diff --git a/docs/examples/battery_water_level_analysis.ipynb b/docs/examples/battery_water_level_analysis.ipynb
index 9e842fe..6e15477 100644
--- a/docs/examples/battery_water_level_analysis.ipynb
+++ b/docs/examples/battery_water_level_analysis.ipynb
@@ -6,8 +6,8 @@
"metadata": {},
"outputs": [],
"source": [
- "# %pip install --upgrade anomalytics\n",
- "# %pip list"
+ "%pip install --upgrade anomalytics\n",
+ "%pip list"
]
},
{
diff --git a/docs/examples/extreme_anomaly_df_analysis.ipynb b/docs/examples/extreme_anomaly_df_analysis.ipynb
index 3f3712e..3ab3bdc 100644
--- a/docs/examples/extreme_anomaly_df_analysis.ipynb
+++ b/docs/examples/extreme_anomaly_df_analysis.ipynb
@@ -6,8 +6,8 @@
"metadata": {},
"outputs": [],
"source": [
- "# %pip install --upgrade anomalytics\n",
- "# %pip list"
+ "%pip install --upgrade anomalytics\n",
+ "%pip list"
]
},
{
diff --git a/poc.ipynb b/poc.ipynb
new file mode 100644
index 0000000..7befa61
--- /dev/null
+++ b/poc.ipynb
@@ -0,0 +1,23110 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Package Version Editable project location\n",
+ "----------------------------- ------------ -----------------------------------------------\n",
+ "alabaster 0.7.13\n",
+ "anomalytics 0.1.1 /Users/ninovation/Projects/Research/Anomalytics\n",
+ "anyascii 0.3.2\n",
+ "appnope 0.1.3\n",
+ "astroid 3.0.1\n",
+ "asttokens 2.4.1\n",
+ "attrs 23.1.0\n",
+ "Babel 2.13.1\n",
+ "bandit 1.7.5\n",
+ "black 23.11.0\n",
+ "build 1.0.3\n",
+ "certifi 2023.11.17\n",
+ "cfgv 3.4.0\n",
+ "charset-normalizer 3.3.2\n",
+ "click 8.1.7\n",
+ "colorama 0.4.6\n",
+ "comm 0.2.0\n",
+ "contourpy 1.2.0\n",
+ "coverage 7.3.2\n",
+ "cycler 0.12.1\n",
+ "debugpy 1.8.0\n",
+ "decorator 5.1.1\n",
+ "distlib 0.3.7\n",
+ "docutils 0.19\n",
+ "et-xmlfile 1.1.0\n",
+ "executing 2.0.1\n",
+ "fastjsonschema 2.19.0\n",
+ "filelock 3.13.1\n",
+ "fonttools 4.46.0\n",
+ "gitdb 4.0.11\n",
+ "GitPython 3.1.40\n",
+ "identify 2.5.32\n",
+ "idna 3.6\n",
+ "imagesize 1.4.1\n",
+ "importlib-metadata 7.0.0\n",
+ "iniconfig 2.0.0\n",
+ "ipykernel 6.27.1\n",
+ "ipython 8.18.1\n",
+ "isort 5.12.0\n",
+ "jaraco.classes 3.3.0\n",
+ "jedi 0.19.1\n",
+ "Jinja2 3.1.2\n",
+ "jsonschema 4.20.0\n",
+ "jsonschema-specifications 2023.11.2\n",
+ "jupyter-cache 1.0.0\n",
+ "jupyter_client 8.6.0\n",
+ "jupyter_core 5.5.0\n",
+ "keyring 24.3.0\n",
+ "kiwisolver 1.4.5\n",
+ "livereload 2.6.3\n",
+ "markdown-it-py 3.0.0\n",
+ "MarkupSafe 2.1.3\n",
+ "matplotlib 3.8.2\n",
+ "matplotlib-inline 0.1.6\n",
+ "mdformat 0.7.17\n",
+ "mdformat_deflist 0.1.2\n",
+ "mdformat_frontmatter 2.0.1\n",
+ "mdformat_myst 0.1.5\n",
+ "mdformat_tables 0.4.1\n",
+ "mdit-py-plugins 0.4.0\n",
+ "mdurl 0.1.2\n",
+ "more-itertools 10.1.0\n",
+ "mypy 1.7.1\n",
+ "mypy-extensions 1.0.0\n",
+ "myst-nb 1.0.0\n",
+ "myst-parser 2.0.0\n",
+ "nbclient 0.9.0\n",
+ "nbformat 5.9.2\n",
+ "nest-asyncio 1.5.8\n",
+ "nh3 0.2.14\n",
+ "nodeenv 1.8.0\n",
+ "numpy 1.26.2\n",
+ "openpyxl 3.1.2\n",
+ "packaging 23.2\n",
+ "pandas 2.1.3\n",
+ "parso 0.8.3\n",
+ "pathspec 0.11.2\n",
+ "pbr 6.0.0\n",
+ "pexpect 4.9.0\n",
+ "Pillow 10.1.0\n",
+ "pip 23.3.1\n",
+ "pkginfo 1.9.6\n",
+ "platformdirs 4.0.0\n",
+ "pluggy 1.3.0\n",
+ "pre-commit 3.5.0\n",
+ "prompt-toolkit 3.0.41\n",
+ "psutil 5.9.6\n",
+ "ptyprocess 0.7.0\n",
+ "pure-eval 0.2.2\n",
+ "Pygments 2.17.2\n",
+ "pyparsing 3.1.1\n",
+ "pyproject_hooks 1.0.0\n",
+ "pytest 7.4.3\n",
+ "pytest-cov 4.1.0\n",
+ "python-dateutil 2.8.2\n",
+ "python-docs-theme 2023.9\n",
+ "pytz 2023.3.post1\n",
+ "PyYAML 6.0.1\n",
+ "pyzmq 25.1.2\n",
+ "readme-renderer 42.0\n",
+ "referencing 0.32.0\n",
+ "requests 2.31.0\n",
+ "requests-toolbelt 1.0.0\n",
+ "rfc3986 2.0.0\n",
+ "rich 13.7.0\n",
+ "rpds-py 0.13.2\n",
+ "rst-to-myst 0.4.0\n",
+ "ruamel.yaml 0.18.5\n",
+ "ruamel.yaml.clib 0.2.8\n",
+ "scipy 1.11.4\n",
+ "setuptools 69.0.2\n",
+ "six 1.16.0\n",
+ "smmap 5.0.1\n",
+ "snowballstemmer 2.2.0\n",
+ "Sphinx 6.2.1\n",
+ "sphinx-autoapi 3.0.0\n",
+ "sphinx-autobuild 2021.3.14\n",
+ "sphinx-rtd-theme 2.0.0\n",
+ "sphinxcontrib-applehelp 1.0.7\n",
+ "sphinxcontrib-devhelp 1.0.5\n",
+ "sphinxcontrib-htmlhelp 2.0.4\n",
+ "sphinxcontrib-jquery 4.1\n",
+ "sphinxcontrib-jsmath 1.0.1\n",
+ "sphinxcontrib-qthelp 1.0.6\n",
+ "sphinxcontrib-serializinghtml 1.1.9\n",
+ "SQLAlchemy 2.0.23\n",
+ "stack-data 0.6.3\n",
+ "stevedore 5.1.0\n",
+ "tabulate 0.9.0\n",
+ "tornado 6.4\n",
+ "traitlets 5.14.0\n",
+ "twine 4.0.2\n",
+ "typing_extensions 4.8.0\n",
+ "tzdata 2023.3\n",
+ "urllib3 2.1.0\n",
+ "virtualenv 20.25.0\n",
+ "wcwidth 0.2.12\n",
+ "zipp 3.17.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip3 list"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import anomalytics as atics\n",
+ "import pandas as pd\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " datetime | \n",
+ " col_1 | \n",
+ " col_2 | \n",
+ " col_3 | \n",
+ " col_4 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1996-07-28 | \n",
+ " 48.625967 | \n",
+ " 52.134963 | \n",
+ " 54.580735 | \n",
+ " 50.648421 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1996-07-29 | \n",
+ " 55.700744 | \n",
+ " 52.610715 | \n",
+ " 47.412738 | \n",
+ " 40.943536 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1996-07-30 | \n",
+ " 41.565849 | \n",
+ " 49.986774 | \n",
+ " 49.325579 | \n",
+ " 52.496111 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1996-07-31 | \n",
+ " 50.478720 | \n",
+ " 56.008773 | \n",
+ " 48.923986 | \n",
+ " 46.981537 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 1996-08-01 | \n",
+ " 55.374264 | \n",
+ " 54.960499 | \n",
+ " 53.971401 | \n",
+ " 43.300826 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " datetime col_1 col_2 col_3 col_4\n",
+ "0 1996-07-28 48.625967 52.134963 54.580735 50.648421\n",
+ "1 1996-07-29 55.700744 52.610715 47.412738 40.943536\n",
+ "2 1996-07-30 41.565849 49.986774 49.325579 52.496111\n",
+ "3 1996-07-31 50.478720 56.008773 48.923986 46.981537\n",
+ "4 1996-08-01 55.374264 54.960499 53.971401 43.300826"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data_size = 10000\n",
+ "\n",
+ "df = pd.DataFrame(\n",
+ " data={\n",
+ " \"datetime\": pd.date_range(end=\"2023-12-13\", periods = data_size),\n",
+ " \"col_1\": np.random.normal(50, 5, data_size),\n",
+ " \"col_2\": np.random.normal(50, 5, data_size),\n",
+ " \"col_3\": np.random.normal(50, 5, data_size),\n",
+ " \"col_4\": np.random.normal(50, 5, data_size),\n",
+ " }\n",
+ ")\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "detector = atics.get_detector(\n",
+ " method=\"POT\",\n",
+ " dataset=df,\n",
+ " anomaly_type=\"low\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "detector.reset_time_window(\n",
+ " analysis_type=\"historical\",\n",
+ " t0_pct=0.65,\n",
+ " t1_pct=0.25,\n",
+ " t2_pct=0.1\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "T0: 6500\n",
+ "T1: 2500\n",
+ "T2: 1000\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"T0:\", detector.t0)\n",
+ "print(\"T1:\", detector.t1)\n",
+ "print(\"T2:\", detector.t2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPZCAYAAAD+1mNdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXgU1/s28HuDJkAIHjQQ3B0KFHctxR2K9Yu7F3corsXd3Z3i7gWKa9ACIQQLSfb9g3f2N7s7MzszO5tNwv25Lq4r7I6cmR19zjnPMZnNZjOIiIiIiIiIiIiIiMiOh7sLQEREREREREREREQUWTGITkREREREREREREQkg0F0IiIiIiIiIiIiIiIZDKITEREREREREREREclgEJ2IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5EREREUUKrVq0QP358dxcjSlqyZAlMJhPOnz/v7qIAcE15WrVqhfTp0zuc7uHDhzCZTFiyZIlh6yYiIiKi6I1BdCIiIiLSRAiACv/ixo2LLFmyoHPnznj58qW7i+cUs9mM5cuXo1SpUvDx8YGXlxdy586NESNG4OPHj+4unoUQCFbz7+HDh+4uLhERERFRlBbT3QUgIiIioqhpxIgRyJAhA758+YLjx49jzpw52LVrF/755x94eXm5u3iahYWFoUmTJli3bh1KliyJYcOGwcvLC8eOHcPw4cOxfv16HDhwAClSpHB3UZEsWTIsX77c6rNJkybh6dOnmDJlit20RERERESkH4PoRERERKRL1apVUahQIQBA27ZtkSRJEkyePBlbt25F48aN3Vw67SZMmIB169ahd+/emDhxouXz9u3bo0GDBqhduzZatWqF3bt3R2i5Pn36ZFcpES9ePDRr1szqszVr1uDdu3d2nzvLbDbjy5cv8PT0NHS5RERERERRBdO5EBEREZEhypUrBwB48OCB5bMVK1agYMGC8PT0ROLEidGoUSM8efLEar5jx46hfv36SJcuHeLEiYO0adOiR48e+Pz5s8N1Xr58GcmSJUOZMmUQHBwMADh//jwqV66MpEmTwtPTExkyZEDr1q0Vl/P582dMnDgRWbJkwdixY+2+r1mzJlq2bIk9e/bg9OnTAIAaNWrA399fcnnFihWzVDBo2RdlypRBrly5cOHCBZQqVQpeXl4YOHCgw/2g1tevX9GzZ08kS5YM8eLFw6+//orXr19bTZM+fXrUqFEDe/fuRaFCheDp6Ym//voLABAYGIju3bsjbdq0iBMnDjJlyoTx48cjPDzcahlr1qxBwYIFkSBBAnh7eyN37tyYNm2arvIAwOzZs5EzZ07EiRMHqVKlQqdOnRAYGOhwewMDA9GqVSskTJgQPj4+aNmypar5iIiIiIjEGEQnIiIiIkPcu3cPAJAkSRIAwOjRo9GiRQtkzpwZkydPRvfu3XHw4EGUKlXKKpC5fv16fPr0CR06dMCMGTNQuXJlzJgxAy1atFBc37lz51CuXDnkz58fu3fvRvz48fHq1StUqlQJDx8+RP/+/TFjxgw0bdrUEviWc/z4cbx79w5NmjRBzJjSnTWF8uzYsQMA0LBhQzx48ADnzp2zmu7Ro0c4ffo0GjVqZPlM7b4AgDdv3qBq1arIly8fpk6dirJlyyqWXYsuXbrgypUrGDp0KDp06IDt27ejc+fOdtPdunULjRs3RsWKFTFt2jTky5cPnz59QunSpbFixQq0aNEC06dPR4kSJTBgwAD07NnTMu/+/fvRuHFjJEqUCOPHj8e4ceNQpkwZnDhxQld5hg0bhk6dOiFVqlSYNGkS6tati7/++guVKlXCt2/fZLfVbDbjl19+wfLly9GsWTOMGjUKT58+RcuWLZ3Yg0RERET0QzITEREREWmwePFiMwDzgQMHzK9fvzY/efLEvGbNGnOSJEnMnp6e5qdPn5ofPnxojhEjhnn06NFW8167ds0cM2ZMq88/ffpkt46xY8eaTSaT+dGjR5bPWrZsaY4XL57ZbDabjx8/bvb29jZXr17d/OXLF8s0mzdvNgMwnzt3TtM2TZ061QzAvHnzZtlp3r59awZgrlOnjtlsNpvfv39vjhMnjrlXr15W002YMMGq7Fr2RenSpc0AzHPnztVUfrPZbK5evbrZz89P8jvhN6tQoYI5PDzc8nmPHj3MMWLEMAcGBlo+8/PzMwMw79mzx2oZI0eONMeLF898+/Ztq8/79+9vjhEjhvnx48dms9ls7tatm9nb29scGhoqW1a15Xn16pU5duzY5kqVKpnDwsIs082cOdMMwLxo0SLLZy1btrTa/i1btpgBmCdMmGD5LDQ01FyyZEkzAPPixYtly0dEREREJMaW6ERERESkS4UKFZAsWTKkTZsWjRo1Qvz48bF582akTp0amzZtQnh4OBo0aID//vvP8s/X1xeZM2fG4cOHLcsR59r++PEj/vvvPxQvXhxmsxmXLl2yW+/hw4dRuXJllC9fHps2bUKcOHEs3/n4+AD43lpcqZWyrQ8fPgAAEiRIIDuN8F1QUBAAwNvbG1WrVsW6detgNpst061duxY//fQT0qVLBwCa9gUAxIkTB7/99pvqsmvRvn17mEwmy/9LliyJsLAwPHr0yGq6DBkyoHLlylafrV+/HiVLlkSiRImstqNChQoICwvD0aNHAXz/DT5+/Ij9+/c7XZ4DBw4gJCQE3bt3h4fH/726tGvXDt7e3ti5c6fssnft2oWYMWOiQ4cOls9ixIiBLl26OCwXEREREZEYBxYlIiIiIl1mzZqFLFmyIGbMmEiRIgWyZs1qCXTeuXMHZrMZmTNnlpw3VqxYlr8fP36MIUOGYNu2bXj37p3VdO/fv7f6/5cvX1C9enUULFgQ69ats0u9Urp0adStWxfDhw/HlClTUKZMGdSuXRtNmjSxCrbbEgLkQjBdilSgvWHDhtiyZQtOnTqF4sWL4969e7hw4QKmTp1qmUbLvgCA1KlTI3bs2LLlcIYQ2BckSpQIAOz2e4YMGezmvXPnDq5evYpkyZJJLvvVq1cAgI4dO2LdunWoWrUqUqdOjUqVKqFBgwaoUqWK5vIIwfSsWbNaTRc7dmz4+/vbBf/FHj16hJQpUyJ+/PhWn9sui4iIiIjIEQbRiYiIiEiXIkWK2A2eKQgPD4fJZMLu3bsRI0YMu++FwGZYWBgqVqyIt2/fol+/fsiWLRvixYuHgIAAtGrVym7Ayjhx4qBatWrYunUr9uzZgxo1alh9bzKZsGHDBpw+fRrbt2/H3r170bp1a0yaNAmnT5+2C6gKsmfPDgC4evUqateuLTnN1atXAQA5cuSwfFazZk14eXlh3bp1KF68ONatWwcPDw/Ur19f874QiFvmG01q/QCsWtLLlSE8PBwVK1ZE3759JZeRJUsWAEDy5Mlx+fJl7N27F7t378bu3buxePFitGjRAkuXLtVVHiIiIiIid2IQnYiIiIgMlzFjRpjNZmTIkMESXJVy7do13L59G0uXLrUaSFQuFYjJZMLKlSvxyy+/oH79+ti9ezfKlCljN91PP/2En376CaNHj8aqVavQtGlTrFmzBm3btpVc7s8//wwfHx+sWrUKgwYNkgzuLlu2DACsAvfx4sVDjRo1sH79ekyePBlr165FyZIlkSpVKs37IrLLmDEjgoODUaFCBYfTxo4dGzVr1kTNmjURHh6Ojh074q+//sLgwYORKVMm1ev08/MD8H2gU39/f8vnISEhePDggWJZ/Pz8cPDgQQQHB1tVVNy6dUv1+omIiIiIAIA50YmIiIjIcHXq1EGMGDEwfPhwu1bFZrMZb968AfB/LZHF05jNZkybNk122bFjx8amTZtQuHBh1KxZE2fPnrV89+7dO7v15cuXDwDw9etX2WV6eXmhd+/euHXrFgYNGmT3/c6dO7FkyRJUrlwZP/30k9V3DRs2xLNnz7BgwQJcuXIFDRs2tPpe7b6I7Bo0aIBTp05h7969dt8FBgYiNDQUAOy2x8PDA3ny5AGg/BtIqVChAmLHjo3p06db7buFCxfi/fv3qF69uuy81apVQ2hoKObMmWP5LCwsDDNmzNBUBiIiIiIitkQnIiIiIsNlzJgRo0aNwoABA/Dw4UPUrl0bCRIkwIMHD7B582a0b98evXv3RrZs2ZAxY0b07t0bAQEB8Pb2xsaNG+1ydNvy9PTEjh07UK5cOVStWhVHjhxBrly5sHTpUsyePRu//vorMmbMiA8fPmD+/Pnw9vZGtWrVFJfZv39/XLp0CePHj8epU6dQt25deHp64vjx41ixYgWyZ89ul44E+B6sTZAgAXr37o0YMWKgbt26uvZFZNenTx9s27YNNWrUQKtWrVCwYEF8/PgR165dw4YNG/Dw4UMkTZoUbdu2xdu3b1GuXDmkSZMGjx49wowZM5AvXz5L2hy1kiVLhgEDBmD48OGoUqUKatWqhVu3bmH27NkoXLgwmjVrJjtvzZo1UaJECfTv3x8PHz5Ejhw5sGnTJrs8+0REREREjjCITkREREQu0b9/f2TJkgVTpkzB8OHDAQBp06ZFpUqVUKtWLQDfB9Xcvn07unbtirFjxyJu3Lj49ddf0blzZ+TNm1dx+d7e3ti7dy9KlSqFihUr4tixYyhdujTOnj2LNWvW4OXLl0iYMCGKFCmClStXSg6WKRYjRgysW7cOy5Ytw4IFCzB48GCEhIQgY8aMGDp0KHr16oV48eLZzRc3blzUqlULK1euRIUKFZA8eXJd+yKy8/LywpEjRzBmzBisX78ey5Ytg7e3N7JkyYLhw4cjYcKEAIBmzZph3rx5mD17NgIDA+Hr64uGDRti2LBhloFntRg2bBiSJUuGmTNnokePHkicODHat2+PMWPG2A3KKubh4YFt27ahe/fuWLFiBUwmE2rVqoVJkyYhf/78uvcDEREREf14TGaO2kNEREREREREREREJIk50YmIiIiIiIiIiIiIZDCITkREREREREREREQkg0F0IiIiIiIiIiIiIiIZDKITEREREREREREREclgEJ2IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5EREREREREREREJINBdCIiIiIiIiIiIiIiGQyiExERERERERERERHJYBCdiIiIiIiIiIiIiEgGg+hERERERERERERERDIYRCciIiIiIiIiIiIiksEgOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIiIiIiIiIpLBIDoRERERERERERERkQwG0YmIiIiIiIiIiIiIZDCITkREREREREREREQkg0F0IiIiIiIiIiIiIiIZDKITEREREREREREREclgEJ2IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5EREREREREREREJINBdCIiIiIiIiIiIiIiGQyiExERERERERERERHJYBCdiIiIiIiIiIiIiEgGg+hERERERERERERERDIYRCciIiIiIiIiIiIiksEgOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIopAw4YNQ758+dxdDLdKnz49pk6d6u5iEBERERGpwiA6EREREZFKL168QJcuXeDv7484ceIgbdq0qFmzJg4ePOjuokVb8+bNQ5kyZeDt7Q2TyYTAwEB3F4mIiIiIfjAMohMRERERqfDw4UMULFgQhw4dwsSJE3Ht2jXs2bMHZcuWRadOndxdvGjr06dPqFKlCgYOHOjuohARERHRD4pBdCIiIiIiFTp27AiTyYSzZ8+ibt26yJIlC3LmzImePXvi9OnTlukeP36MX375BfHjx4e3tzcaNGiAly9fyi63TJky6N69u9VntWvXRqtWrSz/T58+PUaNGoUWLVogfvz48PPzw7Zt2/D69WvLuvLkyYPz589b5lmyZAl8fHywd+9eZM+eHfHjx0eVKlXw/Plzp/dFYGAgfv/9d6RIkQJx48ZFrly5sGPHDsv3GzduRM6cOREnThykT58ekyZN0r2u7t27o3///vjpp5+cLjcRERERkR4MohMREREROfD27Vvs2bMHnTp1Qrx48ey+9/HxAQCEh4fjl19+wdu3b3HkyBHs378f9+/fR8OGDZ0uw5QpU1CiRAlcunQJ1atXR/PmzdGiRQs0a9YMFy9eRMaMGdGiRQuYzWbLPJ8+fcKff/6J5cuX4+jRo3j8+DF69+7tVDnCw8NRtWpVnDhxAitWrMCNGzcwbtw4xIgRAwBw4cIFNGjQAI0aNcK1a9cwbNgwDB48GEuWLHFqvURERERE7hLT3QUgIiIiIors7t69C7PZjGzZsilOd/DgQVy7dg0PHjxA2rRpAQDLli1Dzpw5ce7cORQuXFh3GapVq4bff/8dADBkyBDMmTMHhQsXRv369QEA/fr1Q7FixfDy5Uv4+voCAL59+4a5c+ciY8aMAIDOnTtjxIgRussAAAcOHMDZs2dx8+ZNZMmSBQDg7+9v+X7y5MkoX748Bg8eDADIkiULbty4gYkTJ1q1riciIiIiiirYEp2IiIiIyAFx624lN2/eRNq0aS0BdADIkSMHfHx8cPPmTafKkCdPHsvfKVKkAADkzp3b7rNXr15ZPvPy8rIE0AEgZcqUVt/bypkzJ+LHj4/48eOjatWqktNcvnwZadKksQTQbd28eRMlSpSw+qxEiRK4c+cOwsLCZNdNRERERBRZsSU6EREREZEDmTNnhslkwr///mv4sj08POyC9N++fbObLlasWJa/TSaT7Gfh4eGS8wjTKFUI7Nq1y7JuT09PyWnkPiciIiIiiq7YEp2IiIiIyIHEiROjcuXKmDVrFj5+/Gj3fWBgIAAge/bsePLkCZ48eWL57saNGwgMDESOHDkkl50sWTKrwT7DwsLwzz//GLsBKvn5+SFTpkzIlCkTUqdOLTlNnjx58PTpU9y+fVvy++zZs+PEiRNWn504cQJZsmSx5E0nIiIiIopKGEQnIiIiIlJh1qxZCAsLQ5EiRbBx40bcuXMHN2/exPTp01GsWDEAQIUKFZA7d240bdoUFy9exNmzZ9GiRQuULl0ahQoVklxuuXLlsHPnTuzcuRP//vsvOnToYAnKR0alS5dGqVKlULduXezfvx8PHjzA7t27sWfPHgBAr169cPDgQYwcORK3b9/G0qVLMXPmTN0Dmr548QKXL1/G3bt3AQDXrl3D5cuX8fbtW8O2iYiIiIhICYPoREREREQq+Pv74+LFiyhbtix69eqFXLlyoWLFijh48CDmzJkD4Hu6lK1btyJRokQoVaoUKlSoAH9/f6xdu1Z2ua1bt0bLli0twXZ/f3+ULVs2ojZLl40bN6Jw4cJo3LgxcuTIgb59+1rynRcoUADr1q3DmjVrkCtXLgwZMgQjRozQPajo3LlzkT9/frRr1w4AUKpUKeTPnx/btm0zanOIiIiIiBSZzGpHSSIiIiIiIiIiIiIi+sGwJToRERERERERERERkQwG0YmIiIiIyC1WrlyJ+PHjS/7LmTOnu4tHRERERASA6VyIiIiIiMhNPnz4gJcvX0p+FytWLPj5+UVwiYiIiIiI7DGITkREREREREREREQkg+lciIiIiIiIiIiIiIhkMIhORERERERERERERCQjprsL4Grh4eF49uwZEiRIAJPJ5O7iEBEREREREREREVEkYDab8eHDB6RKlQoeHvLtzaN9EP3Zs2dImzatu4tBRERERERERERERJHQkydPkCZNGtnvo30QPUGCBAC+7whvb283l4aIiIiIiIiIiIiIIoOgoCCkTZvWEkOW49Ygevr06fHo0SO7zzt27IhZs2bhy5cv6NWrF9asWYOvX7+icuXKmD17NlKkSKF6HUIKF29vbwbRiYiIiIiIiIiIiMiKozTgbh1Y9Ny5c3j+/Lnl3/79+wEA9evXBwD06NED27dvx/r163HkyBE8e/YMderUcWeRiYiIiIiIiIiIiOgHYjKbzWZ3F0LQvXt37NixA3fu3EFQUBCSJUuGVatWoV69egCAf//9F9mzZ8epU6fw008/qVpmUFAQEiZMiPfv37MlOhEREREREREREREBUB87dmtLdLGQkBCsWLECrVu3hslkwoULF/Dt2zdUqFDBMk22bNmQLl06nDp1yo0lJSKKnEJDQzFq1CicPHnS3UUhIiIiIiIiIoo2Is3Aolu2bEFgYCBatWoFAHjx4gVix44NHx8fq+lSpEiBFy9eyC7n69ev+Pr1q+X/QUFBqtYfGhqKkJAQzeWm6CF27NiIGTPSnA5EuixYsACDBw/G4MGDEYk6GRERERERERERRWmRJmq4cOFCVK1aFalSpXJqOWPHjsXw4cNVT282m/H48WP8999/Tq2Xor6kSZMiXbp0DgcSIIqsbty44e4iEBERERERERFFO5EiiP7o0SMcOHAAmzZtsnzm6+uLkJAQBAYGWrVGf/nyJXx9fWWXNWDAAPTs2dPy/6CgIKRNm1Z2eiGAnjp1asSPHx8eHpEmww1FkPDwcAQHByMgIAAA4Ofn5+YSERERERERERERUWQRKYLoixcvRvLkyVG9enXLZwULFkSsWLFw8OBB1K1bFwBw69YtPH78GMWKFZNdVpw4cRAnThxV6w0NDbUE0JUC8xT9xY8fHwAQEBCAkJAQZM6c2c0lIiIiIiIiIiIiosjA7UH08PBwLF68GC1btrTKSZ0wYUK0adMGPXv2ROLEieHt7Y0uXbqgWLFi+OmnnwxZt5ADXQig0o9NOA6OHj0KAAykU5TDPOhERERERERERMZzexD9wIEDePz4MVq3bm333ZQpU+Dh4YG6devi69evqFy5MmbPnm14GZjChYD/Ow5CQkJw6tQpZMqUifnRKUphEJ2IiIiIiIiIyHhuD6JXqlRJNvATN25czJo1C7NmzYrgUtGPzNPTE8HBwfj27Rtix47t7uIQERERERERERGRG7EJNpENk8kEs9nMVr1ERERERERERETEIHpUdPToUdSsWROpUqWCyWTCli1b7KYxm80YMmQIUqZMCU9PT1SoUAF37tyxmubt27do2rQpvL294ePjgzZt2iA4ONhqmqtXr6JkyZKIGzcu0qZNiwkTJtita/369ciWLRvixo2L3LlzY9euXYrlX7JkCUwmE0wmE2LEiIFEiRKhaNGiGDFiBN6/f69pXzx8+BAmkwmXL1/WNB9RdMSKHyIiIiIiIiIi4zGIHgV9/PgRefPmVUxzM2HCBEyfPh1z587FmTNnEC9ePFSuXBlfvnyxTNO0aVNcv34d+/fvx44dO3D06FG0b9/e8n1QUBAqVaoEPz8/XLhwARMnTsSwYcMwb948yzQnT55E48aN0aZNG1y6dAm1a9dG7dq18c8//yhug7e3N54/f46nT5/i5MmTaN++PZYtW4Z8+fLh2bNnTuwdIiIiIiIiIiIiIuMwiB4FVa1aFaNGjcKvv/4q+b3ZbMbUqVPxxx9/4JdffkGePHmwbNkyPHv2zNJq/ebNm9izZw8WLFiAokWL4ueff8aMGTOwZs0aSxB75cqVCAkJwaJFi5AzZ040atQIXbt2xeTJky3rmjZtGqpUqYI+ffoge/bsGDlyJAoUKICZM2cqboPJZIKvry9SpkyJ7Nmzo02bNjh58iSCg4PRt29fy3R79uzBzz//DB8fHyRJkgQ1atTAvXv3LN9nyJABAJA/f36YTCaUKVMGAHDu3DlUrFgRSZMmRcKECVG6dGlcvHhR874mIiIiIiIioshlxowZaNSoEUJDQ91dFCL6QTCILmI2m/Hx40e3/DMyDcODBw/w4sULVKhQwfJZwoQJUbRoUZw6dQoAcOrUKfj4+KBQoUKWaSpUqAAPDw+cOXPGMk2pUqWsBtesXLkybt26hXfv3lmmEa9HmEZYjxbJkydH06ZNsW3bNoSFhQH43uq+Z8+eOH/+PA4ePAgPDw/8+uuvCA8PBwCcPXsWAHDgwAE8f/4cmzZtAgB8+PABLVu2xPHjx3H69GlkzpwZ1apVw4cPHzSXiyiqYDoXIiIioh/Xw4cPLe9RRNFd165dsXbtWmzYsMHdRSGiH0RMdxcgMvn06RPix4/vlnUHBwcjXrx4hizrxYsXAIAUKVJYfZ4iRQrLdy9evEDy5Mmtvo8ZMyYSJ05sNY3Q0lu8DOG7RIkS4cWLF4rr0Spbtmz48OED3rx5g+TJk6Nu3bpW3y9atAjJkiXDjRs3kCtXLiRLlgwAkCRJEvj6+lqmK1eunNV88+bNg4+PD44cOYIaNWroKhsREVFkcOvWLaxevRo9evRAwoQJ3V0cIqJIKzQ0FF++fHHbO15EWrduHRo2bIg6depg48aN7i4OUYRhQzkiiihsiU6RitCS1mQyAQDu3LmDxo0bw9/fH97e3kifPj0A4PHjx4rLefnyJdq1a4fMmTMjYcKE8Pb2RnBwsMP5iKIytkQn+jFky5YNw4cPR/fu3d1dFCIy2JcvXyw9Lsl5uXPnRoIECfDmzRt3F8XlJk6cCACWnrlERERkLLZEF/Hy8kJwcLDb1m0UoUX2y5cvkTJlSsvnL1++RL58+SzTvHr1ymq+0NBQvH371jK/r68vXr58aTWN8H9H04hbhWtx8+ZNeHt7I0mSJACAmjVrws/PD/Pnz0eqVKkQHh6OXLlyISQkRHE5LVu2xJs3bzBt2jT4+fkhTpw4KFasmMP5iIiIogo9qdOIKPL68OEDEidOjDx58uDChQvuLk608O+//wIADh06hPr167u5NK4VI0YMdxeBiMilrl69iu7du2PMmDH46aef3F0c+gGxJbqIyWRCvHjx3PJPaHlthAwZMsDX1xcHDx60fBYUFIQzZ86gWLFiAIBixYohMDDQ6gH90KFDCA8PR9GiRS3THD16FN++fbNMs3//fmTNmhWJEiWyTCNejzCNsB4tXr16hVWrVqF27drw8PDAmzdvcOvWLfzxxx8oX748smfPbsnFLhDytdvm/jtx4gS6du2KatWqIWfOnIgTJw7+++8/zWUiIiIiIv3MZjN7Sqn0999/IzQ0FBcvXnR3UUiFQ4cOYfr06ZqP77CwMIwbNw4nT540tDznzp0zdHlEUQXvMT+O8uXL4/Dhw7riTURGYBA9CgoODsbly5dx+fJlAN8HEr18+bIlVYnJZEL37t0xatQobNu2DdeuXUOLFi2QKlUq1K5dGwCQPXt2VKlSBe3atcPZs2dx4sQJdO7cGY0aNUKqVKkAAE2aNEHs2LHRpk0bXL9+HWvXrsW0adPQs2dPS1m6deuGPXv2YNKkSfj3338xbNgwnD9/Hp07d1bcBrPZjBcvXuD58+e4efMmFi1ahOLFiyNhwoQYN24cACBRokRIkiQJ5s2bh7t37+LQoUNW6wa+D0bq6emJPXv24OXLl3j//j0AIHPmzFi+fDlu3ryJM2fOoGnTpvD09HR63xNFZnyAJPqx8JynyC4sLAwFCxZEzZo13V2UKMHIRjU/in/++QeZM2fGqlWrInzd5cuXR7du3XDo0CFN8y1btgwDBgxAiRIlDC0P0wBRdHbz5k3cvn1b8ruIeB66desWSpcujQMHDrh8XSSPDSPJ3RhEj4LOnz+P/PnzI3/+/ACAnj17In/+/BgyZIhlmr59+6JLly5o3749ChcujODgYOzZswdx48a1TLNy5Upky5YN5cuXR7Vq1fDzzz9j3rx5lu8TJkyIffv24cGDByhYsCB69eqFIUOGoH379pZpihcvjlWrVmHevHnImzcvNmzYgC1btiBXrlyK2xAUFISUKVMiderUKFasGP766y+0bNkSly5dsqSg8fDwwJo1a3DhwgXkypULPXr0sOT6E8SMGRPTp0/HX3/9hVSpUuGXX34BACxcuBDv3r1DgQIF0Lx5c3Tt2tVuIFUiV5g1axZq1qyJL1++RPi6GVCjyOTLly+4efOmu4tBRG50+fJlXLp0CTt37nR3USiaatasGe7evYumTZu6rQwPHz7UNL2QYoaI1Pn48SNy5MiBrFmzIjQ0FGFhYXY91F2tXr16OHr0KCpWrBih6yWiyIU50aOgMmXKOAyWmUwmjBgxAiNGjJCdJnHixA5bbeTJkwfHjh1TnKZ+/fqacgy2atUKrVq1UjVthQoVcOPGDavPbLe9bdu2aNu2rdVn+fPnt+vSWK9ePdVlJNJL6IWxaNEidOzY0c2lIXKfkiVL4vz589iyZYulgpO+Cw0NxeXLl5E/f36nctiy4owoYvTq1QtXrlzBnj17EDMmX58ikytXrri7CETkYuLWx1+/fkXVqlUdxiiM9uLFiwhdHxFFTmyJTkTkAu4apJgosjh//jyA7xVKZO33339H4cKF8ccff7i7KET0/4WHh6Nhw4YYNmyY3XeTJ0/GwYMHsX//fpeWgelcfgysAHWvgQMHoly5clbjflHUEtEBdIDnbVTz5MkTDBgwAE+fPpWdpm/fvujQoUMEloqiAwbRiYiiCT7cEUUNQsWCMAaIXjznyR2eP3+OrVu3Rrv8y0ePHsW6deswfPhw2WlCQkJcWgYG0V3Hlfs2Kv5uP/L9Y+zYsTh8+DC2bt3q7qKQQSLieP6Rz5moqEqVKhg3bhxq1KiBT58+oUOHDlYV4aGhoZg4cSLmzp2rKiXXoUOH0KFDB6cbyr169YrHUhTHIDqRCrzQEakXGhrKc4YseCyQI2azGTdu3Ih2QdnoKkuWLKhduzYWLlyoab7Ifi34/Pmzw2ki+zYQqdGnTx+kS5fuhx+g7+vXr+4uAkUhkfX6/+HDh0hbNncSUgJfuXIF48ePx9y5c1GpUiXL9+J9pqZXSvny5TF37lyMHj1ad5k2b96MFClS4Pfff9e9DGeZzWZe+5zEIDqRAydOnECSJEmwdOlSdxdFty9fvmge9Iic445WSRH1ABUWFoawsDDJ7z5+/IhUqVKhatWqEVIWIr3H/b1793D48GGDS/O9Emnt2rV49uyZ4cuOTHr37o0BAwYYsqxhw4YhZ86c6Nu3ryHLI9cSWmFpHSw0OrzkK23D7NmzMXbsWKeWHxVaNDMvsPPcfS78+eefePr0KaZNm+bWcribu3+HH5nZbMbly5fx6dMndxclynr+/DnKlSsHb29vNG/e3C1lCAoKwrx58/D69Wu3rN/Wixcv8PHjR7vPHcVBtFwL7t+/r7VYFoMGDQIAzJ8/X/cynNWyZUvEjRuXsSEnMIgOsOUTAfi/48D2IlqnTh28e/dO9WCokVG+fPmQIUMGu8FW6cdjNpsRGBioe/6wsDBkzpwZ2bNnl7x27tu3D69fv8bevXvtvrt8+bLdQMHudPLkSVy7ds3dxXDK69evkStXLvz555/uLopbDB8+HClSpMCjR480z5spUyaUK1cOly5dMrRMU6ZMQaNGjZArVy5DlxuZvHz5EpMmTcK4ceMkX1a0EgZBnzRpktPLIuO9e/cOU6dOxfPnz60+V/PSKQ4KR4eAldw2mM1mdOrUCQMHDsTjx491L19LEP3Dhw+616PX6NGjkTJlyh/2nuMOJ0+exKpVq9xdjGgpOlyToqoNGzYgf/78KFGihOWz06dPo0OHDnj79q3d9OLfyl2/W2Q7Xho1amRpDLJy5Uq3lKFdu3b4/fffUaVKFbesXywgIAApU6aEr6+v3XdG/nZRobLbbDZj8ODBWL58ud13wmezZs2K6GJFGz90ED127NgAOAAgfSccB7b5LiPbDVOPW7duAQDWrl3r5pL8OCLrDbZp06ZIlCgRTp06pWv+58+f48GDB7hz547kC7zcdgcGBiJ//vzImTNnpKi4fPbsGUqUKIE8efK4uyhOGT16NK5fv44+ffo4tZzdu3e7bABQV15Dhw0bhtevX2Pw4MG6l3Hx4kUDSwTs2LEDwPfAo6sZtW/nzp2rKT+7+D4ZGc5nKadOnULx4sXx4MEDdxclyvvtt9/Qo0cPVKhQQfL7I0eOYNKkSQ6Px+jwPKUURBcY9V7x6tUr5MmTB1OmTLH7buvWrfD29o7wwYmF9Tl7zyH1SpQogaZNm+LChQuGLzs6nJNRxYYNG7BlyxZ3FyPSWLJkCYDvDWwExYoVw9y5c9GzZ0/FeXncfnf69Gl3FwHr168HYPyztB5Hjx4FoP4eHJ2Po1OnTmHUqFFo0aKFu4sSLcV0dwHcKWbMmEiaNCkCAgIAAPHjx4eHxw9dr/BDCg8PR3BwMAICAhAYGGiXpiKyBkNd5dOnTzh06BDKly8PT09PzfPXr18fX79+xdatW9267z58+IAECRK4bf2RNZ3L6tWrAQATJkzA5s2bJad5//49EiZM6HBZUtsot93i7t/h4eFuv9bqabkcGRmV065atWoAgOLFiyNbtmyGLDOqkDtvQkJCECtWrGh/DzCbzejQoQOA762a0qdPr2qeyK548eIAAH9/f1XlPXDgAHbs2IFx48Yhbty4ri5elLJ9+3YAsOtJJOzXMmXKAAAyZ86MWrVqRWjZIpqaY8mZ80N8vRk1ahSuXbuGnj17okePHlbTderUCcD3itRRo0bpXh9FHffu3UPBggXdXYxoJaLuZYGBgahfvz6A72Mv8B6j/J4kNP6SI/W7RYXnEqO5Yps3bdoE4HtP/OjEyEr+qPBe8ObNG3cXIVpTFURPlCiR6oNFqvtNZJYuXTqYzWZLIJ1+XIGBgXj58iXCwsIQK1YsxIzpXB3TlStX8OXLFxQtWtThtN++fUOsWLFULffhw4dImzYtYsSIoblMtjeIt2/fYufOnahTpw7ixYsHAGjVqhXWr1+PZs2aSXYBUhIcHIwNGzYAAJ48eYJ06dJpLqMRBg0ahDFjxmDr1q1WL/Tjxo3DunXrcPjwYVVBYmcdOnQI69atw8SJEyMkoK/lAUBu2nXr1qFhw4YYMmQIhg8fbvXd06dPdfdmEN9DImvL1ahI7W++b98+ZMmSxWGA9OXLl1EyiG70i0RAQADSpk2Lhg0bWiqe3KFbt254+/Ytli1bJvkcZsR2i89HPalZosLLhBoVK1YEAPj6+qJ///6a5//27RvCwsKiVHDk2LFjOHPmDHr16iX5O4aEhGh61rh37x7Onz+PnTt3on///ogTJ47V95E9yOFMgNwVqQa+fPliyHIoenDF+RPZz0lXi6jtF/fc/PbtW5S6T7iK0rNDZO3VFN3Plw8fPqBu3boAvr/TC7GB6Erv7+nK594dO3ZgzJgxWLp0KTJnzuyy9ZBzVEUJp06d6uJiuI/JZEL69Olx/fp13L9/H8mSJVMdzPxRvHz5Elu3bgUAtG/f3uq7efPm2U1vO41Wx48ft7R2at++PS5evIjz58+jVq1akjmupIjLpaY83759Q3h4OEJCQhAUFIQ8efJYXhz1XCjNZjPy5csH4HtNYOLEiWWnnTRpEnr37o3Dhw9bWnPJWb9+PRo0aIA6depg48aNqsoSGhpqVS6xqlWr4uzZszh06BAWL15sWQcArFixwiqIHhQU5LC3hvg7NaNcu8qYMWMAAF27drUKoguD4E2dOhVDhw51eTnKly8PAEiQIAEmTpzo8vXZevXqFZIkSaIpCCK0SB0xYoRdED1TpkwOWz7LnS/iYyMqBNH79OmDXbt24fTp027t0WCEv//+G5UrVwYQ/V8AjDJ37lyYzWasWbNGcxDdqIdrs9mM6dOnAwCGDBnisodp8fno7h4ianz8+BEXLlxAiRIlJK9tAQEBOH/+vO7l6xkwymw2w8/PD+/evUNgYKBd8NhZDx48QNq0aZ2u3LdVqlQpAED69OlRr149q+9CQkKQMmVK+Pj4qAocA9+P/cKFCwMAYsWKhYEDBypOH9lUr17d4TRq94Ues2bNQufOnS3/V7qWRFTlVVhYmK5GG0Z68+YNkiRJ4vL1TJo0CRs3bsTevXtdft/Xc7xE9vPHaE+ePMGNGzdQqVIlxV6O8eLF0/17/Wj71J0ePnyIatWqoWfPnmjbtq1Ty4oKv9urV68wfvx4tG3bFtmzZ3d3cVQRD/L6+fNnVUF0Z36L0NBQw59rXGH79u3w8vKy/N+o+++TJ0+QNm1aq89q1qwJ4Hv61bNnzxqyHjKeqqO2ZcuWri6H25UtWxZfv37F7du33V0Ul/n8+TOePn2K9OnTa6ooePPmjaVLyJ07d+y+s2U7jVbPnj2zWp8wQOGmTZssLcUcEZdLa3myZcuGcuXKaZrHlviG8vz5c8Ugeu/evQEAbdq0wb179xSXK3TfFbpaqSFcjKUIF+fVq1dbguhSHjx4AH9/f5QtWxaHDh2SnU58UxEH7yMbo1JgKBHvC2dG8dbr3LlzKFKkCMqXL48DBw7Yfa/noceZ/RbVWqILg6YtXrwYXbt2dXNp1Pn06RP69euHX3/91eoaduLECTeWKmJEhRcqrcTbJFcpacR2i1OYRYUgeo0aNfD3339j3Lhx6Nevn933/v7+dmObaKE3uCUMunn37l3kzJlT9/pt7dixAzVr1pS9liv59OkTYseO7fAlVeo56c6dO3j79q1iD1OpILpAatBmuX17584dXLp0CfXr14+UPRuCgoIcTmNES3RxAB2QbqiiVUhICMLCwnSl5/vtt9+wY8cO3Lp1S/E51pX++OMPjB49GkuWLHH5+6jwPD5jxgy7CiDBf//9h6RJk9p9HhHHrZ7j6u+//0bKlCmRNWtWh8u+ffs2smTJEmnOQaE36+rVqzF8+HDUqFHDqkHK69evkTJlSnh4eNil4lTLlc8OFy9exLJlyyKk0U5U0K1bN9y8eRPt2rVD27ZtnaokjCwt0detW4fnz5+jW7dudtO2bt0aO3fuxOTJky3pASM7Z8/9n3/+Gbt27YK3t7fDaadPn45evXrh0KFDKFmypFPrVUNvCqCXL1+6LE1dq1atcPDgQcnvmI4lctNV9XPv3j0sXrwY9+7dw7Rp05A8eXLs3r0b6dKlM/TFISJ5eXmhSpUqyJ07Nz59+hQtX8hbtmyJZ8+eoXTp0poGIrpx44Zl8A/bkZcnTZpkN72zozPfvXvXkq+4SpUqlnVkyJBB9bLF5VI7j8lkgpeXF1KnTm1obaPeBzspr1+/1jzPnj17LH/rPa6FFunCCOByxMsXB9Hfvn2LS5cuoWzZspEiSBMdz2/AervmzJkDALI3ZzXLcERLTnTx727kOSHFbDYb9hLo6rIaacKECZg5cyZmzpyp+xiPCueG1O8rV+4pU6Zg+vTp+Pvvv+Hn5ye7vA8fPmDSpEmoV68ecuXK5VT5jGyJHhH0tER353Hy999/AwD69++PHDly2FUUOxNAB+y3TRg3Reql8PHjx+jXr59VRZvRAaiZM2cC0H4tDw4ORoIECeDv7++wgl7LtdwZUsfNkydPkCVLFgDfW6//+uuvhq/XWeKef67OiW60NGnS4O3btwgODtacQkJ49l+6dKldTvaIMnr0aADfKxicDaKbTCaYzWZs2LABhQoVQoYMGSSn+/z5s+TnQs/RyZMnu2V/SB1XV65cwaBBgzBq1ChLD1jBzZs3UbZsWdl5xZ/37dsXf/75JwYPHowRI0YYW3AntWzZEiEhIfj3338tQfTTp0/j6tWrAOwbZrx69QqjRo1Cu3btkDt3bsVlu/JcFfLXv3371nIc/8jErZyBqJnOxVbDhg0BfE8HlyNHDqvvzp07Z/k7V65cuHHjhuGpfCJqP4SEhKBRo0YoX768pUGflBMnTmDy5MkYNmyYw2UKFQ8tW7Z0S2MzQN3++++//+w+M+r5yNF2R5WW+j8izb/KkSNHULVqVZQoUQJHjx7F6NGjkTx5cly5cgULFy605ENWKyAgAP369cPu3bvx6dMnZMqUCYsXL0ahQoUAfD+4hw4divnz5yMwMBAlSpTAnDlzXNKt2cvLK1rnHhIeNvbu3Wv3O92+fRve3t6S6VI+f/5suYDYPqBJXVhsp9HK09PTan3C3ylTppRctpAzUnxTEpdLmCckJASjR49G5cqVLQOOuYr4ohwVWt06uhlIfX/r1i2kTJlStrZZ3HKyYMGCePjwIebPn6+pC5+eYOjDhw8tf7szn6i43BH1kGNETnRnyf1eEdUSfdOmTejYsSPWrl2L0qVLO728yNIiSw1HgTJXUjpXbY+1DRs24MaNGxg8eLDkPNevX0e6dOkku2eHhISgYMGCyJ49O9atW+ewXD179gTwPUCglM+/f//+mD17NoYPH+50JYwR59bAgQMt92xXM6ol+tq1a2EymdCgQQMjiqVKrVq1XH59rVChAg4fPox79+7B39/f6rvGjRvj5MmTWLNmjeWzyHLNEF7g9b6cqtkOpZboaqYH/m9QUuB7YMzIIHpAQAAWLVqE9u3bI0WKFIYs05XpXIxmNpstjS/u3bsXZRs6Ad8rhYoXL45GjRpZVVoJ13i11qxZgyZNmgDQ/psJLdWlBnqNCFLlLVWqFIKCgnD06FG7HhP//POP6mULve9GjhypKohuNpvx9etX1QHBc+fOIVGiRMiUKZPqMgnEz4yNGjVCvnz5LOkZpfz222/YtWsXZsyYESmCsVK9cn4EDx48wOnTp9GgQQPEiBHD0H1t9MCiT548wbt37/DkyRN8+PABjRo10jS/uNXwjRs38Mcff+DVq1eWz27fvo0cOXLgwYMHCAwMhJeXF0JCQhA7dmzdZXY18f5csmQJNm/ejM2bNysG0QH7yhIt63ElvdcCoxsZiNejFCC/f/8+/P39cefOHcNTBAoiy/NqVKT5bal///4YNWoU9u/fb3XilytXDqdPn9a0rHfv3qFEiRKIFSsWdu/ejRs3bmDSpElIlCiRZZoJEyZg+vTpmDt3Ls6cOYN48eKhcuXKHGzHCbYnzPPnz5E1a1akTJnSTSWypjYQA3x/+ffx8YGPj4/D9CEzZ87EiBEjUKJECd3lCQwMtPru+fPnePDggWJZI1MQXe/Ln21g5cqVK8iWLZvdwKFyLdGFwLaQb91RGQMDAy0tSLSc6w8ePLBqWfTu3TvV8xpNfNxs3rw5wtcfEQ8lUuvQE0Tft28fChUqhCtXrjhc54cPHxRbmtatWxcvX7605AAHvh+LWgZM5EDT2gQEBCBNmjR2OfTl1K9fH0OHDsXRo0ftvjt69Chy5colmz/y+PHj+Oeff+yuJVLH4pAhQyx/O7o/GJF3cNasWboGpJQyduxY7Ny50+F0js7z0NBQVK9eHSNHjpSdxtmc6EJL/kaNGqFhw4YIDg7G3bt3sX79ekv5rl69itSpU2PhwoWal++I0Wn4bPep0ANr2bJlLl+3UV69euX0eEZqjgXbffXs2TPL32oHwnVlC7TKlStjyJAhqFOnjlPLUVMpbpvO5du3b/jf//6nevwaVzDqOSCyVBCcOnXKLm3ClClTNC3jyJEjRhYpQkn9DkLgXDxwZURo3bo1PD09cevWLYfTPn78GEWKFLFrqHb37l1UrFjRYS8b8bVo7dq1igF04HsaFbUiy7EdHfn7+6NJkyay6UKVAnjh4eGKva+N/t3SpUuHvHnzokaNGmjcuLHse4CaQGuFChUk3/tu376Nb9++4cKFC9i9ezfixIlj6WkWWYi3IyAgAG3btsWlS5fs4h/RhbsHFnU03siTJ09w4cIFXctmgNy1NL8tXbt2TbKVSPLkySVbJSsZP3480qZNi8WLF6NIkSLIkCEDKlWqhIwZMwL4fmBPnToVf/zxB3755RfkyZMHy5Ytw7Nnz7BlyxatRScZjgJXWlvU6j3ZpdYnJtWi4u3bt/j69Su+fv2KwYMHKy5XGKxUEBoairFjx+LMmTOqy5YoUSJcunTJ8v9UqVLB39/f7uYiFUQ/efIkXrx4IbvsyHyxs32Z3rVrFwDg/fv3svNIBa3UHD+//fYbEiVKhAULFuD69euaznWlfLHiVDSR+aE5ODgYR44ciVSVL3LU7scvX75YBkgE7IPolStXxoULF1CrVi28fv1athVDUFAQvL29LfcIJeLWtblz50b8+PFVPQSGhoYiTZo0lv8bcV6Gh4dj8+bNePr0qep5zp8/j2LFiuH48eNOr9/VRowYgWfPnqnqvin28uVLu8+EXlJ6KzLEx6RS4NiWEb9z586dMX78eLt76uTJk1G7dm1DBlt+8uSJptyMW7Zswa5du6wqFGw52xLdbDZbnbNfvnxB5syZ0aBBA0sA8bfffsOzZ880Dyb2/PlzycoWsaxZs2o6t6Ia2+vs4sWLLfdgOb/88gu2bdumeh3OtLQ6efKk5e/x48db/ja6paAe169fB/C9jHny5MG+fft0LUe8Lzp37owGDRoobovZbMbChQvx119/2Q3Y6irv3r1DmTJlrCqqtD5HBAQEYOPGjQgLC7O6Z0cnUeHZyhWMbHw2YMAAS6ofqbSe3759w5YtWyxxgZs3b0oup0mTJjhw4AAqVKiguD6tA9tquZ9H5vcBZ3z+/BmbN29WNZ6Dq0lVXPXp0wdbt26VnefcuXNInjy51f1FzNW/m9Z81OJjThgfRYnQ0r1Lly4IDw/XHEMTGL0fxMtr3rw5Fi5ciAIFCmi6bmp9ntayDSEhIbKNdsPDw2WvNVrXvXbtWuzevRuAc+8HBw8eRKFChWQr9tSkatH6G4eGhmLt2rXR+rk4MtD8tuTj4yN5cbh06RJSp06taVnbtm1DoUKFUL9+fSRPnhz58+fH/PnzLd8/ePAAL168sLq5JkyYEEWLFsWpU6e0Fp3+vw8fPmD48OGaLzSCw4cPo2PHjggODpb8XmtLb1tKFyvbh0DxtOPGjdO0nuLFi2PgwIH46aefNJXnzz//xIEDB6xaw4pTiNgKCwvDsWPHUKJECbe39nd1jat4+XpzSS9dutTq/0bkpB47dqzuwWL//PNP+Pn54fHjx06XQ41y5cqhTJkymDFjhuZ5jRjYzFlSx8ro0aOtWouFhYVh0aJFdg8Vjx8/RvLkyZE8eXLJZQsVXmoeDDw8PPDx40csX74c//77LwDg2LFjivM8ePDALrArF3zcu3cvcuTIoaoH1tKlS1GnTh3Z/KtShN5degfbCQ0NRatWrXS1/F21apXl+Lty5Qratm2rGNSODEEJs9mMIUOGIG3atKpeYGzntaV0zbt58yYGDRok29PF9t7Yq1cvbN26VTadjJZcqQ0bNsT27dst/3d0nqvpVmtETnS5ynahhaGWgaYXLlxoGYcjVapUKF26tMPxOMSV22qtX78ejRs3VuyloqfBhisrxG/duoXWrVujevXqitNp7Rnav39/3L17V3N5zGYz9u/frziNeH9MmzZNc1dvo1y7ds2qh5Jeb9++xfr16y0BeoFSq/yIMGrUKBw5csSqokrrc0CmTJlQr149zJ8/X3KgPDKO3gGM9fL09ES3bt0QGhqqOce/2OPHjx2+b02YMAG//vqrJXWm3DrUniMMoqtnNptRr149eHl5oU6dOpZKvIcPH2L06NGKA0Xv2bMHfn5+OHTokMvLKaQPcmTatGmWv9W+45jNZvzzzz8uGdNIab16A8358uVDsmTJIiy2pbZnrrjxYmR4zgeANm3aoFixYpLfxYgRQ7HxjNp0LgEBAWjUqBGqVaumv6D/X4UKFXDhwgVUrVpVshy2QXS9DRDF5syZg0aNGqFDhw6Wz44cOaLpOZwc0xxEb9SoEfr164cXL17AZDIhPDwcJ06cQO/evdGiRQtNy7p//74lv/nevXvRoUMHdO3a1RJEE1rt2uYxTJEihWyL3q9fvyIoKMjqH9kbNmwYcuTIgU+fPlkNfOFo4Eqz2Yxy5cphzpw5si/+X79+1VSWdevWoXXr1pagtPjGsmLFCqeWLWfXrl1W263FqlWrULFiRfTq1cvyme3NxbYlulIL6cjuxYsXDrtOSjHqwdSZhyCz2YzTp09j4MCBdp+LXbx4EXny5LEahFXQp08fPH782G4Zjqgd+NCWcFzKdX9US5yjV4ra8qxevRpFixaVrEQ4dOiQqp4ntq2pt2/fjjZt2lgGXbIl94Bn25J35MiRsttpMpnQuXNn1felGzduwN/f3y7QHRQUJBmgq1KlCm7evOmwBRUAS+tHLQ8warpmK6W1Wb16NZYuXaq55S8ANG3aFF27dsW9e/eQL18+LFy40JJD1khGtlT9/PkzRo4ciYCAANl705cvX9CwYUO7ijqtcuTIgTFjxqBLly6S38u9wMsd11oG+nZFblXxNVZPANg2h7z4NxS2Wcty27ZtixYtWljd7w8dOoQRI0agSJEikvPoecFr0KAB1qxZg8mTJ1t9Li6/o/zcRtzn3rx5gyNHjqjqJq7Um02JmnK2a9fO6v960rk4MmjQIAwaNEjTPMD3Z7/Dhw8b9gxoBNv7kVKAZ/v27YaPcWC7Dqn3HanzIiwsTLYXodBQRRiYXG5dRvrw4YMhvXTUiujxYOQIlfvA92NJrmGSmLNlnz59Otq0aeNU7wi5QVeB78fW+vXrLY0m7ty5YzdNQEAAlixZgq9fv6qutFWzb8T0VmQeO3YMFSpUkGxkZjabcenSJUMqAY04Bo8cOYK+ffvaXRNfvHhhVUkiVHIWK1YMf/zxh911Xqxq1ap4/Pgxypcv73T5jCJ+PhFfz5Sef8eOHYvcuXOjffv2utcrN8aQ3G9XqlQpFClSRNWziMlksjpGhec6cYWBEmd6lWzbtg3x48fHqFGjZMsm9beW+7YrW6LbxoWcJbVu214BUtsjNPRQS67yyvYaqCaNoyNSPe7KlCmjOY5ByjQH0ceMGYNs2bIhbdq0CA4ORo4cOVCqVCkUL15c04sg8P1iWKBAAYwZMwb58+dH+/bt0a5dO8ydO1drsSzGjh2LhAkTWv6lTZtW97J+BBUrVrRqaVmlShXF6cUXGz15LDdv3mz3UNWwYUMsXrwYf/31FwDrC0rz5s2tprW9Oel9UHLUikvNOsR5zBwF0Z1Zj5H05EQXd8/Wshzb9Dm20928eVNVgFxpmi9fvuDo0aOKwUnxwC5yqlevjmvXrlnVFDsqx+vXrzV199P60OzsQ7ZRwYYmTZrg7NmzkgHDOnXqWAaBFqg5ji9fvqyrLOLfefPmzRgyZAgaN24sOa2HhwdWrVpl9ZlSkGPHjh0A7AMjgP1YCGJacq0bacuWLYgTJ47lumlLa1dUKeLt1jJAmVoLFiwwbFnibsFS586mTZuQNm1arFu3Dq1atbL67vPnz3aVqmqOY7lUYK64luu9HqiZz9kWRrZBdDHhZU/PPhGf72bz90Hm5Sq/HW3nt2/fMHz4cMnu47b3iMuXL0t2rVb7G2jd1qxZs6JMmTLYtGmT5Pfi9eo9ttT8xrZBWLl1DR061PK3Uu7hz58/SwYilHoVyO3jzp07o1y5clYtq8TCwsKwf/9+l42Doia/u+39Rfz/WrVqIW/evC4pm1x55D4rUaIEfHx8FHvXRdSgxoGBgfD29kaWLFkiZH2Atuud2WzWfX189uyZJVgsRZySKUeOHEiQIIHks4a4oYARwVepsR1sSY31pKYMc+fORYMGDeyeP8Tz5MuXD7/99huGDx8eKdJYCmULDw9HqVKlcPDgQfzyyy9W07x//x6tWrVCgQIF8PPPP7ujmBa3b9+29FidOHGi3dgXcserUAEbEa3Mz58/bxXIU+qt7Yh4e8THkdTAn8L3wvg8ixYt0r1eNeNo2L7rX7hwQbGlvyNSv53tZ2fPnoWnp6dVQz5bYWFhaNiwoV0DAeD/KssdpcD9Uai5bxpxnVJ77Za6XxhV8evsODlkTXMQPXbs2Jg/fz7u3buHHTt2YMWKFfj333+xfPlyzd2tUqZMiRw5clh9lj17dsuDna+vLwD7vKkvX760fGdrwIABeP/+veXfkydPNJUpOvr777/RoEEDye9sc41pGYxFzUUlPDwcVapUQfv27bFy5UrUqVNHtoZbeJFVWm5k7XZnG2A1Iq2JLSO6Umm9ub9+/VrVem/fvm3XQu7333+3m07YL7NmzUKOHDmsWgkfPnxYMm+e0v5r2rQpSpcubXmpl2r9LXU87dmzBxs3bsSBAwfw8eNHydzMSr58+YLkyZMjadKksuWzXa+a/aglTYMULfNoXb6afOJhYWGq0t6oOSeWLl1q9yInDnA7esD18PBQbKki1r59e/Tr10/2e/Fv+fLlS7sWCI0bN1bcJrlrWnh4uGxrF0fq1q2raz4pcpUL4oc5qW149OgRChYs6LBFhtyxFtE9dORyTvbu3dvq/69evZJsQWdL2CcPHjyw+h1dGRhw9h7YrVs3VKpUyep4VTp25QJAjrpSC4R9obeFu1HT1q5dG8OGDUPt2rXtvrMt26VLl2SfMdW4evWqZK8mQXBwMCpWrIjZs2cD+L8KL7Xd2/XQ8xwi95uNGDHC8vfr169l0ydt3boVmTJlshu0V80A0raECrfFixdLtkqdM2cOKlWqZEkfERHUngPuIDyPSQWghMo/NQO9O1KmTBlVDRXE7t+/jzZt2uDmzZuWXmrOBNm00Hodql+/PnLkyKGrUUL+/Pnx22+/WZ0v69atQ9++fe2ODyGVkm2vvaNHj1o1FNB6XKnZXqll+vv723327ds39OvXT3EQUKXrnkC4D+/Zs8fQe6X4/UbLcsPDw2E2m616Rtqmrytfvryl8kFP6jCpd5NatWrZVeirUa9ePauKSNs0XEZee4TKZ7m85GIXL17EjBkzEB4ejsKFC1ulzjp+/LjDcTzkiO9d4m07ceKE3bRK2/7u3TssW7bM6QF4HaWUURsLU1Mxu23bNiROnNjq3VDoGT558mS8e/dOsgzbtm3DunXrJAPtEVFx5cqW6M6IqBRaQqMPYYwnsZUrV1oNxhwRDV20rIvU0xxEF27w6dKlQ7Vq1dCgQQO70bbVKlGihN2o3rdv34afnx8AIEOGDPD19bW6YQcFBeHMmTOy+ZDixIkDb29vq38/urJlyxrysAxoPwEvXbqEvXv3Yv78+ZabgKOKDUejdStNGxAQoDkgKrh//77kg7LaygIxPS3RlYwdOxaJEiWy+uzUqVOa81utXLlSdWARgKqWIs+fP0fWrFmRMmVK1cfHmDFjAPxf7uUPHz5YWlbYUnr5F1ruCfmbbdcfFhYmmbrh6tWrqFevHipWrAhfX1/Nx7U4aCDXrU5POhfxgIHuyD9nNpt1teS7f/8+2rZti+zZs+N///ufw+nFv6lcN+5WrVrZvchp6fLtqIW4+PcRj8XhSLFixexSxKxZs0bXi1WbNm2QKVMmu95XUmm1unTpoik1i9x5a7vs0NBQFC5cWHJacXfPN2/e2LUu69q1Ky5evKgpwKDUFRzQdo+RO0e0PsDbXkdTpEhh14tB7mXl27dv8Pf3R6ZMmXSv3xlqczwKpk+fjv3791sN1in3knrgwAHEjRvXYc52pXQuAj0DltquQ4mj66Wa4I6YM5XfDRo0QNWqVWXHnZkxYwYOHDiATp06Wf0Op0+fdkm6HkDf/UTtceyoV6LUi6QzpLqhC+erOEWGqym1RJf6vxHevHmDOXPm2DWIEPeMBGC5VxhVBrnlHDlyRHO6v9q1a2PRokUoVqyYy6+Vc+fORdasWa0+07JPNm7ciFu3bjkck0GKULkgDE4HfO95O3HiREvPN1u2ZStdurTi97aUWqc6a968eZgwYQI6d+4sWya531Oq3LYpLZwlTlOidblBQUFWPSRty6smbeGjR48wfPhwVQNE3rp1C9u3b8fSpUs1X5tt88i7omJFsGDBAgwbNkzVWGcFCxZE165dZdNtzJ49W9f1SK4lupSnT5/CZDJJvufWqVMHLVu2RJs2bTSXQU3ZtJL6Hb59+4Zy5cqhb9++AL4PEP7+/XvZweSl0nM8ffpU8X3E0e+v5vj48OEDLl68CLPZ7LARzd27d9GkSZMI692klVRqM/E+CA8Pd/heHBoaanmP+Pvvv5E5c2aMGDEC9evXt0wj9MBv1qyZ1bxaW71//vxZVSMfuXIWLlwYv/32m675yZrmt5py5cohQ4YMGDhwoGK6BjV69OiB06dPY8yYMbh79y5WrVqFefPmoVOnTgC+H0jdu3fHqFGjsG3bNly7dg0tWrRAqlSpJFsTkWvIvRzLDZImpmcQAy0t0W2nTZMmjWwLMqWb7+HDh5ExY0ZNrZhsL7JyjEjnMnDgQLuu1sWLF9eVW1RLmgepQKRtcEHLS7/wG4i3tWvXrla17FLrCw8Px4IFC2SvOZ6enrLrE+cGlKI116IttQO4TZw4EefPn0fTpk1RpEgRlwzw4ewLs23KDvHDkdKyM2bMiIULF6q+sYuPIblBRG2ZzWaXDBKkhrhLqFw3Zz05CpcsWQLg/7qeCmwrIgYNGoSZM2di4cKFlkFVtQZPBU2bNgXwf62vTp48KfuCaBt4tH1Blzt3pk+fLtvledKkSbrKLVBz3TU6eLVnzx4kTpzYLngASO8DcRkja2+4KVOmWIKfcpVTQm8iR6n61AQPnQ2iO7qOO7rPOrt+PW7fvi35ufhebhsk6969u930csdz3rx5VafVM7IlekQu5+bNm3YDhUn1dnJFwHrx4sWWc0NNl29HLRSNUL9+fXTs2NEulYFtujWhAkd8XjiTZkCJml5qYsIzo1xediN16NDB7jyUavTSqVMnzJo1y/LZqFGjrFr4OnMMC/M+evTI8plc630193Wz2Yzhw4dj3bp1dt9LpW9wRO2xquZao/Qsb+v58+dW+8RZ4p6s7hhYtGTJkhg2bJhdkEwgPv9cOcCflu0JDAzEwYMHZe+f4h52antNyr0T6r0Hy1XyS5FKPyr4+++/ATjfA8dRIzk1+//q1auSLeL37t2Lw4cPY+LEiarKItWDJ23atIqDa4obvXz48AHbt2+XbQgjdx7lz58fBQsWxM6dOyXHnRLPV61aNcvYWnLk9tmkSZMUt0XQrl07VZkUpMbQEqc4kbvPyzXcNZvNuHbtGkqWLIkMGTIgKCgIZcuWlT1XbNNEidcZFBSEBQsWSMZoxOXKnz8/smTJItkTQ43z589b3j2BiG30E91ovqI9e/YMvXr1wpEjR5ArVy7ky5cPEydOtLzYa1G4cGFs3rwZq1evRq5cuTBy5EhMnTrV8pIPAH379kWXLl3Qvn17FC5cGMHBwdizZw/ixo2reX3kvIjoCqKlJbpRhCCZ1EVYrjxKwZyI6jIzYcIEzfM420XeNgWTuAu62mXb7lOlFCDh4eFYtmwZ2rVrh5w5c0pOI1wP3HEzqFChAvr16+cwgDxo0CAULlwYq1atwrlz5+xauioNUuYKUsu3DQiKH46MLI/4oVjNC3j9+vVRtGhRt40Or3UAGVtSx6VcCgTAvjJD6LkBaGuNL+Xw4cMIDQ1Fjhw5UL58ecVUVLZsuw3LnW/dunWzesATVzwo5VrVKqKOB6G1j5B+Q6Dm3mA7ZoCcrFmzYubMmVixYoWmVo9SOXsfPHiA7t27K6ZI2L59u6WFpjioK/f72+ZRFb+IKgUTpdK5tGnTRlUQQbwc216LthwdC0bltGzTpg1GjBjh1PVQqSyHDh2yS+kg5+rVq+jYsaOqaR0NkCrF3UH01atXI0eOHFbj9oi5+h7ZunVrxWCGUgW8XNmcDZ4J1wZhsEBHxOWwrbBx18tz7NixnS5Dnz59UKtWLcXzXm0qqiNHjmD27Nl2laTiNCpSv5tti2A5JpMJnz9/Rvr06R1O66gixmw24+jRoxg2bBgaNmyoav1GkTum1ZyHUtM8f/7c0HNYblnz58+3ah3+5csXq0p+o8ogVJgfPnwYa9asseqBc+nSJeTLl09yPnemWChWrBgqVKhg92wjEDdQEve202P79u26epRpCaKrVa5cOUPGjdJbnk6dOul+llfT80OJuFV1zZo1UatWLc0xNSFILHdvFpdLeDfW2tAoJCQEvXv3xpAhQxw2RlmwYIFVOia1Pnz4IJlmSG2F+PLly5EnTx6cPn0aT58+lR2sVViO1DO5sHxhXEipcV+EaYYNG2Z5FpaqENBjwoQJaNq0KVO96KA5iJ40aVJ07twZJ06cwL1791C/fn0sXboU6dOnR7ly5TQXoEaNGrh27Rq+fPmCmzdv2o0abTKZMGLECLx48QJfvnzBgQMHInQAGrIWEbXnaluiv337VnaQKSlSaT0E4nWuXr0aJUuWVAxy2c7jriC6lMePH2PZsmWKv9WkSZOsaoW1PBzfvn3banvVvsyJabnxh4WF2QWVxo4da9USK2bMmJrL4Azb8k+YMMGu5a2jbWzZsqXl7w0bNli9WALSx1TNmjWt5tMiPDxcsrLz+vXr+P333/H06VPF41ZtYEdMbnlag58bNmzAuXPnVHWpjYykjgWltDd6x4WwzeMp58qVK7Jd1JWWb/vQr/Y8vnnzJlasWIGvX78aGrgxKp2LI7bnphZq8wXfvn0bXbp0QfPmzTU9Sz158gSJEyfGnDlzUKNGDSxYsACVK1fGtGnTULx4ccXfU7hH2PZykmI7lontGAKOXjrEv8miRYvQq1cvq/UWKVLEYRmUaOnBIPWdmn1w8eJFLFq0CEOHDkWqVKmwdOlSXfd6R8fnqVOnLH/fvn1b8R6rNr/r/v37JdOdKVF7HrkqGGubokSsXbt2yJ07t+XFXMvv8OjRI9U9yLZs2YInT55ILr9cuXJWg7OpKYMzz9B6GkAo3Wvd0VoXMCaI/ueff2L79u04duyY7DRyY0HZbotci/jz589b/q5Ro4Zdw4dmzZqhZ8+elv8L2/Lt2zdLq1fhc9s0anJpzdQE0cX3FK1pqhytU4/ly5ejWbNmmlJFuoLcsd6+fXurdBirVq2yquSX2/4XL15YpXhRKyQkBI0bN7ZK5WBLnOLHbDYjNDTUkt7G1RXC4vmF9FerV6+WnFZPg0Wl+4qjBgJSvbe0pHNRS6jocOTTp08YPXq0VcMWRy3R586dq7vVvXh/2y67cuXKdunKPDw8nGpMIjUOmZZ9LJc2Zvr06ZrKIbVO8XGULl06LFy4UNMy1ShVqpRs2j2B0v6dM2eO1f/V9iAQE7ZdKbuDMI1tr2U5Wq8Rq1atcthQhew51b81Q4YM6N+/P8aNG4fcuXNLnowUvVSsWFH3vHpbKcsto0CBAqpSygjUDvzXpEkTHD9+3DLYnJrWhmq6swuEdEVSPn/+jAULFqgOhknJlCkTWrZsid69e6NSpUqS0/Tu3dtusC8pZrP0wJxy3eHUDD6j1eTJky0D+gDfb2gDBw60+u3v37+Prl27Gr5uLbQOriUm9bBtewzdvn0bO3bswLJly3SlsWjWrBnSpk1rN22BAgUwb948pE2bFiVLltRTfFly3eu0BOTF2+TqvMqO6E39I9X6QNwiW+sgWHL05G3t06eP1f+V9pHtS7KW36N58+aqxljQ8hs5yntvlFixYkl+LpfT9dOnT7LLCgkJsbqeGeH9+/fo2LEjdu7ciXbt2lla/jx//lzzGAV6zhEhxYCgRo0adtPYHivTp0+3GgNDS5oxKVrSuTx79swqPcz06dORMGFCh+sQB1RevHihalC49+/fY+XKlZoGMxOP5WP7vGCbf/rkyZNWATsltvtIrvWhwKiAxfXr1yU/f/Xqlezvfu3aNcXniQULFuD69evYunUrAG1lTZ8+PYoVK+bw5RkAzp07h3Tp0sl2nRa3PLMNgEqVyZmc7XJjV0gR1m1bBtugv54xUGxpfWEXB9GdvacrtSbdtm2b5Od6j2txL2ng+/12ypQplv9v2LABV69excCBA1G2bFnL5x4eHnY5jYXj1tavv/5q6Xkm9c5iNluntatatar2DVHpf//7H3r06OFwupCQEKxcudIq7Z2tiGhYJL6+2R6T4opJ2+cYufeclClTIn/+/FY9AY0ivm5s3LjRqnGgo+u5nvGWxA0gPnz4gPnz51s1qpFbhlyqTCXic0IrqbRtrgiiA8q9QQXDhg3DH3/8gdy5c0t+L5VSadCgQbqva3HixLH8bfv+tG/fPrseZa5OU6e3wiY4OBgHDhyw+zw0NBTbtm1TNW6ALS1jQqllW0kmdXwZ1XjUbDZL9j7Q25MH+N6IRuo9SM95smXLFs3z/Oh0n30nTpxAx44dkTJlSjRp0gS5cuXCzp07jSwbRRLii6grgqS261GbzkVtLr3AwECrByi1HKWZEF9YlV7gbS9mci+uJpMJQ4YMQbt27VCgQAHV5bx69arkQI3Tpk3T1UpcTO5CLDdASLVq1ew+k/qdbG/8SvvPNtWLOJeXmDC4aHShtdUgAJw5c0by83379sm2NBG/UBidHkOuJZjaPL7A94dYgatyuqqxadMmJEiQQPN8ly9ftgvAfP36VfcAgka0fBVXQNm27tcSRNf6gL1161aHA7BqaVE8btw4yWlmzZql6gVJLT29MOSMGzdOd28SPRy1DgwPD5ccY+bly5ey56lt19rNmzdb/W7iFxOl+/qlS5dgNpuRIEECyRySWo51R9cucVfirFmzol69eqqXLdBTuV23bl00a9ZM02Bm//vf/9CtWzcA9r0/pJ7BypYta/W8Ihewt219LTe4ocCogIXUfvvf//6HFClSIGnSpJLzKPXGkGoJKP4sNDQUQ4cOtRq0VYqWnk1qWsGp6QKeP39+SyA9ODhYUz5xR+UVr/Phw4fYunWr3XkhDt716tULiRMndumAb2az2S7tibjnoO114f79+xg/frzqSie9lX5iRvWk2LFjB/LmzWsXRDSZTLhy5YrVZ0rPc4MGDcL169dl8y1LjZvgDLnt/+uvvzB16lRLpbCjfW3E81lAQABGjRqFly9fap5XXKHiqOeRmFyFl0Bq7Ckjg7mNGjWyalQhlfbi48ePlu1zFESXKtu0adMsf3/79g3t27dXlf5CTxDdGVLjr7ginQtgXyEtRSpILiZXka43uC2+NorffQR37961aixjZC8wPz8/ux5rzuzvy5cv2/XymThxIn755Re7HOOROZWIq8fiMpvNkhUOttPYunfvHtKlS4d06dIZUg6tA4STjiD6gAEDkCFDBpQrVw6PHz/GtGnT8OLFCyxfvhxVqlRxRRkpghl5MbNt5ajk2LFj6N27t2LeLD1ly5Url8MBQ6VuRK9evZJtoWBLKZ2LljILFVFaWjXnzZvXblApoxhxLAjBAOD7fnry5IldYFzLehy9GDsrLCzMYQtXpZamAlfmG5XaXx8+fJDNy165cmWXlUWJnsE2bY0YMcLyt1JKJjVq166N/v3763rZs001ZkuuRdz8+fOt/h8aGorWrVtbfWbbq0WpW52z56TZbFbscqjU6se2RYbUMa7UiiowMFB3Sp6wsDC74K1SV2s9OaC10nqOP3/+XNfAb0YReleJ/fvvv1Y9LITfXCrQ//LlS/Tt29fuob19+/ayFXiOKscfPnwo28NDT/oKNZwdTFqLgwcPArDuvaXmuBG6Q6tNJSS0KH7y5IlVS3axn3/+2emKdaP89ddfkp8L9161LdVu3ryJzp07W10b5s+fjxEjRtjlALf17NkztG7dWtU1Set1Vykwlz17dkvlUaJEiWRTe2gtk21Kotq1a6uqGFfTw1TvfWfkyJFInTq15Z7z6dMnq+db23Mhb9686N+/v6oW0IB8gEOu8tBkMkV4wEbPs+D69etlg+h6AsxKQkNDsXnzZtnv5Xo12NKbhk6wfv16pEmTBoMHD4avr6+qniJizgTRtTYgichj6OzZs4gfP77luq6n16vUu7ij5axevVq2F15EunLliqWsehv66P29pBqBqVmW3iC6+NiUarVs+wyuZj3nzp1Dv379HD73PH78GJUqVbIMKO+skJAQu947wnOQ7fhKYmor7Vxhx44deP/+vV2lvBy1aeGUmM1m7N27V3EaqfiqkBLKyMZlXbp0MXTcquhO81l+9OhR9OnTBwEBAdixYwcaN24MLy8vV5SN3CR9+vROpaYAvl8U7ty5Y5Wv0NEF8ciRI5g0aZJiVzA9N1A1rcekHrjOnz+Pzp07q2rxHh4eLltbPnDgQLsWk9WrV7fbH9++fdN907DNy6WV3HqdbZn89OlTqxv34cOHJWtN3T2AmVjMmDERP358vH79WrarszgNgZh4Pzqbp12pYmbUqFHo37+/1fd6bqTOnueOhIeH4/79+7I5R91h/Pjxuip8HR1btr+HwPYl38fHxy636rNnz/DHH3/gw4cPaN68ueJ61L7Qyn3vqFWFll41Ug/wttsmpnYgNim1atVCunTprAYBUiqrXFDXWc4M7Dp8+HDd50JAQIDTLxWTJk2y+0yu8kcq3Zevr69sBYxcyg6B3Pnj7EC5AncNOqzEiPuRuHu3GkrnHwDFYJktd7zEzp49W1P36ZEjR2LWrFl48eKF5TO1uT379euHxYsXqx781xHx/tq/fz/Gjh0rO60496/SwOpaiAcylCqTHGefAzZu3IiKFStKDv42dOhQAEDfvn1hNpstgzTLEZ4X1aYHlTreQ0NDZQfxPH36tN08Rjd4UNPS3dE69+zZE2HpymbOnIk6deooTqOmx4TcNnl5eam6ztv2XMyRI4fDeWwdPHjQYZoqKba/maOKLVdeG22XLYxfFRISIvn8tnjxYkMGybTVpEkTu8YjixcvRlBQkOV+K/yucr0CtZALrAYGBiJFihS4evWqqjSkttauXYu8efM6WzxNjAiiS41hpWc9RYoUwYQJE1CqVClVFXBGpfUYNGiQXYYKuWuEcMyvWrUK8eLFw6xZs9zy/NG/f3+7HvWuHAsQ+L7tMWLEUJzG1a3hBTNnznQqbfOPRvNZLqRxkeuCSVHf48eP8eeffzq1jAULFtgNAGvEBbFy5cpO5QuXI5ciRO3D2KxZs5AwYUJLV2vxtp47d86uVcyuXbvsgp4PHjzQlSdMK62t+5x5wXjz5o2q+SNjV6569eohceLEkt/ZDhIlEN/oHN0UBXK/uVJN/bBhwzB+/Hi0bNlSd024K7oF23rx4gUyZszoMIVHRDt37pzm3LSOjmPxIGRK5F6MR48ejf79+2PlypWK8+fPnx8LFixQtS49lM5F254OUvvE2WCm3PqF4Lk4iOuOwKnWoKZRKleujI4dO7p8PXqvxY7mk3vZU5pPTzqXFStWqJ7H1WzL//DhQ9y4cUP1dr1588ZhyhWtxPco2/P34sWLVt3+1ZbT6CCkowphR+USb0NEEpdryJAhitNmy5bN8rfJZMKtW7c0v6zr6SXpLLl9f+DAAbRt2xZhYWGYOnWqZIoYX19fu8FilcYWUkPqfvny5UvZdF4TJkzQvA6tbPe51DPeoUOHFJdx5swZ/PLLL3afa20soeYYcZTyq0iRIkiUKJHu8+rz58+oW7eurnm1qlChAjp16qTYmlJrOhcprnz2UCqLXGWEuIebESmO5LRu3RoJEyZEokSJ0LFjR8SOHRsbN240JBWEo+ebvHnz6sqL3ahRI9n0ifv27UOFChVUpZi8fv266vu3EbnKb9y44XAaLffeS5cuyVYuRhRH5RVarnfu3NmQuICe4PPJkyetKrYjIp2L2niBWs48k0mlViRpus7y5cuXo0SJEkiVKpWlle7UqVNlB0qhqGfixImWhxA9J2Pfvn3tPjPigvjvv/8iTZo0Ti/HaNu2bcPHjx9RokQJyUEEpUg9hNk+bL9580ZxIFI9IjLwNHv2bFXHj1QePHfTkzZGHJRWe1N0puvcsmXL7HLLaaF2XIHoyDaliiOuTM8jkBuIVezz588OU8sA+h+EtFynpfZJRFaIqR1QUYre1pfi7ZMbWNRV5s6dG2Hr0rpdeoPozixTLDw8HIGBgQ57chhNSxkzZMiAnDlzylbC2tJSaRIeHo6VK1c6PO+VBt8Dvt/D5NKCRZTI2KvAlZYsWYJs2bK5pAWY2uPz3Llzir1AhQC/bRBc7OnTp5g6dSp69Ogh2fLz1atXdgEJ8XXBqN9dS0VnRPSS09vdXmr8A0ct+V1BTTAvKrG97oWHh2s+9twVRJeraBOnpNLzDHb69GlN6XOCgoIsPaD1jC8ixVFljitUrlwZBw8eRIsWLRxOmytXLuTMmVNVOfUG0bUeV1IDsSrRmmLT6OPcUUt0o9etZiwTKeJxgiIiiC43ZpkzyyTX03yWz5kzBz179kS1atUQGBhoObh8fHwwdepUo8tHbjRy5Ejd80p1/dN6sVfi6u41zihSpIiqnKtqbhBdu3bV1TVRidRNRRjYwraVv7MX4nnz5hk6wF9kN2vWLMvfaoPoSnmd1dL70OzKgYIjUlhYGD5//uxUUNUoel7IBHLpg/QQH4taaCm71IuCMw++d+/etRtvwFUvqylSpHDJcl1NzXgMWtgG5oVridYgutzvZDKZcPnyZdlz06iW6IB8Lw+99A7+K5AasBWwHydBjpYePIULF0azZs0cLlt4Zj937hz27NkjOc358+cxbdo01cF+o9KRCKLqC6DecgtpX7Tev9Q8B6u9fhYpUgQ9e/aU/V5IyzJ8+HDZacLCwrB9+3ZV6xOIrzPiYIVSTzwjdevWzeUVoWrHNYjqIrJCWY+QkBBcuXLFkMp/cVq9iLxeybVEFz+L6S2PnvQ50YU4HZgRIiqIHtVoCaIbcV7pSf9jy9Xxpnfv3jmdhzwyx8SiM81n+YwZMzB//nwMGjTIKkhUqFAhp184yHjuqNmNCEYMWOgqr1+/VtVaXs3N0hXnlNRLUFhYGCpWrGhXbiNuYv/884/TyxAT59mPzIzunqXENoebGmpyXEYVuXPnRoIECVC2bFmXrUNtWqLixYsjb968ulovqM3l60paznmpFwW914yJEycic+bMWL58ueWzWLFiIUaMGJYBdCKbyB40UGPevHmSnxu5bfnz55f9zqgguisCGXny5HE4jZEVX85QWw7hulSqVCnZaZo0aYLu3bs7zJMs0DoAoCMRlf9TzJln5d27d2P+/PkRHvxXkwfZqDIJL+lKwaGwsDDVucwF4uuMba5ytZU4trRs8/Hjx3WtQwtnx8dxRkQGVyL7/bBu3brIly+f3aDG4eHhutO51K1bF3ny5DFsbA9AXzoXV/To+JEYfe1mEF2a+Brx5s0by99qg+haGwcZ8Szh6ucRIxp/6Ok5T87TfGd/8OCB5AtRnDhxImwQFFJPqXumGvv370eTJk0MKo09va2UXTVoXETat29fhHc918rZnOiuoCZ3XWSg5sXp+fPnqh/elKaTa1H4ozA6iCNFzXnw+fNny7Xp0aNH8Pf3d8kYDlppGShIS1DBqJzoX758kUwBJgQA9FQSRVcmkylCBjUzOp2Lnvmiaotko7ji3iu8EKppiODMQMDOKF26tOL3a9euNXydX79+1d1iWLg+xYoVy8giOWRkS3S1lIJDelqPi4/xxYsXW3335s0bXan+tGxzRAS43RkYa9SoUYStK7K9K9gSxpc4d+6c1ed9+vTRnN5N+E2FgZojojIGkA+iOzu2QGSgtQLOSJEliK5m4M+oTLxfxGMrSp1/Ur9J586dNa1Pbrw7LSIinYuzxPeYwMBA1WmFyTmaz/IMGTJIph/Ys2cPsmfPbkSZyEDODuhXqVIllw12+d9//yFVqlS65o0OFTatWrWy5JSLrMxmM5YuXeruYqjm6of4L1++GPqwVatWLVXTTZo0CaNGjTJsvaSdmmNLXMEjpHUxemBAPWxfGpWIB+50xIiW6DNmzICnp6emeSKLiM6JDkRcQCaigugRvcyoxBU9CVeuXBnpg13uqCg34lhzttGKVmrSBrozOKS1ct82QLhlyxbZnjJKtGxzjBgxDEmpp8QdPSvcIbJfV5Roee4Bvo/PVb9+fcv/nz59alhZFi1aBOD7YOrly5e3+k5NS3RXH8/RUVBQkKHLc1XcJKpTukbYpoXbsGGDS8syfvx4VdMNGzbMpeVQa8WKFaqmS5YsmeEZAEia5ir4nj17olOnTpZg0tmzZ7F69WqMHTsWCxYscEUZyQnOPEDbtgoxmjM199El/9OmTZtkv/v06ZPbgwhms9mqy1Vk58r9tWbNGqxZswYdOnQwrCznz59HhgwZFKf58uULevfu7XBZV65cUVUu0kdNQCt37tyWv2vXro0hQ4a4skhus2HDBuzdu1fyOqw1yNu1a1ejiuUW7r5GG01vS3Q5jpajNJjikydPDClDVKV38Ftyj6tXr7q7CHYisiW6rapVqzqcRtx63bbX1oABA9QXTERrEH3w4MG61qOW0fmWI6sfaaD6qlWrWgVK1QxMqdbWrVsBANWrV7f7Tu58Fp+X4uA+qROV3nOjMqUxfWwHrT5x4oRLy9K/f39V0xk96KcttZWsajMXRJf4WFSgOYjetm1beHp64o8//sCnT5/QpEkTpEqVCtOmTYvQbmMU9TnTbSkqt3gQU3rBSZo0Kfz9/VUvKygoCN7e3kYUy8LIwWCjC7W9B9S+yDkaUETtDfaXX35RNR3p8/btW03TX79+HQ0bNnRRadxL6SUtugWVSR25333lypWK8ymlDClYsKDT64/KjB5ElpT16tXL3UUwnDuD6Gq0bdvW8rdRA9Rq2eaIHLsmurMNgkVn7mpp/Ouvv0p+Hl3eiSl6U2rsZdsbJDo+00kxosfhgQMHUKhQISRIkMCAEpFaup6GmjZtijt37iA4OBgvXrzA06dP0bhxY5w8edLo8pGTIutFaPXq1U7V/EaXBwalh/3Pnz9rWtbSpUujRZobZ4hfyNzt/fv3hiyHLcwpKonuAyOJuTo/uTtEdE50o0TG8Tso6pg5cyYmT57s7mIYrkyZMoYuz+gguitouRbxmkFRiVxvl6hwXhKRa4wfPx4///yzS1IAkjynrrpeXl5Injw5AODOnTsoWbKkIYUi47j7xVZOkyZNsHDhQncXw+0cBb21/H5du3ZF/PjxnS0SGURt2hdHXJ1WiUgLR0GHH6kr4T///BNtB/WNasGlkJAQTJs2zd3FoChq0KBB7i6CSxiVq7lZs2YAokawTktFrrPjRhG5gtbn/tu3b7uoJETuEdWeQd3t+vXrCAwMdHcxfiiuH5acSIYzg0fJDa4S1Vy4cEHx+x+pVSfZ69KlC/bv3+/uYhCp9qOlgGrcuLG7i2CoqNoSvUuXLm5dP1F0FjNmTMyaNcth+rnIQMgpTRRVtW7dWtP0p06dclFJiNzD3c+UUVH37t3dXYQfCoPo0Vx0vQj9KK0d79275+4ikBv9SDkmiSjqiq7PGkQELFmyBEuWLHF3MVSJ6oNVExH96PhMqd26desMWQ7TI6oT+fvlkVOi60XoRwmiR5cW90REFPm9fv0agPaW6LxXERERERFFXU+ePHF3EaIE1S3Rt23bpvh9VOjiR9EHX9iJiIiM1b9/fxw7dkxz7uNx48a5qERERESk5OnTpyhVqpS7i0FkiOXLl7u7CD8stkJXR3UQvXbt2g6n4U6PfKJrS/Tff//d3UUgIiKKVh4+fAiz2cyWKERERFFE06ZN2aCRiJzGeK46qoPoHOAwaoquQfQfJZ0LERFRRHn69CkWL17s7mIQERGRSkePHnV3EYgoGmAQXR3mRCciIiIiAEC7du3cXQQiIiIiIopADx8+dHcRogQG0aO56NoSnYiIiIynNR86ERERERFFbc2aNXN3EaIEvilFc2FhYe4uAhEREUUR7MpJRERERPRjefjwIT59+uTuYkR6bg2iDxs2DCaTyepftmzZLN9/+fIFnTp1QpIkSRA/fnzUrVsXL1++dGOJox7msiciIiK1GEQnIiIiIvrxLFiwwN1FiPQ0BdHDwsJw9OhRBAYGGlaAnDlz4vnz55Z/x48ft3zXo0cPbN++HevXr8eRI0fw7Nkz1KlTx7B1/wgYRCciIiK1QkJC3F0EIiIiIiKKYB8+fHB3ESK9mFomjhEjBipVqoSbN2/Cx8fHmALEjAlfX1+7z9+/f4+FCxdi1apVKFeuHABg8eLFyJ49O06fPo2ffvrJkPVHd8yJTkRERERERERERHK+ffvm7iJEeprTueTKlQv37983rAB37txBqlSp4O/vj6ZNm+Lx48cAgAsXLuDbt2+oUKGCZdps2bIhXbp0OHXqlGHrj+6YE52IiIiIiIiIiIjkMIjumOYg+qhRo9C7d2/s2LEDz58/R1BQkNU/LYoWLYolS5Zgz549mDNnDh48eICSJUviw4cPePHiBWLHjm3X4j1FihR48eKF7DK/fv3qVJmiG6ZzISIiIiIiIiIiIjkMojumKZ0LAFSrVg0AUKtWLavBp8xmM0wmk6aWz1WrVrX8nSdPHhQtWhR+fn5Yt24dPD09tRYNADB27FgMHz5c17zREYPoREREREREREREJIdBdMc0B9EPHz7sinIAAHx8fJAlSxbcvXsXFStWREhICAIDA61ao798+VIyh7pgwIAB6Nmzp+X/QUFBSJs2rcvKHNkxiE5ERERERERERERycufO7e4iRHqag+ilS5d2RTkAAMHBwbh37x6aN2+OggULIlasWDh48CDq1q0LALh16xYeP36MYsWKyS4jTpw4iBMnjsvKGNUwJzoRERERERERERHJyZs3r7uLEOlpzokOAMeOHUOzZs1QvHhxBAQEAACWL1+O48ePa1pO7969ceTIETx8+BAnT57Er7/+ihgxYqBx48ZImDAh2rRpg549e+Lw4cO4cOECfvvtNxQrVgw//fSTnmL/kMxms7uLQERERERERERERJGUOGU3SdMcRN+4cSMqV64MT09PXLx4EV+/fgUAvH//HmPGjNG0rKdPn6Jx48bImjUrGjRogCRJkuD06dNIliwZAGDKlCmoUaMG6tati1KlSsHX1xebNm3SWuQfGtO5EBERERERERERkRwG0R0zmTU2Vc6fPz969OiBFi1aIEGCBLhy5Qr8/f1x6dIlVK1aFS9evHBVWXUJCgpCwoQJ8f79e3h7e7u7OBGubdu2WLhwobuLQUREREREREREFGWVKlUKR48edXcxXOLixYvInz+/u4vhFmpjx5pbot+6dQulSpWy+zxhwoQIDAzUujhyscqVK7u7CEQUxcWPH9/dRSAiIiIiIiJyq9ixY7u7CC7DluiOaQ6i+/r64u7du3afHz9+HP7+/oYUiozDnOhE5Ky+ffu6uwhEREREREREbhUzZkx3F8FlGER3THMQvV27dujWrRvOnDkDk8mEZ8+eYeXKlejduzc6dOjgijKSExhEJyJn9e7d291FICIiIiIiInIrBtF/bJp//f79+yM8PBzly5fHp0+fUKpUKcSJEwe9e/dGly5dXFFGokhl165dqFatmruLQRRhPD093V0EIiIiIiIiIreKESOGu4vgMgyiO6Y5iG4ymTBo0CD06dMHd+/eRXBwMHLkyMGcuZEUW6Ibr3z58u4uAhERERERERERkSEYRHdMczqX1q1b48OHD4gdOzZy5MiBIkWKIH78+Pj48SNat27tijKSExhEN56Hh+bThoiIiIiI3MTPz8/dRSAiomggOgeao/O2GUVzNHDp0qX4/Pmz3eefP3/GsmXLDCkURT/16tVzdxEMwwsLEREREVHUERwc7O4iEBFRBGvSpIm7ixClMNblmOogelBQEN6/fw+z2YwPHz4gKCjI8u/du3fYtWsXkidP7sqykg6RpSX6xIkT3V0Ew7AlOhERERFR1PHmzRt3F4GIiCJYdM5f7goMojumOhro4+ODxIkTw2QyIUuWLEiUKJHlX9KkSdG6dWt06tTJlWUlHSJDEP2nn36KVhcvk8mEcePGubsYFMUkSJDA3UUgIopyvLy83F0EigL8/PzQokULdxeDyFC+vr7uLgIREdmIzoHm6LxtRlE9sOjhw4dhNptRrlw5bNy4EYkTJ7Z8Fzt2bPj5+SFVqlQuKSTpFxmC6D179kTMmJrHsI3UXPlQ6+XlhU+fPrls+eQekeFcJCKKasLDw91dBIoCPDw8MG/ePKaWpGjl+PHjyJQpk7uL4XLv379HwoQJ3V0MIjJYtmzZ8O+//7q1DAwKa8OYhWOqI5ulS5cGADx48ABp06ZlSgtSLVasWIgdO7a7i2EoPRfjzJkz486dOwAAT09PVKxYEdu2bbObrnr16li/fr3TZSQiInIkU6ZMuHv3rruLIStbtmy4fPmyu4tBUUBkfze5du0acufO7e5iUBQSL148dxchQkS3xlZEUUmsWLHw7ds3lyw7f/78bg+iu0J0DswziO6Y5qdNPz8/eHh44NOnT/j3339x9epVq38Uubj7JChcuDCqVauGxIkT49dff3VrWYykZ7+KL7aPHz/G1q1bHU5H0Ye7z0UivQoWLOjuIug2cuRIp+YfPHiwQSWJvI4ePeruIijKkCED9u3bZ+gyI1PPydatW2ue56+//nJBSaI2k8kUqYPoXbp0Qa5cuTTNc+HCBV3rqlatmq75lGTMmBFVq1Y1fLlE1apVY9ouBQsXLsSZM2ecXk6ZMmUUv0+ZMqXT63BWtmzZ3F2EH5Krn3X37duHAQMGuK0S2RWxlagcrxFnFCF9ND9tvn79GjVq1ECCBAmQM2dO5M+f3+ofRS7uCNxlzJjR8vfZs2cRO3ZsmEwmbNq0KcLLElkpXXij8kWZ5DGIHr1s3LjR0OWtWLHC0OUZyVWtUyJC1qxZnZp/+PDhBpUk8ooML86OVKxY0d1FUNS9e3eMGjVK17ypU6fWNL3ZbHZJkFRKVOpFGNmD6I4akmzfvt3uswIFCuhaV/r06VVN5+Pjo3qZKVKk0H2Mu0t0CMj9CO8Ea9eudXcR8Ntvv7m7CIqKFCni9LEQFY6lIUOGuLsIVipUqODuIkQIR++oP/30k+5lm0wmVKxYEWPGjEGsWLF0LyeyMfJ88vPzw969ew1bniP79u3D6dOnZb9nzMIxzU+b3bt3R2BgIM6cOQNPT0/s2bMHS5cuRebMmSVTU9CPx8vLC//99x/ev3/v7qK4jJ4Lp3gepRe9qPCQ4woRNfisu14CeUOKXurUqWPo8tKlS2fo8owUGhoaYevq1q2boctz9rryo16PpbRq1cotLbhdce1Us8yuXbuqXl68ePF0XxMi8zEWlYKmHh4eEbIv48eP75LlRkQ6C9sAhtZzS+3+jajnOUciMgD2yy+/GL7MxYsXG75MLZzZf7169cK4ceNUTRsZroERUQHXsWNH2e8SJEjgcH5n74WO5v8R3lO0BnGnTJniopJELevWrZP8fOXKlQ7nFZ9bUufZzz//rL9gUZTtu87Dhw9RqVKlCFu/l5cXihYtGmHri4403zEOHTqEyZMno1ChQvDw8ICfnx+aNWuGCRMmYOzYsa4oIznBHTdEs9mMJEmSwNvbO8LXHVHkHvgyZsyI//3vfw7nV3pYi8wtqRzR2/V46tSpuH//vuR3RgUX/fz8sGHDBgwaNMjq88hy81bTcqxdu3auL0gkV69ePcsYHdFJZH550dJa0Vnt27e3/L1gwQKnlxeVr6eRzeLFi9G9e3d3F8MQjs43X19fTJs2TfXyTCZThJ7DERV0ypw5c4SsxwhG75OkSZNKDvIeFVKayB2LtoE6rces2utp//79NS1Xq0uXLrl0+XokTZrU8GUWLFjQbYNtJkmSBB06dNA9f+LEidG4cWNV00aGIHpElEFpHUFBQbJpPo2itodKdHbr1i3UqlVL9fTuqhCcM2dOhK7PbDYrNgRIkyaN5OcNGjTAiRMnFPeTo0aESr0hR4wYIfudFkrn3oQJEwxZhxZ169ZVVXHmLpH5nTSy0Px2+fHjRyRPnhwAkChRIrx+/RoAkDt3bly8eNHY0pHT3HESNGzYMMLXGdHkXiSuXbuG2bNnY/jw4Ypd0oSLebJkyWS/i4r0dP3u2rUrunXrJhssv3HjhrPFwowZM/Dw4UPUrVvX6WXJqVKlCq5duyb7vaNzMUuWLA7X4c6bWu/evXXPGxAQYEgZihYtivXr18PPz0/3Mg4cOKB73tq1a+ueN6oqVqwYlixZEmHrEx/jRlwLGUSXVr9+fV3z9ejRQ9V0JUqUsPtMbw7GqPIwL1fOu3fvYtmyZbLz6TnOnc1nqbY1dc2aNVUvc/78+WjevLneIjnN6Gcnk8kET09Pu8/nzZuHP//8Ew0aNNC0PL3HsZGtxT5+/Gj1//DwcE3zR4bnU19fX+TLlw85cuRwazkqV65s9X9X7BsPDw/EjRsXs2bNMnzZjoSHhzs1lpWWYysyHFdGPacCkLxuAI63U24QWSH4bfsOU6hQIU3lsm1EZCuq3GudkSZNGk2VFbb7JGPGjDh//rzLz8lSpUoZujw1PZ3kep4lTZpU8dgtXry4ZDxD4CiIrrRsf39/l1ckuuu4d+f5FhmuuVGd5rfLrFmz4tatWwCAvHnz4q+//kJAQADmzp0bJfJqkvHEL3MFCxZEv3793FgaY82ePVvyc7mLj6enJ0wmE4YMGWL3giV1E5G6SUbEhU3uAc8dHAW5PDw8kClTJqfW0blzZ9nvjLqJ7d69W3HQMC3r0dvS2rY78dKlS3UtR8qECRPw6tUrzdf58+fPI1WqVBg0aBDKly/vVBmEc8OZ38yZY0lr7mItxNsUWfIQx4kTBydPnnR5a1RXdln/EYPokydPdjjNkiVLMHz4cFy+fFnTssUvYkoveVL3sS1btmhal1p6WooZ3a3dZDLJBo0yZsxoNVaM1LxaeXp64t69e3jw4IHmeQH1L+ha9m3NmjUxffp0XeUxgtr9aFuh4ag3mm1LOB8fH/Tq1Uu2ZZ7RxowZY9iyypUrZ/V/Lcd52rRpVe9jV7awE34vdwcB9uzZY/XMp7Y8Wp6/hfuXv7+/tsIZROs+FvdaCw8PV318ueK3LFOmDOLGjat62WoG2C5ZsqSqZcltt7gsISEhqpY1ePBglC1bFsD3AUbF48/t3btXUyvatGnTKn4fnXuQC5w51vLmzYu7d++iYMGC6Nixo+aBorVw9fVNKmAu97yslKtbTTnF00hNr7SMmDFjGvJc4agSQI/w8HBLw2L68Wh+u+zWrRueP38OABg6dCh2796NdOnSYfr06YY+6JExIqKWa+LEiZa/a9as6fJBI5YsWYJ69erpbh2ZL18+1dPKBY/UBGZsL9gDBgyw+27u3Ll2eVfd3aUwopfrqEWdyWTC1atXNS1TyyjjUudIRKavkKJlP44fP97yt+22tGjRwtAyJUuWTPNDthAQHjVqFA4cOIC4ceM6XRZnrmt6j30twVg9KYjE2xQnThzN84u1atVKd2old2jZsqXlb0cvebaOHz+u+H1kyc0bkdQcf15eXhgyZAjy5s2refnLly/Hzz//jLVr16JYsWKS02h9UVLi6Hx3dG7ev38fV65cQZcuXVQvUyvbbbMNUrvinuvv74/06dOrDrDNnTvX8rcrng09PDzcWmmlZh/PmDHDrrW8o/nknmmbNGmivnCi9fTq1UvyezWBNzXLV2Jbsa72OKhXrx6mTZumuixKDRecJeQotj3WpNIvmUwmzRWFWqgd8Lh///4YNGgQrly5YunBLUfcAEfY3+5Iw+Hr66t5nrZt21r+NpvNVseXUi8mPdfHt2/fKn4fI0YMvH37FsHBwaqWJ9cKXMzZcQvE2xkrViyrgLitChUq4O3btxgxYoRlvoQJE+L333+3TKMlZU6aNGkcPlu6cnDV9evXu2zZrqQUAFYamDGysS27ba8Es9ksex4qDXCtpnGT2jHhpOTNmxdeXl5W/zea3rSu0aHnxq5duyQ/jw7b5mqqj2ShtUuzZs3QqlUrAN9bHT969Ajnzp3DkydPfog0HlFNRJwEeh60bC1cuFD1tIULF8b69eutAi9aiC/gersqaq15Bb6PrG5bhqRJk9o9+Ct1iTIq56IRL/R6l1GjRg2r/4sfrKVSDHh4eCi23IkbNy7Gjh2Lu3fv4v79+5g3b56mvL1S54jWnKdqWlhLrUcutYja8zZx4sTo27ev5vmc4ew6nGnVLJw3tt2oxRxVrmk9bn19fVGqVCmcOnVK9bY72zpFKhWGFhkzZkSiRImcWkZEMplMCAgIwIMHD1RV0ohb6jv6PY1swZczZ07DluVKQqs1OWrOAaVW482aNcOxY8fg6+uLI0eOSE5jW3mRMWNGq3ugkRydlxkyZECePHkwbNgwxXnu3btnWDnKlClj9Z3SPnf2fnz58mXFFunp06fHmzdvrIIv0TGIbjRhH8ltU8GCBXX1bNKTCsaR+vXrOwwWli1b1u75Uu1xsH79eqRIkULVtFWqVFEVkFSidDwL9wjbgKbc9cUVQRet/Pz8MGrUKOTJk8fhvhGniRC2MVu2bLID+xnt8OHDKFu2LDZt2qR5XvHxlC1bNqv/Dx061PK3+LkV0HcNVPOM4+npCS8vL1W93dT0nlAbRHe2Qgz43phCzTaqXaajnpSpU6dGnz59VC1Lj3r16kl+HitWLKvKKFe/x2g91pRSDDp7nVPiivRkefLkidB1ChwNLKq03mzZsqFWrVr4+eef0atXL5w4cQKdO3d2qke9VBnEDULVckeDLqNVrVoVixYtcncxoiTVT7sZM2ZEhgwZ0Lp1a6xYsQJPnz4F8L01U4ECBVwyoAo5T8sJLnUzyJ49u5HFkWQ2mzXlZzXyBtuzZ0/F7+UucnpaoovLrTT/77//Llsr6qi8tpS6J547d072O6VeJV26dMGaNWvQqFEju+9MJhPOnj2rWKZVq1ZZ/s6WLZtVbtYFCxZgwYIFVpUqjm403t7e6N+/v+Ua1a5dO4etncXfS7XiEP9Was4BNS0szGYzzp07h0GDBiEgIADh4eFWwXdxmdQ8gN+9exePHj2SLberaF2HuAWBs4Ttb9KkCbZu3YonT57YTSNVubZ9+3YMHToUAQEBmh9c/vzzTxw5ckRTANC2UvDr16/o2bOn4uDb4v3qbBqeBg0a4Nu3b04tA3D+eNKSszZVqlSqW9up/Q2rV6+OrFmzqi6DI658YTJS4sSJFXtcqdl/alvmxIoVS/Ict13HrVu33J6mSFwmqWNbXOGiJ52LeB7bYKVUTk/hN1LbAGX69On4559/7D5PkCCB4rljNpstPb6Ec7JZs2aq1qnFt2/fIn1LdKlpxME9KUrnvVyvj4IFCypWZmlp0armWLQ9D23nmTx5Mnbs2KFr2VoZERxQOp7lnu/U9nITguqtW7fWXC4lRlWUiacVV0bqHcdCqzJlyuDQoUPIli0bgP9r+a/W6dOnMWXKFNSvX98qxZWHhwfq1q2LggULYvTo0VbzuCKgJF5mq1atZFtcCtT0WlPb01outZcRlfq2+0pq32m9vo8YMQJPnz51uqU9oD1P+6FDh+x6ZLuSsL+qVaume96IpiZlj22qLlvFixe3NDCTasxkNpt13b/VtER3FER3JHbs2Dh27Bj+/PNPxIsXDzNmzFC8v3bq1MnuM3HFtVRZ9fSSdsX9M6LG3hIfy1Jj37AlumOqj+RDhw6hZcuWuH//Ptq1awc/Pz9kzpwZv//+O9asWYOXL1+6spykk5aTwM/PD/Pnz7f6TE+wWI+IvDFFhsHqlMoQN25cHDt2zOn1zpkzRzZ/n8lkQqFChTBjxgzVyxNkzJhR9qXf09MThQsXVjzuxK09bB9avb290aZNG6sUL462WWpfOppHXD6p7ovi72/cuOFwsDSpm2/MmDGxc+dOq2UWKlQIo0aNQqpUqezKnStXLrRq1QoDBw6U3X/izzNmzGg3OFxEB9Ed5akTKjfEnDn/hHk9PDxQq1Ytu5Y1y5cvl5wvderUGDZsmOR+d0TcZV/t/rXtnRM7dmxMmjQJ/fv3l51HvGxnc+xlyZLF6ZQwRnD2WuvM/PXr15cMGv0ozp49K9tKXM19REsaHDW/kzNpdfTkL5fq0SAup9YBFaWI72W2QfR27dqhUaNGlgqx7Nmz2wVjz549i1evXqmu6OnSpYuu3hDicp0+fRqnT5/WnIpEDR8fH6t9vGvXLixYsMDw9cjRc70oVaqUw55kSikO5Pbj+fPnFVu2aTkf1Nx3pJ4nBPnz50ePHj0kK7tc1SPBVS5cuKCpMk7YPuFZuFChQjh48CAePHggGWjRSrzfne1BJrVMI4KaztLSsxP4PhBu9+7d4eHhYdd4aMOGDTh37pzddrk6iG4UpSC6uKeG3HnVoUMH9OnTB/v375f8XtxYQ678tssWT5c/f36cPn0aS5cuxcOHD2XL6gqJEiXCkiVLVPdYEeTIkcPwAeUFmzdvlv1O6vmwVq1aOH36tNUAru4KnIvX+7///c+pa3XTpk2xevVqtGzZEkeOHJFt7KZnW7VWXkvd+/SsV2l/TJ482e69XJx6sGDBgnbz6BmzyxX3Tz09gJyVNGlSfPz40aoyi0F0x1Q/6ZQpUwbDhg3D33//jXfv3mH//v1o3Lgxbt68iVatWiFVqlRRpqvzj0TLSWA2m1UNGrh27Vpcu3bNmWJFOHGtvG1+M9sWEWI//fST5OdSLwmOuoyqbYn+6dMn2e+0vJwI65s6darlM+HmJdTAy72MKKWUkTJq1Cj07t0bGTJk0DSf3PY4+0ClJYguNa1tgMXReSS+Wa9ZswY+Pj7Yu3evVVoYNefi4sWLFY9HR/QGhtavX489e/ZY8lkqpUsRU/pt8ubNK9ny2oggutT/N2zYINv6xsh1RjStKTCElzw/Pz9DyyEXSNJ6zhtBzblkRO84Z9Ly7N+/H4ULF1acRi44IXf+HT9+XPV4DbFixZLNL287ALGUGDFiqBqgFDA2/7krKZVpyJAhkp+vXbtWdh7b6634t4kTJw5Wr15tNS7FyJEjraaPFSuW6nutljFgvLy8MGHCBPzxxx8AYFVZniBBAhQtWtTw32fSpEl2g/hlzZrVLdcHW/fv37f8LZRPaJEvzpMvx8vLy5J2zrY7vFKA3fb4EFfsuCqIfu7cOYwdO9YqdY9St3e5ZQcEBCiuR4l43XJ++uknXUFnpdy8Svtpw4YNGD9+PLZv344kSZIgffr0TqUDkOKK3h3OVD526dLFYS8LtfSOQSX1rO2u+4XewaSzZMli+VuqUmPDhg347bffVA1MGitWLEyYMAEVKlSQ/N7ZAXn37duHokWLwsPDw+4ZUNg+o497wZs3b2TTrCo1ILEdgFbqdxBXAIorv/TEnYRjzfaY69+/P7Zu3YqiRYuiQ4cOkuWZNGmS5vW5ipbn0/Hjx8PX1xceHh4oVaqU5HNklSpVXFYBKt7XM2fOtHs+dzaI3rRpU6vvPDw8ULRoUbt1XL9+HStXrpRseZ09e3bN468p5ZFX4u/vjyJFiqBbt24ArJ/J3fXs7OXlZXV9YxDdMV1nS9y4cVGuXDn88ccfGD58OLp27Yr48ePj33//Nbp85CRxi8h79+6hbt26sjWQ4eHhCAsLs/qsSpUqVv8fOXIkGjRo4NIRqR1Re2KnTp0atWvXxrhx46xaqNpeoORafZ44cQLx4sXDtGnT0K9fP/Ts2dOSN0rqBlSrVi3F8ohfqJQukuIHNlt6Lq7dunXD3bt3cebMGTx69AiTJk3CvHnzAADNmzdH0aJFrW42bdu2tYx7oET8OwwaNEhXPjG5F4SIDKJLLd/2GHN0zImX0bBhQ7x9+xblypVzmD5ATfm0EM8nl9M4ICDArhKsXr16qFy5MqZPn45Nmzapzr2pp/uyuwPa4mVEpsGw5X7zTp062eVXViLePuHFw4jWbIsWLVJVySpXFiPNnj3b4TqMeABU021aToUKFRymtpJKd5MuXTqrQajFSpQoYTdgpS2lh/EZM2Zg2rRpqloHx4gRAz169JAdBFFMKvWL3L6SG0h64MCBssvXG/zQQm7QuwYNGshWkNve09OnT49Zs2ZZpSwTc+YFVcsg0e3atUOfPn0wcuRIvH//3uGzidiFCxfsAhPz5s2THChSHGiQCpzaDizoanLHnFQg/8yZMzh37pxVi0MlY8aMwZo1a3Do0CGrz21/04QJE2Ljxo0ArI/LPn36WLV+k3r2UdMDTWB7jxa2vVChQujfvz9ixoyJZcuWIXPmzIpjDsmtM1WqVLLzKDl9+rRkgMLWrl27DE8XqXSsJU+eHH379rV6JxLSlRjFw8NDsoUj4PjeIbyjrFy50uq64kwQffr06Rg6dCg2bNigexmCli1bIiQkRPN8ahsPuaMl+vjx41UtR7wNUr2GMmfOjEWLFlm9u4nn6dixo6r1qKU3Vajg+vXrdp+pvU4rXS+l0no8f/4cd+/eVXzWVrNucS8ucYvhffv2oVGjRqoGU7ctpy1xLKBcuXIYO3asXWt1qeevDRs2oGTJkna9bgHH49OoLadtmXPmzKmp0ZSjfezn54dixYpFSE707Nmz49WrV1apjcQpTNQ2LBBv07Jly6xacHt4eEg+v+fIkQNNmjSR3c7cuXOrWre4DGoH9hW0adMGt2/fRuzYsTFs2DAcPXoUa9as0bQMIfiuxdatWx1O48z95kek6Yk+JCQER48exfDhw1G2bFn4+Pjgf//7H969e4eZM2cqDgTjyLhx42AymaxaZn358gWdOnVCkiRJED9+fNStW5dpYzSqUaMG+vfvj/Xr18Pf3x8bNmyQbR0XHh5u191z5MiR+Ouvvyz/l7rwGJHn1BUX7hgxYmDz5s3o168fAKBSpUoAYJd7rXnz5qhZs6bdAJ9COoSuXbti3LhxmDRpkqXVUZkyZewejBwFXtU86CROnFjxIUjuAidV+2+b+qNIkSJInTo1evbsacnP6unpidOnT2PEiBGWaefPnx9hXUjVXLBdEUR3tHytQXQ9y1T6Xm+LcvEy5FqbJkmSRLYSzNPTE7/++iu8vb1lUwy4qtulGnrXJ/cwaju428qVK/UVzIWEBz8x2/Pz9u3bVtMLnjx5ggsXLlj1RnHG3r17Jcsnx1XHR5s2bZyaX3zd+fPPP1XPZ/T22F4TYsSIgbt376J06dIOU0hJWb16NVasWCG7/Fy5cqFr166SlcBC4E9cFrWkcvjL5RuVuw7WqVNHtgJZLi2Zo2UqTWc7j+0+EX9vu28E4kYHwrHRsWNH2ZcqvUH0vHnzqjr2pk6dirx582LQoEGWz9QM1CtWoEABu1aS7dq1k0z91rt3b8vfQvnixIlj6Q2TJk0axXXJBRz10tJiO378+ChUqJDqczpu3Lho2LAhkiRJojjd27dvUadOHQDW93HbgJ2zLdHr169v1TpYajuaN2+O27dvKwaLpZYttBIsXbq03XeO9pdUIEmKh4eH1XOnEYx4TpMjl8ZDqNwSeozpvUc0a9YMX79+RZMmTayuK84GNUwmk8OKIrWDvavNBy6mN4ieL18+7Nu3T/P6lJYpLsvXr19V9UIBrM9jpcpeuXnGjRuHfv364eLFi6rmdUTpOFdz/OnpHZQrVy68efMGc+fORbZs2VS3APf19UXGjBkVyxUeHu7wnVOculKcLiZVqlRYvXo1Hj16pGoQVlvidyFxGUwmE/r374/q1as73Kd169bF0aNH7dJLdu3aFZs3b8batWudCqZLMZvNhgbRhfFZHD2jXLlyRdc6HDVIqVevHo4cOYI3b95YxfmUembYXlvEPS9NJpPdtrjifcRsNtu1gldDuK7HjBkTJUuWVMzHPmPGDHz9+tXqM7lGi3K9R4ODg1U1pmAQXRvVT/TlypVDokSJ0LFjR7x69Qq///477t27h1u3bmH+/Plo3ry5pppAsXPnzuGvv/6y6ybZo0cPbN++HevXr8eRI0fw7Nkzy8MpqWMymTB27FjZUbHF5s2bZzcwhaenJ9q3by85/YABA1CrVi2rm4OjkZ+NprRdc+fOtfr/jh07cPPmTbsul3HixMG2bdvQtWtXnD592vK5o+DQrFmzFCsQbG8o4q51alpPCkF/2+8DAwPx5s0bq88XL15s99tpeaEwIj+sGtu3b7f6v5p0Lno4ullqbdkoN/2MGTOs8p4bpU+fPrrm05M7VY7c4EDidTRp0gRJkiRBo0aN7PL9yj0UGN0SXXjwVRrEUi6Ibnv8NWnSBPPnz5cNBOg5LtXsB6lghXg6pZfBxo0bW70Ei6dNnDgxChQogP/973/YuXOn0/dPqSCnK4Poava3ltabAnG5ihcvrmo6qf+rIbSqKVGihF2PAtsyxooVyxKokGsJKqQEkWo5/csvv1i9bIqv6+3bt1c8zurUqWM18JpwXqnZ5uTJk1u1lH79+rXm50G532vu3LmWxhVGvgSJ982FCxcUp82YMaNkwEXrfVPpBXXnzp2ylZtqt7tbt264fPmy5nRsesmlZXj//j0+fPiAOHHiWP2utoEXoyvrhYYPd+7cwYkTJzBw4EDMnDnTYZmNJP6NlSqcjXhZFfcA0btdUsewECjRc79Te054eHho7tlkS+m+KDeNXnLPF3nz5sWLFy9w4sQJxfnVlEN4nxAH0ZXOEanBivXQMnaIXC8pOWp74Np+Fy9ePFSsWFH1emwDmFLE52bs2LFVHxvDhg0D8L2xktrBxcW9exMkSIBx48Yhf/78quYVqC2f0nVm+PDhktNplSVLFiROnBhJkybFzZs3FY8Dreec2WxGxYoVUbJkSdmKDfFzTfHixTFmzBisX7/ebjlSy1Zy7tw5y99Kz0cCtds2YcIETJ06FQkTJkSDBg1w6NAhVQNXyj2PSq3XyCC60nrE9MZ4HKVwMplMKFWqFBInTmz1uVLLcKX3dKn3JlcF0bUuV8/0sWPHtqpQiBUrll2vzowZM8r2qFR73dLbe/5HpTqIfuzYMSRJkgTlypVD+fLlUbFiRacfgIDvtSNNmzbF/PnzrWoR379/j4ULF2Ly5MkoV64cChYsiMWLF+PkyZNWgU4yTpkyZTQN4jhmzBhs3boVHh4euHTpEhYsWKB7VGG9FzepFnAA8PHjR6t81MD3i45tixzb9YoffNS0Grt7967ssmwvQN7e3njw4AGePXsmuzzxPDt27MCtW7esWoWZzWYkTJjQ7uJpMpnsugNpuQDqeZnVeoGdN28eatSoYfWZq2o9xb+FVOsZrelc5HTu3Fn1CO9aUsLUrl0bjx49smpxsWPHDvTs2ROAfO5NI29606ZNQ+vWrXH8+HHZdfj4+ODly5dYvXo1/vvvPwQHB2PZsmXIkiWLJfWRGmoHn5P6re7cuYOTJ0+q7hquFEQHvqczMjK3qW0XOiEfpfj6tHnzZtW/XY4cORRbAUltU4wYMVCtWjVVecKVclc6ehAGYFWZp+a67qiVsaBu3bqoW7eu3UBReoLoYkpdZtWYNWuW3Wfi1qq3b9/GmTNncOzYMRw+fFj1cuXKnydPHnz9+lWyxYlt+cUvWX/++afD7RMHb7S2mhYvW+k403KNatGiBX7//XdLcEluIGw9wTPxPEp5lpWWpzZAJFDap9WqVXPbWDPCfUXo4eHsfcTT09Nu0Gvge6tEcYWfEfcrqWewTJkyoXjx4hg9erQhg0eqZRv0UwpyaDm/5J6TxJW9ep+hpXqlCBV4en4f25SQcrRsv1Chb5tm0OjWnUo2b94s28MkRYoUlmdocRBQnFJPy+8jfhe2DX6IU04YFRTKkiUL6tevr2raMWPGaMqPLr4X6hnTSS2p89x2/1SoUAEFCxa0HEdK++/EiRPIly8fjh49imbNmuHRo0eWZ9pt27bJVmBcv34dI0aMcGmqQKV3Tdvv5Mb60MLf398qhR6gfG3T+tslSpQIsWLFwtGjRzF9+nSr7yZOnIijR49a0lcIz5cDBgxQ1TjQlu3zY9y4cfHixQtcuHBBNkCcOXNm+Pv7a+o51adPH13np9rnUbPZbOjgvMJvpuYclRtM29keElo5auymtE414wJFFsJ2aE35ona5YuLf34hxpaI71Xe0wMBAzJs3D15eXhg/fjxSpUqF3Llzo3PnztiwYQNev36tqwCdOnVC9erV7bqPXrhwAd++fbP6PFu2bEiXLh1OnTqla13kOvny5UObNm10Xyj1BlO9vLywfft2uwdN27Q0WrRo0QIVKlRQVeMq7j6k5sEhffr0ipVP4m52sWLFQpYsWVQ/kNi2PtPyIFOmTBmUKVMmQl84AW0P1XKtBR0NvKilYkhg2wXelTWyAwYMQLp06exqkNOlS2dV9urVqyN79uz4+PEjli1bJrksLa0/lVpuA99ffhYuXOhw8C/h3I0bNy7ixYuH5s2b49atW7JBban9rTY9h9S86dOntxp13dF8joLornbnzh2sX7/eqodPokSJZI8x222+du2aYqWX0jV48ODBiukIQkNDrQaDVfNQajKZrK4be/bsQfXq1QGoyzn6999/230m/J7i7oc+Pj7YsGGDXUWtOJAkrqBUOmf1piSSmlbqQVNcyeHj44MiRYporqxT+k6uB5RSEF3NPVZrUFhp3c72EAgICLAL1qg5X9OmTWvVol6O1t5IUi9dWveXo8HH3SVjxoz4+vWr6spMgZ7nPbkxaHr16mVVIe1oUF7gezoYtelDBK4aVE+KUqBJyzNv6dKlHVY26r2XZcmSRfY6LfWsqqUiTont9iulHerTpw/++ecfu+Nz5MiRVmkY9TynrV271q71p1SrvQwZMmDVqlUOn5uaN2+Of/75B1+/flUM1MgNwAh8P0YfPXqEJ0+eKKZQkdpetZXSzmjevDl2796tatrkyZNj06ZN2Lt3r9PPW58/f9Y0ve2xGitWLJw/fx6LFy92OG/x4sVx6dIly/4UP4/XrFnTqrJEvJ4cOXJg8ODBsoN6G8FRC1w1Ro8erXp9K1assGrQI1UGPWLEiIGXL19aehBJ6d27N0qWLInWrVvj3Llzir0mHG178+bNJRv6pUiRQrEiPWbMmLh9+zbOnj2ruA4j0pPJnSNS6xWP9QYoj6cm93uNHTsWSZMmtaQ1VHP8yFW4Ke1Dpd9YL9ttsr3fKrVEz5Mnj6pnDK1lUKN169aaphfScVWtWhWzZ8/GyZMnJacTtm/t2rUAHMdGlJYBwKXXsOhC9R0tXrx4qFKlCsaNG4czZ87gv//+w4QJE+Dl5YUJEyYgTZo0mgebXLNmDS5evGj10i548eIFYseObddKIkWKFHjx4oXsMr9+/YqgoCCrfxT5xYkTB4MGDUK3bt0QHBxsVxut9OJTo0YN3b+z1A1j6dKl2L9/v+YHPtvWoVouridPnsQvv/xi1z3NlquCuTFjxsThw4ftuj4rlcFRWWwH4JKiZmBRQYECBXDgwAH89ttvVl03lQbNkluHo4fOcePGoVixYpYgjiuD6GPGjMHDhw9V1/p6eXnJPuh06NABS5YsUWzxKszr6m7tjtYfkfPKBdHVpFVS87kWqVOnRr169eyOS9tlC133SpUqZRf4F/eo0dL6Ik2aNHj16pVk0CRnzpwOAztyQXTxQE+xYsXCjh078P79e1SuXNlqWqlnBKnr7PHjx/Hx40fFc+LevXu4dOkSfH19cfHiRRw7dkxX77iMGTMiZcqUyJo1q67un1LTyAUKAevKK9vfTjxolZ5jTSmQreZ+JhX0U3vOqZ1O6RibMWMGvLy8sGjRIqRKlUqyi78jvXr1suuFJlDKie6Ibbo0PZRSBylx9bVa6C4sECqvpFopG0n8G/z5559WqdFsewNt27bNbv7BgwfLLs/WyJEjUa5cOTRq1EhvcTVTSvcn91xy5MgRu89jxoyJo0eP4tatWyhbtiwOHDhgN40zx0jfvn0lr7XTpk1DjRo1HKb7EB8njlIJde3aFf369bNLbSA3GC/wfduk7k+enp52YxwdOHBA03nWoEEDu1QsZrNZtiGO0CK2SpUqimV1NFaUo9bc6dKlczimgBRnxwtRw8PDA1WqVLEMDCg3WLTg119/lUxPKbAdj0pO3LhxZRtnGHG/1Evqt86UKROmTJliF+h0NUetlwUDBgywGktH7ObNm1bvVeLBeKWWpde9e/cUn5XETCYTChUqpLkSVJwOxJnfO0aMGA6foUaOHImhQ4fK5g1X8wwmnkapvAkTJrQKWrdu3Vpx+XK/V//+/fHq1StLDzFn9tHSpUvt0vGMHj0aWbNm1ZwGSg/bCkfb2KLttqkZG0Do/Zg+fXrJ76XSuWzbtk1yIPYhQ4YgICDAYaMvW0IFlslkQocOHSzzy/2mDRo0wJcvX9CuXTtN6yHtdFcLx4sXD4kTJ0bixImRKFEixIwZEzdv3lQ9/5MnT9CtWzesXLlSVZ4otcaOHYuECRNa/rEmxViufJkbNWoUpk6dinjx4lldiGvWrGmVS07qwuGOFqWCc+fOYfr06XaDFGp5yChWrBi2bNki2apKvBzxA4fcRV3P+qVs2rQJGTJkQL169XTtXzVdbR1tg63y5ctj0aJFql7ahBuqVO24cIOrWbOm5DHt6+uLkydPKrYW0kopICh3Xqk9354+fYqTJ0+iYMGCaNmyJcqUKeNwHqHlgdCVXy1X56u3bR3QqFEj/Pnnn0iaNKlsOgct63Q2fYcz69bi+fPnCAgIkLyHKb10Olqf3Ll86dIlh8uSC6JLHRNSLQtPnTql6gHSw8PDLohhu25/f3/LYEj58+e3yg8MKB+n4mtGokSJ8OjRI1y/ft3hvnPU02Pbtm2oXLmy4u8jfsEym824evWqJbAkHhRUD6UgutaW6FrJjaFga9u2bUiWLJlk0KxixYoICgqyDOBtq1GjRqrTZzmi5zqmlJ/TldeSiK7wLF++PM6ePYt79+5ZfS41sLBA7XgcanNu2m5zzZo1HU6j5I8//sDBgwdd0iJOTpEiRdCkSROrgV4FcudjqVKl7ALDgixZsuDQoUNWlZYCvceI0GtI7jlo+/btlmlsLV68GOnSpcOePXvw5s0bvH79Wnb/pkmTBmfOnMG0adMwbtw4u+/Dw8PRq1cvAPaVI2q3zWw2o3z58g7zk6tdlpR27drh6tWrdmnaHDHqHFaqCPz5558j9Fqxd+9etGrVyirln6vz6Mptn1SFg9Z9ofc9MmvWrJKfd+/e3anUgFqOeyXC+5K4UYPJZJIdUDZbtmxo3bo1Dh06hPXr10sGG50dRytp0qRW44QZQby/evfujQsXLiBTpkyWz1x9bMaLFw/Dhg2T7cW+e/duJE2aVDEtx9ChQ5E8eXK7AWyFbdu8eTMKFy5sl8rWqMZJzsRSfH197RpADhw4EP/++69LUoPY/p4FChRAvXr1LPeRggUL4urVq5bv1faWFOvcuTPevXuHBw8eYPXq1Q7LAHyv9J4xY4bVsQd8r2yTG+vICOKyxIkTR9cx4c5YWlSkem+Fh4fj7NmzmDBhAqpWrQofHx8UL14cs2fPhq+vL2bNmoX79++rXvGFCxfw6tUrFChQADFjxkTMmDFx5MgRTJ8+HTFjxkSKFCkQEhKCwMBAq/levnwpWSsqGDBgAN6/f2/59+TJE9VlosgpZsyYLnswNGK5hQoVQpcuXewuPkbdsG0HchScOnUKXl5emDp1qsP59Pj1119x//59rF+/Hl++fLF8bsQ+279/Pxo1aiQ7krSW/OFyLl68iN9//13ygWXixInYs2eP3U0xSZIkkl09ndmXhw8fRpEiRRQDEHLU7uvUqVOrrt0WXt6rVKmCwMBATJo0SXO5nCE3UPHNmzexZs0azJ8/H8D3B7Lbt29jxYoV6NWrF169eqU677naYJfcA4Nt11WBkQ/htq0mbFO0xIsXT/aBS+qBVGhdriVfqVJ5APXpXNS+UJlMJqcDxWop/VaxYsVCYGAg3r9/jxgxYiBWrFiIESOG7Pl24MABzJ8/32F33Zo1a2LPnj2KD8q2v3Pu3LktgSVxcN+IlnXOpHPRqn379pg2bZqlksB2/AtBiRIl8PLlS9n8wkrljB07Nnbu3GkJCggtIJXy+IuJ83QrpTUCpPf/oUOHZFvMqsmrHllJXQcLFy5s18K0UqVKVgFeNfcn215fwqDZtWvXdjqHqpHPhfv27TN8+SaTCStXrsSoUaPsvlMK5jubS1etLFmyoG/fvprnE9SvXx+PHj1C0aJFLYMOypk1a5Zi9/Lw8HBMmDABN2/etBoMEVC/bUam6lFKr5Y7d26HLc2l5nOlV69eSaZGc6VMmTJh8eLFqp/LtFCb3k7g6emJ//77D+/evXM4rdz3Rg90HFEcNQy5evUqFixYYFc55UjZsmVl8447+yws94xtlIkTJ0a6e3KpUqXw6tUrNGzYUHaaNGnS4MWLFxg9erTkb1m7dm2cPXtWMnWLuLLTdqwetb+XEUFUrY3jpAgN3aTunQKp9C3r16+3NBADYEgjXeF5s2HDhti2bRuePn0qW4ayZctaxkYRDwQKaEuPIhy7Qm8fV5Dq2emuHupRleqzxcfHB8WKFcO0adOQJEkSTJkyBbdv38bjx4+xdOlStGrVSlOtYvny5XHt2jVcvnzZ8q9QoUJo2rSp5e9YsWLh4MGDlnlu3bqFx48f/z/27jo8iqttA/i9ISQEQhI8uEOA4BQIrsWtSJECLVqgUKxYcdcCRYsUdygUd3eH4O4kFAkRNGS+P/h23t3NzO7M7qwkuX/X1athd3bm7OzImeec8xyzwSJPT0/4+PgY/UfasfUEUzL7tamMGTMqnlnYldij1duwkufv74+oqChxeKk9t28uL6M1qlWrhlWrVtl14orAwEDMnTvXKPWLnoeHB2rUqIFkyZIZHdOHDh2KNXkVYNu+rFSpEk6dOuX0Cl2ZMmUQEhJiVEmSmxzJHFuPqw4dOuDMmTOxeusGBATg+++/R+HChXHnzh3cuXMHuXPnFoNqaq49Z8+eNWpAVdvTv0OHDvjpp580mchFaoI94Os9sGrVquJIgIoVK6Jy5cqSwwCVfPd+/fohKioK3333nW0FNkNNT3Q5OXLkMErbYC+GZbp9+7ZRDxn9BM1K6wdVq1ZFhw4dNK9gWpsTXU9/Px02bBj+/vvvWEEAw/NbycORVD5jpd/Z3d0dPXr0EHth6YMa+vcsrVPNMXTnzh0cOXIEISEhOHXqlNkHLUOJEydGaGgonj9/blWP5NSpU6NFixbiw1HOnDkRHByMlStXxkpdZC2pnK32erDp3LkzsmfPLjtRmBS1qa4Mnwt0Oh3q16+PR48eYf369eoKK0HL/WI6Kag11JRHf92XCsbK9RDVattXr17FpEmTcOnSJXH71qRt0vq41KcqU7veCRMm4NdffzXbeK6WtfNmOEuaNGmsnlsK0O55Qet9pQ/Q6+vPcuk/0qVLh1SpUhmNUlUbRFez/5SmIXGETJkyoX79+mjevLlkfTNz5sxo3769pqNwrD1e9u7diwoVKmhy/TelNqWwM1jbOKxkf9esWROHDx/Gixcv0LVrV9y/fx958uRB6dKlFcfnpOqJf/31l8XyGVJ6bujrOlIjPGfMmIHw8HCbJ4/W8nqk0+lQr149o5iC6e+yb98+sb5r+F7v3r3RqlUrxdvavHkz+vXrZxQDNWXrNVsqNqLv/GLvVH7xheJm10mTJqFy5cpmJy5QI3ny5LEueMmSJUOqVKnE19u3b4/evXsjZcqU8PHxQffu3REUFITSpUtrUgaS1rFjR8yfP1+czEBLq1atwuTJk2V7IBvaunUrli1bhlGjRuHVq1fi0Bgth4BZk0NXKXv0RLckODhY0wcJKfYeEqdkG1rfGNUoUKAAMmfOrFnQxFHKlCmjSe8PLdK5lChRQjJ9iJ7ayeJMeXh4GFUQDHudKnk49vDwwN9//x3rdSWVdP3cCFOnTsWdO3dk71fu7u5GuW0TJUqkaB4Bc5ROqGztcaA2hzzwdci3/lxxxLVDz3BbuXLlQvfu3cVetGrmYjDkyCC6Evv378fHjx9le2BmypQJ8+bNU9xYIBVEt2WyrFSpUuHFixeKjks1PaBSpUolpu+R693ao0cPjBo1Klb6F/0DnqVe9+Z+mxMnTmDs2LEYPnw4cufOrenD+8qVK22aGF2NuXPnSub0NMdwv2TOnBmlSpUSJ5WWIvXMoO+RZevxb6/Rf46QMmVKsbz6/a+fL6FTp054+vSpqsC+mt8wf/78sSbI1HruA6Wfa9++Pc6ePSubY1zJNm3pTS8nLgTRXfF41/q5Z9euXZg7dy66du0K4OscSD/++CP69u0LANiwYQOuX7+uyYSqanqid+7cGefPnzd73DqKTqdTnV7IlNrfzfD+OWDAAMV1dn3nEXtYsWIFhg4dGisvt54rncfTp0/HX3/9hWvXrskuo6a8+lRphudBtmzZcOPGDVXrkqobm06IrlU9efTo0ShUqJDsfAmmPblNKTlmDdehZX2hatWq2LdvH7p162b0utx3VzviO2PGjLITfuutXbsWNWvWFM9FNceL3EiqEiVK4OrVq5IBdopN8R2jc+fO9iyHpKlTp8LNzQ2NGzfGx48fUaNGDcyePdvh5UhoZsyYgcaNG0tWSmy9CaVPnx5TpkxRFESvU6eOODzJz88PoaGh+PjxoyajC/bv34/Xr19rnpPNHtq0aYODBw8qelA3XMbeFWxnTMym99133yE4OFiTYWNKelYZfteCBQtK5kazh3Tp0uHp06c2rWPXrl1Ys2YNhg4dqkmZSpUqhUePHrl87jSdToedO3ciMjLSKGhsy8Pxzz//jIiICFSrVk12Gf2Q6p49e6patznmUphZc563atUKJ06ciNXDRI1OnTph0aJFWLBggdm0aVKToDoqXYGpJUuW4LfffrM4gbM9y6CUkt/Vzc3NYgoDNZMLSQWWmzZtisjISLOpGMyxNNGgnuG8J1oYOnQoqlWrFmuOBT1L+9dcr8QCBQpgxYoVNpVPLmDj6Ad9tdsznaz2xIkTitejJiepo9O52KJatWrYu3dvrAdqpe7cuYNXr16JuYcTJ06MsWPHallEu1Ab5JGyYMECrYpjkzFjxoi56//44w/ZQJy17JETXc12li9fjvnz50tOXOts5vZN5syZMWbMGPHf2bNnN/oO5kbe2bMnuoeHh2Tqx4TC8Dg0ncBxxIgR2L59u9jw4SiZMmWS7Pyi50qNTj169ECPHj3sfg9Tu36pc8Bez3pJkiRBmzZtrP68kvSD6dKlw7x585AkSZJYgWO542HdunVo2rSp2fN7x44dePjwIXLlyoXz58+rK7hGqlevjo8fP8pmCjD328+cOVP2PdMGdpLnUgnATPO5JUmSBLNmzYqV24lst2bNGqO8XIY3QU9PT5fsZavl8DlbhwgpodVwmB9//BF58+ZV3cPclSoMyZIlU9W72FLZBw0ahICAAM1+x8qVK+P169eyEwR17dpVHH5oOnGKPa1atQodOnSQnJhMqW+//Va2pd8ac+fORc6cOTWddNVepK5jtgTREydObDThj4eHBz59+oRkyZIhKioKgPkJZK3Vs2dPXL16VTLVgzXc3d0xd+5cHDt2DFeuXFH12b59++Lly5eYO3cuZs2aBXd3d7Npb2xN3WEtqW20adMGrVu3VpzeR2pCLUufUcPVhkxKBXZ1Oh3atWtn1+3OmTNH8wc1d3d3VKhQQfZ9uWNwxYoV6NWrFzZt2qRpefQOHz6MXr16yT7EuNJ9W4qSeRIcxZqJwuxhx44dePz4saLrhZScOXPaPPpKi/zt9vyMLee3I46xQYMGYeDAgXj+/DkyZMhglFZNi+3b4zuoOd5btWqFVq1ayZajePHidkmxYU6XLl2wfft2u9UltQggOpOrNBJKMXfslShRAlFRUVaPqHL1e6A9WTPaU8n7SikJorvycSlFTUcSAGjSpAk+fvxodt6LxIkTx5o41NTMmTNRrlw5DB8+XNX21XB3d0fBggURHByM5s2bK/6cqz17xFUuFUQnx2nWrJkYRPf09FQ8MRcply1bNhQuXFicaM1aOp0OZcqUUf05V6qIqJlQQwkPDw9VNwxzdDod9u3bB0EQZB/0KleujEePHiF9+vQOnXwoT548OHz4sMO2p0TKlClj9TyJS+SC6HI9Vs25du0a/v33X7i5uaFXr16alE9K0qRJbe75KsWaa8SkSZPEv/XngrlzwjBHp9ZzK5ijdmIy4GuOcX0Owu+//z7WpM1aPTwsWLAAhw4dMnsNc8b1u1GjRihTpoyYKiUuUjoRk1wvppYtW6JFixZ2e1AsX748zp49K/u+1ENsXHtolWP6PdTm6E2dOrWYZx+I/XBvzRwfWnB3d7c6gK4VVw+i21I+Rx3/Op1OnBTalkmWncnSvkqfPj2eP38e6/XevXvD3d1d0w4XlsyePTtWOqlRo0ZhyJAhsebMcQRXC6K7Mkv1E0elJFMjrt1HDYO4jiq72vqH1MiWoKAgnDp1StNySbFnHVntxNFSypYtiw8fPmg6F4GUgwcP4tChQ0YTy5JjuPZ4fHI5Wl3IGzRooMl6XJ3WQ0JdiZIbmH7yLMPZsl2RTqez2FMqc+bMDg2gk31omes0Z86c6N27t0s+MCihb0jVT95lrXr16qFkyZKSkxynSJECa9aswYYNG5AkSRIAjnkgsKaCvXLlSvz++++4e/cuVq9ebTaNDvC1odSa79K+fXssXbrU5a4nnp6eOHbsmMVcjK7owIEDmDJlijgxkiW2phKxFw8PDyxfvtwozYWl49CRtHxwXbhwIbJnzy45bFrqN3j06BGePXsm/lvfe3vdunUoUaIEFi5cqFnZ4hpbR3I4K8WWqzI8zkuVKuXEkhjT59a1Nl3cuXPnsGTJklij9Dw8PNC3b19xYmhryU2kLsf0GBo8eDA+ffpkdfowc+s2lShRIqM5P/RBqBQpUti8bS248vnlSp20lHJ2Q6damTJlQpcuXdCrVy/ZZ4wSJUoAAH766SdNtil1HzF3b5Ea7Td69GiMGTPGbL53LcSFY9DeAXTga8e2Ro0aaRL4J3Vc6wmOXJ5WN/UlS5bAz88v1oQV8Y0zK0GucIOZMmUKhg4dqrqHmCuUneInw54WWvU8iqvH64ABA1C4cGHZnsdKv5enp6fZnifNmjWzqnyGbMndrFTatGkxevRoRWWIiIiAp6cnwsLCAGgf6Iyrx5SzVKpUCZUqVVK8vCvv31atWgEAMmTIgBkzZmDu3LlOLtH/yKU8s0b+/Plx7949yfekzncvLy94eXnhwoUL+O+//8QgepMmTdCkSRPNyqXnyseIKaUjMGxlbZ3WWelcrP1sgQIFxFRn1s6hoUU5TLVp0wY1atRA2rRpMX/+fNWfT58+Pdq0aaP5CMfZs2djzZo16NOnj83rcuSItTNnzqBDhw7w9/dH3759kSVLFlX3EXvo3Lkz/vrrLwwePFjyfVfoMR+Xro179+7Fpk2b7DIBsdZMA6GW5gE8duwYQkJCkCVLFk22r6Qnun5kvNxzfbJkyYzSXtpLoUKFcOzYMas/r9Ux7KqNXa5arviEQXRyCl9fX7x79y7et5w5s6Jh7203atQI69evt5ir3poh1nGpgkbWcdbQ+zRp0qBTp05IlCiRZnnh4up5njhxYtSvX1/D0igTHyp3+h53adKkwatXr5AsWTInl4jUaNKkCaZOnerSkyjVqlULtWrVcnYxjHTt2hVv3rxB9erVVX9WyXnfpUsX7Nq1Cz/88IPsxHRFihRRve34as+ePdixY4dRDm9ruHI6F2f4999/MWzYMPz2229iihdbaPn99ROlS937lW5n/PjxePbsmWbzXXTp0gVdunTRZF1aUTo5seEIFn0DpjPNmTMHU6ZMka1TtGzZEtOnTzc7wb1aauuRzZs3x8CBA626Dzha1apVUbVqVWcXw6Lu3burDoZ7eHhoFkAHpM8Z0wbQNGnS4L///nN6nXf8+PHw9vY2mt9Pje+++w7//POPJtd3SpgYRCdVN08tK4JeXl6arctVZcuWzeHbLFu2LI4dO6ZZznA5LVq0gL+/v83DP6XUqlULiRIlcqlhtKStxo0bo3Xr1ggKCnL4tv/6669Yr9kSjI6vjT5xLfBhyB6/idz+SJkypebbMix/8+bN48REvtZyxnE2duxYlChRIk4EAVxJ4sSJ7TpRllSeZJJXrVo1TYNpaqj5jWwJuNhyLGTNmtWqz+XIkQPLli2zeruOIHWPq1+/PlKnTm1xHqXUqVNj+/bt9iqaS4gL1xCpMup0OrPnS9KkSREcHGzPYlmUMmVKvHz50uVS0sU1W7duRefOnbFs2TJUrlzZ2cWRJDWKKHXq1E4oiTEfHx9MnDjR6s+3bNkSGTNmtEsMgxIGXv2I7KhKlSqYPn26Q3u7HT58GFFRUUiePLld1q+vuOt0OlSpUsUu2/Dz80NkZGS8H6mQkCVKlAhLly51djE0EV+D6HH5ezkyiG5vq1atcsp247MkSZKgZcuWzi5GgqL0/HGV4JcrBAocRek+Nxzur+Yaaymoq7WdO3di+/bt6Natm0O362zJkyfH8+fPXSLlB8Vvjky7E1/VqVMHT548cXYxzLJ1vg1XpdPpNEndlCpVKtsL42BazDlBDKITEkaPcGfR6XTo0aOHQ7fp5uZmtwC6I+knISRydc4MNrtKwMneHJET3ZXE9fIT2Spjxox4+vSpU7YdFBRkNLlrfKf0+pojRw7Url0bvr6+ioNo1atXd3he8xo1asSaPNMZKlasiCNHjiie8FgLCb13cP/+/TF58mSMGjXK2UUhivPiaxBdK1myZMHixYs1Sw+qFan75suXL/HmzRurR2iRMZ4ZCdi///6LHDlyYMeOHRaX1Q9Xd7X8nEREtmjUqBEAoG/fvlavgwFPdQoWLOjsIljFkQ0WPKYovlF7/uzevRt169bF2bNn7VQiY/pJU4OCgnD8+HGXzpfvLDqdDtu2bcPKlSsdus246sCBA3j37p3dU37R/4wfPx7v379HgQIFnF0UskKFChUAsCOVszRr1gwBAQHivzki3LK2bduiQYMGzi6GRalSpUKuXLmcXYx4I2E3Vydw9evXVzyp3MOHD/HixQvkyJHDzqUiVxeXH2iITK1btw6PHj1C9uzZrV5HXJ1Y1FkyZsyIq1ev2rXnRlzcL4bievnV4D0lYVD7O+fPnx9btmyxU2li27NnD+bPny87oWl8Zs9zMCGf3zqdDp6ennZZd9WqVbFt2zZkypTJLuuPy5hqJO7KnDkzHj9+7HI9exOKNWvWQBAE/Pbbb3j79q1Nz0ZE8RmD6KSIt7c3vL29nV0Ms5InT46IiAgUKVLE2UWJ1xJScIfiv0SJEtlcSXTGOdG4cWNs2LABvXv3tts27Dlrvb17edrjN9FPQpk0aVLN122K11mKb1w9mJo5c2aMHDnS2cVwClf+bTJmzOjsIrikJUuWYM6cOWjdurWzi0KkKTYMOZdOp8PkyZOdXQwil8Z0LhRvnDp1Ch07dsSmTZucXRQiSkCcEfBct24dXr9+jVKlSmm+7sOHD6NSpUrYtm2b5uu2ltIgT+/eveHm5oahQ4dqXoa8efPizp07eP78uebrJiJyFlcMou/YsQN//fUXihYt6uyiuKRUqVJh8ODBzG9LRERG4sPceK6OPdEp3siXLx/mzZvn7GIQEdmdTqdDihQp7LLu8uXL48CBA3ZZt71NmTIF48ePt9tw7pw5c9plvaYSUk90VwzgEZFz1axZ09lFICIiinMaNGiAJk2aoHTp0s4uSrzFIDoRqcLJXoiMJaSAp6O1bNkSK1euxK+//qr4M8yHSuR62FjiuvjbOJ6vry/evn3r7GIQEVE84+7ujnXr1jm7GPEa07kQkSJjx45FhQoV8OOPPzq7KEQuxZ65wxO65cuXIyoqCgEBAc4uikMlpIYZe6QkIiLlGER3vIMHD6JKlSo4deqUs4tCTuLm5hphmIRU3yAi0oJrXL2JyOUNHDgQhw4dgpeXl7OLQuRSmjRpgn79+mHjxo3OLkq8o9PpHDKRp6spW7ass4tgd48fP8aJEydQqFAhZxeFHICB2oQlZcqUAIC6des6uSSuqUiRIti3bx9Klizp7KKQkyxcuBBp0qTBrFmznF0UIiJSgelciIiIbODm5oYJEyY4uxgUj7Rs2RI6nS5eB1gyZcqETJkyObsYRAmePRo4rl69ipMnT6JevXqar5soPihUqBBCQ0PZwEhEFMcwiE5ERETkQtzc3NCqVStnF4NIMwwUuS57/Db+/v5o2LCh5uslik9c4broCmUgIopLmM6FiIiIiIgoAWIQjSjh6devH7JmzYru3bs7uyhERHEKg+hERERERGQ3DNQSEbmOCRMm4P79+0iVKpWzi0JEFKcwiE5ERERERJQANWvWDACQN29eJ5eEiByJjZtEROoxiE5ERERERJobO3Ys0qRJg4kTJzq7KCRj6NChWLduHY4ePersohARERG5NJ0gCIKzC2FP4eHh8PX1xdu3b+Hj4+Ps4hARERERJRiCILDHIxERERG5LKWxY/ZEJyIiIiIiu2AAnYiIiIjiAwbRiYiIiIiIiIiIiIhkMIhORERERERERERERCTD3dkFsDd9yvfw8HAnl4SIiIiIiIiIiIiIXIU+Zmxp2tB4H0SPiIgAAGTOnNnJJSEiIiIiIiIiIiIiVxMREQFfX1/Z93WCpTB7HBcTE4Nnz54hefLkCXZio/DwcGTOnBmPHz82O8ssEcVfvA4QEcBrARF9xWsBEQG8FhARrwPA1x7oERERyJAhA9zc5DOfx/ue6G5ubsiUKZOzi+ESfHx8EuwJQURf8TpARACvBUT0Fa8FRATwWkBEvA6Y64Gux4lFiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQfQEwNPTE8OGDYOnp6ezi0JETsLrABEBvBYQ0Ve8FhARwGsBEfE6oEa8n1iUiIiIiIiIiIiIiMha7IlORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPo8dysWbOQLVs2JEmSBKVKlcLp06edXSQistK4cePwzTffIHny5EibNi0aNmyImzdvGi3z4cMHdOvWDalSpYK3tzcaN26M0NBQo2UePXqEOnXqIGnSpEibNi1+++03REdHGy1z8OBBFCtWDJ6ensiVKxcWL15s769HRFYYP348dDodevbsKb7G6wBRwvD06VP88MMPSJUqFby8vFCwYEGcPXtWfF8QBAwdOhTp06eHl5cXqlWrhtu3bxut4/Xr12jVqhV8fHzg5+eH9u3bIzIy0miZy5cvo3z58kiSJAkyZ86MiRMnOuT7EZFlX758wZAhQ5A9e3Z4eXkhZ86cGDVqFARBEJfhtYAo/jl8+DDq1auHDBkyQKfTYdOmTUbvO/K8X7duHQICApAkSRIULFgQ27dv1/z7ugoG0eOxNWvWoHfv3hg2bBjOnz+PwoULo0aNGnjx4oWzi0ZEVjh06BC6deuGkydPYs+ePfj8+TO+/fZbREVFicv06tULW7Zswbp163Do0CE8e/YM3333nfj+ly9fUKdOHXz69AnHjx/HkiVLsHjxYgwdOlRc5v79+6hTpw4qV66MixcvomfPnujQoQN27drl0O9LROadOXMGf/31FwoVKmT0Oq8DRPHfmzdvULZsWSROnBg7duzAtWvXMGXKFKRIkUJcZuLEifjzzz8xd+5cnDp1CsmSJUONGjXw4cMHcZlWrVrh6tWr2LNnD7Zu3YrDhw+jU6dO4vvh4eH49ttvkTVrVpw7dw6TJk3C8OHDMW/ePId+XyKSNmHCBMyZMwczZ87E9evXMWHCBEycOBEzZswQl+G1gCj+iYqKQuHChTFr1izJ9x113h8/fhwtWrRA+/btceHCBTRs2BANGzbElStX7PflnUmgeKtkyZJCt27dxH9/+fJFyJAhgzBu3DgnloqItPLixQsBgHDo0CFBEAQhLCxMSJw4sbBu3TpxmevXrwsAhBMnTgiCIAjbt28X3NzchJCQEHGZOXPmCD4+PsLHjx8FQRCEfv36CQUKFDDa1vfffy/UqFHD3l+JiBSKiIgQcufOLezZs0eoWLGi8OuvvwqCwOsAUULRv39/oVy5crLvx8TECP7+/sKkSZPE18LCwgRPT09h1apVgiAIwrVr1wQAwpkzZ8RlduzYIeh0OuHp06eCIAjC7NmzhRQpUojXBv228+bNq/VXIiIr1KlTR2jXrp3Ra999953QqlUrQRB4LSBKCAAIGzduFP/tyPO+WbNmQp06dYzKU6pUKaFz586afkdXwZ7o8dSnT59w7tw5VKtWTXzNzc0N1apVw4kTJ5xYMiLSytu3bwEAKVOmBACcO3cOnz9/NjrvAwICkCVLFvG8P3HiBAoWLIh06dKJy9SoUQPh4eG4evWquIzhOvTL8NpB5Dq6deuGOnXqxDpXeR0gShg2b96MEiVKoGnTpkibNi2KFi2K+fPni+/fv38fISEhRuexr68vSpUqZXQt8PPzQ4kSJcRlqlWrBjc3N5w6dUpcpkKFCvDw8BCXqVGjBm7evIk3b97Y+2sSkQVlypTBvn37cOvWLQDApUuXcPToUdSqVQsArwVECZEjz/uE9szAIHo89fLlS3z58sXoARkA0qVLh5CQECeVioi0EhMTg549e6Js2bIIDAwEAISEhMDDwwN+fn5Gyxqe9yEhIZLXBf175pYJDw/H+/fv7fF1iEiF1atX4/z58xg3blys93gdIEoY7t27hzlz5iB37tzYtWsXunTpgh49emDJkiUA/ncum3sWCAkJQdq0aY3ed3d3R8qUKVVdL4jIeQYMGIDmzZsjICAAiRMnRtGiRdGzZ0+0atUKAK8FRAmRI897uWXi63XB3dkFICIi9bp164YrV67g6NGjzi4KETnQ48eP8euvv2LPnj1IkiSJs4tDRE4SExODEiVKYOzYsQCAokWL4sqVK5g7dy7atm3r5NIRkaOsXbsWK1aswMqVK1GgQAFxHpMMGTLwWkBEpDH2RI+nUqdOjUSJEiE0NNTo9dDQUPj7+zupVESkhV9++QVbt27FgQMHkClTJvF1f39/fPr0CWFhYUbLG573/v7+ktcF/XvmlvHx8YGXl5fWX4eIVDh37hxevHiBYsWKwd3dHe7u7jh06BD+/PNPuLu7I126dLwOECUA6dOnR/78+Y1ey5cvHx49egTgf+eyuWcBf39/vHjxwuj96OhovH79WtX1goic57fffhN7oxcsWBCtW7dGr169xNFqvBYQJTyOPO/llomv1wUG0eMpDw8PFC9eHPv27RNfi4mJwb59+xAUFOTEkhGRtQRBwC+//IKNGzdi//79yJ49u9H7xYsXR+LEiY3O+5s3b+LRo0fieR8UFITg4GCjG+aePXvg4+MjPowHBQUZrUO/DK8dRM5XtWpVBAcH4+LFi+J/JUqUQKtWrcS/eR0giv/Kli2LmzdvGr1269YtZM2aFQCQPXt2+Pv7G53H4eHhOHXqlNG1ICwsDOfOnROX2b9/P2JiYlCqVClxmcOHD+Pz58/iMnv27EHevHmRIkUKu30/IlLm3bt3cHMzDuskSpQIMTExAHgtIEqIHHneJ7hnBmfPbEr2s3r1asHT01NYvHixcO3aNaFTp06Cn5+fEBIS4uyiEZEVunTpIvj6+goHDx4Unj9/Lv737t07cZmff/5ZyJIli7B//37h7NmzQlBQkBAUFCS+Hx0dLQQGBgrffvutcPHiRWHnzp1CmjRphIEDB4rL3Lt3T0iaNKnw22+/CdevXxdmzZolJEqUSNi5c6dDvy8RKVOxYkXh119/Ff/N6wBR/Hf69GnB3d1dGDNmjHD79m1hxYoVQtKkSYXly5eLy4wfP17w8/MT/v33X+Hy5ctCgwYNhOzZswvv378Xl6lZs6ZQtGhR4dSpU8LRo0eF3LlzCy1atBDfDwsLE9KlSye0bt1auHLlirB69WohadKkwl9//eXQ70tE0tq2bStkzJhR2Lp1q3D//n3hn3/+EVKnTi3069dPXIbXAqL4JyIiQrhw4YJw4cIFAYDwxx9/CBcuXBAePnwoCILjzvtjx44J7u7uwuTJk4Xr168Lw4YNExInTiwEBwc7bmc4EIPo8dyMGTOELFmyCB4eHkLJkiWFkydPOrtIRGQlAJL/LVq0SFzm/fv3QteuXYUUKVIISZMmFRo1aiQ8f/7caD0PHjwQatWqJXh5eQmpU6cW+vTpI3z+/NlomQMHDghFihQRPDw8hBw5chhtg4hci2kQndcBooRhy5YtQmBgoODp6SkEBAQI8+bNM3o/JiZGGDJkiJAuXTrB09NTqFq1qnDz5k2jZV69eiW0aNFC8Pb2Fnx8fISffvpJiIiIMFrm0qVLQrly5QRPT08hY8aMwvjx4+3+3YhImfDwcOHXX38VsmTJIiRJkkTIkSOH8PvvvwsfP34Ul+G1gCj+OXDggGRsoG3btoIgOPa8X7t2rZAnTx7Bw8NDKFCggLBt2za7fW9n0wmCIDinDzwRERERERERERERkWtjTnQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIiIiIiIiIpLBIDoRERERERERERERkQwG0YmIiIiIiIiIiIiIZDCITkREREREREREREQkg0F0IiIiIiKStHjxYvj5+Tm7GERERERETsUgOhERERGRi/rxxx/RsGHDWK8fPHgQOp0OYWFhDi8TEREREVFCwyA6ERERERHF8vnzZ2cXgYiIiIjIJTCITkREREQUx23YsAEFChSAp6cnsmXLhilTphi9r9PpsGnTJqPX/Pz8sHjxYgDAgwcPoNPpsGbNGlSsWBFJkiTBihUrjJZ/8OAB3NzccPbsWaPXp02bhqxZsyImJkbz70VERERE5AoYRCciIiIiisPOnTuHZs2aoXnz5ggODsbw4cMxZMgQMUCuxoABA/Drr7/i+vXrqFGjhtF72bJlQ7Vq1bBo0SKj1xctWoQff/wRbm58tCAiIiKi+Mnd2QUgIiIiIiJ5W7duhbe3t9FrX758Ef/+448/ULVqVQwZMgQAkCdPHly7dg2TJk3Cjz/+qGpbPXv2xHfffSf7focOHfDzzz/jjz/+gKenJ86fP4/g4GD8+++/qrZDRERERBSXsLsIEREREZELq1y5Mi5evGj034IFC8T3r1+/jrJlyxp9pmzZsrh9+7ZRsF2JEiVKmH2/YcOGSJQoETZu3AgAWLx4MSpXroxs2bKp2g4RERERUVzCnuhERERERC4sWbJkyJUrl9FrT548UbUOnU4HQRCMXpOaODRZsmRm1+Ph4YE2bdpg0aJF+O6777By5UpMnz5dVVmIiIiIiOIaBtGJiIiIiOKwfPny4dixY0avHTt2DHny5EGiRIkAAGnSpMHz58/F92/fvo13795Ztb0OHTogMDAQs2fPRnR0tNn0L0RERERE8QGD6EREREREcVifPn3wzTffYNSoUfj+++9x4sQJzJw5E7NnzxaXqVKlCmbOnImgoCB8+fIF/fv3R+LEia3aXr58+VC6dGn0798f7dq1g5eXl1ZfhYiIiIjIJTEnOhERERFRHFasWDGsXbsWq1evRmBgIIYOHYqRI0caTSo6ZcoUZM6cGeXLl0fLli3Rt29fJE2a1Opttm/fHp8+fUK7du00+AZERERERK5NJ5gmRyQiIiIiIjJj1KhRWLduHS5fvuzsohARERER2R17ohMRERERkSKRkZG4cuUKZs6cie7duzu7OEREREREDsEgOhERERERKfLLL7+gePHiqFSpElO5EBEREVGCwXQuREREREREREREREQy2BOdiIiIiIiIiIiIiEgGg+hERERERERERERERDIYRCciIiIiIiIiIiIiksEgOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIiIiIiIiIpLBIDoRERERERERERERkQwG0YmIiIiIiIiIiIiIZDCITkREREREREREREQkg0F0IiIiIiIiIiIiIiIZDKITEREREREREREREclgEJ2IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5EREREREREREREJINBdCIiIiIiIiIiIiIiGQyiExERERERERERERHJYBCdiIiIiIiIiIiIiEgGg+hERERERERERERERDIYRCciIiIiIiIiIiIiksEgOhERERERERERERGRDAbRiYiIiIgcaPjw4ShSpIizi+FU2bJlw7Rp05xdDCIiIiIiRRhEJyIiIiJSKCQkBN27d0eOHDng6emJzJkzo169eti3b5+zixYvvX79Gt27d0fevHnh5eWFLFmyoEePHnj79q2zi0ZERERECYi7swtARERERBQXPHjwAGXLloWfnx8mTZqEggUL4vPnz9i1axe6deuGGzduOLuI8c6zZ8/w7NkzTJ48Gfnz58fDhw/x888/49mzZ1i/fr2zi0dERERECQR7ohMRERERKdC1a1fodDqcPn0ajRs3Rp48eVCgQAH07t0bJ0+eFJd79OgRGjRoAG9vb/j4+KBZs2YIDQ2VXW+lSpXQs2dPo9caNmyIH3/8Ufx3tmzZMHr0aLRp0wbe3t7ImjUrNm/ejP/++0/cVqFChXD27FnxM4sXL4afnx927dqFfPnywdvbGzVr1sTz589t3hdhYWHo3Lkz0qVLhyRJkiAwMBBbt24V39+wYQMKFCgAT09PZMuWDVOmTLFqO4GBgdiwYQPq1auHnDlzokqVKhgzZgy2bNmC6Ohom78HEREREZESDKITEREREVnw+vVr7Ny5E926dUOyZMlive/n5wcAiImJQYMGDfD69WscOnQIe/bswb179/D999/bXIapU6eibNmyuHDhAurUqYPWrVujTZs2+OGHH3D+/HnkzJkTbdq0gSAI4mfevXuHyZMnY9myZTh8+DAePXqEvn372lSOmJgY1KpVC8eOHcPy5ctx7do1jB8/HokSJQIAnDt3Ds2aNUPz5s0RHByM4cOHY8iQIVi8eLFN29V7+/YtfHx84O7OQbVERERE5BiseRIRERERWXDnzh0IgoCAgACzy+3btw/BwcG4f/8+MmfODABYunQpChQogDNnzuCbb76xugy1a9dG586dAQBDhw7FnDlz8M0336Bp06YAgP79+yMoKAihoaHw9/cHAHz+/Blz585Fzpw5AQC//PILRo4caXUZAGDv3r04ffo0rl+/jjx58gAAcuTIIb7/xx9/oGrVqhgyZAgAIE+ePLh27RomTZpk1LveGi9fvsSoUaPQqVMnm9ZDRERERKQGe6ITEREREVlg2LvbnOvXryNz5sxiAB0A8ufPDz8/P1y/ft2mMhQqVEj8O126dACAggULxnrtxYsX4mtJkyYVA+gAkD59eqP3TRUoUADe3t7w9vZGrVq1JJe5ePEiMmXKJAbQTV2/fh1ly5Y1eq1s2bK4ffs2vnz5IrttS8LDw1GnTh3kz58fw4cPt3o9RERERERqsSc6EREREZEFuXPnhk6ns8vkoW5ubrGC9J8/f461XOLEicW/dTqd7GsxMTGSn9EvY65BYPv27eK2vby8JJeRe92eIiIiULNmTSRPnhwbN26M9b2IiIiIiOyJPdGJiIiIiCxImTIlatSogVmzZiEqKirW+2FhYQCAfPny4fHjx3j8+LH43rVr1xAWFob8+fNLrjtNmjRGk31++fIFV65c0fYLKJQ1a1bkypULuXLlQsaMGSWXKVSoEJ48eYJbt25Jvp8vXz4cO3bM6LVjx44hT548Yt50NcLDw/Htt9/Cw8MDmzdvRpIkSVSvg4iIiIjIFgyiExEREREpMGvWLHz58gUlS5bEhg0bcPv2bVy/fh1//vkngoKCAADVqlVDwYIF0apVK5w/fx6nT59GmzZtULFiRZQoUUJyvVWqVMG2bduwbds23LhxA126dBGD8q6oYsWKqFChAho3bow9e/bg/v372LFjB3bu3AkA6NOnD/bt24dRo0bh1q1bWLJkCWbOnGnVhKb6AHpUVBQWLlyI8PBwhISEICQkxKbUMEREREREajCITkRERESkQI4cOXD+/HlUrlwZffr0QWBgIKpXr459+/Zhzpw5AL6mS/n333+RIkUKVKhQAdWqVUOOHDmwZs0a2fW2a9cObdu2FYPtOXLkQOXKlR31tayyYcMGfPPNN2jRogXy58+Pfv36iUHtYsWKYe3atVi9ejUCAwMxdOhQjBw50qpJRc+fP49Tp04hODgYuXLlQvr06cX/DHv7ExERERHZk05QOksSEREREREREREREVECw57oREREREREREREREQyGEQnIiIiIiKnWLFiBby9vSX/K1CggLOLR0REREQEgOlciIiIiIjISSIiIhAaGir5XuLEiZE1a1YHl4iIiIiIKDYG0YmIiIiIiIiIiIiIZDg1nUu2bNmg0+li/detWzcAwIcPH9CtWzekSpUK3t7eaNy4sWxPFSIiIiIiIiIiIiIirTm1J/p///2HL1++iP++cuUKqlevjgMHDqBSpUro0qULtm3bhsWLF8PX1xe//PIL3NzccOzYMWcVmYiIiIiIiIiIiIgSEJdK59KzZ09s3boVt2/fRnh4ONKkSYOVK1eiSZMmAIAbN24gX758OHHiBEqXLq1onTExMXj27BmSJ08OnU5nz+ITERERERERERERURwhCAIiIiKQIUMGuLnJJ21xd2CZzPr06ROWL1+O3r17Q6fT4dy5c/j8+TOqVasmLhMQEIAsWbKoCqI/e/YMmTNntlexiYiIiIiIiIiIiCgOe/z4MTJlyiT7vssE0Tdt2oSwsDD8+OOPAICQkBB4eHjAz8/PaLl06dIhJCREdj0fP37Ex48fxX/rO9o/fvwYPj4+mpebiIiIiIiIiIiIiOKe8PBwZM6cGcmTJze7nMsE0RcuXIhatWohQ4YMNq1n3LhxGDFiRKzXfXx8GEQnIiIiIiIiIiIiIiOW0oDLJ3pxoIcPH2Lv3r3o0KGD+Jq/vz8+ffqEsLAwo2VDQ0Ph7+8vu66BAwfi7du34n+PHz+2V7GJiIiIiIiIiIiIKJ5ziSD6okWLkDZtWtSpU0d8rXjx4kicODH27dsnvnbz5k08evQIQUFBsuvy9PQUe52z9zkRERERERERERER2cLp6VxiYmKwaNEitG3bFu7u/yuOr68v2rdvj969eyNlypTw8fFB9+7dERQUpHhSUaKE5OXLl0idOrWzi0FERERERERERBSvOD2IvnfvXjx69Ajt2rWL9d7UqVPh5uaGxo0b4+PHj6hRowZmz55tl3JER0fj06dPdlk3uT4PDw+jRpy4ZsyYMRg8eDBmzpyJbt26Obs4RERERERERERE8YZOEATB2YWwp/DwcPj6+uLt27eSqV0EQcCjR4/w8uVLJ5SOXEnq1KmRJUsWixMJuCLDMsfzU5qIiIiIiIiIiEgTlmLHenG3661G9AH0jBkzwtvbG25uLpEmnhwoJiYGkZGRePr0KQAga9asTi4RERERERERERERuYoEHUSPjo4WA+j+/v7OLg45kbe3NwDg6dOnSJkyJZInT+7kEhEREREREREREZErSNDdrvU50PUBVErY9MfBgQMH8O7dOyeXhoiI4gpBEPDx40dnF4OIiIiIiIjsJEEH0fWYwoWA/x0HDx8+xN69e51cGiIiiisaNGiAZMmS4b///nN2UYiIiIiIiMgOGD0mMuHt7Y3nz5/jy5cvzi4KERHFAVu2bMGXL1+wevVqZxeFiIiIiIiI7IBBdCITbm5uiI6ORnR0tLOLQkREREREGrt37x4uXrzo7GIQERFRHMIgehx0+PBh1KtXDxkyZIBOp8OmTZtiLSMIAoYOHYr06dPDy8sL1apVw+3bt42Wef36NVq1agUfHx/4+fmhffv2iIyMNFrm8uXLKF++PJIkSYLMmTNj4sSJsba1bt06BAQEIEmSJChYsCC2b99utvyLFy+GTqeDTqdDokSJkCJFCpQqVQojR47E27dvVe2LBw8eQKfTsRJMREROJwiCs4tAREQK5MyZE0WLFkVISIizi0JERERxBIPocVBUVBQKFy6MWbNmyS4zceJE/Pnnn5g7dy5OnTqFZMmSoUaNGvjw4YO4TKtWrXD16lXs2bMHW7duxeHDh9GpUyfx/fDwcHz77bfImjUrzp07h0mTJmH48OGYN2+euMzx48fRokULtG/fHhcuXEDDhg3RsGFDXLlyxex38PHxwfPnz/HkyRMcP34cnTp1wtKlS1GkSBE8e/bMhr1jP2fOnMHYsWPx+fNnZxfFKoIgYPny5bh69aqzi0JERETkNGzwIr27d+86uwguIzw8HK9fv3Z2MYiIiFwWg+hxUK1atTB69Gg0atRI8n1BEDBt2jQMHjwYDRo0QKFChbB06VI8e/ZM7LV+/fp17Ny5EwsWLECpUqVQrlw5zJgxA6tXrxaD2CtWrMCnT5/w999/o0CBAmjevDl69OiBP/74Q9zW9OnTUbNmTfz222/Ily8fRo0ahWLFimHmzJlmv4NOp4O/vz/Sp0+PfPnyoX379jh+/DgiIyPRr18/cbmdO3eiXLly8PPzQ6pUqVC3bl2jym727NkBAEWLFoVOp0OlSpUAfA14V69eHalTp4avry8qVqyI8+fPq97XrVq1Qt26dSEIAkqWLInff//d4ndzVf/++y9at26NwMBAZxeFSFJMTIxRQx8REZHWwsPDkTt3bvTs2dPZRSFyGYIgwNfXF6lSpcK7d++cXRwiIiKXxCC6AUEQEBUV5ZT/tOwRc//+fYSEhKBatWria76+vihVqhROnDgBADhx4gT8/PxQokQJcZlq1arBzc0Np06dEpepUKECPDw8xGVq1KiBmzdv4s2bN+IyhtvRL6Pfjhpp06ZFq1atsHnzZnFSz6ioKPTu3Rtnz57Fvn374ObmhkaNGiEmJgYAcPr0aQDA3r178fz5c/zzzz8AgIiICLRt2xZHjx7FyZMnkTt3btSuXRsRERGKy/Pp0yesXLkS27ZtMwrcW+pl76rOnj3r7CIQmRUUFITkyZMjPDzc2UUhIiKNvXr1CpMnT8bz58+dWo6FCxfi7t27mD59ulPLQc7x8eNHZxfBJemfrYCv6TKJiIgoNndnF8CVvHv3Dt7e3k7ZdmRkJJIlS6bJuvS5/dKlS2f0erp06cT3QkJCkDZtWqP33d3dkTJlSqNl9D29Ddehfy9FihQICQkxux21AgICEBERgVevXiFt2rRo3Lix0ft///030qRJg2vXriEwMBBp0qQBAKRKlQr+/v7iclWqVDH63Lx58+Dn54dDhw6hbt26ispi2LDBYb9E9qdvFDtw4AAaNGjg5NIQqcd7BZG8li1bYvfu3Vi2bBkuXbrktHIYBgstEQQB9erVg7+/PxYsWKBZGW7cuAEfHx9kyJBBs3WSZYsXL8ZPP/2E5cuXO7soLo33MiIiImnsiU4uRV9p0+l0AIDbt2+jRYsWyJEjB3x8fJAtWzYAwKNHj8yuJzQ0FB07dkTu3Lnh6+sLHx8fREZGWvycHH154jJWiCmuiA/nGxGp8/btW8yYMYOT/MVju3fvBvB10npnUlMfCg4OxrZt27Bw4ULNtv/8+XPky5cPGTNm1GydpMxPP/0EAPjhhx/E11g/jo37JP66ePEiHj9+7OxikJWWL1+OkiVL4smTJ84uClGCxZ7oBpImTYrIyEinbVsr+h7ZoaGhSJ8+vfh6aGgoihQpIi7z4sULo89FR0fj9evX4uf9/f0RGhpqtIz+35aWMewVrsb169fh4+ODVKlSAQDq1auHrFmzYv78+ciQIQNiYmIQGBiIT58+mV1P27Zt8erVK0yfPh1Zs2aFp6cngoKCLH7OkDMqkNHR0ahbty6KFi2KcePGabpuVoiJiMhVdezYEevWrcOcOXNw7do1q9czbtw4vH//HiNHjrR6HRERETh//jzKly8PNzfX6W8SHR2NgQMHonLlyqhdu7azi5MgREdHa77O4OBgzddJZCtXe04ICwuDr68vO1Zo6P79+yhatCgA1/u91Rg/fjxevnyJyZMnO7soDte6dWsAQM+ePbF+/Xonl4YoYXKdJwMXoNPpkCxZMqf8p2UFIXv27PD398e+ffvE18LDw3Hq1CkEBQUB+Jp7OCwsDOfOnROX2b9/P2JiYlCqVClxmcOHD+Pz58/iMnv27EHevHmRIkUKcRnD7eiX0W9HjRcvXmDlypVo2LAh3Nzc8OrVK9y8