-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlaws.py
284 lines (250 loc) · 14.4 KB
/
laws.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from time import monotonic
from itertools import product, groupby
from bhv.abstract import AbstractBHV, DIMENSION
from bhv.native import NativePackedBHV
from bhv.np import NumPyBoolBHV, NumPyPacked8BHV, NumPyPacked64BHV
# from bhv.pytorch import TorchBoolBHV, TorchPackedBHV
from bhv.vanilla import VanillaBHV
def associative(m): return lambda x, y, z: m(m(x, y), z) == m(x, m(y, z))
def associative3(m): return lambda x, y, z, u: m(x, u, m(y, u, z)) == m(z, u, m(y, u, x))
def commutative(m): return lambda x, y: m(x, y) == m(y, x)
def commutative3(m): return lambda x, y, z: m(x, y, z) == m(y, x, z) == m(z, y, x)
def idempotent(m): return lambda x: m(x, x) == x
def self_inverse(m, u): return lambda x: m(x, x) == u
def self_inverse_op(f): return lambda x: f(f(x)) == x
def equals(f, a, b): return lambda: f(a) == b
def right_unit(m, u): return lambda x: m(x, u) == x
def right_absorbing(m, z): return lambda x: m(x, z) == z
def absorptive(m, w): return lambda x, y: m(x, w(x, y)) == x
def distributive(m, w): return lambda x, y, z: m(x, w(y, z)) == w(m(x, y), m(x, z))
def distributive3(m, w): return lambda x, y, z, u, v: m(x, y, w(u, v, z)) == w(m(x, y, u), m(x, y, v), z)
def demorgan(f, m, w): return lambda x, y: f(m(x, y)) == w(f(x), f(y))
def drop_left(f, m): return lambda x, y: f(m(x, y)) == m(f(x), y)
def propagate(f, m): return lambda x: f(m(x)) == m(f(x))
def propagate2(f, m): return lambda x, y: f(m(x, y)) == m(f(x), f(y))
def propagate3(f, m): return lambda x, y, z: f(m(x, y, z)) == m(f(x), f(y), f(z))
def expand_single_inner(f, k, m, w): return lambda x, y: k(x, y) == m(w(x, f(y)), w(f(x), y))
def expand_single_outer(f, k, m, w): return lambda x, y: k(x, y) == m(w(x, y), f(m(x, y)))
def determinism(f): return lambda x: f(x) == f(x)
def extensionality(f, g): return lambda x: f(x) == g(x)
def extensionality2(f, g): return lambda x, y: f(x, y) == g(x, y)
def extensionality3(f, g): return lambda x, y, z: f(x, y, z) == g(x, y, z)
def extensionality4(f, g): return lambda x, y, z, u: f(x, y, z, u) == g(x, y, z, u)
def extensionality5(f, g): return lambda x, y, z, u, v: f(x, y, z, u, v) == g(x, y, z, u, v)
def extensionality6(f, g): return lambda x, y, z, u, v, w: f(x, y, z, u, v, w) == g(x, y, z, u, v, w)
def extensionality7(f, g): return lambda x, y, z, u, v, w, r: f(x, y, z, u, v, w, r) == g(x, y, z, u, v, w, r)
def extensionality9(f, g): return lambda x, y, z, u, v, w, r, i, j: f(x, y, z, u, v, w, r, i, j) == g(x, y, z, u, v, w, r, i, j)
def extensionalityN(f, g): return lambda xs: f(xs) == g(xs)
def encode_decode(enc, dec): return lambda x: x == dec(enc(x))
def invariant_under(f, p): return lambda x: f(x) == f(p(x))
def invariant_under2(f, p): return lambda x, y: f(x, y) == f(p(x), p(y))
def identity(f): return lambda x: f(x) == x
def invariant2(m): return lambda x, y: m(x, y) == y
def invariant3(m): return lambda x, y, z: m(x, y, z) == z
def invariant3_2(m): return lambda x, y, z: m(x, y, z) == y == z
def complement(m, f, z): return lambda x: m(x, f(x)) == z
def transport(law, l, r): return lambda f, g: law(f, lambda x: r(g(l(x))))
def transport2(law, l, r): return lambda f, g: law(f, lambda x, y: r(g(l(x), l(y))))
def transport3(law, l, r): return lambda f, g: law(f, lambda x, y, z: r(g(l(x), l(y), l(z))))
