOrientation(location, AxesReference.EXTRINSIC, AxesOrder.XYZ, AngleUnit.DEGREES);
// Robot position is defined by the standard Matrix translation (x and y)
robotX = trans.get(0);
robotY = trans.get(1);
// Robot bearing (in +vc CCW cartesian system) is defined by the standard Matrix z rotation
robotBearing = rot.thirdAngle;
// target range is based on distance from robot position to origin.
targetRange = Math.hypot(robotX, robotY);
// target bearing is based on angle formed between the X axis to the target range line
targetBearing = Math.toDegrees(-Math.asin(robotY / targetRange));
// Target relative bearing is the target Heading relative to the direction the robot is pointing.
relativeBearing = targetBearing - robotBearing;
}
targetFound = true;
}
else {
// Indicate that there is no target visible
targetFound = false;
targetName = "None";
}
return targetFound;
}
}