eRODBw9G1apVkS9fPjEXu54+X7s+h7resWPH0KNHD9SuXRsFChSAp6cnXr58qbpMeo6qwO3evRu7du3C+PHjHbI9+urDhw9Oz9Fq6u7du1iwYIHR+UdEX6/3mzZtcrlzlmzz77//AvjamG6tjx8/YtCgQRg1apQ4Sbo1KleujEqVKuHPP/+0eh32sGTJEkyePBl16tRR/dnPnz/j4MGDNk3eHB4ejgMHDsSqcylhy+8an7x8+RKbNm1ydjGIzHJ2gPXMmTNIkSIFmjdv7tRy2Gr06NGoW7eu5o1xFy9eROXKlXHy5ElVn7tw4YKm5XCWgQMHYsqUKbh165bFZe3RECrlw4cPqF69usOe4c3NH/X8+fNYnRyJSDsMosdBkZGRuHjxIi5evAjga6vyxYsXxVQlOp0OPXv2xOjRo7F582YEBwejTZs2yJAhAxo2bAgAyJcvH2rWrImOHTvi9OnTOHbsGH755Rc0b95czM/YsmVLeHh4oH379rh69SrWrFmD6dOno3fv3mJZfv31V+zcuRNTpkzBjRs3MHz4cJw9exa//PKL2e8gCAJCQkLw/PlzXL9+HX///TfKlCkDX19f8eaTIkUKpEqVCvPmzcOdO3ewf/9+o20DXycj9fLyws6dOxEaGoq3b98CAHLnzo1ly5bh+vXrOHXqFFq1agUvLy9V+9kZFUh7Tnbk7AqxK8udOzcyZMhgNIGss+XKlQsdO3Z0uSCO1o4cOYJcuXJh586d4mvspUfmzJ07F40aNUL+/PmdXZRYeJ21ntrG6jt37qBGjRo4cOCA+Jphrmtb7qf6DgZLliyxeh32YG1KOgDo378/KleujLZt21q9jkqVKqFKlSqYOXOm6s+64vmqhNbndMmSJTFnzhxN10nx2/Tp043qSPbiSnNB6XsYr1271qnlsNWQIUOwbds2sZFYK5UrV8bBgwdVd1pz9u+qtXfv3pl9v3fv3kiWLBlu375t97IsX74ce/fuxcCBA+2+LXM+fPiADBkywN/fX7IBISwsDJUqVcK8efOcUDqi+IFB9Djo7NmzKFq0qDgcq3fv3ihatCiGDh0qLtOvXz90794dnTp1wjfffIPIyEjs3LkTSZIkEZdZsWIFAgICULVqVdSuXRvlypUzuqD6+vpi9+7duH//PooXL44+ffpg6NCh6NSpk7hMmTJlsHLlSsybNw+FCxfG+vXrsWnTJgQGBpr9DuHh4UifPj0yZsyIoKAg/PXXX2jbti0uXLggpqBxc3PD6tWrce7cOQQGBqJXr16YNGmS0Xrc3d3x559/4q+//kKGDBnEyQgXLlyIN2/eoFixYmjdujV69OgRayJVNRzVE12ucnPmzBnMmzcv3lV+APs2HCilzyu3fft2J5cktsOHDzu7CBY9e/bM6p4elStXxt27d1GrVi3xtcGDB9tcpsjISM3z7o4ePRr58+fH69evNV0vqbNlyxYAXx8EKP5Qe59t3rw5du/eHWsicT173i+jo6OxY8eOWKPjXNnUqVMB2BaU0vdiXLZsmSZlchZn1qXu37/vtG2TvHfv3qFUqVIYMmSIs4ti5OjRo+jZs6dRHWn37t2YPn26XbcbH583tPb69Wuj3sDmUobaMgJIirX1H3v+rlu2bEGJEiVcatTR1KlT8enTJ4wePVrR8l++fEGPHj2suk9GRUWp/oxS79+/x65du4yemeV+y1evXol/S6UpnjBhAg4dOoTOnTtrX1CiBIJB9DioUqVKEAQh1n+LFy8Wl9HpdBg5ciRCQkLw4cMH7N27F3ny5DFaT8qUKbFy5UpERETg7du3+Pvvv+Ht7W20TKFChXDkyBF8+PABT548Qf/+/WOVp2nTprh58yY+fvyIK1euWMzT+eOPP4pljomJQVhYGE6dOoUhQ4bAx8fHaNlq1arh2rVr+PDhAy5duoSKFStCEASxRz0AdOjQAY8ePcKXL19w8OBBAEDRokVx5swZvH//Hrdu3UKTJk3w4MED9OzZ0/IO/n+GNydn5+MrWbIkOnfujG3btlm9DlesEE+cOBFJkiQRJxuLSx4/foxLly45uxhOd+rUKWTMmBHly5e36vPWpAVQolChQihcuDB27dql2TqHDBmC69evY9q0aZqtk8garng9V+L06dPInj07/vnnn1jvqb3PSk2q5Yh79atXr1C9enWx84Ejucrv7uw6kSOZ2+etW7dGw4YNNf9dgoODcf78eU3X6Qqio6MxYcIEnD592i7rP3LkCGrUqIGbN2+q/uyyZctw+vRpxcE2R5GaALJGjRro2bOn5p0sXKknujWaNm2K7777ziFlj4qKQqpUqeDr64sbN24gODgYnp6e+PXXXyWXd9Q101LqUnvum/r16+PcuXNo0aKF3bZhLaX7f82aNZgxYwa+//571duw575t06YNatasiR49elhc1tJ3NZcGhoiUYRCdyIVYugG7Uuu+FvSNMu3bt3dySdTLkiULihQpggcPHji7KIrcv38fvXv3VpUO4Pjx48iSJYvZ/K0LFy4EANV5Ge1N39vPHkOB7Zmn/urVq5ocU+/evXP6Q/CFCxdQtGhRTRsyTLVr1w4tW7Z0+nd1pKdPnyJbtmwYO3ass4uiWv369fHgwQM0btwYu3btMsrPqnWQwdIxcf78eXTv3t2o15YSpUuXFhvsbZkA1dG03L+uNNmqNdTsC7nj6NOnT1i+fDn+/fdfTXuXR0dHo1ChQihevHi8C3bMnz8fAwYMEOde0lqFChWwe/duNG7cWPVnzfUidlVq6nP6jk5K75XOvqeqvV69efMG69evx8aNG/HixQs7lep/7ty5I/5duHBhDB8+HAAspmC0lH7EFkOGDEGaNGmMOtU5Q1weJWhLHnF7njP6CUTVpmCRKpOzz22i+CBu14KJ7Ci+3WTUfB9BEBw2EUtcp3XKEGt9+fIFFy9eNMoJbKhatWqYOnWqxZEihmrVqoXHjx+jUaNGssvEtfMkJiYGq1atwr1795xdlFhevnyJwMBAZM+e3ab1PHz4EMmSJUPdunU1Kpl16tSpg4sXL6JmzZqartfwmFu0aBFWrVqFp0+faroNaznifBg2bBgePXqE33//3e7b0sKbN2/E+4nhkPaaNWuiWLFi4r/VBk1s3dfFixfHzJkzLc7hYsoweBKXaBlEj2s90V+8eIG6deti8+bNALQ5T0177Z45cwYlS5bEkSNHbFqvYSOt2gYeV+eo+U6ePn2KzZs3Y8OGDYqWd+Xj2VzZ1BzH1atXR8GCBbF69WpN1udqHN2L3vB3UdIAo9Pp8PfffyNZsmRYsGCBXcqkH0Vh7p4Wl39jPXt+B1vW7Sr71tL1zBHltHYbgiAgIiJC9ediYmLiTKc2ih8YRCeS4Yyb4cSJEx2+TSmNGzdGxowZ43RvAkdp0KCB0TwBztKlSxcULVpUNp+nPmh89epVReu7d++eol5wjjxPQkJC0KhRI5vS/yxduhQtW7ZEzpw5NSyZNrTqzfj3338DcH6Of0fmi5ZrPIqP7JUCyR4ePnyIlClTij1PlfZgLlOmjFUjPqy5Hl25ckXT9bmKly9fGh0rCTmI3qdPH2zbtk2cN0cNpcdApUqVcObMGVSoUEH1NuwpPDw8Tgbj9WkfrREWFoYGDRqgSZMmnMPk/+kbd5T2ZHX0tW/FihXo2LFjnO3Ao+SaqB9127FjR6eVxdG/644dO1CgQAGcPXvWLuv/559/ULx4cdy6dcsu61di27Ztdh1xKUftb3nz5k3s2LHDTqX5ny9fvqBUqVKS99vg4GDJFFV6HTp0gI+Pj+rRzZ06dUL27Nk5WSo5DIPoRDKckRPdXnkiAXU3W/1wyBQpUohDFB3l8+fPaNSokSZ5p58+fYr3799Lvl6mTBmsWrXK5m0AX4coO5u+DEpSPMyfPx+5c+c226Py559/VrRdR1bIu3fvjk2bNqFGjRoAvk5oapgOQolDhw7Zo2iasOY68+XLFzx8+NDm9biymJgYVKlSBT/++COA+D08denSpfjrr7/MLhOXvuu6desAQMzvbO7YNHzvxIkT2LNnj9l1W9oP+nlXLDWw2DM1SWhoKP744w+HBzEvXryINGnSoFq1auJrCTmdS0hIiCbrMXfMaZWmQevz29fXF6lTp45Tk+DGxMSgVKlSqFKlis37w5pejeZER0ejX79+DglGWWLNvtGnorK0PkffZ3744QcsWLAAK1assHldhmUPCQkxugfMnj0b2bNnx927d23ejhpaXn+XLFnisG3Zqnbt2rh27Rrq1KkD4Otvc+/ePc16fI8aNQrnz59HmzZtbC6r6boNvX79Gr/88gvOnDlj9PqNGzdQt25d1KxZU5PJY5s0aaI4r7/aZQICAlC7dm27p98MDg7GmTNnxJFfeo8fP0ahQoWQJUsW2c/qOwGpnZtCn1p02LBhKkvrGm7fvu30BsRVq1YhS5Ysdmvwim+cXgt++vQpfvjhB6RKlQpeXl4oWLCg0Y8nCAKGDh2K9OnTw8vLC9WqVcPt27edWGJKKFwxUGFLxcja7zNixIhYr719+9ZohnBbGZZt1apV2LRpE3r16mXTOm/duoVMmTIhV65csd7r2bMnTpw4gZYtW9q0DaXu3buHt2/fGr3mzOOrU6dOuHPnDnLnzi27jNJcrI78HqYTCWbMmBHFihWzOFfAvXv30L17d9y/f1+Thwt7fWfDsindRosWLZAtWzarcr9HRESIIxNevHiBYsWKYdasWarXY2/nz5/HgQMHzD442vKbHDx4EIULF8bx48etXocWPn36hLZt2+Lnn3+2KS+nKzH9XZQG0QHretybBoFKliyJkiVLmg2ku7m5YcaMGejZs6eq8ipRu3Zt9OnTB82bN7dpPWrpG1UNA2aG32XPnj02jWhwpSCNlPv376NQoUIWg01KaBXMsIVUuoiLFy+iadOmZifRNPyNXXGyPzn37t3DmTNncPDgQZfLVb5kyRJMmjRJVWq8uMhZdVT9xJhqrzFS9acdO3Ygffr0RnX9bt264cGDB7ITgFqzPal/20toaKjYoUCOI3uiHz58GD169LDYWKV/Burduzdy5syJP/74w+ptSgUbTZ+xtNa7d2/MmjULJUuWFF+7c+cO8uXLJ/5bbRB94cKFyJkzp3gNf/36NTZs2ICNGzfiv//+A/C1QXH//v2q1mvpWeLixYuq1qeW3DGmRTqv9+/fm/2tHXUerl69Gi1btpTsqKfW8uXLkSdPHnz33Xdml/v8+TNq166NkSNH2rxNKS1btsTjx4/RtGlTu6w/vnFqEP3NmzcoW7YsEidOjB07duDatWuYMmUKUqRIIS4zceJE/Pnnn5g7dy5OnTqFZMmSoUaNGpq09uklpGHgJE9/HOgv/s7oiR4XvHnzBn5+fsiWLZtd1q9Vr6EtW7YA+Npb2ZQje2Tdu3cPOXPmRJo0acTXPn36hKJFi1qsCDuCXGOI6TEv9yDryActufPwxIkTZj/37bffYubMmahevbo9iqWKIAiK0iQp3a/6nr4TJkxQXZZ8+fIhMDAQR44cwYgRI3DhwgXV+aHlhIWFaXafVhLsk9tf+sagV69eoXjx4pg6dWqsZSpXrozLly9rkoZBX445c+Ygd+7cqnI0Gga5IiMjbS6LK7AlKG1rXs+XL1/i3LlzOHfuHJ49e4aqVatKNgq7ubmhR48emD59eqxeZrZe3/Q98Pfu3WvTeqScPHkSJUuWxLFjx/DmzRuLD8aG+1N/TbSWFj3RIyIiUKNGDbuM5OrevTuCg4Px448/Sjay2pKv1dLfWps4cSI8PT2xdu1ao+eVUqVKYf369WbnnDAMNjkj3YC1XLn+bTryyx6uXr2KhQsXOvz5VO0x/erVK4wbN85segYpz58/x6VLlyTfs/b3lvqcfmTmmjVrYr1n7QTxr1+/RsmSJS1OIKqkfNZQ0sHF3PVZ62OqYsWKmDFjBnx8fMTXpL6r/njSjzLu16+f1dscOHCg6s8sX74c48ePt7ic3HEvlQpz69atij4rp0OHDrh37x46d+4c6/P6v+fOnYuqVauqKqulILqrXVPVSJs2Lfz8/GRjBdZ8t1u3bmHAgAFiw4USLVq0wKpVq1RfB6RMmTIFwP/iFnI2btyIHTt22L23vas1XLsqd2dufMKECcicOTMWLVokvmY4oZogCJg2bRoGDx4s5lVaunQp0qVLh02bNtncsydJkiRwc3PD/fv3kTFjRnh6esbpCwtZRxAEfPz4EY8fP0ZMTIwY+LHloSg6OhovX76Ev7+/VsW02YEDBzRZjz5gGRISgvfv38PLy0uT9driw4cPSJIkidFrrpITUJ+H0rDCvnv3bly6dAmXLl1C/vz50bx5c7PD2+zp06dP8PT0jPW6aSXc09MTMTExsfaruX155MgRLFq0CJMmTUKqVKmsKt+gQYMQERGBGTNmyC5j6ffUD9u9e/euUaD04cOHyJo1q1XlstYPP/yAlStX4tixYyhTpozRe9b0RLd2eQDiZJz//POPUSoCQRAwb948BAYGomzZspKffffuHby8vGTPs/z586sujy2kvv/AgQMxfvx4bN68GUeOHMH58+dx/vx52VEu5oL1giCoqh907doVANCrVy9s3LhR0Wf++ecf8e8bN25gxYoV6NWrF5InTw7ga++hPXv2GFVwN2zYgIMHD2LatGlIlCiRou1MmzYNefPmRa1atZR+HavZ0hNd7brlXgOAtWvXYv/+/di/f3+sBxDDa53cg1lISAh8fHxU9wizp3LlyuHLly8oV64c/Pz8EBYWhiNHjqBcuXKSy5vu3xUrVljdG1OLuvLUqVOxe/du7N69GzVr1kTmzJltXqdeVFSU+Hf+/PmN0tqoJXdMOWrywv79+wMAvv/+ezRr1kwMCOqvA6YNdadPn8bmzZsxePBguwwPj4mJQXR0NDw8PDRftxobN26ETqdDw4YNzS6n5HeKiYnRpEehJWFhYfD19bV4/gQGBgIAPDw8zO5nR02wKAgChg8fjoIFC6JJkybi623btsW2bdswb948VXO6ZMiQAcDX4JXciEhXfR4fP348zpw5E6vBVapubI/voOQ3N9zus2fPkDhxYqOOPNaKiopC0qRJLX4vqfdNg/em/75+/TpSpEih6LlZqhe7pTJ9+fIFAwcORK1atVC4cGFs2bIFT548QZcuXcT35Rof1q9fL5niQs3zkDn6zkxSn7cm7airnjtqyO1LfQeTK1euICgoKNb71nz3YsWKISoqCleuXMHWrVsRExMjjta2tL4XL16o3p61DJ/Thg8frkm63ejoaBw9elSct4iUUxRET5EiheKDUs0ELps3b0aNGjXQtGlTHDp0CBkzZkTXrl3FCTfu37+PkJAQo8qvr68vSpUqhRMnTtgcRHdzc0P+/Plx//59zSZ0o7jr7du3WLx4MfLkyYOUKVPa1BOmatWqOHz4ME6ePGnzhUmrSeTOnTunyXoMJU2aFBMmTDDqUbBs2TJER0fjp59+El/btm0bAgIC7DKZ44IFC9CxY0esWLHCaMimuRub4W/777//al4mQ1IBasPftH///jh+/Dg2bdpktzJYCg5KkTrm3717h2TJkin6PAAxYC0IglFjKfC1Ym+pZ3h0dDTGjRsHAOjbt6/scuPHj8fJkyeROHFijBgxQvHDwrfffmt2KLw9rFy5EgDQqFEjzJgxA82aNRPfM9znMTExioOiamzevBmZM2dG0aJFZZfZv3+/mBPf8PeNjo6Gu7s7rly5goIFC6J169ZYunSp5DqeP3+uWZmtTaeg73XUq1cvmwLGrVq1wrlz53Dx4sVYjXWWWNsbv27dugC+Bm9nz54NAJK/mT6g8c033yjKCXrs2DGxEcHSfh0yZAhWrVqFU6dOWd0IZksQ3Zqe6HLfyVyAzPA8k9rm48ePkSVLFqRKlcqlJmg0vK7rR7ds27ZNNoiuZR5zLR7SDYdkDxo0CMuWLbN5nXKUHluHDh3Cjh07MHLkSDF46cgg+q1bt7B69WrZ99euXSvZq9aQvs7p4eGBHj16aFo+AAgKCsLp06dRsWJFLF682C6jEi31iI6IiBCHvkdGRsaql6ildBTS8ePHxdFfwNd0DuPHj0e/fv2QJ08es5/duXMnatWqJY56UeLMmTOyDdmAtsfg2bNnjRqYDdc9ePBgsVe34ev6Sd7VjLgy3aZpEF3LlHvWNNr+/vvvuHPnDlavXi2ZYmzSpEkWtz927FhMnz7daJSkIwOb+mt9VFQUMmbMCOB/QWJrj5ng4GAUKlQIrVq1wvLlyzUp5/79+1GlShU8evRI7Hhh78bJkJAQFC5cGPXr1wcAzJgxw2i0klSjjlx6C9N7qj1Gjtgj9YorpqtVS+58suY80ze668/Xn3/+GfPnz8fUqVPRs2dPs59V+ptv27YNgiCIdXtbjRgxQpMg+uDBgzFhwgSjSWDjw/HhCIqC6FpM8Cfl3r17mDNnDnr37o1BgwbhzJkz6NGjBzw8PNC2bVtxIqB06dIZfS5dunSykwR9/PjRKD2BpWFPnp6eyJMnD1avXo2wsDCkTZs2XrTgacFwhuNvv/1WrCylS5fO6GRbvny52DqWJk0a1KlTB4sXLwbwddiNvpeIuVZ5/bb8/PyMgkpSZenUqZPZdeh0Ovz44484fvy4GCDLmzcvKlasKPtdo6OjMWHCBERFReHWrVvo2rUr3N3/d3qoPSYOHz4M4GuA19og+owZM9C9e3e0bdtW1eeOHz8eq4erlkwvrv379xeD6O/fvxcDObt378by5ctx8OBB8aZhjwuzvtGtVatWRkF0c+ktDMth2IvJHue+VBDdlLlAvhZlMjeBklwFQGq75oZomiM1j8XgwYNx7do1s58zLNunT5+Mtm+Yj/TOnTviJKmhoaHYsGGD+N6jR49k13/r1i2LZbfk8ePHePHiBYoXLy75/ufPn9GpUydUqVIFrVu3Fl9/8eIFvv/+ewQEBKBQoUIAYgfR9ZYvX46bN29i5MiRNlUcL126JF67TX83w38bBnHu37+P7NmzY9KkSRg0aBCOHDmCOXPmAPjaYCYXRLcntdcRW86hK1euiA0f27dvt5iz0JSt17xTp04pWk7pxImm8wqYo5/Y6Y8//sCYMWMUf86Qo3uiy71vbllLwWV973NXCqBbQ2mvuZcvX2LlypVo2bIlUqdOLbmM1hOL2ntCLXPXO0OVKlUC8LXu2rt371jvf/78WfKebst5HhMTI+7PvHnzWr0eU1evXrU6ZYXeoEGD8OLFC8yfP188fk6fPg3ga4ND6dKl8dtvv6Fr166yoxKjoqLw559/olGjRor3k+FyoaGhaNeuHTp16oQ3b95g2rRp4jUZ+Hq8JkuWTGxwN0dfN7dk6tSpaNWqFdKmTWv0umlAu3r16njw4AF27NghjuySox9R8OeffyoOolsK0EjtzwcPHmDTpk3o2LGj2LjQvXt3i9sKCgoyOg/16z516pTshPW21k+lriPOfgbXf9devXqhdOnSRu+Z6+xiWI///fffAfzvN3c0/T40vN/bGkSfPHkygK8jmKwJokttt2/fvjh//jwuXLgg+xmp48HNzc3qgLVpCkvTdF9q5t0zLZutQXS5zktyXGG+Dimmo2qVnNP79+9XlWJObp223vOA/80pM2zYME2C6O/evRPjIOHh4eLoUnt4+vQpQkNDUaxYMUXL6+9F9u5QGB8pCqKrDeIpFRMTgxIlSog3rKJFi+LKlSuYO3eu1dscN26cZM5Lc9zc3FCyZEns3LkTd+7cUTRUKSEwfCh/9uyZ+G9BEIzyTD9//lzs5RUSEgKdTicuGx0djWfPnuHu3bs4ePAgqlSpYpSyx3RbHz58kMxhbVoWc+XV6XTYvHmzUf4yHx8fyc9FRETgwYMHCAgIwJcvX5A8eXK8f/9esyC0LcdRjx490L17d6OZ6pWsb9u2bUiTJo3ZSSPtRR/QBr4G4urWrRurh8qrV6/w888/o127dpLrsMe5t2rVKjRu3Nji8OP9+/dj7969mDVrlth7w1aGD9zWDO+0dwVIbv1yQZJ79+5h1qxZ6NWrFzJlyqS6Evflyxe8fPlSdQ9d0/22Y8cOyeWuXLli9G975CI2pE/Dc/v2bclJbJcuXYrFixdj8eLFRkF0vXv37lkMous/V6NGDdlepnI+fvwoHoOWJmDVW7Bggfh3jhw5IAiC2FDWpUsXFC5cONZnPn/+jMSJE6sqmyVhYWHYsmWLouG9liYaMtfz1JyCBQuKf1uTm93W81fr89+a66sto6HUBNGVzBWgdnuWXgeMr3VKGw+tsXTpUkWjBWxh7nsq/R5NmjTBoUOHsH79etmgoxb7xNw6QkNDcePGDbOdH/Rmz56NNWvWYMuWLWJeXlvPG32jrOm6vv/+ezGQptW5uWjRIrRv396mdezYsQMBAQFG9WudTqcot+mbN2/w9OlTMYWIIX1guk+fPkYT6OmFhoaib9++ePXqFYYOHYrEiRPHGkH1+++/Y/r06Rg0aJA4wskSwyBz//79sW/fPuzbt098rVGjRuLf2bJlw9KlSzFo0CCL61VyPAFfJxFcu3atxflW9PVbuecSW5keY126dBEbsYGv+ZInTZqEWrVqiXl1ixUrhjdv3uDWrVviKCYlwSm5hqyTJ0/KfkaqJ+727dsxa9YsLFy4UEzbYu7zWqU9sdRo+v79e7PzEB04cAATJ04U/60/d3bs2IE9e/ZgwoQJZkfbWzrX1H7HqKgodOvWDYGBgWZHYmqxLa3XqbTDjblr6M2bN1GhQgX0798/VoOmu7t7rP19/fp1/PHHH5KNn4ZGjRoleS2zhiN6olvTYKDV7y8IAtq0aQNvb2+j6861a9dw4MABdO7c2ajDoeHnpBh2Cvny5YvRvcI077ul+6vcdwwNDcXmzZvFkQb2puS3MRwJ+e7dO7NB9OjoaHz33XcoUaIEhg4davSekjpHpkyZAHw9HwICAiwuH99y5juSVV1J7t69i8GDB6NFixZiyoQdO3ZITrpgTvr06WPlTc2XL5/Yc1D/4BwaGmq0TGhoqOxD9cCBA/H27VvxP6WTneTKlQu1atVC7ty54e3tjaRJkyb4/6Kjo8X/PDw8xL8FQTBaTp8f0fB902X37NmDz58/Y9euXWa39eXLF/E1T09P7Ny5Ezdv3jRav+lnvby8jNbx+fNnREREGH0GQKzP6XPOHjt2DCdPnsTnz5/x5s0bPHz4UDIYZg1nXIjGjh0ba1ippckq1DB3ETcM+APSKVUGDBiA9evXG/Uk1orchE8tW7bEqFGjxH/LfYeNGzfiijmrogABAABJREFU33//NWoMsLVV2zCwaKlyZy/mfjM1PdHnzp2LnDlz4o8//pDs0Xz79m2LaYOqVq0Kf39/RemFXGlI2ZAhQ8S/9eUy3Hc3btyQ/JyliWrk0kZJ/S76nrA9e/ZE2bJljR4iDLdv2JCgZOixJabfzfTB4e7du0iWLBny58+Pjh07Wpwc+NGjRzhy5AjWrFljNnDauHFjtGnTBt9++63FMpqbEFWn08mmSFDT80VJMNn0ITsqKgr16tXD33//rXg71lB6r5Fabs+ePejSpYvY40nLSU3VBNFtXTdgfA/Sqie6Vkw7h+zbtw+FCxcWe/YKgmDzhE7672naqPTlyxejPOGGyxqaO3eu2LCkn89Ditb7LCoqCm3atBED1JkyZUKlSpUUTYbZrVs3HD58WAwiStGqMdWwt5ZW96ft27erWj4yMhKXL182eq127drIkSOH0Ws6nQ7btm2zuL4MGTKgYMGCqFatmuxIFbkJyPX279+P1KlTiw3ChiwFoqUYBmxevnwZ633Tup49Gqf0weNXr16pCmKFhIRodmyYBpjnzp1r9P7p06fF4KHemzdvANh+zKvNvb1r1y6kTJkS9erVw86dOxWlEhowYACyZctmdN/Ur1NpRwt9OS0Fg/7880+sXbtW8j0AqFKlCnbu3BlrHbVr18bUqVOxYMEChz3Tbdu2Dd7e3liyZAl+++03o/fU/i6mn5P6fM+ePVGoUCGzvZ4dnd+9e/fuePHiBfr06RPrPanALQDJZU2dPXtWUXBRCUujuwRBQOXKlRUHdA07sOgpudeGhIRgw4YNiIiI0LQjx8OHD7F8+XLMnTvXqG5SoEAB/PLLL2IjnTn67Z84cQIjR44UXzds0LRmhJK541Eu/Y5a4eHhqF27tlXP0Nbq1q0btmzZIjl5qJrf0nTOBjVc6dnblameWPTQoUOoVasWypYti8OHD2PMmDFImzYtLl26hIULF2L9+vWK11W2bNlY+Whv3bolTvSWPXt2+Pv7Y9++fShSpAiArwf0qVOnxIkgTHl6eipKnyAlZ86cdsnZHFd16NBB/Hv06NFiflk/Pz+jXjODBw826ilerVo1MU3DtWvX8OrVK6O0DfrPfvnyBb///jsqVaokvp8nTx7x/blz50o+XBhuOzIyEnny5EFQUJC4Djc3N+TIkcNomyVKlDD6XEhIiNH3i4iIMGpwefHihU2T/OnZo9IxcuRIZMuWTdVDg60tsuHh4Vb18JL6/mrSCaiVLVs22fJt2rTJKJBujv5YePToEXLmzIk2bdpg4cKFVpXJcB9MmzYNU6dOdakblFRZLl++LNlD17CCev78+Vif1zfePH/+XLahU79eS6lUIiMjZSvKtrD2nNSntjBk+MAh14CjJuWE0s/pe+kZ5vk2LIthOhul6UDMMT0WTPfhuHHj8PnzZ1y/fh3Xr1+Hn5+f2fUZTuZasWJFHDx4UHI5uUkcpfaNuUDNmzdvjBozJkyYgPv37xsFavSCg4ONep8bUhJEHzt2rNEQ7mPHjgEAtm7dKo6+uXHjBj58+CDWa7Rg6biePHkyZs+eLRnY0DdSpE2bFgcPHsThw4clgwkrV65Enjx5UKJECcXlsiWIbs25alg3tDaIbthwas9rtX6+n+rVq+Pt27f44YcfsHr1ajx8+FDsTaRWTEwMQkNDYzVoS6VllPpucnVrU1r3RNc39C9btkzsiAF8TQtXo0YNReszbSRQ6sqVK7F6YZur/8XExGD//v2adrYwHDFkSeHChXHv3j3J90wbwPT1NnP0wcp9+/bhu+++Ext11Dh//jw+f/5sMUWbNXO/OLNX3IULF1CsWDFUr15dTGlpzubNm9GgQQP88MMPWLZsGSIiIpA8eXIIgmA0ukGpOXPmxGoccRS1wdqaNWsavbdhwwYsWLDA6FnLlP44NmzM1ul0eP/+vdGE3FFRUfDw8EDixImxf/9+pEmTBgULFsTu3bvRunVrLFy40GiSQamyW+rQYCo6OtpongZrOlgZ7h81x7FhRx7ga0cFNfEJc0F0qaCfvk65Zs0a/PTTTxAEAS9fvhTnF7p8+bJkHXfz5s1my2H4G6rtiW4uOGnrNcHWwOfo0aNRpEgRiz3R9aPwga/XWXNz6hw6dAgDBgyI9bqSIHqhQoXE47tFixZG93vD+6lalhqy9IHaqKgo1KhRA3Xr1sWAAQMk75+GI4mA/9WNAePjxBzD40WfQUKqfmBa9xsyZAjy5cuHVq1aKdqOoR07diAyMlK297jWdUTD9MVKfPr0yaZJvtnr3Hqqu5IMGDAAo0ePxp49e4x+tCpVqpgd8iWlV69eOHnyJMaOHYs7d+5g5cqVmDdvHrp16wbg6w/bs2dPjB49Gps3b0ZwcDDatGmDDBkyWJyNnWxj2tvBFqY9ZvSWLVuGCRMmyE74JtcbThAEnD9/Hh8+fMCWLVvw/Plz/PPPP0bLmPaENL3IWeqRVahQIaNAiFQKGmfYsWMHhg0bZrcUS3J8fX2tHtKvdrI4U+/evcOiRYtsngFbaUAF+F9P3unTpyM6OjpWL1Kp3hrff/+9ZE840+8bGRlplyF/5pj7vlLvSaXrUOP+/ftGD/nHjx+XfeiX8+rVK6OyDR48WFGQ5NatW5qkNDBHp9Ph1q1bRpWqX375xehaFxoaii9fvqgKohv29IiJiYEgCOjatavsZ+WCzFozPPelUqOYHs9qfmtL6VTUCg8Pj9Wb1/R+MGDAAPz11184evRorN9nzZo1sg19Ss9buVEJwNffO1++fChatKiqiditHdqq99tvv+H+/ftirlYpI0eOFNN3mI6aOXr0KFq1aoVvvvlGYYm/Mi23NT2Ynzx5IvmbWNon5cuXV7SsaZkMG/i0ztV98+bNWHNUhIeH4/Xr11i5ciViYmLw119/xfrc5s2bFU2CPHnyZMkGTH0+W6244oOX0jLdu3fPqH4n9RBubl3Lli1D9erVUaBAAdllQkJCFAftNmzYgCRJkkjmGZYqh7nrq2EQRqfTIWXKlEbvv3r1CkeOHJE9H86cOYMZM2YAUBccMGwA0F8npeqMSuducBX6Z6E9e/ZYXDYsLEzsabl8+XL89ttv8PHxwZ49e9C3b1+zvXzHjRuHwMBAyXvC4MGDjf6t9FnbEanELJ1zpsFgufWavmb63Ojt7Y1cuXLhwoULqFq1qjjioUaNGnjx4gXq1atnVfnMmTp1qs0jHAwnoTX1+fNnTJs2DUWKFIk12sJ0f+TKlUvViGKp+6yS+ot+mf79+yNt2rRYsmQJnj17hsKFC+PAgQOxlpfrmKTT6XDq1CmjOWSkfndzZVL73KIXHR2NwYMHY9++fWbPOVsMGTIE9erVs1gXNiznmzdvcPDgQQiCgMOHD8eaYNK0XqB/fjAXyD548CAuX75sdK9ZtWqV0Xajo6NRqFAhqxp9lcaC5s+fj2PHjmHgwIFWXXdMYziAsutEzZo1sXLlSslUmXpHjhzBmDFj8MMPP+Do0aNmM1S8fv1acnSsuevIuXPn0Lp1a9mOVKblVvP837lzZ6OGadPvv2TJEnh6eqJz587o1KmT0bOOK9bR4hvVTzPBwcFGuej00qZNKznkzpxvvvkGGzduxKpVqxAYGIhRo0Zh2rRpRi1F/fr1Q/fu3dGpUyd88803iIyMxM6dO8225pHtDGdoN3X8+HGjCXSsrahZ2yO5QIECKF68OGrXri1ZSY+JiYkVmFE7OU9oaCgWLVpk8fOCIODUqVOyE9hqfREzbck159y5c4rTGSmhH84r9Xtv2LBB0bBrQP0+6dOnD9q1a4d06dLh/fv3qFy5MsaNG4ezZ8+qCgwIgiAG4pUes1JlnTRpkjhZk6G1a9dK5i00rcwmT54cjRs3VrR9KaYVqnfv3pkddn/nzh3JYWF6hufQ58+fZXPVy5Halxs3bozVa0btKB9BEIzOuzVr1uDSpUuKPqs2YG+JaSBtwoQJkjOs6x8yDh8+DH9//1gjQMylG1ixYoVRgDImJgY3btyQ7C1tD0uWLJF9z/T7WxrCqrbBzdx+MSUIguz5++bNG/j6+sY61uQCtwMHDoz12pgxY5A5c2bJQKbSyu/x48dl3zMse6pUqRSl23n06BEyZ85sdhm56+r79++NJpUz7GX98eNHxXPImKbri4yMVDQxr9Ke6FIPUTqdDh8+fEDmzJmROXNmm1JrmfvtDI+PadOmGfVKttSzVq2AgADkypUrVnnq1Kkj/m26jw4ePIgGDRpYPQS9R48eksFLW4JsWqRzUZI2yB4jAUyvD8+ePcOWLVuMAhHmeqLre1MbBmhMl0mfPj3Spk0b61o4a9Ys2XKZCwQoZXjt0el0sY6zgIAAVKhQwWi0kqkePXpg7969qva9Yaeqjx8/4vLly3B3dzebg9rQ06dPjXomasmWY0hNfTVFihRGudH19dNvv/3WKN2Kob///hvt27fHoEGDcPXqVUyYMCHWMqbH0MWLFyXXZbqcmhQJq1atknwdiL0Pdu3aJY5wc+QcG48ePTI7MaxpRxlLjVg6nQ7Xrl1Djx498Pz581jvm46ENk2to5bpZ8ePH49evXrh0qVLYo9vc9R0btNvyzC1n7l0Lqb09ZJevXqZbbw1N9G96aSsUsyl1jTXScTcdxg7dizGjBmDatWqST6rqWWuA5elnuiG5SxSpAgqV66MFStWoGLFikapth4/fhyrN3Hu3LkV3WcrV65s9v1Xr17h+vXrZoO8co4ePSr+rf8uUnEFw3uh6XOa/nPmOo2YO6/evXuHvn374tixY5L1uFatWsVqgDbc74bXgfLly4vzWOnp01/pKWlUN/wup0+fxvLlyxXPpZchQ4ZYjU9y33/evHkoXry4+G/T415/f503bx7mz59vcXLtmzdvKorVutJoeVemuhbs5+cnebO5cOGCVRPx1a1bF8HBwfjw4QOuX78eq9Vap9Nh5MiRCAkJwYcPH7B3795Y+Z5JmXv37uHdu3cQBAG7d+82O5O86YXb9IQaM2aM+LdpznqlgQZrUzXoJ8c7cOCA4m19/PjR6DuYHsPWXjDWrVuH0qVLy/bO0+l0EAQBgwcPxtKlSwF8DW5XrlxZ0ZDZ6tWrW1Uu4GsKG9Obhd79+/fx/v171K9fP1awSG5uA/1FXmpfNWnSJNZQTim7d+82e7N8/vy5OIGhnmHF8a+//sLBgwcxaNAgfPPNN7FyBZpz7do1pEuXDgsWLLDpBmFaPktsbUgx/PygQYPg5eVlVLGpW7cuKlSoIPv5EiVKGOWBNGV4Di1atMio8UgJqX0pFxiU6smidt1KaNnT/927d5KpFW7fvi37Gf3QWNOHMKlGFv13/OGHH4xej4mJUT35qrXu379v9n3TfLiWguhq93/fvn0xadIk1KxZ02LuXXPHhL6R0bSBVu5BxFzQ5ueff441/F7pw7+5RuipU6ca/VvJ9eT33383e782Z/LkybJ536dMmYLhw4dLvmcaPDbd7zlz5kTevHnFtE5ylKQTKlOmjGzDon4eAMDyCDNzlPZElxqeblrH0YLpsWTYu9T0/LIltyUAsWexlizd1yIjIzFnzhzJ5wU9uaCQtd/Xlntt/fr1UbRoUcl12ZJj1vQabm7uBi1cuHBB/FsqiK5/gDbM7S6levXqqnqNG9bnT58+LY4WXrJkiWzjt2FwI1OmTChXrpxkL2tn9qiTakw1x9zxLqV9+/ZGIx2l7n9K769KestL2blzJ1q2bGlxu3o1a9YUA6TWNKZZGt1j7vc2d+4Z1q9GjhyJtGnTGnWoklpv0aJFMWPGDMke51L7WctjUWrSwB07dqBWrVqS5565ZzDAONir/12aNGlitH5zn5djz4Ca1LqPHTtm1IMd+PrcXLZsWbHOZq5MWo5uvHnzJtKlSyf7vqVYiSH97yPVgPn06dNYjT5Ke9FLBacN94FWv59+PYZxBX2qGsNtmN7z9O+Z1n2BryNVtm3bZvY6Mm7cOEyZMgXlypXT7LscPHgQHz9+RGhoaKzRWkpiM1LP1M+ePZMNUJvOUWN47oeFhZkdZa3mOdCwEdf0WnX//n0EBAQoarAjZVTf/Zo3b47+/fsjJCRErKAdO3YMffv2tcvELqSNoUOHImfOnEiWLBm2bduGGjVqmM25qfTiLXVBM8whZ465Ie+AssqK0mDN+vXrUaxYMbFFXZ+LVO32TK1cuRKAfH7nGzdu4Ndff8WYMWPQtm1bzJgxAyVKlMDBgwcVtVpqNRmWqa1bt2LevHnYsmULfv75Z6P3LD1w23ITq1GjhuTnnz59ijdv3qBJkyZmbyZaDM3r2LGjURDaVSjpVa9vZTZMtWApMG168zZleA5ZkzJHTcDU0jlvyFyPY0c6cOCAqiCaaZktPTDKfUd7pPyR25aliUBNA72WhrBaU/Z+/fph165dWLp0KQ4ePChbJsNKoinDyYQMA9nW9po1DVwfOHDA5kmapRpSLDHtKWNJdHQ0duzYgbCwMLOjMoKDgxWv0/Q31V8rzE3MKghCrIYkqYYIc/nsDX+78uXLGzXQqbk+KO2JrvazwNf9rfaYN2wcsMRe10F79kTv3r07unbtapRSRylrRxLZOo+N4fk+Y8YM9OjRwyEpMezJlvuIYfBbEATs2bMH5cqVk1zWsO5QqVIlo4ZZuYZRw3mK9MyNqksIpI4XpT3MTfezkmMvOjoatWvXlnyvQoUKqF+/vtnGYyXPTfpOBYbbNGVYVqXPYj/99JPRvw1H0ymZw0in04mp3xwx0b2l77Vx40bUrl1bcj4Sw89LlePKlStGwV5zOdHNMV3mzZs3msyro3R7ACSvMRUrVsTx48dRrlw5PHz40Ox1Tcu6s7kOSEDs/Wx4rowbN07sPKeEpQ4Janz//ffi35b2x/Dhw/Hnn39aXKfUb/XkyROxo6A1FixYgLp165o9XvUdJwHlv62l60nlypXRpUsXzVNiyo3akEul8+7dO6RIkULRqE4lzDWkqpngm6lglFH9ZDl27FgEBAQgc+bMiIyMRP78+VGhQgWUKVPG6pOI7M9w6MiOHTvEv/UTnKmlD8xJXVQtBe2Arz2QzKUPUMq0EmXOxYsXERAQAEEQJCubiRIlsrk8pg4cOGAUlDac1O3Lly+oVq2aeFPQOjewOYIgyP5OcqkIrKlAqrkQFytWLNa2rWlE2LJli9k80mpocSNRGsCT61WvJC+cLUJDQ8XhwebyN0pZsmSJqmCQaa5qS6ytDKupuGopODgYGTNmNEpNYS6VDmA+iO6oioza40nrnuiGxo0bh8qVK8tOiNezZ09F5TWcWMnaILrpRELLly9H/fr1re4VriYHup4gCEbDfuX06dMHp0+fxsmTJzFp0iTUrl0blSpVsqkXrd6ECRNkP6cfuRIWFobhw4cbPUSYfmbjxo1mG0FMmebfv3btGvr164chQ4Zg5cqVFht/DJkLBFk6Pizts1y5cqFQoUKq9m369Oll37N0fmnl4sWL6Ny5s9llmjRpEitXK2Ac0NH3oHvz5g2qVauGJUuWiD36pT6rxtSpU5E/f35FQS6tzZgxA8HBwbH2v5I0NK7gw4cPsrmilTD9nt9++62mKVekevxJnYtKJvQ0x55BQK3FxMRYPNaVXg+UXB8tpYjcsmWLbCqa9+/fK3re69mzp9G/tZpnYvHixTZ9Xm3g3t4NYpZGEujLKPXMbppm11xQUu33GDRokMUyWUtpWQw7V2XLls3s57QMols6Vk0nSjbc9qBBg4xG7evJ7TN7pSm2tD9GjBiBX3/91eJ6zKXeMbdcsWLFjCb9laJ09ImWv+2iRYsUH79KrnPWUDrZtP5abul8katf37p1S1UjjbMb/+MK1U+WHh4emD9/Pu7evYutW7di+fLluHHjBpYtW2aXICRpb/bs2eLf+fLlk+1ZYo4tlaCbN2+iS5cuku9Z0xtBC9YG0Q3Lu3//ftUX2n379qFIkSJYsWIFKlWqpHr7WjHMJybXO9HaCpjUkCIpDx48iPWaaTobJRNL1q9f32F5pJVQcxwLgoBXr15ZvNlZ+g1iYmJw4MABtGjRwuI2S5QogaJFi+LixYuykwDL+fHHH1Xl6VcTRLelJ/ro0aNl3zPtofTixQvFFRlLFi5cqHo498mTJyWDMlLf3ZpromGl03Cd1s5rodPpLA5htaWiaym1zOvXr1WnBZKaKEhPaZoPQ9ZOcizX408rpUqVQlBQkNirSCqNgrXnlOGEhVKaNm2KESNGGI0AMD0OTIdoW/L8+XPJ8o4ePdpo7hw9c8FNW3qiW9pnDx8+xNWrVy2mIlLK2nQG1pg3b57ZuVM2bNiABg0axHpdp9Ph/fv3qF27NtKmTYtNmzZhzJgx2Ldvn+I82HJMv//169cl56Cw9DktvHv3TpwsUk/qnic3BNyZD6Pm8p4rYe90YlL1AXv8hkrqQa4iJiYGJUqUsLiMFNN9Zy4nuH4dSupkcvNXSU0aqoSSdC6GvU8N2XI+mTu2HBFEt7QNpe8XK1Ys1numv7XUuvS/uen3UNMYrTVr96m5z509e9ba4sRibn4bIHb6NyV1X7nj3zQnulZsachWMrrLUp39ypUrFidDlqqDCYKAN2/eGHVKUnq86Jd79+6d2fq/UqZppM2NBvr06ZPmE9pKjdqyRP/brVy5Ennz5lU191RcmwDcWVQnpT569CjKlSuHLFmyyOZbprjFmh4+1gZUAZhNpXH79m00a9YMs2fPtlsQXa5nr62NQFWrVkXhwoVlJ/2RExwcHCsfsiMY7t/WrVujVq1aSJUqlezytvzmhuQqx0qMHTvWpm2rofWEckp07NhR0TBUQRBw+/Zt2clcf/rpJ9W9sc1N2KQVNUH0V69eIUWKFHYszVf6IbDPnj1D+vTp0a5dO3h5eYkTwNm7MW/q1KmSQwpfvXoVq2HNmrJs374dV65cwZw5c4wm1KtVq5b4t60NY0rSuQiCgCdPnlicINMStQF0W8g9EOkr/IcPH8bSpUsVTQ4KmO8RKdWICMhPImeOuQqwYY9sNceTYYBaaj4A/aghw5Futt4r1E5ybO4+aksQXSn9942IiEDSpEnjTMcSS99fap4UNzc3FCtWTEzRNXDgQKN0XVpfN9UGerTMA6ukodhe6SwdWQ82t225uXJsoa8PGI5K/fvvv+Hn56f5tuIKw05OcuR+O6lj5e3bt/D19Y31etasWXHt2jWbzpMVK1ao/oxc2gLTssuNMtayUcpwm0rPM3vWB20JsoeHhxv9Wy4oafh/4Oskkfnz5xf/bSkgqrRMSveTtR0uzDXEaB3AVEPJ95FLCZg4cWKtiwPAOLWLOYIQe+Jca1KkhYSEIHv27MoLCPnjxbRDnNrjJU2aNGaPB6mRAlKUdOADvo7cc3d3x3///Yd3797By8tL0ecs0Y8SV3v9Cw4OluxwQtpQ/eRQpUoVZM+eHYMGDXJKkImcw3QIpy0VCUsXgXXr1iFNmjTYunWr1dtQu/2oqCirbrym65KbQMkVmf6GllprP3z4gOjoaMWT6+m3EVdza33//fdGZf/06ZNVKavUBGikAuibN29G+fLljfLEnj9/Hnny5EH37t0l12NNOhN7VeAMqQmijxgxwqG9+C5duoTHjx9j0aJFmD17tkMr4lLXjQIFCqge2RIZGSk5YVzBggUxe/Zs9OnTR3zNcMSJ2nPUcPmPHz9i1apVRu9LXSO6du2KLFmyGE2i5urWr18v+Xp0dDQOHTqEihUrYuHChbEmJrJGlSpVbF6HFHucQ0ond3d0L1xzkyWaPnwZpqGydI02N5zdVGhoKHx8fGQnG1fCUelc9JT2gPv8+bP4t06nMwqam5vvQukDqDlK1mFrTnR7ePXqFRo3bmz1XAr26g2udjRp69atNS+Dvj5gOHLh6tWrVvW6i4tMc4UrZW5Sc1NyDRJPnjzB+vXrHVrPuXz5MvLmzYu8efPGek/pKGRbriW29kR/8uSJTc8zluq/tgTRTa93Ustu3rwZUVFRRstmyZLFqIF87NixqudgsYUgCHj37p3LXK9tZUsveEc8g5lj+hucPHnSaJLvOnXqSP5OpvP8qB1xCMinHzKtt5kbZSzF0vXtypUrqtZnyZs3b8RRIbdu3cKDBw80vYerPU/kOueQNlQH0Z89e4Y+ffrg0KFDCAwMRJEiRTBp0iTZ4V7kfNZMZGZKLieeNTc+udmLTWk94YOeVEtmXMlxaUjpvpdruTXNz2tpfVOmTEHWrFnRrFkzZQVE3J6c4vXr10YTSs6cOVNxqzXwdfbvtWvXajKU7OjRozYPkbfE3V31wCTVDIMwlrx588Yuk2vKiYmJMQos6LftSsfwvXv3zPYIbNu2LRo2bKh6vWr2s2nDmFQPTKlr99y5cwFYNyzRWfQT+Zrq1auXpum3BEFQ3QMsLnDk+WuJaVkMU8qZC76rsX79euTLlw8AcOHCBU3WCRjfm9U+RGrJMNhuqeHBsJFC7UTeco3AgwcPxsGDB2U/Z/jAqGVPdFsMGDAA//zzD+rXr2/V56UCjlqwdl4HLWmVG1uJ0NBQVannpGjZAHz06NFYucKV0o+SU0puFEe7du0cmurGdJJpOebqXMuWLbN6+xMnTrRqm3pr1qyxetsA0Lx5c5s+v2nTJiRLlkzRslLX57Zt28Lb2xudOnUy+1klEzt/+vQJgiAYBVkNKW3oCQ0Nha+vb6yc7nGVNSMH9ZwdRDetI5nmMT98+LDRM7E5ap+b5OoTpvdfc+ewval5fgWAM2fOIHv27ChcuLDsMvrnIntwpWfX+Ep1ED116tT45ZdfcOzYMdy9exdNmzbFkiVLkC1bNrv1pCLrvXr1SlUeJKXWrl2L8PBwqwI2liZPsTd75R1zNKUPd4bD6w1NnTrV6N+WAh779u1TNSkc8HXin4EDB6r6jKvQ6XRGD/Nys25LuX79OipXrozvv/9eUS5XJZRUbG3hiCC6mp7o7u7uDu2d8vPPP9s9B6ytevbsicDAQNn3DXMHqqF2Pxv2qly7dq1V23QV1uyzI0eOaFoGfQ5zR7P3+eVKvcsMR0c8e/ZM9STKSrRp00aTXnzDhg0zSslj75y1giDg8+fPqn4vNSOs1D7MyU2kO2bMGFSuXNnoNcP5CVavXo3Vq1fLdvqwhtKggRzDDka2BFi05goP2I4sQ+bMmVGtWjWb1qFlA7A9GjHk9qfcJN2OpmYSejlazTsBGO8va+c50ZKS80HpyAFbzi0ln/X09ISbm5vqhvITJ04Y/TsiIsKhjWlqObIO44hnMHOaNWumyagxABZzoJtSGkRXyh4dOAznGFFSLv0IXbkUVu/evbPr/G1nz56VPZerVKmi6bU0obIpEWT27NkxYMAAjB8/HgULFsShQ4e0KhdpROlJUrduXTx8+FDVun19fWUfdsxxpQdraxjmAXTmd1F6k1A6QYSlB3VrbkpqZoN2NbY85Ngj1ZW9jzV7pU8y5MpB9MePHxs1OMb165S9nDt3TvW9gsyztkeiEtakdtKKK/VEN8ylX6FCBSeWRJlmzZrh2rVrOHjwoOyICK1EREQgbdq0dg2M20vNmjWN/t2iRQv06dNHdoJ0tawZmm7I8D5StGhRW4ujGVf5/Rx1L1Hbi9DeXGX/O8qiRYswefJkRcvamnYlrpo5c6Zm67J3EN1a5kYSuSJHzBWl5+w5VDZu3KhZA/TPP/+sanmp+IMgCDY9hz1//tzqz0rROvWV0lElenfv3lWVMtjcb3ngwAGsXr1a1fYpNquD6MeOHUPXrl2RPn16tGzZEoGBgVYFVMm+lLZsbtu2DdmyZYNOp7PrAz3g2Inh7OHjx494+/Yt+vTp45DAoxylAQqplmWpG1OJEiU02R45v0eBNaztxazG/PnzFS/733//OXQiWQB49OiR+Pfhw4fFHprxHRsMEiZ7/u4xMTEudVwZpkG6e/euE0uizJEjR1CgQIFYPa/tYdeuXarTjqnpya91UEYQBNy8eROCIMimzTGdaM9ZXLXepOQ3ccT5a6+0ja7O3CTT8ZGlSaINR1qaOza1mgTaWnEliO+qQfS4sv/0HFn/d/axDUDM5+1oUpMU79271+xcK5ZkyJDBliLF0r59e8ybN0/x8lrfP3PlyqW657q58+3jx48ICwtz+RHYrkz1GTtw4EBkz54dVapUwaNHjzB9+nSEhIRg2bJlsXqEkPNZcxJbO9lNQtKiRQtNhwxbQ+nDmemksIB16QPY+1SZIUOG2CVlkCsFpKyl5mYdHBzs1GtR3bp1UaJECTRo0MBpZSCyJ1tzvMrR6XTImDGj4vlPyLmUNFaaDsN3pt9++w0BAQEYMWKEs4tikasG0cPCwvD777+bDVJIzXehNa3SB8Q19nh+iMujwZXmOtcy0GhNQHfBggWabd+eXDWI7gqBYlcVFxoYHF1GV+st3blzZ2cXQRVLv5cj7vHxmeqr2eHDh/Hbb7/h6dOn2Lp1K1q0aIGkSZPao2ykAVetwMd1cnnGATik5xjwtbFj2rRpuHz5stnlpGYLl8uvbW4CDNOJSBMapbluR48ebZdeRvEhiO7qTCsccTkdkRo8tsgWUg21ISEhds33qKQMzqb18F97UZK6rEyZMlavX6fTaZr3Vp92Ky4E0Q1z8buSS5cuYezYseJEuM7A5xNtKU2X4uqkeqXqaTmKyHC+AqXUTpLsLG5ubrKTflpiOOeN1uJCoNhZXKFH8IwZM8wGrvms8HUC87iyHwwnW5diz3M9IVCdc8AVH1RIXlw50eMTR+V8GzBggKLl1BwDlgLyCZmagKo9Hu75wGl/CbWCz/sE2aJcuXKSrzvymnXu3DmHbUupuNZryV4+ffqELFmyOLsYTsH7tnndu3d3dhHIxWg9cbccV5roV2vXrl1DyZIlrfrskCFDNC7N/6jJ6ZzQjBkzxtlFAPB1pH3z5s0l3+Ozwtf5ILWcv8CeunXr5uwixGtWjatZtmwZypYtiwwZMogpHqZNm4Z///1X08KR7ViBp/v37zu7CPGCs/PoumqPtvgkPj9UmXP8+HFnF4HiIUfWP27evOmwbSm1fPlyZxfBJQQHB2s+yVdckVDvKeQcrCeSKzM3yoBch9QIdoAxJT2lI9NdWULtNKYl1UH0OXPmoHfv3qhduzbCwsLEG7afnx+mTZumdfnIRrzgEcUPPJftLzQ01NlFIIo3HBnQmT17tsO2Reok5Ic19twjR1q0aJGzi0BEcdw333wj+TqfQ7+y52gNR0nI9TKtqA6iz5gxA/Pnz8fvv/+ORIkSia+XKFECwcHBmhaObMcKPFH8EB9avoko4eAk5QRYzstJRNro2LGjs4tARPEUg+jKMf4W/6kOot+/fx9FixaN9bqnp2eCnWXdlfGCR0RERETO4MgJZsk5Klas6OwiEBGRHfE6H3+sX7/e2UWI81QH0bNnzy6Z42/nzp1OneWdpEVERDi7CEREREREFA+x1x0RUfymnweR4r5du3Y5uwhxnrvaD/Tu3RvdunXDhw8fIAgCTp8+jVWrVmHcuHFYsGCBPcpINhg2bJizi0BEREREREREREQUZ6kOonfo0AFeXl4YPHgw3r17h5YtWyJDhgyYPn06mjdvbo8ykg3kZlgmIiIiIiKyBXuiExERxQ/3799H9uzZnV0Ml6Y6nQsAtGrVCrdv30ZkZCRCQkLw5MkTtGjRAsePH9e6fGQjDw8PZxeBiIiIiIjiIc6/RERE9NXBgwedXQSbvHjxwtlFcHlWBdH1kiZNirRp0wIAbt++jfLly2tSKNLOL7/84uwiEBERERFRPHTs2DFnF4GIiIg08OnTJ2cXweXZFES31fDhw6HT6Yz+CwgIEN//8OEDunXrhlSpUsHb2xuNGzdGaGioE0sc9yRKlMjZRSAiIiIiIiIiIiIXxSC6ZU4NogNAgQIF8Pz5c/G/o0ePiu/16tULW7Zswbp163Do0CE8e/YM3333nRNLG/e4uTn9JyYiIiIiIiIiIiIX9erVK2cXweWpnlhU8wK4u8Pf3z/W62/fvsXChQuxcuVKVKlSBQCwaNEi5MuXDydPnkTp0qUdXdQ4iUF0IiIiIiIiIiIikvPkyRNnF8HlKQ6ib9682ez79+/ft6oAt2/fRoYMGZAkSRIEBQVh3LhxyJIlC86dO4fPnz+jWrVq4rIBAQHIkiULTpw4wSC6QgyiExERERERERERkZwuXbo4uwguT3EQvWHDhhaX0el0qjZeqlQpLF68GHnz5sXz588xYsQIlC9fHleuXEFISAg8PDzg5+dn9Jl06dIhJCREdp0fP37Ex48fxX+Hh4erKlN8kzp1amcXgYiIiIiIiIiIiFwU51S0THEQPSYmRvON16pVS/y7UKFCKFWqFLJmzYq1a9fCy8vLqnWOGzcOI0aM0KqIcV6jRo2cXQQiIiIiIiIiIiJyUQyiW+ZSuT78/PyQJ08e3LlzB/7+/vj06RPCwsKMlgkNDZXMoa43cOBAvH37Vvzv8ePHdi61a+NJQERERERERERERHKYDtoyl9pDkZGRuHv3LtKnT4/ixYsjceLE2Ldvn/j+zZs38ejRIwQFBcmuw9PTEz4+Pkb/EREREREREREREVFsalN0J0SK07nYQ9++fVGvXj1kzZoVz549w7Bhw5AoUSK0aNECvr6+aN++PXr37o2UKVPCx8cH3bt3R1BQECcVJSIiIiIiIiIiIiKHcGoQ/cmTJ2jRogVevXqFNGnSoFy5cjh58iTSpEkDAJg6dSrc3NzQuHFjfPz4ETVq1MDs2bOdWWQiIiIiIiIiIiIiSkB0giAIShf+8uULjh07hkKFCsHPz8+OxdJOeHg4fH198fbt2wSb2oVDMoiIiIiIiIiIiEiKivBwvKM0dqwqJ3qiRInw7bff4s2bNzYXkIiIiIiIyJUUL17c2UUgIidJnjy5s4tAREQuTPXEooGBgbh37549ykLk8mbOnOnsIhARERGRnYwYMcLZRSAiJylcuLCzi0BERC5MdRB99OjR6Nu3L7Zu3Yrnz58jPDzc6D+i+MyeqXESJUpkt3UTERFRwtGxY0dnFyHOYhpEooSL8QwiIjJHdRC9du3auHTpEurXr49MmTIhRYoUSJEiBfz8/JAiRQp7lJHIZdjzwWrYsGF2WzcRUebMmZ1dBCJykMSJEzu7CEREcU6xYsWcXQQiInJh7mo/cODAAXuUgyhOsGcQnT2fiKh+/frYvHmzXdZ99OhRZM2a1S7rBoBWrVphxYoVdls/ESmXkCeGshX3XdxXunRpnDx50tnFoDjIzU11H0MiIkpAVAfRK1asaI9ykAOlTJkSr1+/dnYx4iQlge7cuXPj9u3bdlm3JQ0bNsSmTZtsXg8ROUeqVKnstm57p4xKnz69XddPRMoxEGw97ru4r2LFigyik1UYRCciInOsukscOXIEP/zwA8qUKYOnT58CAJYtW4ajR49qWjgiV6Mk0J09e3ar1q1FpW3dunU2r4OAfv36ObsIlEDVq1fPbuvmvAtx17Zt24z+nS9fPieVJGGpVKmSs4tgtXTp0jm7CERO4+xOX2XLlnXq9uMjR6Wk48hgIiIyR3XUbsOGDahRowa8vLxw/vx5fPz4EQDw9u1bjB07VvMCUtzx+vVrVKtWzdnFsCslFStrezBpUWljkEwbrECTszRo0MBu67b39YHnjf3UqlXL6N/OSJtTtGhR8W9PT0+Hb98Z4vJcP5xY1HpxuSd6y5Yt8csvvzi7GE5XpUoVp26fHcu056g6Busy5Eo8PDyctm3Deh8R/Y/qIPro0aMxd+5czJ8/32jSorJly+L8+fOaFo7sw14PBylSpEBgYKBd1u0q7Fmx0iKNAyt+6ixZsgTZsmVzdjHITgoWLOjsIqiSMmVKuw4jtvcQZV5/7Md03xYtWhRfvnyxal0ZM2a06nOGx0/dunWtWkdcY+0+dgUJpaHDHuJyED1r1qz4/fffnV0MIs3ZUsdQM8qPdRntDB482NlF0FzhwoUdur3379/D19fXodvU27Vrl1O2a09t2rRRvCzrUSRH9RP1zZs3UaFChViv+/r6IiwsTIsykZ3F5YcDOe7uqtP7W8WeFavWrVvb9PkOHTpoVBJj8blh5MuXL4iJiYn1OivQcd/z589VVZQSmpQpU2q+Tp43jmVto8ju3btt3p5hJ4r4TOr+4CzfffedquV5PiZc/O25D+IjW35TNSPxmBNdO6NGjXJ2ETRn7fHh7+9v9fbSpk0r/tuw81fv3r2tWqdSadKk0XR9Pj4+mq7PGhkyZFC8bJIkSexYEvN4D3Ntqq8C/v7+uHPnTqzXjx49ihw5cmhSKLIvW4PoXbp0kX3PWSe8FkNX//nnH4SHh9u8HmtvEEmSJEGePHms3m6BAgWs/qyct2/f4sSJE5qv11XIBdEtDZ2bOXMm8ufPb69ixSk1atRwyHbU9maxtrLqTNZcP9u2bWvVtjZv3iz+7eheNbaw1JvM8OHCz8/PvoWJo/Lnz29V+j3D4zOhBNGDgoKcXQSr2aM+NmPGDM3X6Yqc1dlEizkxdDodH77BAISzZMmSxW7rNvxNf/rpJ1Wf/fz5s/j3uXPnzM5fxWOHzLH2+NCqw1+lSpWwZs0aXLhwAU2bNtVknY7y4sULZxdBFWd2PGVjnmtT/et07NgRv/76K06dOgWdTodnz55hxYoV6Nu3r9ngKsVNUi2Qf/zxBzZu3Ci5fFyueDRq1AjJkyc3u4yS7xefggs+Pj42/aau3gPB39/fqiC6h4eHXRot4qKtW7fi4sWLdt+Oqx9LzjJ58mTFyxpWBg2vU1rlW6xTp47Vn92+fbvFBsj06dOjV69eZpcxrHQ6svL766+/Omxbhhw1Cgv4um/1PXiaNGnisO06U58+fZxdBKvZoz7mjFzb8+fPd/g2nfXgrEVav9atW/Phm5zm9u3biIiIsPt21AbRDe+V+fPnN3t95PnjHHFlXi9rj49hw4ZZ/RnDe1KiRInQrFkzFClSxK7HalxLiamUmrqRM0cjOus6FJdjeY6k+tcZMGAAWrZsiapVqyIyMhIVKlRAhw4d0LlzZ3Tv3t0eZSQbmabfUfNwINVDMUmSJGjYsKGtxbKroUOHokSJEoqXV9pr1d4XFkfl+1PDMB+YaSNDunTpzH7W1XPh1alTR/J8UBJEnz17tr2K5XR37tzBf//9p2hZd3d35MqVy84lcg3z5s2zuMz06dOtXn90dLTqz1h7zTCsnGkRRD979izKly9vdYNKrVq1kDRpUrPLCIJg8f5lyzXUltyHzhqi6shGWzc3N1y5cgXHjx+3+X7TqVMnydetTTVjL3LHxM8//+zgksRmaR6i+PIgpFWqOjWjx5wVRFdTbzXVtGlTvH79GgEBAUa5/OfMmaN6XcWKFbO6HJb07NlT/LtatWoWl0+dOrVV21Fy/K9evdqu3zUh8vDwgLe3t13Wbfibqg0wJUuWDBEREQgLC0OSJEnMHh/x5dppb/3794/1mlSqQKWT7H7zzTc2l8le0qdPL/49btw4vHz5UvU6lI7S0F+TOnfujOHDhwOIHUTXs1eg9e3btzh37pzm67Xl3LJ1lEu+fPmwdetW2fe9vLxivebMnujW7qvGjRvbtN3nz5/b9PmEQvWZp9Pp8Pvvv+P169e4cuUKTp48if/++4+9BF3Yzp07rf6s2gd0rSoef//9t6rlTW8ivXr1wqlTp8zekPPlyyf+3aJFC0Xb0bpi1blzZ83WlTNnTs3WZcjd3R1Xr15Fz549cePGDaO5D8aPH2+XbTqKTqezqid63rx5rX6wiwu8vLwUfT99SpD4+sAxZcoUo3937NjR7PJBQUHo0aOH1dszvCYpZW0A3PC4l1qHmpyBAFC8eHEAQKFChawqjz2orfza0qvb1mC2temHrN2uNeesTqdDihQpEBQUZPM5L/f56tWr27Reexg/fjxKly6NIUOGAPg6ibqlUWtKdevWzerPFi1aFJUqVZJ9P75el621ZMkSxcva48H5zJkziIyMxLhx42SXsaVOmChRIqRIkQKA8bXsxx9/VLWeBQsWyAZPDh06hGnTpllbRADAwIEDxb+VBFsDAgJs2p455cuXx7lz52Qb9eKqKlWq2PR5S3OmBAcHO6WX5Pfffy/+bXh9k5qrzdSECRPg7e0tTtBorvxKv5u1k3RbS4uRKlpKlChRrMbJzJkzx1qubNmyitb3xx9/aFIuezDsOJU7d26rfgslPe03btyI3bt3Y/ny5Ub7w/CepK9vA7CYBrZEiRKYMGGC0WtKRlL7+PiI9ctLly4BML52O8Pdu3dt+vy1a9dQp04d2brRxIkTY70WF9O52FpmSx0k6SvVv067du0QEREBDw8P5M+fHyVLloS3tzeioqLQrl07e5SRbGTasqZmaEr16tUVVU60pnaYnuEF8bfffoOfnx/c3Nxw6tQpyeVPnjxpNOO0sy6SphdyV33ozZ8/P6ZOnYoMGTI4bYZwwD5D69UG0Zs3b47SpUsrWnezZs2M/m1r67CjKD0fbO2NWrNmTRw+fBjA18lx5ObVuHnzpk3bsZbah3el56/cRD0rVqwAALRq1Up8rU6dOmaDFsmTJ49VQZaTKlUq1K5dGzVr1kTWrFnF1/WBF0MjRoxQtE7A+MHA2dcwW9K5OPo+YNh7/cGDB3jy5AlGjhypah32quxKndu2Bk327Nkj/m14nGgVwLJXipn+/fvjxIkTGDJkCFatWoUrV67YdKwYPgCbunr1qux7ZcqUUbUd03OxcuXKOHLkiKp1SNHqQbpfv36qls2UKZOiZceOHRtrFNzTp0+NehJaovW1oGPHjihRogSSJUuGAQMGyC6nVXqmVKlSYfHixVizZo3qidHat28v+16FChVsnmvCcII8e15z1dyLzB0bmzZt0qA0trFU15o0aZKm2/vuu+9w4MAB2fcDAwPNNuDZi+E1Q02v9A8fPsS6fpj7jLPrMXJMO3Y4m06nw6VLl/D69WtN1qdkRF/evHk12ZaU33//XfY9w2NCixGgcho2bIhUqVKhVatWRqMzDa+VhtdoHx8fiyN6DM+bdOnS4cqVK2qKjUKFCkEQBIwdOxaLFi1C7ty5VX3ekJp9d+bMGaN/a3V/lCuD1Oum9yhrytCsWTNs27ZN9ecsHS9apeIk66h+IlqyZAnev38f6/X3799j6dKlmhSK7Euu0irVUuzu7o5Dhw7Z3KtBztmzZ2WPG0EQEBkZiR07dsR6z9/fX/aB0rBni9yFslSpUkat5dbkvLLUU8MaSm4uJUqUQNOmTbFw4ULJ99UEv0j6tzc3vLdNmzaK123aI2P9+vVioNSVqT0frK1QJkqUCOXLl0dUVBSmTJmCu3fvGk3+pGePc00JtUFDJctfv35dtjeFvhGhQYMG4mtbt261mG/7t99+U1Q+nU6Hbdu2YceOHUiXLh3GjBmDKVOm4M8//0TRokWNllWa8z9VqlQWA3MTJ07Et99+q6h8pgwnClXCcB1yjRW2qF69OsqXL292u4CyhmDDhgxPT09kzJjRYkobwPgapHUQfdy4cVi1apXkdcrS8W1uFEbx4sWNgnla92IcM2YM1q5dG+t1pQ2eSiROnBjNmzdHhgwZbHqIHD16tOx75lKOqB3lYrqPt2zZgnLlykkuq7/mVK5c2eJ6TUcLLFiwQFW59NQEYydMmIC9e/cqWtbLyyvWeeHv7y95fVETyLeF2pE9Wmjbtm2shnxLlKSTcXQPZGsD7UrqJZaWSZ48udH92JSaEYlVq1ZVvKyp5cuXm33f9J5kTWoyw++p0+mMguRSIySs+V1atmypeFmpZxnDAJbhcWjpd5TaH+aOY6l7vKNJpQZ0teC+m5sb3N3dJTti2MuuXbvsNleJYQOfKal9L/ccLseWa6dcOhdAuve/HP33UPMZQz/++CP+/fdfqz5ruH1rl1VzDdGC6XXOmt9w9OjRVk1Sb+m5SW5kgzN7zyckio+E8PBwvH37FoIgICIiAuHh4eJ/b968wfbt281efMh1yJ1cUg/N+gCG0hzoam/w5npkAV9z2EkFy3PkyIFjx46J/7a1J6SSC46vr69RRUwubUHNmjVx7do11WUA5Ms+d+5c8e/SpUtj7dq1aNeunWTlfujQobh+/bpV23cGS+kIDPeJPW4MpgHjy5cvqw7cyXGFCoCpvn37WlzGdD9LBXZq1aplc1n0lRHDwKFUK7/annRasTT00jQvspJrT0BAgMVUEIbBVSV0Oh1ev36tetb7QYMGoXfv3siYMSPOnz9vNFw1KChIUQ7h//77T7ZyWK9ePTRs2BC//vqrbPAOkA4QvH79GlFRUbh//774mtqc6EomXVXbezlJkiSKrkMLFizAtm3b8OzZM9SoUUNyGX16kNatW4uvmWvAevDgASZPnowZM2aIr2k9sai3tzeaN28ueYxaengwl9ZPp9MZ7Tc1ARAlBg0aBJ1OF+v6tmvXLrvkWW/Xrh2GDh2qKs+2njXft1OnTkb3SrlRO9ZuZ9GiRVi2bBn++ecf1WUzbXArUqSIos+Zls9SbzqlD686nS5WY6xOp5PcH02aNEGyZMmMXvvw4YPRsWo4N5C+k4baPNqOCDzbch7Vr18fu3btMmqoGDZsmGTg15rvIteYZU2dLjAwUPVn1DBsJLLUY3PQoEFm3zfsfSiVb1cp09/WUvpGw3uEUqbngaFKlSqhefPmqtdpaty4cciaNauY59kcqXScyZIlQ506dVC1alWjIKC16cnkNGrUCOvWrbNpHZZYanw0NyJEDUv72pb0TFpf15Tsz6xZsyqq21nDXDotw5Gp+nK2a9dOVSDdXhOnmqt7mV5j9WW/ffu21duzJvWkEqb3CS0n9TQc4StHSU90pamJDCVKlMiqc8XSyBO5/aPkvmpu1CMpo/gX9fPzQ8qUKaHT6ZAnTx6kSJFC/C916tRo166dTbkdyfmkchPWrVsXABS3oJlegGrXrm17wRRsx1ygdfv27RbXZ3ghkuvBERoaavRvuYtU69atkS9fPkUpFkzXoQ+Wm+bMNLyxG16I5QL5juoVoORCbXjD+fPPP2MFfQwnwHIGw99+7ty5KFiwoFOCtqbpsJQOXVdLybBf/e968OBBVK1aNVZgJVWqVEavWar4yj2IWqpUBAYGYunSpeK1SauexTqdTtE1zbB8UmU13ZdqHqi+++472fdKliyJefPmKe55CXw9523dP6Y9U5RcO8195+7du2Pjxo0WhxxKVW5TpEihqFe2ufIo6aVtGCRScj2TO2ZN94Obmxtq166N9OnTS85L0rNnTzRt2hSPHz/G4sWLFZUha9as6NOnj9GQZ0tB9NWrV5t9Xw3T766vH+j5+Phg7Nixkp81d8+WO4YqVaqEtm3bqiqj6f7z8fFB9erVNZ+/w93dHSNGjED37t1Vf9aaYeGm30vJsaomXVzy5Mnxww8/KOodbm7b3t7euHDhAho1amRxPabHk6Xen3LllzonlQbRdTodbt26ZfSap6en0Xc0nMB1+fLlmD59uqJro5Kya8mWNAfu7u749ttvjdL1DR8+XPIepCYQlCZNGjx79kxxRxwppsdbcHCwos9Z2xO9VKlS4t+WJrIzzNEtxV7PQFJ57g2vvTlz5rR6km8pgiCgYMGCsV5TK0uWLHjw4IGi0XNS9zadToetW7di7969dpuXQ/9ekyZNjOrhwcHBmDJlCj5+/GjTdvUspeixttOQ6X152LBhZpfXqtOQFmzpKKVkzgtLz3bmRnDIdX4xPY4MO0qZ5sy35Zg1t28yZsyIDx8+KPqcvgzmvqvUKAhrSDUcmtsHGzZsMIpFGT6f2zrf0rx58xSVwZTh/vPw8LCqISR79uxG9RTTZyK549LSnCFS8ZNvvvlGUeND/vz57ZoaKSFQHEQ/cOAA9u3bB0EQsH79euzfv1/87+jRo3j06JHZXFLkOpTepDp06CBeaEqUKIFDhw7hwYMHqrbVq1cvozyoWlFzo1XSY9ZwfXITm3h6eiI6OtriuvQXSmuG7pQvXx4fP340mzPT1Ybz6YOpiRIlwrFjx2K10hreLLp37x6r/Fq2NJszdOhQycqk4fb1jRVK8vLJsTZdy5QpU9C7d2/x384Y/q2nPx8qVqyIvXv3Im/evEYjjUqWLGl00zd3TNavX182NYilIHrr1q2Neuka9li2JsCq5+XlhfXr11tczvB79erVK9b7ppUpNT0NlixZYjbA2bFjR5uGf2vBUo9404dqU4bXVS0m4BIEwWJvPrUBSrXlcnNzk7z/qLku9+3bF1OnTgXwtbHMljzulir0cg0Y1jysmn7HLl26xFpG7mHAXEBXbkRaoUKFjBoYbNG/f39Fy3Xo0EGT7ZmjxT1cyX1TTRBdTZlMjznDY0n/t9zoC3PbtDQHheF5YpiGxXRfJE+eXPHEr25ubhZTchiWM0WKFOjRo4fqNEpa9NgsVqwY/Pz8ZOcQsHdqGn0g3NyoIlM6nQ7p06d3SL3VdFSjtdtUc220R89Sa+cdMj3GDEdQKCF1HhuytsNLw4YNUbt2baP6m5LfRs2+tea3Nt1fUg0ihvshMDAQvXv3VpSH+PLly/Dy8kLFihUtTvyoNbV1Y1vOTXuf12quNUpSrEVGRlpdFmsav80FqleuXImAgABFozIAxEq5aG5bLVq0EP82l45Erj5dsWJFi+U5ceKExc5eao+PDBkyiI2BXbp0MRodIzfZtRI//PCD0XmhtJ4KGO8/a473qlWrQqfTGV3PSpYsabTMmzdvJD9rqZNMnTp1Yr2mpoznz59XnR+f/kdxra5ixYqoVKkS7t+/jwYNGqBixYrif0FBQU4N+JA2TC/2pi1gFSpUsBhUMb3I63Q6i58xfdgxzSWr9mHfHulc9MMYlQTR9cqXL49du3apnk1aX0HTB1lM2Tu9iZ5UgERKo0aNIAgCPn78iDJlysSqwFlK2WOJVt+xaNGikpUVuYDY2LFjJSdLlju+SpcujU+fPhn1QlBzLPr5+Rn1anRmY4nUPjFMiaBV2Sz18jKl5T7JkCGDxcCGYXDGsIFDrjyW1mfY09Lb2xvff/+9TUNptc4LaW44t5Q5c+YoXrZNmzZW9do1JAiCxcZJtQ86hsEww+NebjtyQXQ1zB0nWgfRo6KiVK3P3PaVBALlgrvmAro//fQTZs2ahcuXL5v9jBJqchRLMaz32DqBIvB1xAFgfJxpcR2zpSe6VC9WNWUqV66cUb5kteWSI9Vb+dChQ+Lfhsefv7+/5DoaNGiAH374QXJOArme6GoenK397dQE0U+ePCnZKalMmTJ49eoV/vrrr1iBvJ9++smmdCFKyqcfbZwpUyY8fPhQ0Xr1QTC1gWFr0pEoSWPo5uZm1LFGqsOEmmNY63QWGTNmxIkTJ2K9bnrcSY1MUXJsrlu3DokTJ8aqVatUlUsQhFjXdqX7ydfXF9u2bVOUTsGQpXub4bOGNTngDffXlStXrAp2y+3zggUL4t27dzh48KDsqEOp/WdpLhUt8vxbu7yXlxfWrVuHLVu2mP2sLfc309GUSifCnj9/vuYNM6asuQ+Yq/fUq1cP169fl0xbJGXevHn49ddfcenSJYvLmguCmyu7t7c36tWrp6jXd+nSpfH48WOxjiOlZs2aqrYPfO1sd/fuXcyaNQuBgYH47bffMHXqVMmAstQ9Tz8S37BDn2nnyK5du5otgyHD89R0lIcS+nkkDe8Vf/zxh1gnHDduHJIkSYJLly7FSlOUMmVKsxOSjhs3DvPnzzfqFGaaOtGcpEmTKp7/imJTfffPmjUr3Nzc8O7dO9y4cQOXL182+o9cn9zJZRo0Hzx4sOp1mz4EKTmRDYe0DRo0yGjIjRxrenmbY6kHhv6GpCaIDnydFMI0d6lhPkdz+0du0g/DG1D27NlVlcecYsWKGTVoqB3Opa+czJ49G3nz5hXzxA0fPhzDhg0Th5aaPhypCaR26tTJpl7iALBp0yYkSZJEnIROLugzcOBAVbnufHx8LOZ3l6PPfSiXM1hr+snD5CbMkjouDXs1qenhaI4tk+BKlVEqOGSOpXIbVrilhtWpDaJL9RCydt/9+++/ZvNCWhNQqVixIlq2bGk08aFW1xh3d3f8+eefNq9Hp9OZrWuoOW8GDx5sFIwyPKaWL1+OYsWKYdiwYUapi5SmczHH3HVfaQ9aPUs9VbRMC2X63aWunXLXU9PPGu6vRIkSoWvXrhZHNijRo0cPm76zTqfD3r17UaRIEatH0RmeM1OnToUgCEaTgtoS7NST6gk9btw4ox5OctfpgQMHxvqskuNXXydIlCgRDhw4YHZZJQ/hSu4jFSpUkHxfrrybNm2Ch4eHZE8zuc8oyYNqKzXXh1KlSmH06NGxGgoEQRDPI63uwXpKGp8M74dK623z588H8PXeXLduXbH+pw+W1a9fX/Jzv/zyi/i3IAgWG2DLli2LnDlzWhwBkSNHDmzfvh3nz5/HuXPnbBrRBny9p2uZsmXhwoWK8g1bO4KzSZMmePfuneq5QIDYPdFtOUe0CHj6+vpi+fLlWLlypeoOAICyuoIW1wHD9C/6iX43b94ca7m5c+danDPJlpRzwNfJhocOHWpxHaZmzpwpHjeGzznWXneaN2+O4sWLGzXGpkyZ0uq59QxHzttKrk6lxTOZLb2a06RJg2nTpqm+tyqdGLNp06aIiIjA5s2bbdqXhnOijBgxAn/99Vesslmqt+bIkUMsw8SJE40C9YbHn1R+8hs3biAqKsqoLm3aOKM0NQ9gvP8WLFig+hjVp9kx3O8+Pj4ICQnB69evxcwDhQoVMuoYpR89Wbt2bfz333/i64ZzdiRJkgQdOnQw6sjs5uamaLSMnKVLl1r92YRG9RXhv//+Q926dZE8eXIUKFAARYsWNfrPWuPHj4dOpzM6UT58+IBu3bohVapU8Pb2RuPGjWPlpSb1lOTN7dOnD1KlSqV63dZceA0rSsWKFYt1cZWqSI0cOVLVNiw1CBhWSKUqKfrJLiwNZ1QyyZjSB+gGDRqgbt26RgEtwPhC3LZtWwwaNEiTidPOnTtn1JvD2oBwrly5cOPGDbEXd7JkyTB8+HAxCNu5c2c8f/5cXD5FihRmexAZ3pDz5s0rBr+t1aBBA0RGRqJp06YALD+MGKYTMUfq2JebfMy0J4H+QdPWYWNKbd++HbNnz5ZNlWCpkmB6nFtbVmuHLctR25PIUrlTpkyJMWPGYOLEiYoab/Tr0z+kmPYy17LXjqUKvZLGSKl1rlixwqgX5L59+2SXt/RAp/YBVF9muUmS9OszF2yV259JkiSRTLUkF0TPkSMHzp07h+HDhxvld06UKJHN6VzMadeuHWrVqqW4wcFSb2nD/L5qbdq0yejfpt9Rqi5hTRDdEsPeyJYkTZoU9+7dQ0BAgKKUIqZ0Oh2qVq2KCxcuiI2Nakmdmz/99BPc3NzQuHFjlClTBq1atVLViKivB+3ZsweVK1fGypUrYy0zYMAAnDx5ElOmTMHhw4dl97HUdVLJ72HYEGBIqhNCUFAQNmzYgNGjR6N48eJYtOj/2Lvv8CjKrg3g9wZCQktCD6H3FmpooYOhgyAISkdAqkgVQZSOgEiVXgQEAQ0IAlIMvffee08CCCGEQNrO9wff7ju7O7M7sz3J/bsuL8Pu7Myzs1PPnOc8Kywu01IbLB3z5BIPzM1fSSa6pXkoYU0AxlwdfLUPcG/duiX7+wHmB6bTsVSfFTAdOD1r1qwAPmQKb926VR8cv3LlCrZv324x81bH0mC14uxYc3TrrWLFirLXZ2rLuUhlCsr1lLBE6XZnyzkobdq0qrdjWzLRrW2rkqzhTp06GZSuUEO3bZprj5qBzOWIg+h//PEHBEGQrIduXOLB2gC+uTaFhISoTl756KOPDMa8U/IwU1cmTy7Let26dTh9+rTBw1h7PES3hzNnzqBRo0Ymr8sFph1VNs0W5oLo4vfEvUmVlMNR4ujRo/q/vby8JMuPRUZGYteuXVbNf9KkSShUqBCmT5+ONWvWmJTq8/LyQoYMGazef8xl8fv5+WHGjBlo0qQJfv31V0Xz0411Jz6e6dqmdPw68UPu9OnTo1GjRqhZs6bkeAYajcYgwcrSdZHY2LFjFcc8yIog+uDBgxEVFYUTJ04gffr02LlzJ1atWoVixYpJPllV4tSpU1i8eLHJ07UhQ4Zg69atCA0NxYEDB/D06VOzg7GRPHFgWm7gLzG12YdyI9RrNBqrLyZ1MmXKZHLxby57ROokZekGwdLBVncBbykT3dqTgpS0adNi69atJt16jTP4Jk+ebPBkUo369evb1EZrT1LG24S5WqhDhgzBxIkTcfr0aQCGGW7WZNMAhiczS0H0hQsXGtRylCP+XS5cuIAlS5bIDjpVrlw53L59G506dcKFCxf0n7U0kKW95MiRA/369TMJwJ0/fx53796VvVk+duwYhg8fbnGgIiXdqq3h7BI3Go0G3333newgWHKBjHHjxiE8PBx9+/a1uAxLwQFzbTPH19fXYraHErZkoksdH7Zu3Qp/f3/Jm5QWLVrg7du3VvWC0pFbL+nSpZPMUC5RogQqVqyIevXqKdq+atasaVVQQOmxKn369Ni+fTsGDhyoqI731KlTERQUJPngK1euXKqybwHD38y4p4rxMUkqQC93I5YmTRqDoLua45s4G1kJT09PXLlyBTt27JCdxs/PTzKoaI/jrtS6zZ07N2JjYxEaGgqNRoM1a9YozggsWLCgftqQkBDs3bsXRYsWlV320KFDUbt2bauzle2VidSmTRuMHj0ap0+fRvfu3REaGmowSKfxecZS+8THs1q1asHT09OgZ5+lB//2CKJby3i7UpJwoWYwWUvbbdGiRc32LjSXiT579mwMGjRI0UMlpVnZOXLkQNOmTRVnA5vbNmbOnKkPRjirVJKOrv26a70cOXLg+++/lxw/SknbrA1MKy3noiO13s0tWyqI7gjbtm3T/22P6xdzjBMN1Kw/3blZquymcakIuQEfxTZt2qQoEVHJ/iI+pkllARsTP0yQYi4IKzW/EiVK4MCBAxg6dCg2bdpksb32Yun3M+4VLqdcuXKSvZDtcWxx5H2dHHO/n9qB26Wovc7QaDTImjWr6jEbdPLmzYu7d+9i+PDhyJUrl8mg8UpKO8m1sUCBAvjzzz8xefJk/WvVqlVD1apV9WV9/f39sWPHDn3vKkt0D5LEv72SBDJzx+OdO3fi0KFD+u9h/H0KFiwIrVaLU6dOKR6IG7A+eTK1Ur037927FzNnzkTlypXh4eGBAgUKoHPnzvjpp58wZcoU1Q2IiYlBp06dsHTpUoMnMq9fv8by5csxc+ZMNGjQQJ/JcvToURw/flz1clK7J0+eYPfu3dBqtWYvlsPCwjB8+HDZgYukDB8+XH/AkTowZc6c2eag2pw5c8yOqm3uqasSlsq56IiD6MbTBQUFKepGLv6cNTVXHRlIdOYJXhf0sXTTVbduXXz//ff62uri729NfTJjlm4MMmbMaFDLUUlQqly5cvjyyy/N/lZFihTBmjVrDB4KFChQAG3atEHXrl3t0uXfmKVMsvz585sNmlavXh3Tp0836Tor/p6BgYEWB4hTylz2lTU1gdW+L2XQoEEGnxdn64ovaPz9/RXNv3bt2tiwYYNDyqF17txZ/7e1A97aW4sWLfD06VPZQVPNPSBVcryUu8HTaDSSmW1p0qTB6dOnsXfvXrPHguvXr2Px4sXo27evwbanG3zX0m+9evVqi203pqS0S+7cuXH69Gl9SSgxDw8Pu54vpM4P4jr/wIcxMqTKDHl4eKBkyZKYN28eNmzYoB8QSWk3fKkSbrqSJlKZ1VLfXTc+S79+/XD58mXJQcQdeX718vKyav737t1D7ty5VX/O2iB6ly5dVF+b6G4Kdb32pHz66aeoWLEiZs6ciSZNmpiU3zJu3/bt2w3+LQ6qZc6cGdHR0foycYD8ILrmqA2iqy23JF6O2MGDBy1+Rk3mryO320GDBmH27Nmqg8DW1DUHYFDiwZL8+fNLDvqtExERYVUblNIdE3/77TccO3YM4eHhmDhxolU1ugFl1zW2PGTWsWZ7sTYTXc3yjZOEbJ2fOeJrXblrY7nvOHXqVLx69Uoysc/4gbmuJrIx8TItZT7rGK8TqXGbPDw88PjxY+zYsQNffvmlxXnWqFFDcswfOXLXWMeOHUPPnj0xb948FClSBDNmzLDLgPLWtKtRo0YGPURat25tsQSZmKVECaXbvvH6FsdfrD1GWLNcJe/Z6xwivk50xTlLyXWA1LKnTp2KJk2aIGfOnAaJoVWrVsWJEydMxpHQaDSKe0Dppg8NDcWKFSvMXs/peskbJ2Hp2tygQQOT6xa5BIHKlSvD19dXX0bKEkeOs5cSqY6YvX37Vh/8ypIli75OT9myZQ0yTJQaMGAAmjdvjpCQEIPXz5w5g4SEBIPXS5Ysifz580sOukLm5cyZUz9CsLmdJCQkBNOnT7f6aZTcTZs9gmrmDrhS9UHVEGfIGR/cxJmi4lqFUgM/KSFe/6NGjUJISIhkV2c5Sk484gdSP/zwg6K2AB+yIbJly6Y4E82Wk+DZs2exYsUK2azmly9f4s6dOyYD0xoP8vHzzz/bVM7GGdk1Smk0GmzcuBGrVq0yWbfDhw+3ef67d+82+74rsiTMsZQZZYmlLAup7Vf8IEzqffFNk0ajMcjWtXb9tW3b1uFdWS3V2nQEe5VE2LZtGypWrGhQm1wJ4+VUr15dMkCjC7jq6vNK1aQtUaIEevfujbRp0xp8r/379+vPreaYewgs56uvvkJQUJBJpo0Uqaw9jUZj8z4tLrEn9R2NM+A1Go3kgLe6dgwYMABt27ZF/fr1cfz4ccUDFG7YsMEkWNa8eXOcP38eZ86cUTSPK1eu4Pr161iwYAHy5MmDNGnSGHRT17XfVmrWuS3ldiyxNogOqD8vnjx5EsOGDZMsM2NsyJAh2LFjh0kQQaPRYNasWShcuDDu3r1rMAAkYLiNC4IAb29vg6CS3ANgcxlvckF0Y3PnzsWIESOszp4zzjLNli0bTp06hQ4dOsg+OFRTzkXpb2ttiSJrWDN+TUREhMXrFDFLD3uM7w109WfNsSYTPV26dKhevbrFwK/uYafa30H8+3bt2tWq3lDmyvlY+rwgCGbLWerOmbZcx2TLls3gexmf04wf2IqpKVmg4+HhgUWLFuGnn36SrfFvbluQ2vb+/vtvkx6+r169kvx8xowZsWfPHuzdu1d/DBD/BlKBfePta9GiRejUqZNB5nS9evUQEBCAJk2aKDouaDQazJgxA/PmzZMco0Cux6Xxe9WrV8eyZctsHtzbWuK2/PXXXwb37hMnTtT/xk+ePMHp06fNZqZL9exTGhw2bpO4J3zGjBlx7do13Lx50+E9LXSM26r0fGMtc+upRIkS+r8dFUTXLV/t9/n2228N2nTx4kWMHTvWYiUDuUoMUj799FOLY3f98ccfiI2NNbmeuXfvHn777TeTa1ZjUut1/fr1eP78uT4ZUQ6D6OqovrsqUaIEbty4AeDDhenixYvx5MkTLFq0SHWmzPr163H27FnJDPaIiAikS5fO5CSVK1cus5kFcXFxiI6ONviP5NlzYEop4sEOlFDbng0bNuCLL75Av3799K+pOTBv3LgR7dq1Mxhoq02bNhg2bBjmz5+PSZMmGTzNbtSoEZYvX45Tp06hUaNGePbsmar2AqaZ6GFhYaoGRFRSHiddunR49uwZnj9/brZ+vC4ooavPV6NGDTx//lxxTSxbDrh58uRB9+7d9TfSM2fORJcuXTB06FBs3boVWbJkkbzIMR58c9iwYVaXszGenxJyD5jsfUFgLgvbWpYCNtZ+B0dmwcktR2p9GNeXy549O16/fm3Q5d+SefPmSS7PUnuk/m18kWzPCxQl61z3EEHJQETm6LoxAlCVzWOuZ46addG8eXOcPXvW4Ab98uXLqrPrLQ2IuGzZMsyZM8dsHXhn8vX1xenTpxWVdRk8eDCKFStmUCLEmkx0499F3F1dKjg8d+5chISEWHzAIfXZatWqKR57JSAgwCRzXKPRoHz58opqNQMfbmDFN3HAh/POzp079f+29YG8rl1K2fpwy1w5KFuOy2qD6MWLF8fPP/+sunyf+PpKo/kwLtKdO3ckrwXF515x+8LCwtCyZUv92CLGdMd/qQCn