def assume2(law, p): return lambda f: lambda x, y: True if p(x, y) else law(f)(x, y)
def assume3(law, p): return lambda f: lambda x, y, z: True if p(x, y, z) else law(f)(x, y, z)
def lattice(join): return [associative(join), commutative(join), idempotent(join)]
def bounded_lattice(join, top, bot): return lattice(join) + [right_unit(join, bot), right_absorbing(join, top)]
def xor_props(xor_, bot): return [associative(xor_), commutative(xor_), self_inverse(xor_, bot), right_unit(xor_, bot)]
def not_props(not_, bot, top): return [self_inverse_op(not_), equals(not_, top, bot), equals(not_, bot, top)]
def or_and_props(or_, and_): return [distributive(or_, and_), distributive(and_, or_), absorptive(or_, and_), absorptive(and_, or_)]
def gf2(add, mul, one, zero):
return [
right_unit(add, zero),
right_unit(mul, one),
associative(add), commutative(add),
associative(mul), commutative(mul),
idempotent(mul),
self_inverse(add, zero),
distributive(mul, add)
]
def maj3_inv(maj3, inv):
return [
commutative3(maj3),
assume3(invariant3_2(lambda x, y, z: maj3(z, y, x)), lambda x, y, z: x == y),
assume3(invariant3(maj3), lambda x, y, z: x == inv(y)),
associative3(maj3),
distributive3(maj3, maj3),
propagate3(inv, maj3)
]
def boolean_algebra(conj, disj, inv, zero, one):
return [
right_unit(disj, zero),
right_unit(conj, one),
commutative(conj),
commutative(disj),
distributive(conj, disj),
distributive(disj, conj),
associative(conj),
associative(disj),
complement(disj, inv, one),
complement(conj, inv, zero),
]
def permute_props(permute):
π, τ, σ = 42, 13, 39
Π, Τ, Σ = lambda x: permute(x, π), lambda x: permute(x, τ), lambda x: permute(x, σ)
Πinv, Τinv, Σinv = lambda x: permute(x, -π), lambda x: permute(x, -τ), lambda x: permute(x, -σ)
return [
extensionality(lambda x: Π(Τ(x)), lambda x: permute(x, (τ, π))),
extensionality(lambda x: Π(Τ(x)), lambda x: permute(x, (0, τ, 0, π, 0))),
extensionality(lambda x: Π(Σ(Τ(x))), lambda x: permute(x, (τ, σ, π))),
identity(lambda x: permute(x, 0)),
identity(lambda x: Πinv(Π(x))),
identity(lambda x: Τinv(Τ(x))),
identity(lambda x: Σ(Σinv(x))),
]
def bhv_props(impl: AbstractBHV):
Π, Τ, Σ = lambda x: impl.permute(x, 42), lambda x: impl.permute(x, 13), lambda x: impl.permute(x, -39)
extra = [
demorgan(impl.__invert__, impl.__or__, impl.__and__),
demorgan(impl.__invert__, impl.__and__, impl.__or__),
drop_left(impl.__invert__, impl.__xor__),
expand_single_inner(impl.__invert__, impl.__xor__, impl.__or__, impl.__and__),
expand_single_outer(impl.__invert__, impl.__xor__, impl.__and__, impl.__or__),
distributive(impl.__and__, impl.__xor__),
propagate(Π, impl.__invert__),
propagate2(Π, impl.__xor__),
propagate2(Π, impl.__and__),
propagate2(Π, impl.__or__),
propagate3(Π, impl.majority3),
complement(impl.__xor__, impl.__invert__, impl.ONE),
invariant_under2(impl.__xor__, impl.__invert__),
lambda a, b: a ^ (a & b) == a & ~b,
lambda a, b: a ^ (~a & b) == a | b
]
return (
bounded_lattice(impl.__and__, impl.ZERO, impl.ONE) +
bounded_lattice(impl.__or__, impl.ONE, impl.ZERO) +
xor_props(impl.__xor__, impl.ZERO) +
not_props(impl.__invert__, impl.ZERO, impl.ONE) +
or_and_props(impl.__or__, impl.__and__) +
gf2(impl.__xor__, impl.__and__, impl.ONE, impl.ZERO) +
maj3_inv(impl.majority3, impl.__invert__) +
boolean_algebra(impl.__and__, impl.__or__, impl.__invert__, impl.ZERO, impl.ONE) +
permute_props(impl.permute) +
bhv_conv_metrics(Π) +
extra)