8TrS1UM13g8GDhyIadOmyX4PuUG6gQ/HrwYNGpi8XrlyZaxdu1ayrqlUG2rVqiXbbqW/tdR+Kj6+u1quXLkcmoEslblrC7XLX7p0Kd6+fSt7TpY6LxoniQiCoLicy7Fjx1CrVi3s27fPbDkfJYx7j4nbsHPnTowYMUKyPrwUqbYePnzYYJ7i7eCXX34xGaNDbMyYMejatatJ7xVL+vTpI1uuzxpSQWhdb1uprOwGDRqYLatp/ODA+JrS09MTa9asQY8ePXD37l2sXbtW1f2k2IABA/D333/j5s2bZqez9ryiG//AXscbc8kF5o6PAQEBCAoKMltSw8vLCy9fvjTYT+XuP4wfkBovWxyfAD4kFYrL3jni/kmqrWvXrkXRokUVPei297J1xA+h7fm91Q6Wa7xs4x4bwIcHguPGjbN4fWnN+IGW2ibVE71AgQLo0qWLbMKM1N/i15Q83GIQXR3Vj8EGDRqkHxRw7NixaNKkCX7//XekS5dOdpA6KY8ePcKgQYMQFhZmVYaWnClTpqgeNCO1ceROIt55e/XqpTgD/dChQ7h//77sQD9y2rZti7Zt26r6jFibNm1MuuN5eHhIdkcHPnw/8UW4OIPd0YHEP/74A//8849JvT05SgaQrVu3LiIiIpz6PeSY65IrZu3gm3LTKt0fRowYgStXrsgOOuKq9WZP7paJbikzytgXX3yBPXv2GAwo6OPjg0uXLqFu3bomXeil5i+XZSO1XHMZOrp/h4eHW1WKwR7q1auHW7duWZWlJbZy5UoMGDDAJNNObt/Zu3cvHj16ZDYrzdbzUJkyZVCmTBmDUkuAbfuhXJ1sY44cWNRaWbNm1d/86h6cOqOcS0BAAMLCwqz6rDtIly4dGjdujHXr1mHbtm2Kz6/mqFnntq6XiRMnIkOGDJI1952ViW7LvqxmcGnxzaM4KzYkJMSkN6uY7ntnyZIFa9aswbVr1/QlCIsUKQLgQ3Dz+fPn+oQKNd+paNGi6NSpE/7++2/J9y11pV69ejUaNWpkUIcVMPwN1q1bZ3Y+SrejfPnyYcaMGfreIu/evbNrWQFHDI7u7JIAan57tcvXaDTIkCGDyecqVKiAy5cvm4z/sHnzZjRs2NCkJIjS/bN69eo4dOiQqjZKEQQBjRs3xp49e/RZ5+L1lD9/ftmHTErPlyVLljQI4Iq36V69epmNFfj4+GDVqlWWv4hK9rhf7tevH/LmzYuaNWtanFZXP1nuYaS5B0yFChWymIimZHstVqwYtFqtbEavpYCdnAULFqB9+/ay91By63rPnj2S5f+kejKZ+7ex33//3ezYFFmyZDE4P8nNr3z58ti7d6/+QWlwcLB+HC0lY18ordVuLd167dChg9lBeB1RzkVX/mzFihWYN28eZsyYYfflAR8qA2zcuNFgINu2bdvi33//lUzmES9706ZNZh+CpySWjmdqHmCTiiD6vXv3UKhQIYMaq0FBQXjw4AGuX7+O/Pnzq+rCc+bMGTx79swgaJqUlISDBw9i3rx52LVrF+Lj4xEVFWWQjR4ZGWk202XUqFEGtb2io6NtDiCQcuIDk5qn4bVq1TLIskmOlJ4QrL0oa9++veK6VkppNBq7ZN65ijMDV+ay0ADzI3rbg9x2Ex0dbVW3aSnWBnTEv4NUN0ixfPny4d27dxYHJ7VEvD7atGmD9u3bw8vLC6GhoRan17EURLdE9/ng4GAcO3ZMMpvB1oGVbSU3AKEaXl5eqo7P5jKr7K1Zs2ay2WeOOj7UqlULp06dcsqybOHh4aF6nzZ3fipTpozi+Vy9ehUbNmzQZwjZK4j+4MEDfYkve54PP//8c7tlyKndFoYNG4YZM2aga9euqpeVKVMmk+CrXDvk2iV1k6kmiK4kUCBHzbqSy0RXswzdQ7eOHTsiR44c+oyvXr16GXxGbSDVltJjlSpVwvPnz03WRUhICDZs2IDcuXNb3DYtdfE2bq+OPZKY5L6/ux0TlZZOckY2nvE4DqdPn0ZCQoLJ7yF3/9q4cWP8+OOPBq/Zur6Ne3ka02g0Bj0qHLGe5DLRnbEtSfXqscd3TJs2LT755BNF0/r4+CA6Olr2wZatJUB0Dw0tMbe+rQ2ie3t7o0mTJoqn15HqxaO2XVLtLFWqFLZv3654MGRz37V+/fq4ceMGDh48iO7du6NKlSpYunQpJk2aZLAdSwUpS5QogdmzZ2Pw4MGSA5paw5nHXvGy9u7dC41Gg99++w1v3rzR977o3r27xTFQbCn7my5dOly+fNngtV69eqFgwYIWkzMDAgLc7lxlC2u+y+jRoxEaGqrqOoJUlHMpUqQIChUqhB49emDNmjV4/PgxgA+1lSpVqqS6BtZHH32ES5cu4fz58/r/KleujE6dOun/9vT0NOhWfePGDTx8+FBygCkdLy8v+Pj4GPxHhsQXBbqyHWozwJVISQclJVLb93UVuUwnewy2ZK1atWoZ1A62B6XlXDJnzix7wT1+/HhcvXoVpUqVki15Ix5E2NpAl/hzWbNmNTttYGAgnj17hq+++kr1cuT2sVmzZuGzzz4z+1mlN0PioLfSci779u3D9evX9WWRbG1DaqB0QElLVq9ebVByRKPRoF27dqhevbpDzmsAMGnSJEyfPt0ga068rbjLA2E1megFChRAvnz59F2uxY4ePYqRI0calD2zpFSpUgbjcVhzbJG64cyfPz+io6Nx7tw5ycHY3IHaa4GpU6fi6NGj+nIk4u154MCBNrVF3LNC3C7dwK7Tp0/H3bt3TT6nJEgdFRWF8PBwkzJajiLehszVZ1aidOnSZnvrOftYLbXNLFmyBFOnTrU4DtTWrVslx3FQsyxbWDuAqCMoDf652qBBgwyCtmnSpDEIoO/evRtLly7Vn8OM216nTh0cP35c/2+5ci5qTZo0Cfnz5zdJcrD3/iBua//+/XHlyhWT5Tj792rdujWWL19uMFixK2TOnFl2cERrM0WPHj2K1atXo2rVqoo/o7uW150rdKwNojuaucC5PUpVWqqJXrx4cfTq1Qtp06ZFlSpVsGTJEuTMmVPfw3HAgAGySUaDBg2CIAh2KzclbrejroOl6BJounTpYrFXn7iNFy5cwMWLF+3aFg8PDzRq1MhifNKdtmFrKR0IXu67Tpo0CTdu3FA9oHxqp/iR5t69e7F//37s378f69atQ3x8PAoXLqyv51W/fn1VGa2ZM2c2qVObMWNGZMuWTf96z549MXToUGTNmhU+Pj4YOHAggoODUb16dcXLIfO+//57VK1aVVE3MyXc9eQKfKib2b9/fyxbtsyl7XBFIG3s2LEYP368PsvBXlzxXcQnRPEAKRMnTsRPP/2E+Ph4p7epV69eVg/Gq5TUupaqXZ82bVokJiYC+F+duMuXL8vuj0OGDMGSJUsAOK/kgrXHBnGAXu22N3nyZJPeAsbt2LBhg0F9O6Xt9PLyMqm17GjudnxVq1evXti2bZvJ4IFqZc2aFYMHD9aXg9JoNPjzzz/t0URZGTJkMDvQ74YNGxy6fKXUdrVu2rSp5GeCg4PNJi8ooebm/4cffsDKlSsxYsQIyfczZ85stha4q6ndN9OmTWuwfgcPHow2bdogV65cNpfa6NGjB+bOnWvSrr/++gvXrl1DuXLlJNurJIju6+urqhyLrcTtVJpRafw5RzF3PrJ2W82SJYui8RB0XebdjdL1njlzZrx580b2fVsDxM2bN8c///yjONHBGde1Xl5emDZtmkHpOTGp8hU6unXhiEGJR48eje+++06/jE6dOuHAgQOSZTPttZ769eun782idiwGezIu1wm4X+KDtZno1pzDL1++jMOHD5tk0YvvE+S2X1fTaDSK4hHWlgRVu13YOh6BNS5duoTVq1crGkzZFcTrMEeOHA6/h5Zjzx48riLu2ZTc7w2TE8URk3r16mHcuHHYv38/Xr16hbCwMHTo0AHXrl1D9+7dERAQoKqrrxKzZs1CixYt0LZtW9SpUwf+/v4WB68iy8Q7vKenJ5o3b263p0/mTlq2ljXQ1RiTq1duSUhICG7evGlSc9DZdBmzzgy6jRs3Du/fv9evw+TM29sb4eHhePbsmckFpbkbeksZ0tbQbdPmbngc5eXLl/oakLos/C5dukheKCvNSHV1sMES8QA+aucjtd8bf1/jgK6lmujuzLi7uLtJnz49du3aZfceHK4iLmHjLiWy1D4Uc+T+ryZbecKECXjw4IHbrEdXyJ8/v11rVRtLly4dypcvL/ubuzKYZc7z58/x6NEjVcF7a7Zrexznb926hX379hkMpuYOHLmfW5NJHBYWhtKlS2PXrl2ql6dkGZs3b8atW7fM9lazJkAmNfibK9nrdxXPZ82aNXjw4IHiwZutWYaY+LjjDtda7tAGMWde1+XOnRvt2rUzuc8Slxiyx7FN1yt10qRJNs3H0b1QbAmiO5tGo0FgYCCmTZum+NrLlcHX5LxsuTJ8/v7+GDdunE3ztoa57+Pu221yY9UjTW9vbzRo0AC1atVC/fr1sWPHDixevBjXr1+3qTH79+83Wc78+fMxf/58m+ZLziPX9Qn40D3xu+++Q5EiRTBr1izVA3i1adMGb9++Ncg+didKD8TDhw9HYGCgzZl9anl5eaFly5aYMGGCPkPZ1pOHq058ah7IDB8+HGnSpJEtsdCyZUts3brVqt/j3r17ePPmjaJBXNWyVM5FfGH03XffoUWLFggMDFQd0LdUB1MtXdZdrly5EBkZiY8//hjAhwD/6tWrVZWEcDTxOj5x4oTJgF/23r5tuYBZt24dvv32Wzx8+NDsdBcvXkRERITTM+PdnaOPVRUrVsSZM2ck60sbc9aFrDsM5vnbb79h8eLFFseUMMZsGvtQsj1KcVYQXe3vrLZ0pDXLANTXRJcKqBYtWtQuY1JIyZ49u8VzgaspXe/VqlXTl/OQYuvAomnTplX1Oyj57V++fGlzPXlHDmBqT3LnEVvOY3Lfh0EeeUeOHEH+/Pn1/3bVNlGgQAFs27bNbolJv/zyC6ZMmWLzgxrja3cl1/K6mt0A9D22lMyf2+n/JPdrNVvbnyNHDixdutRkTKynT58m+3VD5qkKosfHx+P48ePYt28f9u/fjxMnTiBfvnyoU6cO5s2b5/CB9cg+nHXwNz54lClTBn///TcA4JtvvrEqM11JAN3dD1pp06ZFixYtXLb87t2764PotnK3Cwmp9nTv3t1sL5nffvsN69evx6effqp6ed7e3nYZmEuK1HZcvXp1gzqYOh4eHlZ3GbdXEP3cuXPYsWOHfmDnS5cu4cyZM/q6xatWrcKcOXNUZaQ684m6rlakpeOHq7Z53cCHuvbJtbNs2bIoW7asU9rkbvs/4NrjvzNrTyohtT8rHUTLXrp06SJZdoqcI1u2bDh9+rTNyQfWBK/dhTOC6M2aNUOLFi2wbds21cuyxpYtW6w+57v7NbKrValSxeI09hgHwNosXqlt0x410dUeI+x1/pcLTorrR9s6oKa1XH2NI143NWrUAPDhvK7Vam0a0NlWxnXSbWWPng7W1EQvW7YsFi9ejOzZs6NNmzaK5+/q7cISHuMt05U+tUfCkVQpGv4GKZ/iiEmDBg2QJUsW9O/fH8+ePUOfPn1w584d3LhxA0uXLkWXLl0MnpCS+7I2M0kJpVmcuXPndtgBxtk3e7oTr1z9VnKenj17AgBq166t+DN+fn7o27ev2wcJBEFQNMicLvNbbgAbYwEBAfq/bdknK1SogFGjRulLEOTIkQNNmjTRB/I0Go1dbjx1A1KqGSBJjtT3dedxHYjUMA6iz58/H1u2bHFRa8hVgoKCVA08CRgGrQ4fPmxzT1M55cqVA6D8fOWu0qZNi61bt6JJkyZOWZ4tZRSc1ZvTFedPeyzzs88+w4oVK8xmx9uDv78/bt++jcjISIvTKvleagfr3rRpE+bNm4dFixahYsWKmDx5sqrPKw0kSk2npJyLn58fTpw4gXPnzlk9oKatlHzH0NBQpEmTBn/88YcTWgScPXsWnTp14rncDOPty1y97d69e1sMoEvNM6Wxx+CryUlUVBRevXql+rgpxZ0eqiTX3yM5Uvxo99ChQ8idOzcaNGiAevXqoW7dugYDsFHyUbFiRSxcuBAFChRw6HKc3ZX8999/R1hYmN1Gt1YqNDQUT548MagTR64xceJE1K1bF7Vq1YKPjw8AwyCxKzmi5IuUQYMGoWDBgooHC/bz88Ply5cdllFvb2fOnMHSpUvRp08ffX1Iay9gLF1s2Lsmuj0vtNzhQsmdLhzJlPE5OH/+/LLBCP6WJLZ792507NgRCxcutNvA81IyZsyImJgYhw4q5qqa6O6qc+fOWLdunUPGcrGmJrqaeRqzVPZOKfH9kEajQffu3a2ajzlS60PNALnm5gN8+F3/+OMPxb9r69at9X/36dNHdTts5ePjg+joaIN1YDwOhj2SJWyhZHv69NNP8f79e6dly5cvXz5FjG9lb+Yy0a19CMOyQymXPYLn7sjceXfRokWoWbMmJk6c6MQWpVyKj/hRUVE4dOgQ9u/fj2nTpqFDhw4oXrw46tatqw+qOytIRLbr27evw5fh7CBPx44d0bFjR6cuE/gQqLAUQK9duzYOHTrkpBaZJ+4256rRsB3F09NTPzjkjRs38P79e7tkP9vi4MGDGDVqlOqxHay9OUybNi3atm2raln2HhTakUqUKIGff/4Zb968sXoe5m52mImevBn/ZsuWLUP//v2xYcMGF7XI+Tp37ow1a9bghx9+cHVTUjxLvVmSq7p16+LJkydOWZY73sxaGyRp164ddu7ciYIFC9q3QXbk7e2NPXv22HWezZo1w6FDh9CqVSv9a87YD+y1jC5duuD69euoV6+eXeYnxZGBN0EQ4OXlhX///ddhy5Bapi2ePXuGxMREgwSOevXqYezYsQgMDLS1eXaxZcsWfPzxx5g9e7bZ6RwVQHfXMcDckblrd3v8Pp6ensiXLx/evHnj1sd3wLnXIO3atcPPP/+sOjEzS5YsaNy4MZKSklL1IPL2Zu63r1KlCmJjY11WHiulUbwWM2bMiCZNmui7Kr558waHDx/Gvn378NNPP6FTp04oVqwYLl++7LDGUvLibiPX0wdZsmTB2rVr4enpmWyyj63hzFHszalduzYOHz7s6makOOKbC6UXYKGhoRg4cCBCQ0MBpNwAmLPoSve4s549e6J79+4u6w7uCqtWrcKUKVNMSrcxe8o5mFDiXpyZid69e3cUKlTI6nrlyVHp0qXRv39/JCYmGiRm2DMTXem8rF1mmjRpMHXqVKs+6wyWvpejBrA1Z+zYsWjZsiW6du1q1ee9vLxMriE0Gg3GjRtnh9bZR+3atfHff/+5bJDu+fPno2XLlhg+fLhLlp+cGO8j4tJA9ggaajQa3L17F1qt1u0T0Hx9fZ22rKpVq+LWrVuqe31rNBrs3LnTQa1KvSzVeGcA3X6sXpMZM2ZE1qxZkTVrVmTJkgVp06bFtWvX7Nk2SqbGjh2L58+fo2TJkq5uittwt+BFhw4d7DIfd/teKRnXtaE0adLgxYsXSEpKUvww6NNPP0Xbtm0tDs6pY++Aekop5/LDDz/gzp07qFatmsvaoIa7BdAd3TvGw8NDcuwTHkOcY/ny5ejevTu++eYbVzeF4JyBRXU8PDxQv3591ctLjk6fPo2rV6/qv68jA0tKfw9ryqMkZ7dv30Z0dDRy587t9GW3aNECkZGRKf6hoasC6ABQuHBhh9fmT67MHdc1Gg2SkpL0/7ZX4NDdA5ALFy7EqVOn0LJlS6cu1xUP8cjQkSNHsHbtWtVjW5D1FB8NtFotTp8+jf3792Pfvn04cuQI3r59izx58qB+/fqYP39+qrlwJENBQUEG/3anLAJ3MWPGDFSrVg2jR492dVMomZg6dSp27typvxAsVqyYi1vkfJaCH9aMy6EmcO7ONdFdacKECa5ugix37kmwcuVK/PXXXxg0aJCrm2KynvLkyeOilqQ8hQoVwoEDB1zdDPp/jgqiV69eHcePH8cXX3xhTbOSvaCgIJPrfzFXlHOZOHEi3r1755LSjq7g6ocGyX1AYEq+6tata/Bv44cdiYmJ+r+tDX4nt3I6ffv2dUq5XjLkDvd2NWrUQI0aNVzdjFRF8VHFz88Pb9++hb+/P+rXr49Zs2ahXr16Lj+Bk+tcuXIFJ0+exGeffebqpri9qlWrIi4uDunSpXN1UyiZCAwMxLt373Ds2DHs2rUL/fr105chSS0cfWFiqZyLvYPo9sxicedgMUnr1q0bunXr5rLly227y5YtS1XlJyh1cdSx8t9//8Xp06dRp04dh8w/ubNndrTcuEPGv62vry+WLl1qt+XqZMqUCTExMQCAb7/91qp52Cvg7A4BGyJXENfKr1ChAs6cOaNPADA+Foh7qFp77/3LL7+gefPmqaKcDu8piNRRfEc/ffp01K9f323qDJPrlS5dGqVLl3Z1M5INBtBJLU9PT9SpU0d/k25N5jXJc1ZN9Pnz52PatGn45Zdf7D5vIqXkgi89e/Z0ckuIkr/MmTOzB66Ev/76Czdv3kTNmjXtMj9BENCgQQNMnTrVZQNO3rx5E6dOnUKLFi1Ul/fYuHEjli1bhilTpjiode6NQX/307ZtW2zcuNFu+6izjBo1yuDflSpVkpxOEATkyJEDCxculKy9r1SRIkVw/fp1qz6b3DCRgkgdxUH0Pn36OLIdRERkQaNGjTBw4MAUf7GTJk0aJCUlISQkxKXtsFcmev/+/dG/f397NEmPWSPSuF6ISMyaY0KHDh3w448/omHDhg5oUcr2ySef2HV+uoFFrc0At4fcuXPj448/tuqzbdq0QZs2bezWFp7jlGnRogUCAwPRuHFjVzfF7fz6669o1qwZWrdu7eqm2E3+/Pn1f+vGwWFpE8suXLiAs2fPpqhtwZXWrVuHcuXKuboZ5ATuPUICERHpaTQazJ0719XNcLjIyEg8efLE4Rcis2fPRrdu3TBs2DD9a5bKubgLZneRWuwNZX+ZM2fW/3316lX4+Pi4sDUkxZrjeObMmXHv3j23PgdQ6iEeHDt79uwubIn7mzRpEmbNmoVZs2ZxwEMZPj4+6NGjh6ubISlt2rRITExEQECAqs9lyJABz549g6enp0sHg01uypUrx6CvjXLlyqX/+/PPP3dhS8iZGEQnIiK3ki1bNqeUrunatSuaNGmCHDly6F9LLkF0ksbfzNT333+Ps2fPGmTk8SGMfbRr1w6hoaGoU6cOSpUq5ermkB3xWOL+Ustv5OHhgdOnTyMuLg5ZsmRxdXPc2ujRozFq1CgGUpOpkydPYvz48fjxxx9N3rO0v4uv5YmcpWnTphg5ciQqVqzo6qaQEzGITkRWYyCGkju1g31VqVIFgOuzwVJL8IBsN3HiRFc3IcXy9PTEpk2bXN0MMiOlHyvtOYBncpPSf1uxoKAgVzch2WAAPfmqWLEiNm/eLPmeuEcGkbvQaDSpdsyL1IxBdCIiov9n6abcz88PUVFR8Pb2dlKLiIjIWik10Prvv//i2bNnKF68uKub4lDmkjV0D7WJKOUaPHgwjh49ilatWrm6KUREABhEJyIi0lMScPH19XVCS8wrX768q5vgllJqwIyIrJNSxwJILYOeZs2a1eS1y5cvY8OGDQbjmRBRyjRr1ixXN4GIyACD6ERERP/P3Wuiv3r1CjExMaz9KMMdfzN3xPVEqUX69Old3QSywubNmzF9+nQsW7bM5L0yZcqgTJkyLmgVqcWyj0RElNIwiE5EVvPy8nJ1E4gcxh1v/vz8/ODn5+fqZqQIxYoVc3UTiMjBGERPnlq1asXyDUREROR2GEQnItXGjh2Lffv24bPPPnN1U4jsihm6yZuS3+/gwYM4dOgQOnfu7IQWuSc+iKHUgnWziYiIiMheGEQnItXGjRuHcePGuboZRHbHIHrylj9/fovT1K5dG7Vr13ZCa9zXF198gbCwsFRTV5lSn3PnzuHSpUto0qSJq5tClGpVqlTJ1U0gIiKyKwbRiYiI/p+710Qnabt378aSJUswZ84cVzclWUiXLh02bNjg6mYQOUyFChVQoUIFVzeDKFW6cOECwsLCMHDgQFc3hYiIyK40gjsWfbWj6Oho+Pr64vXr1/Dx8XF1c4iIyI1FRUUhS5YsAIAHDx4oymwmIiIiIiIiouRJaezYw4ltMrFw4UKUK1cOPj4+8PHxQXBwMHbs2KF///379xgwYACyZcuGTJkyoW3btoiMjHRhi4mIKCVj9jkRERERERERGXNpED1v3ryYOnUqzpw5g9OnT6NBgwZo1aoVrly5AgAYMmQItm7ditDQUBw4cABPnz5FmzZtXNlkIiJKJRhQJyIiIiIiIiLADcu5ZM2aFdOnT8enn36KHDlyYO3atfj0008BANevX0epUqVw7NgxVK9eXdH8WM6FiIiUev36Nfz8/AAADx8+RL58+VzbICIiIiIiIiJymGRRzkUsKSkJ69evx9u3bxEcHIwzZ84gISEBISEh+mlKliyJ/Pnz49ixYy5sKRERERERERERERGlFmld3YBLly4hODgY79+/R6ZMmbBp0yaULl0a58+fR7p06fQZgTq5cuVCRESE7Pzi4uIQFxen/3d0dLSjmk5EREREREREREREKZzLM9FLlCiB8+fP48SJE+jXrx+6deuGq1evWj2/KVOmwNfXV/8fu+ITERERERERERERkbVcHkRPly4dihYtiqCgIEyZMgXly5fHnDlz4O/vj/j4eERFRRlMHxkZCX9/f9n5jRo1Cq9fv9b/9+jRIwd/AyIiIiIiIiIiIiJKqVweRDem1WoRFxeHoKAgeHp6Ys+ePfr3bty4gYcPHyI4OFj2815eXvDx8TH4j4iIiIiIiIiIiIjIGi6tiT5q1Cg0bdoU+fPnx5s3b7B27Vrs378fu3btgq+vL3r27ImhQ4cia9as8PHxwcCBAxEcHIzq1au7stlERERERERERERElEq4NIj+7NkzdO3aFeHh4fD19UW5cuWwa9cuNGzYEAAwa9YseHh4oG3btoiLi0Pjxo2xYMECVzaZiIiIiIiIiIiIiFIRjSAIgqsb4UjR0dHw9fXF69evWdqFiIjMiouLg7e3NwDwvEFERERERESUwimNHbs0E52IiMideHl54fDhw0hMTGQAnYiIiIiIiIgAMIhORERkoGbNmq5uAhERERERERG5EQ9XN4CIiIiIiIiIiIiIyF0xiE5EREREREREREREJINBdCIiIiIiIiIiIiIiGSm+JrogCAA+jLRKRERERERERERERAT8L2asiyHLSfFB9Ddv3gAA8uXL5+KWEBEREREREREREZG7efPmDXx9fWXf1wiWwuzJnFarxdOnT5E5c2ZoNBpXN8cloqOjkS9fPjx69Ag+Pj6ubg4RuQCPA0QE8FhARB/wWEBEAI8FRMTjAPAhA/3NmzcICAiAh4d85fMUn4nu4eGBvHnzuroZbsHHxyfV7hBE9AGPA0QE8FhARB/wWEBEAI8FRMTjgLkMdB0OLEpEREREREREREREJINBdCIiIiIiIiIiIiIiGQyipwJeXl4YO3YsvLy8XN0UInIRHgeICOCxgIg+4LGAiAAeC4iIxwE1UvzAokRERERERERERERE1mImOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMoqdw8+fPR8GCBeHt7Y1q1arh5MmTrm4SEVlpypQpqFKlCjJnzoycOXOidevWuHHjhsE079+/x4ABA5AtWzZkypQJbdu2RWRkpME0Dx8+RPPmzZEhQwbkzJkT33zzDRITEw2m2b9/PypVqgQvLy8ULVoUK1eudPTXIyIrTJ06FRqNBoMHD9a/xuMAUerw5MkTdO7cGdmyZUP69OlRtmxZnD59Wv++IAgYM2YMcufOjfTp0yMkJAS3bt0ymMfLly/RqVMn+Pj4wM/PDz179kRMTIzBNBcvXkTt2rXh7e2NfPny4aeffnLK9yMiy5KSkvDDDz+gUKFCSJ8+PYoUKYKJEydCEAT9NDwWEKU8Bw8eRMuWLREQEACNRoPNmzcbvO/M/T40NBQlS5aEt7c3ypYti+3bt9v9+7oLBtFTsD/++ANDhw7F2LFjcfbsWZQvXx6NGzfGs2fPXN00IrLCgQMHMGDAABw/fhxhYWFISEhAo0aN8PbtW/00Q4YMwdatWxEaGooDBw7g6dOnaNOmjf79pKQkNG/eHPHx8Th69ChWrVqFlStXYsyYMfpp7t27h+bNm6N+/fo4f/48Bg8ejF69emHXrl1O/b5EZN6pU6ewePFilCtXzuB1HgeIUr5Xr16hZs2a8PT0xI4dO3D16lXMmDEDWbJk0U/z008/Ye7cuVi0aBFOnDiBjBkzonHjxnj//r1+mk6dOuHKlSsICwvDtm3bcPDgQfTu3Vv/fnR0NBo1aoQCBQrgzJkzmD59OsaNG4clS5Y49fsSkbRp06Zh4cKFmDdvHq5du4Zp06bhp59+wi+//KKfhscCopTn7du3KF++PObPny/5vrP2+6NHj6JDhw7o2bMnzp07h9atW6N169a4fPmy4768KwmUYlWtWlUYMGCA/t9JSUlCQECAMGXKFBe2iojs5dmzZwIA4cCBA4IgCEJUVJTg6ekphIaG6qe5du2aAEA4duyYIAiCsH37dsHDw0OIiIjQT7Nw4ULBx8dHiIuLEwRBEEaMGCGUKVPGYFmfffaZ0LhxY0d/JSJS6M2bN0KxYsWEsLAwoW7dusKgQYMEQeBxgCi1+Pbbb4VatWrJvq/VagV/f39h+vTp+teioqIELy8vYd26dYIgCMLVq1cFAMKpU6f00+zYsUPQaDTCkydPBEEQhAULFghZsmTRHxt0yy5RooS9vxIRWaF58+ZCjx49DF5r06aN0KlTJ0EQeCwgSg0ACJs2bdL/25n7ffv27YXmzZsbtKdatWpCnz597Pod3QUz0VOo+Ph4nDlzBiEhIfrXPDw8EBISgmPHjrmwZURkL69fvwYAZM2aFQBw5swZJCQkGOz3JUuWRP78+fX7/bFjx1C2bFnkypVLP03jxo0RHR2NK1eu6KcRz0M3DY8dRO5jwIABaN68ucm+yuMAUeqwZcsWVK5cGe3atUPOnDlRsWJFLF26VP/+vXv3EBERYbAf+/r6olq1agbHAj8/P1SuXFk/TUhICDw8PHDixAn9NHXq1EG6dOn00zRu3Bg3btzAq1evHP01iciCGjVqYM+ePbh58yYA4MKFCzh8+DCaNm0KgMcCotTImft9artnYBA9hXrx4gWSkpIMbpABIFeuXIiIiHBRq4jIXrRaLQYPHoyaNWsiMDAQABAREYF06dLBz8/PYFrxfh8RESF5XNC9Z26a6OhovHv3zhFfh4hUWL9+Pc6ePYspU6aYvMfjAFHqcPfuXSxcuBDFihXDrl270K9fP3z99ddYtWoVgP/ty+buBSIiIpAzZ06D99OmTYusWbOqOl4QkeuMHDkSn3/+OUqWLAlPT09UrFgRgwcPRqdOnQDwWECUGjlzv5ebJqUeF9K6ugFERKTegAEDcPnyZRw+fNjVTSEiJ3r06BEGDRqEsLAweHt7u7o5ROQiWq0WlStXxo8//ggAqFixIi5fvoxFixahW7duLm4dETnLn3/+id9//x1r165FmTJl9OOYBAQE8FhARGRnzERPobJnz440adIgMjLS4PXIyEj4+/u7qFVEZA9fffUVtm3bhn379iFv3rz61/39/REfH4+oqCiD6cX7vb+/v+RxQfeeuWl8fHyQPn16e38dIlLhzJkzePbsGSpVqoS0adMibdq0OHDgAObOnYu0adMiV65cPA4QpQK5c+dG6dKlDV4rVaoUHj58COB/+7K5ewF/f388e/bM4P3ExES8fPlS1fGCiFznm2++0Wejly1bFl26dMGQIUP0vdV4LCBKfZy538tNk1KPCwyip1Dp0qVDUFAQ9uzZo39Nq9Viz549CA4OdmHLiMhagiDgq6++wqZNm7B3714UKlTI4P2goCB4enoa7Pc3btzAw4cP9ft9cHAwLl26ZHDCDAsLg4+Pj/5mPDg42GAeuml47CByvY8++giXLl3C+fPn9f9VrlwZnTp10v/N4wBRylezZk3cuHHD4LWbN2+iQIECAIBChQrB39/fYD+Ojo7GiRMnDI4FUVFROHPmjH6avXv3QqvVolq1avppDh48iISEBP00YWFhKFGiBLJkyeKw70dEysTGxsLDwzCskyZNGmi1WgA8FhClRs7c71PdPYOrRzYlx1m/fr3g5eUlrFy5Urh69arQu3dvwc/PT4iIiHB104jICv369RN8fX2F/fv3C+Hh4fr/YmNj9dP07dtXyJ8/v7B3717h9OnTQnBwsBAcHKx/PzExUQgMDBQaNWoknD9/Xti5c6eQI0cOYdSoUfpp7t69K2TIkEH45ptvhGvXrgnz588X0qRJI+zcudOp35eIlKlbt64waNAg/b95HCBK+U6ePCmkTZtWmDx5snDr1i3h999/FzJkyCCsWbNGP83UqVMFPz8/4e+//xYuXrwotGrVSihUqJDw7t07/TRNmjQRKlasKJw4cUI4fPiwUKxYMaFDhw7696OiooRcuXIJXbp0ES5fviysX79eyJAhg7B48WKnfl8iktatWzchT548wrZt24R79+4Jf/31l5A9e3ZhxIgR+ml4LCBKed68eSOcO3dOOHfunABAmDlzpnDu3DnhwYMHgiA4b78/cuSIkDZtWuHnn38Wrl27JowdO1bw9PQULl265LyV4UQMoqdwv/zyi5A/f34hXbp0QtWqVYXjx4+7uklEZCUAkv+tWLFCP827d++E/v37C1myZBEyZMggfPLJJ0J4eLjBfO7fvy80bdpUSJ8+vZA9e3Zh2LBhQkJCgsE0+/btEypUqCCkS5dOKFy4sMEyiMi9GAfReRwgSh22bt0qBAYGCl5eXkLJkiWFJUuWGLyv1WqFH374QciVK5fg5eUlfPTRR8KNGzcMpvnvv/+EDh06CJkyZRJ8fHyEL774Qnjz5o3BNBcuXBBq1aoleHl5CXny5BGmTp3q8O9GRMpER0cLgwYNEvLnzy94e3sLhQsXFkaPHi3ExcXpp+GxgCjl2bdvn2RsoFu3boIgOHe///PPP4XixYsL6dKlE8qUKSP8888/DvverqYRBEFwTQ48EREREREREREREZF7Y010IiIiIiIiIiIiIiIZDKITEREREREREREREclgEJ2IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5ERERERJJWrlwJPz8/VzeDiIiIiMilGEQnIiIiInJT3bt3R+vWrU1e379/PzQaDaKiopzeJiIiIiKi1IZBdCIiIiIiMpGQkODqJhARERERuQUG0YmIiIiIkrmNGzeiTJky8PLyQsGCBTFjxgyD9zUaDTZv3mzwmp+fH1auXAkAuH//PjQaDf744w/UrVsX3t7e+P333w2mv3//Pjw8PHD69GmD12fPno0CBQpAq9Xa/XsREREREbkDBtGJiIiIiJKxM2fOoH379vj8889x6dIljBs3Dj/88IM+QK7GyJEjMWjQIFy7dg2NGzc2eK9gwYIICQnBihUrDF5fsWIFunfvDg8P3loQERERUcqU1tUNICIiIiIiedu2bUOmTJkMXktKStL/PXPmTHz00Uf44YcfAADFixfH1atXMX36dHTv3l3VsgYPHow2bdrIvt+rVy/07dsXM2fOhJeXF86ePYtLly7h77//VrUcIiIiIqLkhOkiRERERERurH79+jh//rzBf8uWLdO/f+3aNdSsWdPgMzVr1sStW7cMgu1KVK5c2ez7rVu3Rpo0abBp0yYAwMqVK1G/fn0ULFhQ1XKIiIiIiJITZqITEREREbmxjBkzomjRogavPX78WNU8NBoNBEEweE1q4NCMGTOanU+6dOnQtWtXrFixAm3atMHatWsxZ84cVW0hIiIiIkpuGEQnIiIiIkrGSpUqhSNHjhi8duTIERQvXhxp0qQBAOTIkQPh4eH692/duoXY2FirlterVy8EBgZiwYIFSExMNFv+hYiIiIgoJWAQnYiIiIgoGRs2bBiqVKmCiRMn4rPPPsOxY8cwb948LFiwQD9NgwYNMG/ePAQHByMpKQnffvstPD09rVpeqVKlUL16dXz77bfo0aMH0qdPb6+vQkRERETkllgTnYiIiIgoGatUqRL+/PNPrF+/HoGBgRgzZgwmTJhgMKjojBkzkC9fPtSuXRsdO3bE8OHDkSFDBquX2bNnT8THx6NHjx52+AZERERERO5NIxgXRyQiIiIiIjJj4sSJCA0NxcWLF13dFCIiIiIih2MmOhERERERKRITE4PLly9j3rx5GDhwoKubQ0RERETkFAyiExERERGRIl999RWCgoJQr149lnIhIiIiolSD5VyIiIiIiIiIiIiIiGQwE52IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5EREREREREREREJINBdCIiIiIiIiIiIiIiGQyiExERERERERERERHJYBCdiIiIiIiIiIiIiEgGg+hERERERERERERERDIYRCciIiIiIiIiIiIiksEgOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIiIiIiIiIpLBIDoRERERERERERERkQwG0YmIiIiIiIiIiIiIZDCITkREREREREREREQkg0F0IiIiIiIiIiIiIiIZDKITEREREREREREREclgEJ2IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5ERERE5ETjxo1DhQoVXN0MlypYsCBmz57t6mYQERERESnCIDoRERERkUIREREYOHAgChcuDC8vL+TLlw8tW7bEnj17XN20FKtPnz4oUqQI0qdPjxw5cqBVq1a4fv26q5tFRERERKkIg+hERERERArcv38fQUFB2Lt3L6ZPn45Lly5h586dqF+/PgYMGODq5qVYQUFBWLFiBa5du4Zdu3ZBEAQ0atQISUlJrm4aEREREaUSDKITERERESnQv39/aDQanDx5Em3btkXx4sVRpkwZDB06FMePH9dP9/DhQ7Rq1QqZMmWCj48P2rdvj8jISNn51qtXD4MHDzZ4rXXr1ujevbv+3wULFsSkSZPQtWtXZMqUCQUKFMCWLVvw/Plz/bLKlSuH06dP6z+zcuVK+Pn5YdeuXShVqhQyZcqEJk2aIDw83OZ1ERUVhT59+iBXrlzw9vZGYGAgtm3bpn9/48aNKFOmDLy8vFCwYEHMmDHD6mX17t0bderUQcGCBVGpUiVMmjQJjx49wv37923+HkRERERESjCITkRERERkwcuXL7Fz504MGDAAGTNmNHnfz88PAKDVatGqVSu8fPkSBw4cQFhYGO7evYvPPvvM5jbMmjULNWvWxLlz59C8eXN06dIFXbt2RefOnXH27FkUKVIEXbt2hSAI+s/Exsbi559/xurVq3Hw4EE8fPgQw4cPt6kdWq0WTZs2xZEjR7BmzRpcvXoVU6dORZo0aQAAZ86cQfv27fH555/j0qVLGDduHH744QesXLnSpuUCwNu3b7FixQoUKlQI+fLls3l+RERERERKpHV1A4iIiIiI3N3t27chCAJKlixpdro9e/bg0qVLuHfvnj7I+9tvv6FMmTI4deoUqlSpYnUbmjVrhj59+gAAxowZg4ULF6JKlSpo164dAODbb79FcHAwIiMj4e/vDwBISEjAokWLUKRIEQDAV199hQkTJljdBgDYvXs3Tp48iWvXrqF48eIAgMKFC+vfnzlzJj766CP88MMPAIDixYvj6tWrmD59ukF2vRoLFizAiBEj8PbtW5QoUQJhYWFIly6dTd+DiIiIiEgpZqITEREREVkgzu4259q1a8iXL59BlnTp0qXh5+eHa9eu2dSGcuXK6f/OlSsXAKBs2bImrz179kz/WoYMGfQBdADInTu3wfvGypQpg0yZMiFTpkxo2rSp5DTnz59H3rx59QF0Y9euXUPNmjUNXqtZsyZu3bpldR3zTp064dy5czhw4ACKFy+O9u3b4/3791bNi4iIiIhILWaiExERERFZUKxYMWg0Gly/ft3u8/bw8DAJ0ickJJhM5+npqf9bo9HIvqbVaiU/o5vG3AOB7du365edPn16yWnkXnckX19f+Pr6olixYqhevTqyZMmCTZs2oUOHDk5vCxERERGlPsxEJyIiIiKyIGvWrGjcuDHmz5+Pt2/fmrwfFRUFAChVqhQePXqER48e6d+7evUqoqKiULp0acl558iRw2Cwz6SkJFy+fNm+X0ChAgUKoGjRoihatCjy5MkjOU25cuXw+PFj3Lx5U/L9UqVK4ciRIwavHTlyBMWLF9fXTbeFIAgQBAFxcXE2z4uIiIiISAkG0YmIiIiIFJg/fz6SkpJQtWpVbNy4Ebdu3cK1a9cwd+5cBAcHAwBCQkJQtmxZdOrUCWfPnsXJkyfRtWtX1K1bF5UrV5acb4MGDfDPP//gn3/+wfXr19GvXz99UN4d1a1bF3Xq1EHbtm0RFhaGe/fuYceOHdi5cycAYNiwYdizZw8mTpyImzdvYtWqVZg3b55VA5revXsXU6ZMwZkzZ/Dw4UMcPXoU7dq1Q/r06dGsWTN7fzUiIiIiIkkMohMRERERKVC4cGGcPXsW9evXx7BhwxAYGIiGDRtiz549WLhwIYAP5VL+/vtvZMmSBXXq1EFISAgKFy6MP/74Q3a+PXr0QLdu3fTB9sKFC6N+/frO+lpW2bhxI6pUqYIOHTqgdOnSGDFihL7eeaVKlfDnn39i/fr1CAwMxJgxYzBhwgSrBhX19vbGoUOH0KxZMxQtWhSfffYZMmfOjKNHjyJnzpx2/lZERERERNI0gtJRkoiIiIiIiIiIiIiIUhlmohMRERERERERERERyWAQnYiIiIiIXOL3339HpkyZJP8rU6aMq5tHRERERASA5VyIiIiIiMhF3rx5g8jISMn3PD09UaBAASe3iIiIiIjIFIPoREREREREREREREQyWM6FiIiIiIiIiIiIiEgGg+hERERERERERERERDLSuroBjqbVavH06VNkzpwZGo3G1c0hIiIiIiIiIiIiIjcgCALevHmDgIAAeHjI55un+CD606dPkS9fPlc3g4iIiIiIiIiIiIjc0KNHj5A3b17Z91N8ED1z5swAPqwIHx8fF7eGiIiIiIiIiIiIiNxBdHQ08uXLp48hy0nxQXRdCRcfHx8G0YmIiIiIiIiIiIjIgKUy4BxYlIiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIkpG/v77b/To0QPv3r1zdVOIiIiIiFKFFF8TXanExETEx8e7uhnkIunSpUPatNwdiIiIyP21bt0aAFCsWDGMGjXKtY0hIiIiIkoFUn3UUBAEPHz4EC9evHB1U8jFsmfPjvz581scSICIiIjIHTx9+tTVTSAiIiIiShVSfRBdF0DPkycPMmXKBA8PVrhJbbRaLWJiYvDkyRMIgoCCBQu6uklERERERERERETkJlJ1ED0xMVEfQPf393d1c8iFMmXKBAB48uQJoqKiUL58eWakExERERERERERkWsHFi1YsCA0Go3JfwMGDAAAvH//HgMGDEC2bNmQKVMmtG3bFpGRkXZbvq4Gui6ASqmbbjs4ceIELl686OLWEBERERERERERkTtwaRD91KlTCA8P1/8XFhYGAGjXrh0AYMiQIdi6dStCQ0Nx4MABPH36FG3atLF7O1jChQDD7eDs2bMQBMGFrSEiIiIyj9cqRERERETO4dLocY4cOeDv76//b9u2bShSpAjq1q2L169fY/ny5Zg5cyYaNGiAoKAgrFixAkePHsXx48dd2WxK4by9vfHu3Tt9TwUiIiIiIiIiSnlevXqFvn374tixY65uChG5ObdJwY6Pj8eaNWvQo0cPaDQanDlzBgkJCQgJCdFPU7JkSeTPn9/swS0uLg7R0dEG/6U0Bw8eRMuWLREQEACNRoPNmzebTCMIAsaMGYPcuXMjffr0CAkJwa1btwymefnyJTp16gQfHx/4+fmhZ8+eiImJMZjm4sWLqF27Nry9vZEvXz789NNPJssKDQ1FyZIl4e3tjbJly2L79u1m279y5Up96Z40adIgS5YsqFatGiZMmIDXr1+rWhf379+HRqPB+fPnVX3OEmZ2EREREREREaVsw4YNw+LFi1GjRg1XN4WI3JzbBNE3b96MqKgodO/eHQAQERGBdOnSwc/Pz2C6XLlyISIiQnY+U6ZMga+vr/6/fPnyObDVrvH27VuUL18e8+fPl53mp59+wty5c7Fo0SKcOHECGTNmROPGjfH+/Xv9NJ06dcKVK1cQFhaGbdu24eDBg+jdu7f+/ejoaDRq1AgFChTAmTNnMH36dIwbNw5LlizRT3P06FF06NABPXv2xLlz59C6dWu0bt0aly9fNvsdfHx8EB4ejsePH+Po0aPo3bs3fvvtN1SoUAFPnz61Ye0QEREREREREVl248YNVzeBiJIJtwmiL1++HE2bNkVAQIBN8xk1ahRev36t/+/Ro0d2aqH7aNq0KSZNmoRPPvlE8n1BEDB79mx8//33aNWqFcqVK4fffvsNT58+1WetX7t2DTt37sSyZctQrVo11KpVC7/88gvWr1+vD2L//vvviI+Px6+//ooyZcrg888/x9dff42ZM2fqlzVnzhw0adIE33zzDUqVKoWJEyeiUqVKmDdvntnvoNFo4O/vj9y5c6NUqVLo2bMnjh49ipiYGIwYMUI/3c6dO1GrVi34+fkhW7ZsaNGiBe7cuaN/v1ChQgCAihUrQqPRoF69egA+1Ntv2LAhsmfPDl9fX9StWxdnz55Vva6JiIiIiIiIiJKLt2/fsjwtkQO4RRD9wYMH2L17N3r16qV/zd/fH/Hx8YiKijKYNjIyEv7+/rLz8vLygo+Pj8F/qc29e/cQERFhUArH19cX1apV05fCOXbsGPz8/FC5cmX9NCEhIfDw8MCJEyf009SpUwfp0qXTT9O4cWPcuHEDr1690k8jXo5uGmvqieXMmROdOnXCli1bkJSUBODDwX/o0KE4ffo09uzZAw8PD3zyySfQarUAgJMnTwIAdu/ejfDwcPz1118AgDdv3qBbt244fPgwjh8/jmLFiqFZs2Z48+aN6nYRERERERERkXNptVqMHTsWO3fudNgyNBqNw+btCm/fvkWmTJlQsGBBVzeFKMVJ6+oGAMCKFSuQM2dONG/eXP9aUFAQPD09sWfPHrRt2xbAh242Dx8+RHBwsEPaIQgCYmNjHTJvSzJkyGC3g7eu3E2uXLkMXheXwomIiEDOnDkN3k+bNi2yZs1qMI0u01s8D917WbJkQUREhNnlqFWyZEm8efMG//33H3LmzKn/7XV+/fVX5MiRA1evXkVgYCBy5MgBAMiWLZvBw5UGDRoYfG7JkiXw8/PDgQMH0KJFC6vaRkREROROOIYLERGlZBs2bMCECRMA8Jyn1MWLFwEA4eHhLm4JUcrj8iC6VqvFihUr0K1bN6RN+7/m+Pr6omfPnhg6dCiyZs0KHx8fDBw4EMHBwahevbpD2hIbG4tMmTI5ZN6WxMTEIGPGjC5ZtjvRnRh1DxRu3bqFMWPG4MSJE3jx4oU+A/3hw4cIDAyUnU9kZCS+//577N+/H8+ePUNSUhJiY2Px8OFDx38JIqJUZOnSpdi8eTP+/PNPnseIiIiIyG4ePHjg6iYkOykts57Inbg8iL579248fPgQPXr0MHlv1qxZ8PDwQNu2bREXF4fGjRtjwYIFLmhl8qLLyI6MjETu3Ln1r0dGRqJChQr6aZ49e2bwucTERLx8+VL/eX9/f0RGRhpMo/u3pWnMldwx59q1a/Dx8UG2bNkAAC1btkSBAgWwdOlSBAQEQKvVIjAw0GJ9r27duuG///7DnDlzUKBAAXh5eSE4OJh1wYiI7Ew3IPXcuXMxatQoF7eGiIiIiCj1YhCdyHFcHkRv1KiRbLccb29vzJ8/H/Pnz3dKWzJkyICYmBinLEtq2fZSqFAh+Pv7Y8+ePfqgeXR0NE6cOIF+/foBAIKDgxEVFYUzZ84gKCgIALB3715otVpUq1ZNP83o0aORkJAAT09PAEBYWBhKlCiBLFmy6KfZs2cPBg8erF9+WFiYVSV3nj17hrVr16J169bw8PDAf//9hxs3bmDp0qWoXbs2AODw4cMGn9HVa9fVUNc5cuQIFixYgGbNmgEAHj16hBcvXqhuExERKfP69WtXN4GIiIiIiIjIIVweRHcnGo0mWXRFj4mJwe3bt/X/vnfvHs6fP4+sWbMif/780Gg0GDx4MCZNmoRixYqhUKFC+OGHHxAQEIDWrVsDAEqVKoUmTZrgyy+/xKJFi5CQkICvvvoKn3/+OQICAgAAHTt2xPjx49GzZ098++23uHz5MubMmYNZs2bplz1o0CDUrVsXM2bMQPPmzbF+/XqcPn0aS5YsMfsdBEFAREQEBEFAVFQUjh07hh9//BG+vr6YOnUqACBLlizIli0blixZgty5c+Phw4cYOXKkwXxy5syJ9OnTY+fOncibNy+8vb3h6+uLYsWKYfXq1ahcuTKio6PxzTffIH369PZY/UREJIF1KomIiIgouUlpmdsp7fsQuRMPVzeA1Dt9+jQqVqyIihUrAgCGDh2KihUrYsyYMfppRowYgYEDB6J3796oUqUKYmJisHPnTnh7e+un+f3331GyZEl89NFHaNasGWrVqmUQ/Pb19cW///6Le/fuISgoCMOGDcOYMWP0XfcBoEaNGli7di2WLFmC8uXLY8OGDdi8ebPZeuXAh8z43LlzI0+ePAgODsbixYvRrVs3nDt3Tl+CxsPDA+vXr8eZM2cQGBiIIUOGYPr06QbzSZs2LebOnYvFixcjICAArVq1AgAsX74cr169QqVKldClSxd8/fXXJgOpEhGR/TCITkRERERERCmVRkjhd73R0dHw9fXF69ev4ePjY/BebGwsrl27hlKlStm1nAolT7rt4fLly4iJiUGvXr3g5eXl6mYRUSojCEKyyiDRtXX48OEmDzqJyDF0+13//v2dVvaQiIjs586dOyhQoADSpmVxAHOmT5+OESNGAHBcwkbt2rX1ZWNTQnjs1KlTqFq1KoCU8X2InMFc7FiMmehERERuYsiQIShQoABevXrl6qaoxot0IiIiIsvWrVuHokWLok2bNq5uCqVwvD4nsi8G0YmIKFl7+vQpfv/9d8THx7u6KTabPXs2Hj16hEWLFrm6KarxIp3IdvPnz8fPP//s6mYQEZED6Y7zW7dudXFLKCUS92jl9bnr3Lp1C8HBwdzPUxgG0YnMuHnzJhITE13dDCIyo3z58ujcuTOmTZvm6qYQEVktPj4eX331Fb755huEh4e7ujlE5MZOnjzJ40QylpzK9qUGKfn3YBDddbp06YLjx4/j448/dnVTyI4YRCeSsX79epQoUQKffPKJq5tCRGa8ePECALB9+3YXt8R9vHnzBidPnnTqhTMv0olsk5SUpP87NjZWdpo3b944q0lE5IZOnz6NatWqISAgwNVNISvZM2j79u1bXLp0yW7zo+SPmeju4eXLl65uAjkAg+hEMubOnQsA2LZtm4tbkvzs2LEDJ0+edHUziJItW2+uqlevjmrVquGPP/6wU4ss02q1TlsWWfbixQvs3LmTv0sKU7t2bYPBjnhzTJT6HDhwwNVNkPXixQvMnTsXz58/d3VTnEar1eLUqVMuKytYqVIllCtXDjt27HDJ8lMCZqKTI6Tk7So1YxAdvPGnD3TbAU80trl//z6aNWuGatWqubopRKnW1atXAQC///67i1tC9nb37l1s3brV4rmqbNmyaNq0KX799VcntYzsSe73PXbsmJNbQpR6bdy4EePGjeO9gQrt2rXDoEGDUtWAmdOmTUPVqlXRsWNHlyz/5s2bAD70oibrJNd9/P3796hRowa+++47g9eZie4eGERPmVJ1ED1dunQAgJiYGBe3hNyBbjtICYMTutKDBw9c3QQi+n+6i7fbt2/jwoULDl0WL9Kdo0iRIvj444+xc+dOs9NFREQAADZt2uSMZhERuaU3b95gwoQJ+ofLanz66acYP3489u3b54CWpUz79+8HABw+fNi1DXGimTNnAvjw0EUpRwTXGLBLfUJDQ3Hs2DFMmTJFdhpen7sO98mUKa2rG+BKadOmRfbs2fHkyRMAQKZMmeDhkaqfK6RKWq0WMTExePLkCaKiovQ1SXnQs44z19vjx4/x7t07FCtWzGnLdHeCIHDbTQHs/Rvq9pFnz54hR44cdp23Di/SnevIkSNo2rSpxenY246cZeHChfDw8ECfPn30ryUkJODJkycoWLCg6xrmQJcuXcKbN29Qo0YNVzeFZIwcORILFizA2LFjrT5P6R5Kugte57kXXWKeGik9iP727VucOnUKtWrVQtq07h9ycqd1J6bVahEbG4tMmTJJvp+QkCD5OjPR3YO7bldkG0VHtCxZsijeAJJb8fz8+fNDEAR9IJ1Sr6ioKERGRiIxMRHe3t6ubg4pkC9fPgAfjjtZsmRxcWtc79mzZ6hatSq6deuG8ePHu7o55AaMz92HDh1yWBdrXqS7p5QaRI+KikLmzJmRJk0aVzfFbpLzzVZUVBT69+8PAOjUqZP+hj8kJAQHDx7Erl270KhRI1c20SHKlSsHAAgPD4e/v7+LW0NSjh8/bvM83O38lpyPFSmRl5eX6s+k9CB6q1atsGfPHowfPx5jxoxxdXOSrbp16+Lw4cN49OgR8ubNi127dmH48OFYsWIFKleurGge7nb8ssXbt2+RMWNGhy4jNjYWcXFxdoktuNM+SfajKIg+e/ZsBzfDdTQaDQoWLIjbt2/j2rVr8PPzQ/r06VPcBi8Igj4Dkdn2phISEpCUlIS3b98iJiYGJUuWdHWTSIV79+4xiA5g6tSpePDgASZMmMAgOklq27atwy6mU9JFekqSEoPoDx48QMGCBVG1alWcOHHC1c0hAO/evdP/LS6Ld/DgQQDA4sWLU2QQXefRo0cMolOyERcXZ1Xgl6RZk4me0u3ZswcAsGjRIgbRbaArixQaGoohQ4agSZMmAIAmTZrgxYsXsp9LiZnos2fPxpAhQ7BmzRp06tTJYcvJnj073r17h6ioKPj6+to0r5QWU6QPFAXRu3Xr5uh2uFzdunWRkJCAq1evpsia2BcvXsTt27eRP39+g6eWSUlJ0Gq18PT0dFpblJabePv2LZ4/f478+fM7NPAfFxeHiIgI5M2bF+nTp0eFChVQr149hy3P2J07dwB8qHObEqS0k0VSUhJiY2OROXNmVzfFIrkufUr9+uuvePfuHQYMGGCnFrm3hIQEpx771LDXfqTRaCxePD99+hR//vknunfvDj8/P6uXlVIu0lOalBhE//PPPwEAJ0+edHFLSMfSDTuPD0TuYevWrfj4448xa9YsDB482NXNSRHc5VpS6bVjUlKSZC+uiIgIXLx4EQ0bNkxx93MpTVRUFABlv3lKOf8OGTIEANC5c2eHBtF1SQEXL15E7dq1bZoX96OUyaoCVXfu3MGKFStw584dzJkzBzlz5sSOHTuQP39+lClTxt5tdApPT0+EhISgQoUKiI2NTTEHG51p06YBAG7duqX/G/jQzTYqKgr79u1zSpDw9OnTGD58OEaOHKl/kipHF+wfNmwYPvvsM4e1qXPnzrh+/TpatWqFqVOnInv27E67GIqLi0PRokUBfBhd2zgr5Ndff8X69euxYcMG+Pj4OKVNyZEj99eqVavi7NmzyaKrti3rITExET179gTwIVvZUd/19evXOHbsGEJCQuxeI1HN9x86dChmz56NK1euoFSpUnZthztREkSvV68ebt26hSNHjiA0NFTRfOVuwMh5lG7vKTGInlJvSsS/6Zs3b1zYEiJpT548weDBg/H111/bHFxQ688//0R8fDw6d+7s1OU62ooVKzBx4kRs27YNpUuXdvjyOnbsCOBDQIpBdNdxVTmXb7/9FgsWLMCFCxdQuHBhg/cKFCiA+Ph4bNiwAW3btrV7+8g24h5flqTETHR7efDgAfLmzWvxPsYe+2hKvV5N7VRHMA4cOICmTZuiZs2aOHjwICZPnoycOXPiwoULWL58OTZs2OCIdjqFp6cncufO7epmOMTr16/1f+uCtsCHgwgAvHjxAhUrVnR4O8qUKYP4+HgMHDjQ4gFd1+Zz587hhx9+cFibdF3B//rrL6xatcphy5ESHR1t8HeOHDnw33//wc/PD2nSpNEHNadNm4bJkyc7tW1igiDgs88+Q+HChTF16lSz06a0k8XZs2cBfMjc+fLLLx22nKioKAwePBhdu3ZFgwYN7D7/ixcvwtPTUzZgLA60xcTE2H35Og0bNsSpU6cwYcIEh+7XlsyaNQsAMGHCBKxbt85l7bDGnj17sG3bNkydOlVRd2xLQdRbt24BAP755x9Fy1+/fj169OiBDRs2oFmzZvrXrblIX7t2Lf7++2+sXLkS6dOnV/15c968eYOoqCj92AmpVUoMotvq7t278PLyQp48eSAIAqZOnYpKlSqhcePGrm6aXrt27XD79m1XN0Mxe96wC4KA3r17o2zZsvj6669N3rdXKYrExETs2rULNWrUYEk4hb744guEhYVhw4YNTg3MxMfH6xNqmjZtimzZsjlt2YBjg1A9evTQ/98e9dsp5Xr69Cnu3r2LWrVqSb6v5B7sp59+AgCMHz/e5L5X1xv/33//tVsQPbncFyaHdg4aNMjkNbl2i19/8eIFli1bho4dOyJnzpwOa19ysGXLFrRq1QrNmzfHtm3bzE6bHLYJcg3VNTJGjhyJSZMmISwszKD+V4MGDXjiJ4usORg56yLdHZ7SXrx4EdmzZ0fDhg0NXtd12XKVU6dOITQ01KAXA9nXyJEjsWrVKnz00UdWz0NuG46Ojkb58uVRunRpRQE1e+4LSUlJmDZtmv5h1alTpwB86GWxZs0a3Lt3z27Lsoa7XiBJtSsmJgY7duxASEgIZs+ejTlz5ujfe/z4Mfr06YMrV66YzMfex7YOHTrg3bt3aN68ucHr1iynU6dO+PPPPzF37lx7NU8vW7ZsyJ8/Px49emT3ebsDuZIZ58+fN3gQxiC6oaioKBQpUgR58+YF8OHh0XfffWexd5wziH9TXam35MLSsVTN8WHv3r1YtmyZZMBgz5498Pb2xo8//qi6jcamT5+OFi1aOD2j2lrh4eHo1KkTjhw54rI23L171yXLFZerE/fSWL58Odq3b4+4uDiHLt8Z9wjmvoNxcoM7XrtotVrs3bvX1c2wG0EQcOXKFSQlJZmdLjEx0ar7NGt+wzx58qB27do4duyY6s/aY/nWsPe+k5SUhNq1a6N79+52na8cccKbo+3btw/NmzfH/fv3Jd9ftmyZyWtKfsfPPvsMQ4YMQcuWLW1tYrKnS6JSkjhkj31EaUni9+/fo0aNGi5JMBMEAQcOHEBkZKTTl51cqQ6iX7p0CZ988onJ6zlz5jQ7uAFRcuOMiwvjC4ulS5cC+HASFXN1EMTdxwlwhwcgtrLHjanceoiIiND/belmwNx8rPHrr79i5MiRqF69usHr9+/fR5cuXUy6kjra27dv7T7Py5cvG/T2cZR27doZZH6LH0B8+umnWLJkCYKCggw+o9FonHb8sGW7ef78uR1b8oEu6KIblMke81u4cCFu3Lhhl/k5wvbt21GxYkVUqlRJ/5qrzx/uxvjmVNcjL7ly1vkvNjYWZcuW1dckNcfWNpkLWvTu3RsAMHr0aJuWAQArV64EAJOHj7Y6duwYJk+erOh8q0bv3r2xdu1a1KpVy+J+HRcXh2HDhukH90sOLl68iHnz5kmuN7lr8l69eiE0NBS//vqro5vncHLfcfTo0cicOTN27Njh5Baps3r1apsSQZQSBMGmY8z69evRsWNHvH//3ux0s2bNQmBgoMWx4cqVK4fHjx9bXK7xdm3LfeaBAwckX3fHhyv2duLECRw+fNgpvcdDQ0Ph6+uLCRMmOHxZwIek1O3bt6Nr166S76v5fcXT6saPOXnypN3PS8mNtevQ0cv7/fffcezYMUyaNMnmZaq1c+dO1KtXL9X33FVDdRDdz88P4eHhJq+fO3cOefLksUujKOViJrr8Ms2tGzVtO3nypEufJIq/xx9//KHPPLY3dw+cDx48WDKLzpFsWSfiz9oz6Hb16lW7zctWGzZsQKZMmTBlyhT9a7ZeIJ04cQJly5ZFgQIFbG2eRTt37jT4t7jt586dAyCdyab097RHCQZraTQaPHv2DFWqVMGiRYtsaofUvO1h7ty56N+/P0qWLGmX+dlKan3rShPpSvQAKTOInhoCBe5m7dq1uHz5MmbPni35fnL7TZYvX46bN2/adZ4jRozAl19+iRo1auD777/H8uXL7Tp/cXmf7du3m532l19+wcyZMxESEmLXNjjy2qt8+fIYOHAg5s2bp/qzr169ckCL3IOu14W71y/fuHGjw5eRmJiIjz/+GFWrVrU6GNihQwesW7cOv/zyi9npJk6cCOBDcMuca9euWVzmgAEDkCtXLpsSBsRBf3vsh2qP2bdv31a8nyl52GotcWavPY9HUuujT58+AICxY8fabTlKPHnyRPJ1e5xns2bNiu+//97m+SRX7hpEt9Sb6s6dO/oSs0qo2Td095fiHl9knuog+ueff45vv/0WERER+gy3I0eOYPjw4bJPzYh03DmILvb48WOcPn3a5PWzZ8+6pCur0nVw7NgxVKtWze6DQlp7Evn8889RtWpVu7ZFirn1s2DBApPMfkEQVGcOq1kHr169wpw5czB37lz8999/qpZjC7n14MqR293pYccXX3wBAPjuu+/0r9l6gaSrp2fvTHQ1v9mDBw9ke4skl0x0QRAwduxYnD59Gv369bNjq+zn6NGjrm6CxR5/UoMkJYcg+vv377F48WKnZIW70zHJmKW2PX36VNF8EhMTcfz4cXTt2lX2ZlwtccBq27ZtKFOmjP7hnTG5UkNKyR3/li5dardrsF69etk8D+PvNH36dIPu9tevX7d5GXLLsxTMcnWpNFsMHjzYbCDd1u3LGs44biSXB1EHDhxAp06d8OzZM4PXlZYtUEsXXNqwYQO8vb2xbds2nD59GufPn7dpvlIB7WvXrunP9fb8PRYsWID//vsPCxYs0L+mZv4xMTHw9fXV/9uW631rpr179y6KFSuGrFmzKppe7mGrPaRN+78h/RydVZ0c9kklNdHFoqOjXTrOmr1cunQJX375peqSjWpKz9njmGa8vJUrV2LUqFGqzylFixZFUFCQouvAkydPwt/fX3FvjeSwnbsb1VvGjz/+iJIlSyJfvnyIiYlB6dKlUadOHX3WhVpPnjxB586dkS1bNqRPnx5ly5Y1CF4KgoAxY8Ygd+7cSJ8+PUJCQgwyrEgZ7hzS5Eo7GNckBz4E1oOCglCkSBGHtUfugKr0QOsOtQit3dYSEhIwfPhw/Pvvv2ane/36NdavX69o8Mv9+/djwIABJgN1du7cGX5+fg7Lkr98+bL+b6UXePa4QVMyDyXbmD1vFt05YAV8aN+RI0cQGxtr1eddeWx9//49qlevjoIFC8pOoyaILvVbRUZGKuqmLJ7Hzp07reoN44hSO4Bzf6OoqCiHZnJY6lYudcFv7vc319bIyEi8fPlSeeNsMHHiRPTt29fpWf6CIFjsBTZ9+nSHnFvFdZ2VMrev6yQlJaF48eIIDg7G6tWr9Q8P7ally5a4evWqQX1Ve55D5H4TXSkXdyT1nR197Nm+fTv69esnWZbCnsuOiYnBgQMHkJSU5LRz+sCBAw3+bc+a+9ZQM//79+8jT548mDlzpuT7Q4YMQdOmTVWX97DXd7R1PvXq1cPatWtV/0bWmDZtGry9vREWFoZ27doZrDNd8sCcOXPQpEkTvHv3TtW8pdZD6dKlUbNmTZvGUpEaDFnH2qDcoUOHFJXWFP8GFy9eNPvQUc3vdfDgQcXTGnv+/LldH+Z7enrq/3Z0KUVHPRh6+PAhunfvbvAgyFKPB41G47D2JEcVKlTAsmXL0L59e1Wfs7Tdi7dVRxzTvvjiC0ydOtXqxBwlcVDdQ06l4wYwTqie6j0xXbp0WLp0Ke7cuYNt27ZhzZo1uH79OlavXi2ZAWXOq1evULNmTXh6emLHjh24evUqZsyYgSxZsuin+emnnzB37lwsWrQIJ06cQMaMGdG4cWOLdczIkKWDrjU7z8SJE1GyZEmcPXtWcaDQ0Zno+/btw+jRoxUFMRYvXoxMmTJJLkcqe0jqtV27dqFixYqy2Vhyzp49a5IlZG7dKL34ED+dT24WLFiAGTNmoHHjxmana9euHTp06IAvv/xS8v2kpCT9gGxymVhr164F8CFrzBy5gV3M0Wq1qFOnjv7fSrbfly9f2uUCU7wsuW6fgiAgPDwcZcqUMRiYUpyRI9fm06dPy9ZhTK509WWNB8lMDtavX68fsNUca7ctQRDg7++vf2iuZPrff/8dTZs2RbFixaxapjMlJSUhMTHRbvOLiIhAlixZUKZMGdl9KD4+Hvv377d6EDxLN7JS53q58/OYMWPg7e1t0j30ypUrWL9+Pfz9/ZEtWzanBM12794NAE65tlPzfbZs2YIRI0bYvc7v5MmT4ePjg9DQUFVtU3Jtc//+fYNznyNr+Itrl0sF0cW1xv/++2+z87K1zrE5z58/lyxFaStLZdAceWOq0WjQvHlzLFq0yOBcriN1LBAEwaoxbho3box69erpB2RzBUsPacxtO3K/w4MHDwySHuylUKFCePr0KYYNGyb5/uzZs7Fz504cOnRIUTuNrVq1Sl/P39HMPTgxvka2V4AvISFBP++RI0cCkH6AFh8fj/v372Pw4MHYtWuXvnyS7lhy6tQps+cUc9vM3bt3rd5/zZWJEa8jS/N/+vSp7PgQugSQhQsXSg42+ezZM5QvX15R4ldMTAzCwsIMzi/m2paUlIR169bh4cOHio7ZiYmJaNOmjcXplBIH0e053/379+v/7t69O/777z+T9bBnzx6T87Y1Pv/8c6xatQoVK1bUv9a5c2f933fv3sXixYsNrhWNH/rr1r3aTHR3Fx8fj7p162LUqFGy04gThC5evKhq/moeVjqynIu1SSqO6F2eXLcVV1J9ttMN0JU/f340a9YM7du3t/pmedq0aciXLx9WrFiBqlWrolChQmjUqJH+gC8IAmbPno3vv/8erVq1Qrly5fDbb7/h6dOn2Lx5s1XLTK0csXOMGTMGN27cQFBQED799FO7z19HzYGgQYMG+PHHH7FkyRLZaR49eoTQ0FD07dvX5rY1adIE58+flwzA7d69GzVr1jQZsOrBgwcICgqSHFBR7ndSmmFs6UHWmzdvrLqBEpdqctRNrtIu2mFhYQA+1FuXalPbtm1RtGhRrF27Fj169DA7L0uBLEv1EqUsXLjQ4N/G6+vZs2cGv8G5c+eQLVs2u2Q6ipdl7uJjzJgxuHr1qr6+Znx8vEFNb7nfuEqVKqhXr55JF15H2Lx5s+q6qLYc58QXz9ZyxOCY5igJAKvJRDdef+LPKSkJodVq9eVtrMmyddRFnNR8BUFAuXLlULRoUcWBdPF8Dhw4gIEDBxpkz+tqCt66dQslSpSQzKwfOnQo6tevj549e6r9Giak9lM1yQwTJ06EVqvFiBEjDF4PDAxEhw4dzC7H1WzZVtRkTIvPS//884/VyzSm67npjMxqZ90cicuL6I4dugfalgiCgJCQEISEhNh9e9NqtciZMycCAgLs3tvFUlsdHUTXEfcWOnfuHH788UfJBy5NmzaFj4+P6pt3Xcbc8uXLTfYfZwyqrYQ1203BggVRtmxZl40jZHzuUbK9xMbGonv37rhw4YLke//884/Fh5FKt8tHjx4hZ86csiXWjIPm9treGzRogEKFCukfrsqJi4szKBm5cOFCvH79GkWKFIGXlxeqVq1qMBi7GvY4Dr148QIXLlxAcHCw/jXdOnvw4IHsoOcdOnRA/vz5kSdPHtnyKYIgoFatWujfv79BUpHuN1B67AWAjz/+GI0aNTIYPNP4+4v/vWTJEnTs2BEFChRA6dKlFfUAsPQQVQ1xEN2WDHkx496oq1atwtChQ0228ZCQELRv396qJCsxJYNZ9+3bF97e3gavSe1jjjjPGMcKtFotxo0bh+bNm2Px4sV2X57Ypk2bcPDgQUydOhV37961a7KLseXLl5vEAuydiW7v30c3v+fPn8vGTiwlVb5588buZWtSG9VrTHdi++6772weMG7Lli2oXLky2rVrh5w5c6JixYpYunSp/v179+4hIiLCYFAcX19fVKtWDceOHZOcZ1xcHKKjow3+S+2szbbTarXYtGmToi5tSh9qOKsmurnMq0KFCkl2/bG0HHPvh4eHY82aNQY3Ew0bNsTRo0fxySefGEwrl/WSkJBgdTmXBQsWIF++fAaDThmLjo6Gj48PAgICcPXqVcXrNSYmxuAgbSkgZ+3Jwl43zroLtRkzZlicdsuWLWYzq6z5Lhs2bDD4t/h73bt3D7ly5ULp0qX1rzVp0kTxvN++fSsZqA0PDzcpTfPnn39KzkMQBJMbLOMbaku/hZqMPmt/108++QQDBw5UdKHp6LYonactN+JardZg37p3755dAjS2lnNRy9bBRR1Bar7v3r3D1atX8eDBA6u6bderVw/z5s3TDzwGGH73W7du4a+//tL/OyEhAW3btsX8+fMBWO62ay21PQIBx148R0REOGWgooiICGzZssVsr7gHDx6gcePG2LVrl8Hr5rY78XstWrSwvaEWOOIYpXS/sqa2rLi94sQE3etKyyu8ePECe/fuxd69eyXPcWfPnsXWrVtVtw8w/F72qg+vY+mBjLl9KzIyEtu3b7d7L7RKlSph9OjRkgM079q1C3FxcVYHtIy3pb59+8LPz8/kIfTu3btVZwdaYss1uiW6a+f//vsPixcvRlRUFLRaLU6ePGlx/pcvX7Z6uzJen0r2VXOJMF26dEGLFi3Qv39/q9pjbOzYsXj58qVs0ExJ+635XXTBZfE2LHUf++DBA4PjxdWrVzF06FDcu3dPf97Zt2+f7EMjc21LSEiw+ZokR44cqFChAo4fP65/TXdMMC4zKbZ+/Xr9dYna47I1NdF140aZC46K15X44cb169ftGiAXBAE//fSTPiHDnoYOHYo6deqYXJNotVpUqFDBZPrbt2/Lrs9x48ahV69eTh1zRu32aO32qwvei2MKGzduxPjx47F9+3b07dtXdekkNcTHuCJFisDT01M27mcN8Xrp1asXJk2aZPC+cSa61HFCq9UqfoDsqGvsnDlzokiRIoiIiDB5T/ygyTh54OzZs/Dx8UGXLl30rzETXT3Vv6que9qBAwcQGBiIChUqYPr06apqpurcvXsXCxcuRLFixbBr1y7069cPX3/9tb4Ivm6jyJUrl8HncuXKJbnBAMCUKVPg6+ur/y9fvnyq25XS6LLj1Fq9ejXatGmD/Pnz27lFjmfuoYHcBcn79++xfPly2cGaLF0IdunSBZ999pnJ6+ayU8Xz/PjjjxVNJ9WOAQMG4MmTJ2YvgM6cOQPgw01CmTJlsH79etlp5ZYtt3x7sGW+Up9VOoL10KFD9X/HxsaiatWqSJcuHS5cuGDVjZG59bVlyxYAHzJEdBehUlnd69evl6yVli1bNuTMmdPkhiAgIABVq1aVLStk3P3P+GRpfIK31FVazclW/LmiRYsq/pyOMwdmtYb44suaC6V169ahT58+KFOmDMqXL69/fcGCBQYBWilKfwe1+1ZUVBT2799vcqNx8+ZN/Prrr7LLd1QdZHt5+/at5IA8xsu9evUqbt68qWie4mwv4++/atUqfcZxaGioQVDdHpQG7c6dO2f23ODh4YELFy7IZi9a+7teuXIFuXPnRpUqVfDq1SuT7Sk+Ph67d+/Gu3fvbP7tS5YsiVatWhkkYhjr0aMH/v33X4wePVr/mquz7O2RYSX+Di9evLCqZ+CWLVvg7e2tL3VmaTlSjhw5ov9bF1iwlBH7/v17HD9+3GLmV1BQkOQ1ktqedY78vdXWRC9WrBiaN2+On3/+2W5tiIqKUjSduF0TJ05Ev379FK0brVZrsAxdr89x48bpX7t16xYaNmxocD4DPtQAHj9+vF16skm11ZZSULr5ffzxx+jbty+6deuGadOmoVq1amaX+ejRI5QtWxZ58+a1etlq22lum9KdY1asWGGX5Vk6PinJRG/VqpXVyxffj0ltN1I9eaTKOIp/RzFz27zU/Zw96NaRrQMky7V94cKFqFu3rmzvVnFyoblrODXXd/YMJB84cADffvutwXgb9jJr1iwcOnQIO3bsMHj93r17knWmBUEw2MbF+8OqVauwfPlysz3ULl26hGLFiqFBgwZ266kqbo+t5zO5B9OLFy+GIAgGJU8fPnxoMI2zB6yvUaOGwb+lytooZbxtGydWiL/bq1evUKRIEZMem02aNIGfn5+iwcPtXW7H+HNSD6zFmeji0sXAh1LZgGEyD4Po6qm+48+ePTu++uorHDlyBHfu3EG7du2watUqFCxY0OxTVSlarRaVKlXCjz/+iIoVK6J379748ssvJbMnlBo1ahRev36t/8+WgUFSCiUD5kntPJYGeJSzYMECfPLJJ5I3N0oGczC+0bbmJGHtjWmvXr0MurHrbN68WbLmpDHjAzFg2n65dWBukEtdhuulS5fg4eEBLy8vi20xZrxcJd9HilarhSAIuHv3ruKbRqU3Z1KWLl2KNm3aWF1DWI3Zs2fj1KlTSEhIQIUKFQweNOi2S0EQcPToUbN1Cs39W0dq8FqdDh06oGbNmiav69aB3AMC3YMS4MNgO+PHj8fNmzdVZ8vJPXXXsfZkq7R7qXhZ6dKls2pZUqxt99u3b3H79m0sXLjQbNDGmvl37NgRS5YswfXr1016qYwdO9bsZ5UG7dVmogcFBaF+/fqoW7eu/j2NRoMSJUoYlCHRaDQGF5C21jQWr79NmzZZVRLG3HwDAgKQJ08es3U8ly5dijJlyqBEiRI4fvy4xSxqcxfye/bsweTJk3HmzBlVZSSePHmCn3/+2ap6iXLbRN++fTFlyhTJ93bt2oUKFSqgUaNGku9b85tOnToVgYGBAIALFy4ga9asBj1wAOCbb75Bw4YN0bFjR9XzN6bLCDJ3Q2vvLGRLXr58KZvwoaNkrAE1RowYYTBQmc6VK1dQuHBh2TrKrVq1QmJiIjp16qRqeXI1wXWvW9p/PvvsMwQHB2Pq1KkGrys9lopLOSihdFvetWsX2rdvjxcvXiien9oguu749u233xq8vmnTJtXj7AAf9jPxmFLmiNs1ZswYLFq0yGLpDOBDL09LgXq5B5D169fHuHHj8PnnnytqozFLv53xNmQNXfLCli1bZAcFFbM1217X41dHansxfsgit03Z63yphqWEDEA+UKeENeceqesduV665ub/6tUrkySOHTt24LfffgPwYRuxJjvWXlmp5tp+8OBB/QN8sc2bN8PX11f/b3Ml/MyxNoHi8OHDGDZsmNm4hPF5WqvV4vLly6rKsFmiNEZg/NBKnN2rI77vMlauXDncvn0b+/bts9sgvGpqoltaT+aS9yx93rjnrO64HxkZid27d8t+NjExEf369bNLXXlL9u/fjy+++MIkOdLSdi9u+4IFC3Dv3j2TMdR0pWV14zBYw7ick3i5V69exddffy15DWncfqnkUHO9UsWf1z2cZBBdPZuO5IUKFcLIkSMxdepUlC1bVvWAc7lz5za5qSpVqpT+aZe/vz8A0y7ykZGR+veMeXl5wcfHx+A/so61J6kBAwZg8+bN+h4FalSqVAkBAQEmA2motXTpUqu7gkkFwj/55BNs377dqvkZt19qABgduYPYjh078N9//+kDWPHx8bKDZiql64rVr18/NGjQQHGXQa1Wi5kzZ6JIkSIGWdzmKKmfJvc79+7dG5s2bcLSpUtlHzTMmzcPbdq0McgwVDp/4H+16cyV4+jfvz82b96MNWvWoGbNmqhevTpWrVqF+vXrG1xomwui2+skpeRC9+3btxg3bhzKlStncVrjk61cRoaziPd/ewbRrQlY3blzB5kyZUKxYsXQv39/gwsp43VifHN06dIlDBs2zGHZ9EpuxtSUc9HRZUiJu7JL0Wq1+rr6gH2D6G3atJEsu2UL3YMvXddl4+UmJSUZZLYFBwfL1oKVIvfdo6KiFN84JyYmIigoCN988w26deum6DMvX77EP//8g4SEBLPjCHz33Xdm52M8yJ2ONb+p1JgMxoGMuXPnAlBeDk4Jc+vZUg8b3b8HDhyIyZMnq162VqvFDz/8gIULFyIpKQnZsmVDoUKFVGXI2nqclXtQ0LNnT9y7dw9ffPGF1Rm7SpIgpP4WM/5+ut5Zs2fPtqpNFy5cwO3bt9G3b1/ZzE6pdTpt2jSz823SpAlCQ0PxzTffmMxDq9Vi+/btJj1W1AbRpZw6dQpt2rRBpUqVIAiCSS9fc9uHmtJwUu1q1KiR1QOH6nonm3topPt9jI+/Som/+7t379CvXz+re9oau3fvHn788UeD16wpjaXWwoULLQ6MqNsGgQ/bnlzmoy64aw/x8fGS5/N79+4ZXM8YH2/tXbbAmutnR2bINmvWDN26dUNYWBhatWplkh2rhDOC6HIGDBhg8G+tVqv4ftsemei1a9fGzJkzMWrUKIwfP16y9KrxcoYPH46yZcsaXL/Y+35Ebn7GmehSxo8fr2gZUvdVyYnx/qeLZWi1WhQuXBglSpTATz/9BH9/fzRs2BAbN26UnM/q1auxaNEitG/fHrGxsbhw4YJJ+VF7/L6JiYmoX78+Vq5cia+++gpbt27V3wMaf5czZ84YxKyUXMuoIXfsmjZtGmbPni1Z179ChQr45Zdf9IPNiksmWfvwS+rzumof9k7oSA2sPpIfOXIE/fv3R+7cudGxY0cEBgaqHnSpZs2aJgfQmzdv6ge4K1SoEPz9/bFnzx79+9HR0Thx4oTBIB3kGNYcxMTZzVKZupYugi5cuIAXL17g0qVLBq9rtVqcP39eVW04qa5grhg8yHg9iLNOjJlb53/99ZfB0/P379/j7t27Bl2ozTFe97og+qJFi7Bv3z7FARRBEDB8+HAA0je+Upm6kydPtjg+gaXtLSoqymDQG7E1a9Zg06ZNJjdBYt27d5d9z9LNn0779u313Z+uXbuG7t27Y//+/QYZw+aeaBszl8Fgjpr9wDiDX6o7sPG/P/30U1y5cgX//vuvvv2OeBggR5yFJ878WLZsGTQajexv6YhAv66Gtc7u3buxbNkyBAcHm3QRNr7YLleuHGbOnGmX+qTWBmikguj2GogJMHzoaC6ILgiC6kH97BUgUVp3VmqgNnGWiaX1bW6/VHrjXL58ef15SurBrdT6rVGjBlq0aGH2GGeL8PBwDB8+HFOnTkXFihVVDVjmKPbuHqtz5coVzJs3TzKLT6xz584GA24DH2qGTpo0Cf3799cfN96/f4/06dMjW7ZsKFeunOrMVbXBZblBx8TnAXuWDzG3v0u974hj9EcffYTFixcr6kmh+3vkyJGK5v348WO0bNkSNWrU0B9HV65ciebNm6NMmTL63hbGy9FRuz2Kv8OIESOQL18+k3OQ3LyVXMNYapfSxAgpV65csdh7yl5+/vlnLFq0CE2bNrXL/Lp27WqShGEcRFf6+6pJKDNO9rG0vdy9e1e2NInSB1eCIBgETIw/FxkZiYwZM6Jt27YGr4eHh6Nw4cLInj27bHutPf7evXtXssayuO1Ke6NaM7aDWtZeuwMf1veJEydk3xfXTxezR/k84216+fLlKFSokOQ84+Li8Mcff+h7xFkbYJcyd+5cjBs3ziSRUoruwZ74d7X1PKLm84566GHNvvLff/+ZtOfhw4f68hyWlmkL4/Zeu3YNgOE9v7hXlXHJHB3xeeq3335DhQoV8Nlnnym6LxH3thG3x7ht9+/fN7h3XLt2LT7++GNkzpxZcnrgQ4wgKSkJZ86cMYi1WPMgXC5RR8qQIUMMev3q6HrxnT59GgDQunVr/XtS9/XGzP32xu2JjIzEggULZKcnaaqPDKNGjUKhQoXQoEEDPHz4EHPmzEFERARWr16tKgsC+LDhHD9+HD/++CNu376NtWvXYsmSJfonpRqNBoMHD8akSZOwZcsWXLp0CV27dkVAQIDBxkTmye1I4m62UtMYBzC2bNmCBg0ayJbIeffunUFWoi3EO/iOHTvwww8/oGLFiiZP0dWS6ubsSmpOcMbdzwRBQJEiRVCrVi2rlm0c7FZ64Wl8o6Erw6QjdTJ4/PgxfH19zT7ptLQu5Ab3UOq3334zW+NQyc2YXFav0kx0Y5UrV7a4TCm2PBlXug4DAwPRuHFjfTaBtUF0tb/Z8+fPDUrZiC/6ddvZqlWrcOvWLdy4cUPywdiNGzdkxzYwR6oLvfG63r9/P7788kscP37cpGeEbr38888/BjXtldbnlxMXF4cyZcqYvK70dzCuE123bl3JgcHVXHRJ+e2332SzT7p3745MmTLJBhEt1XoFPhwDmzdvrjpQY6nEVEREBL744guzN7aW7N6922BgRePlS92IXbp0Cfny5cOvv/6KJ0+eQBAEVQO2676DLhnBXD1rW3z22WeYMWMGRo0ahfPnz1s1toGzqL3hMd7mjR/0SM3v2bNn+P3337F69WqDkjv379/X/20cqH758iUuXbpkEpiy1J4hQ4YA+PAQWck5Wi6ILt7+LG1jcoPEqTmW646b1gTRlRwLxHS9V3UPd3RZtFLLVNtbRhAEbNu2DcePH9dnAMuVp6hTp47Ja+Lv8e7dOzRu3NhsKT1xqRTdNmRLYFuOmvWrZnBvW8ruSV3XXLlyRfKBjDU9XY1Z2g6UBNGN3bt3D/Xq1VPcBuPfQW2Nf51ffvlFcv2Fh4ejQIECBtmyxscmPz8//Ta5e/dudO3aFYmJiSYJP1LXMUrKuVhy4sQJFClSBBUrVjR5z5prfjVB9Lt37yqqaQwY1mQX1xtWez3+ww8/oHr16pLvHTx4UDJJUBAEk0CpNetG3G6d8PBw/d/i48/KlSvx+eefIyQkxGR5cpmw586dUzzYovhzuvmvXr3apKyhK6k9Fynx/v177Nq1y6RHmJIkk0mTJpncRwcHB9tcVurFixeqA7HWbH/nzp2T7VHw119/oUqVKmbHDipbtqz+b3OlFKXGSlBi0KBBqFy5sk3n3KpVq6JBgwb6e9NTp07ZdVBUACbjZUkdg+R+nwcPHpjcK6hNgqYPVJ/tDh48iG+++QZPnjzBtm3b0KFDB2TIkMGqhVepUgWbNm3CunXrEBgYiIkTJ2L27NkGNRlHjBiBgQMHonfv3qhSpQpiYmKwc+dOeHt7W7XM1EhqR5ozZ47FMgnik2lCQgJatWqFffv2oU+fPpLTW3uDJ9VO4+l0GcZKyoJYu3x3Y3whkZSUpOqkFRAQYNBFylIWg9J5G3f3Xbp0KZYtW6Zo0BRzN++WLkTtURPduMuY2Pnz5/XlBeR4eHhIrifxAw7j97/++muVrfyf/v37Y8yYMSavOyOIrqPLNDZXE/327dsoX768wSAl1i7vwYMHiqa7ceMGSpYsaVLaS/d61qxZVS0XMB24BlC3rj08PPDgwQO0aNHC4EGApbq6loSFhemzPsSUdL/TaDQGg77p6B4oqsletIWuq7n4Bt44uG/p+Lxjxw5s375dtkeKHI1GYxKcEP+uX375JVauXGlTj4EWLVqYfV8quNC9e3c8fvwYPXv2RN68efUBU3G73YFcZpw7UnqNIX5NfEMh3i6kSrsZTyO+7hG/LpdsIFVPumHDhmZrYD948ABZsmRR1ANT7vsbb3/x8fEYMGCAZEBYTZKK3PH96NGjkscn3To6evSoSakSOWp6EEZFRSFLlixo3LixbBvVDPAm/uyrV69QuXJlVeWHxL/HkiVL8O+//2Lw4MH6ATnVkrtOdlS5taioKINse0usPWbdunVL8pwdGBgoW8ffVpbWmZIxtYy/r5IHseLlGp+XrH3g/vXXX0s+WJg8eTIePXpkcA1gPEDemzdvMHjwYMTGxqJhw4YG42GtWbPG7HIPHTqE6tWrY/Xq1QCU//7x8fFYvXo1njx5oh976MaNG/jxxx/xyy+/6KezptecpXtR8UPCLVu2oFSpUhgxYgRKly5tNqCuK3sAGD5gsTTugzFz5bTMnXOMs1vVPgwEpAddtUTJ+AyCIGDPnj2oVKkSSpUqpXoZwIdeGV27drVYaku3PLWMf6dnz56hTJkymDFjhuxnoqKiVB3TXr16hU8//VRfpkzs3LlzKF++PJo3b44mTZqYbAfG139KPX361OS1bdu2Yd++fYrW059//okcOXLoe5iLnTx5Uv+QRW1PiF9//dWkxJpxkp04KW/OnDk4ffq02UQDpfeHlsYTkvtNdb2+xAMzW/r9xe+Ljz263+WTTz4x31gLYmNjTYLcxsdFNUF0VvKwH9VBdF0ZF3F3Llu0aNECly5dwvv373Ht2jWDjFbgw8Y5YcIERERE4P3799i9ezeKFy9ul2WnFsY70u3bt1VnjIuDHXIXlrbe8IsPArYMRGOOPYMSttYklyIOlImfuAIfDs5SA3fJCQ8PN8i8Nr44NP688aBSR44cQd68ec0+FRZTEmxU+1RbHHCYOHGiy2t26UroGDMXRP/777/x6NEjJCYmymb4yVm4cKHJE2fAMMvPuPSRven2GfH3atKkicHFwrBhw3Dx4kV97TZrJSUlmQSLBUFAZGSkSeBCrj7+/v37rV6+1M2N2iC6VGDI0kBslthy3JL7rFarxfTp05E7d279a44KxEi1RxAEg2wRjUYj2dbo6GhMmzYNdevWtXoAH11gTbws8XdVmokmd4MLWF53UkF04wCK2sGeHfF7yQ3A5g42b96M+fPnY8WKFQblOMTH302bNskOoCq1vv755x+DwZ10XWcB+RrTcsFLax9u7t69W39zKdVG3cNfc4OPS7VNTLz9CYKAxYsXY8GCBRYHFgM+3JCWK1dO1cCNXbt2RdOmTSUf1p87dw41a9ZEvnz5ZL+D+HvIjYEk5e+//0ZsbCzCwsL015HGmejiGtOWiD/7008/qS7jIP4e4oxPuWQUS+xV71lpxrDawXitPVd9++23shmsusQNex/vbFmX//33n2TwqkOHDmY/9/79e4fV7JYqR6ZmWdZcXyclJeHEiRPo2rUrBEGw2AMwJiYGx48fx7Rp09C1a1cEBgYalKwaPXq0TYkngOExXGz79u3o27ev5EPC6dOn60s0KiEOolvbe0ANqQcD1gTRrWWpN4p4gFzxcU4J3b2nmmNrjx49LE5z8eJFg95JefPm1b939epV9OrVC1evXpUMHuvcvHlTVe+K77//Hhs3bkSrVq0kYyUXL17E3r17JT9rr7FhSpcujZYtW6JBgwayvSPFdFnXM2fORKtWrQx6oFy8eBEBAQGYMmWKSZBfyTZVrVo1PH36FA0bNkS+fPlMBj+WO144+l5EzXlKzbQLFy7U/63VavHu3TubB7RPSEiwmKSjJoiudv8keVYVelq9ejVq1qyJgIAA/VOh2bNnqw4QkWuIM3R0fv31V7OfEWf+SdWtA2CSxSvXrViO+CAglTlp7ObNm0hISMDLly9RqlQpycE9xAcRczUz1fr3339RuHBhm+djfJCTO7kCHwIFcl2ULZkyZYrFmzbjp//NmzfHkydP8MUXXyhahpITTUREhP4Afu/ePYOLXanah8alY9QOXuwIUpm7lkojeXh4YM6cOWZ/XzV0+8qSJUsUDRwqlpSUpCqjQCqI/ujRI4Ma+uJ9VyoDQ6lhw4aZ1BnWarXw9/c3eZov7lqrc+LECYMguj0euqi5CZULBNtiyJAhDhvgzDgjzd527tyJ0NBQg9d0NyRKavoBQEhICEaOHImDBw9afY3Ro0cPxMbGyi5PyU3S3r17TW4AAOn9Q2oaew+45ihydSylPH/+HEWLFlXVM2D8+PGSvYrE+41Uj6WpU6fik08+wVdffYUePXoYBC6M6wp/9913iscKMc78tBTAMe7erTaILnd8kNq2dGzdT423v/Xr16sKVM2aNQuXLl2SzAIzt92LH06Ip1fyMMBa4jbqHhAYXzcpzWYzJnfta454vSvJsJRijwc1xv755x+H9EJyRO8ZXQBRyTXvb7/9ZpLgEhMTIxmgU7sudctPTExE9uzZkSdPHrP7rbGxY8ciY8aMsuMPGQsNDVVcu1+OPX8PS/PKnTu3ybHYWFBQEIKDg/U9LG1NMFCjefPmFnszKx23Rbxf9+rVS3Iaa0psyK1jW+u82xqUvH//vtne4oJgeQBOOebK0Mll7VvqHffq1SuUL18eRYsWhSAIuH79usE9w5gxYwyS9cytHyXfS/dATfxgTWpcNjkDBw5U1UPKHHEikrispBzj+zepgY6lBqVXsn2/ePECffv2xe7duxX3PAOg6kG3o0n1ApYjfgCh1WoxaNAgRzTJZHtVEkS3psQpmaf6iLdw4UIMHToUzZo1M6jR6Ofnp3oAJHIO4x1JKpN23bp1mD59uuT0gGF32ri4OMmDvdRBVg2lGXBxcXHYuHEjSpQogSZNmmDmzJm4fv26ZOBd3C1RyRNZpdq3b2+3eSk1fPhwgwu8UaNGKfrc06dPJX+buLg4swNJOCK7onXr1ggICEB8fDwKFy6MKlWq4M6dO4iLizPIMtVlHolrzNqLrfNUW84F+FDrzZbjo9QJ8+uvv1a8TdtSS1R3sWx8khYHFNKnT6//u1u3bnj16hX+/vtvk9q05vz333+Smbhyn1+0aJHk67quwcCHwePUlgG6ceMGbt++jaVLl2LAgAEGmQWWJCUl2b23xOzZs20KwMrdlKm9qbKmpEfTpk3Rvn17g8wHXXukblal2mou4GbtjaXx2AZKAg2WgrLm1uft27dVXYjrWPp+1twYJyYmokmTJia9/nTUBFenTZuGO3fuYOzYsQYDwJszbtw4zJw50+R18fYlHisiKioK2bJlM3u+kwrESAUI1db8BEy3jcKFCxtkrsXFxWHy5Mk4e/aszb2xbKWrqy/FlmOIPUqp6QiCgIwZM5qdZtu2bZg8ebJV87c0XoIgCLLlIA8dOmRSestc4EgJNZ8xV+ZBqj22WLt2rdVlF8xRu45CQ0NRvnx5s72BjMcDMqdbt24oXLiwfpwIAAYlQsXUrktBEDBw4ECDAevUBEonTJgArVarOEDUvn17VQ9ejNf9kydPnDpYnLmyS5cuXcLSpUtx8+ZNp7XHGrrxFSwRbztyZSLLly+vatm7d++WfPAISJfsUJuJbstA7ca994yTI2wJoguCgAULFkgmwsk9oLBEfJ9jzcNPMSXBX6lrEKmeIXLmzZunpkl2ZW1m8unTp7Fu3TqL26E1lQWUPFAwPi+IH2iqCdhbYmkMmfXr1+vLs4nPDYIgmJSstMTa8/vy5cstjiWQNWtWfP/991bNn6SZjjBhwS+//IKlS5eidevWBl07K1eubLZLDLmO0p1SV38+KCgIVatWlZ3u8ePHyJkzp6J5XrlyBXFxcahUqRIAw4u8pUuXIiEhQV+HVqqeshTxDdDevXuRKVMm2Wlv3rwpmXlvKzUDp9iT+AGIpYwPHd26N/bs2TPZgVrfvHlj1YWH0qBWdHS0/u/p06ejfv36Bu/rLj4ckYErHoneGlLrxVIQ3dbuqVqt1mBdaLVag7qRaly4cMHmTHTAfB3IkJAQnD17FqNGjVJ8/FFTgkGp+fPnY/78+Th//rziG5qSJUtavbzAwECbL9ilqBlsEjC8aFUTRDe3rqVu4pQSD7yra49UwEhNAGbq1KkYNWoUunfvjmXLlhnsH/PmzTN7wzhnzhwEBQXp/23p5u/HH3+U7WEh95BJzNpBjiyZMWOG6kzFXbt2mS1Lo4b4eB8SEqIPXItrx0qxVIJKvA9NnDjRYn1L8falo/S4YWk64wzW+/fvGzyInTFjBubOnWu3mxNrj3dr166VDRZa6gmhpkyLMUvtlQpKix+6SlHSVV8N40x0Ly8vyel0A4OKf0tbg+jTp09XPBCy8cCBYklJSXj+/LnBPqdmgOWmTZua9MSMioqy+0MdtQ9tlSSkqMlE1wkLC0OePHkQFRUle+y2JqvfONhlzcMeR5fg0xGXr3C1b775xm7nHUcS35uYY2tmuJSGDRvKvid1H6s2iG5roqO55Wm1Wpse1MrdiyqNCwAfEr90Y72JS4/YepxTck1/6NAhFCxY0CklEd1Jx44dnTaukjnv3r2Dj48Phg0bhkqVKlkcR8Xa32n79u1o1qyZwWuPHj1Cnz590Lx5c4MgutrzS1JSEgYOHKhoWuPz7M6dO7Fz506L1QqsTU4gaaqPePfu3ZMcQdvLy0txNyhyLjUHix07duDq1at2GchHq9UiMDAQQUFBmDdvnkkmX+/evTFgwAB9cMbag5q58hGOKoNgL8444aoZlEtHaQkXMY1Go3iAHfHF1uLFizFs2DCD93XrRWokeXdkKYhuK+N5qu0JIT7higdMsaUN4t/a+ISuK5Gwdu1axfWm5S5Uu3TpoqaZksaNG+eUfU1NAP3Vq1eKe3uoHXBIXOdYrka82vWxbt06VdOLiQPw5sqfqAlS6TKTV65caXK+GjhwoNnR5k+fPo3SpUvr/23p5m/06NGydVZ1rAnIWMocAYB9+/ahXr16uHbtGmJjY03WkdrBUO1582+83vz9/eHv72/xPKCkDbpappYC6AAkEziUPiSytM/qBsSVY2kwamPmtnFreivodOvWTfa927dvm93GpbL8tVotWrZsqegBsLljifHDBeNyOM4gbt+OHTss3vRPmjRJ8rPWPEh8+/Ytnj17pq87a465XjctW7ZE7ty5Ders3rp1S3E7du7cKdkGtT0xLJGa/sqVK8iTJ4/Ba2p6bOmur9Rk9aVJkwZ58uSRrbsPWJeJbg+WenYkJCRYXfrHHEvtV1PKS63kEEBXwxFBdHN050NrCYJgUykoS8eBWbNmWX1ct8d+NX/+fHh5eRn0PtdR0pPF1jb07dtX0fgiKZGaMUscbcaMGfpSUY7QunVrbNmyRfIe/M2bN/qHOID5MkVS1JS5U7K9prYHOq6gOoheqFAhnD9/3uT1nTt3OqRrIDmXPXc6cZfFgQMHolatWpIn8Tx58mDIkCEO2eEnTZqETZs2WV0D09Hc9SC3ceNGqz6n9PsY39AbD7yh207c/SGIjvgizREPE23dTowDisZBRyWZ6Mb7rrkguvh1JQN9jhw5EhkyZJB8zx5ZWxqNxqF1eNUKDw9H1qxZbcp6V0quW6PUb56UlKQv62VMTddUY+JyUkpqiKtlS9sA+9TOd5QGDRrgwIEDKF26NDJmzGjSVrX7h1wpC2vI7feWgkRKAhBFixbF5s2brX6grzteTZ8+3WypOl3pMHfw+eefW71fWAqQqM0SPHnyJLZt24ZffvnFbHAkLi4OuXLl0ndntsQV1zziZY4cORInT5606rPWnovev3+vaDszt24sBTjtuV5jY2NRpkwZ9O/fX/V8pbaV3r17m5QMyJw5s+KHzrrrq2+//VZVO+Syim/cuIEpU6aoqmcOWB4M1l6/wcCBA62qhW4piGmpR5TSQTXJ+UF0KT///LPiaW0NouvmIefGjRsICwvT/9vWwRTV+uqrrwBID+wrCIJTzjtKS9qRY1l64LRlyxarH/gkJCSgVatWJuWMANMef2p7iyu9htKx1xhrgPvGotyd6iD60KFDMWDAAPzxxx8QBAEnT57E5MmTMWrUKIcPUkbWUbNztG3b1oEtke8qN3v2bIfsxOHh4WjTpg0KFixo93mrtXfvXpPRuu01SJQ76N69u+KTgKXM2uSYib5v3z6MGDHCpmxCObZuJ0qy4OQoKediLoiuxLRp02S72NuDh4eHXev62kqXLWM8AJozabVayd/HEedxcUkM3UWmrZnoYq7sBefsrFpjas+b4kwZW1k7CJrSAITxYMJqaLVavH79GiNGjMCIESMQFRXl9Bt7tS5evKi61wnwoX6ovYPo4l4ylnphPH/+3GKAUefrr792+g2bLcuzR1ttnYcj15fUvDdu3IirV6+qGg9ER+qYILe/K30okZiYqPoYb257L1myJL777juzvTesoXQwY0ssDX4px1LG7bJly6yaL5lyRE8BtdSMW9WpUyebgrxKrnPEZc6MS3Q6i9R1vpIgur2u4/7++2+7zIccp1WrVjb37JBiPG6AWmp7iUvF68aMGaO/FlTTFuPYlKVrPvpAdYSqV69eSJ8+Pb7//nvExsaiY8eOCAgIwJw5c/D55587oo1ko+TyhCklBZSN7d+/Hx999JHJ6wUKFHBBaxxj+/bt2L59u6JpLWUXXrlyBd26dXPIwKKOcOLECTRo0MBh8581a5ZVmUlKSQ2KIyZ1EXr16lUsWrQIvXr1MhjMUzwvNYEbRx6nbL24sYcSJUrg33//RYECBVweeNVxxToJDw/H5MmTJWt82qM7MAfOMc9ev/mdO3dkM+H8/PzMftYZWXyCIBgEGeLj4x0yWLa9WSofI+Wvv/6yOI0t9WrtmfH066+/wtfX127zU8LVQXSlbDkvSI0LoIQ1g+2ao+Y7KB0wNDIyUvW4Ekq2d3uXGDFX7sfV1x86zqrHntIpKTPmTqztXawjCIJs3XIdcc9hNaWm7LlvSJ3jlQTR3WX/JOdQOoCwGhqNRlEcy16xLqlz7cSJE1G8eHF07txZ1TZtPKhvmzZtHLKOUhqr0jw7deqETp06ITY2FjExMciZMydiY2Nx9OhR1KhRw95tJBspKafgDlJyEP3AgQOuboIi4eHhdu3ub61r1645JKM7uRo1ahSqVKnikHnv27fP7AOABQsW4NGjRyZPyXWD0ZkLTKl52u/Ii1gPDw+XXyTfvHkTBQsWxJIlS9xiH5MbyNXRtm7diq1bt0r2WrE1iB4bG+v0gXOsGXPCntQGpCdOnGiX5dauXdvqzzojiP769WuTQS3dgaseoNkSRLc3tWU0bCEIgk0BL3tkF4vLWclZt26dTeeoP//806rPde3a1eQ1W8roSW3fct/LeJBOc9TWl3XFcVlu3/7kk0/w7NkzJ7dGmm7wXCI1rly5YnEaS8k4cqx5cCxHajwWV1/7k/txRLxJabKW0ofH5mi1Wrx69UryvS5duuDTTz+1af4c41IZm2olZMiQQV/H9tatW6hdu7Zb1Amj/4mNjcWvv/7q6mYooqa+mztbsWKFycCc7pJ5aklAQICrm0Aytm3b5pD5Ksmg37p1q+xFx6BBg+zSDkcGdd1p/+vdu7fDHoiocfv2bZcu3zjLISkpCfPnz7dqXroLV0cOjCYnOjoaN27ccPpyddT+jvv27bPLco1rHKthbdasGmoHXE3p3CmI7szjsTt8byUB4I4dO6J58+ZOaI0hqQGj7RlE12q1sjXolQTmrOWKHkly29rmzZud2xAzrA10AraV16LkLTknub17985icPOPP/5wUmvIHbgyiC71oMfexo0bh9jYWKs/b49Af2rg+qtLcihrgxJkPan605MmTXJBSyglccaJ1xx7Bd9I3SjsqYXaTEOxBw8ewNfX1+bsC2sIgmC3B0mpRVRUlNMv0seNG+fU5bkbdwgm67hTW8iU+PeJiIhQ9VnjILq7ZGA7gzs9rHeE5FAOixwjOW3bxm1t3bq1xeDmmDFjHNkkcjOOGCNLaRDdkQ+PdaZNm2ZTOVxXxxuSi+Qxah9ZjTcrzvf+/XtcvHjR4DUekMhWru6S+O2337p0+bZISkqy26Bf5BjPnz+3+rOuLFkmCEKyztJyhRs3bsDT09Opy7RmkERHeP/+vUuWq/ZaMCwszEEtsX7gxJROro6wKwdiVTvQ9Pz58w0+b66njCt78DhCcgo0EqmRnB+guLrXJaUO58+fx+PHjy1O17FjRye0xjaMWSnDCGsKx4s653v//j3Kly/v6mZQCuOI0cTVkKu/lhxs2LABo0ePdnUzKAU6d+6cW9S4p+QhOjraJctVG0Rn7znnu3nzpuTrzi6TKa5RfP78edWfX7Bggf7vpk2byk7niGxAV2LSEqVUyX3Adg6oS47Wtm1bnD171uJ0rr6XVyIxMRHXr193dTPcnuJM9C1btph9/969ezY3huyPQXSilGHXrl0uXf7r169dunwid+XsrGoitSxdwxPpbN++Xf+3rb1sYmJibG1OssH7LSL31KdPH1c3gShZOXPmDEqWLOnqZrg1xUH01q1bW5yGFxDuh5kRREREjuPqUkuUvIwfP97VTSAiO0sOGYZEqRHLUxCpY8sA46mF4iA6a34mT3ywQURE5DgMopMaqX2QU6KU6JdffnF1E4iIiGzGILplTFNO4ZiJTkRE5DhMMiAiSt1Y1pSIiFICBtEtY4Q1hWMmOhERkeMwiE5ERERERMkdg+iWMYiewjETnYiIyHEYRCciIiIiouSOQXTLGGFN4ZiJTkRE5DgMohMRERERUXLHILplqoLoSUlJOHjwIKKiohzUHLI3BtGJiIgc5/Hjx65uAhERERERkU3Spk3r6ia4PVVB9DRp0qBRo0Z49eqVXRY+btw4aDQag/9Kliypf//9+/cYMGAAsmXLhkyZMqFt27aIjIy0y7KJiIiIbHX58mVXN4GIiIiIiMgmzES3THU5l8DAQNy9e9duDShTpgzCw8P1/x0+fFj/3pAhQ7B161aEhobiwIEDePr0Kdq0aWO3ZacGgiC4uglERERERERERETkphhEt0x1rv6kSZMwfPhwTJw4EUFBQciYMaPB+z4+PuoakDYt/P39TV5//fo1li9fjrVr16JBgwYAgBUrVqBUqVI4fvw4qlevrrbpqRKD6ERERERERERERCSHQXTLVAfRmzVrBgD4+OOPDeptC4IAjUaDpKQkVfO7desWAgIC4O3tjeDgYEyZMgX58+fHmTNnkJCQgJCQEP20JUuWRP78+XHs2DHZIHpcXBzi4uL0/46OjlbVHiIiIiIiIiIiIqLUgjXRLVO9hvbt22e3hVerVg0rV65EiRIlEB4ejvHjx6N27dq4fPkyIiIikC5dOvj5+Rl8JleuXIiIiJCd55QpUzB+/Hi7tTG5YyY6ERERERERERERyfHy8nJ1E9ye6iB63bp17bbwpk2b6v8uV64cqlWrhgIFCuDPP/9E+vTprZrnqFGjMHToUP2/o6OjkS9fPpvbmlwlJCS4uglERERERERERETkptKlS+fqJrg91QOLAsChQ4fQuXNn1KhRA0+ePAEArF692mBQUGv4+fmhePHiuH37Nvz9/REfH4+oqCiDaSIjIyVrqOt4eXnBx8fH4L/UbPv27a5uAhEREREREREREbkpT09PVzfB7akOom/cuBGNGzdG+vTpcfbsWX398devX+PHH3+0qTExMTG4c+cOcufOjaCgIHh6emLPnj3692/cuIGHDx8iODjYpuWkJsblcIiIiIiIiIiIiIh04uPjXd0Et6c6iD5p0iQsWrQIS5cuNXhKUbNmTZw9e1bVvIYPH44DBw7g/v37OHr0KD755BOkSZMGHTp0gK+vL3r27ImhQ4di3759OHPmDL744gsEBwfLDipKphhEJyIiIiIiIiIiIjmFCxd2dRPcnuqa6Ddu3ECdOnVMXvf19TUpvWLJ48eP0aFDB/z333/IkSMHatWqhePHjyNHjhwAgFmzZsHDwwNt27ZFXFwcGjdujAULFqhtcqqWmJjo6iYQERERERERERGRm8qQIYOrm+D2VAfR/f39cfv2bRQsWNDg9cOHD6t+arF+/Xqz73t7e2P+/PmYP3++2mbS/2MQnYiIiIiIiMg2/fr1w8KFC13dDCIichHV5Vy+/PJLDBo0CCdOnIBGo8HTp0/x+++/Y/jw4ejXr58j2kg2YBCdiIiIyH317NnT1U0gIiIFNBqNq5tAREQupDqIPnLkSHTs2BEfffQRYmJiUKdOHfTq1Qt9+vTBwIEDHdFGssGwYcNc3QQiIiIikiEIgqubYNGECRNc3QQiIpdjEJ2IKHVTXc5Fo9Fg9OjR+Oabb3D79m3ExMSgdOnSyJQpkyPaRzaqVKmSq5tARERERMlY2bJlXd0EIiKXYxCdiCh1U52J3qNHD7x58wbp0qVD6dKlUbVqVWTKlAlv375Fjx49HNFGIiIiIiK38+WXX9o8j+SQie7ObcycObOrm0BEqQSD6EREqZvqIPqqVavw7t07k9ffvXuH3377zS6NIiIiIiJyd0uWLLF5Hu4coNZx5zb++++/rm4CEaUSHh6qwydERJSCKD4LREdH4/Xr1xAEAf/H3l2HN5G1bQC/U6BFSlso0FJokUUXW5zi7izO4u4uu7gt7m4Li+viutjii1txdyuyUGhx2nx/8GXeSTKTzCSTJm3v33XttTSZzJxMZs6ceeac54SHh+Pdu3fCf2/evMHff/+NVKlSObKsRHHaTz/95OwiEFEMFhUV5dKBsJiibt26aN68OUaPHu3sosQ5rVq1cnYRHCImnJdRUVHOLoKkefPmoUiRIti1axeaNGni7OIQUSzHnuhERHGb4iC6j48PkidPDp1OhyxZsiBZsmTCfylSpEDr1q3RpUsXR5aVKE5LkiSJs4tARHZyZo9JR974tW3b1mHrNjV06NBo25aUwoULY+nSpfD393dqOeKi9u3bW3z/0aNH0VSSuCdFihTOLoIkwwOISpUqYcWKFU4uDRFxPi7lTp8+jU2bNjm7GEREpILiIPqBAwewb98+6PV6rF+/Hvv37xf++/fff/Hw4UMMGjTIkWUlG6VOndrZRSANsOcDUcxXoUIFZxfBIRYsWBBt2+JQ6rgrQ4YMFt+PqcdGdPZEb9iwoerPdOrUCaVKldK8LFoE22JCL357DRkyxOjvefPmOakkRNbF9vsVLb9fgQIFUKtWLc3WR3FXwYIFFS/r6enpwJKoww4pFBMpvtsoVaoUSpcujXv37qFmzZooVaqU8F9wcDACAgIcWU6iOC+2N0qJYoPQ0FBnF8Fu1apVw+nTp51dDFnOrguV3HzYkn4rWbJkNpQm7ti2bRvixYtncRlnHxsxgS03z2PHjnXIvq1Rowa8vb3tWkeuXLk0Ko3rMn045EoBkOjQsmVLp2w3bdq0mqznjz/+0GQ9MUVkZKSziyBJq9E0MfVhLcVeVatWxYkTJxQv70oPn//9919nF8GiuNDGIPVUXwXSpUsHNzc3fPjwAdevX8fFixeN/iPXw5vK2IG/I5G0SZMmObsIAIDXr1/Dz88P/fv3d3ZR7LJo0SIUKFDAKdsODAy0OqrN2XVh69atAVi+CTl06JDq9fLG3DI3NzerN37OPjZciZbHk6OOzR49euDt27c2fXbs2LFYv349ihcvrnGp7Hf79m1NU1qYHtfOrCvq16/vtG3bo0uXLrhy5Yqqz6RPn16TbVevXl2T9cQU3759k33Pw8MjGkti7PHjxzh37pzd69HqOrNlyxZN1hNb+fn5ObsIMcaOHTtUXRdcKYjOti/FRKqP2pcvX6J69epImjQpcuTIgbx58xr9R7FX5cqVnV2EOC1lypTOLgLFYLG5kdKnTx8cOXLE2cUQehJbm/zwhx9+iI7i2EztDeLatWujddvOPJbXrVunKAhgy022K5+jSZMmjdbt/fLLL9G6PWuCgoIkXw8ODtZk/Y6YtPPSpUuarcsRx+aECRPsGn2RO3du1K1bV8MSaeeHH35w6EMMZz4sSpUqldVl4sePb/H9vXv3alUcq4KCgpA7d27MnDkTP/74o6rParWf49rIAUtBdGe2fzw8PJAoUSK716PVcfHzzz9rsh6tzZ0712rqtOhgbeQZmUuTJo2i5VwpiC6FMQ9ydapbeD179kRYWBhOnjyJRIkSYdeuXVi6dCkyZ86MrVu3OqKM5CISJEiAV69eoUOHDs4uisDDwyNac/E6y9KlS+Hl5eWUbfv6+jplu9Z8/frV5s/GxQd+zkozYutNQqdOnVQt70oNQmtlyZ07dzSV5Lt//vkHT548Uby8muBPtWrVNO2ZGF1B9CVLlijKQ2o6p0i9evWsfqZp06Y2BZ2V3DBOmTJF9Xq1MGHCBMXLanE8dO7c2ew1Jee4o4KLx48fl3xd6bWkd+/eFssvFXR6+fKlTfnLDeT2RcKECVWvyxFB9Ng+akDL72ctiF61alVNtnP48GGry1g7D729va0uU7RoUVXlssedO3dw/vx5m36PX3/9VZMyOKv93qxZM6ds11IQXfw7uGoq2AQJEiBJkiSy78f2usvLywtFihRxdjEs/gYkTemx6Ur3TFJKlCiBT58+2fz5YsWKaVgaInOqW8X79+/HlClTUKBAAbi5uSFdunRo2rQpJkyYgLFjxzqijOQidDodfH19HTqhkVyvJLmGfdOmTdG2bVuHlUerXmb2ypYtm9MmiHX1C62Url27WnzfEQEBNRO6KHHmzBnFy1q7QVuwYEGMeqo/cuRIDBw4UNVnnHGcSgX6AOu9SqP7BqxcuXKqblYN5evYsaPR6y1atDAq+61bt7Bt2zZtCimxfTlanL8tWrSwuoyteXiXL19u0+eUHBe9evWyad32cHNzU3XMmtZH7dq1U71Nqe05ore2Uvbk0h09ejQmT55scRmpoFOKFCnsqtfkfjPTSSqVcFYQ3fS6VbFiRc3L4Sha1vMlSpQw+tv099i+fbsm29EqZ7Q10TnqJn78+Ba3Z6lnfZYsWTRNy2PK2n7YuHGj0d9qr0nOar+3adMG06dPt7pc06ZNo6E06tWuXdtiWj7Tc9vHx8fBJYpeUtfa4cOHG/3dqFEjPHv2DGnSpBGu+aadrmxJCygOnNvywNdV2NPRi77XXVKjPpWk2Bo1ahQOHDjggFIR/Y/qVsz79++FBkeyZMnw8uVLAN+T7muRZ4y0p1VDPjoCP3IXnQQJEki+7syb6uj07ds3p+VZdtUgutTxeP36dZw6dQozZ860+FlH3MDNmjVLs3WlTJkS+fPnV7y86fBU0yCWK6eJkFKrVi3V9U10H6ddu3bFiBEjJN+zNhmZLXXprl27ZLenNcPxMmfOHKPXTcudKFEiza8LStanZJmSJUtaXcbSMfPp0ycsXrzY4ra0PuZc9Tw1/Z5FixbFsmXLZJcfPXq00d9KHlgoLYe1B4ZKjo1+/fqp3rbcerXqHS/Xc9OeNo6bm5vkfBFyQUNLgVhHHJuGFDmWOgiY7jvxTbWr9gY1lMuW8kkFFTdu3GhWn5muOzrb+UqOeWvLJEyYEMmTJ1dcLkeyllpGi/QfcqydV6YPNdSWRa/XO+U8+e233xS1YUeOHGn2oMAee/bssbqMFse46e/Wu3dvq+s0lTFjRtWfcSaph+H+/v54/PixkKHg7t27RhNFy3VEs9RJRny/76p1vDVVqlSxmtJKKSX7oEKFChaXN30AAlg/xh096tHPzw/z58/H/v37LS5n+mBGPNJR6qF6hQoVMGjQINm4kS2cGQdxdMq6UaNGmb32119/OXSbsYXqVnHWrFlx48YNAECePHnwxx9/4MmTJ5g3b57TespS9LBUkbdt2xZZs2a1extyQXS5HLS23mC2aNECFy5cwL1792LERfrbt29ImjQptm3bhpw5c0brtl31QYVOp8PmzZuNXsuaNauiHuHi3zx+/PiaDBnU8jgyBFSs9agXszQ8OqblFdTpdKqDNtHdyClbtqxsIy1p0qRGjVpTtgSkKlWqZFMPUlvIBYF0Op3RfhbfLGm9baXkJjRfuXIlsmTJYvGzlo4ZZ0x+Vrp0aU3XZ+kYVEMqiC4O5pjeEJtOBib3m44aNQoDBgyQfE/qM4aeSbNnz5Ytq5Ljx5ZRQ/bU70o+GxkZKfm6vT3R+/Tpg/DwcEXLWwpqah1EHzJkiHBzqDRtwOLFix1+Xup0OlWpi+TWIf6/LZ8Vk7q3klruwoULVidldpS+ffsK/9br9YqOW0sP4qKTu7u7s4sgy/S8U1sfREVF4fDhw8iaNatdeejVTvBoqc0pzonu7u6O2rVr21wuU1q1w63t5+zZs9u9DVeOmUh9f0v7RKfToVChQvDy8jL6DaQCdADQvHlz2REeWgY/bTFw4EBV6Q+ltG/fXpOyhISE4ODBg1aXEwfspc69YcOGmb1m7d6+W7du1gsIoFChQoqWk9KuXTuUKVPG4jKmx5347127dpmlMrPn4YUjMy0oZTp/hr+/v0O3Z9pmaNy4MRo0aODQbcYWqlvFPXr0wLNnzwB8Pyl37tyJoKAgzJgxA2PGjNG8gGS/GTNm2PxZce5eSzdRer1e9U2WVG8w08ZslixZ0LJlS/z000+S65C6CCjpZebl5YXcuXMjffr0+Pjxo9F70T2BmhKGhwvVq1fHiRMnNFvvtm3brE7g5qq9JXQ6HWrWrKl6oijg+340GD16tKJeq9HJ0IicOXOmovzZer3e4tBB03PT0k2j1r+3LQF8Nzc3yfqkVKlSspN2RncQ3VoD1NJ+tHajV6dOHaNJAX///XdVZUuXLp2q5U3JlU+n0xnd4Nj68KlOnTo29XSoWLEi6tWrZ1SGXLlyGQWL06VLh7dv3yJt2rQ4e/as5Hrmz5+veJv23JQryZ8upnWqFkf1bM+WLZvR8T969GjhRqpSpUpmy8vtw0GDBll8+P769WujEViGc9zawxEDJRMgKhVTg+iA8kkNLZVT684GI0aMEI5PS+s2BPaTJEmCOnXqGO0Pa2VS2+EgWbJkiIqKwm+//Sa85ubmpigthZg9QXS12xDLnTu3bNBKKSWdJqSOSdN2s5Ljtlq1ali9erXywjmBpd/QnnsrA2t1tGn7Se18Pnq9HsWLF8f169dRvnx5s/eXLFmiaD2m+8GeB/qFChXCn3/+abUHqiVSI5Jat26t6LNKevNbO34bNWqkaFvRacWKFZqty/RBmNLJKg2fNZC69ly/fh1Zs2aVPbfE7TvT7UbHaL2UKVPanatfyXw7SuTJk0fRcuL9ovSe2NIx3qxZM8XBaFtThYq3LzX3muH9pUuXGr0uvkbpdDokTpzY6H17Oo3JPSzs0aOHzetUK2nSpEb3/dHd0dNVR8S6IsV76t69ewC+DzU05GTLnz8/Hjx4gNOnT+PRo0dWg3HkHFINJ6X++ecf4d/WTmS1J7pU/vNevXoZlff333+3OKTeUJkaKr5SpUph3LhxePPmjcVtiytv055N4oaI6UXGWfk4xUO9taxQK1eubLUXyLp16zTbnpbs2Q/9+vVD3759kSVLFnTo0EGTyaO0/F3EAUal67U0AYtpo8JSj0OtJoiePHky0qZNi4kTJ6J48eKqPqvT6ZAqVSqUK1fO6PWDBw9i/vz5WLNmjdlnHB1EN+0NEhUV5bBUHzqdzigAJNfjW64HiCFNgq0slV187Nh6zG/YsEG2p4NOp5Nd7+7du7Fu3Tqz8omXv3//vnCDbdq4Br5fYwzDkpX8RtOmTbO6jJi4J4vS4KWBFj2wbt68Kfxby3NCvI9btmxptu5t27Zh2rRpWLlypar1SpUxY8aMKFSoEJIlS2Y0147a1CnHjh1TVRZL5G4stNrHhQsXtnv9ffr0sfmzgPn5XKtWLcyYMQOLFy926I2VpR6Z7u7uePbsGS5evGgWONO6TSquLw4dOoTixYtbnZDy6tWr2LVrl+R2ozuIbi+l9wpKjqu///5b0bqUPoh15L7U6/V4+PCh6s9pMc+MtaC46XnXpk0bVeu39lBEaaot03KIHzTJkXvYGS9ePLRp08ZqD1RT4nakuE2bLVs2HD9+HPPnz1d0DQ0KCrKaHlPqGBd/Hzc3N1SrVk1JsaNFypQp0aRJE80eHJt+/7p16yq+npgGOU0ZHpzLndPia6FpG0rqIb0p0/kjpLaTI0cOnDx5Eo8fPzZ7z9VSmCopj/j8HDdunN0pi7SaUFkpLy8vHD9+XHIuMHGnN8A89Z1p3aR1W+WXX35RXe+KKX3wuWzZMvj6+mL9+vVOHY0RE7IzuArFR9oPP/yADBkyoHXr1lixYoVQ8SROnBj58uWLtsloSD17LgjiRqK1XkpqAwamWrVqhf79+6sacti9e3cAwJMnT3Ds2DHs3r0bgPpJXsRPXOU+6+bmZnazZI0tvaSlKA2im+aitSZevHgWj48lS5YYDb20h7U85bay5fh2d3fH+PHjcePGDXh7e6Ns2bJ2l0PLC494ePvEiRMVfWb+/PlInjw5Fi5caPaeaaNCp9MJQylN81Zqlfqld+/eePjwoU3Hj2EiQ6m6IH78+E55YFuqVCls2rRJ+NvT01NxEH3u3Lno27evkPtTbSPPVUbHxIsXz+HpnbQ8j9zc3DBgwAB06tRJ8n0ldUe9evVU5STs0KGD4mVNWcv3rUTmzJmFfzvqZlDqupEqVSr06NFDskeR2t/05s2bilMsNG3aVPWDHWvLSE1IpfQ7SP2Glj57/vx5vH79WnZSdTW/4ZAhQ4wCPXK92+WYljMwMBDdunWzeYJdpUaOHGnxfX9/f8mRPdZ+E7V1lXhflyxZEkeOHLE6Eszf398ssOOoeSLEw9Yd9VDD1jpD/Dm9Xo8qVarg8uXLmuXVdWRgy9PTE4GBgZLvWfottbgWurm5WZx80bQ9Fi9ePIwbNw4tW7Y0SochF7BW0yNWav4EA9P9kDRpUowfP15yWUPnh5QpU+LGjRt48uSJUU9OW9uYciPsrl69iiJFiiBevHgoXry4ouD82LFjLY4Uk8olL+61r8U5ruQaFxoaqmqdWp0npt9f6vvKpZtUOlpI7r358+ejZ8+euHjxotm1R4s2kkGhQoWQJk0as4eHX758sfrZ6JyjrGDBgkiSJInFERTifZkrVy6LnaoMonPSVqlMFaYjeYoUKWJ0Pyp3LFsLomuZvtTPzw+rV6+263xXek/QrFkzvHz5EkWLFjUaCRHdaZ/YE105xXtq//79aNGiBe7evYt27dohXbp0yJw5Mzp06IA1a9bg+fPnjiwnRTMfHx+zofDWAuWsCIsAAQAASURBVEamwwI7duxocRviCrJq1apYtGiR2UVCvIwhQJwpUyYcPXoUr169EnpixosXD8HBwYrzZZpWzqdOnQIA1KhRw+gptml5nPWETnwzLC6DaSNGTQ5t03WpfT8kJERxzjQAFgPVSno/y90kuFqvAVuJ8wqL97uSvMbx48dHkSJF8OrVK8khrVI3H9u2bcPvv/+Obdu2Gb2u5TFua488JcP8TUXHcVCrVi3MnDkTrVq1UtQjxqBjx44YP368MOpD6Xk3depU1KhRQ3KyOXEPXVOO2hfdunWze91SQVZ7WdqfY8aMMZsgVS1bJ8BTevzWrFkTU6ZMQfr06W3ajhx7fqu7d+86bN3W1iN3E2RYVvyZ5cuXY9++fShRogSOHj1qtLwtddmAAQNsyk2/aNEilClTRnWagyxZsiBZsmSygTQ1gTpvb2+cO3dO+FtuslI5Wtb9luboMCX3AMFWU6dORaJEiSQfKEupUKEC4sWLJ5sOwdKxbumGU2nnIqU54W0ZoSZly5YtsiOBbE3nIvV+jhw5JFNUKe0YYI/06dPD39/fYuqulClTYvLkybIBdGuio80hVRf269cPixcvxr///iu8JpVeZP/+/WjYsKHibcmdh8ePH1cVmBJP7pklSxYEBAQYjejSIkgjF6iNFy8e9u/fryjdiqW5Iqz9tqbnny3HgunDw/Xr15stozQXvdS1ETDvla2U1LwG4r/LlCkjW8crvWbJ1WEpUqTA1KlTkStXLlStWtVoRHyzZs3Mljcdcaa2DjMtx4cPHyQ/I+5gN3bsWERERGDcuHGKJrO1R+LEifHff//hwoULssuY3vdZe0DTvn172TS5gOXjWW4eIjHxbwYYjyho3LgxXr9+bbUzlFwZTDsHmNYn9uREN91mjhw5VF1rV61ahbRp0+L06dPCa2o+b1h27ty5qFixIrZv345evXqhZs2aitchZ+3atYqWYxBdOcV7qnTp0hg+fDgOHjyIN2/eYO/evWjUqBGuXbuGli1bIiAgADly5HBkWSkadejQwWzSD2sVgXiilaCgIKu9J9U2OgYOHIi3b9/i1q1bKFq0qNVgjJpKJ2/evNDr9di6dSt0Oh2WLl2K7Nmz448//hAqetOh0oD8xdZAq0a2OGAn/h3Ejf+ff/5Z06f0ptsylSdPHowbNw7z5s3Do0ePVK9LHICvUaOG1c9bakBIsffGXG2edHsDEOLjVe26DEO/5D4XHBxs9lpAQACGDh2K1KlTm/VGdzZbehJE1wS4Xbt2xaJFi+Dm5mbz+a309+3Zsye2bt1q1CB++fIlNm/erHi4pS0jhKTSoAwZMgS5cuWyu05T20CTm3xKzNaHLeJ/f/36VbZnjqMfnrZs2dIs2KQ0sGaJrb/V48ePkSFDBs3WbSmYaLoeqWPPQO5Y/umnn3D48GEULVpUcU90W9I3SDHUva1atcL+/fslrztSZerSpQtevXolfN/g4GDJkW5qe5OLhwGr/ayW1E4a+fTpU0XLKTnuevbsifDwcNkUOaa6du2KT58+yfZgVRtEN/zes2bNQokSJTB16lSL2xef65buo8THv6110u7du1GjRg3JQEOnTp2iJTCs5Ljs2bOnTZObGVJ+zJ49G0+fPhVSd0lp06YNevfurXoblpw9exYdO3aUTBMhxdr+dnNzE+qItGnTGr1nLbd3mTJlNLl2FSlSRHIOE7myW7vG2xrkGjx4MACgc+fONn3eVLZs2VQtr3U7wDTftz2pVw1M28HitIDiSbyl7gnEpL6ruDOBpQf+SusQqW1IpSgsV64c3rx5g5MnT0qm0DH9LmrrMNOJFaUeXGzbtg2vX7/GlClTsGHDBgDfU1H169dP9XFkCw8PD4v3RWoeWmfJkgV//PGHzWXJlSuX1RSd4nN85syZRpO5BwYG2nV/7sie6JZSRSrRqFEjPHr0yOLoIrGqVasiTZo0ZqOA0qRJg927d6NatWpIlCgRli9frmh9hlEcUpTeUzCdi3I2PW5ImDAhypYti8GDB+P3339H9+7d4enpievXr9tcEEMOJ/GP/+nTJ3Tp0gW+vr7w9PRE3bp12ePdBlIXFDc3N5QuXdqoJ4M1avP/il+bOXMmzpw5Y/R0Tsm6TXuIqAkSi1MvWCqblObNm+Pq1avInDkzli5diiNHjkgOR0qUKBH69u0LAFi5ciVevXqF8+fPKy6jqcOHDyNPnjxGv8uYMWOMetjL7StDLl4tUz/IbcswxC5x4sTo0KGDWeNeybos/QZlypQxaxiJL5RSPTZMmQZJAgMDUb9+fbOe11LGjBmDQ4cOWV1OXCbT72dLb0a5dVmjNn+apQcalrZ98+ZNNG/e3OJkgEq2p8XyhsC/Icjq7BEJanpYi7/frFmzLL5vKkWKFKhZs6bZjajcKBSlwSmD69evSx5PhhsLtQ8rFi5ciKtXrwp/K+mFL15GagSLI3pBx48fX3a9cmV2RDmuXbuG2bNnKx7lYylIpHQCTlNKJhFT+t1bt25tsX4Sr6devXqSecynTZuGli1bCkEGNTethv1YuXJl4TWdTmf3UGZfX19kyZLF7AZc6Wi4pEmTmtUZlSpVEnqSN27cGID6801cL6jtia6Vr1+/WkzjVadOHbPXxEOWxalbLB1nlo5TtTfStgb2pAKGhmMrMDAQhw8ftjrBcNasWbFnzx5cunQJPXv2xJAhQ4zOA6n6R2kPVTFvb29UrFhRct6JGzdumE3cKqV+/fpGf3fu3BkpU6Y0SpllbR1KAj5Tp061OF+P3PxE+/fvx+3bt1G1alWr1xqlddi7d+8kX5cqX758+TB37lykSZNGcSo7S+WMFy8ejh8/jvr166tKdamEVMcgU4ZJdYsUKWI2yaG4blIzia+tQa5s2bLh06dPmD17ttXfTkk9/Pvvvwvn0cKFC40Ci3q93mo5TX83uREWSjupKDkexQ9OxMefXE90w3XEIDw8HLdu3TLLM21K6voonr/AUk9npSM7TAOpOXLkMOvBbODj4yM7BxAATJgwQfi3pR70BuJ6rFSpUvjvv/+wc+dO9OzZE23btjVatmPHjqhevTp0Oh169eolef2KDlr1ELan3WqYC0HNKPYuXboYBXDtCdLOnDnT7CGsad3TpEkTm9dvSouAsqV1/PDDD3j06JHVuljpb9+uXTvZtFxKf3f2RFdO1Z768uULDh8+jN9//x1lypSBj48POnbsiDdv3mDWrFnC5KNqnT59Gn/88YdZ7sFevXph27ZtWLduHQ4dOoSnT586rfKKbXLnzo0DBw6gWLFiku9LnWziisDwJNaSXLlyCf+OFy8e8ufPb/R0ztIJvWvXLkyfPl31hIRiWuUy9PDwQPHixWVvssaPH48PHz6gcePG8PX1tThEypoSJUogJCTE6HdRWokbbkLVBlQt/Q6mNyr169fHli1b7E6PAJj3qhHbtm0bjh07hi9fvmDdunXYu3evUcUuvjmRK79pr0UfHx+sXbvWauMRMO6xYcnnz5+Ff4t/p1SpUknm1TU4duwYRo4cKXsjHN1BdLntTZw40Wg/Gh4qTZ48WdX2TFnLESf+rUeNGiW5jCEdzfbt2wE4J4gu3qbpZKeWymMp16SHhwdGjBihuizinsOGm6uAgADJh2qXLl2SXU+mTJksbkfNfl65ciVat25tNErJ2rGtJDhkegOnVc8JrY8hcblM87LLfc9s2bKhc+fOis/pBAkSmPVePXLkCH7//Xej4eJKeyrJ9aAx5GM29EBTeg1Nnjy5UU900wa+eJ+vW7fOLFADAD169DCa3DIwMBAnT57ErVu3zJY1PRamT5+Oly9fmuW1t/fBSL9+/XDjxg2z37F+/fooWrQo+vXrZ3FbctvJmzcvoqKihAla1QbRxXWnpR6/hptaccDD1uCWaTvBUkC6SZMmkr1alRo6dCiA73WAVqNf7ak/pG44bUn/VKFCBeTMmVOo/+V6iv71118YM2aMxYCSHEvHtuGBm6XjLU+ePFiyZAnat28P4Hvwafbs2QgNDVWUuiZ+/PhC6iUDSw9CxPtWfA0BvqdPkpIgQQLFwWulExXLXS8tjZoxfNZebm5uyJ07N9auXatpj9cOHTpYzIEOAFOmTBHmnQLUd6SSY62NYYnSh5QjR46UnEdBzNvbG6GhodDr9WjdurVwXAPfv0/Hjh2RJUsWpEmTBqdOnbL6/eVGBx4/flzyddNJQJXU9eLRNVLBefHvcPv2bbN7aE9PT2TKlMnq75UoUSLJVExKbNmyBRUqVMCRI0csLjdv3jyj71OmTBmbO4GJrzmW9mP79u2xceNGs4ffyZMnR+XKlTF16lSHtS/t5ex2bsuWLYU2pZq2gtL7TSUKFChg1jmgV69eGDp0KP755x+EhIRYnPBXKt2pmL090eUY5qaQCvBrMY+PlhhEV07xnipbtiySJUuGzp0748WLF+jQoQPu3LmDGzduYMGCBWjWrBmCgoJUFyAiIgJNmjTBggULjJ5Kvn37FgsXLsSUKVNQtmxZ5M+fH4sXL8axY8dw4sQJ1duJy+R6oqv9jPgkrlOnjlFPXdMKVa/XG+XxldqeaS9AsUqVKhk13lyd3LBKLYIyjqrU5WTMmBEvX75EWFiYWSMvceLE+Pnnn60OI1WiR48eaNeunWQ+dEOPhwQJEqBevXooX768bK9vRwZPrfWusbX3WnBwMAYPHmyxJ7scqaFaSm8s5LYlt23DKCNTcg/flG5v7ty5Fh+6iveL3I1q6tSphXQ0jmItpYWYmhtc8aQx4uN3x44diIiIsPtmuXv37ti0aZPsqBhLx7W1a4OaoJ54XYZAW5cuXSx+ZsyYMVbPhdatWyN//vxCQM3WOlFJjyVL6xf3zLJm3LhxRn8/e/bM4vrFZfn5559l1xsvXjyzPNzFixfH0KFD4evri+vXr+P+/fuKR50dPnxY8vW0adPi5cuXuHHjhln5LEmaNCmSJEmCq1ev4saNG6of+MkpVKiQZDBGqm5TM/G90kmg5I4JDw8PHD161Oz3VkO8bmupL8R1iSlLbfJNmzZh+PDhOH78OE6dOoXz58+bteOUnFe1a9fG7t27Lc7RIJYlSxZV103TMuTJkwcfPnwweoDtaKbHuniSREvpXAy0nOisQYMGwkN+tfdc4jzRcr+tpXV27doViRMnRv78+fH8+XPs27cPgPVrxpMnTzBgwADcvn3bbGRRvnz5jHqRionXa9rusSfvrTVqUqA9evTIrLevHKnlrNWjSo8dtddAqTa8aVms1dXi5ZW0Cw4cOIDp06crnk/GtEewmLWRRGnTpsWdO3fw6dMnm9IV6vV6+Pj44MaNG3j8+DEKFixoto/ljltTcueHadvW2rGQJEkSozKI97lUT3TTh0lyqeykZMyY0eKDOkvHW7Zs2bBnzx6rneDSpUtnFM+x595WaXspc+bMqF27tmbtEDXUTFCvBcP+NzyomD59Otzd3YX569TeOzdo0EC41xR3pJNaj9wkwGqI1/vnn3+if//+KFy4sDCq0FCHubu74/fff0e5cuWQJ08e2eMoceLEmDx5ssWR1KZpipQekzt37sTt27cl39PpdFixYgU2bdpkNkeH0vXL1SFSKevsjRExiK6c4j115MgR+Pr6omzZsihXrhwqVKigSfCiS5cuqFatmlkusLNnz+Lr169Gr2fLlg1BQUGyT3WB7z1D3717Z/RfXCd1sbDlJDM9sUqWLImxY8ciQ4YMGD58uMXl5XodT506FYGBgZgyZYrq8ighl3crunqtxsQg+u3bt5EiRQp4e3trul7TcidMmBDz589XlA/d9PPRNav433//rWjIK6D8dxH3wlMbtGvYsKHwRBv43pBJmTKl2aS+4pt8tUx7SUsFoHx8fFSNuDAN8ut0Oos5FW15SGLLubZlyxaz1xo3bowuXbrgzJkzkvWaUj/++KPse4MGDUL9+vWxYcMGoxudqlWr2hVgMogfPz5q1apl9hDMnnUaqNnP4mvA5s2bcfjwYaMJdKUoSYuTJEkSnDlzBr///rvisihh6AWt9Aarfv36qFGjhtBL25T4t/Ty8jJ6sKymHrfUs3XQoEHC5MPi0V8GWbNmRbp06RRvz9ID0hQpUgi9tKz9TnPnzkXZsmWF3mzZs2eXTC/jjBEkpuksxEEWS/WSksnq5LZnSun3thZEnzZtGho3bmw0DP769es4deoU/P39ZT/n7++PYcOGIU2aNChYsKDNI+gM30PJBNiA7SmGxOx9iD9y5EghJR2gvs4TP2hRcsPp7++PWrVqoV69elZ7x0qxd9TE1q1bsWrVKqPc7OJ1Zs6cWfi3r6+v2fwzu3fvRv/+/Y32WapUqcwCvIbAiemxEBAQgDFjxsgGVn777TeEhYWZPRASz4dhbaI8W5juvy1btiBTpkz4+++/Fa8jbdq0sueO6e+2YMEC1WVUGtAw/S6WHq5pRbxNQ8DOUtC/dOnS6N69u+JrkaX9tXXrVmTIkMHqqGgPDw9s3LgR2bNnVzWC1lpHMsB4dITSkYeWyKUr3bhxI4KCgrBnzx7ZILql19RYvnw5li5dataW0Oq+0zTjgCO2YUg54sht2KJNmzYW37eWBkftw9mNGzdiwoQJwn1O9+7d8eHDB9WdoKSYjgxasGAB8ubNK/zt6+uLS5cuSQaWlf4G4nOqTZs2GDt2LHQ6HRo1aoTt27fjzp07iss7cuRIvHnzBj4+Pha3nz9/fqMJyZWWtXLlyrIjoHQ6HZIkSYJatWpZHb0kR+46INWp2Jb2gng+HgbRlVO8p8LCwjB//nwkTpwY48ePR0BAAHLlyoWuXbti/fr1ePnypeqNr1mzBufOnZPswRIaGgp3d3ej2ZCB70OgQ0NDZdc5duxYeHt7C//ZOut6bOLp6YmJEyca5fRWcyEx9IqU6kXRv39/3L17V7bBtnXrVgwfPlw2yNCzZ088fPjQphsLJUJCQjB79mxUqVLFIeuPDpaC6Ep6yqo5BwYNGqTZkE1T9jZedDod+vfvj3bt2tl0I66mV7FBYGAgJk2aZLEnY926dVGsWDHJAJYU8WRZUj1JAMv7ShxU6dSpE54/f26WAmHYsGGaBCuA7zN6Fy5c2OzGUmrYZfr06bF582az2dtnz56tapvii7jSY86093aLFi2sfsa0x8r69euxcOFCzJo1C/nz57croNy1a1cMHz5cMsezl5cX1q5dizp16qBSpUqYNm2axfQ/SmgRjFTSY0vNTZp4/yVKlAglSpSw2vC3pQeLkrrFcI6Ih1Oa7rMNGzagTZs2Ql5qaxIkSICtW7fK3rQNGzYM6dKlw+jRowEAM2bMQP/+/XH58mWr67Z0s2xI19OmTRv4+fkhefLkiIiIsGs+DrWqVKmC7t27Y+nSpZLvd+zYEfv27dN8gnFrlF5nxMspvWlYtWqV6u3YS1zfS40mSJEiBVauXIly5coJr2XNmtVoIi9bKUmXYnjAkz9/fvz7779WJ2xVO1mkpYeRtho8eLDqeT3ExMeskp7oOp0OmzZtwrp164x+J6n1SbE3iF6jRg00atTI6OGDeJ2mD4dMA10VK1bE2LFjrT7gPXLkCMaOHWsUhFDK29vbrHNExowZce7cOeGYmjt3LoDv7QktRkOa+vnnn3Hr1i2j3n2m+15qhKzS3yFx4sSSk9da+rytoxhOnTpl0+fUEJd78uTJGD16NK5du2bTuhYuXIhixYoJv7G1OUEKFSqEu3fvKkrxGhQUhKtXr5qlVJPSr18/uLm5Sc6BZSvxMWToXS/VcSxBggR49uyZWXuidu3aePDgAYoWLWp0PFjriW6J1HL9+/dH06ZN0bx5c0XrUErco93SnFT2BO/E3ydBggSycwTZsg1r13pL9eLdu3cVb8c0xYzpqDjTcsilDzJImTIlfvvtN6OUc+LjR+1IJkvLt23bFosXLzYqa86cOSUDy0rbTnL33W5ubqhWrZqijryG71uhQgXhQaxphzzTFIbilC9Kymo6T4gpS+uwpb1qbVSvLW1T8eggV0lfFBMo7vKWJEkSVK5cWRhGER4ejn///RcHDhzAhAkT0KRJE2TOnFnRzSHwfQhcjx49sHfvXk17lQ4YMMBotvV3794xkI7/VbbWegEaiB9enDlzBnfu3LH4BFlOjRo1ZHsaR0cPtKCgIHTu3FkYdmqgZhJAezjiO4oruPTp02Pv3r0Weyru3r0bbdu2lQzmmZZRLv+0q5B64KZkHydLlkyYeNUWlrahZJJTtetVk89fatl48eKhQ4cOsr3oLa1ffCy5ubkhe/bsqlJo1axZ0+y1TJky4c6dOyhWrJjszOFitjR006dPj5MnTyJ58uTw9/dHkiRJZAN8ckyHW1oL6Ip7x5n2MEiQIAGGDRtmdZs6nc6ukQNaWbp0qVFPaVOGY6ZJkyaYP3++opne1fyOr169wtevX+Hp6am6Eadk+VOnTuHFixdGo6JMz7+goCD8+eefNq1fSkBAAO7fvy/8nSxZMsVpL8RMz/nly5fj4MGDRgE5NallpFy7dk1VPlI3Nzdh0jl72NozR47SgKO1QKg1aq7t9tyUiH97qR5kjhqVNWTIEKs958qWLWt0PMv1cMuWLRv++ecfJE+eXPG+Pn36NBYvXmzT/BBKWJqXwpSljgxS36dZs2ay6xo9ejRu3bqFNm3aWFxObnuOMHjwYE3WExgYiP79+9v8ealzSty7sWPHjmjSpIlQTw0cONCuYKct7XOpz9jSjhMvY2k5W+omDw8PRZNDm1K7P8TLJ02aVPH9pZTWrVsLwat69epF2z2aqXHjxmHkyJF2j+Bu1KgRVq9ejeLFixt9rl+/fhg/frzsPZu/v7/FEUQzZsxAqVKl0L9/f7x588bs/dmzZ6NFixY2/RZK54IC1O2LtWvXYuDAgejdu7fFQKxWQXTg+73srFmzzJZzRF2aOnVqdOjQwWhiWgNbOm8BwJs3b8xGg5uW3d423/Tp0/Ht2zecOnXK7OG3VF1g7aG6Vvt2/fr1WLBgAcaPH2/3ukJDQ/Hw4UOjUU3ickZERCAqKgoDBw6UHE1n7TsdOnQIJUuWtLuc1ojPjUmTJuHz58+qRw8mTJgQKVOmtNrpObpG+scGNieVS5IkCZInT47kyZMjWbJkiB8/vqon0GfPnsWLFy+MDuzIyEgcPnwYs2bNwu7du/HlyxeEhYUZBXSfP39u8QLj4eGhOj9wXCR3sVq0aBE2bNhgFNRJkiSJTQF0a5wxjBv4PsGDPQ399evXo3379oomx3J0Ohe9Xm+WCklsxowZyJ49O44eParJBc6edTjqRtDSPr59+zauXLliMUeeElmyZLGYRspWWgTR5XTt2hXh4eGS+Sct5UT39fXFrl27kDBhQou9oJT0wBPLmDEjnj59KrlMjRo1ULx4cWEyPlt6ogOwabI1S0qWLInp06ebDV00SJQoEZYuXYrIyEibJpNzJfHixVN0EzNt2jSUKVNGUV5TNTdF4ptmRzz4dnd3tziZsSXO6JkhPu5Nj60kSZJYnDzJFlpOWmdJ06ZNMWzYMGF0WIMGDbBq1SqUKlUqWrYPfP89xfWoljmrpUj1mlWad9lSfV+/fn1FD7Ns0bdvX6v7xbRzghydTqc6qFegQAHZSW7VOHHiBI4ePYodO3Zg//79RmWyVdasWVGmTBn4+voK67l58yaWL1+O3LlzSz5INkiZMqUw6khpEF2u1/WKFStQrlw5ozQttnBGfmBbiR/0jR492qYgerly5bBv3z6rD4mUUtNGkXqYV6BAAZw+fVpyeaXXUJ1Oh+XLl6NTp07YvHmz4vJYKpuWqd3UUDOHhSPYcj5IPZB/+/atUM8PGzYMr1+/tmtSVeD7dTo0NBQ6nc5sLhQAaN68OapWrSq5D9XkRNdSunTphImyLdEqJzoAswB03bp1sWPHDsmJHbUwb948XL161epkqkqZZmEAvk/CXKRIEaFTk73t0lSpUmHdunVo3bq1US9yW1l7MB0QEICnT58apSSVUrduXc3yx6dIkcLsXBCXLV68eIgXLx4mTpwo+Xlr+1hJ29HSOuSyNJgynT/NWtvo1atXGDNmDLJly4aIiAh8+vQJfn5+OHv2LLZv344+ffrg48ePRp+ZMGECli1bpuphWlynOIgeFRWFM2fO4ODBgzhw4ACOHj2K9+/fI02aNChTpgxmz54tOUxNTrly5cxmPG/VqhWyZcuGfv36ITAwEAkSJMC+ffuEk+nGjRt4+PCh7Kz1pJzcSd2qVSu0atXK7vUruUBrHfBSatOmTXZ9vm7duqhTp47ThryoadhKDYlMnTo1kiVLJgQt7LkBUEPp/pILWNrihx9+kM1Tpsbq1avRv39/5MqVy2zInT2UpnARMwzTl2pkibm7u8v2hLa2LSUBUluOf7nPZMiQAS1atJAMojubtQmOtR76aiupCWbUUHpuJ0qUCA0bNpR8z7Q3jrXfsXnz5li2bJnZOdW8eXNcvXoVZcqUwcGDB62WydF1saODCdbWP2zYMFy7dk1RiiJXlzx5crx8+VIYAu3u7q4qB7E1So8FNUF0qRssJQ96xo4di127dhnlkp49ezbWrVunaEQOIJ8T3d/fH2vXrlW0DuD7w6+ePXti8uTJipbX8pxy5vDgwoULo3Dhwti5c6fR62p6optyc3MzCsgD3/OKq+01nz59ety/f1/2Rnrs2LF4/vy5bEqbUqVK4dOnTzZNsumKQ7YXLlyIsmXLatID0ZI9e/bg3bt3sm0oS/W5I4KPw4YNE9KYmFLTFmratCkaN26sWfvJWR2dxNq0aYOFCxeic+fOzi4KUqZMKfue6X2GTqczynFuz/w6pgznbvfu3YXRw+LfSslDCDUjKqKL0jqpSpUqZvW5NevWrcPXr18dMreCwYABA3DkyBHUq1fPIevX6XQ4duyY5vdHWrVfrV1Tb968iadPnxrNweEMaq591pa1t2OhITWLmnIo+b18fX0l23qBgYHo1KkThgwZYhZE/+233yzOJ0DmFLe8fHx88P79e/j7+6NMmTKYOnUqSpcubXOAKmnSpMiZM6fRa0mSJIGvr6/weps2bdC7d28kT54cXl5e6NatG4KDgx3W8yYucWYD+ubNm7h8+bLiysMVRef+07pBnyhRIly5ckX425YbMFvYkvvLGapXr272Wrp06bB69Wrs3bvX4mcTJUqEjx8/Kq6jbPn9kiVLhtevX9uVE9RST3RnMO0ZamtPdFNNmjTBypUrLQ77LlmyJA4fPhyj500Avk/stXPnTqc2UE2Hrlpr7P/555/o2rWr0Yg04HudNGnSJABQFERv27Yttm3bprrnqrNvGg2sTWKWPHly7NmzJzqL5FDRdc2xRFzfdO3aFUeOHEHZsmXNlsubN69R7tHt27fj6NGjVvNgAt9zzJqOeuvcubOqgFCxYsVUTR4lp0ePHmjatKlT0iQ4+/oipV69eujbt6+iZR1VT1y/fh1v376VnQBayYhJS+dS8uTJsX37dsn3XPE3KVOmDD5//uzQQBfw/bpkqROCeJ/6+vqiY8eOQjrA+vXrY9asWUYP0eSOD9PesHL8/Pywa9cuHD58GP7+/kYP7q1dQ0uXLo2DBw8KqdjsCbD5+vqiePHiknMvAJZTYjnKnDlz0LJlS7s7CWghXbp0WLJkCZIlSya8dvDgQRw+fFjTHs5K96s4qC/Oe20rNaP4HVF/KD12c+XKZRZEVzKvhK31iprg/tOnTxX/FkFBQVbnELFUFq3OP6X1lBxDOawF0ZMkSeL0ADqgbRDdnnWoneA1Xbp0ePXqlSbznW3evBnVq1fHtGnT7F5XXKb4ajtx4kRcu3YNT548wYoVK9CmTRtNenhaMnXqVFSvXh1169ZFyZIl4e/vj40bNzp0m+R4mTNnRu3ataO1Ef/LL78AgMMmMJXjiHQuWq+vVq1aKFy4sOKecWqIg2opUqRwyOgDrfaPYYiTPSMVzp8/j/79+yueWEvt5GaGcyZZsmQ25S0z9Kg0LV+NGjXg7e2tKpAs7u1imADHMIGiWqZBdK0aikuWLMHFixeFHu5SNm7ciLlz5yoaburqLM0Qb+rXX381yvlubT9b6oUlx9pNUYIECVCwYEG702n8/PPPNg2ldZUgupToTA/kigE1WynNQyzu4V2hQgU8fPgQu3fvNlvW9BipVq0axowZE22jZUaMGIEJEybgxo0bRq/b8pupCaDHlp7octKnTy/821r5tBidKcXDw0M2gK6FMWPGyI7cdcXfBIDDA+hKxIsXDydOnMDhw4eRLFkyo9zDJUuWxJUrV3D16lXhNbnryLJly5ArVy6LqR8Nn61UqRJGjx5tNnrUWj2zb98+hIWF2XU/vmzZMnTu3Bm1atXCoUOHhNetHSNqJhm3lbu7O4oXL+4yKYdatGhhlB6yVKlSGDJkiMNTgsnZv38/SpYsqfq+xfSYnTt3rtNzISutk6K7F72adadOndriOWtIZdKuXTs8ePDA6rxL0WHo0KEoV64clixZIrxmy/60Z3RXdDLkylc6Z5WB1Agppe1NNa/LuX37Nv777z9NUlYXL14cr1+/NholSeop7g5kOkuwI5j2OEuYMCFmz56N2bNnO3zbcY24kvf09ERERIQTS+N49evXR7p06TRNFeIKtJgYycPDQ/HEkWq3d+XKFWzbtg3p06e3+rQ7bdq0ePz4sexEtFqVSU61atWs5hm21vs7a9askhMHJkuWDEuXLjXLybxmzRoMGjQIPXv2jJYbkl9//RXdu3c3u1H18vIySrGgxLRp0/DixQt06dIF9evXx/Dhwy3OV2GNuE4S35DY8/vGjx8fuXLlsli/GXqaxTUTJ07EhAkTrN6kL1++HMeOHUOdOnWsrtM0SKc077MWHFm3O/qGICAgwOy1smXLomfPnsiVK5dDt33z5k3Z4d+FCxfGyZMnJSdcclVKfyvxQ6GkSZMa9S50JYkTJ47xQ2xd8YZaTZmSJ0+Or1+/YtCgQWajZmKr7Nmz49q1a7KpZFxFwYIFZfOJ20Pc89n0Gmm6T+TaKNmyZcPFixftKoe167Obm5tNPUnFZW7WrJni/PxkWaZMmXD79m1FI5XkqKmbypQpoyqVroHpMVu5cmXNymQrW1KxGbhyhwixFStWmE0Kb6B2knVx+9qeSUaTJ0+Of/75B3q93iyoOmfOHHTu3Bnr1q2zuh7TvN2uqmTJkvj48aOih0bi79G3b1+0bt0aqVKl0uR4U7uP4sePL3mPnixZMrx580Z1xw5XSpsaU3EPxlHik/fgwYMoXrw4jh075sQSOZZOp0PhwoWNctRFByUVrdQM4mrXoYShN66jh++UKlUK06dPx4kTJ5AoUSI0aNBA6IFu6aJx6tQpLFu2THXuQMMQ/Oj4bYsVK2bzpEc1atRA3rx5jV4LCgrC8uXLkT9/fkXr0KJhItfTK0GCBKrWnyZNGhw6dAgNGjSATqezK4Cu0+mQOnVqNGnSBK1atTKaPExrsWniaXuPByU9/ps2bYo5c+Yo6mnVokULNGvWDDlz5kSrVq00mbXekcFxrepWW3sBbt26FVOnTpUcoaPT6TB16lS0bt3a3uLJGj58ODJnziwbQN66dSumTZuG1atXO6wM0UVc7+l0Onh4eOC///7DmzdvXCK9jFqOrsdiW090QwodqQlslZQvfvz4GD9+vDCq0ZUZhsxbmrRM6sGd2K5du9C3b1/s2rVL07Jp7ciRIw5/yGQt2GDoXapknoQ+ffqo2rbW506/fv2QKlUqi6PzlJYlpgQuo9OlS5fw4MEDl3/YlidPHqO/ndWTXsxVg+hanoOGSeENAVzxvd8vv/yCypUrS3bEkpI4cWIcOnQIBw8eVB2AlyL1PTt16oSPHz8qyvPuCtd5pZSOujBNUWlpklI5WvVEl7N//36UL19ecWdI0k7Mu3MguyRIkABfv341yv2ZP39+zWaUJmNKLuz2ztau1Lhx4zBgwAC78p9Z+j6G3NIdO3aUnXjQktSpU9vUG2bKlCnImjWrZrN5W6LT6fDixQssXboUuXPn1nTduXPnhpeXl+TNraGXvqMmrHE2Q9B8xYoVZu9p/cT/r7/+wq+//ipMyBSTucoQZ4MECRJg2bJlmq6zRYsWePHihWTwy15a3XgFBQXhyJEjqnszqx11o5UECRLg3r17VgNpqVKlQo8ePaKpVNqQuzH55ZdfhF5WhmWiM2WOVlasWIH+/fsr6hnmKlzh5rp27dq4ceOG2U0x4Brl09KVK1cQHh5u8fju378/7t27J9tjNigoyOETfGrBw8PD4W3oXr16YdGiRbJ5r3PkyIEHDx4oSnlWvXp1PHz4EEFBQYq2rXVvwXHjxilOR2WtMwOD6OYSJkyo+LeVEx37tXbt2hg6dKgwGbLaILozc6LH1ONOqgPTH3/8gXTp0qF169Zwd3dXNWGqTqfTpKOKNXIB5xQpUuDVq1dCO9YR+dqdZe/evVi9erXkZOE6nU74fraMFE2dOjWePXsmPHy1108//WR1vjZyDAbR45gbN25g9+7dDsvxSMa0aGiovRhZWt7eCUQs2bNnD27fvm1x+K8jLqxJkyY1mvjN0XQ6nUPyiHl4eODly5eSjdlLly7h+vXrLjG5kpbmzp2Lv/76S3XvLLXE52Hu3Llx69Yth24vurhaEN0R4sWLp2iCPUdSUo8XL148GkqinTRp0ji7CA4h91s5O9+rVpo0aaLpJHZynNETvVKlSti9e7dZXmityE3IFduC6AkSJLD6gMjT0zNWzAMCOD5g4+fnh9DQUItBPjWBU2s91keNGoXBgwcDcMyQe2vrnDVrFg4ePIhGjRpZXC6mB8riGvHvpdPp0L59e5uD6I5gTxDdlY/Fvn374sqVKyhdurTZeylSpMCUKVOiv1AauHz5Mk6dOiWMeBJfc1zheLJH+fLlUb58eavLKUmjY9q+CAkJwbFjx1C9enWby0eugelc4pgMGTKgY8eODh8K7MoXtOjw559/wtfXF6tXr8amTZvg6emJzZs327QuS/syuvezpRzHHh4eyJEjR6y7IY1O7u7uko0PHx8fFClSJNbt244dO+LAgQMWU/HYMqGlJbFpH2qZhiIu1tlKeyLHpmOGgAIFCji7CC7PGUH0LVu24PTp0+jevbtm26bYr0iRIg7fhtbBbMNo4E6dOpm917ZtW+Hfzkg11aVLF6xbt87qQ/q42GaIDtmyZXPIeosVK2b0t/j3c4WgZ2xN5zJ+/Hhs377dJfaxlvz8/FCjRg3he6VIkQJbt27Fnj17YmSKvOiSKlUq1KpVi/soFuAvSOQAbdq0QevWraHT6VCwYEG8fftWthFu7QItNfzYwNb83Gr9+eefWLhwoeTQJjUYjCK1mjdvjuPHjxuloFLLtAdObKFlT/SiRYtqtq6YwjA5bteuXS0uF5uOmbjs7du3iIiIgJ+fn7OLEmPVrFkTW7ZsQYMGDRR/Run54+Hh4ZQHHDy/Y7Y8efLg2LFjMWp0zd9//42bN28iZ86cZu/5+fmhZ8+ecHd3j9bJudViEN0xqlatijlz5uCnn37SZH13797FhQsXzNLHiYPRah8SOaLOVDqvVerUqc1eq1+/PgYPHuyQiZCDg4M1X6ers3XknrNSFLoyti9iLwbRiRxEXHEaGiheXl549+6dos//888/OHjwoGSe8M2bN+PFixfCBFJiGTJkwPnz520stbQ2bdqgTZs2dq+HjW5SK0GCBPjzzz/tWkdsDaJr0ZPh5cuXePXqlWRdEtsFBATg4MGDzi4GOYjpue7l5RXtk4vHVHL15IoVK7Br1y5UqVJF8bpcORBIsUNMC3R5eHhYzKc7derUaCyNbdiedwydTic5QsFWGTJkkOyMJQ6iq+0lreUDq5kzZ2Lbtm2Kv3PPnj0xcOBAo9eyZMmC0NBQTec5uXnzJk6dOmU1rVFs8vvvv+P58+fInj27s4sSa8Sme04yxnQuRNHowYMHuHDhgtFrcpO7lStXDiNHjpRs3NSsWRPt2rWT/Ny6detQs2ZNHDt2zP4CkyZ4s0GO4OPjY/c6UqRI4bDhw+Sa4kp9pMX3tDQSLC7y9PREvXr1FOUCXbFiBX788Ue7H4I6Gm9yiazLly+f0d9NmzYFwPRYMVVkZKTwb6VB9K1bt6JNmzbo2bOnZuXo2rUrdu/ejcSJEytaPlGiRJJz0Pj5+Wk6OjNz5sxo0qRJnLo+DB06FLNnz3Z2MVyaobd9jhw5FC0fl46fuIY90YmikY+Pj1ngK2fOnJg7dy7Spk2ryTZ++OEHm/OvE8VGsTVoOG7cOFy6dAkdOnRwdlFitZIlS2L69OnOLgZFo0OHDmHevHkxdtIve2lx4xddk6ASkeNNnjwZKVOmROPGjQF8DyI9f/5c096/FH3U9EQ3XA9q1KjBlB0ugsFZ51iyZAmWLl2qKqUdxU4MohO5gI4dOzq7CESxlriHS6pUqZxYEm35+/vj7Nmzzi5GrFe7dm1s2LBBsxylzpIkSRK8f/8e+fPnd3ZRooU9N5klS5ZEyZIlNSwNuSoGI4is8/Hxwbhx44xei03tqbhGSU70bt26YcmSJejVq1d0FUsznp6eiIiIQO7cuZ1dFIeIrZ2DXJ2Pjw969OiheHm2L2IvpnMhInIwpstwrnjx4uHFixcIDQ21ecIcirt0Oh3q1KmDjBkzOrsodjl9+jQ6deqE9evXO7so0YI3mbbjjR8RUeylpCf6jBkz8ObNG81GSkenU6dOoW3bttiyZYuzi0JxGNtSsRd7ohMROcjZs2cxdepUjB492tlFifNSpkzp7CIQOVX27NkxZ84cZxfDoRImTIgyZcogIiIC6dOnd3ZxKAbgTS4RxTVKc6KrnXTUVWTPnh0LFixwdjE0lzRpUoSHh6N8+fLOLgpRnMYgOpET/PDDD7hz546zi0EOli9fPixfvtzZxSAiihN0Oh327dsn/Jtsw31HRBR7iXuXs76POZ4+fYrXr18jKCjI2UUhBXhuxV5M50IOwWHUlu3YsQM///wzTp8+7eyiEBERxRo6nY43LnaKS/svLn1XIiLge27nq1ev4u7du84uCqng6enJADqRC2BPdCInyJo1a5zM01a3bl2cOnWKw+yJiIiIiIicIHv27M4uAlGsxof0sRd7ohNRtOnduze2bNnCHvhEREQuKi7d+MWl70pEFNP169cPAFCvXj0nl4SI4ir2RCdNZc2aFTdu3ECdOnWcXRRyQfHjx8fPP//s7GIQERERERFRDFK9enU8efIE/v7+zi4KkUV8SB97MYhOmjp8+DB27dqF+vXrO7soRERERKRSXLrxi0vflYgoNggICHB2EYgoDmMQnTSVKlUqNG/e3NnFICIiIiKyiEF0IiIi0pqbGzNnx1b8ZYmIiIiIKM5JkCCBs4tAREREsUTr1q2RI0cOVKtWzdlFIQdxahB97ty5yJ07N7y8vODl5YXg4GDs3LlTeP/Tp0/o0qULfH194enpibp16+L58+dOLDEREREREcVkXbt2RZUqVVC4cGFnF4WIiIhiiYULF+LSpUtImDChs4tCDuLUIHratGkxbtw4nD17FmfOnEHZsmVRs2ZNXLlyBQDQq1cvbNu2DevWrcOhQ4fw9OlTTlhJRERERKSh+PHjVobHmTNn4u+//+ZwayIiItIUU8XFbjq9Xq93diHEkidPjokTJ6JevXpImTIlVq1ahXr16gEArl+/juzZs+P48eMoUqSIovW9e/cO3t7eePv2Lby8vBxZdCIiIiKiGEev16N+/frw8/PD7NmznV0cIiIiIqJoozR27DLdTiIjI7Fu3Tq8f/8ewcHBOHv2LL5+/Yry5csLy2TLlg1BQUGqguhERERERCRPp9Nh/fr1zi4GEREREZHLcnoQ/dKlSwgODsanT5/g6emJTZs24ccff0RISAjc3d3h4+NjtLyfnx9CQ0Nl1/f582d8/vxZ+Pvdu3eOKjoRERERERERERERxXJOTwSYNWtWhISE4OTJk+jUqRNatGiBq1ev2ry+sWPHwtvbW/gvMDBQw9ISERERERERERERUVzi9CC6u7s7MmXKhPz582Ps2LHIkycPpk+fDn9/f3z58gVhYWFGyz9//hz+/v6y6xswYADevn0r/Pfo0SMHfwMiIiIiIiIiIiIiiq2cns7FVFRUFD5//oz8+fMjQYIE2LdvH+rWrQsAuHHjBh4+fIjg4GDZz3t4eMDDw0P42zBvKtO6EBEREREREREREZGBIWZsiCHLcWoQfcCAAahSpQqCgoIQHh6OVatW4eDBg9i9eze8vb3Rpk0b9O7dG8mTJ4eXlxe6deuG4OBgVZOKhoeHAwDTuhARERERERERERGRmfDwcHh7e8u+79Qg+osXL9C8eXM8e/YM3t7eyJ07N3bv3o0KFSoAAKZOnQo3NzfUrVsXnz9/RqVKlTBnzhxV2wgICMCjR4+QNGlS6HQ6R3wNl/fu3TsEBgbi0aNH8PLycnZxiMgJWA8QEcC6gIi+Y11ARADrAiJiPQB874EeHh6OgIAAi8vp9Nb6qlOM9+7dO3h7e+Pt27dx9oQgiutYDxARwLqAiL5jXUBEAOsCImI9oIbTJxYlIiIiIiIiIiIiInJVDKITEREREREREREREclgED0O8PDwwLBhw+Dh4eHsohCRk7AeICKAdQERfce6gIgA1gVExHpADeZEJyIiIiIiIiIiIiKSwZ7oREREREREREREREQyGEQnIiIiIiIiIiIiIpLBIDoRERERERERERERkQwG0YmIiIiIiIiIiIiIZDCIHsvNnj0b6dOnR8KECVG4cGGcOnXK2UUiIhuNHTsWBQsWRNKkSZEqVSrUqlULN27cMFrm06dP6NKlC3x9feHp6Ym6devi+fPnRss8fPgQ1apVQ+LEiZEqVSr89ttv+Pbtm9EyBw8eRL58+eDh4YFMmTJhyZIljv56RGSDcePGQafToWfPnsJrrAeI4oYnT56gadOm8PX1RaJEiZArVy6cOXNGeF+v12Po0KFInTo1EiVKhPLly+PWrVtG63j9+jWaNGkCLy8v+Pj4oE2bNoiIiDBa5uLFiyhRogQSJkyIwMBATJgwIVq+HxFZFxkZiSFDhiBDhgxIlCgRfvjhB4wcORJ6vV5YhnUBUexz+PBh1KhRAwEBAdDpdNi8ebPR+9F53q9btw7ZsmVDwoQJkStXLvz999+af19XwSB6LPbXX3+hd+/eGDZsGM6dO4c8efKgUqVKePHihbOLRkQ2OHToELp06YITJ05g7969+Pr1KypWrIj3798Ly/Tq1Qvbtm3DunXrcOjQITx9+hR16tQR3o+MjES1atXw5csXHDt2DEuXLsWSJUswdOhQYZl79+6hWrVqKFOmDEJCQtCzZ0+0bdsWu3fvjtbvS0SWnT59Gn/88Qdy585t9DrrAaLY782bNyhWrBgSJEiAnTt34urVq5g8eTKSJUsmLDNhwgTMmDED8+bNw8mTJ5EkSRJUqlQJnz59EpZp0qQJrly5gr1792L79u04fPgw2rdvL7z/7t07VKxYEenSpcPZs2cxceJEDB8+HPPnz4/W70tE0saPH4+5c+di1qxZuHbtGsaPH48JEyZg5syZwjKsC4hin/fv3yNPnjyYPXu25PvRdd4fO3YMjRo1Qps2bXD+/HnUqlULtWrVwuXLlx335Z1JT7FWoUKF9F26dBH+joyM1AcEBOjHjh3rxFIRkVZevHihB6A/dOiQXq/X68PCwvQJEiTQr1u3Tljm2rVregD648eP6/V6vf7vv//Wu7m56UNDQ4Vl5s6dq/fy8tJ//vxZr9fr9X379tXnyJHDaFu//PKLvlKlSo7+SkSkUHh4uD5z5sz6vXv36kuVKqXv0aOHXq9nPUAUV/Tr109fvHhx2fejoqL0/v7++okTJwqvhYWF6T08PPSrV6/W6/V6/dWrV/UA9KdPnxaW2blzp16n0+mfPHmi1+v1+jlz5uiTJUsm1A2GbWfNmlXrr0RENqhWrZq+devWRq/VqVNH36RJE71ez7qAKC4AoN+0aZPwd3Se9w0aNNBXq1bNqDyFCxfWd+jQQdPv6CrYEz2W+vLlC86ePYvy5csLr7m5uaF8+fI4fvy4E0tGRFp5+/YtACB58uQAgLNnz+Lr169G5322bNkQFBQknPfHjx9Hrly54OfnJyxTqVIlvHv3DleuXBGWEa/DsAzrDiLX0aVLF1SrVs3sXGU9QBQ3bN26FQUKFED9+vWRKlUq5M2bFwsWLBDev3fvHkJDQ43OY29vbxQuXNioLvDx8UGBAgWEZcqXLw83NzecPHlSWKZkyZJwd3cXlqlUqRJu3LiBN2/eOPprEpEVRYsWxb59+3Dz5k0AwIULF/Dvv/+iSpUqAFgXEMVF0Xnex7V7BgbRY6lXr14hMjLS6AYZAPz8/BAaGuqkUhGRVqKiotCzZ08UK1YMOXPmBACEhobC3d0dPj4+RsuKz/vQ0FDJesHwnqVl3r17h48fPzri6xCRCmvWrMG5c+cwduxYs/dYDxDFDXfv3sXcuXOROXNm7N69G506dUL37t2xdOlSAP87ly3dC4SGhiJVqlRG78ePHx/JkydXVV8QkfP0798fDRs2RLZs2ZAgQQLkzZsXPXv2RJMmTQCwLiCKi6LzvJdbJrbWC/GdXQAiIlKvS5cuuHz5Mv79919nF4WIotGjR4/Qo0cP7N27FwkTJnR2cYjISaKiolCgQAGMGTMGAJA3b15cvnwZ8+bNQ4sWLZxcOiKKLmvXrsXKlSuxatUq5MiRQ5jHJCAggHUBEZHG2BM9lkqRIgXixYuH58+fG73+/Plz+Pv7O6lURKSFrl27Yvv27Thw4ADSpk0rvO7v748vX74gLCzMaHnxee/v7y9ZLxjes7SMl5cXEiVKpPXXISIVzp49ixcvXiBfvnyIHz8+4sePj0OHDmHGjBmIHz8+/Pz8WA8QxQGpU6fGjz/+aPRa9uzZ8fDhQwD/O5ct3Qv4+/vjxYsXRu9/+/YNr1+/VlVfEJHz/Pbbb0Jv9Fy5cqFZs2bo1auXMFqNdQFR3BOd573cMrG1XmAQPZZyd3dH/vz5sW/fPuG1qKgo7Nu3D8HBwU4sGRHZSq/Xo2vXrti0aRP279+PDBkyGL2fP39+JEiQwOi8v3HjBh4+fCic98HBwbh06ZLRBXPv3r3w8vISbsaDg4ON1mFYhnUHkfOVK1cOly5dQkhIiPBfgQIF0KRJE+HfrAeIYr9ixYrhxo0bRq/dvHkT6dKlAwBkyJAB/v7+Rufxu3fvcPLkSaO6ICwsDGfPnhWW2b9/P6KiolC4cGFhmcOHD+Pr16/CMnv37kXWrFmRLFkyh30/IlLmw4cPcHMzDuvEixcPUVFRAFgXEMVF0Xnex7l7BmfPbEqOs2bNGr2Hh4d+yZIl+qtXr+rbt2+v9/Hx0YeGhjq7aERkg06dOum9vb31Bw8e1D979kz478OHD8IyHTt21AcFBen379+vP3PmjD44OFgfHBwsvP/t2zd9zpw59RUrVtSHhITod+3apU+ZMqV+wIABwjJ3797VJ06cWP/bb7/pr127pp89e7Y+Xrx4+l27dkXr9yUiZUqVKqXv0aOH8DfrAaLY79SpU/r48ePrR48erb9165Z+5cqV+sSJE+tXrFghLDNu3Di9j4+PfsuWLfqLFy/qa9asqc+QIYP+48ePwjKVK1fW582bV3/y5En9v//+q8+cObO+UaNGwvthYWF6Pz8/fbNmzfSXL1/Wr1mzRp84cWL9H3/8Ea3fl4iktWjRQp8mTRr99u3b9ffu3dNv3LhRnyJFCn3fvn2FZVgXEMU+4eHh+vPnz+vPnz+vB6CfMmWK/vz58/oHDx7o9froO++PHj2qjx8/vn7SpEn6a9eu6YcNG6ZPkCCB/tKlS9G3M6IRg+ix3MyZM/VBQUF6d3d3faFChfQnTpxwdpGIyEYAJP9bvHixsMzHjx/1nTt31idLlkyfOHFife3atfXPnj0zWs/9+/f1VapU0SdKlEifIkUKfZ8+ffRfv341WubAgQP6n376Se/u7q7PmDGj0TaIyLWYBtFZDxDFDdu2bdPnzJlT7+Hhoc+WLZt+/vz5Ru9HRUXphwwZovfz89N7eHjoy5Urp79x44bRMv/995++UaNGek9PT72Xl5e+VatW+vDwcKNlLly4oC9evLjew8NDnyZNGv24ceMc/t2ISJl3797pe/TooQ8KCtInTJhQnzFjRv2gQYP0nz9/FpZhXUAU+xw4cEAyNtCiRQu9Xh+95/3atWv1WbJk0bu7u+tz5Mih37Fjh8O+t7Pp9Hq93jl94ImIiIiIiIiIiIiIXBtzohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIiIiIiIiIpLBIDoRERERERERERERkQwG0YmIiIiIiIiIiIiIZDCITkREREREREREREQkg0F0IiIiIiIiIiIiIiIZDKITEREREZGkJUuWwMfHx9nFICIiIiJyKgbRiYiIiIhcVMuWLVGrVi2z1w8ePAidToewsLBoLxMRERERUVzDIDoREREREZn5+vWrs4tAREREROQSGEQnIiIiIorhNmzYgBw5csDDwwPp06fH5MmTjd7X6XTYvHmz0Ws+Pj5YsmQJAOD+/fvQ6XT466+/UKpUKSRMmBArV640Wv7+/ftwc3PDmTNnjF6fNm0a0qVLh6ioKM2/FxERERGRK2AQnYiIiIgoBjt79iwaNGiAhg0b4tKlSxg+fDiGDBkiBMjV6N+/P3r06IFr166hUqVKRu+lT58e5cuXx+LFi41eX7x4MVq2bAk3N95aEBEREVHsFN/ZBSAiIiIiInnbt2+Hp6en0WuRkZHCv6dMmYJy5cphyJAhAIAsWbLg6tWrmDhxIlq2bKlqWz179kSdOnVk32/bti06duyIKVOmwMPDA+fOncOlS5ewZcsWVdshIiIiIopJ2F2EiIiIiMiFlSlTBiEhIUb//fnnn8L7165dQ7FixYw+U6xYMdy6dcso2K5EgQIFLL5fq1YtxIsXD5s2bQIALFmyBGXKlEH69OlVbYeIiIiIKCZhT3QiIiIiIheWJEkSZMqUyei1x48fq1qHTqeDXq83ek1q4tAkSZJYXI+7uzuaN2+OxYsXo06dOli1ahWmT5+uqixERERERDENg+hERERERDFY9uzZcfToUaPXjh49iixZsiBevHgAgJQpU+LZs2fC+7du3cKHDx9s2l7btm2RM2dOzJkzB9++fbOY/oWIiIiIKDZgEJ2IiIiIKAbr06cPChYsiJEjR+KXX37B8ePHMWvWLMyZM0dYpmzZspg1axaCg4MRGRmJfv36IUGCBDZtL3v27ChSpAj69euH1q1bI1GiRFp9FSIiIiIil8Sc6EREREREMVi+fPmwdu1arFmzBjlz5sTQoUMxYsQIo0lFJ0+ejMDAQJQoUQKNGzfGr7/+isSJE9u8zTZt2uDLly9o3bq1Bt+AiIiIiMi16fSmyRGJiIiIiIgsGDlyJNatW4eLFy86uyhERERERA7HnuhERERERKRIREQELl++jFmzZqFbt27OLg4RERERUbRgEJ2IiIiIiBTp2rUr8ufPj9KlSzOVCxERERHFGUznQkREREREREREREQkgz3RiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIiIiIiIiIpLBIDoRERERERERERERkQwG0YmIiIiIiIiIiIiIZDCITkREREREREREREQkg0F0IiIiIiIiIiIiIiIZDKITEREREREREREREclgEJ2IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5EREREREREREREJINBdCIiIiIiIiIiIiIiGQyiExERERERERERERHJYBCdiIiIiIiIiIiIiEgGg+hERERERERERERERDIYRCciIiIiIiIiIiIiksEgOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIgoGg0fPhw//fSTs4vhVOnTp8e0adOcXQwiIiIiIkUYRCciIiIiUig0NBTdunVDxowZ4eHhgcDAQNSoUQP79u1zdtFiPb1ejypVqkCn02Hz5s3OLg4RERERxSHxnV0AIiIiIqKY4P79+yhWrBh8fHwwceJE5MqVC1+/fsXu3bvRpUsXXL9+3dlFjNWmTZsGnU7n7GIQERERURzEnuhERERERAp07twZOp0Op06dQt26dZElSxbkyJEDvXv3xokTJ4TlHj58iJo1a8LT0xNeXl5o0KABnj9/Lrve0qVLo2fPnkav1apVCy1bthT+Tp8+PUaNGoXmzZvD09MT6dKlw9atW/Hy5UthW7lz58aZM2eEzyxZsgQ+Pj7YvXs3smfPDk9PT1SuXBnPnj2ze1+EhYWhQ4cO8PPzQ8KECZEzZ05s375deH/Dhg3IkSMHPDw8kD59ekyePNmu7YWEhGDy5MlYtGiRvUUnIiIiIlKNQXQiIiIiIitev36NXbt2oUuXLkiSJInZ+z4+PgCAqKgo1KxZE69fv8ahQ4ewd+9e3L17F7/88ovdZZg6dSqKFSuG8+fPo1q1amjWrBmaN2+Opk2b4ty5c/jhhx/QvHlz6PV64TMfPnzApEmTsHz5chw+fBgPHz7Er7/+alc5oqKiUKVKFRw9ehQrVqzA1atXMW7cOMSLFw8AcPbsWTRo0AANGzbEpUuXMHz4cAwZMgRLliyxaXsfPnxA48aNMXv2bPj7+9tVdiIiIiIiWzCdCxERERGRFbdv34Zer0e2bNksLrdv3z5cunQJ9+7dQ2BgIABg2bJlyJEjB06fPo2CBQvaXIaqVauiQ4cOAIChQ4di7ty5KFiwIOrXrw8A6NevH4KDg/H8+XMh2Pz161fMmzcPP/zwAwCga9euGDFihM1lAIB//vkHp06dwrVr15AlSxYAQMaMGYX3p0yZgnLlymHIkCEAgCxZsuDq1auYOHGiUe96pXr16oWiRYuiZs2adpWbiIiIiMhW7IlORERERGSFuHe3JdeuXUNgYKAQQAeAH3/8ET4+Prh27ZpdZcidO7fwbz8/PwBArly5zF578eKF8FrixImFADoApE6d2uh9Uzly5ICnpyc8PT1RpUoVyWVCQkKQNm1aIYBu6tq1ayhWrJjRa8WKFcOtW7cQGRkpu20pW7duxf79+zFt2jRVnyMiIiIi0hJ7ohMRERERWZE5c2bodDqHTB7q5uZmFqT/+vWr2XIJEiQQ/m2YYFPqtaioKMnPGJax9EDg77//FradKFEiyWXkXneE/fv3486dO0K6HIO6deuiRIkSOHjwYLSVhYiIiIjiLvZEJyIiIiKyInny5KhUqRJmz56N9+/fm70fFhYGAMiePTsePXqER48eCe9dvXoVYWFh+PHHHyXXnTJlSqPJPiMjI3H58mVtv4BC6dKlQ6ZMmZApUyakSZNGcpncuXPj8ePHuHnzpuT72bNnx9GjR41eO3r0KLJkySLkTVeqf//+uHjxIkJCQoT/gO/54RcvXqxqXUREREREtmIQnYiIiIhIgdmzZyMyMhKFChXChg0bcOvWLVy7dg0zZsxAcHAwAKB8+fLIlSsXmjRpgnPnzuHUqVNo3rw5SpUqhQIFCkiut2zZstixYwd27NiB69evo1OnTkJQ3hWVKlUKJUuWRN26dbF3717cu3cPO3fuxK5duwAAffr0wb59+zBy