def bhv_conv_ops(dom: AbstractBHV, codom: AbstractBHV, l, r):
return [
transport(extensionality, l, r)(dom.__invert__, codom.__invert__),
transport2(extensionality2, l, r)(dom.__or__, codom.__or__),
transport2(extensionality2, l, r)(dom.__and__, codom.__and__),
transport2(extensionality2, l, r)(dom.__xor__, codom.__xor__),
transport3(extensionality3, l, r)(dom.select, codom.select),
]
def bhv_conv_metrics(under):
return [
invariant_under(lambda x: x.active(), under),
invariant_under(lambda x: x.active_fraction(), under),
invariant_under2(lambda x, y: x.hamming(y), under),
assume2(invariant_under2(lambda x, y: x.cosine(y), under), lambda x, y: x.active() != 0 and y.active() != 0),
assume2(invariant_under2(lambda x, y: x.jaccard(y), under), lambda x, y: x.active() != 0 or y.active() != 0),
invariant_under2(lambda x, y: x.std_apart(y), under),
invariant_under2(lambda x, y: x.related(y), under),
invariant_under2(lambda x, y: x.bit_error_rate(y), under),
invariant_under2(lambda x, y: x.mutual_information(y), under),
]
def run_for(impl: AbstractBHV, ts):
argts = {}
for t in ts:
arity = t.__code__.co_argcount
argts.setdefault(arity, []).append(t)
max_depth = max(argts.keys())
extrema = [impl.ZERO, impl.ONE]
shared = extrema + impl.nrand(3)
collections = [shared + impl.nrand(1) for d in range(max_depth + 1)]
def rec(args, depth):
for tn in argts.get(depth, []):
assert tn(*args), f"property {tn.__qualname__} failed on {args} using implementation {impl.__name__}"
if depth <= max_depth:
for x in collections[depth]:
rec(args + (x,), depth + 1)
rec((), 0)
def run():
# all_implementations = [VanillaBHV, NumPyBoolBHV, NumPyPacked8BHV, NumPyPacked64BHV, TorchBoolBHV, TorchPackedBHV, NativePackedBHV]
all_implementations = [VanillaBHV, NumPyBoolBHV, NumPyPacked8BHV, NumPyPacked64BHV, NativePackedBHV]
for impl in all_implementations:
print(f"Testing {impl.__name__}...")
t0 = monotonic()
run_for(impl, bhv_props(impl))
t = monotonic() - t0
print(f"took ({t:.3} s)")
print(f"Testing packing and unpacking NumPyBoolBHV...")
run_for(NumPyBoolBHV, [encode_decode(NumPyBoolBHV.pack64, NumPyPacked64BHV.unpack)])
print(f"Testing packing and unpacking NumPyPacked64BHV...")
run_for(NumPyPacked64BHV, [encode_decode(NumPyPacked64BHV.unpack, NumPyBoolBHV.pack64)])
print("Testing operators equal between NumPyBoolBHV and NumPyPacked64BHV")
run_for(NumPyBoolBHV, bhv_conv_ops(NumPyBoolBHV, NumPyPacked64BHV, NumPyBoolBHV.pack64, NumPyPacked64BHV.unpack))
print("Testing metrics invariant under pack64")
run_for(NumPyBoolBHV, bhv_conv_metrics(NumPyBoolBHV.pack64))
# run_for(TorchBoolBHV, bhv_conv_metrics(TorchBoolBHV.pack))
print("Testing large unbalanced majority")
rs = [~v for v in NumPyPacked64BHV.nrand2(1001, 3)]
rs_ = [r.unpack() for r in rs]
assert NumPyPacked64BHV.majority(rs) == NumPyBoolBHV.majority(rs_).pack64()
# rs = [~v for v in TorchPackedBHV.nrand2(1001, 3)]
# rs_ = [r.unpack() for r in rs]
# assert TorchPackedBHV.majority(rs) == TorchBoolBHV.majority(rs_).pack()
print("Testing bits and bytes")
for impl in all_implementations:
r = impl.rand()
rb = r.to_bytes()
rbits = list(r.bits())
rstr = r.bitstring()
for impl_ in all_implementations:
assert impl_.from_bytes(rb).to_bytes() == rb, f"{impl}, {impl_}"
assert list(impl_.from_bitstream(rbits).bits()) == rbits, f"{impl}, {impl_}"
assert impl_.from_bytes(rb).bitstring() == rstr, f"{impl}, {impl_}"
assert impl_.from_bitstring(rstr).bitstring() == rstr, f"{impl}, {impl_}"
print("Testing word-level roll equivalence")
rs_np = NumPyPacked64BHV.nrand(10)
rs_native = [NativePackedBHV.from_bytes(r.to_bytes()) for r in rs_np]
word_rot_pos_np = [r.roll_words(12) for r in rs_np]
word_rot_pos_native = [r.roll_words(12) for r in rs_native]
assert [r == NumPyPacked64BHV.from_bytes(r_.to_bytes()) for r, r_ in zip(word_rot_pos_np, word_rot_pos_native)]
word_rot_neg_np = [r.roll_words(-12) for r in rs_np]
word_rot_neg_native = [r.roll_words(-12) for r in rs_native]
assert [r == NumPyPacked64BHV.from_bytes(r_.to_bytes()) for r, r_ in zip(word_rot_neg_np, word_rot_neg_native)]
word_bit_rot_pos_np = [r.roll_word_bits(12) for r in rs_np]
word_bit_rot_pos_native = [r.roll_word_bits(12) for r in rs_native]
assert [r == NumPyPacked64BHV.from_bytes(r_.to_bytes()) for r, r_ in zip(word_bit_rot_pos_np, word_bit_rot_pos_native)]
word_bit_rot_neg_np = [r.roll_word_bits(-12) for r in rs_np]
word_bit_rot_neg_native = [r.roll_word_bits(-12) for r in rs_native]
assert [r == NumPyPacked64BHV.from_bytes(r_.to_bytes()) for r, r_ in zip(word_bit_rot_neg_np, word_bit_rot_neg_native)]
print("Testing bit-level roll equivalence")
rs_np_bool = NumPyBoolBHV.nrand(10)
rs_np_packed = [NumPyPacked64BHV.from_bytes(r.to_bytes()) for r in rs_np_bool]
rs_vanilla = [VanillaBHV.from_bytes(r.to_bytes()) for r in rs_np_bool]
rs_native = [NativePackedBHV.from_bytes(r.to_bytes()) for r in rs_np_bool]
bit_rot_neg_bool = [r.roll_bits(-112) for r in rs_np_bool]
bit_rot_neg_packed = [r.roll_bits(-112) for r in rs_np_packed]
bit_rot_neg_vanilla = [r.roll_bits(-112) for r in rs_vanilla]
bit_rot_neg_native = [r.roll_bits(-112) for r in rs_native]
assert [r == NumPyBoolBHV.from_bytes(r_.to_bytes()) for r, r_ in zip(bit_rot_neg_bool, bit_rot_neg_vanilla)]
assert [r == NumPyBoolBHV.from_bytes(r_.to_bytes()) for r, r_ in zip(bit_rot_neg_bool, bit_rot_neg_packed)]
assert [r == NumPyBoolBHV.from_bytes(r_.to_bytes()) for r, r_ in zip(bit_rot_neg_bool, bit_rot_neg_native)]
print("Testing NumPyPacked64BHV majority equivalence")
run_for(NumPyPacked64BHV, [
extensionality3(NumPyPacked64BHV._majority3, lambda x, y, z: NumPyPacked64BHV._majority_via_unpacked([x, y, z])),
extensionality5(NumPyPacked64BHV._majority5, lambda x, y, z, u, v: NumPyPacked64BHV._majority_via_unpacked([x, y, z, u, v])),
extensionality5(NumPyPacked64BHV._majority5_via_3, NumPyPacked64BHV._majority5),
# this is slow, obviously
# extensionality7(NumPyPacked64BHV._majority7_via_3, lambda x, y, z, u, v, w, r: NumPyPacked64BHV._majority_via_unpacked([x, y, z, u, v, w, r])),
# extensionality7(NumPyPacked64BHV._majority7_via_ite, lambda x, y, z, u, v, w, r: NumPyPacked64BHV._majority_via_unpacked([x, y, z, u, v, w, r])),
# extensionality7(NumPyPacked64BHV._majority7_via_3, lambda x, y, z, u, v, w, r: NumPyPacked64BHV._majority_via_unpacked([x, y, z, u, v, w, r])),
# extensionality9(NumPyPacked64BHV._majority9_via_3, lambda x, y, z, u, v, w, r, i, j: NumPyPacked64BHV._majority_via_unpacked([x, y, z, u, v, w, r, i, j])),
])
for s in range(3, 55, 2):
rs = NumPyPacked64BHV.nrand(s)
assert NumPyPacked64BHV.majority(rs) == NumPyPacked64BHV._majority_via_unpacked(rs), f"mismatch for size {s}"
print("Testing NumPyBoolBHV majority threshold equivalence")
for s in range(3, 55, 2):
rs = NumPyBoolBHV.nrand(s)
assert NumPyBoolBHV.majority(rs) == NumPyBoolBHV._direct_majority(rs), f"mismatch for size {s}"
if __name__ == '__main__':
run()