5EjcvHkTS5cuxaxZs2ya0NTf3x85c+Y0+g8AgoKCkCFDBk2/FxERERGRHAbRiYiIiIgUyJgxI86dO4cyZcqgT58+yJkzJypUqIB9+/Zh7ty5AL6nS9myZQuSJUuGkiVLonz58siYMSP++usv2fW2bt0aLVq0EILtGTNmRJkyZaLra9lkw4YNKFiwIBo1aoQff/wRffv2FfKd58uXD2vXrsWaNWuQM2dODB06FCNGjLBpUlEiIiIiIleg0yudJYmIiIiIiIiIiIiIKI5hT3QiIiIiIiIiIiIiIhkMohMRERERkVOsXLkSnp6ekv/lyJHD2cUjIiIiIgLAdC5EREREROQk4eHheP78ueR7CRIkQLp06aK5RERERERE5hhEJyIiIiIiIiIiIiKSwXQuREREREREREREREQynBpET58+PXQ6ndl/Xbp0AQB8+vQJXbp0ga+vLzw9PVG3bl3Z4Z5ERERERERERERERFpzajqXly9fIjIyUvj78uXLqFChAg4cOIDSpUujU6dO2LFjB5YsWQJvb2907doVbm5uOHr0qOJtREVF4enTp0iaNCl0Op0jvgYRERERERERERERxTB6vR7h4eEICAiAm5t8f3OXyones2dPbN++Hbdu3cK7d++QMmVKrFq1CvXq1QMAXL9+HdmzZ8fx48dRpEgRRet8/PgxAgMDHVlsIiIiIiIiIiIiIoqhHj16hLRp08q+Hz8ay2LRly9fsGLFCvTu3Rs6nQ5nz57F169fUb58eWGZbNmyISgoSFUQPWnSpAC+7wgvLy+HlJ2IiIiIiIiIiIiIYpZ3794hMDBQiCHLcZkg+ubNmxEWFoaWLVsCAEJDQ+Hu7g4fHx+j5fz8/BAaGiq7ns+fP+Pz58/C3+Hh4QAALy8vBtGJiIiIiIiIiIiIyIi1NOBOnVhUbOHChahSpQoCAgLsWs/YsWPh7e0t/MdULkRERERERERERERkK5cIoj948AD//PMP2rZtK7zm7++PL1++ICwszGjZ58+fw9/fX3ZdAwYMwNu3b4X/Hj165KhiExEREREREREREVEs5xJB9MWLFyNVqlSoVq2a8Fr+/PmRIEEC7Nu3T3jtxo0bePjwIYKDg2XX5eHhIaRuYQqXmE2v1+Ps2bN4//69s4tCREREREREREREcZTTc6JHRUVh8eLFaNGiBeLH/19xvL290aZNG/Tu3RvJkyeHl5cXunXrhuDgYMWTiqrx7ds3fPnyRfP1ku12796NAQMGIEuWLFizZo1Dt+Xu7m50/BEREREREREREREBLhBE/+eff/Dw4UO0bt3a7L2pU6fCzc0NdevWxefPn1GpUiXMmTNH0+3r9Xo8fPgQr1690nS9ZL+goCCsXLkSAHDt2jWHby9FihQICgqyOpEAEZFaer0egPWJSoiIiIiIiIjI9ej0hjv7WOrdu3fw9vbG27dvJVO7PHjwAK9evUKaNGng6ekJNzeXyHBD0SgqKgoRERF48uQJUqRIgXTp0jm7SEQUi0RFRSE4OBienp74559/GEgnIiIilxYSEoLu3btj7NixKFasmLOLQ0REdti3bx/Wrl2LyZMnw9PT09nFcUnWYscGTu+J7kzfvn0TAuiWJiul2M9QkTx58gSenp7w9fV1comIKLa4d+8eTp06BQD4/PkzEiZM6OQSEREREcmrUKECXr16heLFiyOW97kjIor1ypcvDwDw8fHB+PHjnVyamC1Od7s25EDnkxgC/ncc7N+/H2/evHFyaYgothDffLIXOhEREbk6pjolIop97t275+wixHhxOohuwBQuBPzvOAgNDcW+ffucXBoiio0YRCciIiKKO9iTn4hcBesj+zF6TGTC09MTL1++xLdv35xdFCKKBdhYISKK2SIjI/Hp0ydnF4OIYpg7d+4gKCgIU6dOdXZRXFZERATevXvn7GIQxQm8L7Ufg+hEJtzc3BAVFYXIyEhnF4WIiIiInKxw4cLw9PRkoIeIVPn111/x+PFj9O7d29lFcUmRkZFImjQpvL29hVS7RESujEH0GOjw4cOoUaMGAgICoNPpsHnzZrNl9Ho9hg4ditSpUyNRokQoX748bt26ZbTM69ev0aRJE3h5ecHHxwdt2rRBRESE0TIXL15EiRIlkDBhQgQGBmLChAlm21q3bh2yZcuGhAkTIleuXPj7778tln/JkiXQ6XTQ6XSIFy8ekiVLhsKFC2PEiBF4+/atqn1x//596HQ6hISEqPocEVF04RN/IqKY7ezZs4iMjMShQ4ecXRQiikE4stmyDx8+CP9+/vy5E0tCFDfwvtR+DKLHQO/fv0eePHkwe/Zs2WUmTJiAGTNmYN68eTh58iSSJEmCSpUqGQ1FbdKkCa5cuYK9e/di+/btOHz4MNq3by+8/+7dO1SsWBHp0qXD2bNnMXHiRAwfPhzz588Xljl27BgaNWqENm3a4Pz586hVqxZq1aqFy5cvW/wOXl5eePbsGR4/foxjx46hffv2WLZsGX766Sc8ffrUjr1DRORa2FghIleg1+sxduxY7N6929lFISIiIiKKcRhEj4GqVKmCUaNGoXbt2pLv6/V6TJs2DYMHD0bNmjWRO3duLFu2DE+fPhV6rV+7dg27du3Cn3/+icKFC6N48eKYOXMm1qxZIwSxV65ciS9fvmDRokXIkSMHGjZsiO7du2PKlCnCtqZPn47KlSvjt99+Q/bs2TFy5Ejky5cPs2bNsvgddDod/P39kTp1amTPnh1t2rTBsWPHEBERgb59+wrL7dq1C8WLF4ePjw98fX1RvXp13LlzR3g/Q4YMAIC8efNCp9OhdOnSAIDTp0+jQoUKSJEiBby9vVGqVCmcO3dO9b4mItISA+pE5Cw7duzAwIEDUblyZWcXhYiIiO1iF9e2bVu0bNnS2cVweZGRkdi9ezdev37t7KJYxXPOfgyii+j1erx//94p/2l5MN+7dw+hoaEoX7688Jq3tzcKFy6M48ePAwCOHz8OHx8fFChQQFimfPnycHNzw8mTJ4VlSpYsCXd3d2GZSpUq4caNG3jz5o2wjHg7hmUM21EjVapUaNKkCbZu3SrkI3///j169+6NM2fOYN++fXBzc0Pt2rURFRUFADh16hQA4J9//sGzZ8+wceNGAEB4eDhatGiBf//9FydOnEDmzJlRtWpVhIeHqy4XERERUUx3//59ZxchxtPpdM4uAhERkZFz586haNGiOHLkiGbrfPv2LRYuXIilS5cy1Y4V8+bNQ+XKlVGwYEFnF8UqBtHtF9/ZBXAlHz58gKenp1O2HRERgSRJkmiyrtDQUACAn5+f0et+fn7Ce6GhoUiVKpXR+/Hjx0fy5MmNljH09Bavw/BesmTJEBoaanE7amXLlg3h4eH477//kCpVKtStW9fo/UWLFiFlypS4evUqcubMiZQpUwIAfH194e/vLyxXtmxZo8/Nnz8fPj4+OHToEKpXr25T2YiI7MWGCxEREQHf02KmT58eAQEBzi4K2eHu3bu4desWKlWq5OyiUBxVrlw5hIWFoWTJkprdaxg6LQIQOjg6wtu3b3Hy5EmULVsW8ePHzPDk2rVrAXyvCyj2Y090cimGSt/Q0+fWrVto1KgRMmbMCC8vL6RPnx4A8PDhQ4vref78Odq1a4fMmTPD29sbXl5eiIiIsPo5ci0MOFJswOOYyDUdOnQI//zzj7OLQUR2ePfuHUaMGIGbN286uyiqnDhxAsWKFUOaNGmcXRSy0w8//IDKlStL9gJmG1A5jvSxXVhYmObrjK7fo1SpUqhUqZJRymByHNZJ9mMQXSRx4sSIiIhwyn+JEyfW7HsYemSbDrt5/vy58J6/vz9evHhh9P63b9/w+vVro2Wk1iHehtwy4l7haly7dg1eXl7w9fUFANSoUQOvX7/GggULcPLkSSHVzJcvXyyup0WLFggJCcH06dNx7NgxhISEwNfX1+rnyHVcvnwZAQEBmDt3rrOLQmQXcWOFDRci1/D161eULl0aFSpUEFLUaSkyMhKXLl1yqXPelcpCpJWePXti2LBhyJ49u7OLosqhQ4ecXYQYLTIyElOmTBFSe7qCEydOOLsIRDHOhQsXAHyfj48cj21B+zGILqLT6ZAkSRKn/Kflk74MGTLA398f+/btE1579+4dTp48ieDgYABAcHAwwsLCcPbsWWGZ/fv3IyoqCoULFxaWOXz4ML5+/Soss3fvXmTNmhXJkiUTlhFvx7CMYTtqvHjxAqtWrUKtWrXg5uaG//77Dzdu3MDgwYNRrlw5ZM+e3exG15Cv3XSI0dGjR9G9e3dUrVoVOXLkgIeHB169eqW6TOQ8bdu2RWhoKDp37uzsohARUSzz+fNn4d+O6MHVtm1b5M6dG2PHjtV83eQ87Cnpeo4ePQrAOPVATMBjyT7Lly9Hnz59hPtWIiItvH37FrVr18b69eudXRRyUQyix0AREREICQlBSEgIgO8TiYaEhAipSnQ6HXr27IlRo0Zh69atuHTpEpo3b46AgADUqlULAJA9e3ZUrlwZ7dq1w6lTp3D06FF07doVDRs2FPLyNW7cGO7u7mjTpg2uXLmCv/76C9OnT0fv3r2FsvTo0QO7du3C5MmTcf36dQwfPhxnzpxB165dLX4HvV6P0NBQPHv2DNeuXcOiRYtQtGhReHt7Y9y4cQCAZMmSwdfXF/Pnz8ft27exf/9+o20D3ycjTZQoEXbt2oXnz5/j7du3AIDMmTNj+fLluHbtGk6ePIkmTZogUaJEdu97ij6OzL1GFJ1iwxP/r1+/IiIiwtnFIHIIRwSzlixZAgD4/fffsXz5cnTt2tXpQb7YUBcREQHfR6xSzBfXrksPHz50elvAVbnKsTBixAhs3rwZ9evXV/wZVym7EjGprK6KQfQY6MyZM8ibNy/y5s0LAOjduzfy5s2LoUOHCsv07dsX3bp1Q/v27VGwYEFERERg165dSJgwobDMypUrkS1bNpQrVw5Vq1ZF8eLFMX/+fOF9b29v7NmzB/fu3UP+/PnRp08fDB06FO3btxeWKVq0KFatWoX58+cjT548WL9+PTZv3oycOXNa/A7v3r1D6tSpkSZNGgQHB+OPP/5AixYtcP78eaROnRoA4ObmhjVr1uDs2bPImTMnevXqhYkTJxqtJ378+JgxYwb++OMPBAQEoGbNmgCAhQsX4s2bN8iXLx+aNWuG7t27m02kqta2bdtQqFAh3Lhxw671xBXfvn2z6/PsoUOxkaMbLnq9Hnv27MHTp081XW+2bNmQNGlSh/TYJYrNoqKi0Lx5c8yePRubN292dnFczsuXL1GmTJkYM4ybbRPXE1N/k5ha7thIr9dj5syZLpUahmKfNWvWIF26dGjatKmzi6Ka1vcvDx48wIYNG1zygYJpyuPYhkF0+8XM6W/juNKlS1s9+HU6HUaMGIERI0bILpM8eXKsWrXK4npy584tOUmKWP369VU9qWvZsiVatmypaNny5cvj6tWrRq+Zfve2bduibdu2Rq/lzZsXp0+fNnqtXr16isso5eeffwYANGrUCOfOnbNrXZa8f/8eU6dORe3atZEjRw6HbceRmjZtim3btuHOnTtIkSKF3etr2LAhevXqxSGbJCsqKgpubq75XDg6Gyvbtm0THiZquV3DbPNHjx5FtWrVNFuvFMMolHjx4jl0O0TRQXyD+N9//zmxJK5p0KBBOHjwIA4ePIgmTZo4uzgk4dOnTwBg1BGHlPny5YuQetIUg+iuY926dejevTsABpisCQ0NRfLkyWWPa5I3evRoAMDq1autxmBcgSPrqPTp0wMAVqxY4bBtEDmKa0YciFyYIyYgExs6dCiGDBlitTe/K1u5ciXevXuHZcuWabK+v/76C0WKFLH589u2bTPK/08xi7UbmkePHsHf3x9DhgyJphLZzp6bM3EOZzl79+61ef2uQK/XI1euXMicObNsSqfQ0FD06dMHN2/ejObSUWwSXYEScRD9xYsXeP36dbRsV4rpdz537hwWLVrk1KCRo9tUZJ9v374hWbJkSJQoETp16oT37987u0gxxsSJE+Hh4YF//vlH8n0G0e2jZb115coV1Z/5/PkzwsPDNSuDEnq9Hvv373faA9lr164hderUyJMnj0PWH5fPiVevXmHz5s12j+S2JiQkxKZUSI5qJxw8eNDh2yBj3M/2YxCdSCVHVzwnT5506PrjmqtXr+Lnn39GgQIFnF0Uh/r8+TOGDBmCEydOaLK+rVu3ukTqgXHjxiEgIAD37t2TXWbYsGF4+fIlRo0aFY0li16dOnVCwoQJrd7oxfQbkIiICFy7dg337t3Do0ePJJdp2LAhpkyZgkKFCkVz6RwjLjVmN27ciLRp0woTATrKgQMHMH78eMX7NrrOm8GDB8PX19dlhi/nz58fbdq0wfbt251dlBgvNDQUixcvxsePH51dFE29ePFC6Ik+b948jBkzxsklMueq172+ffsCANq0aSP5vquWOy6y5bcIDAyEl5cX3r17Z3E5La/xa9asQbly5fDjjz9qtk41DBMtXr9+3Snbj+ksHQuFChVC7dq1zVLX2uL8+fOSr7979w558+ZFrly5HB6sj8lYN5M1DKITxWEvX77Erl27ZG/o7927Z1fjz9nBoZs3b6JixYpOLUN0mTJlCkaNGoXg4GC71/X+/XvUrFkTtWvXxvnz5/H48WMNSmibAQMGIDQ0FAMGDHBaGewlPg9sPSfmzZsHAMLEy7GVkobrsWPHAECYSDomu3r1Kvz8/DB9+nTJ951dh2qtbt26ePLkCapWrerQ7ZQtWxb9+/fHxo0bHbodWzlr4my54+nSpUvRXBLrPn/+jD179rhcUFqujgoODkbr1q0xcODAaC5R9Lpz546zi2CGAY+4ydnXx5cvXwKQD1g6wqZNmwDErpzNzv4dXYWhs9CGDRvsXpe4d7eY4ZgFgK9fv9q9HYqZeM7Zj0F0IpVcueKJjIzEmTNnJC+Mhp5EYnny5EGVKlUwbNgws3Qn06dPR8aMGYUcgTFRsWLF8OTJE1WfWbZsGf78808HlcgxPnz4gF27dmm2PvFw7Xz58iEwMFCzddvK2T03jx49isKFCwu5wbWkZUDN0cGE6AxWuHJdq5UuXbrg5cuX6Nmzp9l7e/bsQapUqbBly5boL5iDffnyJVq244oBP0DZeRQZGYlGjRph0qRJ0VAi19OjRw9UqlQJzZo1c3ZRFLl//z4AxOjzNTIyEkWLFkXdunWF17Ss8zds2ICQkBDN1ucoJ0+exOHDh51dDFXevHmD1atX48OHD84uSoyk9jgX9+KNC20VA2vf1ZbArD37782bN9i2bZvLBISjoqJw6tQpyXvu6C6HNa5y3LpKOZwhIiLCKR0F4vI+1wqD6EQuxp6KbciQIShYsCDatWtn9Pq+ffuQKFEi/P7770avP3v2DAAwatQoFChQALdu3RLe69+/PwBg1qxZNpfHHlrcuL169UrV8p8+fUKLFi3Qrl072XyDJ06ccLkeIBkyZIhxN3xqaXXBj4yMtCkHb/HixXHq1Cn88MMPRq/fu3cPEyZMsDic11LZw8LCEBAQgObNm6sukyM8evQIU6dOtTo82VHiWo9CS8dGpUqV8OrVK9SqVSv6ChRNXKEBr6QMR44cwdixYxEWFub4ApnYtWsX1qxZg99++83h23KF38PUH3/8AUCbXnn2ctbIAYMHDx5ES1Dm0qVLOH78uNEIDtNjw9K+0Ov12L17N/bs2WO23MmTJ1GvXj3kzZtX20Lb6NOnT5L53b99+4YiRYqgVKlSDs/Xr+X1rnr16mjcuLHTO75ERUWhY8eOWLBgAU6fPu1y7WWtzJ0719lFcDkbN26Eu7u7ZvNhKVGqVCn8/PPPGDt2bLRt05Jp06ahcOHCqF27tlPLIXdNt6fOccV2gjNFRkZi3Lhx+Pfff236/PXr15E0aVIkTpwYq1ev1rh05GgMosP5PRzJNRiOA2sXCVe+iBgaEUuXLjV6vVOnTgCA4cOHA/g+TLpLly5mnxf3ENLie7ryvpIi7h0p1Zvn4MGDCA4ORpo0aaKzWFZpfZPiir9bSEgI5s2bZ3d9XbZsWSRPnlyzSSnz5cuHfv36Gd24Pnr0CM2bN5cc4mu6b1euXIkXL15g+fLlirZnrQFs7015kSJF0Lt3b6P6Yfz48Xat01audBxeu3YNBQoUwIoVK5xdlBjj06dPuH37tuR7nz9/xsKFC6O5RPKkzpsnT56gZMmSGDhwIGrUqBHtZYqIiNB8nc46p96/f280KmDo0KHImjVrjJhUtFmzZkiVKpXTth8SEoL06dPjp59+UrT8rFmz8Msvv9iU71bJwwJDTmQp69atQ+XKlVGpUiX07t3b6L2rV68K/x4/fjzKly/vtN6aer0eKVKkgKenp1EZPnz4gAwZMgh/O3oSYC2D6IY0ZytXrtRsnbbYvn07/vjjD7Rv3x6FChWCv7+/w7alZX0m/i1q165tta25Z88eh5RDS48ePULWrFkxY8aMaNmeYQRLixYtVH3Onv1nSEW2atUqm9ehJcO+1nJ0sC3kjl+1+9pVj21HOXLkCGrXro2HDx9aXXblypUYMGAASpQoIfl+ZGQkNm3ahNDQUMn3DWk6AaBx48a2FdhGce13dYT4zi6AMyVMmBBubm64d+8e0qRJAw8PjzjXC46+VySfP3/GgwcPEBUV5fQhWI4gvphevnwZzZo1szqk9vPnz8K/CxUqhCZNmqBHjx6OKqJLsNZo3r17NwBwMhYZer0eDRs2RJIkSbBo0SLhtc+fPyNhwoR2rfv27dvo1KkTkiZNiiZNmti8HkOP/eXLl2PkyJF2lQmA0EP1wIEDwmuNGjXC0aNHsXz5cuj1ek0bK1o3fF69eoVFixahadOmCAgIwNOnTwH871gH/jcqJTpEZw8mNZo1a4azZ8+iTZs2aNq0qbOLEyMUKVIEFy5cwIEDB1C6dGmz99u2bSs74V50sHYuiR+02drTyNZt37t3Dw0bNtR0m5Y44obKsE6dTodMmTIhNDQU58+fx08//STUvXJzAajx77//okePHpg1a5Ymc4KYMn1wpuWDzMePH+P9+/fw9vaWDTauW7cOAHDjxg28fv0ayZMnt7jObt26AQBq1qyp+sbc3ofUO3fuFP49Y8YMo99XvF8M15Rly5ahffv2dm3TdN1KGXqh3717V5ikcePGjQ6ZA0aufLHxntP0wVhMDNZs3rwZJ06cQNGiRWWXiQm/3YABA3Dz5k306NFDsxEKjrxWAOr2q7i+cpUOkdbKoWT/abGPHZHOxVXP5UePHmH27Nno3LkzgoKC7FpXyZIlFS9rrTPWnDlz0L17d/j6+kqOjHfm/owJ9ZerUxRET5YsmeKdrfap/ZMnT9CvXz/s3LkTHz58QKZMmbB48WIUKFAAwPcDbNiwYViwYAHCwsJQrFgxzJ07F5kzZ1a1HSlubm748ccfce/ePWEyB4q7rl+/Dnd3d0RFRcHNzQ1ubtIDNbSs9CIiInDx4kUUKVJEdnvWPHz4EFWqVLHYQBL3LsqVK5fqbZw+fRqnT59GsWLFhHPT0Wyt4G/cuIEJEyaonojy2LFjKFasmE3bpO8ePXqEtWvXAgBmz56NRIkSoXnz5lixYgVu3rwpWW+vX78ea9aswaJFi+Dl5WV1G+fPn7c5iH706FGbPqfWiRMnjP7WYmJRpdSeN40bN8bevXuxbNkyXL58WXjdWY27zp07O70MUgwN4C9fvuDvv//GmDFjsGTJEmTKlMmu9ar9vZ4+fYpRo0ahS5cuyJEjh13bdrQLFy4A+B4okwqiRwfTY0iv1wv73NrxNWbMGIeVyxpHBdDlvrM959qaNWuwfPlyrFixAsmSJQPw/Qa+aNGi8PLywu7du4WeWNu2bTPqUa1FmhRDL7BixYq5RCDFdF+ePXsWq1atwtChQ+Ht7W30nni+kfHjx6Nv375m6/Pw8BD+7evri3379qFs2bKYOnUqfHx80KpVK8ly2JKSy5F1rlQb11mTxjr6mrxw4ULhXFDj9OnT8PHx0eQeN6aYN28erly5ghkzZqi+Hkr9dg8ePMDKlSvRqVMnVb+B6bbFHYlsKYdaW7duxZQpU7B06VKkS5fO7vUB6r6DI0VGRqJly5bInz+/5PwvtujUqRO2bdsm/O0q7UVXKYfctVB8nMekvOmWVK9eHRcvXsTWrVuNRjw5mrX6avv27QAgmx42JuxbkqcoiD5t2jSHbPzNmzcoVqwYypQpg507dyJlypS4deuW0UVvwoQJmDFjBpYuXYoMGTJgyJAhqFSpEq5evWp3z0bge+M0a9asWLt2LV6+fAl/f38+nZHx/PlzbN++HYUKFcLx48cBfB/yljJlSgDA/PnzAQDp0qVDwoQJcePGDQBQ3cvEsB6x9u3bC683bNjQKNgmXt50W5beM/jzzz/x+vVrvH37FoMHD8bbt2+RLl06JEiQQFW5bVG+fHmcPHkSc+bMEVKuGIZkKvXbb7/h6tWr6Nixo+wyWt1YFixYUDIoERkZifjxzasTSxeIy5cvY/Xq1ejbt6/ZjaU1r1+/RtmyZdGkSROzfLFlypTBs2fPhJ7QStWrV0/V8rGZrRd2qYCIoRff9OnTJfPr169fHwCQKVMmjBs3zmFlA77nNXcUw3Xj8OHDqgJDaq83Wl+f9u7dCwC4cuWKU7ZvC6U9eUJCQpAjRw64u7truv1q1aoB+N473XAtvHTpEnbu3IkePXoYBb201qhRIxw+fBgLFy7U9AY5KioKgwYNQpEiRVCzZk3h9SVLlmDlypVYt24dfHx8bFr34sWLVdfHjjBo0CAsW7YMZ86cgZ+fn9F7Usf1P//847CyWDuGtZgQtU+fPvj27Zui3t721KuNGjUC8D1dnGFbd+7cwcmTJwEYTzSndDu2tFmi64ZUbR1o6HgQEREh5HmX0q9fP6Mg+pEjR3DmzBmz+mvUqFHImDGjkC5FLogOQOgUYs1///2HePHioWrVqmbvSe3XrVu3onz58kicOLHVdRvY2lHEEZQeK7Zc7+7fv4+2bduqXv+TJ09QqFAhVeWztk5nmDBhgqrlDfc+devWVf2wVWo/BQcH49mzZxg0aBDq1Klj85wKauogNWlAP378iESJEpktY7jutmvXzihVjCsTP5S2ZNOmTVixYgVWrFghGUS3tv++fftmdo8pToUBxJye6EpY2qeRkZHYuXMnChcuLMRfbC2HKwZxpcp09epVrFu3Dr1790bSpEnN3r948SKA72kXXUl0xJHErl+/jl9++QVDhgxhTCMaKAqiq81tpdT48eMRGBiIxYsXC6+Jc9Hp9XpMmzYNgwcPFi4uy5Ytg5+fHzZv3qxZTx2dTocSJUpgx44duH79OhImTOj0Rogr2rx5MyIiIrBlyxbhtUePHglDIg15mb98+YIUKVIIf9+/f1/VdqTyO9+/f194/e7du0Y38+LlTbdl6T2Dly9fIjIyEokTJ8b9+/fh5+cXbb3mDDeZixYtQqdOnYTcbmoo6cnjyAtl7dq1cezYMdy5c0fy4ibH0CM+NDRUdW7cSZMm4cKFC7hw4YIQRN+1axeGDRsmTJYq5cuXL5IBtU+fPln8HDme0rzu0d3oe/bsmaKHPIZrxrBhw8zes9TrTavvs3//frx//16za5crNq7VmD17Nrp164YqVarg77//dsg2xMMzc+fODeB7z68hQ4Zovq2IiAh4enri7NmzAIznb9DC+vXrhYdY4t/eEKAbM2aM6uCI2Js3b4QHDmLh4eGqrhumlAYJgf/1LJ84cSImTZqk+hj/77//4Ovra/RaeHg4li5ditq1a2s6V4a9Acd3795hypQpAICBAweaPTSQEhkZiXjx4tm8zRkzZmDKlClm6xDXSab7XK6+Cg8Pl91OeHg49uzZg8qVKyNJkiQWy6Tm+HA0te07w7ByqeHlSia67dSpE6ZOnYqLFy9afLD36NEj1UPga9asiaZNm2L58uX48OGDomC6q/wOgPw1ObontBdvT6t5Wqx59OgRJkyYgO7duzukx7utPUFtGTlh6KwlJm7Lb9y4Ee/fv7daT0ixdn2w9VhJkiQJ3rx5I9uufPnypU3rdQY3NzeMGzcO/fr1s7ictRRJcvv6/v37eP78OcqUKYN27dpZfCAsfljrTLa2ncUZESytY+7cuejWrRvSpEmDR48eYe/evciePbvRqCZAuyC6K9wLGEZdvnjxArNnz7Z7fXq9HhcvXkTWrFnt6pBrWgeY7itxEL1BgwaIiorCunXrFI+GVKtFixa4ePEi6tev7xK/W2xnU070O3fuYPHixbhz5w6mT5+OVKlSYefOnQgKClI1vHjr1q2oVKkS6tevj0OHDiFNmjTo3Lkz2rVrB+B7hRIaGory5csLn/H29kbhwoVx/PhxTYe7BgQEoFq1arh+/TrevXvHg0/Cx48fzRo5/v7+SJs2LYD/NYASJ06M+PHjC39nzJhR1XakGlIZMmQQXk+dOjVSp04tubzptiy99+rVKxw6dMgof1/RokWRLVs2BAQEqCqzVsRD05RQepxqMWRajuGhyvbt24UeaQZKynfmzBnV2xT3wPzy5QtevXqFKlWqWP1cvnz5jFJWGChNDxKXH64p7XFiK6Xr3rRpkxAckhMWFoZTp06hXLlyqoNCHTp0QMKECTF9+nQ8fvwYgYGBsjc7Ws+fcPv2bZvSg+j1epQrVw4AYlW+bnuuw4YRdIYcvRERETh79ixKlChhUzBHaVlsqc+U6N69OxYtWuSwtom1m9y3b98qXtfLly/Neq2XKlVKMog4btw4jB49WvG6xSZPnozRo0fjyJEjqtqehn2odl9euXLFLKDZrVs3LF26FJMnT1aVFtDattUeo+Keeq9fvzaaCFU8h4fcdrdu3SqkKLLWtp47dy6WLFmCHTt2IEWKFEbvXb58GXny5DF6TetjtnHjxti+fTsaN25scRLFVatWoUOHDti0aZPRfYSjGb7vzZs3UblyZeH148ePY+7cuejYsaPVnob79u0T/r5165bk+pW4efMm9u/fb7F9ZOtDxhUrVqBw4cLo1q0bVq5caTX/uiOD6OL9OWjQINy7dw8rV65U1K7Q+vg8ePCg2Ws6nQ7fvn3D2LFjUbZsWcWpA3///Xfs2LEDBw4cMAsE379/H8uXL0fnzp3NHu7J2blzpzDa4K+//rJpUvrNmzdj8ODB2LZtm1HHN3uNGTMG+fLlE+4pTZ04cQKDBw/G1KlTkStXLuzfv99o7hZ7mR4rWvZEN1324MGDRiO+bN2uwY0bN7Bu3Tr06NHDrofStujfv79kEP3mzZtwc3NDpkyZhM52arx+/dro+DKdY8GUIybiNtW/f3/s27cPhw8flhxNANhen1h7EGGwadMmAN9HrhgeJhu2q9PprLZv1KZzEbP1uxnmhrL3GnDq1Cm7Pm+wevVqNGnSBMHBwapH/4tZu76IO+0Z5jZ58eKF0KlB62uPmgeRcTmeoRXVQfRDhw6hSpUqKFasGA4fPozRo0cjVapUuHDhAhYuXGhx1nZTd+/exdy5c9G7d28MHDgQp0+fRvfu3eHu7o4WLVoIORRNe9D4+fnJznT7+fNnowCbmgMqICDAacHTmKB3795mvbmLFSuGfPnyAQDq1KkD4HsQPXHixLh79y4AIH/+/Fi6dCk6depkdsMlxbAesVq1agmzfpcsWRI5c+aUXL527doAvgdWf/nlF6EM4vcM0qdPjwcPHhi9VrZsWQDAiBEj4OXlJTns7PHjxyhUqBD279+PsLAwfPr0ye68uAaDBg1SvGzTpk0REhIi2+AE/ndRdZVhblJsmXBJ/F6BAgUU9/CSS1mxceNGRdt35MO1L1++oEWLFqhQoQJat27tsO04kj09rpVe0JWMbClRogQuX76MSZMmoU+fPorWC3w/tw0poMaOHYv9+/cDkA8gzpw5U/i3rQ0S8ecePHhgU10iPr/VzksiR0kDPCYpV64cTp06halTp5rV63q9XkgrJO4lYvDlyxc8fPjQIeVS8/BIKiXK4sWLsXfvXixZskTztDViSuu+W7duIUuWLMiePbvR63J1tFyuSDmGOS8GDhyIX3/9FQCQM2dOXL58WXWOeC3qc0POS7Uj7kyFhobi8+fPOHbsGNavX48PHz4o/uy1a9eEiRGvXr0q/FsNwwiHRo0aWQ2iG+YtGDFiBGbMmGH0nuF4ljuule5zS8sZ9vmqVassBtEND8erVq1qNHLD0Q+EDTp16mT2YKVz587IkiWL8NBTypQpUyRzoxuoPW6HDh2qqJOBLQyTmDZp0sRlguiGESctWrSAp6cnihYtarHHoNY90U1TDBq2sXDhQgwdOhRDhw6V/A2ltj18+HAA33Osm857FBwcjNDQUJw9exabN29WVDZxuh5bezwb7qUyZsyoaZv45MmTKFu2rGyPfMOkwZUrV8aTJ0+wfPlyzbYtRU2KFrUsHWe23K9ly5YNwPfA6pw5cxxavyn93lmzZgWgbNSc1DpNHx5qVS57jB8/HsD3a4/cpOi23m/bcm2UemCnphzR1RO9TJkyCA0NxeXLlyVTv2p9vD579gwXL15ExYoVJde9YMECAJAcHSll6NChGDFihNnrpus+f/680d9S6VzEnRq1PmbV7Me///4bBQsWxLFjx6I97UxsobpF079/f4waNQp79+41umErW7as2WRq1kRFRSFfvnwYM2YM8ubNi/bt26Ndu3Zmea7UGDt2LLy9vYX/TIe3kGWhoaFYs2aNXUPFTU/ikiVLYujQoVYb2O/fv5ftDae2ovntt9+sNipNA+gG9+/fx7Bhw9CrVy/Z7Z4+fRpz5sxBYGAgMmfObHFobevWrfHTTz9pOvz+06dPWLlyJa5cuSKbt/XLly/InTs3GjZs6BJB9M+fP2s23E58M2ZLChwltLq4vXr1CgsXLrQ4PB34nnt4zZo1sg2z6CT13dXuD9PggaOGxppatGiRMNpg1apVqj5rGmixRq4OMaV0EjPxPlDTy13cKNM6nYs9dYctvY+kymALce/br1+/Cj1YlixZYrbsq1evsGHDBmzYsEEyqGvIG+8KTPdJ69atsXr1aixdutRJJTJm6EihNDel3G/8/v17lC9f3ixIW7JkSSxatAjVq1c3el38YF2KuOOF1FBaW3us2tMzSyx16tRInz49GjdujI0bN1q9XoiJH75bC6CLt2upTRIWFmb0QG7FihXo1q2bUX0gFehXMkzZ9EbT0cRlGTBgAAIDA7FmzRrVI/8MlNaxcnMW3L17F//9959skMj0XJZ6IK3muLN3dIzSbVkLakb3A9jKlSujePHiQs9NMWeMNpaqE5XuE6lz1VCnHThwwKZ1WvLw4UP8/vvvdq9HLSWB06dPnwLQPge2tdQMloiXVTKPnKXfyNqoL0vlmjdvHlq2bCn5nr33X0eOHEHRokVx7tw5VZ/bu3evqu9k+LcWk8zK+fz5s135sy31iBaXY968eUZ/f/jwQTbdkXg5pfvYUpzjv//+s/qbR1c9eOjQIdy4cUPx3EtylJY3KCgIlStXluwgB6g/tkaOHCnbeVdMfM8zYsQIydGJrhCPMThz5ozRqDdSR3UQ/dKlS2Y9egEgVapUqvLAAd9vGkwb/NmzZxd6fPn7+wP4PqGl2PPnz4X3TA0YMABv374V/nv06JGqMsV1BQoUQKNGjYSeHLZ48+aN0dNRQ6DJ2okaGBgo+9BDbUVveuOthtKbV/ENpKVeaIsXL8aFCxc0nSjGUi8mg4MHD+Ly5cv466+/nFZpG363jx8/ImXKlMiQIYPZDeDz588xb948VUEDe28SPn36pKqnn4Etk+NVr14dbdu2tRocV1t/uoIlS5agWbNmkg01a0EtOTt37sSECRMsnvP16tXDjh07JN/T6iGEeFik1tatWyeZVsgwsmXfvn1IlCiR5E2s1LHviCD6mzdvoNPpbM6RvGzZMnh6etpVF9tDnKZLHAyU2j/idE5RUVH4+PEj/vzzTzx58kR4zRZhYWGoUqWK6h5zL168MEsbYi04aXiQe/ToUUyePNlpKem0Ov7mzZuHffv2oUePHkavG9IPXL9+XdF69Ho9vn37Jkxw7EhFixZ12CiizJkzY+7cuTZ9Vu43ketxHhkZiWTJksHX11d4mNesWTPMmjVLMiApJtXb2DRAYhi9aMmFCxesLqOUePvjxo3DkydP0KhRI/z8888OnQvF0jmYIkUKZMmSRfI98QNApdu5dOmS4l51SqlJ4QQAzZs3tzg03lk50a0F0S2lP9CqPrNlxKWYo+vzf//9V5icD/jec9TQC14JvV4f7fMKKb0u2/ob1q9f32JPX7nfxBDkV0MceFcTt5Cag2fZsmUAvpdPnB3gyJEjqsslVrJkSRw/flzy4WOlSpVkH8pWq1YNEydOVL09e8+9yMhIFChQADqdDpMmTTJ6r1y5cvjxxx9lg6zWGEasShEfl506dTKKfZimDr116xa6dOmiuEMOYLxfLLWDZs+eLYxQMHj9+rVRCiepc0iv12P37t3C+RwT0xsbrqFycRdbji2ph+Lijp+mnUCHDRsmeT0U73M1+/bq1auYMmWK7MN5QLpjg9y2bSkDGVPdovHx8ZG8UJ4/f171pErFihUzmxTk5s2bSJcuHYDvebD9/f2NKqB3797h5MmTwrAuUx4eHvDy8jL6j5QzBA22bt1q9p7SSufx48dGaVSUEgc9TJn2GPv48SOOHDmi+eRqptuyVLmo7aVhT0Vl+llxxawk37kzK8mXL18iceLECA8Px5MnT/D+/Xt07NhReD80NBSdOnUShogbKE3nopZer0fKlCmRJEkSixcjqW3Ykj/SMHmsIR+aHDWBOmdMoGN6DP33339o1aoVVqxYIfTuted3MdxgV61aFf369bP40G3Dhg1CT9Tbt2/L5nS1tye0NeLva+m7i3sjHDhwAA0aNBAm1hWrW7cuAgIChHNB6U2s+NiRC1SEh4erTp1hD8OE5KZBUDXk6i2th1Gb9jQfMmQI2rVrhwIFCti1/tGjR2PXrl1o3ry5qvIMGTJE9Q2v4XcvXrw4fv31V6xdu1bV59WSO7e06j02duxY1WWSky9fPtkUCwY6nQ5hYWGYP3++7HlirSf68ePHsXjxYkVlUnsM37592+waaeu6DOQC4uLJyk07sVh7eCGVzsVSm0oqdRIATSd3t7R/nDGhuLVzxFoQXaoneu7cuVG0aFHZNsqBAwdk6wS58vj4+GDOnDkWy2LKUk9ia9/77du3WLRokaoOFcD365/UQ2lLpI6J6tWrK54fRyuO6J3/4cMHHD58WPFcSE+fPkWJEiWM5jJQew/XqlUrBAQERMtoA8O1Tmmb2bQOk2Na9oiICJQpU0Z2eS3bIb169bJpPVIpJgw2bNhg9Le1lA3z589HvXr1bLqv3rNnj8XUWtZo0RP927dv+Oeff4S2yaZNm4Q0ZabX/6NHjwL4X1oPe3z69Mko3Z/pcSGuE017jhcvXhxz5szBzz//bHc5APN9Jj6P9Xo9fH19UaRIEdmyAt+Pm8qVKwuxOKUxEXvYst6jR48qbm+Z0qKe+vLlCxYuXCj8bSkFm5itQfQcOXKgT58+Zg+ExKw9jJGqM6tWrcpAuo1UB9EbNmyIfv36ITQ0VMi1fPToUfz6668WbxSl9OrVCydOnMCYMWNw+/ZtrFq1CvPnz0eXLl0AfD/Ie/bsiVGjRmHr1q24dOkSmjdvjoCAANSqVUtt0UkFqQrGEY0jQw8aJTcNYnXr1kXJkiVRvHhxh5RJbMeOHVbzFNu7byz1XLh27Rr8/PwUDRGU48iJRa35888/jf7u2bOn5FN8NT0F7dnfnz9/FiagcdRIldDQUEyaNElVzkmlNwTr16+Hu7u7Q3tWKrmg5s6dW/h3+/bt8d9//1n8nOG9J0+e4I8//jB7Ym76m1qb6NAgc+bMsjdJN27csOuBg5qGxd27d6HX6yVvQAzzOQDGqQw+ffpk1lPb0sNEOUp6ont5eSFFihRG84SoDVZYY+33nz59uua9JQ3rNt3vcqk6rNUdBw8eFHpaKRm+aYmt+enFPQKVMv1ecnllxWbNmoWBAwcC+D5hvFJr166Fp6cnJkyYoK6QEuSOGWsPfNTkcJRL+WW67aZNm6JDhw6S87KYmjFjBgoUKGDT+WqtHGo/Y2vaASVMj6vBgwfLvif3mpptFi1aVEXpzIWHh+Pff/9VfKNq6UG6o1jbH6btNal0LnJ/y103y5Yti19++QWLFy9WPIoDgHA/ppRp2cTXG6kHvIbj5evXr/Dx8UGbNm3g5eWFDBkyCJPWG9Z76dIlyeu5tUCKtTrfUGZLE6z+9ttvaNeuncX1uJJSpUph6tSpipZV0wtWTnSmE4uKisLJkyfN2sxz5swR5rUSy5gxo6L2ZHSmG3L0tnbv3m3WSdHDw8PiZzp06IANGzbYHJhUO3LF4MmTJ5J1ktp99P79e1SoUEHIlqCkPFLb+PbtG5YvX654npMff/wR6dKlE9ptpselpfre8NBTrs2n1+tx4MABhIaGIjQ0FO3btxceDEgtqzbX/tevX9GqVSssWbJEGKG9a9cu4T0taBmgFa+rePHiaN26tVlvb/H1Uy72ocX5ZzrnorjzgSW2BtEN7JlcVW57hs4Es2fPRvPmzZ0aM4pJVAfRx4wZg2zZsiEwMBARERH48ccfUbJkSRQtWtSoca1EwYIFsWnTJqxevRo5c+bEyJEjMW3aNKOeAH379kW3bt3Qvn17FCxYEBEREdi1axcSJkyotugkwTDUGbAt0GpvRTRhwgTkzp0bbdu2tbic6Ym/c+dOAN9zk2vN9EJTvXp1qwGGcePGKe71unjxYlSqVMmoAn769KnsnAJdunTBy5cv0atXLzx69MimwK+aXs4nT55EqVKlVG9Drpee6SQilhpoSoNO9gwLVtJr1x5hYWFInTo1fvvtN9SrV8+mcllimACxWbNmNpXPVqa/r+mDnylTpihaT8GCBdGxY0f079/f4nJa3WTY2vtabd5ZANiyZYvVmd7F6xwzZozZjY4txHW3tWNavD1bRmrJ/S4XL15EqlSpMGvWLMlryYYNG9CzZ0/ZINmrV6/Mgp3fvn1D1apV8fPPP1v8LerXrw8vLy+jXphyy5vuH9Pg+y+//KIoAK3Wx48fsW/fPou9vGrXro2oqCjJfPjW0rnYUpd169YNY8eOxeXLl1X1ODWMMujXr58m5VDiv//+MwraK51EVWp/7du3D+PGjTO7mTGkiDp8+LDVdfXo0UP2ZlYttfVMVFQUihcvLplaUcr69etRrFgxxZPj2hOUtxZEt3ac2btPS5UqhRIlShg9vDfU5VJz19gSRDd8xzdv3iB//vxmPcMspQcBvj90tkTt6EI1D1Rat24tTPo7bdo0/PTTTw5NJSfu9Wjp2DAddXX//n2jzlKzZs1C7ty50ahRI7N12NLBRM0++/z5MyZNmoQ///xT8wmmlT7gtSXYokUvW60EBgZKpjWzNcBWpEgRszZzly5dzPLDGyjJ+2vPKCpX68lZuXJls9c8PDzw7Nkz5MyZEzNnzsTNmzclR+KEhYWhV69eaNWqlarvZUvQ9dOnT0ibNq1Rj39be6IbGEYW2vr5efPmoXnz5siYMaOi5Q0jTQ0ju6w99FRjx44dKFu2LFKnTo3UqVNjwYIFsg8HVq9eLfm6pevRypUrsWTJErRq1QopUqRA0qRJza6J9h7naj+vdhumo5/Endfk5quz5dgwLZetaR61TK8bHh6OevXqWR3pbiC3bw1tjq5du2L58uVGD7BJnvkUuVa4u7tjwYIFGDJkCC5fvoyIiAjkzZsXmTNntqkA1atXN5sgSkyn02HEiBEWhyyRbb59+yb05vrw4YOQygWIvnQRht/VWi8GuV6Fas2dOxc6nQ4dOnSQfD8qKsqmC8aaNWuQLl06jBs3TnYZw7oMOVMNs3wbyOXbFt9QBQUFKSqP3Lat0el0KFasmKZPIU2D6JYuIE+fPkXFihWt3ki7chA9WbJkwr/lgjFSojtv/devX7F9+3aULFkSvr6+Ru/Z0lBSOoGNodFueBBmYHpe63Q6TUYKyO1Xpb3TpHTt2hWzZs0yW4faHl3//vuvouXEk/FIlVv8He35XmpERkaibt26yJkzJ759+ybUZ926dZMcbmhpEqelS5dKToaVI0cO4d9v3rxB8uTJJT9vGLa8cuVKYVi00p7oSoatq7nmyE0I26RJE2zatAk9evSQDfps3rwZx48fR0hIiKJtiQOS9lwXTUckhIWFwcfHx6Z1OaqHXfPmzY16itqznZCQEISEhBgdT2p652rBnvPw6tWrwsO6li1bWs2DaUip1KVLF5QoUUJV2aylVTPtvWvtdzF9qKn18WIY6WP6sL5Ro0b466+/zJb//Pkzvn37ZtZOUWLy5Mk4d+4czp07h19//dW2AkswHZlpeqxoNYLOUFdqmX/elNLJ+6w9XDFcX0xTVACwmsrF2oMdSw/MDWmeDNSMgLG0zQULFiBbtmyyx79pr1JL9YWSfOtfvnzBoUOHzJY5e/as4oBJZGSkzXOkPH78GM2bNzfr/GFPPejs3pLiHqGVKlVS9dno6PVuum/v3buHWbNm4cqVK+jevbvsclFRUUIbZfDgwfD09ISnp6fV7SlNA9O4cWOkSZMGw4cPl2zT2RtEV2Pnzp3IlCkT/v33X2GuPUMqPVtHbdkSRHdzc5NcztArXAmpuhH4nkq0QYMGkusXP9gydAQUx4K0YEs+fHuIr59y9bUtx9bGjRtx/fp1zJo1C+7u7mb70zQtpBxLPdHv3buHwMBAo/bIgwcPZGM/48aNw4YNG7Bhwwa7HlAEBQUZtZkcnQo1tlAdQTLc9AcFBaFq1apo0KCBzQF0cq41a9YI/zYN5rx+/RrLly+3eiKpqYiioqKQPXt2oyHyShtBWgR+3r59i86dO6NTp06SOd+B77lTxRWcmokk1fagMn1CaqkxbQvx+tTsZ6XLRkZGGvXK+fvvvyUbUWpuTufNm6doP9rTuLI2vNhW3759k5xwR6noDqKPGzcOderUUTx83pbjcNSoUbKflwqam/4t97BLDblyW/s+lm6sZ8+eDcD6d7BG6fLi/MBSZYrOm8mvX7/i9evX2L9/P7Zs2YLRo0ebPRA0fZjw448/yvYIOXPmjGQA3ZSSh5tyy1gKois5rpUO6wW+D6OWYuilNGPGDOzYsUOYK8G0PNYmIRWXV5xqQcu6zNDTXG67cg8KbKG0XrGUasHW9YvnKqhQoYJd6xJLmDAhzp07p2hZNeuVsnTpUsU3b0pHeqkpj+nEXfamc1HD0jFvWt9IBdCB78HZxIkT4/jx44iKilKVAsCQFk5r1tIbmtav4v1r+nBaC47sZWv4rnLXB7kyrF+/Hm3atFE0kkDJMWnpXkf8O8tds0eMGGFxskFT7du3R8mSJWV7SGvZmxUABgwYgIoVK5q9XqBAAbPrt5w//vjDrjJIsafdKxc0lKKkrSW3jGnnKgN7RnBER8/1IUOGGP1du3Zt2Wu3XNvp0aNH8Pf3h5+fn9XtKe18t3r1akyaNAn79++3eV4zW1O1SLlz5w5Gjhwp/J0kSRJFnzNN92cIQqpJ52Igd5+s5vyQS+di6aGA1ANIS3WPVL3Zpk0bjB07FkWLFpWciNfaqGMARrnFge8PZJRO0GtaJvH1c82aNcLobTHT/RQeHm61nd+nTx8sWLBAqAfVXEPELP2mGTNmRPLkyTF27FhERkZiwYIFSJ8+vey9sNp2saVtt2rVSvi3rQ9L4xrVd11ly5ZFhgwZMHDgQFy9etURZSIHePPmjdDYfPz4MQYOHGix98aTJ0/QvHlz9OzZE8+fP8eQIUM0yZt3/fp1o4uV0guEFg0OceNBrnfMhQsXjBrM1obdiil5Ui+m5AI/ZMgQTb67IwK0P//8szDxCPC9F6ghv67BgQMHVAV3lA6ttidgJJ4A2c3Nze5RF9evX8e5c+cwadIkuyaHMf2NoqKicOfOHYu/v6XfVa/XIyQkRLaRaphkTCp1hVxqHgOpySKlPiNuxFsLDEgFpO3NSQ18vwHeu3ev7H6QC0ArSedib08ZJUGtkydPyt6shYeHo2LFirI3OOK61sBSmcUT/sqpUaMGfH19MXPmTKvLGly7dk148ADAaNJMWyahlqMk0H7q1ClVOQkLFy6Mbt26aVPA/99e9erVjdIciMkFKqwda1oG0eUeMiuh9pxQGoi09VwbNGiQ7HuWfnupNFBKr8WfP39G+fLlLS4jHmJtLZ2dVuRusk2Jb8yOHTuGYsWKSS4ntS7Dcai0F61Shw4dQtasWbF//36zbUlROrLgwIED+Pr1K9q2bYuKFSvCx8fH4uSYwP96B4qvHVI9BrXoACFHvG7x8WMaOJMjl/bC2ra09uuvv1ptG0iVoX79+li0aJEmgd0FCxYgadKkku8NGTLE6HiQanNdvXoVw4YNs+mhvziILv7dtWizizuMqLley7H1QabYjz/+aFQWZ/cmV+Knn35CyZIlNT0PlPy+X758MesV/PXrV7vKIVVn6vV6o5704rIZRtMqCRCqvZeSu19S0hNdKl2NKakOE3ITL4vroMSJEwv/TpQoEc6cOSP5mdSpUxulDrl//z4mT55s1qb58uULrl+/bnGyd7kguq294U0dO3bM4kh5pds0fW/ixIlYtGgRBg4ciOPHj1uciFcpvV6Pn376CWnSpFHUE9+Qhs/AtE5Zv349vnz5gmXLluHx48f4+PGjWawhICAAGTJkUDSxdPfu3fH582eb6+gyZcoI7UupfR0eHo6BAwdi6dKlQvtVLjWXeNSqkhid0uPJlpF5cZHqu66nT5+iT58+OHToEHLmzImffvoJEydOVDwJHEW/ly9fInny5EiYMCF8fX0RGBiIsWPHKup9sHbtWjRo0ACjRo2SbOzYcmMrDmbZEkRXkr/Q2josDVeytYFy+fJlo4DQly9fzIaoitctDioB0vty1KhRNk8ioXWD3JRUg9p0EtE9e/aoysuo9HjSapifm5ub4hm15WTPnh358+dXlVMYALZt24a8efMKD7NMz6+uXbsiU6ZMFm9+UqRIYZZL1GDmzJnImzev0aSW9vr48SOyZMliNhkmYP28WbRokdHNqOlvaNoA1yqI3rRpU1SsWFEYui524MABJEmSRDhG1dQzUrnP1R6XStJ2mAZbxdvw9/c364UqLvfQoUNVlUdNQELtqAvxTUrJkiWFfysdrqqkXr5x4wZy5MiBVatWGS1vehyJJ1yztl57JvHR0qdPn3DmzBnZulwuoPjq1SurE5Wq6aWn9YMl0/PeUloFrVnqCJIiRQqz196/f48RI0YomtTZ2oSjr169Qu3atdGrVy8sWbLE6vrEbN0Xcj0qTTVu3Fj4d8OGDWXneXDExKJySpcujZs3b6JcuXLCa1qPJDMENK39HpMnTwZgfM3WcmJFtaNlbNm21ASMcmydINnAWr5We+a4kptUXMzaMTlv3jzZz65YsQJVqlQR/pbqgKOkV6xcL0etR6CKSeW7tocWZbp27Rq6d+8uXFeV3puIg5W2kNvPDx48QOvWrXHmzBmjB3Rily5dEiYr/vr1q9X0WVoJDg5G2rRphSDuhw8f4Ofnp6oHvimpOvPz589G7Ujxb6Lm3tHWXuVyLI2qkZtDzJKWLVvCz89Pts35/PlzpEiRwuje/NOnTyhYsKDsOk3nZZNK6/Xrr7/+X3v3HSU19fYB/DvbWXaXpcPSe69LW/rSiwoC0juIwgKLVBEQBJUuRYoISu8IKAgiXUCai/wAKYKAdGz0XvL+wZl5MzNJJslkJjO73885nMPOZJI7meQmee69z0WRIkXQqlUr2fUEBgZKnl9GNFxZ07SOHDlS1fJKPemNSC32zz//oEWLFor3/tZ6Vlz3ylmzZo3d31L3XoMHD0anTp2QI0cOhIeHO/WYtzZ8LFu2zOX2gFfzcOitD2/cuGFLp6S0jjNnzih2aHOMGeTOndvu782bNzvdy6hNMcue6OpovgPNkCEDevfujX379uGPP/7AW2+9hYULFyJ37tyabsrIe8QnjdzNsFxOxICAAE15nbXSk86lePHiisvKPfCJ8wrPmDFD9vN6J/o7d+4c8uXLZ/v7s88+sxtuDwCNGzeW/bzcTZ4RNybeThUipiXfptrggFEPzwEBAbL5icXH3Pr16+16sFuJezlqvZl44403cPToUbRs2RKA8280e/ZsAHDq3S9269YtfPTRR5LvWQOFGzdu1FQuQL4n+qJFixR76bm6qRD3YP/999/tztW5c+faHSvt27c35CHQ+gDi2MhhsVjQokULPHnyRHLEiaue6FWqVLHl31XiWJ+4+yD66NEjnD17FsuWLZN8mHO1/vHjx6vukeJp//77r+JEw2LW80MQBNn6bO7cuTh58iTatWtntx9KlChht9zAgQNtk0V7Y1i1ErV13oMHD1C+fHnZXpuOdeKzZ88waNAgZMyYEaVKlXLqTeWqvnIMKBw+fBinTp1yeS1xJ9h9584dFCxYULLBS8s1TG3jm9aGoA8//BAjR440ZFLnIUOGYP369Zg2bZrb61LLE8e6mpRWRk/GaGVkEF3PiDTxMWnUJLNqebPecjetWsuWLTF79mwsXbpU8n2tE6mKfyu5yfTEFixYgP/++89Wd54/f94uJ7QWderUcUoNpLbO0/KbyaVU2LVrl9OxdufOHZedQdRu21UvVC1pqpQMHToUgPp6PVOmTG5v8/Lly04d/lq0aIH58+ejfPnyTqmppOTPnx+pU6d22TP7yZMnisFHi8WC06dPY8WKFbL73LqvrZ08du/e7bJx1hU1DbZaOpOIqWnQUsO6TalnH3fqvUWLFgGQD8xOnDhRcgSatSxq0x7pIRW0/OSTTwy5drobiBc3ABpx3RkwYAC++eYbVQFyR2q2LzXawOj7rIsXL7q1L6x1jTvrcNVBsVGjRujSpYtd50a1+1xNwzDpCKKL5cmTB++//z7GjRuHEiVKSE5aQuZT86AxaNAgyRY4NZ+9d++e5iDttWvX3LqhVCJ3Q+tqeLVVz549VW9LiWOeeUEQFFvWPTmJitrfZ9CgQS6XOXfuHMaOHSv5nrsXWLXDmI2qa5S2V79+fWzcuBFXrlzBm2++6ZSf7cGDB/j00091bVccCLNerIxu6NByPJ08eRKNGjXC66+/rhg8Vkq3oyb9iePx75gmYPjw4SpL7D7HssbGxto1GKo5ltU0MBYuXNjub/FcFHqsWrUKBQsWlB126HgcVaxY0e54++abbzB06FDZhwVPkToeteQUtf4erVu3VrW8q9RQ1gCqJxoYzQjMO+7fMWPG2E3w6pi+IW/evIrrq127tl2j1tGjR1G0aFHDe6KvXbvWNnfC0qVLce7cOaeGTbUjXx4/foy///4bWbNm1VQGtYycgNGdBsKKFSvq+pyaOtpdUr+/3BB6ueXVevz4sWxgVis1KUUciYO/1kY5MU+mc/EmI0bj9OrVy2WPdCXifSmev0A8r4GSYsWKISwsDOPGjUOdOnVUN95KsXZwMIJSHm5H169fR3x8PMqVK+f0nlGT9ykds7t27UJsbKwh27FYLDh16pRs+ofbt29j2rRphvWmf/r0KXLmzIkcOXLYBdSOHz+ueh3ieaBcjSIMCwtDx44dFZcpUqQI2rRp4zJ9mjXXvrfqBXG9piXdjqv5XNRS+s21BOq17q9Hjx7Jvjd27FjJ3N5GpSOSKque5yGp9Uhdm5Q41gFxcXGattelSxfbnD9SXHXgUDsZtRyt9/RKaXbkKHXmUcOd+VSsv4+aRj8AePvttwG8utdWq1u3btoLlgLpDqLv27cPvXr1QtasWdG2bVsUL17cKS8R+Qa1N65SQ31cBdH/+OMPREVFaWpRXLhwIbJly4bevXur/oyahxFPPTjr5ZhTylWvNyNvzAF96VzU5NQqUKCAYu9od6hptPnmm29kJ2My0qlTp/D666/Lzoqt5wIqCAIeP35s15Px0aNHOHDggOxDvPjY15Ju4969e6qXLVasGDZv3oyNGzfi1q1bsvmAXd2Uuhug0bpPjRw+euTIEXTt2lV3WQB1oxG03tBq5fgbHDp0yC4HuZXSA4MnOJbrxYsXutIEON7wqp18yFFAQABOnz7t9kP6//73P2TPnt3uNaOHNasREBCgeP5FR0fb/a0maFi6dGmn18STBYs9fvwYO3bs0NWjd8SIEXj//fdl63+pORikLFu2zGl4ta9yJyCidgIrR9brj1GsgTCxKVOmoGzZsm5NuiceNehK+/btdW9HTHw+iH8buf21Z88exfk0jGT2aBlfIN4HejpR3LhxAy9evMDQoUNVB97lOKa70BKIVSI+Bh0nqBYEwe7+Qm2DnngElxqCIMhOwmvkPYMgCHjjjTdk6+suXbqgX79+iImJcavxxUpc9n79+tn+r3YeJsC+8dLaq1nJkiVLcOjQIZdzDKltpPJUEN2xfHrTuRjFVfBYbcOp1v2lZ/82adJE82d8nau5th4+fIjPP/9cNkXVggULZOf8MYrSc5TWY1YpzY4SI67LrtYh9b71+ULL9v/66y9DU7vSK5qD6EOHDkWePHlQq1YtXLp0CdOmTcONGzewePFiVRM9kPepGe4ox1VQ0zq8SW2LGPD/QzG15JBWU1lYL4C+0osnODjY7m93b9y1MmLCJa280RNd6xB8JUOGDHG5jJE5emNiYhAeHm7XG/nWrVuIi4uz+72kAoOnT59WNfGjld4gxqNHj1C2bFnJ95S+s7st89Z1aJE+fXrd21LTIKC1PEb1BnOHqwc2K7Mn9CpevDgqV66senm564VUmiU15syZgyJFirh133Lu3Dl06NDBaY4N63HgzWuRxWJBmzZtZN83KsehY/qobt26Yf369ejWrRtq166te46J8ePHywZv1OrWrZvbuXO9Re+x4c41VhAE2Tk09Hj27JnTvd/nn3+OX3/91e4hWmuZXaXs8wRxaqw//vgDo0aNwn///Sfbe+v8+fOydeilS5cQHx+vq7GjS5cudhNCAvqv5eQZe/bssY0Ee//99yXTwUmRSiMprgfEo2WbNm1qt5wgCHbpIKUaOKVonbj75cuXqkd7AdCdn/uXX36RnUtt27Zt+Pbbb21/W1MeukPtfZESce9za+9wVypWrCgZcNdTj3vqfsKxI4G4p74ZQfTHjx/L9jjft2+fYQ2nYvfv37ebUFQtoxo43U3TA6ifONwVcZpNx3syQRAwbNgw9O3b15Tr9K+//ootW7bYzY3iyBv33Y8ePVKVztMVV+mzpN63NghquS9wd14TkqY5iP7TTz9h0KBBuHr1KjZu3Ig2bdroqnjIP7gKontr0jU1N2q+Ejy3cmwpNaLC1cKI3ht6OD4AaqHmN1TTW14tdyYD03PzdOPGDVWpUsST/FiXf/PNNzVvTw+53tSuvu+UKVNw+/Ztt7at9YbdnSFxrngj9YEnSAVupHIiKqVY8IbTp09rWn706NGGbl9pUkktpHqyKaXtcmTUdctisSgGocXbMbK39tdff40333xT9YRMSowIFpp13dNKzaTCUtwNohvpq6++cnsdvnLfJs4BumLFCnz00UdInz697P1MQECAYkPkrl27bJOGa7FgwQKvTVzoT7ydfswV66gXLQ3nenodWj1//tyt+lHtua+1cb1FixaywXAljx8/li1T3bp1Da+rHL/Xo0ePnFLteYpUmhMjv5+76xLP5QXY31ebEUQXBAElS5aUfE/LfaOWa8uyZcsQERGhenlP0DJ62FscG9QEQbCNBH/w4IHLfezYiPf3339rPl7PnTtn93eDBg0MjQPosWjRIreeyR8/fuwyV73cM+iTJ0/w/Plzp5TBSoycP4b+n+a9ak3jkiFDBk+Uh3yMr8zQqyY/k6/1RHfsEWdES7M/cCeXlqsZ15cuXeozcy948uayc+fOtv8/evQIs2bN0tSjyHHYrSAImDFjBjZs2ODyBkYu/52aXg5KE+eqoXZCQKO46llvFne27Zj7GgAmT57s9NqYMWN0b0MPX6mXvcGMY0dNSoFLly5hzJgxqFChghdKpF3q1KlVLyuXjsZf0grqbXAUN7BqZdSkgEby9YZKuYZ2i8ViF5jz9vfw9f1mFGvjqdkjp6QYUY+qvS56Og2clZ79nCNHDs2f8XZw1nF7GzZswO+//+6VbUv9xq7OX8fJ0OXWA3h2X5oRRD9w4IBsJw9P1nuhoaEeW7cajpO/a/Xtt99qSk+kh+Nz4MaNG2WX3bdvn1MDTb169TTnPC9QoICm5f3lWaNx48a68r8LgoDPP/9c02cYRPcMXXt18eLFqFKlCmJiYmytQVOnTrUbfkXJg79URoDvBNGvXbuGwYMH6+qd4e/u3buHNWvW6P58UlKS4vueGManlzcfYhMSEjTlWZ4yZYrd39u2bUOfPn3wxhtvICAgQHdPN1fnlru9xYycuE8NpfLevXsX77zzjhdL8/+8cWwZmRZJDSPqZV/sqSP1IL5//35dvVDd4TgZpyOLxYLq1avjww8/9E6BoP3GXcvynn5Y9FXJLW3ipUuX3Lpn8DS5hn2LxWJKgCmlkZqrKTlRe13UO2mj1nsJbx3TL1688OqzmuPoMHfSnGq1bds2p/zRrn4XqfsHuf3lyQYms3qiy9Eyh43UXEB6t+sN7o7k9Ub5jx07hmPHjtn+Vur49MUXX0i+rmVyWD26d+/u0fUb6ezZs4rvS/2m165dQ//+/TVtR08Q3ezzwR9o3quzZ89G//790ahRI9y+fdtWeUdHR7t8iCP/40+B4MuXL9sCBWaqVauWT+RGJs/y5QfoYcOG2f3tGOjr0aOH5hxpc+fOTVEXVcfcz96UHPezEd9JblJLXyTVk8xs3h4CmxyPY9JOKfDx9ddfe7EkxnHsie5tnCTMN2m9L/R0WjXrZMJqy+WtY9rb6fK2bdtm9/f69eu9tm3AOQ2J+Lur3Q9yQXQtc8to5WsjQLTMpTZ37lxN6/b2vGX+SMt8CWbxdJDeSHrqQMc5mNTQE0T35RiHr9C8Vz///HPMnTsXw4YNs0v1Ua5cOcNmKCfyZ2fOnDG7COQF/hQgcpwEaenSpZKTlyrp16+fWznk/Y2ZN9T+dGx5k5G5vL3hhx9+cLmMt3rjmT1CS439+/ebXQTyAF8aQWaUI0eOmJrOxZ86uLjLn4Jb3g7OqqEl7QwDJ94h7hmvpu744YcfZOcAcjWC1x0p6XhQO1kskVFcnfvujk6wmjRpkubPpKRzX68grR+4cOECypQp4/R6aGiorpnoiYj8kT9dYMTD79zhb0FMJb/99pvi+8HBwV4qiTN/OrbUksthrYVUvndf5qrHyOXLl/Hjjz96pSxKQXRPBanYGETJ1eTJk/H666+bXYwUwRcD03LmzJljdhHsCIKgqYObr/U8Tq7mzZtn+7+a+72GDRt6sjiyfGUOKqLkyFtz5c2cOVPzZ5Ljc6jRNPdEz5MnD44ePer0+g8//IAiRYoYUSYiIp/HAJF/W7t2reL7QUGa25gNw2MrZfBm7kalIHrbtm29Vg6i5IIPmeTIW42inuKtIHrp0qW9sh1/MGHCBLOLIMtfMwz06dPH7CIQ+TXe37imOUrQv39/JCQk4PHjxxAEAYcOHcLy5csxduxYu5ZVIqLkjBeY5M0xh6Y38dhKGYwaIUJE3qd14joib1u5cqWm5b1173HixAlDRqcRSZkxY4bZRSDya3wOdU1zEL179+5IlSoVhg8fjocPH6Jt27aIiYnBtGnT/GLCASIiI/hTnk4i8j03btzw2raePn3qtW0RpQR37941uwgpgr/2hnXXyZMn3V7HyJEjNS3vrZ7oDKATEcnTk8fcSAyiu2YR3Bg3/vDhQ9y/fx+ZMmXCw4cPcfToUY/OEq3H3bt3kSZNGty5cwdRUVFmF8cU/jChGBEREXlGZGQk7t27Z3YxiIjIR128eBG5c+c2uxhE5Ofat2+PJUuWmF0M0un27dtIkyaN2cUwhdrYsVtJX8PDwxEeHg4AOHv2LKpVq8ZJSYiIiIh8CAPoRESk5M6dO2YXgYiITMae6K5pnliU/AsbNYiIiIiIiEhOqVKlzC4CERGZjEF01xhET+bWrl1rdhGIiIiIiIiIiCgZcyNbNPkABtFdYxA9mePQPCIiIiIiIiIi8qSlS5eaXQRyA4PorqnOif7dd98pvn/hwgW3C0PG46SiREREREREREREJIdBdNdUB9GbNm3qchkGbH1PQAAHGxAREREREREREZE0BtFdUx1hffnypct/WiexHDVqFCwWi92/woUL295//PgxEhISkD59ekRERKB58+a4efOmpm2kdAyiExERERERERERkZyVK1eaXQSfZ3qEtVixYrh+/brt3969e23vvffee9iwYQNWr16N3bt349q1a2jWrJmJpfU/P//8s9lFICIiIiIiIiIiIh/19OlTs4vg81Snc/FYAYKCkCVLFqfX79y5g6+++grLli1DrVq1AADz589HkSJFcODAAVSqVMnbRfVLBw4cMLsIRERERERERERERH7L9J7oZ8+eRUxMDPLmzYt27drh0qVLAICkpCQ8e/YMderUsS1buHBh5MyZE/v37zeruH6H6VyIiIiIiIiIiIiI9DO1J3rFihWxYMECFCpUCNevX8dHH32EatWq4cSJE7hx4wZCQkIQHR1t95nMmTPjxo0bsut88uQJnjx5Yvv77t27niq+X2AQnYiIiIiIiIiIiORYLBazi+DzNAXRX7x4gX379qFkyZJOwW09GjZsaPt/yZIlUbFiReTKlQurVq1CqlSpdK1z7Nix+Oijj9wuW3LBIDoRERERERERERGRfpoirIGBgahXrx5u3brlkcJER0ejYMGCOHfuHLJkyYKnT5/i9u3bdsvcvHlTMoe61dChQ3Hnzh3bv8uXL3ukrP6CQXQiIiIiIiIiIiIi/TRHWIsXL47z5897oiy4f/8+/vjjD2TNmhWxsbEIDg7G9u3bbe+fOXMGly5dQlxcnOw6QkNDERUVZfcvJQsMDDS7CEREREREREREROSjmM7FNc050T/++GMMHDgQY8aMQWxsLFKnTm33vpag9cCBA/H6668jV65cuHbtGkaOHInAwEC0adMGadKkQbdu3dC/f3+kS5cOUVFR6NOnD+Li4lCpUiWtxU6xGEQnIiIiIiIiIiIi0k9zEL1Ro0YAgDfeeMOulUIQBFgsFrx48UL1uq5cuYI2bdrg33//RcaMGVG1alUcOHAAGTNmBABMmTIFAQEBaN68OZ48eYL69etj1qxZWoucojGdCxEREREREREREclhT3TXNAfRd+7cadjGV6xYofh+WFgYZs6ciZkzZxq2zZSGQXQiIiIiIiIiIiIi/TQH0WvUqOGJcpCHMIhOREREREREREREpJ+uCOuePXvQvn17VK5cGVevXgUALF68GHv37jW0cOQ+BtGJiIiIiIiIiPxLtWrVzC4CpSBM5+Ka5gjrN998g/r16yNVqlQ4cuQInjx5AgC4c+cOPv30U8MLSO5hEJ2IiIiIiIiIyL8wqEnkWzRHWD/++GN88cUXmDt3LoKDg22vV6lSBUeOHDG0cOS+wMBAs4tAOvTq1cvsIpAXZcqUCYMHDza7GERERERERESUAoWFhZldBJ+nOYh+5swZVK9e3en1NGnS4Pbt20aUiQzEILp/KlSokNlFIC/68ccfMX78eLOLQURERERERD6CPdHJm7p27Wp2EXye5iB6lixZcO7cOafX9+7di7x58xpSKDIO07n4p8jISLOLQF4kCILZRSAi8rjMmTObXQQiIiIiv8HnRNcWLlxodhGShddffx3h4eFmF8PnaY6wvv3220hMTMTBgwdhsVhw7do1LF26FAMHDkTPnj09UUZyA4Po/qldu3ZmF4G8iDdH5Mprr72GzZs3m10MIreEhoba/R0SEmJSSYiIiIgoOejYsaPZRaAURHOE9f3330fbtm1Ru3Zt3L9/H9WrV0f37t3xzjvvoE+fPp4oI7mBQXT/FBISgtjYWLOLQV7CILp3NWrUyOwiaPbxxx+jatWqZheDyC2Odd2yZctMKgkRERGR7+NzojKmLzYOUwepoznCarFYMGzYMPz33384ceIEDhw4gL///htjxozxRPnITQyi+6/nz5+bXQTyEm/dHDVv3twr2/F1Gzdu9It1ij158sSwG5saNWoYsh5KuUaOHKnrc451HVOXEfkfBizIlwQFBen+7BtvvGFgSYg8g0F0IDg4WPa95LR/8uXLZ+r2GURXR3OEtWvXrrh37x5CQkJQtGhRVKhQAREREXjw4AGT0PsgXwyiX7t2DRkzZjS7GACAxo0bq17W2yMtXrx44dXtkXm8dcHyxfrADJ7Y31rqEj3Cw8MNK3fFihXRtm1bQ9ZF6q1YscLsIritS5cuWLFihWHDZuvUqYMFCxYYsi4i8o5PP/3Uo+uvVKmSR9dPyYs7acG+/fZbA0vi/5KSktC+fXuzi2Gnbt26ZheBfJyvBdEnTpyo+7O5cuUysCTSateuLfseg+jqaI6oLFy4EI8ePXJ6/dGjR1i0aJEhhaLkLWvWrBgyZIgh6xo8eLBbn586darqZSMiItzallbsif7/vD3BRe/evRVbvNXYv3+/quWqV6+O0qVLu7UttXhh/H9ff/212UXQpHjx4pK/X7p06XStr0CBAu4WSRd/bMgxar6XmJgYQ9Zjpjx58qBVq1a6e6I6PugEBASgU6dOeP/9940onqQSJUp4bN3ke5SCYhUqVPBiSczx7rvvevyY93TAomzZsro+lzp1aoNLQv7Al+9tmzRpYnYRNMmTJw8ePnxodjHsvP3227hy5Qr++OMPTZ9TE4x0ZxSDNxUsWNDsIqQo7o62cqdOevnypVvbdqV+/frMH28A1U+zd+/exZ07dyAIAu7du4e7d+/a/t26dQubNm1CpkyZPFlWSkaMuuGpUqWKW4F0LQGdvn376t6OHv7QEz02NhZffvmlx7fToEEDj2/DkbvBvkqVKuHHH390udzu3bu9FljMnDmzV7ZjturVq7tcpkuXLl4oibGk6k2LxaJ4/ISFhaFkyZK2v9OkSYPExES3GyD1qlKliupl27Vrh2fPnnmwNK4FBQUZdr3y5Qd9tazfwejv8sknnxi6PjFvPyRHRESgYsWKXt2mp+zevduj6y9atKih60uXLp1iegZfGQXpKf/++y9mzZrlc73y5IwfP17ydUEQMG/ePM3rE3/vsLAw3eUi/+LL11Z/6zhgsVgwYMAAs4th56233kK2bNmQN29eTZ87ePCgy2X85VkgudxTuEPpPDf6mrd69WrZ97Jnz65qHXozdHj6+h0QEKC4L325PvUlqmv26OhopEuXDhaLBQULFkTatGlt/zJkyICuXbsiISHBk2UlcuJuoFlLRSGVu3Xnzp1ubV+JP/RE/+WXX/D222/r+uygQYNUL2tGhW7ENuvWrYssWbIYUBpjvPvuu2YXweMOHz6MLVu2qFpWTSOHL5F7GFO64QoJCbEbmvvvv/8iJiYG4eHhKFOmjOFldMWxrG3atJFdtmHDhqb3EnJ3RIpYcrgx9dR3UBNosD7sOh4TmzdvVvzc3LlzZd/zVI9dX/ity5cv79bnDx06pKpB0h1Hjx7Fv//+a9j6XD18+ktwWS/rc5q/6N+/v+TrgiCga9euaNiwoep1OfYcTM6/ddOmTREXF+eTuemHDx/u9W2qPea1HE9G8ccgeuXKlc0uhs0777yjafk8efLY/q9mzhWtvX7r16+vaXmjeKpeDwoK8pu5abxZpys18BcrVkzVOvQ0BC9ZsoRBdD+humbfuXMntm/fDkEQsGbNGuzYscP2b+/evbh06RKGDRvmybKSm8aNG6dquSNHjni4JMZxd8iLlpsbqUrFEz1716xZA8A/eqK7Q64HkhQzbkL1bPPgwYPIkiWLXZogX3qQMzIg6Kty5MihugeaN/MsGjFiQ6oOstYXaokfus04Nh23+cUXX0gut3HjRsUAu7cEBwd7rCe6J/PoeyptRc2aNd36vDvH3Ndff43nz5/j3r17ttemTJmiOFLp0qVLKF68uOz7R48e1V0eORaLxesPIVKN2WqvYY0bN0bOnDmdXnc3CK9GcHCw7pRUJM+oul0uHULatGkNWb9cI6kgCLBYLJpGKhw7dszuby3PB2YEft1Rrlw5/Pzzz7o78niyl/7rr7/usXXLUVvXLV682CPbT5s2LcaNGyd5PPtjEN1XlClTBp999pmmzxQuXNj2fzX7XmscYePGjZqW93X79u0zuwh+R831Ve99YKtWrTyezoVBdGOortlr1KiBmjVr4sKFC2jSpAlq1Khh+xcXF5cscn0md2pzBXoj0GbUDb67gWa1vTjq16/vVKn89ttvhveSfOONN9C8eXMAwIgRIwxdty/p3r27pkpabtnevXsjQ4YMRhXLbnt6bnzLlCmDa9euITEx0fAyGcETF+YOHToAeJV6g+S5U69a87c7ngfvvPMOatas6VMNNVpFRUVJvt64cWOfePjUWsd3795d9j3H3y9fvny6yqSGO5MaKdGSjscTAgMDNQWAlB5kIiMjPXKMWQOA3uTO9lKlSuWVOSJmzJjh1ufz589vUEmMoTS3j6cfgl0x4pqwfv162R53nTt3dnv9Sqzl13J+OgbctewDf039ItX4ZTZvTIon1qhRI9X1X/r06T1ShowZM2LIkCG2+2ExX7iPUdK7d2+7zhi+FEDr0KGD7JxYefPmRf/+/bFv3z6765f4vFfzXbTWlXqe+9u2bav5MwBw5swZu79z587t8jPinvhqeKOx3KpevXqYP3++17anxNV+cjd1jOPnBwwYgDRp0rj8XFBQkMfvHwIDA33qPPdXmmv2XLlyISAgAA8fPsTp06dx7Ngxu3/kW8QnidoLhT/1gHa3rGpvbtasWWO3L3/44QcULVrU8OCVeBtKwRirrFmzGrp9X6VU2XtqOKvWG98MGTIY2mvVEzxxbn/xxRfYuHGjbI9ib3O1/7/77jsvlcSeO8ep9SbX8btJHaOHDh1SvV499Ze7D6Gutjlq1CisW7fOrW0YSes5PXfuXNkUGI7rqVatmltlM5Pees5T18x69erZXvvqq68kl/FXkyZNcrmM3HwJvqRevXooVaqUrs9OnToV2bJlc7mcnnQuY8aM0VWm2rVr2/7vGMw0at/HxMRg5syZsu978mE7derUko2/CxYsQEhIiMvPyzWaxMXF4dy5c7hx44bTe61atQIAW0cET0zO9r///U/3On2Fdb/obZz3VN2waNEipxG6ixYtMmxybil9+/ZV/D5nzpxB3bp18dNPP3msDHJzhcyaNctnguhyDesdOnSw+83k9uXt27d1b9sTjbSpU6fG5MmTUblyZdm85p7oia6H1lzuVuKGY4vFgt9//x3//fef4me0Hm/evE/YsmULOnXqpPvzjmVdsmSJrvWMHDnSZUoWd/eLYwe/9OnT46+//lL1WaZz8Q+aa/a///4br732GiIjI1GsWDGUKVPG7h/5LrWpR7xxQTHqBHU3b7jackRERNgta21NVKro9FTuWvfL5cuXNS2vNbecOyZNmmTrlVGgQAG3hs0r3RQYMRqgfPnyuHLliu1vQRAkt3n48GHZdVy9etXtcniaJ87t8PBwNG7cGKlSpTJ83Xq4OocchxqvX7/eg6X5f0rHsDVP57JlyyTftz4oq6kfHHuVKNVRem7UxOebJ3oljxw5Ek2bNjV8vXqlSZPGY+lcrKOOAKgKEGrh6ZtwpfuJKVOmeHTbYtZ9+s033+CHH37A06dPUadOHaf3vcnIdC7bt2+XneRNXHe5E6hR07tNq6lTp2LkyJF2rwmCoHpEpF561l+rVi23t/vnn38a3qMvNjYWV69eRa9evWTz8Bp9fBcqVMhu3VLHldr7iF69etnVcWL58uWTrEOWL1+Oe/fu2XqVaz2uxfWeXDmljhE19eWlS5c0lQV4dc9drlw5zZ9TKyYmBn369DElhYoUqZ7YlStXNvz6Juaqvi1YsCB+/PFHtxutlVL+yAXRe/bs6XQMd+vWTdf23W2IeO+99yRfdyyz1L7s3Lmzql60RnO3flNTf3jiXslxviW9nWgcv39wcLDL30Hc0aVPnz66tqtVz5498eabb6pa1shrlngEtKv5bcQpDvX0JNeiR48ekuko1TQ+A56Pw7n6bgyiq6P5rrtfv364ffs2Dh48iFSpUuGHH37AwoULUaBAAdN6+JE6ansAuTp5PTkEXStv9UQH7CsV6+eU9lW7du0MyYPsSNz7yfHCfO3aNcXPjho1ymupH1q0aIFFixbhwoULOHbsmOTxZ01Z4yqQqVShGxFEr1mzptNNvtSxUa5cOQwePFhyHWovjmby5IXZVy661nI0a9ZM1fJNmjTxZHFsHI8n8dDz7777DmfOnJHNAS4XRFe7z+XOeXeD6Hp+c6UHAF/smb1q1SqPHduO6/3kk09kl82UKZPd367yhFauXFn15EdK5PKNh4SE4O7du0hKSnJ6T6lO9tT1JyIiAvXr10dwcLDTdVHu9/Nk3mijjhm5fOEdOnSwq7vc6Yn+4YcfGn6MJyYmomDBgorLqOlhbxUaGqpqOVcBBn9KfWVGWR1/M6mezmrLZbFYJOfscNUDLiIiQtWyYlryFDs2+Hft2lXVd8qePbvqbVh98cUXulM5APZzUMil3Jg+fbpTL+NKlSrhzp07urdrpIiICI/ee7rqVamF+BosHtV34cIFjB49WjZ9pHX74ueIs2fP2sonpjSHhxJ3v6NcIFfN/tPTSaZkyZK2/+tN+atlpEViYiJy5cqFHj162F6zWCwuO4/pqWddzUXkOGLTqCC63Gti4l7/jRo10rVdrWbNmqU5d71RrI3gu3fvVlxOnEZGTadfvefb//73P8yZM8fpPti6PsdnzoiICKeGNanGSCX58uXDnj17VC/vKvblK8/zvk5zEH3Hjh347LPPUK5cOQQEBCBXrlxo3749JkyYgLFjx3qijGQQtTcxjss5PsR5oteS1YgRI+wm+6tWrRpWr14tu7y7w+Q8GUR3/IynhYWFuUzvolQepf2sZ3nrPsqdO7dTvknrDcXo0aNx9+5dtwKZWoLoahuSlHKit2zZUvX2jOCqdd3RO++8Ixs80/sgI2648XXWY01q6Kr44dxIpUuXdnrt8ePHdn87Hk/z5s3D66+/jmHDhiEoKEgx4GRtoHE8f9Xc/BvdE138UOP4nb7//nu0aNFCNvBXq1Ytxd4q4gmh9JCaTHPatGmYOnUq5s2bp3l9giDoTj+hZ1v9+/eXfd8xwO7qwTA4OBjHjx/X3evN+r07duwou0xkZKTkw6G7uSS1kNqWOM/+w4cPPX4dfu2111SVS0xtcMCx8cRKqcFFq8jISMPWJeZqH0j1sLeOyhHLmTOn0xDwoUOHSl6XrMfXvHnzJCdbdeTOd3c8lrUcZ3KN8Urr10LvZ8XfwWKxYMKECYaWy3EbYlIpD9TuU+skza6WnzBhgl1Ar2nTpk7pn+QYmcJKbQOn+BrbvHlz9O3bF9mzZ3eq/13Vg468+WySOXNml/eeWoKl1pQ/Vnnz5jWsx624QbR8+fL4+eefceLECeTOnRsWi0U2d771dxo8eDA6dOiA9evX21JxOH43PZ2/WrVq5bXGfDWB25UrV9r+LzdB+q5du9CjRw+MGDHCLt2aFlqOi6lTp+LChQt2DakWiwU5cuRQ/NzLly9x5MgRTeVq3rw5vvnmG8TFxalaXnwep06dGh9//DF+/vlnTduUG+0gVr9+fbuOjlLL7t271+k16zklN3JIjdy5c3t8roxNmzY5vbZ9+3YIguBysuuiRYvi+PHjWLRoEZo0aeLW+aR0DXS13m+++QZ//vmn7e+0adM6PZtqHXUSHR2NqlWrql5+yJAhDJQbQHME8sGDB7ab+rRp0+Lvv/8G8CrQo7USIu9Se+F2vNnZvXu3XaudXKBDS0C6Xr16ksuPHj3a7iamR48eaNGihdNytWrVQrly5WQDmq4umlZqyjxo0CAA0kF0oyfQUVOpyQWh1HxW6ftK7Wer3r17Ky4vNYxZqjyffPIJcufObTfMW81DrNJ3W758udNrcjc2R48eldwHUhdEo/IYanng/Omnn5weEKSCVKtWrZJdR968ee1ucMX0jtxQsy984YK8cuVK281I3rx5cefOHbx48QKCIGDfvn24cOGC5nVKBXWszp49i6FDh2LDhg12r3fr1s2p56TjPgwMDMR3332Hjz/+2GUZvDHZsyO5tAhyQfSAgAA0atQIq1evlpzPQRAEbN++XVePnMWLF7tcJkOGDDh48KDT63379kViYqLmYPI///xj+78nj+327dsDeDVUXEvwWU2ZLBaLU32i1t69e3H48GG0bt1acbkSJUo4pRJQu7+io6N1lc0V8QNJZGSkx+um8ePH4/PPP7d7zdU9iNqRm3I9+JS+U+3atbF582ZV6/fmZJ16G/3+/PNPpEqVyu47f/rpp5INCdbPd+vWTXIkoOP6e/ToYVjDjpb1iL/Lf//9J9nzTGujt/i+Su93crxHyJUrl10DRr58+VzWCXpJpcvQmjJM/L2l7s+t9/NW7tQNSo2egHLKK7nJEh05lm/atGm4dOmSU0O11mNFvN69e/d6ZNSsmKvjUarhXS4o5NjokTdvXgwfPtzpPkyPqKgoXLx4EdevXwfw6llCTYOHdX+mTp3aFqSzcgy8P3jwQHO5jOxtL7VuMTVBdPFn5Bra06ZNizlz5mD06NG6y6713tdisThNLJqQkIDixYvLfkYQBNXpiMUjXpo1ayb73OzYE11cvwcFBWHYsGGqA/BaqJnUXKpOnTJlCmbNmoWpU6e6tX0jJg2Vy90PuN+hq3jx4ujQoYPTPpLqxGR0ZxDr+gIDA13OoWJEXnul0R958+ZlTnQDaI4SFSpUyDZbcKlSpTBnzhxcvXoVX3zxRYqZ5NBf6e2J/uzZM7u/5XLbRUREqG49K168OC5evIjx48crLid3Im/fvh2HDx+W7RWgduiYq4pi+fLltp444mWtgaCIiAjFXNhGV0R58+ZFfHy87s+rrZgdlwsICMDOnTtll5fqLSf13T/44ANcuHBBc12htB/FAfxatWohJiZG8UIudfGTulmX21fuTqwYHx+PSpUqSb5XrVo1rFixwi4vqWN5t2zZopj/8sWLF7IBUL1BdMfAp3iYppXZF93UqVM7NapFRUXZfsfKlSvLDsVVovS9cuXKhU8//dRpmLfWhxBX3AmiC4KgK52L3BwG4vo/NjbW9n+lXm9iSt9brjzWQLMSo48/ufN8+vTpLj8rN6xV6vstWLAAZ86cwbvvvmv3+qZNm+x6gbq6aZfrMS8e2aVFREQEypUr53K/BgQE4LvvvrPrGSn+jDjPf1JSkt332LFjh66yuWKxWLBv3z5s2rQJWbJkcfvYOH36tOL7qVOntmtotlgsHs8L7/idxI3RS5cuRYMGDSRHZlj169cPgwYNwrZt23RtX+/IU1e/hdJxPmTIEADAW2+9pWvbjjZv3oxPP/1UcZnAwEDZfOTuEF+L0qZNKznCU7wv1Dy06+3UIc7ZLb7fl+r5ePbsWbfz2mtJryRuxNY6CnDTpk2yvWQdyyLettrUMK6ed6S+z65du+x6IUoRX+/UpnNwfG7Tco5UqVJFsuHblQkTJthSMrqidPy2atVKctSIXA7v1KlTOz1DBAYG4rXXXnO73rVYLMiVKxeyZMki+b7c91Cq1xw7VIh7+8o9wwKwC/xaLPZ533v37o2aNWuqTnPlqEaNGnbrFlNzzDl2Kvvwww9dblPrHF6AMR1IoqOjcfz4cXTt2lXyfevz1P79++1ybEtxVZ8Ar9KpONbFjkFTPdTcx6gJokuxxm/0pKzSQy5QXrNmTUPn/1Cb1lNu9KzYli1bbP9XGqHqWBdbG0v0dmjR6/fff7f7W9zJyLE+IX00B9ETExNtLbQjR47E5s2bkTNnTkyfPt3lzSh5n/gkKVKkiN17cq3rjjcJjkF0pfx+s2bNUl22HDlyuLwZN3L4pBRXgSxx+aR6ogPKAftWrVpperBxVZ6CBQuiaNGiGDhwoGJrrRy9+9NisaBmzZqyKQSkGmiMrKDVrqt37964cuWKXRDayvqQKj42Bg4ciPXr1+ONN95wWl7ut8idOzcKFChg95pSsEIsY8aMWLt2ra3HmFwqGnEvRsdjuV69eor74+XLl3YP5OKeznpniHfcF9Y6wLFOMVrfvn09un419LTWS73umDNf7rOTJ092WtZT+faVAqxyPVSzZ8+O7777Djt27MBHH31ke11twMeoER6OtNY3SiNvHA0cOBARERHo3bu3qmHjsbGxePr0qdPrUvslMDAQBQsWhMVisWusio2Ntes1Ka5jHW/4AwMDcfToUcnUC2odO3YMI0eORKlSpbBu3TrNnxd/N3H9KD6OHHt7GTEZvdzvXrlyZcVRJFpIXU+UCIIgm4bFyugUKlINsx9//LHsyLVs2bJhwoQJqu5PxOe51fvvv+/yc3ruAZTqjgYNGuD69etYsWKF7vU7rk9N3Wr0w2Z4eDgSEhLQvHlzLFy4UHY5d3rIq+00M3PmTLvAibjesn5vcY9q8b4QB6XkAp7uEm9PEASX2xHvs6JFi7oMiEv9to0bN1Yc7af02erVqysuV6NGDVUBNWuQRhzsVCL+vVeuXInExERVn5Mqo1oxMTGSqaykiMvnmLt4xYoVsuehXHBfrgNWv3793JonydU5pyeILr5e37p1S9UEnd9//z32799v+7to0aJ22/j888+xc+dOyfupw4cPazof5QLk4iCc43bEjRgBAQGq0rVkz55dsnPCt99+K/sZpSC6EfXy8uXLbSNrKlWqhCVLltht01WnNakydOnSBcD/P8cZNemvJ4PocgYOHGjYutSs1+h0f2r3vdR2HfdjvXr10Lp1a3Tu3Bnjxo2TbVBx7Ky2Z88e3L59WzYVsqfmPhHHrypWrOj03MCe6O5T/TRrHQbfvn17W86j2NhY/Pnnnzh8+DAuX77s9VYW0iY4ONjuZlh8gRZzrACeP39ud0LlypVLccKaJUuWoH///ob03pG62fz+++9dfs6oILqYeB+4ekC2ioiIwPnz5yXfE1dw48ePR9asWV0GQazfa+LEiU4XIalKb/To0XZ/6w1gWdct15NZan8beWFQW6HL3UCsWLFCMtVDnjx5JHOjWSzyOdEB+xv7WbNmqe651L59e0RHR6N+/frYtWuXbM8M8b4TB8GtOd+U9of1N3r58iXOnz+PDz74AJcvX8bp06c19cQWD1V27Ik+YMAAbNy4UTK3npGmTp2Kf/75Bzt37rTrGaRnkiO9lIZcyh0jaoLocvr374+//vrL7jVPpXP55JNPMGvWLMk8g3ICAgLw+uuvIz4+3q4OUxtEF+8bpVE8rjg2Xqqp28TDWLXMAZE9e3bcunXLKWWHEj2/WVBQEFasWIGvv/7a6Roj3qepUqWyW7/cNUaLEiVKYNSoUTh69CiaNm2q+fPi8tWuXRuzZs3C7t277X4Xs27M5bZrViNdr169ULlyZU2fcTyerMGII0eOYNWqVXajqazfNyIiAgsWLJBcX8aMGe3+VvptPvzwQzx48AA//vij5PudO3dWlc5RTeNanTp1FNeRJUsWXaNZlN539RktPafViIqKQqpUqbBmzRpbKgSpbTimJdBCbdl69eplt26pxr9hw4ahRYsWTpPpzZ071249Ykr56PXuT0EQMHnyZKfro5pnAjlyx5KantxS32P9+vW2/1u/j1RnA1fXyKSkJDx48EB1yivxvflrr72meyJD4FXARY3WrVurPi7FQXSphgYpgiDgyy+/xN9//+3U4N+mTRu0a9cOc+bMcfqcO0F0vZT2Q2JiIipXroxJkyap/j0rVKiAiIgI/Pzzz/jggw8wYMAA1fu6XLlyqiZ5rFChAvLkyeN0fFq3I24Mt772zTffYOzYsXbXL8cUKkq2bNni1ItXqhOTlVSqUCu5Dmxqy5IhQwaXx7A7o+V27tyJkSNHOl2DPT1htPj7yH23hIQEl+upVq0aJk6cKHlNMILWThTW76JlXj539rXUvlu+fDnmz5+P4OBgu+d+8TnkGCcJDAx02XDm7r2xq89/8MEHTseF+G/HeCCD6Oqojqjly5cPefLkQdeuXbFkyRJcuXIFwKseFWXLltU1TF5s3LhxsFgs6Nevn+21x48fIyEhAenTp0dERASaN2+OmzdvurWdlE78ICbVE6pJkyZ2NzulSpVChQoVnE4opaH77dq1w+TJk/HDDz/oKqN4W45pNpYsWWLobNNaZii2WCzYvXs3Nm/erJjrUM025syZYxdUGzx4MK5evaq7p7Acx95iaoPojjfg1v1g7YnumJds6NChAPTPOm8Uud5XrVq1Ut3wAby68EqlLLESHxc9e/Z0Cki4YrFYUKNGDVVDRsUt6dOmTQMg/Tta5yqwDhW1WCzIkycPLBYLsmfPrrk3pbhs4u01a9YMQUFBaNy4saohcO6wWCxInz49atasaZcH01MThDpO4hoXF6fYE0PuRkPq95GbqV3NerUGZB33j9yNZHh4OHr27Kl6DglAOke/4zbU9kR3fAhS+tz27dvt0g6oGYJsJCMezMVlPHXqlOQyrVq1svVkEhPvm9DQUAQFBeHEiRP49ddfNQ0VtuYdNrrnqGPAr2fPnqhevbrT72L0A6TeiV+7d+8u2cPaHdZe3dYOBFLXhbRp02LmzJmaj9dffvnF9v8vv/zSlgagTJkyigG/qKgoXL582e769/bbb7sctu4oPDwcderUwdSpU50CC1mzZlUVtFPqJXft2jX89NNPmkaIuAo8S9HyAC5F/IziqjzLly9XNfxfjqd7okulI5EafRkZGYnVq1c7TToXEBCATZs2YeHChU4jl5R6KLszwtRisSBjxox2x4l4VK3Wdbtz3ZD6rNTkdvXr18ecOXNw4MAB1esODAxUnTcdsP+9xeeiXOe2okWLyq5r2LBhqrapJVDv6li25ox27PlrsVgk4wtBQUFYsmQJevTooXlbSlyls5Bbt9KzVWRkJPbt2yc5kbIc67EVFxeHTz75BGFhYS6P1alTp8o2ZkqNytq/fz/Onj3rdH8ptR3r92vWrJnTc6WWcyg2NlY2VaDY1atXcfToUcln4i1btqBRo0aa8/irnVdG7nWpBl7HZyBxZ618+fJh1KhRtmWsjfZSneXUPDsb2RNdTW5xa6cTT3XiOXz4MIYMGWK3PywWi+w12vq9tJzfapd1N92O+D5UT9pUNaNTrNTk0nccweQqfYtcillSpjqIvmPHDnTq1Annz5/H22+/jVy5cqFAgQJ45513sGLFCreC24cPH8acOXOcglbvvfceNmzYgNWrV2P37t24du2a6vxG9IpjyhY1PW7EN9G//vorgoKCPFaJerpF1lFISIhdTwCtPbOrV68uebHTOiN1oUKFdAWBlFrlHdWuXVvVzZEUxx561s+VK1cON2/etMsNBrzaL//++y+WLl1qe83bv62ebSrtj6+//lrX54zg+D0GDhyIcuXK2YIlUts/evQorl69qmoSJEfW4LyY+Nxw1fjmDe70ynNl9erVKFy4sF3+ZgDYt2+fYs5JLTfhcg1Taj6vtZ4SP6QYfR66G0RXmzvdUa1atXD48GHb394OoiupWbMm5syZ43Jis7Rp06JVq1Zo3ry5rhQhy5cvR+7cuW296IsVK4bSpUvbllGzD8aMGQNBEFT1VNNaPinu/C65cuWSfWA4duwYVq9ejWrVqulad/Xq1Q3vsbh3715MnDjR1kPX2tlETO/+EN8fa81znz17drsg+pdffun03dXUExaLBYmJiZKBLqmRNlq+a+bMmVGtWjXkyZMH06dPV9UxR6onoqvvIZV2QOkzju9pedht3bq16lFq4u9rre+1TjwnbjwVB1WLFi0q2fEjX758AOx/p9mzZ2vaZsOGDSUnFnSnJ7Qc8W9RtmxZ2//FgWu994CuGn5PnjwJQH5OKABOOZet67RYLOjRo4ddD2/H7WlpyJYiF0SXG1W0evVqtG3bFklJSU7vacmzracnupTcuXPj7t27dnM06L13cWzsUWPr1q2YN2+e7hRjRt9/SN3zuWo0TExMtCv/ihUrkJiYiJ07dzqNIrFuQ+o8ldqOUqNLQECA4feZMTExsg3k9erVw/fffy97znjz2bNt27bo0KEDxo8fj8ePHyum9pw6dSouX74smRa1RIkSSJUqleqJvtVO4OnOKCq196h67+kDAwMxbtw4p8meIyMjcfXqVaeR2tZAt9ZJlNWQGmWq5ZwW3/88f/5c8/b79++P2rVr44svvrC9Jjdh765du5xecyyrNVb09ttvo2zZsqhfv77TqFDxNdTV+kia6ifzmjVrYtSoUdi1axdu3bqFrVu3ok2bNjh16hQ6d+6MmJgYXcGb+/fvo127dpg7d67djdCdO3fw1Vdf4bPPPkOtWrUQGxuL+fPn4+eff9bUmp/SDRw4EMOGDZNN3eLIYrEgNjYWCQkJmDx5su1EUnNT5alAuyvWYaTiHhdqH4pcVRRqK5Kvv/5a06Qpei7yn376KT744APVyyv1JnAlffr0dj3+HVPZSN14pUuXzvR8x0a2pmbOnFm2rtF7gdE7IdrEiRPtJtKV2n5oaKjqCXXF/vrrL6dGkyJFiuDtt9/GpEmTkCNHDrdyLesl7nnuyOjjrEWLFjh16pTdRE6AsTcSjvM/eDIfXb58+Ww3UWqGXGvZnrtB9EaNGqF9+/aGT7xo5G916NAhTct3794dPXr0UJUfdsWKFVizZo3q8lqP9fj4eLRu3RoXLlyQvfmV2+/W4cTz5s1TtU0jFS9eHDly5LCNItBy7YuOjsbevXsxbdo0pweHEiVKaOq17A3Zs2fHwIEDbQ317gaWHRtyL168iKSkJF29qT35UBQQEIBChQrZrr/WScgdGziCgoJscwooNQT06dMHbdq0cbndbNmyOaXyUDq+5PK/u7pvMHrfSZWxR48eaN26NRYtWoRTp07h448/xuTJkxU/Y60bpk2bhpYtW9rlvxcHGo4dO6Z4fyr+ftbAuuPrWikF0eXWK56oWorjfDbFihVDv379dAdxXLGOJJk2bZptuL54ZKDj91C6Z3Hk+HuKRybp2e/i3o/ifS93PuTKlQtLly5VDKTIyZ07ty0oq7asjvMISYmMjLS7txN/Dy37RByIUqtOnTro1q2by+X09ETXQ+r7aj0uWrVqhalTp6JmzZpOoxrU3n/u378fY8eOlRwdJ15ea6PZ1q1bUaBAAcmAoKe42xNdSnBwMBYtWoTBgwe7jJNYRwVLKVCgAG7duoVTp05hyZIlLrcr13FPbU90pfno9u7di08//dQ2OsQVx9FZK1euVD2axZH1N4qJiUH27NnRsWNHZM2aFfXr19eVtkttakmpRmaLxWJLiSs3atF6HyOeWF5PT/TIyEhs27bNroFl4cKFeP/99522LXVfKdd48+WXXyIpKQkhISFOx0XevHlx9OhRW2cP8fWXQXR1dHXDCQsLQ61atVC1alXEx8dj8+bNmDNnDk6fPq15XQkJCWjcuDHq1Kljl/s3KSkJz549sxs+U7hwYeTMmRP79+/n0AOVwsLC7ParqxMjICAAFosFM2bMsHtdTYDcVS88T8mVKxcePXqE0NBQrFy5UtNntaRzcbWc0jDAunXrYuvWrZrK5siaMkWrxMREW09jV9+ncePG+P7779GhQwekS5fOlivZ7ArVVcvzrVu3cPv2bbd78ziqWLEiqlWrhj179ti9ruWGedy4cejatStq166tumeZ3hytejimHEhISLCd/wMGDHAagurpXh7z589H69atbQ0GUtvNmTMnbty44bVy5c6dGxcvXlS9vNTxERERge3bt9uGUap9iFGbn9TR5s2bsWnTJjRr1kxTLm9X1KZtUPr84sWL3S6H4/5TmqDPavTo0ahdu7bkEHCriIgITSN+jhw5YtcbXCw4ONhuYm495+3ff/+NGzduKPYEc6VTp05o2bKlR+cSkBsOGxwcjPPnz9vOCa3naUBAgE9MMGwVEBBgdz2yptEy2tOnT53uu3LlyiUbCE6fPr1tCK/W9GLusg4VduysERMTg2vXrmHUqFF48uQJ8ufPjwIFCqB06dLIkyePIdtu1KgRihYtausprCQwMFAy3Yaryevq1KmDTZs2OdV9Rl5zQkNDsXz5ctvfaoIQ1sB43759nc4RcdkCAwMRGBiITZs2YePGjZg1axYA+4C5FE8F0R398ccfuHTpkmw9aiX+TsHBwThx4oSq9X/11Vfo1q2bbUJaMWu9JHXvePz4cRw4cEC2cdTV/tFyfCgFtdQQ10nu3h9aJ3Bds2aNU+PLe++9ZzeKSe153LlzZ1y9ehU1a9YE8ColR5s2bSQbdvv27YtDhw7ZpULS8p0iIyPRpk0bu/PJ03yhJ7o75MpfqVIll/GWgIAA1XP+WNWpU8du4lIjyaWZTEhIsMtPbkQQ3V2bNm3Ctm3b0KVLF9voMLk0n47lqlKlCvbt22f3mmMQXe671K1bF23btpXs7V+lShW7+YNccUxZ1rJlS7Rs2RKffPIJgFfXghcvXshOEqxE6r7emyMNhg8fjk6dOsnGFjZv3oz//vvP7p5LTxBdztixY3H37l2MHDlSdpm33noLY8eOdbkuqeNC/Ptv2LDB1hFP7hgke5qaTp8+fYqffvoJH330EeLj4xEdHY13330Xt27dwowZM2yTj6q1YsUKHDlyRPLHv3HjhlPqDeBVa5Fj8ETsyZMnuHv3rt0/+n/WCV3kcgrL5Ul1dYFctmyZYoAwOjoa69atcwpEGVUZqskXJ8VTPacdLVu2DOPGjfPoNuTSG4gfrlztow0bNuDhw4fInj273QVP7b4VHydaAza7d++WnIAJcH1Rio6Oduqd585QffH3lVqPlmOtS5cuuHLliqZGFG8G0bVy9eAt5ZtvvsGwYcNUXZjz5MnjFEB3tHz5cjRs2NDW49HT5PJXO7IGDqwpA8RD9AsWLGh7gATU/4ZyEwMCysdJ+vTp0aFDB1UP51rqYbk6U21PdKM47j81OR5r1aqFW7duKfZU01pvlClTRva3dNz3evZLunTp3AqgW3l6Mt6BAwfi7bfflpykNigoSNW1tlatWp4omqFKlSqFCxcu4OrVq3jw4IHqQJ4aderUQb58+TB+/HjNI/ssFgt27tyJnTt3Sh6P1uu5XEDEOlIgJCQEb7zxhqYOCUp1WdasWTFnzhwsWLDAtlzBggUNHbmoVPdYA8bAq8B0fHw8+vbtqzqfriAI6NOnDxYuXIg//vhDcdlJkyYBeDXHjdGk9rHSfblUx4OGDRti5syZ2L17NyZNmoQmTZrIrttdWoLCefPmtbs2ytF7XenatSseP34smR/c+t07duxomzDdKnPmzGjSpIlsj2h3guhqv4u76VL0/rafffYZ/vzzT7vXpkyZ4pQGLF26dLY80OKREI4CAwPx4Ycf2p5B69Wrh3/++UfyM9OmTcP+/fvtjm+t30Pt8koT4ErxRNoyqXVI3Yd4ai4gpXKooSeI7kmxsbEYPny408iQcuXK2c3VJpXGEvBucL1hw4aYPHmy3e+ttm6Qui9U2xM9ICAAS5cuVX2tsm5LT+7wmjVr4tatW6quuWrK7q0gurVzQM6cOWXLFRgY6NRpwcgguhrDhg1TVTe42rdZs2bF2rVr0aJFC4wYMcKo4iVrqp8Wa9WqhYMHDyJPnjyoUaMG3nnnHSxbtgxZs2bVteHLly8jMTERW7dudRkw0WLs2LGGTxaVnMycORNFihRxGipbtmxZbNmyRTYPZceOHbFp0ybdva4CAgJkc/N5gtohPI6VSs6cOVGvXj1b7wi9F03Hz2XIkAFDhgzBiRMncObMGacJUz1BS9mtPdgsFost2CJ+cFDb2BAeHo4FCxbg2bNnSJ8+vYbSvmrgOXnyJOLj452G+HkqACS3j8S9azp27IidO3fapfrQelwo5dGUYkY+eVfb3rFjB7799lun/HVqNGvWDM2aNVOdx8+VvHnzSgbrPCUsLAxp06bFrVu3FJe7fPkyfvvtN1tA9/fff8epU6dQoUIFBAUF6crrbsTDiZHHk1yQ2ewgulqODfPAqzzh1ptGI/Nk58uXTzLnbHIUHh6u6iFJ6dhYv3499u7da0slZmY9qERLOpXDhw+rHtkQExPj1og1pXOid+/eKFu2rGxv36ioKNy5cwdhYWGa6xx3e9FK0fLblypVSrahs2fPnujRowcuXrxoawCWC55YHTx40G4EUFBQkGx+UrFq1arhwYMHLieE1HNcS31G6fdW2kb16tVtwUwl7gSNlDrVaF3v+++/j0mTJtmNqpVjHR3t+Gwql2rBWpagoCBbI4gSLUF0tRx7TJs98tO6fcdyyI0uqFChAp49e6Y5pYfZ3zMxMdGwtHLufJe33noLq1evxtixY1G0aFE8f/5csg7p378/tm3bpjp1qRKlOkpPg4UvBdGBV/d0UurXr4+JEyciOjpadtJdszk2MMfGxiIpKckuxSrwquPC3Llz0alTJ+zbtw/nzp1z+Z30jmzdvXs3tm/fjidPnqBTp06aPisIguR9tzdoOT969+5tl4VB7zltdBDd1XfQ0yAr95k333xTsTGU7Knuhrtnzx6kT58etWrVQu3atVG3bl3dAXTgVbqWv/76C2XLlkVQUBCCgoKwe/duTJ8+HUFBQcicOTOePn2K27dv233u5s2bir0Zhw4dijt37tj+aclTnRJER0dj+PDhTr1JAwICFCdyatmyJQ4cOGA387QWWiojpV53aisLueVc5UTLlSuXbVIwT1i8eDEOHTpk+IRmUqzfTXxzIxcM37Fjh6p1qdGpUyddw7asli5dinfffdcuD7eWiY6s9FwAt23bhgEDBtjy7AOvvs/PP/+Mn3/+WfP69PLF4FF8fDymTp3qVoOG+PibP3++pnk0fHGfOMqaNSvq1KljO/bSpk2LypUr2853tQ/g4l5leo59T7BOqCfOCStmRBBdy+eMHG4ozodoZA/ZlStX2g2LNTto4MjaICbOvazE0w/KkZGRaNiwoUe3oZV4Qk5A+7Fdrlw5DBw40Pa30sgSTwoICEDVqlUVeyxFRUVp+o0nTZqEatWq2V0vzSB+8JX6fQIDA1WPoGrSpIldflHHc9ZVEMJVAN1Iaq8h7qxHj/Xr1xu6zrFjx+Lhw4dOc5ZIWbRoEUaOHOmU5kCOOz2cvdETXa2KFSuiSpUqqhp7XBGXzdrBxpWgoCC7/aH2c2aw5tDv0qWL5t/fEznRly5diiNHjmDw4MF4/fXXZYNYUVFR2Lt3r21eCT0WLFiAkiVLYubMmbLL6Dkn8uXLZ1qgVKuBAwcqPqNa81KL0wl7U9WqVVGrVi3bdfXgwYO4f/++U4/nggUL4tGjR5g/fz4OHTqEbdu2SaYqHD16NGJjY7F27Vr8+OOPusqUIUMGtGrVStc8L0bXdZ56Fvz8889x7tw529++EkQXPwNKZYvQE0T3xOSsKZHqWv/27dv48ssvER4ejvHjxyMmJgYlSpRA7969sWbNGvz999+aNly7dm0cP34cR48etf0rV64c2rVrZ/t/cHAwtm/fbvvMmTNncOnSJcUeDqGhoYiKirL7R+6zWCyoWLGi7P6UO4mtE0upmbDFKiEhAaNGjfJq0NLKm0EOa5oVx3xiejmW3Tqzdvbs2ZGQkKA48YlRueGNEBMTg9mzZ6NEiRK219544w2vbLt27dqYNGmS0zDSuLg4REZG2l7zdBogMwPGRv3WUj18xOvu3LmzqhQc3mYNejpOimcU6zmoFNSJjIxE69at0aJFC6fJYtVOEm208+fP49ChQ7IpN+SO2aSkJNy8eVNx3dbAnmNPGylbtmxBrVq1sHTpUpfL6qGmgdNaH7lKP5IvXz6vpRwCXvWyAtQH8saPH4+LFy+if//+qpY3YiJPX2kMEzcGWnN3WrVq1Qo9e/ZEXFycywZmrdRMPusvBgwYgJ9++slraQbkiEe96T2+pk2bhpw5czo1KDmur0GDBli9ejVOnz6te1t58+bV9TktjHhI1trZY8eOHZgwYYLT/Zq1AdZKzz2G2sbNDBkyYNSoUapzdWsti/X8dZwEUyvxsSO+t3QkN2Gco8DAQOzdu1fV3CBaiNPbaDneramCjGLkM8jly5dx+vRpyXzQerlTvuDgYMW0cEqsI0rUzoPRqVMn/O9//9M1ObWcLFmyIDg4GDdu3MD169fRtWtXp3mkXJk6daohaeuMMH78eHz//fdYt26dKdsPDAzE9u3bbQ0dgYGBsqO9rKls06ZNi9q1azvVSRaLBSNGjMAvv/yCN9980+2YmKfu36wNR45zcLlLbVYCK60j6KW4miBbq7CwMHz77bdYu3atUzotwNie6KSN6juk1KlTo0GDBmjQoAEA4N69e9i7dy927tyJCRMmoF27dihQoIDq/JCRkZFOvQpSp06N9OnT217v1q0b+vfvj3Tp0iEqKgp9+vRBXFwcJxX1AE8FSb///nvs2bNHU4tucHCw4iQK7pDLG24U66Rjam4Ghg8fjtq1aytWuOnSpcN///2nqQx79+7F8uXL7YazOU4Uq5XZPSjr1auHAwcO+My57+n94YvpXLSSesD01hwE7li3bh0WL16semZ6rW7duoXnz5+77NEvNymWnnNAy3DAjRs3Sk6SnC5dOtkJmxzXIf5/2bJlXZbvjz/+wPHjx1XlxK5Xr54t57wrcr3mlagJHC1atAhr1671aooyNUqWLIlTp06pHiVosVhkJ6r0FLNv3tu3b4///vvP7rf74IMPkJCQYOtJFxERYZdLW8zs8pNnSE3OKcVisdgak86fP69q3REREbh//77tb6MmPDSqJ7pjvd6rVy+cP39edQDXKj4+HvHx8U6vnzt3DqdOnbIF/Dw1Ga8eWu9JGjRogH379qFgwYJInz69bdJxqQky1dYVSqNvypcvjx07dugOeoqPkfDwcDx8+FDT5/U2kCUkJODChQs+N7IIgFsd7KZPn47WrVs7ve7NEShiS5cuxbRp09C1a1evb3vdunW4fPmyrTEiNDQUWbJkccpFrkZiYiJ69+6NunXr6pp3yUghISGqOnT4A288uxvRE33NmjW4fv26qtSnauvV2NhYVc8fcrTuuzt37uDu3bsemZRTqSOh1P5wlf6N97HG0B3RSJ06te2hOm3atAgKClI9+ZpaU6ZMwWuvvYbmzZujevXqyJIlC9auXWvoNlK66dOnI126dJI3gEaIjIxEo0aNVA0RdsyD7Q6lCkJukiApWivRI0eOoG3btvjuu+9cLhsYGIiqVasqBtN69uzpcj1fffUVQkJCbOdGlSpVMGPGDENHYZgRRHccNluxYkXs2rVLsiVWL6UURko8vT8ce25JOX/+vKYZ1L2tS5cuyJ8/v+LEtlryvBqVF86VjBkzon///k49e4z6zVOlSqXY88xs9erVc+qhpXQjaj2HKleubHtN62+RKVMm1K5d25B9PGDAAJQpUwZ37tzBt99+q/pz1oZbpWHOVmnSpEGXLl2QNm1a3eX0lMKFC6uqP/Tw5xvvpUuXYvLkyVi8eDG+//57p8YST+0z0uett94CoH0iM188Ri9dumQ3caZRvUCVAuUJCQkA/n90ipIxY8agZs2aWLx4MYBXdeDmzZsNa/TOkCEDqlWrhn379qFXr14YO3asIes1gp5rTuXKlZEhQwZYLBZcuHABgiDYjba1XhPVpjSR6j0qFh8fr7pnvRJ3O9NoERISgunTpxsWRLd24DNyDjU9WrVqhX/++cfutcKFC2P27Nma1mPt8Sq+b9IjU6ZM+OSTT0wJPDdt2tSt1DKOAgMDsWPHDo+mVCX3eOr6GhAQoHruMC09r2NjY/Hjjz/izJkzqj8jLpMWUVFRkh2QPE3tPRKD6MZT3RP95cuX+OWXX7Br1y7s3LkT+/btw4MHD5AtWzbEx8dj5syZkj0QtHAMooaFhWHmzJmqHmpJnz59+qB3795uBy+MyIHrjRx6mTNnRqFChbBt2zYAxgfRS5UqZWiaATX7tWvXrujUqZOmSX06d+6sKTer2T3RrWrUqIEaNWqoSj+gpszNmjXTVQ5P74+ZM2eiZcuWit8zT548KFGihOrcn1abNm3ySi+LyMhI/P7774o3Jf50IZ83bx6aNWuGjz/+GN26dfPIZHpmcXU8K42s2b9/P+bOnWuXq8+MG0krNZPDObJYLBg1ahQGDRrk0d/VV+pRM5l1zrdt29aQ9fhTneXPqlevjt9++03zSAlv/j41atRA2rRpXebqTps2LUqVKmVoRxFAOYg+bNgwxMfHo1y5ci7XkzFjRq+knapcubLbQUN/cOjQISxevBi9e/fW9Xmz50HxxetUr169kClTJlStWtXsotilfOjUqZOueS4OHDiAefPmSeY4Jt/ki+eFt2md4FruM0aXQUndunVVL5smTRp07NgRL1688EiPcinuHldqUzllzJgRadKkgcVi8Zv5C3yd6iB6dHQ0Hjx4gCxZsiA+Ph5TpkxBzZo1TR92Q+4z4sLgrWHtWirPNm3a2IbNfvfdd5g4cSJmzpxpN8kX4DzU1peo/b5aAujAq0kd/TGIbjS9Pa08vT9y586NQ4cOeWTdDRs2xPz589GlSxePrB+A5ESawKth7A0aNMC4ceM0r9Ps4NWbb76J+/fvJ6vguRSpY1vpeM+fPz/Gjx9v91piYiLOnz/vtbkM3GU9tpL7b+sus89Bf6X2OlO6dGnPFsTP6MmR681jNDw8HDdv3vTKRPFSlILoQUFBtvQpJM/I3NBWefLkwYcffqi4jNRxOnXqVMybNw8fffSR4WUCgDJlyqhaTu4cMrP+DwoKkkyjYja9zwL58+fXdR9MpIXRz6p66gCzg+haGT2vhJz58+dj4MCBWLVqlVe2FxgYaJufSmvMiKSpvvObOHEi4uPjUbBgQU+Wh/zQiBEjfC74EBISgtmzZ9uC6HXr1rXlx61cubLdDNV///23LaWKY+VsdvDYkzMoa8m3bvZ+8DW+ktvb136XK1euYMqUKbah5I4qVKiAf/75x7b/tNwM+UIAz9fqOaOI960Rx1SqVKnw5Zdfur2e5EB8s5opUyYTS+J/jEhhYDQ99dCAAQOwbNkyp3kWzp07hx9++AHlypXDnj17dPdcpf9XrFgxr25P7YSXnuDJ+8PkbvPmzVi/fj0GDRpkyval6pHExEQkJiZ6bJulS5fGtm3bNKdIIiLfe94yg5b7n1y5cuHPP/80ZEJ6sX79+uGDDz5A48aN3VqP2b9n586d0alTJ6+Ww+xRTsmN6iD6O++848lykB/6/PPPsWrVKqee3VoYHRibP38+Ro8eja+//hpp0qSx5T4V59EbMmQI0qRJY8vVZ3aOPSWeDBxu3boVvXr1cupFKta3b1+sXr3a0Lx3ZluwYAE6d+6MOXPm6F6H2Rdfq+HDh2PdunXo3r27ps956rjKli2by3QavtIAQdK09kRPDjz5/QICAnD69Gk8efKEebehru7ZvXs3Zs2ahSlTpnihRM6Ujgc9E+1lypQJly5dclpvvnz5bA2OFStW1Lxe+n9JSUn44osvMHr0aEPWN3nyZAwYMACLFi0yZH2eqGOSe73sSQ0aNLDl2U5JateubXYRkoV8+fLhjz/+QKtWrcwuiiFYl7jmCx15fJHcsZOUlIRDhw6hXr16hm5vyJAhiI+PTxYj93je+TdzxiBSstC7d2+f6znVuXNndO7c2fa3VO7nsLAw9OvXT/LzjhWa2RWcJ3salS1bFgcOHFBcZtq0aZgyZYpfBj7lfrtOnTrhrbfeQnh4uOHr9raYmBhcu3bNZ8pD3pE1a1Zcv37dltO/b9++mD59Ojp16iS5vJabf38MomfOnNnsIigqVKiQ2UUwhBEPkf3798eoUaPw5ptvyi5TvXp1n0tFsWrVKnzyySe68t8Cvn8O+buyZcsaOvqlf//+6NGjh65GE0/r0qULnj175rWcrWQ8fwzI+WOZPeXo0aM4f/48SpYsaXZRDFG4cGGzi0AeYGY6l/Tp0xs2sbBYQEAAKlWq5HI53nORpzGITn4lJCTEq9szuxL2hZtWswLonrw5dSeADvjW6AU9x6jUkK53330Xc+fOxYABA4wolip6JqnRsq7k6tSpUzh//rwtx+nkyZPRsmVLlC9fXnJ5NZPLWZld5+nhbq5Uf/zOZjDiHBs+fDjq16+vOj+vr3jrrbfw1ltvmV0M8iJfDKADwNdff212EYh82vDhw7Fs2TL06tXLI+uPiIhINgF04NXkx1euXLGlNiVn/nif6I0gOudGpJTK/7qXUrJSrVo1Vct9+OGHqFWrlq3npadUqFDBo+vXKiXnvMyaNSvOnDmD69evm10UJy1btkTVqlXxwQcfmF0UXVq0aIGaNWtixIgRttdmz56NR48eIW/evF4rx6BBgxASEqLqQSclBcldSZMmjV0QMigoCFWqVJFtZKxXrx5WrVqFkydPSr7vqqHM1x8e3H3w47GljhH7KTAwEJUqVWJuRiJKsfzxmuNPZS5SpAiePHmCmTNnml0Uv5EtWzakS5fO7GKQgYye/0BcB/zzzz+4cuUK0xRSisWe6GQqa0qRHDlyKC7nqdnqrX777TesX7/eaVKfyMhIj27XlerVq5uWF9YX+OpExqGhodizZ4/ZxdAtJCQEO3fudHrd25Ok5c6dG/fv30dwcDBmzZoFQD71hT89wPkai8Wi2Iu2aNGiqFu3LjJmzCj7eV80ZcoULF26FIMHDza7KEREsny1DiVzeOt+JiUfd94euUzkKw4ePIh//vnHo5Ozp0+f3mPrNkJKrvvIOxhEJ9P5woRaRYsWRdGiRW1/T5kyBX/88YfpPdObNGmC9evXJ6thg95SqlQpHDp0iBdSH2cN3F+9ehX37t1DpkyZTC5RymOxWPDjjz+aXQzN+vXrJzu/hRaxsbHuF4aSDV4ziIiIyMqf7gs8Fbvw9fmH6BV2OvMOBtGJJBgRmDGCxWJBkyZNzC6GX1qzZg0++ugjp9EF5JtiYmLMLgLJ8KeHBy3OnTuHS5cu+V1+brPwxpyIyH2+XJfKjUjLli2bl0tC5DuYLx5o0KABhg4ditKlS5tdFFnt2rXD0qVL/TbdKvkPBtGJKFnKkSMH5s2bZ3YxyCByD505c+bEpUuXUKdOHS+XiPxdvnz5OCmSBvnz5ze7CEQpUo8ePfDjjz+icuXKZheFkqmVK1fi4sWLKFu2rN3rGzZswP79+9GiRQuTSkZknnnz5mHatGmYOnWq2UUxncViwaeffmp2MRQtXrwYEydORNasWRWXS66dg8h7GEQnIiK/tWfPHixZsgTvvPOO2UVJtnizmbLt2rULa9aswfDhw80uClGK1Lx5c/z2229s9CNNtFy7W7ZsKfn6a6+9htdee82oIhH5lW7duqFbt25mF4NUslgsLgPo/m7RokXo2LEjJk2aZHZRUjQG0YmIyG/lzJmTw/Y8jEH0lK1GjRqoUaOG2cUg8ltG1KHieXvIv/lyOhciIvJdHTp0QNOmTREZGWl2UVK0ALMLQERE5AofOs3DIDqlJDzeiSg5sKb/CQwMNLkkRES+w9/v8xhANx+D6ETkt3x5chOi5CIsLMzsIhB5DRvsyGg9e/YEADRr1szkkpAv8FYdky1bNly+fBm3bt3yyvaIiMhchQoVMrsIKQLTuRCR3/n111+xZ88edO7c2eyikJcwsOV9n332Gb7++mvmwiYickP+/Pnx4MEDpEqVyuyiUAqTPXt2s4tARORTSpQogbVr15pdDEPt3bsXO3fuRNeuXc0uSorAIDoR+Z3SpUuzF3oKw+HI3vfee+/hvffeM7sYRF5Vt25ds4tAyVB4eLjZRSAfwU4BRETmGTJkCF6+fIk33njD7KIYpkqVKqhSpYrZxUgxGEQnIiKf99prr6F8+fIoX7682UUhomTo6tWrOHr0KBo2bGh2UYiIiIjIA1KlSoXRo0ebXQzyYwyiExGRzwsJCcGhQ4fMLgYRJVMxMTGIiYkxuxhElMyxJzoREZH/4sSiRERERERERB7GIDoREZH/YhCdiIiIiIiIiIiIiEgGg+hERERERERERERERDIYRCciIiIiIiIiIiIiksEgOhEREREREZGHMSc6ERGR/zI1iD579myULFkSUVFRiIqKQlxcHDZv3mx7//Hjx0hISED69OkRERGB5s2b4+bNmyaWmIiIiIiIiEg7BtGJiIj8l6lB9OzZs2PcuHFISkrCL7/8glq1aqFJkyb47bffAADvvfceNmzYgNWrV2P37t24du0amjVrZmaRiYiIiIiIiDTr2bMnACA+Pt7kkhAREZFWFsHHmsPTpUuHiRMnokWLFsiYMSOWLVuGFi1aAABOnz6NIkWKYP/+/ahUqZKq9d29exdp0qTBnTt3EBUV5cmiExEREREREUl6+fIlDhw4gNKlSyM8PNzs4hARERHUx459Jif6ixcvsGLFCjx48ABxcXFISkrCs2fPUKdOHdsyhQsXRs6cObF//34TS0pERERERESkTUBAACpXrswAOhERkR8KMrsAx48fR1xcHB4/foyIiAisW7cORYsWxdGjRxESEoLo6Gi75TNnzowbN27Iru/Jkyd48uSJ7e+7d+96quhERERERERERERElMyZ3hO9UKFCOHr0KA4ePIiePXuiU6dOOHnypO71jR07FmnSpLH9y5Ejh4GlJSIiIiIiIiIiIqKUxPQgekhICPLnz4/Y2FiMHTsWpUqVwrRp05AlSxY8ffoUt2/ftlv+5s2byJIli+z6hg4dijt37tj+Xb582cPfgIiIiIiIiIiIiIiSK9PTuTh6+fIlnjx5gtjYWAQHB2P79u1o3rw5AODMmTO4dOkS4uLiZD8fGhqK0NBQ29/WeVOZ1oWIiIiIiIiIiIiIrKwxY2sMWY6pQfShQ4eiYcOGyJkzJ+7du4dly5Zh165d2LJlC9KkSYNu3bqhf//+SJcuHaKiotCnTx/ExcWhUqVKqrdx7949AGBaFyIiIiIiIiIiIiJycu/ePaRJk0b2fVOD6H/99Rc6duyI69evI02aNChZsiS2bNmCunXrAgCmTJmCgIAANG/eHE+ePEH9+vUxa9YsTduIiYnB5cuXERkZCYvF4omv4fPu3r2LHDly4PLly4iKijK7OERkAtYDRASwLiCiV1gXEBHAuoCIWA8Ar3qg37t3DzExMYrLWQRXfdXJ7929exdp0qTBnTt3UuwJQZTSsR4gIoB1ARG9wrqAiADWBUTEekAL0ycWJSIiIiIiIiIiIiLyVQyiExERERERERERERHJYBA9BQgNDcXIkSMRGhpqdlGIyCSsB4gIYF1ARK+wLiAigHUBEbEe0II50YmIiIiIiIiIiIiIZLAnOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQfRkbubMmcidOzfCwsJQsWJFHDp0yOwiEZFOY8eORfny5REZGYlMmTKhadOmOHPmjN0yjx8/RkJCAtKnT4+IiAg0b94cN2/etFvm0qVLaNy4McLDw5EpUyYMGjQIz58/t1tm165dKFu2LEJDQ5E/f34sWLDA01+PiHQYN24cLBYL+vXrZ3uN9QBRynD16lW0b98e6dOnR6pUqVCiRAn88ssvtvcFQcCHH36IrFmzIlWqVKhTpw7Onj1rt47//vsP7dq1Q1RUFKKjo9GtWzfcv3/fbpljx46hWrVqCAsLQ44cOTBhwgSvfD8icu3FixcYMWIE8uTJg1SpUiFfvnwYM2YMxFPfsS4gSn5++uknvP7664iJiYHFYsH69evt3vfmeb969WoULlwYYWFhKFGiBDZt2mT49/UVDKInYytXrkT//v0xcuRIHDlyBKVKlUL9+vXx119/mV00ItJh9+7dSEhIwIEDB7B161Y8e/YM9erVw4MHD2zLvPfee9iwYQNWr16N3bt349q1a2jWrJnt/RcvXqBx48Z4+vQpfv75ZyxcuBALFizAhx9+aFvmwoULaNy4MeLj43H06FH069cP3bt3x5YtW7z6fYlI2eHDhzFnzhyULFnS7nXWA0TJ361bt1ClShUEBwdj8+bNOHnyJCZPnoy0adPalpkwYQKmT5+OL774AgcPHkTq1KlRv359PH782LZMu3bt8Ntvv2Hr1q3YuHEjfvrpJ/To0cP2/t27d1GvXj3kypULSUlJmDhxIkaNGoUvv/zSq9+XiKSNHz8es2fPxowZM3Dq1CmMHz8eEyZMwOeff25bhnUBUfLz4MEDlCpVCjNnzpR831vn/c8//4w2bdqgW7du+PXXX9G0aVM0bdoUJ06c8NyXN5NAyVaFChWEhIQE298vXrwQYmJihLFjx5pYKiIyyl9//SUAEHbv3i0IgiDcvn1bCA4OFlavXm1b5tSpUwIAYf/+/YIgCMKmTZuEgIAA4caNG7ZlZs+eLURFRQlPnjwRBEEQBg8eLBQrVsxuW61atRLq16/v6a9ERCrdu3dPKFCggLB161ahRo0aQmJioiAIrAeIUoohQ4YIVatWlX3/5cuXQpYsWYSJEyfaXrt9+7YQGhoqLF++XBAEQTh58qQAQDh8+LBtmc2bNwsWi0W4evWqIAiCMGvWLCFt2rS2usG67UKFChn9lYhIh8aNGwtdu3a1e61Zs2ZCu3btBEFgXUCUEgAQ1q1bZ/vbm+d9y5YthcaNG9uVp2LFisI777xj6Hf0FeyJnkw9ffoUSUlJqFOnju21gIAA1KlTB/v37zexZERklDt37gAA0qVLBwBISkrCs2fP7M77woULI2fOnLbzfv/+/ShRogQyZ85sW6Z+/fq4e/cufvvtN9sy4nVYl2HdQeQ7EhIS0LhxY6dzlfUAUcrw3XffoVy5cnjrrbeQKVMmlClTBnPnzrW9f+HCBdy4ccPuPE6TJg0qVqxoVxdER0ejXLlytmXq1KmDgIAAHDx40LZM9erVERISYlumfv36OHPmDG7duuXpr0lELlSuXBnbt2/H77//DgD43//+h71796Jhw4YAWBcQpUTePO9T2jMDg+jJ1D///IMXL17YPSADQObMmXHjxg2TSkVERnn58iX69euHKlWqoHjx4gCAGzduICQkBNHR0XbLis/7GzduSNYL1veUlrl79y4ePXrkia9DRBqsWLECR44cwdixY53eYz1AlDKcP38es2fPRoECBbBlyxb07NkTffv2xcKFCwH8/7ms9Cxw48YNZMqUye79oKAgpEuXTlN9QUTmef/999G6dWsULlwYwcHBKFOmDPr164d27doBYF1AlBJ587yXWya51gtBZheAiIi0S0hIwIkTJ7B3716zi0JEXnT58mUkJiZi69atCAsLM7s4RGSSly9foly5cvj0008BAGXKlMGJEyfwxRdfoFOnTiaXjoi8ZdWqVVi6dCmWLVuGYsWK2eYxiYmJYV1ARGQw9kRPpjJkyIDAwEDcvHnT7vWbN28iS5YsJpWKiIzQu3dvbNy4ETt37kT27Nltr2fJkgVPnz7F7du37ZYXn/dZsmSRrBes7yktExUVhVSpUhn9dYhIg6SkJPz1118oW7YsgoKCEBQUhN27d2P69OkICgpC5syZWQ8QpQBZs2ZF0aJF7V4rUqQILl26BOD/z2WlZ4EsWbLgr7/+snv/+fPn+O+//zTVF0RknkGDBtl6o5coUQIdOnTAe++9ZxutxrqAKOXx5nkvt0xyrRcYRE+mQkJCEBsbi+3bt9tee/nyJbZv3464uDgTS0ZEegmCgN69e2PdunXYsWMH8uTJY/d+bGwsgoOD7c77M2fO4NKlS7bzPi4uDsePH7e7YG7duhVRUVG2h/G4uDi7dViXYd1BZL7atWvj+PHjOHr0qO1fuXLl0K5dO9v/WQ8QJX9VqlTBmTNn7F77/fffkStXLgBAnjx5kCVLFrvz+O7duzh48KBdXXD79m0kJSXZltmxYwdevnyJihUr2pb56aef8OzZM9syW7duRaFChZA2bVqPfT8iUufhw4cICLAP6wQGBuLly5cAWBcQpUTePO9T3DOD2TObkuesWLFCCA0NFRYsWCCcPHlS6NGjhxAdHS3cuHHD7KIRkQ49e/YU0qRJI+zatUu4fv267d/Dhw9ty7z77rtCzpw5hR07dgi//PKLEBcXJ8TFxdnef/78uVC8eHGhXr16wtGjR4UffvhByJgxozB06FDbMufPnxfCw8OFQYMGCadOnRJmzpwpBAYGCj/88INXvy8RqVOjRg0hMTHR9jfrAaLk79ChQ0JQUJDwySefCGfPnhWWLl0qhIeHC0uWLLEtM27cOCE6Olr49ttvhWPHjglNmjQR8uTJIzx69Mi2TIMGDYQyZcoIBw8eFPbu3SsUKFBAaNOmje3927dvC5kzZxY6dOggnDhxQlixYoUQHh4uzJkzx6vfl4ikderUSciWLZuwceNG4cKFC8LatWuFDBkyCIMHD7Ytw7qAKPm5d++e8Ouvvwq//vqrAED47LPPhF9//VX4888/BUHw3nm/b98+ISgoSJg0aZJw6tQpYeTIkUJwcLBw/Phx7+0ML2IQPZn7/PPPhZw5cwohISFChQoVhAMHDphdJCLSCYDkv/nz59uWefTokdCrVy8hbdq0Qnh4uPDmm28K169ft1vPxYsXhYYNGwqpUqUSMmTIIAwYMEB49uyZ3TI7d+4USpcuLYSEhAh58+a12wYR+RbHIDrrAaKUYcOGDULx4sWF0NBQoXDhwsKXX35p9/7Lly+FESNGCJkzZxZCQ0OF2rVrC2fOnLFb5t9//xXatGkjRERECFFRUUKXLl2Ee/fu2S3zv//9T6hataoQGhoqZMuWTRg3bpzHvxsRqXP37l0hMTFRyJkzpxAWFibkzZtXGDZsmPDkyRPbMqwLiJKfnTt3SsYGOnXqJAiCd8/7VatWCQULFhRCQkKEYsWKCd9//73HvrfZLIIgCOb0gSciIiIiIiIiIiIi8m3MiU5EREREREREREREJINBdCIiIiIiIiIiIiIiGQyiExERERERERERERHJYBCdiIiIiIiIiIiIiEgGg+hERERERERERERERDIYRCciIiIiIiIiIiIiksEgOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERESSFixYgOjoaLOLQURERERkKgbRiYiIiIh8VOfOndG0aVOn13ft2gWLxYLbt297vUxERERERCkNg+hEREREROTk2bNnZheBiIiIiMgnMIhOREREROTnvvnmGxQrVgyhoaHInTs3Jk+ebPe+xWLB+vXr7V6Ljo7GggULAAAXL16ExWLBypUrUaNGDYSFhWHp0qV2y1+8eBEBAQH45Zdf7F6fOnUqcuXKhZcvXxr+vYiIiIiIfAGD6EREREREfiwpKQktW7ZE69atcfz4cYwaNQojRoywBci1eP/995GYmIhTp06hfv36du/lzp0bderUwfz58+1enz9uXYKGAAAC9ElEQVR/Pjp37oyAAD5aEBEREVHyFGR2AYiIiIiISN7GjRsRERFh99qLFy9s///ss89Qu3ZtjBgxAgBQsGBBnDx5EhMnTkTnzp01batfv35o1qyZ7Pvdu3fHu+++i88++wyhoaE4cuQIjh8/jm+//VbTdoiIiIiI/Am7ixARERER+bD4+HgcPXrU7t+8efNs7586dQpVqlSx+0yVKlVw9uxZu2C7GuXKlVN8v2nTpggMDMS6desAAAsWLEB8fDxy586taTtERERERP6EPdGJiIiIiHxY6tSpkT9/frvXrly5omkdFosFgiDYvSY1cWjq1KkV1xMSEoKOHTti/vz5aNasGZYtW4Zp06ZpKgsRERERkb9hEJ2IiIiIyI8VKVIE+/bts3tt3759KFiwIAIDAwEAGTNmxPXr123vnz17Fg8fPtS1ve7du6N48eKYNWsWnj9/rpj+hYiIiIgoOWAQnYiIiIjIjw0YMADly5fHmDFj0KpVK+zfvx8zZszArFmzbMvUqlULM2bMQFxcHF68eIEhQ4YgODhY1/aKFCmCSpUqYciQIejatStSpUpl1FchIiIiIvJJzIlOREREROTHypYti1WrVmHFihUoXrw4PvzwQ4wePdpuUtHJkycjR44cqFatGtq2bYuBAwciPDxc9za7deuGp0+fomvXrgZ8AyIiIiIi32YRHJMjEhERERERKRgzZgxWr16NY8eOmV0UIiIiIiKPY090IiIiIiJS5f79+zhx4gRmzJiBPn36mF0cIiIiIiKvYBCdiIiIiIhU6d27N2JjY1GzZk2mciEiIiKiFIPpXIiIiIiIiIiIiIiIZLAnOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIiIiIiIiIpLBIDoRERERERERERERkYz/Azj08XCSOMwkAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "detector.plot(ptype=\"line-dataset-df\", title=f\"Peaks Over Threshold\", xlabel=\"Hourly\", ylabel=\"Water Level\", alpha=1.0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " col_1 | \n",
+ " col_2 | \n",
+ " col_3 | \n",
+ " col_4 | \n",
+ " datetime | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-07-28 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-07-29 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-07-30 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-07-31 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-01 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-02 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-03 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-04 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-05 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-06 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-07 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-08 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-09 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-10 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-11 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-12 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-13 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-14 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-15 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 43.442262 | \n",
+ " 43.740833 | \n",
+ " 43.520151 | \n",
+ " 43.590327 | \n",
+ " 1996-08-16 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " col_1 col_2 col_3 col_4 datetime\n",
+ "0 43.442262 43.740833 43.520151 43.590327 1996-07-28\n",
+ "1 43.442262 43.740833 43.520151 43.590327 1996-07-29\n",
+ "2 43.442262 43.740833 43.520151 43.590327 1996-07-30\n",
+ "3 43.442262 43.740833 43.520151 43.590327 1996-07-31\n",
+ "4 43.442262 43.740833 43.520151 43.590327 1996-08-01\n",
+ "5 43.442262 43.740833 43.520151 43.590327 1996-08-02\n",
+ "6 43.442262 43.740833 43.520151 43.590327 1996-08-03\n",
+ "7 43.442262 43.740833 43.520151 43.590327 1996-08-04\n",
+ "8 43.442262 43.740833 43.520151 43.590327 1996-08-05\n",
+ "9 43.442262 43.740833 43.520151 43.590327 1996-08-06\n",
+ "10 43.442262 43.740833 43.520151 43.590327 1996-08-07\n",
+ "11 43.442262 43.740833 43.520151 43.590327 1996-08-08\n",
+ "12 43.442262 43.740833 43.520151 43.590327 1996-08-09\n",
+ "13 43.442262 43.740833 43.520151 43.590327 1996-08-10\n",
+ "14 43.442262 43.740833 43.520151 43.590327 1996-08-11\n",
+ "15 43.442262 43.740833 43.520151 43.590327 1996-08-12\n",
+ "16 43.442262 43.740833 43.520151 43.590327 1996-08-13\n",
+ "17 43.442262 43.740833 43.520151 43.590327 1996-08-14\n",
+ "18 43.442262 43.740833 43.520151 43.590327 1996-08-15\n",
+ "19 43.442262 43.740833 43.520151 43.590327 1996-08-16"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "detector.get_extremes(q=0.90)\n",
+ "detector.exceedance_thresholds.head(20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " col_1 | \n",
+ " col_2 | \n",
+ " col_3 | \n",
+ " col_4 | \n",
+ " datetime | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ " 1996-07-28 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 2.646791 | \n",
+ " 1996-07-29 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1.876413 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ " 1996-07-30 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ " 1996-07-31 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.289501 | \n",
+ " 1996-08-01 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " col_1 col_2 col_3 col_4 datetime\n",
+ "0 0.000000 0.0 0.0 0.000000 1996-07-28\n",
+ "1 0.000000 0.0 0.0 2.646791 1996-07-29\n",
+ "2 1.876413 0.0 0.0 0.000000 1996-07-30\n",
+ "3 0.000000 0.0 0.0 0.000000 1996-07-31\n",
+ "4 0.000000 0.0 0.0 0.289501 1996-08-01"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "detector.exceedances.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPZCAYAAAD+1mNdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwU6R8H8M9iIAqIjXqK3YUdJxZ269ndZ3ednt2dp2f32d15Nga2YmPnT0VERQTm9wfu3uzuzO7MBgv4eb9evIDJZ2ZnJ77zPN9HIwiCACIiIiIiIiIiIiIiMuLk6AIQEREREREREREREcVUDKITEREREREREREREclgEJ2IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5EREREREREREREJINBdCIiIiIiIiIiIiIiGQyiExEREVGs0LZtW7i6ujq6GLHSihUroNFocPHiRUcXBYB9ytO2bVtkypTJ7HSPHj2CRqPBihUrbLZuIiIiIorbGEQnIiIiIlW0AVDtT6JEiZAjRw706NEDr1+/dnTxrCIIAlavXg0fHx94eHggceLEyJ8/P8aMGYPPnz87ung62kCwkp9Hjx45urhERERERLFafEcXgIiIiIhipzFjxiBz5swIDQ3FqVOnsGDBAuzduxc3btxA4sSJHV081SIiItC8eXNs3LgRZcuWxahRo5A4cWKcPHkSo0ePxqZNm3D48GGkSZPG0UVFqlSpsHr1ar1h06dPx7NnzzBz5kyjaYmIiIiIyHIMohMRERGRRapXr46iRYsCADp27IgUKVJgxowZ2LFjB5o1a+bg0qk3ZcoUbNy4EQMGDMDUqVN1wzt37ozGjRujXr16aNu2Lfbt2xet5fry5YvRS4kkSZKgZcuWesPWr1+PDx8+GA23liAICA0NhYuLi02XS0REREQUWzCdCxERERHZRMWKFQEAgYGBumFr1qxBkSJF4OLiguTJk6Np06Z4+vSp3nwnT55Eo0aNkDFjRjg7OyNDhgzo27cvvn79anadV65cQapUqVC+fHmEhIQAAC5evIiqVasiZcqUcHFxQebMmdG+fXuTy/n69SumTp2KHDlyYOLEiUbja9eujTZt2mD//v3w8/MDANSqVQtZsmSRXF6pUqV0LxjU7Ivy5csjX7588Pf3h4+PDxInTow//vjD7H5Q6tu3b+jXrx9SpUqFJEmSoH79+nj79q3eNJkyZUKtWrVw4MABFC1aFC4uLvj7778BAEFBQejTpw8yZMgAZ2dnZMuWDZMnT0ZkZKTeMtavX48iRYrAzc0N7u7uyJ8/P2bPnm1ReQDgr7/+Qt68eeHs7Ix06dKhe/fuCAoKMru9QUFBaNu2LZImTQoPDw+0adNG0XxERERERGIMohMRERGRTTx48AAAkCJFCgDA+PHj0bp1a2TPnh0zZsxAnz59cOTIEfj4+OgFMjdt2oQvX76ga9eumDt3LqpWrYq5c+eidevWJtd34cIFVKxYEd7e3ti3bx9cXV3x5s0bVKlSBY8ePcKQIUMwd+5ctGjRQhf4lnPq1Cl8+PABzZs3R/z40o01teXZvXs3AKBJkyYIDAzEhQsX9KZ7/Pgx/Pz80LRpU90wpfsCAN69e4fq1aujUKFCmDVrFipUqGCy7Gr07NkTV69exciRI9G1a1fs2rULPXr0MJruzp07aNasGSpXrozZs2ejUKFC+PLlC8qVK4c1a9agdevWmDNnDsqUKYOhQ4eiX79+unkPHTqEZs2aIVmyZJg8eTImTZqE8uXL4/Tp0xaVZ9SoUejevTvSpUuH6dOno2HDhvj7779RpUoVfP/+XXZbBUFA3bp1sXr1arRs2RLjxo3Ds2fP0KZNGyv2IBERERH9lAQiIiIiIhWWL18uABAOHz4svH37Vnj69Kmwfv16IUWKFIKLi4vw7Nkz4dGjR0K8ePGE8ePH6817/fp1IX78+HrDv3z5YrSOiRMnChqNRnj8+LFuWJs2bYQkSZIIgiAIp06dEtzd3YWaNWsKoaGhumm2bdsmABAuXLigaptmzZolABC2bdsmO8379+8FAEKDBg0EQRCEjx8/Cs7OzkL//v31ppsyZYpe2dXsi3LlygkAhIULF6oqvyAIQs2aNQUvLy/JcdrPzNfXV4iMjNQN79u3rxAvXjwhKChIN8zLy0sAIOzfv19vGWPHjhWSJEki3L17V2/4kCFDhHjx4glPnjwRBEEQevfuLbi7uwvh4eGyZVVanjdv3ggJEyYUqlSpIkREROimmzdvngBAWLZsmW5YmzZt9LZ/+/btAgBhypQpumHh4eFC2bJlBQDC8uXLZctHRERERCTGmuhEREREZBFfX1+kSpUKGTJkQNOmTeHq6opt27Yhffr02Lp1KyIjI9G4cWP873//0/14enoie/bsOHbsmG454lzbnz9/xv/+9z+ULl0agiDg8uXLRus9duwYqlatikqVKmHr1q1wdnbWjfPw8AAQVVvcVC1lQ58+fQIAuLm5yU6jHRccHAwAcHd3R/Xq1bFx40YIgqCbbsOGDShZsiQyZswIAKr2BQA4OzujXbt2isuuRufOnaHRaHT/ly1bFhEREXj8+LHedJkzZ0bVqlX1hm3atAlly5ZFsmTJ9LbD19cXEREROHHiBICoz+Dz5884dOiQ1eU5fPgwwsLC0KdPHzg5/ffo0qlTJ7i7u2PPnj2yy967dy/ix4+Prl276obFixcPPXv2NFsuIiIiIiIxdixKRERERBaZP38+cuTIgfjx4yNNmjTImTOnLtB57949CIKA7NmzS86bIEEC3d9PnjzBiBEjsHPnTnz48EFvuo8fP+r9Hxoaipo1a6JIkSLYuHGjUeqVcuXKoWHDhhg9ejRmzpyJ8uXLo169emjevLlesN2QNkCuDaZLkQq0N2nSBNu3b8fZs2dRunRpPHjwAP7+/pg1a5ZuGjX7AgDSp0+PhAkTypbDGtrAvlayZMkAwGi/Z86c2Wjee/fu4dq1a0iVKpXkst+8eQMA6NatGzZu3Ijq1asjffr0qFKlCho3boxq1aqpLo82mJ4zZ0696RImTIgsWbIYBf/FHj9+jLRp08LV1VVvuOGyiIiIiIjMYRCdiIiIiCxSvHhxo84ztSIjI6HRaLBv3z7EixfPaLw2sBkREYHKlSvj/fv3GDx4MHLlyoUkSZLg+fPnaNu2rVGHlc7OzqhRowZ27NiB/fv3o1atWnrjNRoNNm/eDD8/P+zatQsHDhxA+/btMX36dPj5+RkFVLVy584NALh27Rrq1asnOc21a9cAAHny5NENq127NhInToyNGzeidOnS2LhxI5ycnNCoUSPV+0JLXDPf1qTWD0CvJr1cGSIjI1G5cmUMGjRIchk5cuQAAKROnRpXrlzBgQMHsG/fPuzbtw/Lly9H69atsXLlSovKQ0RERETkSAyiExEREZHNZc2aFYIgIHPmzLrgqpTr16/j7t27WLlypV5HonKpQDQaDdauXYu6deuiUaNG2LdvH8qXL280XcmSJVGyZEmMHz8e69atQ4sWLbB+/Xp07NhRcrm//vorPDw8sG7dOgwbNkwyuLtq1SoA0AvcJ0mSBLVq1cKmTZswY8YMbNiwAWXLlkW6dOlU74uYLmvWrAgJCYGvr6/ZaRMmTIjatWujdu3aiIyMRLdu3fD333/jzz//RLZs2RSv08vLC0BUR6dZsmTRDQ8LC0NgYKDJsnh5eeHIkSMICQnRe1Fx584dxesnIiIiIgIA5kQnIiIiIptr0KAB4sWLh9GjRxvVKhYEAe/evQPwX01k8TSCIGD27Nmyy06YMCG2bt2KYsWKoXbt2jh//rxu3IcPH4zWV6hQIQDAt2/fZJeZOHFiDBgwAHfu3MGwYcOMxu/ZswcrVqxA1apVUbJkSb1xTZo0wYsXL7BkyRJcvXoVTZo00RuvdF/EdI0bN8bZs2dx4MABo3FBQUEIDw8HAKPtcXJyQoECBQCY/gyk+Pr6ImHChJgzZ47evlu6dCk+fvyImjVrys5bo0YNhIeHY8GCBbphERERmDt3rqoyEBERERGxJjoRERER2VzWrFkxbtw4DB06FI8ePUK9evXg5uaGwMBAbNu2DZ07d8aAAQOQK1cuZM2aFQMGDMDz58/h7u6OLVu2GOXoNuTi4oLdu3ejYsWKqF69Oo4fP458+fJh5cqV+Ouvv1C/fn1kzZoVnz59wuLFi+Hu7o4aNWqYXOaQIUNw+fJlTJ48GWfPnkXDhg3h4uKCU6dOYc2aNcidO7dROhIgKljr5uaGAQMGIF68eGjYsKFF+yKmGzhwIHbu3IlatWqhbdu2KFKkCD5//ozr169j8+bNePToEVKmTImOHTvi/fv3qFixIn755Rc8fvwYc+fORaFChXRpc5RKlSoVhg4ditGjR6NatWqoU6cO7ty5g7/++gvFihVDy5YtZeetXbs2ypQpgyFDhuDRo0fIkycPtm7dapRnn4iIiIjIHAbRiYiIiMguhgwZghw5cmDmzJkYPXo0ACBDhgyoUqUK6tSpAyCqU81du3ahV69emDhxIhIlSoT69eujR48eKFiwoMnlu7u748CBA/Dx8UHlypVx8uRJlCtXDufPn8f69evx+vVrJE2aFMWLF8fatWslO8sUixcvHjZu3IhVq1ZhyZIl+PPPPxEWFoasWbNi5MiR6N+/P5IkSWI0X6JEiVCnTh2sXbsWvr6+SJ06tUX7IqZLnDgxjh8/jgkTJmDTpk1YtWoV3N3dkSNHDowePRpJkyYFALRs2RKLFi3CX3/9haCgIHh6eqJJkyYYNWqUruNZNUaNGoVUqVJh3rx56Nu3L5InT47OnTtjwoQJRp2yijk5OWHnzp3o06cP1qxZA41Ggzp16mD69Onw9va2eD8QERER0c9HI7DXHiIiIiIiIiIiIiIiScyJTkREREREREREREQkg0F0IiIiIiIiIiIiIiIZDKITEREREREREREREclgEJ2IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5EREREREREREREJINBdCIiIiIiIiIiIiIiGQyiExERERERERERERHJYBCdiIiIiIiIiIiIiEgGg+hERERERERERERERDIYRCciIiIiIiIiIiIiksEgOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIiIiIiIiIpLBIDoRERERERERERERkQwG0YmIiIiIiIiIiIiIZDCITkREREREREREREQkg0F0IiIiIiIiIiIiIiIZDKITEREREREREREREclgEJ2IiIiIiIiIiIiISAaD6EREREREREREREREMhhEJyIiIiIiIiIiIiKSwSA6EREREREREREREZEMBtGJiIiIiIiIiIiIiGQwiE5EREREREREREREJINBdCIiIiIiIiIiIiIiGQyiExERERERERERERHJYBCdiIiIiIiIiIiIiEgGg+hERERERERERERERDIYRCciIiIiIiIiIiIiksEgOhERERERERERERGRDAbRiYiIiIiIiIiIiIhkMIhORERERERERERERCSDQXQiIiIiIiIiIiIiIhkMohMRERERERERERERyWAQnYiIiIiIiIiIiIhIBoPoREREREREREREREQyGEQnIiIiIiIiIiIiIpLBIDoRERERUTQaNWoUChUq5OhiOFSmTJkwa9YsRxeDiIiIiEgRBtGJiIiIiBR69eoVevbsiSxZssDZ2RkZMmRA7dq1ceTIEUcXLc5atGgRypcvD3d3d2g0GgQFBTm6SERERET0k2EQnYiIiIhIgUePHqFIkSI4evQopk6diuvXr2P//v2oUKECunfv7ujixVlfvnxBtWrV8Mcffzi6KERERET0k2IQnYiIiIhIgW7dukGj0eD8+fNo2LAhcuTIgbx586Jfv37w8/PTTffkyRPUrVsXrq6ucHd3R+PGjfH69WvZ5ZYvXx59+vTRG1avXj20bdtW93+mTJkwbtw4tG7dGq6urvDy8sLOnTvx9u1b3boKFCiAixcv6uZZsWIFPDw8cODAAeTOnRuurq6oVq0aXr58afW+CAoKQpcuXZAmTRokSpQI+fLlw+7du3Xjt2zZgrx588LZ2RmZMmXC9OnTLV5Xnz59MGTIEJQsWdLqchMRERERWYJBdCIiIiIiM96/f4/9+/eje/fuSJIkidF4Dw8PAEBkZCTq1q2L9+/f4/jx4zh06BAePnyIJk2aWF2GmTNnokyZMrh8+TJq1qyJVq1aoXXr1mjZsiUuXbqErFmzonXr1hAEQTfPly9fMG3aNKxevRonTpzAkydPMGDAAKvKERkZierVq+P06dNYs2YNbt26hUmTJiFevHgAAH9/fzRu3BhNmzbF9evXMWrUKPz5559YsWKFVeslIiIiInKU+I4uABERERFRTHf//n0IgoBcuXKZnO7IkSO4fv06AgMDkSFDBgDAqlWrkDdvXly4cAHFihWzuAw1atRAly5dAAAjRozAggULUKxYMTRq1AgAMHjwYJQqVQqvX7+Gp6cnAOD79+9YuHAhsmbNCgDo0aMHxowZY3EZAODw4cM4f/48AgICkCNHDgBAlixZdONnzJiBSpUq4c8//wQA5MiRA7du3cLUqVP1atcTEREREcUWrIlORERERGSGuHa3KQEBAciQIYMugA4AefLkgYeHBwICAqwqQ4ECBXR/p0mTBgCQP39+o2Fv3rzRDUucOLEugA4AadOm1RtvKG/evHB1dYWrqyuqV68uOc2VK1fwyy+/6ALohgICAlCmTBm9YWXKlMG9e/cQEREhu24iIiIiopiKNdGJiIiIiMzInj07NBoNbt++bfNlOzk5GQXpv3//bjRdggQJdH9rNBrZYZGRkZLzaKcx9UJg7969unW7uLhITiM3nIiIiIgormJNdCIiIiIiM5InT46qVati/vz5+Pz5s9H4oKAgAEDu3Lnx9OlTPH36VDfu1q1bCAoKQp48eSSXnSpVKr3OPiMiInDjxg3bboBCXl5eyJYtG7Jly4b06dNLTlOgQAE8e/YMd+/elRyfO3dunD59Wm/Y6dOnkSNHDl3edCIiIiKi2IRBdCIiIiIiBebPn4+IiAgUL14cW7Zswb179xAQEIA5c+agVKlSAABfX1/kz58fLVq0wKVLl3D+/Hm0bt0a5cqVQ9GiRSWXW7FiRezZswd79uzB7du30bVrV11QPiYqV64cfHx80LBhQxw6dAiBgYHYt28f9u/fDwDo378/jhw5grFjx+Lu3btYuXIl5s2bZ3GHpq9evcKVK1dw//59AMD169dx5coVvH//3mbbRERERERkCoPoREREREQKZMmSBZcuXUKFChXQv39/5MuXD5UrV8aRI0ewYMECAFHpUnbs2IFkyZLBx8cHvr6+yJIlCzZs2CC73Pbt26NNmza6YHuWLFlQoUKF6Nosi2zZsgXFihVDs2bNkCdPHgwaNEiX77xw4cLYuHEj1q9fj3z58mHEiBEYM2aMxZ2KLly4EN7e3ujUqRMAwMfHB97e3ti5c6etNoeIiIiIyCSNoLSXJCIiIiIiIiIiIiKinwxrohMRERERERERERERyWAQnYiIiIiIHGLt2rVwdXWV/MmbN6+ji0dEREREBIDpXIiIiIiIyEE+ffqE169fS45LkCABvLy8orlERERERETGGEQnIiIiIiIiIiIiIpLBdC5ERERERERERERERDIYRCciIiIiIiIiIiIikhHf0QWwt8jISLx48QJubm7QaDSOLg4RERERERERERERxQCCIODTp09Ily4dnJzk65vH+SD6ixcvkCFDBkcXg4iIiIiIiIiIiIhioKdPn+KXX36RHR/ng+hubm4AonaEu7u7g0tDRERERERERERERDFBcHAwMmTIoIshy3FoED1Tpkx4/Pix0fBu3bph/vz5CA0NRf/+/bF+/Xp8+/YNVatWxV9//YU0adIoXoc2hYu7uzuD6ERERERERERERESkx1wacId2LHrhwgW8fPlS93Po0CEAQKNGjQAAffv2xa5du7Bp0yYcP34cL168QIMGDRxZZCIiIiIiIiIiIiL6iWgEQRAcXQitPn36YPfu3bh37x6Cg4ORKlUqrFu3Dr/99hsA4Pbt28idOzfOnj2LkiVLKlpmcHAwkiZNio8fP7ImOhEREREREREREREBUB47dmhNdLGwsDCsWbMG7du3h0ajgb+/P75//w5fX1/dNLly5ULGjBlx9uxZB5aUiChmCg8Px7hx43DmzBlHF4WIiIiIiIiIKM6IMR2Lbt++HUFBQWjbti0A4NWrV0iYMCE8PDz0pkuTJg1evXolu5xv377h27dvuv+Dg4MVrT88PBxhYWGqy030s0iUKBGcnGLMezeSsGTJEvz555/4888/EYMaGRERERERERERxWoxJoi+dOlSVK9eHenSpbNqORMnTsTo0aMVTy8IAp48eYL//e9/Vq2XKK5zcnJCnjx54Ozs7OiikIxbt245ughERERERERERHFOjAiiP378GIcPH8bWrVt1wzw9PREWFoagoCC92uivX7+Gp6en7LKGDh2Kfv366f4PDg5GhgwZZKfXBtDTp08PV1dX1rQlkhAZGYnAwEA8evQIOXLkMNtjMRERERERERERUVwRI4Loy5cvR+rUqVGzZk3dsCJFiiBBggQ4cuQIGjZsCAC4c+cOnjx5glKlSskuy9nZWXFN2fDwcF0A3VRgnoiA9OnTIzAwEHv27EGpUqWQIkUKRxeJiIiIiIiIiIjI7hweRI+MjMTy5cvRpk0bxI//X3GSJk2KDh06oF+/fkiePDnc3d3Rs2dPlCpVCiVLlrTJurU50F1dXW2yPKK4TPty6uHDh/jf//6H2rVrM5AewzAPOhERERERERGR7Tk8d8nhw4fx5MkTtG/f3mjczJkzUatWLTRs2BA+Pj7w9PTUS/liK0zhQmSeNoVL2rRp8ezZM9y4ccPBJSJDDKITEREREREREdmew2uiV6lSRTbwkyhRIsyfPx/z58+P5lIRkRwnJyc4OzsjKCjI0UUhIiIiIiIiIiKyO1bBJiLVNBoNIiMjHV0MIiIiIiIiIiIiu2MQPRY6ceIEateujXTp0kGj0WD79u1G0wiCgBEjRiBt2rRwcXGBr68v7t27pzfN+/fv0aJFC7i7u8PDwwMdOnRASEiI3jTXrl1D2bJlkShRImTIkAFTpkwxWtemTZuQK1cuJEqUCPnz58fevXtNln/FihXQaDTQaDSIFy8ekiVLhhIlSmDMmDH4+PGjqn3x6NEjaDQaXLlyRdV8RHER07kQEREREREREdkeg+ix0OfPn1GwYEGTaW6mTJmCOXPmYOHChTh37hySJEmCqlWrIjQ0VDdNixYtcPPmTRw6dAi7d+/GiRMn0LlzZ9344OBgVKlSBV5eXvD398fUqVMxatQoLFq0SDfNmTNn0KxZM3To0AGXL19GvXr1UK9ePbP5st3d3fHy5Us8e/YMZ86cQefOnbFq1SoUKlQIL168sGLvEBEREREREREREdkOg+ixUPXq1TFu3DjUr19fcrwgCJg1axaGDx+OunXrokCBAli1ahVevHihq7UeEBCA/fv3Y8mSJShRogR+/fVXzJ07F+vXr9cFsdeuXYuwsDAsW7YMefPmRdOmTdGrVy/MmDFDt67Zs2ejWrVqGDhwIHLnzo2xY8eicOHCmDdvnslt0Gg08PT0RNq0aZE7d2506NABZ86cQUhICAYNGqSbbv/+/fj111/h4eGBFClSoFatWnjw4IFufObMmQEA3t7e0Gg0KF++PADgwoULqFy5MlKmTImkSZOiXLlyuHTpkup9TUREREREREQxy9y5c9G0aVOEh4c7uihE9JNgEF1EEAR8/vzZIT+2TMMQGBiIV69ewdfXVzcsadKkKFGiBM6ePQsAOHv2LDw8PFC0aFHdNL6+vnBycsK5c+d00/j4+CBhwoS6aapWrYo7d+7gw4cPumnE69FOo12PGqlTp0aLFi2wc+dOREREAIiqdd+vXz9cvHgRR44cgZOTE+rXr6/Lx33+/HkAwOHDh/Hy5Uts3boVAPDp0ye0adMGp06dgp+fH7Jnz44aNWrg06dPqstFFFswnQsRERHRz+vRo0e65yiiuK5Xr17YsGEDNm/e7OiiENFPIr6jCxCTfPnyBa6urg5Zd0hICJIkSWKTZb169QoAkCZNGr3hadKk0Y179eoVUqdOrTc+fvz4SJ48ud402pre4mVoxyVLlgyvXr0yuR61cuXKhU+fPuHdu3dInTo1GjZsqDd+2bJlSJUqFW7duoV8+fIhVapUAIAUKVLA09NTN13FihX15lu0aBE8PDxw/Phx1KpVy6KyERERxQR37tzBP//8g759+yJp0qSOLg4RUYwVHh6O0NBQhz3jRaeNGzeiSZMmaNCgAbZs2eLo4hBFG1aUI6LowproFKNoa9JqNBoAwL1799CsWTNkyZIF7u7uyJQpEwDgyZMnJpfz+vVrdOrUCdmzZ0fSpEnh7u6OkJAQs/MRxWasiU70c8iVKxdGjx6NPn36OLooRGRjoaGhuhaXZL38+fPDzc0N7969c3RR7G7q1KkAoGuZS0RERLbFmugiiRMnRkhIiMPWbSvaGtmvX79G2rRpdcNfv36NQoUK6aZ58+aN3nzh4eF4//69bn5PT0+8fv1abxrt/+amEdcKVyMgIADu7u5IkSIFAKB27drw8vLC4sWLkS5dOkRGRiJfvnwICwszuZw2bdrg3bt3mD17Nry8vODs7IxSpUqZnY+IiCi2sCR1GhHFXJ8+fULy5MlRoEAB+Pv7O7o4ccLt27cBAEePHkWjRo0cXBr7ihcvnqOLQERkV9euXUOfPn0wYcIElCxZ0tHFoZ8Qa6KLaDQaJEmSxCE/2prXtpA5c2Z4enriyJEjumHBwcE4d+4cSpUqBQAoVaoUgoKC9G7Qjx49isjISJQoUUI3zYkTJ/D9+3fdNIcOHULOnDmRLFky3TTi9Win0a5HjTdv3mDdunWoV68enJyc8O7dO9y5cwfDhw9HpUqVkDt3bl0udi1tvnbD3H+nT59Gr169UKNGDeTNmxfOzs743//+p7pMRERERGQ5QRDYUkqhf//9F+Hh4bh06ZKji0IKHD16FHPmzFF9fEdERGDSpEk4c+aMTctz4cIFmy6PKLbgNebnUalSJRw7dsyieBORLTCIHguFhITgypUruHLlCoCojkSvXLmiS1Wi0WjQp08fjBs3Djt37sT169fRunVrpEuXDvXq1QMA5M6dG9WqVUOnTp1w/vx5nD59Gj169EDTpk2RLl06AEDz5s2RMGFCdOjQATdv3sSGDRswe/Zs9OvXT1eW3r17Y//+/Zg+fTpu376NUaNG4eLFi+jRo4fJbRAEAa9evcLLly8REBCAZcuWoXTp0kiaNCkmTZoEAEiWLBlSpEiBRYsW4f79+zh69KjeuoGozkhdXFywf/9+vH79Gh8/fgQAZM+eHatXr0ZAQADOnTuHFi1awMXFxep9TxST8QaS6OfC7zzFdBEREShSpAhq167t6KLECrasVPOzuHHjBrJnz45169ZF+7orVaqE3r174+jRo6rmW7VqFYYOHYoyZcrYtDxMA0RxWUBAAO7evSs5Ljruh+7cuYNy5crh8OHDdl8XyWPFSHI0BtFjoYsXL8Lb2xve3t4AgH79+sHb2xsjRozQTTNo0CD07NkTnTt3RrFixRASEoL9+/cjUaJEumnWrl2LXLlyoVKlSqhRowZ+/fVXLFq0SDc+adKkOHjwIAIDA1GkSBH0798fI0aMQOfOnXXTlC5dGuvWrcOiRYtQsGBBbN68Gdu3b0e+fPlMbkNwcDDSpk2L9OnTo1SpUvj777/Rpk0bXL58WZeCxsnJCevXr4e/vz/y5cuHvn376nL9acWPHx9z5szB33//jXTp0qFu3boAgKVLl+LDhw8oXLgwWrVqhV69ehl1pEpkD/Pnz0ft2rURGhoa7etmQI1iktDQUAQEBDi6GETkQFeuXMHly5exZ88eRxeF4qiWLVvi/v37aNGihcPK8OjRI1XTa1PMEJEynz9/Rp48eZAzZ06Eh4cjIiLCqIW6vf322284ceIEKleuHK3rJaKYhTnRY6Hy5cubDZZpNBqMGTMGY8aMkZ0mefLkZmttFChQACdPnjQ5TaNGjVTlGGzbti3atm2raFpfX1/cunVLb5jhtnfs2BEdO3bUG+bt7W3UpPG3335TXEYiS2lbYSxbtgzdunVzcGmIHKds2bK4ePEitm/frnvBSVHCw8Nx5coVeHt7W5XDli/OiKJH//79cfXqVezfvx/x4/PxKSa5evWqo4tARHYmrn387ds3VK9e3WyMwtZevXoVresjopiJNdGJiOzAUZ0UE8UUFy9eBBD1Qon0denSBcWKFcPw4cMdXRQi+iEyMhJNmjTBqFGjjMbNmDEDR44cwaFDh+xaBqZz+TnwBahj/fHHH6hYsaJev18Uu0R3AB3g9za2efr0KYYOHYpnz57JTjNo0CB07do1GktFcQGD6EREcQRv7ohiB+2LBW0fIJbid54c4eXLl9ixY0ecy7984sQJbNy4EaNHj5adJiwszK5lYBDdfuy5b2Pj5/YzXz8mTpyIY8eOYceOHY4uCtlIdBzPP/N3JjaqVq0aJk2ahFq1auHLly/o2rWr3ovw8PBwTJ06FQsXLlSUkuvo0aPo2rWr1RXl3rx5w2MplmMQnYiIbCo8PJw3B6TDY4HMEQQBt27dinNB2bgqR44cqFevHpYuXapqvph+Lvj69avZaWL6NhApMXDgQGTMmPGn76Dv27dvji4CxSIx9fz/6dOnGFs2R9KmBL569SomT56MhQsXokqVKrrx4n2mpFVKpUqVsHDhQowfP97iMm3btg1p0qRBly5dLF6GtQRB4LnPSgyiExHZgSNqJUXXDVRERAQiIiIkx33+/Bnp0qVD9erVo6UsRJYe9w8ePMCxY8dsXJqol0gbNmzAixcvbL7smGTAgAEYOnSoTZY1atQo5M2bF4MGDbLJ8si+tLWw1HYWGhce8k1tw19//YWJEydatfzYUKOZeYGt5+jvwrRp0/Ds2TPMnj3boeVwNEd/Dj8zQRBw5coVfPnyxdFFibVevnyJihUrwt3dHa1atXJIGYKDg7Fo0SK8ffvWIes39OrVK3z+/NlouLma5mrOBQ8fPlRbLJ1hw4YBABYvXmzxMqzVpk0bJEqUSHWH2PQfBtGJiH4igiAgKCjI4vkjIiKQPXt25M6dW7LW6MGDB/H27VscOHDAaNyVK1eMOgp2pDNnzuD69euOLoZV3r59i3z58mHatGmOLopDjB49GmnSpMHjx49Vz5stWzZUrFgRly9ftmmZZs6ciaZNmyJfvnw2XW5M8vr1a0yfPh2TJk2SfFhRS9sJ+vTp061eFtnehw8fMGvWLLx8+VJvuJKHTnFQOC4ErOS2QRAEdO/eHX/88QeePHli8fLVBNE/ffpk8XosNX78eKRNm/anveY4wpkzZ7Bu3TpHFyNOigvnpNhq8+bN8Pb2RpkyZXTD/Pz80LVrV7x//95oevFn5ajPLaYdL02bNtVVBlm7dq1DytCpUyd06dIF1apVc8j6xZ4/f460adPC09PTaJwtP7vY8LJbEAT8+eefWL16tdE47bD58+dHd7HiDAbRiYjsIKZeYFu0aIFkyZLh7NmzFs3/8uVLBAYG4t69e5IP8HLbHRQUBG9vb+TNmzdGpGx48eIFypQpgwIFCji6KFYZP348bt68iYEDB1q1nH379tmtA1B7PnSMGjUKb9++xZ9//mnxMi5dumTDEgG7d+8GEBV4tDdb7duFCxeqys8uzgsdE77PUs6ePYvSpUsjMDDQ0UWJ9dq1a4e+ffvC19dXcvzx48cxffp0s8djTAtAWMJUEF3LVh2Lv3nzBgUKFMDMmTONxu3YsQPu7u7R3jmxdn3WXnNIuTJlyqBFixbw9/e3+bLjwncytti8eTO2b9/u6GLEGCtWrAAQVcFGq1SpUli4cCH69etncl4et1H8/PwcXQRs2rQJgO3vpS1x4sQJAMqvwXH5ODp79izGjRuH1q1bO7oocRKD6ERkU40aNUKdOnUcfmFyRA0tsZiazuWff/4BAEyZMkV2mo8fPypan9Q2ym23uPl3TAi6WVJzOSayVU67GjVqoEOHDrh9+7ZNlhebyH1vwsLCHH4eiw6CIKBr164YOnSo4qadsWG/lC5dGmfPnkWWLFkUTX/48GH06dMHoaGhdi5Z7LNr1y4AMGpJpD0OypcvjwEDBuimi8uUHPvWfD/E19Bx48bh+vXrkgGl7t27A4BVuVkpdnnw4IGjixDnRNe1LCgoCI0aNUL9+vV5jfnB1HPSnTt3TM4r9bnFhvsSW7PHNm/duhVbt261+XIdzZYv+WNqRTmxd+/eOboIcZqiIHqyZMmQPHlyRT9E9PMKCQnB5s2bsWvXLjx9+tRh5Rg2bBjc3d2xc+dOveGTJk1C4cKFFQeJrXX06FH8/vvv0RbQV3MDIDftxo0b4eHhgZEjRxqNe/bsGTZs2GBR2cQ3HDEhiB5XKP3MDx48qChA+vr1aytL5Bi2fpB4/vw5EiVKhObNm9t0uWr17t0brVq1UlT71VLi76MlqVliw8OEEpUrV8bs2bMxa9Ysi+b//v17rAuOnDx5EtOmTTP5Ikmu/wspDx48wMWLFzF69GjJF3wxPchhTYDcHqkGYtvxRPZlj+9PTP9O2lt0bb/4OUBJB4Y/A1P3DjG1VVNc/758+vQJDRs2RMOGDW2Sqi+ms/TztOd97+7du1G6dGncu3fPbusg68VXMpGlDxTkGP/++y8qVKiADx8+wMPDI9rWu2LFCvTp08eqfMuPHj1C5syZcfnyZRQqVEhyGkdtH5nn5PTfezlH3iROmDABANCrVy/UqVNHN1zbCd6sWbMkg8S2VqlSJQCAm5sbpk6davf1GXrz5g1SpEiBePHiKZ6na9euAKJyFI8ePVpvXLZs2czWfJa7sRAfG7EhiD5w4EDs3bsXfn5+cHNzc3RxrPLvv/+iatWqAOL+A4CtLFy4EIIgYP369brWG0rZ6uZaEATMmTMHADBixAhkz57dJss1JP4+ir+nMdXnz5/h7++PMmXKSJ7bnj9/josXL1q8fEs6jBIEAV5eXvjw4QOCgoLg7Oxs8fqlBAYGIkOGDIgfX9Ftu2I+Pj4AgEyZMuG3337TGxcWFoa0adPCw8ND8UscjUaDYsWKAQASJEiAP/74w+T0MU3NmjXNTmPPF1rz589Hjx49dP+bOpdE18uriIgIVfcQ9vDu3TukSJHC7uuZPn06tmzZggMHDtj9um/J8RLTvz+29vTpU9y6dQtVqlQx2coxSZIkFn9eP9s+daRHjx6hRo0a6NevHzp27GjVsmLD5/bmzRtMnjwZHTt2RO7cuR1dHEXEnbx+/foVSZIkMTuPNZ9FeHi4ze9r7GHXrl1InDix7n9bXX+fPn2KDBky6A2rXbs2gKj0q+fPn7fJesj2FD0ttWnTRvEP2ZdGozH5M2rUKEcXMUbIlCkTNBoN1q9fbzQub9680Gg0ulxsMcWkSZOg0WjQp08fveFdunRB1qxZ4eLiglSpUqFu3bqqUi78/vvv0Gg0ki/D9uzZgxIlSsDFxQXJkiVDvXr1rNoG8UUlPDzcqmXZk61SYJgi3hfW9OJtqQsXLiBNmjS64KkhS256rNlvsa0m+rRp03Dr1i0sX77c0UVR7MuXL+jZsyeOHj2qN/z06dMOKlH0iQ0PVGqJt0nupaQttltc0zg2BNFr1aqFcuXKyXZsmCVLFquuZZYGt16+fInQ0FDcv3/f4nVL2b17N7JkyWJRp11fvnxRdC2WqvF07949vH//Hg8fPlQVRNeS6rRZbjn37t3Dxo0bY+z3ODg42Ow0tqiJLg6gA8CiRYssWo5YWFgYvn79atG87dq1g6enp2Qnf9Fl+PDhSJkyJVauXGn3dQ0YMABnz57F3LlzZaf53//+Jzk8Ol5qWHJc/fvvv2ZTY2iXfefOnRj1HcyYMSOqVauGDRs2IHfu3EZ5+N++fat70Wcpe27vpUuX0KdPn2jpHyU26N27NwICAtCpUycA1r0kjCk10Tdu3IjZs2dLTtu+fXvMmDEDefLkiTWtD6w9j/3666+KrpcAMGfOHLi4uODkyZNWrVMpS1MAvX79GnXq1JHtE8Yabdu2lR3HdCwxm0VPSw8ePMDw4cPRrFkzvHnzBkBUp2Q3b960aeHI2MuXL3U/s2bNgru7u96wAQMGWLRccSdhcUWGDBmMAmB+fn66WgsxyYULF/D3339LdnJYpEgRLF++HAEBAThw4AAEQUCVKlUUNbHetm0b/Pz8kC5dOqNxW7ZsQatWrdCuXTtcvXoVp0+ftjp1gfhiJH5wf//+PY4cORJjgqcx6SHBlsTbtWDBAgDAkSNHLF6GOWpyoouDc2rSA1jClp+vvctqS1OmTMG8efN0LSAsERu+G2puhGfOnInMmTObzIEvCAI+ffqEUaNG4caNG1aXz5Y10aODJTXRHXmc/PvvvwCAIUOGSObgtvZ+xnDbIiMjZR8Knzx5gmbNmuHcuXO6YbYOps2bNw+A+nN5SEgIkiRJgpw5c5qdVs253BpSx83Tp0+RI0cONGnSJMZ2urdlyxbd3/bOiW5rv/zyC9zc3CxKDbNixQr873//i5YAthxtznfDFwyW0Gg0EAQBmzZtMtnhsNxLh+nTpyNVqlSSHb1GB6nj6urVq6hVq5Ze54xaAQEBqFChAnLlymV2mYMGDUKuXLmipZWmWm3atMHt27f1Xpz6+flh27ZtAIwrZrx58wa9evWSfJFnyJ7f1SJFimD27Nno3bu33dYRm4hrOQOxM52LoSZNmqBPnz5G/YUAUc/2Wvny5UNERITNU3RF134ICwtDgwYNMH/+fJPTnT59GjNmzFC0zN69eyM8PNyhlXCV7D+pF6e2uj8yV8kuJldI/NmpDqIfP34c+fPnx7lz57B161Zd77dXr1616ML7/PlztGzZEilSpICLiwvy58+v1wxXEASMGDECadOmhYuLC3x9fX/qHEGenp66n6RJk0Kj0egNc3V11U3r7++PokWLInHixChdurReTYRRo0ahUKFCWLJkCTJnzoxEiRIBiOr4pGPHjkiVKhXc3d1RsWJFXL16VTff1atXUaFCBbi5ucHd3R1FihQxajZ94MAB5M6dG66urqhWrRpevnypGxcZGYkxY8bgl19+gbOzMwoVKoT9+/eb3Oa9e/ciR44ccHFxQYUKFRR3fNaiRQscP35cLzf3smXL0KJFC6OmQ+a2+8GDB6hbty7SpEkDV1dXFCtWDIcPH9ZbRqZMmTBhwgS0b98ebm5uyJgxo6JaRCEhIWjRogUWL16MZMmSGY3v3LkzfHx8kClTJhQuXBjjxo3D06dPze6H58+fo2fPnli7di0SJEigNy48PBy9e/fG1KlT8fvvvyNHjhzIkycPGjdubLa8Wm/fvjX5tln81r1IkSLw9fXFsmXLFC8fsOzmQLxfHJlPVHyBja6bHFvkRLeW3I1FdNVE37p1K9KmTYvjx4/bZHmxKd+zIzsdM3U8GY7bvHkzxowZIzvPzZs3ZfsRCAsLQ4ECBRSfq/r164dHjx5h0KBBJqcbMmQIRo8ejfz58wOw7nO3xXfrjz/+QN26da1ejhK2qom+YcMGbNy40RZFUkycrstefH19kTRpUsmHnWbNmmH9+vUoXbq0blhMOWdoH+AtbQmlZDtM1URXMj0Q1Smplp+fn7LCKfT8+XOMHTvWpn092DOdi60JgoC3b98iIiIi1ndKGRISgtKlS+tSXGlJdbpqyvr169G4cWPFHQ6LaSsqqV2nrUgdYz4+PtizZ48uNZOYmpfC2gD12LFjFZdFzT32hQsXLG6lI75nbNq0KSZNmoRSpUqhS5cuktO3a9cOc+fOlayYZCg6vrdKgvlxUWBgIP755x/dPYYt97WtOxZ9+vQprl27hj179ki2YjdHXGv41q1baNCgga6iKQDcvXsXefLkgbu7u+5lQkyvwCjenytWrMC2bdsUvcw0fFmiZj32ZOmLGVtXMhCvx1Qqm4cPHyJLlix2bT0fU+5XYyPVT0tDhgzBuHHjcOjQISRMmFA3vGLFiqpvfj98+IAyZcogQYIE2LdvH27duoXp06frBRKnTJmCOXPmYOHChTh37hySJEmCqlWrsrMdBYYNG4bp06fj4sWLiB8/Ptq3b683/v79+9iyZQu2bt2qq8HQqFEjvHnzBvv27YO/vz8KFy6MSpUq6ZpytmjRAr/88gsuXLgAf39/DBkyRC9A++XLF0ybNg2rV6/GiRMn8OTJE73a8bNnz8b06dMxbdo0XLt2DVWrVkWdOnVkX4w8ffoUDRo0QO3atXHlyhV07NgRQ4YMUbT92lQW2ho0X758wYYNG4z2g5LtDgkJQY0aNXDkyBFcvnwZ1apVQ+3atfHkyRO95UyfPh1FixbF5cuX0a1bN3Tt2tVsM8ru3bujZs2aipoJff78GcuXL0fmzJmNcmiJRUZGolWrVhg4cCDy5s1rNP7SpUt4/vw5nJyc4O3tjbRp06J69eqKb7iDgoIwefJkZMyYUW+4XE10bWB706ZNZpctCAKCgoLQqVMn5M+fX9V3PTAwEJkzZ9b978gmlOILk7a2THSKjpsSqXVYEkQ/ePAgihYtqvfiSs6nT59M3ng2bNgQr1+/1ktjEx4erqqDnOfPnyuelqL21y+//GKUQ19Oo0aNMHLkSJw4ccJo3IkTJ5AvXz7Z/JGnTp3CjRs3jM4lUsfiiBEjdH+bq81hi7yD8+fPV3x9MmfixInYs2eP2enMfc/Dw8NRs2ZNk4ERa3Oia2vyN23aFE2aNEFISAju37+PTZs26cp37do1pE+fHkuXLlW9fHPu3r1r0+UZ7tNjx44BAFatWmX3ddvKmzdvrO7PSMmxYLivXrx4oftb6logdbzaM91Z1apVMWLECDRo0MCq5Sh5KW6YzuX79+/4/fff9WqxRzdb3QfElBcEZ8+eNarVq7ZWuK1esDuC1OegrcwSXR3Ya7Vv3x4uLi6KUsU8efIExYsXN+rX4/79+6hcubLZVjbic9GGDRt0/RvJuXTpktkyacWUYzsuypIlC5o3by6bFtFUAC8yMhJv376VHW/rzy1jxowoWLAgatWqhWbNmsk+BygJtPr6+ko+9929exffv3+Hv78/9u3bB2dnZ11Ls5hCvB3Pnz9Hx44dcfnyZav6u4vJHN2xqLn+Rp4+fQp/f3+Lls0AuX2pflq6fv066tevbzQ8derUsnni5EyePFmXcqN48eLInDkzqlSpgqxZswKIOrBnzZqF4cOHo27duihQoABWrVqFFy9exNgmnzHJ+PHjUa5cOeTJkwdDhgzBmTNn9AKSYWFhWLVqFby9vVGgQAGcOnUK58+fx6ZNm1C0aFFkz54d06ZNg4eHBzZv3gwg6kbI19cXuXLlQvbs2dGoUSMULFhQt8zv379j4cKFKFq0KAoXLowePXro3RxNmzYNgwcPRtOmTZEzZ05MnjwZhQoVkn3YW7BgAbJmzYrp06cjZ86caNGihcn8UYbat2+PFStWQBAEbN68GVmzZjXqsFTJdhcsWBBdunRBvnz5kD17dowdOxZZs2bFzp079ZZVo0YNdOvWDdmyZcPgwYORMmVK3QO4lPXr1+PSpUuYOHGiye3466+/4OrqCldXV+zbt8/oJZahyZMnI378+OjVq5fkeO1D66hRozB8+HDs3r0byZIlQ/ny5RXlvtTeXHz8+FF2GqmglZKLVbt27ZAsWTIsWbIEN2/eVPVdN2wdICb+HGLyTXNISAiOHz8eY1LfmKJ0P4aGhurVHjPctqpVq8Lf3x916tTB27dvZWsxBAcHw93dXXeNMEVcuzZ//vxwdXVVdBMYHh6OX375Rfe/LW5CIiMjsW3bNjx79kzxPBcvXkSpUqVw6tQpq9dvb2PGjMGLFy9U98khVTtUe8619EWG+JhUWqMOsM3n3KNHD0yePNnoZdCMGTNQr149m+TEfPr0qara19u3b8fevXv1XigYsrYmuiAIet/Z0NBQZM+eHY0bN9YFENu1a4cXL16o7kzs5cuXki9bxHLmzKnquxXbGJ5nly9fjr1795qcp27dukb3J6ZYU9PqzJkzur8nT56s+9vWNQUtoU0zeebMGRQoUAAHDx60aDnifdGjRw80btzYbOubpUuX4u+//zbqsNVePnz4gPLly+u9qFJ7H/H8+XNs2bIFERERRjW+44rYcG9lD7asfDZ06FBdv1LTp083Gv/9+3ds375dFxcICAiQXE7z5s1x+PBhs5WI1HZsq+Z6HpOfB6zx9etXbNu2TXF+anuSenE1cOBA7NixQ3aeCxcuIHXq1HrXFzF7f25q81GLjzlxC3w5TZs2BQD07NkTkZGRqmNoWrbeD+LltWrVCkuXLkXhwoVVnTfV3k+r2YawsDDZSruRkZGy5xq1696wYQP27dsHwLrngyNHjqBo0aKyL/aUdKqq9jMODw/Hhg0b4vR9cUyg+mnJw8ND8uRw+fJlpE+fXtWydu7ciaJFi6JRo0ZInTo1vL29sXjxYt34wMBAvHr1Su/imjRpUpQoUQJnz55VW3TlZswAfvnF/I/Ug2ydOsrmVZgvyhriZmxp06YFAL2mRV5eXkiVKpXu/6tXryIkJAQpUqTQBWxdXV0RGBioawaq7VHb19cXkyZNMmoemjhxYr0AV9q0aXXrDA4OxosXL1CmTBm9ecqUKSN70gsICECJEiX0hpUqVUrxPqhZsyZCQkJw4sQJLFu2TLIWupLtDgkJwYABA5A7d254eHjA1dUVAQEBRjXRxftcm2pHvM/Fnj59it69e2Pt2rW6dDpyWrRogcuXL+P48ePIkSMHGjduLHtD7O/vj9mzZ2PFihWyJ37txXDYsGFo2LChLu+6RqNRVFtcjvhEb2kuacPcm7bIST1x4kRUrFjRonmnTZsGLy8vo8/aXipWrIjy5cub7NhKji06NrOW1DE3fvx4vdpiERERWLZsmdFNxZMnT5A6dWqkTp1actnavMNKbgycnJzw+fNnrF69WtcRr7nOawIDA40Cu3LBxwMHDiBPnjyKWmCtXLkSDRo00GslYY62dVfZsmUVzyMWHh6Otm3bWlTzd926dbrj7+rVq+jYsaPJoHZMCEpoU79lyJBB0QOM4byGTN00BwQEYNiwYbItXbRp7rT69++PHTt2YMOGDZLTa3P+KtGkSRO9PODmvudKmtXaIie6XE1d7Ut0NXkdly5ditWrVwMA0qVLh3Llypl8GQ1E3YOqtWnTJjRr1sxkKxVLKmzYs/bPnTt30L59e9SsWdPkdGpbhg4ZMsSiVAuCIODQoUMmpxHvj9mzZ6tu6m0r169fl+1oW433799j06ZNRv1AmaqVHx3GjRuH48eP672oUnsfkC1bNvz2229YvHgx8zjbmaUdGFvKxcVFl4NYbY5/sSdPnmDSpEkmp5kyZQrq16+vS3Mltw6l3xEG0ZUTBAG//fYbEidOjAYNGuhe4j169Ajjx483WVFq//798PLyMuqc3h7kOgY3JO60U+kzjiAIuHHjhl36NDK1XksDzYUKFUKqVKnsG9sSUdoyV9w6PSbc5wNAhw4dZONA8eLFM1l5Rmk6l+fPn6Np06aoUaOG5QX9wdfXF/7+/qhevbpkOQyD6JZWQBRbsGABmjZtiq5du+qGHT9+nPnVbUx1EL1p06YYPHgwXr16BY1Gg8jISJw+fRoDBgxA69atVS3r4cOHWLBgAbJnz44DBw6ga9eu6NWrly6I9urVKwBRaTnE0qRJoxtn6Nu3bwgODtb7US04GHj+3PyPVDOjt2+VzRsNb4bFaVa0J2vxSdCwc82QkBCkTZsWV65c0fu5c+eOrkf0UaNG4ebNm6hZsyaOHj2KPHny6DVZMsy9re3Ex1Hix4+PVq1aYeTIkTh37hxatGhhNI2S7R4wYAC2bduGCRMm4OTJk7hy5Qry589vlFZCavvlLjz+/v548+YNChcujPjx4yN+/Pg4fvw45syZg/jx4+td/JMmTYrs2bPDx8cHmzdvxu3bt2VThJw8eRJv3rxBxowZdct9/Pgx+vfvj0yZMgH476VKnjx5dPM5OzsjS5YsNgsW2+pzt+YmSBAE+Pn54Y8//jAaLnbp0iUUKFBAMj//wIED8eTJE6NlmGN4E690f2jz2Mo1f1TKXE4/peX5559/UKJECcnj4ujRo4qamRnWpt61axc6dOiAIkWKSE4vd4NnWJN37Nixstup0WjQo0cPxdelW7duIUuWLEaB7uDgYMkAXbVq1RAQEKAoDZO29qOaGxglTbNNpbX5559/sHLlStU1f4Gol3a9evXCgwcPUKhQISxdutTqToel2LKm6tevXzF27Fg8f/5cNigdGhqKJk2aWN1JXp48eTBhwgT07NlTcrzcA7zccT18+HDF67ZHblXxOdaSALAgCLJBdO02q1lux44d0bp1a708kEePHsWYMWNQvHhxyXksecBr3Lgx1q9fb9QJlrj8Ui0v5aa11Lt373D8+HFFzcTl7n3NUVLOTp066f1vSToXc4YNG4Zhw4apmgeIurc/duyYXXODqmV4PTIV4Nm1axeuXbtm0/UbrkPqeUfqexERESHbilBbOUPbMbncumzp06dPNmmlo1R09wcjR/tyH4g6lgxfvkqxtuxz5sxBhw4drGodIdfpKhB1bG3atElXaUIqVefz58+xYsUKfPv2TfFLWyX7RszSF5knT56Er6+vZMUuQRBw+fJlm7wEtMUxePz4cQwaNMjonPjq1Su9lyTal5ylSpXC8OHDjc7zYtWrV8eTJ0+s6pze1sT3J+Lzman734kTJyJ//vzo3LmzxeuV60NC7rPz8fFB8eLFFd2LaDQavWNUe18nfmFgijWtSnbu3AlXV1eMGzdOtmxSf6u5btuzJvqaNWtULduSdRu2CpDaHm1FD6XkXl4ZngOVpHE0R6rFXfny5VXHMcg01UH0CRMmIFeuXMiQIQNCQkKQJ08e+Pj4oHTp0qoeBIGok2HhwoUxYcIEeHt7o3PnzujUqRMWLlyotlg6EydORNKkSXU/pvJGy3J3B9KnN/8jqsWtkyqVsnnd3S3eRnspXLgwXr16hfjx4yNbtmx6PylTptRNlyNHDvTt2xcHDx5EgwYNFAf73N3dkS5dOpw+fVpv+OnTp/WCuWK5c+c2ylWrtoZV+/btcfz4cdStW1ey404l23369Gm0bdsW9evXR/78+eHp6am4g1M5lSpVwvXr1/UC90WLFkWLFi1w5coV2ZoXgiBAEATZh8lWrVrh2rVrestNly4dBg4ciAMHDgCI6ujT2dlZL5fh9+/f8ejRI3h5eVm8TeKLkVRP5eLpAgICFAXITU0TGhqKEydOmAxOyrUEEKtZsyauX7+u96bYXDnevn2rqrmf2ptma2+ybRVsaN68Oc6fPy8ZMGzQoAGKFi2qN0zJzZO2Dwa1xJ/ztm3bMGLECDRr1kxyWicnJ6xbt05vmKkgx+7duwEYB0YAmEwDoybXui1t374dzs7O+PvvvyXHq22KKkW83Wo6KFNqyZIlNluWuFmw1Hdn69atyJAhAzZu3GiUEuzr16+6l1daSo5jbcsIQ/aoiWzp+UDJfNbWMDIMootpH/Ys2Sfi77sgCBg5cqTR5yQeb8r3798xevRoyebjhteIK1euSDatVvoZqN3WnDlzonz58ti6davkePF6LT22lHzGhkFYuXWNHDlS97ep3MNfv36VDESYalUgt4979OiBihUr6tWsEouIiMChQ4fs1g+KkvzuhtcX8f916tTRS31oD0pfSpYpUwYeHh4mK0zYOuAvJygoCO7u7siRI0e0rA9Qd74TBMHi8+OLFy90wWIp4pRMefLkgZubm+S9hriigC2Cr1J9OxgKDAyUHWeqDAsXLkTjxo2N7j/E8xQqVAjt2rXD6NGjY0TOXm3ZIiMj4ePjgyNHjhh16v3x40e0bdsWhQsXxq+//uqIYurcvXtX12J16tSpRulQ5Y5X7QvY6KhlfvHiRb1AnjXPy+LtER9H2nQoYtrx2v55li1bZvF6lfSjIS5PZGQk/P39FaVElSP12RkOO3/+PFxcXNC/f3/Z5URERKBJkyZGFQSA/16W//nnnxaXMy5Rct20xXlK6blb6nphqxe/1vaTQ/pUB9ETJkyIxYsX48GDB9i9ezfWrFmD27dvY/Xq1aqbW6VNm9YoeJo7d27djZ2npycA47ypr1+/1o0zNHToUHz8+FH38/TpU1VlAgD06wc8e2b+Ryrf5M6dyuZ1UM/upvj6+qJUqVKoV68eDh48iEePHuHMmTMYNmwYLl68iK9fv6JHjx74999/8fjxY5w+fRoXLlyQ7QBOysCBAzF58mRs2LABd+7cwZAhQ3DlyhXZZqO///477t27h4EDB+LOnTtYt26dLg+fUrlz58b//vc/2WC/ue0GgOzZs+s6YL169SqaN29udeDBzc0N+fLl0/tJkiQJUqRIgXz58gGIaq0xceJE+Pv748mTJzhz5gwaNWoEFxcXvWZGuXLl0tVM184v/kmQIAE8PT2RM2dOAFEvNH7//XeMHDkSBw8exJ07d3QPp40aNVK9LXfv3jWqIdelSxej6bQXgvnz5yNPnjx6tYSPHTsmmTfPVBC9RYsWKFeunO6hXqr2t9TFb//+/diyZQsOHz6Mz58/S+ZmNiU0NBSpU6dGypQpZctnuF4lx4uaNA1S1MyjdvlK8olHREQoasmg5OXJypUrjR7kxAFucze4Tk5OJmuqiHXu3BmDBw+WHS/+LF+/fm1UA6FZs2Ymt8lUWiW52i7mNGzY0KL5pMi9XBDfzEltw+PHj1GkSBGzNTLkjjVTfRjYg1zOSXHn10BUUFWus2sx7T4Rp/4SD7cHa2+me/fujSpVqugdr6aOXbkAkLmm1FrafWFpDXdbTVuvXj2MGjUK9erVMxpnWLbLly/L3mMqce3aNclWTVohISGoXLky/vrrLwD/vfBS2rzdEpa06JL7zMaMGaP7++3bt7Lpk3bs2IFs2bIZVYRQ0oG0Ie0Lt+XLl0vWSl2wYAGqVKmiSx8RHZR+BxxBez8mFYDSvvyzJnWfVvny5RVVVBB7+PAhOnTogICAAF0rNWsrpSil9jzUqFEj5MmTx6JKCd7e3mjXrp3e92Xjxo0YNGiQ0fGhTaVk2GrvxIkTehUF1B5XSrZXaplZsmQxGvb9+3cMHjzYZCegps57Wtrr8P79+216rRQHL9UsNzIyEoIg6LWMNExfV6lSJd3LB0tSh0k9m9SpU0dVH19av/32m96LSMM0XLY892hfPsvlJRe7dOkS5s6di8jISBQrVkwvddapU6fM9uMhR3ztEm+bYYU8w/GGPnz4gFWrVlndAa+5lDJKY2FKXszu3LkTyZMn13s21HaqO2PGDHz48EGyDDt37sTGjRslA+3R8eLKnjXRrRFdKbS0lT60fTyJrV27Vq8CY3RUdFGzLlJOdRBde4HPmDEjatSogcaNGxv1tq1UmTJljHr1vnv3rq4mbObMmeHp6al3wQ4ODsa5c+dk8yE5OzvD3d1d74eU0Wg02Lt3L3x8fNCuXTvkyJEDTZs2xePHj5EmTRrEixcP7969Q+vWrXV5uatXr65746tEr1690K9fP/Tv3x/58+fH/v37sXPnTtljKGPGjNiyZQu2b9+OggULYuHChZgwYYLqbUuRIgVcXFws2m4g6mKVLFkylC5dGrVr10bVqlVRuHBh1eVQK1GiRDh58iRq1KiBbNmyoUmTJnBzc8OZM2f08kbfuXPHZCefUqZOnYqmTZuiVatWKFasGB4/foyjR49K1tY35eXLl8iZMyfSpk2r+ASt/Qy1uZc/ffqkq1lhyNTDv7bmnjZ/s+H6IyIiJFM3XLt2Db/99hsqV64MT09P1RcWcdBArlmdJelcxB0GOiL/nCAIFtXke/jwITp27IjcuXPj999/Nzu9+DOVa8bdtm1bowc5NU2+zdUQF38+4r44zClVqpRRipj169db9GDVoUMHZMuWzaj11VuJVGE9e/ZUlZpF7ibWcNnh4eEoVqyY5LTi5p7v3r0zql3Wq1cvXLp0SVWAwVRTcEDdTZ7cd0TtDbxhS5Y0adIYtWKQe1j5/v07smTJgmzZslm8fmsozfGoNWfOHBw6dEivs065h9TDhw8jUaJEZnO2m0rnomVJh6WG6zDF3PlSSXBHzJo0Ytp7I7m+XubOnYvDhw+je/fuep+Dn5+fXdL1AJZdT5Qex9qOyuVIPUhaQ6oZuvb7Kk6RYW+maqJL/W8L7969w4IFC4xqO86bN0/vf+21wlZlkFvO8ePHdUEdperVq4dly5ahVKlSdj9XLly4UFd5REvNPtmyZQvu3Lljtk8GKdqXC9rO6YCoPi2mTp2qa/lmyLBs5cqVMznekKnaqdZatGgRpkyZgh49esiWSe7zlCq3YUoLa4nTlKhdbnBwsF4LScPyKklb+PjxY4wePVpRB5F37tzBrl27sHLlStXnZsM88vZ4saK1ZMkSjBo1yqgvMylFihRBr169ZNNt/PXXXxadj+Rqokt59uwZNBqNZAWaBg0aoE2bNujQoYPqMigpm1pSn8P3799RsWJFDBo0CEBUB+EfP36U7UxeKj3Hs2fPTD6PmPv8lRwfnz59wqVLlyAIgtlKNPfv30fz5s2jrXWTWlKxE/E+iIyMNPtcHB4ernuO+Pfff5E9e3aMGTNGr1KitgV+y5Yt9eZVW+v969eviir5yJWzWLFiaNeunUXzkz7zXcIaqFixItKnT49mzZqhZcuWsmk4lOjbty9Kly6NCRMmoHHjxjh//jwWLVqERYsWAYg6kPr06YNx48Yhe/bsyJw5M/7880+kS5dOsjbRz6Zt27aSb7HLly9v9KUsVKiQ3rBRo0Zh1KhRRvO6ublhzpw5mDNnjuQ6//nnH1XlqVevnt56nZycMHLkSL3mwGKZMmUyKnutWrVQq1YtvWHmTgDmarUY1qo1t92ZMmUyagLXvXt3s+tUm7bi33//1fs/Xbp0it7em7uxkCpbggQJMG3aNNW13wzXpeahXzuv+CLRq1cvpEiRQnaeiIgIREZGYtmyZShdurTkOUfuBYkgCHq5AaWozbVoyM/PT1H+wKlTp6JKlSqYOXMm7t27hzNnzijqlVsNax+YDVN2iG+OTC1b3JmwEuIAlVwnooYEQbBLJ0FKLFu2TPeCR66ZsyU5CrWtakaPHq338sHwRcSwYcN0QZJRo0bhl19+UR081WrRogUOHjyIyMhIaDQanDlzRvYB0TDw2L9/f72WQHLfnTlz5mDjxo2S46ZPn25RubUMb24tWYZa+/fvR/Xq1dGtWzfMnz9fb5zUPhCX0aLWcNFg5syZ8PLyQpYsWWRfTmlbEw0fPtxkPkwlwUNrg+jmzuPmHmadnJyi/cXk3bt3JVvqidOmGAbJ+vTpY1TTU+54LliwILZt2yZZa9SQLWuiR+dyAgICjILwUq2d7BGwXr58OVq2bIkECRIoavJtroaiLTRq1AjHjh0z6hOnZ8+eesEh7Qsc8TFvTZoBU5S0UhPT3jOqrfhhCan0P4bnAUEQ0KNHD717y3HjxqFNmza6/605hrXzPn78WDdMrva+kuu6IAgYM2YMcufOjcaNG+uNl0rfYI7SY9XcyzJAvzWlOS9fvrS4jwcp4pasjuhYtGzZsnj69CnOnj0r+dJW/P2zZwd/arYnKCgI/v7+qFChguQ1WtzC7sGDB4ru9eWeCS29B5B7yS9l8uTJsuO0z9fWtsAxTOFiaryca9euSdaIP3DgAEJDQ3Hs2DFMmTLF7HKknu3NpTEWV3r59OkT/v33X1SpUgXOzs5G08r1a+ft7Y0HDx5g165dkv1Oib9/NWrUwL1797Bt2zbZSjRy+2z69On48uWL2dQznTp1kk31JibVh5Y4xYncdV6u4q4gRHVg27lzZzx79gw3b95EhQoVZNdvmCZKvM7g4GBs3LjRbMei3t7euHPnDk6dOqXo5Zahixcv6rIsANFb6SeuUX1Ge/HiBfr374/jx48jX758KFSoEKZOnYpnz56pXnmxYsWwbds2/PPPP8iXLx/Gjh2LWbNm6XX+OGjQIPTs2ROdO3dGsWLFEBISgv379yNRokSq10dE1jMMjomD8JbmjDWVAiQyMhKrVq1Cp06dkDdvXslptOcDR1wMfH19MXjwYLNvhocNG4ZixYph3bp1uHDhglFNV1OdlNmD1PINA4LimyNblkd8U6zkAbxRo0YoUaKEw3qHV9uBjCGp41IuBQJg/DJD3PrG2g7Yjh07hvDwcOTJkweVKlUyCq6Z+pwNmw3Lfd969+6t19RW/OLBVK5VtaLreNDW9tGm39CS237xcMM+A+TkzJkT8+bNw5o1a1TVepTK2RsYGIg+ffqYfJm8a9cuXQ1NcVBX7vM3fIksfhA1FUyUSufSoUMHRUEE8XIMWy0aMncs2CqnZYcOHTBmzBirzoemynL06FGjlA5yrl27hm7duima1lwHqVIcHUT/559/kCdPHowYMUJyvL2vke3bt8fUqVNlx5t6AS9XNmuDZ9pzg7azQHPE5TB8YeOoh+eECRNaXYaBAweiTp06Jr/3SlNRHT9+HH/99ZdRDWtxGhWpz82wRrAcjUaDr1+/IlOmTGanNfciRhAEnDhxAqNGjUKTJk0Urd9W5I5pJd9DqWlevnxp0++w3LIWL16sVzs8NDRUL6+5rcqgfWF+7NgxrF+/Xu/l3+XLl1GoUCHJ+RyZYqFUqVLw9fU1urfREldQEre2s8SuXbssalGmJoiuVMWKFW3Sb5Sl5enevbvF9/JKWn6YIq5VXbt2bdSpU0d1TE37ckXu2iwul/bZWG1Fo7CwMAwYMAAjRowwWxllyZIleumYlPr06ZNkRUWlL8RXr16NAgUKwM/PD8+ePZPtrFW7HKl7cu3ytf1CSr0M0E4zatQo3b2w1AsBS0yZMgUtWrRgqhcLqA6ip0yZEj169MDp06fx4MEDNGrUCCtXrkSmTJlQsWJF1QWoVasWrl+/jtDQUAQEBBj1Gq3RaDBmzBi8evUKoaGhOHz4cLR2QENE+j5+/Kh3slX6MCem5sIfERFhFFSaOHGiXqcytq7RbY5h+adMmWLU2ZC5bRTXctq8ebPegyUgXVuqdu3aevOpERkZKfmy8+bNm+jSpQuePXtm8iKqNLAjJrc8tcHPzZs348KFC4qa1MZEUseCqbQ3po4dU5+RYR5POVevXpVtom5q+YY3/Uq/xwEBAVizZg2+fftm08CNrdK5mGP43VRDab7gu3fvomfPnmjVqpWqe6mnT58iefLkWLBgAWrVqoUlS5agatWqmD17NkqXLm3y89QGhgw7lJRi2NrGsA8Bcw8d4s9k2bJl6N+/v956ixcvbrYMpqhpwSA1Tsk+uHTpEpYtW4aRI0ciXbp0WLlypUUPHuaOz7Nnz+r+vnv3rslrrNL8rocOHZJMd2aK0u+RvYKxhilKxDp16oT8+fPrHszVfA6PHz9W3EH99u3b8fTpU8nlV6xYUa+GnJIyWBNEV7ON2mlNXWsdUVsXsE0Qfdq0adi1axdOnjwpO41hLW0tw22RqxEvrq1Xq1Yto4oPLVu2RD9R/1babfn+/bteq1KNRmOURk1JjUy5ILr4mqI2TZW5dVpi9erVaNmypeI+aOxF7ljv3LmzXjqMdevW6b3kl9v+V69eqW5NDEQF/5o1a2ayfylxih9BEBAeHq5Lb2PvF8Li+bXpr+RamVtSYdHUdcVcBYG7d+8aDVOTzkUp7YsOc758+YLx48frVWwxVxN94cKFFte6F+9vw2VXrVrVKF2ZtS3spPohU7OP5dLGyLXqlyO1TvFxlDFjRixdulTVMpXw8fGRTbunZWr/LliwQO9/Uy/d5Wi3fcOGDWanUZo+We05Yt26dWYrqpAxq9rXZs6cGUOGDMGkSZOQP39+yS8jEcU9cjXHlXQ+o9aMGTN0HfoAURe0P/74Q++C8/DhQ/Tq1cvm61ZDbedaYlI324Y3FXfv3sXu3buxatUqi9JYtGzZUq+Zn3bawoULY9GiRciQIQPKli1rSfFlXbp0SXK4moC8YTooa1h7A25p6h+p2gfiGtlqO8GSY0ne1oEDB+r9b2ofGT4kq/k8WrVqhdGjR5vdVjWfkbm897aSIEECyeFyOV2/fPkiu6ywsDC985ktfPz4Ed26dcOePXvQqVMnXc2fly9fqu6jwJLviDbFgJZh+jXA+FiZM2eOXh8Yhvn21VKSzkXrxYsXeulh5syZg6RJk5pdhzig8urVK0Wdwn38+BFr165V1ZmZuC8fw7Rxhvmnz5w5Y5QGTo7hPpKrfahlq4DFzZs3JYe/efNG9nO/fv26yfuJJUuW4ObNm9ixYwcAdWXNlCkTSpUqZfbhGQAuXLiAjBkzSnZiB+jnZzcMgEqVyZqc7XJ9V0jRrtuwDIZBf0v6QDGk9oFdHES39ppuqjbpzp07JYdbelyLW0kDUdfbmTNn6v7fvHkzrl27hj/++EOvSb+Tk5NRTmPtcWuofv36upZnUsFIw7R21atXV78hCv3+++/o27ev2enCwsKwdu1aLFu2THaa6KjlKD6/GR6T4heThvcxgiBIHsNp06aFt7e3Rf1wmSM+b2zZskWvcqC587kl/S2JK0B8+vQJixcv1qtUI7cMuVSZpoi/E2pJpW2zRxAdMN0aVGvUqFEYPnw48ufPLzleKm3hsGHDLD6viVOqGD4/HTx40KhFmbXnT3MsfWETEhKCw4cPGw0PDw/Hzp07FfUbYEhNn1BKGb4kkzq+bJV6SRAEydYHlrbkAaIq0Ug9B1nyPdm+fbvqeX52Fn/7Tp8+jW7duiFt2rRo3rw58uXLhz179tiybEQUQ8ml4KhRo4bRMHEeSC3DC7+pAIhhwF6ck1lM27loXKG21iAAnDt3TnL4wYMHZWuaiB8obJ0eQ64mmJLcmlrivhvsldNVia1bt8LNzU31fFeuXDEKwHz79s3iDgRtUfNV/ALKsHa/miC62hvsHTt2mO2AVU2N4kmTJklOM3/+fEUPSEpZ0gpDzqRJkyxuTWIJc7UDIyMjJfuYef36tez31LBp7bZt2/Q+N/GDiVQ6F63Lly9DEAS4ubnp5V7VUnOsmzt3iZsS58yZE7/99pviZWspbekh1rBhQ7Rs2VJVZ2a///47evfuDcC49YdUYLlChQp612S5gL1h7Wu5zg21bBWwkNpvv//+O9KkSYOUKVNKzmOqNYZUTUDxsPDwcIwcOVKv01Ypalo2KakFp6QJuLe3ty6QHhISoiqfuLnyitf56NEj7Nixw+h7IQ7e9e/fH8mTJ7drh2+CIBilPRG3HDQ8Lzx8+BCTJ09W/NLJ0pd+YrZqSbF7924ULFjQKIio0Whw9epVvWGm7ueGDRuGmzdvyuZb7tOnj03KKy6flL///huzZs3SvRQ2t69tcX/2/PlzjBs3Dq9fv1Y9r/iFirmWR2JyL7y0pPoDsWUwt2nTpnqVKqTSXnz+/Fm3feaC6FJlmz17tu7v79+/o3PnzorSX1gSRLfG8OHDjYbZI50LYPxCWopc3z5aci/SLQ1ui8+NUv3W3b9/X6+yjC1bgXl5eRm1WLNmf1+5csWolc/UqVNRt25doxzjMTmViL374hIEQfKFg+E0hh48eICMGTMiY8aMNimH2g7CyYIg+tChQ5E5c2ZUrFgRT548wezZs/Hq1SusXr0a1apVs0cZiSgW0wYDgKgH3qdPnxoFxtVcQM09GFsrIiLCbA1XUzVNteyZb1Rqf3369Ek2L3vVqlXtVhZTLOls09CYMWN0f69cudKqZdWrVw9Dhgyx6GHPMNWYIbkacYsXL9b7Pzw8HO3bt9cbJj5WBEEw2azO2ptNQRBMNjk0VevHsEaG1DFuqhaVthMrS0RERBgFb001tbYkB7Raar/jL1++tKjjN1sZMGCA0bDbt2/rtbDQfuZSgf7Xr19j0KBBRjftnTt3ln2BZyqIDkQF++RaeFiSvkIJazuTVkPbSag4h7yS40bbHFppKiFtjeKnT5/q1WQX+/XXXy1Kv2YPf//9t+Rw7bVXaU21gIAA9OjRQ+/csHjxYowZM8YoB7ihFy9eoH379orOSWrPu6YCc7lz59a9PEqWLJlsag+1ZTJMSVSvXj1FL8YrV66sel1KjR07FunTp9ddc758+aLXas/wu1CwYEEMGTJEUQ1oQD7AIffyUK6jPHuy5F5w06ZNskF0SwLMpoSHhxt1VGu4TvFvOZamodPatGkTfvnlF/z555/w9PRU1FJEzJogutoKJNF5DJ0/fx6urq6687olrV4NWxwqWc4///wj2wovOl29elVXVksr+lj6eUlVAlOyLEuD6OJjU6rWsuE9uJL1XLhwAYMHDzZ73/PkyRNUqVJF16G8tcLCwoxa72jvgwz7VxJT+tLOHnbv3m2UstZUTXSlaeFMEQQBBw4cMDmNVHxVmxLKlpXLevbsadN+q+I61d/yEydOYODAgXj+/Dl2796NZs2aIXHixPYoW7RxVGd1RLGJ0htpsWfPnulduI8dOyb51tTRHZiJxY8fH66urnj79q1sU2dxGgIx8b6xNk+7VE50rXHjxmHIkCF64y25kFqTgkaJyMhIPHz4UDbnqCNMnjzZohe+5o4tw89Dy/Ah38PDwyi36osXLzB8+HB8+vQJrVq1Mrkepd9DufHmalWYuh4aLlPqBt5w28SUdsQmpU6dOsiYMaNeJ0CmyioX1LWWNR27jh492uLvwvPnz61+qJg+fbrRMLmXP+fPnzca5unpKfsCRi5lh5bc98fajnK1YuJ9nC2uR+Lm3UqY+v4BMBksM+SIh9i//vpLVfPpsWPHYv78+Xj16pVumNLcnoMHD8by5csVd/5rjmFfMRMnTpSdVpz711TH6mqIOzKUKpMca+8DtmzZgsqVK0t2/jZy5EgAwKBBgyAIgq6TZjna+0Wl6UGljvfw8HDZTjz9/PyM5rF1hQclNd3NrXP//v3Rlq5s3rx5aNCggclplLSYkNumxIkTKzrPG7ZczJMnj9l5DB05csRsmiophp+ZuRdb9jw3Gi67RIkSAKKCklL3b8uXL7dJJ5mGmjdvblR5ZPny5QgODtZdb7Wfq1yrQDXkAqtBQUFIkyYNrl27JnlfYs6GDRtQsGBBa4unii2C6FJ9WFmynuLFi2PKlCnw8fFR9ALOVmk9hg0bZpShQu4coT3m161bhyRJkmD+/PkOuf8YMmSIUYt6W6VzkSMIAuLFi2dyGnvXhteaN2+eopfqFEV1lEcuL2BspK3hExISAldXVweXhihm096kqQkCvXv3TtEDSkxsyvXbb7/J1no37CRKS3yhM3dR1JKrcWfqTb22md/Lly/RtWtXlCxZUtG6xOzRLNjQq1evkDVrVruuwxIXLlxQnZvW3HEs7oTMFLkH4/Hjx+PDhw9Yu3atyfm9vb1Vd9qjhqnvomFLB6l9Ym0wU2792uC5OIjriMCp2qCmrVStWlVRfnNrWXouNjef3MOeqfksSeeyZs0axfPYm2H5Hz16hC9fvijernfv3plNuaKW+Bpl+P29dOkSZs+erWs9prSctg5CmnshbK5c4tQF0UlcrhEjRpicNleuXLq/NRoN7ty5o/paqWS/2/ocKbfvDx8+jI4dO2Lv3r2YO3cuKlasiAIFCuhN4+npaZQD37AVllpS18vXr1/LpvOaMmWK6nWoZbjPpe7xjh49anIZ586dQ926dY2Gq60soeQYMZfyq3jx4rh165aq9Yp9/foVDRs2tHh+NXx9fc1Oozadi5TIyEjF9/hqmSqL3MuIGTNm6NIx2CLFkZz27dujffv2cHd3R4sWLbBgwQJs3rzZJqkgunXrZnK8pYHwpk2byo47ePAgpkyZgkWLFpldzs2bNxW3ZLFFrnIl3zk1197Lly/LvlyMLubKq6253qNHD5ukPbQk+HzmzBm9F9vRkc7F1ucSa+7JpFIrkjSLqkquXr0aCxcuRGBgIM6ePQsvLy/MmjULmTNnlrzox1Tx48dHypQpdfkaXV1d7d5JA1FsFBkZicePH+P27dv4+PGj4tYnf/31l6KTuVQePEezJG2MOCit9KJoTdO5VatWYdWqVTZtqvizMEypYo490/NoyXXEKvb161ezqWUAy2+E1BxLUvskOl+IKe1QUYqltS/F2yfXsai9LFy4EEmSJImWdandLkuD6NYsUywyMhJBQUFmW3LYmpoyZs6cGYD51FBa5oIKYpGRkVi7dq3Z772pzveAqGtYjRo1kD17dsXrtrWY2KrAnlasWIGJEyfKtnCzhtLj88KFCyb7ftDWxps3b57sNM+ePcOsWbN0aaMM1y11zhWfF2z1uat50RkdreQsbW4v1f+BuZr89mBNAD0mMjzvRUZGqj727HmOMvWdlasVK05JZck9mJ+fn6r0OcHBwViwYAEAWNS/iBRzL3PsQZvqsnXr1manzZcvn+LlWhpLUntcSXXEaoraFJu2Ps7N1US39bqV9GUiRdxPUHQE0eX6LLNmmWR/qoPoCxYswIgRI9CnTx+MHz9ed3B5eHhg1qxZsSqIDgAZM2aEIAgWdRhF9DMJDQ3FwoULdT3ZK2nitGjRIlU3HrHd/PnzdX8rDaKbyuuslKU3zWo6NYvJIiIiEBYWZrcUHmpob/wsuYmWSx9kCfGxqIaaG1epbbTmxvf+/ftG/Q1ERkba5eV2mjRpbL7M6KCkPwY1Fi5cqPe/9lyiNogu97lrNBpcuXJF9oWHrWqiA/KtPCxlaee/WlIdtgLG/STIMdcJr1ixYsUUnT+09+wXLlzA/v37Jae5ePEi9u7dq7iFk63SkWjF1gdAS8utTfui9qWgknswpefj4sWLmxw/cuRI/PHHHxg9erTsNBEREdi1a5ei9WmJzzPiYIWplni21Lt3b5sFAeUo7dcgtovOF8qWCAsLQ0BAgE1e/hum1YuubZeriS6+R7L0PGRJ+py4QpwOzBaiK4ge26gJotviPsCS9D+G7J3O5cOHD7Kt25UKDw+3OoUsqad6j8+dOxeLFy9GvXr19HJgFS1aVLLTqphOo9EgU6ZMCAgIwP3795EyZco4dcMTGRmJJUuWWDRvzpw5Ua5cObx9+1ZVHk0lOnfurPtbSTMqQ+3atcPy5cttWaRo17JlSyROnFh2+zt37owtW7YYNX+Vo92nluxPOVmzZkXixIlx5coVvHz5EuHh4brvh9Jgzo0bN2xWHgA4efKkTZdnL/Zq6imlRo0aRsEwc+JKAB0A8ufPj7t379q1xoDStESlS5fG58+fceXKFdXHgNJcvvak5sZV6kHB0hvfqVOnYtCgQXrDEiRIgPDwcL086DFJTA8aKCF3vbDltnl7e8uOs1UQ3R6BV8N0FFJs+eLLGkrLoT1H+vj4yE7TvHlzAEC6dOkULVNtB4DmRFf+T7GwsDCL7/337duHZ8+emc0rbWtK8iDb6nuhDSSYCg5FREQozmWuJT7PGOYqf/v2LVKlSqVqeYC6bT516pTdg+iODG7YOwAkFtOvhw0bNsTu3btRrFgxveGRkZEWpXPRLvPevXuKWhEqZUk6F3u06PiZ2Pr+gUF0aeJzhDi2oTSIrrZykC3uJex9P2KLyh8nTpxAxYoVbVAaUkP1lT0wMFDygcjZ2TnaOkGxhwoVKuD79++4ffs2IiIiYvzNgFK3b99WHIQ19OLFC5w6dQrnz5+3eacl2ty6oaGhFpXv/PnzFm9XTHH69Gl4eXnJbse9e/fw+vVrxc1NtfvUlvvFxcUFLi4uCAoKgouLC4CoC8qLFy9kc3nb28OHDx2yXrWUPDi9fPlS8c2bqenkahT+LGwdxJGi5Jrw9etXXW34x48fI0uWLDGilZOajoJMNek3ZKuc6KGhoUYBdOC/AIBhRz8/M6U5OS1lac06e+RSj601km3FHveh2gdCJc26rekI2BrlypUzOX7Dhg02X+e3b98sDqJrz08JEiSwZZHMsmVNdKVMBYcsqT0uPsYNK8a8e/fOolR/arY5OgLcjgyMmcoHbWsx/blZ27/EhQsX9IYPHDhQdXo37WeqrWCm5r7JGnJBdGv7FogJ1L6As6WYEkRX0vFnbCbeLylTptT9LfX9k/pMevTooWp9K1asUDW9lOhI52It8TUmKCgIjx49snqZZJ7qu4fMmTPjypUr8PLy0hu+f/9+5M6d22YFi26JEiVC1apVUaBAAVUdP8V0/v7+CAwMtGje3LlzY9WqVTYuUZTatWvj48ePqF27tkXzd+7cGStXrrRxqaJXYGAg+vbtK/v51K5dG1u2bFH8+Wn3pbjjPWt5eXnBz88PwcHBAKJO9t+/f0dISIjN1mFL9r6JDw0NtWnHgnXq1FE03fTp041u/Cl6KTm2xC94tHk2bd0xoCXUHDtqzh+2qIk+d+5c9OrVS9U8MUV050QHoi8gE11B9OheZmxijxyxa9euNdt5saM54kW5LY61mTNn2qAkyim5D3NkcEjty33DAOH27dstalmpZpvjxYtnk5R6pjiiZYUjxPQguilqn5tu376NyZMn6/5/9uyZzcqybNky1KlTB3v37sX06dP1ximpiW7v4zku0j7j2oqjKpnFdKbOEYZp4TZv3mzXsoi/v6aMGjXKruVQas2aNYqmS5UqVbS2QPqZqQ6i9+vXD927d0doaCgEQcD58+fxzz//YOLEiRanDYkpnJ2dHd5zsa05OTlZ3KmN0i+sJfLmzYvt27dbXLaUKVNaPG9McuzYMdntyJw5M0JDQxVvZ968eQFY3omRFI1GE6veaNoz6LJ+/XqsX78eXbt2tVlZLl68qOtsTk5oaKiiVFlXr15VVC6yjJKAVv78+XV/16tXDyNGjLBnkRxm8+bNOHDggOSNmtogb2wNoGvFtUCvrXO8mltO5cqVZcc9ffrUJmWIrSzt/JYc49q1a44ugpHorIluqHr16manEddeN2y1NXToUOUFE1EbRP/zzz8tWo9Sts63HFP9TB3VV69eXS9QqqRjSqV27NgBAKhZs6bROLnvs/h72ahRI5uV5WcR21u2xxam0sAadlp9+vRpu5ZlyJAhiqazdaefhpS+ZG3VqpWi6RhAjz6qg+gdO3aEi4sLhg8fji9fvqB58+ZIly4dZs+eHa3Nxij2s6bZUmyu8SBm6gEnZcqUyJIli+JlBQcHw93d3RbF0lHb8/fPQNsjvTlKH+TMtTRQeoGNbZ06xzZqX07dvHkTTZo0sVNpHMvUQ1pcCyqTMnKfu7laz6ZShhQpUsTq9cdmtu5Elkzr37+/o4tgc44MoivRsWNH3d+26qBWzTZHZ981cZ1hECwuc1RN4/r160sOjyvPxBS3marsZdgaJC7e00mxRYvDw4cPo2jRonBzc7NBiUgpi+6GWrRogXv37iEkJASvXr3Cs2fP0KxZM5w5c8bW5SMrxdST0D///GPVm9+4csNg6mb/69evqpa1cuXKWN0vgS2IH8gcTWkue3NYw5xik7jeMZKYvfOTO0J050S3FUEQ4sx9AUW/efPmYcaMGY4uhs2VL1/epsuzdRDdHtSci3jOoNhErrVLbPheEpF9TJ48Gb/++qtdUgCSPKvOuokTJ0bq1KkBRHVqWLZsWZsUimzH0Q+2cpo3b46lS5c6uhgOZy7orebz69WrF1xdXa0tEtmI0rQv5hh2tkXkSOaCDj9TU8IbN27E2U59Y1twKSwsDLNnz3Z0MSiWGjZsmKOLYBe2ytXcsmVLALEjWKfmRe7ly5ftWBIiy6i97797966dSkLkGLHtHtTRbt68iaCgIEcX46di/27JiWRY03mUXOcqsY2/v7/J8T9TrU4y1rNnTxw6dMjRxSBS7GdLAdWsWTNHF8GmYmtN9J49ezp0/URxWfz48TF//nzFHd07kjanNFFs1b59e1XTnz171k4lIXIMR99TxkZ9+vRxdBF+Kgyix3Fx9ST0s9R2fPDggaOLQA70M+WYJKLYK67eaxARsGLFCqxYscLRxVAktndWTUT0s+M9pXobN260yXKYHlGZmN8uj6wSV09CP0sQPa7UuCciopjv7du3ANTXROe1ioiIiIgo9nr69KmjixArKK6JvnPnTpPjY0MTP4o7+MBORERkW0OGDMHJkydV5z6eNGmSnUpEREREpjx79gw+Pj6OLgaRTaxevdrRRfhpsRa6MoqD6PXq1TM7DXd6zBNXa6J36dLF0UUgIiKKUx49egRBEFgThYiIKJZo0aIFKzQSkdUYz1VGcRCdHRzGTnE1iP6zpHMhIiKKLs+ePcPy5csdXQwiIiJS6MSJE44uAhHFAQyiK8Oc6EREREQEAOjUqZOji0BERERERNHo0aNHji5CrMAgehwXV2uiExERke2pzYdORERERESxW8uWLR1dhFiBT0pxXEREhKOLQERERLEEm3ISEREREf1cHj16hC9fvji6GDGeQ4Poo0aNgkaj0fvJlSuXbnxoaCi6d++OFClSwNXVFQ0bNsTr168dWOLYh7nsiYiISCkG0YmIiIiIfj5LlixxdBFiPFVB9IiICJw4cQJBQUE2K0DevHnx8uVL3c+pU6d04/r27Ytdu3Zh06ZNOH78OF68eIEGDRrYbN0/AwbRiYiISKmwsDBHF4GIiIiIiKLZp0+fHF2EGC++monjxYuHKlWqICAgAB4eHrYpQPz48PT0NBr+8eNHLF26FOvWrUPFihUBAMuXL0fu3Lnh5+eHkiVL2mT9cR1zohMREREREREREZGc79+/O7oIMZ7qdC758uXDw4cPbVaAe/fuIV26dMiSJQtatGiBJ0+eAAD8/f3x/ft3+Pr66qbNlSsXMmbMiLNnz9ps/XEdc6ITERERERERERGRHAbRzVMdRB83bhwGDBiA3bt34+XLlwgODtb7UaNEiRJYsWIF9u/fjwULFiAwMBBly5bFp0+f8OrVKyRMmNCoxnuaNGnw6tUr2WV++/bNqjLFNUznQkRERERERERERHIYRDdPVToXAKhRowYAoE6dOnqdTwmCAI1Go6rmc/Xq1XV/FyhQACVKlICXlxc2btwIFxcXtUUDAEycOBGjR4+2aN64iEF0IiIiIiIiIiIiksMgunmqg+jHjh2zRzkAAB4eHsiRIwfu37+PypUrIywsDEFBQXq10V+/fi2ZQ11r6NCh6Nevn+7/4OBgZMiQwW5ljukYRCciIiIiIiIiIiI5+fPnd3QRYjzVQfRy5crZoxwAgJCQEDx48ACtWrVCkSJFkCBBAhw5cgQNGzYEANy5cwdPnjxBqVKlZJfh7OwMZ2dnu5UxtmFOdCIiIiIiIiIiIpJTsGBBRxchxlOdEx0ATp48iZYtW6J06dJ4/vw5AGD16tU4deqUquUMGDAAx48fx6NHj3DmzBnUr18f8eLFQ7NmzZA0aVJ06NAB/fr1w7Fjx+Dv74927dqhVKlSKFmypCXF/ikJguDoIhAREREREREREVEMJU7ZTdJUB9G3bNmCqlWrwsXFBZcuXcK3b98AAB8/fsSECRNULevZs2do1qwZcubMicaNGyNFihTw8/NDqlSpAAAzZ85ErVq10LBhQ/j4+MDT0xNbt25VW+SfGtO5EBERERERERERkRwG0c3TCCqrKnt7e6Nv375o3bo13NzccPXqVWTJkgWXL19G9erV8erVK3uV1SLBwcFImjQpPn78CHd3d0cXJ9p17NgRS5cudXQxiIiIiIiIiIiIYi0fHx+cOHHC0cWwi0uXLsHb29vRxXAIpbFj1TXR79y5Ax8fH6PhSZMmRVBQkNrFkZ1VrVrV0UUgoljO1dXV0UUgIiIiIiIicqiECRM6ugh2w5ro5qkOont6euL+/ftGw0+dOoUsWbLYpFBkO8yJTkTWGjRokKOLQERERERERORQ8ePHd3QR7IZBdPNUB9E7deqE3r1749y5c9BoNHjx4gXWrl2LAQMGoGvXrvYoI1mBQXQistaAAQMcXQQiIiIiIiIih2IQ/eem+tMfMmQIIiMjUalSJXz58gU+Pj5wdnbGgAED0LNnT3uUkShG2bt3L2rUqOHoYhBFGxcXF0cXgYiIiIiIiMih4sWL5+gi2A2D6OapDqJrNBoMGzYMAwcOxP379xESEoI8efIwZ24MxZrotlepUiVHF4GIiIiIiIiIiMgmGEQ3T3U6l/bt2+PTp09ImDAh8uTJg+LFi8PV1RWfP39G+/bt7VFGsgKD6Lbn5KT6a0NERERERA7i5eXl6CIQEVEcEJcDzXF522xFdTRw5cqV+Pr1q9Hwr1+/YtWqVTYpFMU9v/32m6OLYDM8sRARERERxR4hISGOLgIREUWz5s2bO7oIsQpjXeYpDqIHBwfj48ePEAQBnz59QnBwsO7nw4cP2Lt3L1KnTm3PspIFYkpN9KlTpzq6CDbDmuhERERERLHHu3fvHF0EIiKKZnE5f7k9MIhunuJooIeHB5InTw6NRoMcOXIgWbJkup+UKVOiffv26N69uz3LShaICUH0kiVLxqmTl0ajwaRJkxxdDIpl3NzcHF0EIqJYJ3HixI4uAsUCXl5eaN26taOLQWRTnp6eji4CEREZiMuB5ri8bbaiuGPRY8eOQRAEVKxYEVu2bEHy5Ml14xImTAgvLy+kS5fOLoUky8WEIHq/fv0QP77qPmxjNHve1CZOnBhfvnyx2/LJMWLCd5GIKLaJjIx0dBEoFnBycsKiRYuYWpLilFOnTiFbtmyOLobdffz4EUmTJnV0MYjIxnLlyoXbt287tAwMCqvDmIV5iiOb5cqVAwAEBgYiQ4YMTGlBiiVIkAAJEyZ0dDFsypKTcfbs2XHv3j0AgIuLCypXroydO3caTVezZk1s2rTJ6jISERGZky1bNty/f9/RxZCVK1cuXLlyxdHFoFggpj+bXL9+Hfnz53d0MSgWSZIkiaOLEC3iWmUrotgkQYIE+P79u12W7e3t7fAguj3E5cA8g+jmqb7b9PLygpOTE758+YLbt2/j2rVrej8Uszj6S1CsWDHUqFEDyZMnR/369R1aFluyZL+KT7ZPnjzBjh07zE5HcYejv4tElipSpIiji2CxsWPHWjX/n3/+aaOSxFwnTpxwdBFMypw5Mw4ePGjTZcaklpPt27dXPc/ff/9th5LEbhqNJkYH0Xv27Il8+fKpmsff39+iddWoUcOi+UzJmjUrqlevbvPlEtWoUYNpu0xYunQpzp07Z/Vyypcvb3J82rRprV6HtXLlyuXoIvyU7H2ve/DgQQwdOtRhL5HtEVuJzfEacUYRsozqu823b9+iVq1acHNzQ968eeHt7a33QzGLIwJ3WbNm1f19/vx5JEyYEBqNBlu3bo32ssRUpk68sfmkTPIYRI9btmzZYtPlrVmzxqbLsyV71U6JDjlz5rRq/tGjR9uoJDFXTHhwNqdy5cqOLoJJffr0wbhx4yyaN3369KqmFwTBLkFSKbGpFWFMD6Kbq0iya9cuo2GFCxe2aF2ZMmVSNJ2Hh4fiZaZJk8biY9xR4kJA7md4JtiwYYOji4B27do5uggmFS9e3OpjITYcSyNGjHB0EfT4+vo6ugjRwtwzasmSJS1etkajQeXKlTFhwgQkSJDA4uXENLb8Pnl5eeHAgQM2W545Bw8ehJ+fn+x4xizMU3232adPHwQFBeHcuXNwcXHB/v37sXLlSmTPnl0yNQX9fBInToz//e9/+Pjxo6OLYjeWnDjF85h60IsNNzn2EF2dzzrqIZAXpLilQYMGNl1exowZbbo8WwoPD4+2dfXu3dumy7P2vPKzno+ltG3b1iE1uO1x7lSyzF69eileXpIkSSw+J8TkYyw2BU2dnJyiZV+6urraZbnRkc7CMICh9ruldP9G1/2cOdEZAKtbt67Nl7l8+XKbL1MNa/Zf//79MWnSJEXTxoRzYHS8gOvWrZvsODc3N7PzW3stNDf/z/CcojaIO3PmTDuVJHbZuHGj5PC1a9eanVf83ZL6nv3666+WFyyWMnzWefToEapUqRJt60+cODFKlCgRbeuLi1TfsR09ehQ7duxA0aJF4eTkBC8vL1SuXBnu7u6YOHEiatasaY9ykoUEQYA7gFQKpg0H8NhgmCcAJdn4ggG8Fa0zRYoUwP37wOvXetNJdY3zEsBn0f8uAJTWy3oAQHzJTwFASQOVrwCeGQzLCMBZyUrfvdO74YsHQFv3PmOGDChTpgz+Wb/eaLbMYWF4BOAb/ruIuAEwrAOYPiQEOQyGRSBqW8U8AbgrKO4nRO1jsWw/ym3OS0R9tlrOADKZmH7L5s1o+NtvAID7iCq3VgrIH4dDhwyBr68vKvn64huAQNG4jBkzAk+eQElDz3f47zjUyv3jd7q0aTFo0CBUqVIFa4cP140vUrgw/C9dwmMA4u5cXQFkULBOAAgw+N8TxsdhoshIhBoMCwHw5MffmTJlwqNHj5ANgFzdv98aNsTmHzWgXwF4LxqXADA6buTcAxAm+j85jI9DPTduIC+A7wDuGozKCGXH4XsALwyG5QWg5NHpCf47Dn/77TeEvHqF56dOKZgTuAH9c4QnlJ0PPwN4aDAsO6LOTwCAq1dRQGbeVwDeiP6Ph6htNSXxvXsogKjP5qtouAcALwXljUDUtoplBJBMwbwf8N9xqJUX/90gFEqQAHKPHU9+zK/lAkBp3e8biLruaKUG0KtsWRyfPRsAMHLECIweM8Zovq8A7hgMy46o76yhZIGBELeRew3941ADoJCpQl66pJv/HqK+s1pJ8d+53xQBwGWDYRmg7Dj8CONzfz4ou1Y9gf75MCEAyYa0Fy/CMGHPDURdq7RSAVjerRtWu7lhzty5suv8BuC6wbBsiDqOzXkL43uQIgCyf/gAnD+PYibmvQcgSPS/GwBTdVBTfPuGX378fRH654hfAORPnhyzmzeH35w5ssv4hP/O/RqNBoIgIB+g6Fr1DPrHYXzA6DOQFRKidw+SAtL3VobCARgmB8kKIKWJeYpHRqIEoq6thlnziwCy5wWx+wD+J/o/MSB77jTkj6jrjlY6yJ8PM4aGAmfOoBSiruVXDcbnhbJr1QtEHYcpU6bEkydPkCRxYpQSja9YrBiOHjsmOe8N6N8zJcN/9yBJb9wAEiZEaYn5pEJXWQDg1CmUMVPe9zC+B8nw+rXkfO6JEiFY1LLobUQExNVdEgEoKrOe/MHBcLtyBdpwx0VA754mLf47H7Zu3hyrVq+WXE7oj3nF8iDqODbnJaKOp8uXL+taP5eBfI2wrM+fo+yPv28h6jjWSgqgoIJ1AsApAOLujTMh6voqVvr7d71rIRB1/jY8Dgsj6vxkTiCiUqlpO9uMD+iOw0hEHTPaHxj8vgn95yoPRH1vBPx3z6WR+DtcVN4UKVKga9euCDx8GKkNpoVoWU4/ft5A/zhMnjw52mbIgBM/xmskfn/7sS1OL18Cos5TPQD4QllNvx3Qv1blgsx1zkAQgEOi/zUaDcriv+uy+DtpuI/vIep40s0LQBv9iMR/zz7iz0gDIM+TJ0gG/XumdABKA9i0eDH8z5/HzBkzdPtU+5Pz+HEgQvxEFaU8/juXiu+lDe+rAxG1n8QtVFojaj+Ly+j2+TM+Ggw7jajjScsdQANEnZe102iPR0N7oX/PlBXQux/TEs+b4dw5VAOw32CakpB+TjFcbyCMv3O18d+x9PfcuVi6dCnOX7hgNO95RN2/a6UAkPTECdQys04A2Af9c0QOSN8fGs77AYBhop7iAIb36oXZBvcfhvM+gP49UwJA9nphOK8/9D+bxJ8+YbiPD44bpPfTfl9/uXcP5RH1uZ8WjW/cuDFyR0ZicJs2iIiMNDpPAED+ly+BgweBtGmNgugVAFTSaJAE0sdwq5YtsXrNGlyF/j2TO6A7txuuz/D4PwD9F3XZEXXN0U7bpnVrrPzRIbl43iAAhld6H/x3jij5zDCS9J/b0H8mc0LU90arS/LkeJ8oEb6G/riK/ugL7zcAx6F/754O8p+rWCQAwzbShSF9f+i2bx9w7Roa//j/BaKuc1o/wws1qwkqubm5CYGBgYIgCELGjBmFU6dOCYIgCA8fPhRcXFzULs7uPn78KAAQPn786OiiOMTy5cuF3wFBUPDzQP+6KQAQtimc9y/RPGPHjo1aeaJEiuata7BOH4XrFAAhkcG84xXO96/Etl5Uut7x44U1a9bo5kuhoryFf8yjPR5/d3NTNN9bifKuVLjONRLzvlI4byuD+Qqq2NbUBvMOUjjfZYP5QkJChKMK551kMG8CFeUtbzBvLYXzffsxfbVq1YTr168LAIS5CufdKVpflSpVBADCXYXzdjcob2YV25rNYN7oPkdof74onLfuj+lLlCghCIIgjK9SRfG2Gp4jAps1UzSf1DniftKkiuYdajCfJecI7U9zhfP9zOcIALHiHCH+seQcof2JDeeIMmXK6ObdpnBeW5wjHHUfMXz4cOHGjRuK7yPE54iRI0eqOkcIFy8KX7580c1vyTnC1dVV4DlC+kd7jkiVKpUgCEK0nSP27dunN68154jXCq9V/RIm1JsvNtxHeHp6CoIgCHny5BFi0zlC+6PmHHHjxg1BEARh/vz5qs4RRQ3WqfQc8UY0T7JkyYTIyEhhlcJ5Vxusc+zYsUJ48uTKjv+lSwVBEHTzeqvY1lQG6x2scL5LBvNVr15d8TliosG8as4RPgbz1lE6b8KEQsOGDfXm3ZgqlaJ5teeIe/fu6ea9p3C9hvcR2VRsa1aDebspnO++wXwAhB0K550nMW+ownlrG8xXTsW2JjSYd4LC+Y5LlNdf4bxDDOZLqaK83gbzbqlfX9F8bwzm+/79uyC0aKFsvS1bCiVLltSb/43C8rYwWK+ac0RKQGjbtq1u3iEK5/OX+GyOKZx3gsF8CVWUt5zBvLUVzhcqUd55CufdYTDf9evXoy9YGcMojR2rbruUM2dO3LkTVQesYMGC+Pvvv/H8+XMsXLgwVuTVJPsqUqQIBg8e7Ohi2J21TQ+1b2LjQr5Ge3NycoKLi4v5CR1s3759qjsNi228Mma0+DxfuHBhVKpUyar1a793ghXLSJZMSd1saQmiKT9wbMpDbAuObrJOthcTmudHJ41Gg8jISPMTysyrlouLCx48eIDAwECL1unj42PRfD+jkTEsR+/PTtv0P7aeY5xUlFv7rJAlSxZFrfa0DOssK53XcDo1+1gD/Rz7kZGRgNIUKYL+XZ1lZ1LrnDhxQtU+FlMzn3aPhIVFtQdVvK2RkVi6dKle/3O1a9dWsWYgQ4b/2tcqLbPh/bYjPpu4LPqSJerrbiK1kBpqz8OOOm/H1usFxVyq07n07t0bL19GJYcYOXIkqlWrhrVr1yJhwoRYsWKFrctHVhIEAfcASDeq1GeYBgOIalLyycx8pUqWxPkfnRPUrl37v3xjzZsDBh3SSTXvfGrw/2sAq0ysr0zp0nj27Bl++eUXRJw5ozfuspl5ASB5smQ4++GD0fDdME6HULlyZRw6dEhvWJv8+eH0+b+Gkt8ArNSOa91aNzwoKAg7RP0E/FqmDN6fjmoEpT2Ztxk9Guf690dAwH+NILNmyYIHD/UTSYTAmGHzUjlS3UZsiR8fLgryHBumEXgPwFS4q169eti+fTsAGKUuuQ5gmcQ8hb29UahQIQDAsuXLjY4HjUaDIsOGYZkoBYscbRPhP//8E2PHjkUkgKUAOrRvrzfd0mX/lSR16tR48+aNXsobDw8PPA0KwlKzazR+WAGAs4hqFi0Wz8kJEQZBlmsS824CUNDTEy9fvTIalzNHDty5G5VQRduUdPLkyRg8eDA+ATiYMSMeP/kvMUenjh2xeMkSo+UEG/wfAGCxRFnEywGAeClTwn3bNt01AIhqDvtGZj4gKgVN8uTJUaJcORxu0QIuLi4I/dF8bRmUpQMwTPEQlCgR/lYwH2D8+YQVLKho3nsG/zs5OeFqlizY9zbqTNmlc2f8vWiR5LzPU6UC3v53Rg0FsNDM+urUro2du3bhfwCcnZ11D1j3FcwL6Dfdbtu2LXr27Ik5RYroDZdzQWLYSgAeTk7o3LkzAGDBQulSGKb3eQfgLwXrBP5LW9OmTRu0a9cOlwGEdeiAJUujvnkVypfHsX//NZpP3IDy1KlT+PXXX7ED+s2rtWrVrInde/bo/j9rMD4SwHwTZezerRvm/xW1Rc8Nxj0CMM/EvFpS54gTEsOkGF6TAGANTKfgqF69Ovbt22eUViUYgDYRS88ePfTGzZ2nvyWGPZrcAICePQEAt2/fxo0bN1C9Rg3s3bNH71ylTZcgfmDZg6jUMuJ0VFJOSwz7C0COzJlRu3Zto6bNWk5OTnhocG59DmD2j7/btm2L72FhuHHzJq5ejWrondjFBV++Rh2Bhp/PGQCLXVzQqVMn2XUC+tdH7fb+A+AkojoLff486ojp8+O+eYMop6jhdy4UwCzZNenrkzo1gKjAGgCEpE+Pmc8Nj05j5apXB/btAxB1bwhENXN+Z2Kevn36YOasWbgkMe5v6KdQ+r1LF8SLHx/z5+t/owxTjbwFMMNsaaN8Mfj/AoDpMtOmSJ4cbdu2xfQZM4xShwFR11aPChXg7e2N6TP+K8Ev6dPjmWj/nTSYL37ChJgm+n9A//4AgFevXxt1CG14//IQ0M3buFEjZMyYEf/++y8u+usn1okAUMAgkHgEQI8BA/DkyRO9Y8eQYUohADidOzfuS3QaJj6fAcAVg8DCRwBTJNaRM0cO+Pr64svXr7qXnoZ30VdE8/bp0wezZs2SLO97iWHbYJyiS4ofgLk/chRrA8wzEPUwW6lSJRw5ckRv+iKFC6NAgQJYvmKF0TX9KYDJCtYJGAe6TgD4Y/BgHDlyBBcuRt15FixYUHd+0dK+4hoyZAjixYuHxo0bI+fBg5g0cKDsunLlyoXbt2/jLIDWPz6fTJky4euP8orToRimTtAOM7wnu4eo+wgN/qtqCIm/xc8anp6eAKLSVLyVmNYJUddPbSqPKwA6duyIadOijnhBEPCxSxfMGD8eAoDSZcrg5OnTunmAqLRkTgD+LKCf4Ok5gP4G6zQ0ftw4DBs+3Oj56AiAvgByZM+ODh07AoKAwUOGGM1v+MybJEkSLPj8GbshvV8BINuP5zPD9BsRAP748Xc8AAnjx0dEeLjeZwQAxUqUwKNzUXMnSJAA3t7euHn5MvoBmDFzJu7cv4858+cjEkDOXLnQqUsXJHFzi3oZES8ekiZNii5duuD3338HACTq2hXvChdG9x/Xc/G+Ev/9EsAvv/wCZ+f/EsH1RlRaIY3op0mjRti0aZPeMMOzyFsAvyPqO6edRu5ViTiN16ZNmzCuUSP0M5jGMLTZskULzJfIs70CxudmqbDoZYlhw/BfCtMJEyYgnpMThkgcE4bXqkAAb3r3xqwfKQbTpk2Lnt2768aHhYXpUg4a3kccgvH1S6q8Uq/BlwAY8/vvevfdUvOeMfj/C4AJEtNpYPwMOvSPP9BRdC14myoV3hs8M2rPF4MHDwY0GkyYNMl4mzQaoG5dzNy+HZ9/xEYMj8OCBQuibp06QIECcDK4LkwBUDxvXty4eVNy3l49e+LNmze49qPzYe159gWiPlcYTC/1t2GZ/wUgru45efJkDBJVANXOK/VsuwCAtgvw/PnyIfDRI3wKMY7SGN7jRQB6x36P7t2xePFifPvxrDdjetSdTb/+/Y1iLzcRdU4zR+pZYwuMn2eBqDS6adKkQUBAAP5etMgofakgyJ15SUdp1faHDx9KDv/8+bPg7+8vvH37VnE1+ej0s6dzWbp0qVHTDlv/7NmzR/f3qFGjTJZHbhlqynnz5k2zyzP1U7hwYd3f9evXNzntoUOHjIYJgiCsX79ecnqxW7du6Y0LCAjQ/f3lyxfZ/dKvXz/Z8qRMmdImn1mSJEmsXoZGozEaduPGDbPz1apVS+//T58+6fZDo0aNjKb/9u2byc86UaJEwsSJE4X79+8LDx8+FBYtWiS8e/dO9nMxXFapUqWMltmsWTNV+6JSpUpmj8mEBs2mAQiHDx/W/a1N5wJAKFeunOQyOnbsqPd/8uTJ9dZZu3Zto+22xfEiliNHDlXzXrt2TW/+/PnzW1yO0qVLC4IgCKtXr5adZsWKFSaX8eTJE1Xr9PT0FHx8fIRz584J3bp1U7Rva9SooXrbjh07pvu7WrVqVn1eY8eOFR4+fGj15+7s7GzVuVbN8fX8+XNdqjjtcLnrgvi7dPr0aZPLvn37ttVl0/6dN29eu+4HW/0Ynv8MfzQajclzIgBh+/btkvvCUFhYmOQ6ypcvr/d/1qxZhW/fvlm0PXXq1DF5DMaPH9/sZygIgt5+SZUqldF0Dx480P2dJk0aVcf9iBEjhKtXr+r9L17/2bNnZecdPXq0qv1hKDg4WAgMDJSdPlOmTMK7d+/0tkfpOUbNPvjf//4nfPr0yaLP2BY/uXPnNlveuXPnGk1TtmxZyWlTpkwpCIIgTJ48WXb/Z8uWTXH5jh49qpuvcePGRuP37t0ruf+PHj1qdtmNGjUSPn/+rPu/a9euRtNUqFDBaNtdXFxUHXPalHWmfqpVq2b1NcPU8ax9nvP29tYbLvUd69mzp9VlMbVP+vbtq/u/U6dOstMuWLDA5PlW/PP27Vvd3/fu3dPNs3HjRrtsh+HPsWPHhAoVKggBAQGq913//v11f69fv17vPiQoKEj396BBg/TmM3efL7f/TY0X35cvX77c7PKyZs1qdprKlSsrKpuzs7Pk8N69e+uVX3wMC4Kg90xQs2ZNo3O9IAjCwoUL9eZ59uyZojJp0yHKjU+fPr3w/ft3ux1XcutOkCCB3n5du3at3coAQAgPD1d1rN28eVP3t7e3t9HnYa9yimMGtvhJmDChUKBAAdnPY+TIkcLdu3dlPzu5bY2IiBAEQRDSpEkju+727dvrliF1vW3atKnJ4+bbt2/Cr7/+KvTv318ICQkRevToofjapf1p166d7m8nJyejdUydOlX1Pq1Xr56QOnVqiz6PkydP6tLqmdvH9jq+tJYtW2Y03vDZ/Wdi83QuWbNmRebMmdG+fXusWbMGz34k00+cODEKFy6MlClN1YsiRxFUvElKksS4C9HcuXNLTGlbgiCgUaNGqqa3lX79DN+J65Nr/qOkF3fDecXlNjV/ly5dZHuqNldeQydOyNd3vHBBqv5plAkTpN5lR+nZsyfWr1+Ppk2bGo3TaDQ4f/68yTKtW7dO93euXLng6vpfXbYlS5ZgyZIlWLr0vzrg5ppgubu7Y8iQIbpzVKdOnZAokWE9cH3i8c2aNTMaL/6slHwHNv3oEMQUQRBw4cIFDBs2DM+fP0dkZKReehNxmeSOcfG+uH//Ph4/1q+jbcvvhhy160icWEk3e8pot7958+bYsWMHnj41rPcXVavZ0K5duzBy5Eg8f/5cdZO+adOm4fjx4yhevLjiecTHLwB8+/YN/fr1w8SJE2XnEe/XlStXyk6nROPGjfHdoBWQJaw9nvLkyWN+oh/SpUun1+mVKUo/w5o1ayJnTqXdnJondY2MiZInT65r3SNFyf6TuwYZSpAggeR33HAdd+7ccXiaInGZpI5tbc1uufHmli2eJ1Uq/W5jtZ0Dimk/oyZNmihax5w5c3DjhnHbBDc3N5PfHUEQkDx5VFfX2u9ky5YtFa1Tje/fvyu6N7IXJce11DQjR440OY+p733GjIbdS0YpUqQIKlSoIDtf/PjKGwIrORYNv4eG88yYMQO7d++2aNlq2aLZvKnjWe7+ztx9n1bBggUBAO0NWihay9R2q0qLIpo2Xrx4ur/VPCdZo3z58jh69Kgu3eTMHzX/lfLz88PMmTPRqFEjvRRXTk5OaNiwIYoUKYLx48frzWOPVAviZbZt2xZ79+41Ob14X8vRtbQ2Qy61l/gaYynDfSW179Se38eMGYNnz56pOi/JKVpUrmtiaUePHkWvXr2sXq9S2v1Vo0YNi+eNblOmSLUP0lexYkWT40uXLo0+ffoAALJnz240XhAEi67fujSbJq4l4uVaso6ECRPi5MmTmDZtGpIkSYK5c+eavL52F7UW0GrcuLHub6myKr1+iNnj+lmvXj2bL1OK+FiWSgsVHfGE2E7xkXz06FG0adMGDx8+RKdOneDl5YXs2bOjS5cuWL9+PV6/fm3PcpKF1HwJvLy8sHixflIHS4LFlojOC5Mt1mXtg6KpMiRKlAgnTxo2WlO/3gULFqBs2bKS4zQaDYoWLYq5c+dKjjcla9assg/9Li4uKFasmMnjzs3NTfe34U2ru7s7OnTooHvgB8xvs9S+NDePuHzt2rUzOf7WrVto1aqVyeVJXXzjx4+PPaI0EoIgoGjRohg3bhzSpUtnVO58+fKhbdu2+OOPP2T3n3h41qxZ9V5AGI63F/E65phIdQBA93JDzJrvn3ZeJycn1KlTB+nTp9cbv1oiXRQQlVph1KhRkvvdnObNm+v+Vrp/tc2gtRImTIjp06dLNh+VWnbqH+kaLJUjRw69ZruOYu251pr5GzVqJBk0+lmcP38ex48flxyn5DqiJKCgpeRzUrM8Q+a+d1Lj3d3djYaJy2lp/nIx8bXMMIjeqVMnNG3aVPdCLHfu3EbB2PPnz+PNmzeKX/T07NkTefPmVV1Ocbn8/Pzg5+end16zFQ8PD719vHfvXiyRSCdmL5acL3x8fMz21SF1j6Altx8vXryIqVOnys6n5vug5LojdT+h5e3tjb59+0q+7LLHPYM9X6T4+/urehmn3T7tvXDRokVx5MgRBAYGSgZa1BLv9zJlyli9PMNl2iKoaS1t4E2pEiVKoE+fPnBycjKqPLR582ZcuHDBaLvsHUS3FVNB9DRp0uj+lvtede3aFQMHDjRKE6olrqwhV37DZYun8/b2hp+fH1auXIlHjx7JltUekiVLhhUrVujtByXy5Mmjt022/Ny2bdsmO07q/rBOnTrw8/NDw4YN7VIeNcTr/f333606V7do0QL//PMP2rRpg+PHj8tWdrNkW9W+vJa69lmyXlP7Y8aMGUbP5aVKldL9XaRIEaN5LOmzyx7Xz61bt9p8meakTJkSnz9/1nuZxSC6eYrvdMqXL49Ro0bh33//xYcPH3Do0CE0a9YMAQEBaNu2LdKlS2fRzT3Zl5ovgSAIijoN3LBhA65fN8y2GrOJ38qLT9YajcaoRoRYyZIlJYdLPSRoa7fIUVoT/csXw+xdptdrbn3ivJTai5f2Dbzcw4hhLTpzxo0bhwEDBiBz5syq5pPbHmtvqNQE0aWmNQywmPseiS/W69evh4eHBw4cOIDq1asrXgYQ1cGiqePRHEsDQ5s2bcL+/fvR8Ufu86pVqyqaz9RnU7BgQcma17YIokv9v3nzZtnaN7ZcZ3RTUwMe+O8hz8vLy6blkAskqf3O24KS75ItWsdZ01HwoUOHUKxYMZPTyAUn5L5/p06d0uu4zZQECRLodSImVrduXbPzx4sXDzNmKMtcLfUdcfT3RoqpMo2Q6Txyw488nFIMz7fiz8bZ2Rn//PMPWov6SRk7dqze9AkSJFB8rVXT51DixIkxZcoUDP/Rj4j4ZbmbmxtKlChh889n+vTpSJQokd5yc+bM6ZDzg6GHoj5mtOXT1sjv+SPPvymJEydG375RGUkLGORuNhVgNzw+xC927BVEv3DhAiZOnIguXbroxpnqmF1u2c9lcuwrOW7E65ZTsmRJi4LOhQsXlh1naj9t3rwZkydPxq5du5AiRQpkypTJ5h3W26N1hzUvH3v27Gm2lYVSlvZ5JnWv7ajrhSUvY4GoSglaUi81Nm/ejHbt2pls+auVIEECTJkyBb6+vpLjxS9mLXHw4EGUKFECTk5ORveA2u2z9XGv9e7dO8mWoABMViCJjIzU2/dSn4P4BaD45ZclcSftsWZ4zA0ZMgQ7duxAiRIl0LVrV8nyTJ8u1yNH9FNzfzp58mR4enrCyckJPj4+kveR1apVs9sLUPG+njdvntH9ubVB9BYtWuiNc3JyQokSJYzWcfPmTaxdu1ay5nXu3Llx7ZpUT2Wmy2BJ2bNkyYLixYujd+/eAPTvyR1175w4cWK98xuD6OZZ9G1JlCgRKlasiOHDh2P06NHo1asXXF1dcfv2bVuXj6wkrhH54MEDNGzYUPYNZGRkJCIi9LslqFatmt7/Y8eORePGja0KLlhL6Rc7ffr0qFevHiZNmqRXQ9XwBCVX6/P06dNIkiQJZs+ejcGDB6Nfv35Y9qNDSqkLUJ06dUyWR/xAZeokKb5hM2TJybV37964f/8+zp07h8ePH2P69OlY9KNDxFatWqFEiRJ6F5uOHTuibdu2Zpcr/hyGDRtmstaVHLkHhOgMokst3/AYM3fMiZfRpEkTvH//HhUrVjSbPkBJ+dQQz6ft4NXQ8+fPjV6C/fbbb6hatSrmzJmDrVu3YqOJTszELGm+7OiAtngZptIWRTe5z7x79+4oX7684uWIt0/74GGL2mzLli1T9JJVriy29JeoMySltbUsoaTZtBxfX1+zqa2k0t1kzJgRQ4cOlZy+TJky8PHxMblMUzfjc+fOxezZsxXVDo4XLx769u2L/j86UTRFKvWL3L4StzIS++OPPySHA5YHP9TQBkkNNW7cWPYFueE1PVOmTJg/f75eyjIxax5QxcF4czp16oSBAwdi7Nix+Pjxo9l7EzF/f3+jwMSiRYvQw6AjWgB6gQapwKkgCNH6ICZ3zEkF8s+dO4cLFy7o1Tg0ZcKECVi/fj2OHj2qN9zwM02aNCm2/Og8V7ztAwcO1Kv9JnXvo6QFmpbhNVq77UWLFsWQIUMQP358rFq1CtmzZzdKL6ZknenSpZOdxxQ/Pz/JAIWhvXv32jxdpKljLXXq1Bg0aJDeM5E2XYmtODk5SdZwBMxfO7TPKGvXrtU7r1gTRJ8zZw5GjhyJzZs3W7wMrTZt2ug6O1dDaeUhR9REnzxZWbey4m2QajWUPXt2LFu2TO/ZTTxPt27dFK1HKUtThWrd/NGBo9wyTDF1vpRK6/Hy5Uvcv3/f5L22knWLW3GJawwfPHgQTZs2lU2rZaqchsSxgIoVK2LixIlGtdWl7r82b96MsmXLGrW6BWAy5YiachqWOW/evKoqTZnbx15eXihVqpTd7tnFx2Xu3Lnx5s0bvdRG4hQmSisWiLdp1apVejW4nZycJO/f8+TJg+bNm8tuZ/78+RWtW1wGqZSwpnTo0AF3795FwoQJMWrUKJw4cQLr169XtQxt8F2NHTt2mJ3GmuvNz0jVHX1YWBhOnDiB0aNHo0KFCvDw8MDvv/+ODx8+YN68eQgMDLS4IJMmTYJGo9GrmRUaGoru3bsjRYoUcHV1RcOGDZk2RqVatWphyJAh2LRpE7JkyYLNmzfL1o6LjIw0au45duxY/P3337r/pU48tshzao8Td7x48bBt27aoXqUBVKlSBQCMcq+1atUKtWvXxuwfvW9radMh9OrVC5MmTcL06dN1tY7Kly9vdGNkLvCq5EYnefLkJm+C5E5wUm//DVN/FC9eHOnTp0e/fv10+VldXFzg5+eHMT96FweAxYsXR1sTUiUnbHsE0c0tX20Q3ZJlmhpvaY1y8TLkapumSJFC9iWYi4sL6tevD3d3d9kUA/ZqdqmEpeuTuxkV58gDoh5gYxrtjZ+Y4ffz7t27etNrPX36FP7+/nqtUaxx4MAByfLJsdfx0aFDB6vmF593pk2bpng+W2+P4TkhXrx4uH//PsqVK2c2hZSUf/75B2vWrJFdfr58+dCrVy/Jl8DawJ+4LEpJ5fCXyzcqdx5s0KCB7AtkubRk5pZpajrDeQz3iXi84b7RElc60B4b3bp1k32osjSIXrBgQUXH3qxZs1Cw4P/Zu+vwKK62DeD3hkAIEkGDu7sUihMI7lYkhVK0uGux4lqgaHGXAoUixZ3gHiC4S5IiIQQJkvn+4Nt9V2ZmZ3Zns5tw/65rL8ju7MyZ2dHnnPOcIvj1118N74mltZFTvHhxi1aSHTt2FE391r9/f8P/9eXz8PAw9IbJmDGj7LKkAo62UtNiO1myZChZsqTiYzpx4sRo3rw5UqZMKTvdy5cv0bhxYwCm13HzgJ29LdGbNWtm0jpYbD1at26NmzdvygaLxeatbyVYqVIli8+sbS+xQJIYNzc3k/tOLWhxnyZFKo2HvnJL32PM1mvEjz/+iOjoaLRq1crkvGJvUEOn01mtKBLLjyxGaT5wY7YG0YsWLYo9e/aoXp7cPI3LEh0dragXCmB6HMtV9kp9Z+LEiRg0aBDOnz+v6LvWyO3nSvY/W3oHFSxYEC9evMD8+fORN29exS3A/fz8kCNHDtlyxcTEWH3mNE5daZwuJn369Fi7di0ePHgAX19fRWUyZvwsZFwGnU6HwYMHo06dOla3aZMmTXDkyBGL9JI9e/bE5s2bsX79eruC6WIEQdA0iK4fn8XaPcqlS5dsWoa1BilNmzbF4cOH8eLFC5M4n1zPDPNzi3HPS51OZ7EujngeEQTBohW8Evrzuru7OypUqCCbj33WrFmIjo42eU+q0aJU79GoqChFjSkYRFdH8R19lSpV4Ovri65duyI8PBydO3fGnTt3cOPGDSxcuBCtW7dWVRNo7MyZM/jzzz8tukn26dMH27Ztw4YNG3D48GE8ffrUcHNKyuh0OkyYMAFNmza1Ou2CBQssBqbw9PREp06dRKcfMmQI6tevb3JxMP8NHU1uvebPn2/y9/bt2xESEmLR5dLDwwNbt25Fz549cfLkScP71oJDc+bMka1AML+gGHetU9J6Uh/0N/88IiICL168MHl/6dKlFr+dmgcKLfLDKrFt2zaTv5Wkc7GFtYul2paNUtPPmjXLJO+5VgYMGGDT92zJnSpFanAg42W0atUKKVOmRIsWLSzy/UrdFGjdEl1/4ys3iKVUEN18/2vVqhUWLlwoGQiwZb9Ush3EghXG08k9DLZs2dLkIdh42hQpUqB48eL45ZdfsGPHDruvn2JBTkcG0ZVsbzWtN/WMy1W2bFlF04n9rYS+VU25cuUsehSYlzFhwoSGQIVUS1B9ShCxltMNGjQwedg0Pq936tRJdj9r3LixycBr+uNKyTqnSZPGpKX0f//9p/p+UOr3mj9/vqFxhZYPQcbb5ty5c7LT5siRQzTgova6KfeAumPHDsnKTaXr3atXL1y8eFF1OjZbSaVleP36Nd68eQMPDw+T39U88KJ1Zb2+4cOtW7cQFBSEoUOHYvbs2VbLrCXj31iuwlmLh1XjHiC2rpfYPqwPlNhyvVN6TLi5uanu2WRO7rooNY2tpO4vihQpgtDQUAQFBcl+X0k59M8TxkF0uWNEbLBiW6gZO0Sql5QUpT1wzT9LmjQpqlWrpng55gFMMcbHZqJEiRTvG6NGjQLwtbGS0sHFjXv3Jk+eHBMnTkSxYsUUfVdPafnkzjO//fab6HRq5c6dGylSpECqVKkQEhIiux+oPeYEQUC1atVQoUIFyYoN4/uasmXLYvz48diwYYPFfMTmLefMmTOG/8vdH+kpXbfJkydjxowZ8Pb2xg8//IADBw4oGrhS6n5UbLlaBtHllmPM1hiPtRROOp0OFStWRIoUKUzel2sZLvecLvbc5Kggutr52jJ9okSJTCoUEiZMaNGrM0eOHJI9KpWet2ztPf+tUhxEP3r0KFKmTIkqVaqgatWqqFatmt03QMDX2pHAwEAsXLjQpBbx9evXWLx4MX7//XdUqVIFJUqUwNKlS3H8+HGTQCdpp3LlyqoGcRw/fjz++ecfuLm54cKFC1i0aJHNowrbenITawEHAG/fvjXJRw18PemYt8gxX67xjY+SVmO3b9+WnJf5CcjLywv37t3D06dPJedn/J3t27fjxo0bJq3CBEGAt7e3xclTp9NZdAdScwK05WFW7Ql2wYIFqFu3rsl7jqr1NP4txFrPqE3nIqV79+6KR3hXkxKmYcOGePDggUmLi+3bt6Nv374ApHNvannRmzlzJtq1a4djx45JLsPHxwdhYWFYu3Ytnj9/jqioKKxYsQK5c+c2pD5SQungc2K/1a1bt3D8+HHFXcPlgujA13RGWuY2Ne9Cp89HaXx+2rx5s+LfLn/+/LKtgMTWKUGCBKhdu7aiPOFyuSut3QgDMKnMU3Jet9bKWK9JkyZo0qSJxUBRtgTRjcl1mVVizpw5Fu8Zt1a9efMmTp06haNHj+LgwYOK5ytV/sKFCyM6Olq0xYl5+Y0fsqZOnWp1/YyDN2pbTRvPW24/U3OOatOmDTp37mwILkkNhG1L8Mz4O3J5luXmpzRApCe3TWvXru20sWb01xV9Dw97ryOenp4Wg14DX1slGlf4aXG9ErsHy5kzJ8qWLYtx48ZpMnikUuZBP7kgh5rjS+o+ybiy19Z7aLFeKfoKPFt+H/OUkFLUrL++Qt88zaDWrTvlbN68WbKHSdq0aQ330MZBQOOUemp+H+NnYfPgh3HKCa2CQrlz50azZs0UTTt+/HhV+dGNr4W2jOmklNhxbr59AgICUKJECcN+JLf9goKCULRoURw5cgQ//vgjHjx4YLin3bp1q2QFxtWrVzF69GiHpgqUe9Y0/0xqrA81smfPbpJCD5A/t6n97Xx9fZEwYUIcOXIEf/zxh8lnU6ZMwZEjRwzpK/T3l0OGDFHUONCc+f1j4sSJERoainPnzkkGiHPlyoXs2bOr6jk1YMAAm45PpfejgiBoOjiv/jdTcoxKDaZtbw8Jtaw1dpNbppJxgVyFfj3UpnxROl9jxr+/FuNKxXeKr2gRERFYsGABkiRJgkmTJiF9+vQoVKgQunfvjo0bN+K///6zqQDdunVDnTp1LLqPnjt3Dp8+fTJ5P2/evMicOTNOnDhh07LIcYoWLYr27dvbfKK0NZiaJEkSbNu2zeJG0zwtjRpt2rRBQECAohpX4+5DSm4csmbNKlv5ZNzNLmHChMidO7fiGxLz1mdqbmQqV66MypUrx+oDJ6DuplqqtaC1gRfVVAzpmXeBd2SN7JAhQ5A5c2aLGuTMmTOblL1OnTrIly8f3r59ixUrVojOS03rT7mW28DXh5/FixdbHfxLf+wmTpwYSZMmRevWrXHjxg3JoLbY9laankPsu1mzZjUZdd3a96wF0R3t1q1b2LBhg0kPH19fX8l9zHydg4ODZSu95M7Bw4cPl01H8PnzZ5PBYJXclOp0OpPzxq5du1CnTh0AynKOHjp0yOI9/e9p3P3Qx8cHGzdutKioNQ4kGVdQyh2ztqYkEptW7EbTuJLDx8cHpUqVUl1ZJ/eZVA8ouSC6kmus2qCw3LLt7SHw5MkTi2CNkuM1U6ZMJi3qpajtjST20KV2e1kbfNxZcuTIgejoaMWVmXq23O9JjUHTr18/kwppa4PyAl/TwShNH6LnqEH1xMgFmtTc81aqVMlqZaOt17LcuXNLnqfF7lXVVMTJMV9/ubRDAwYMwJUrVyz2zzFjxpikYbTlPm39+vUWrT/FWu1ly5YNa9assXrf1Lp1a1y5cgXR0dGygRqpARiBr/vogwcP8OjRI9kUKmLrq7RS2h6tW7fGzp07FU2bJk0a/P3339i9e7fd91vv379XNb35vpowYUKcPXsWS5cutfrdsmXL4sKFC4btaXw/Xq9ePZPKEuPl5M+fH8OHD5cc1FsL1lrgKjFu3DjFy1u1apVJgx6xMtgiQYIECAsLM/QgEtO/f39UqFAB7dq1w5kzZ2R7TVhb99atW4s29EubNq1sRbq7uztu3ryJ06dPyy5Di/RkUseI2HKNx3oD5MdTk/q9JkyYgFSpUhnSGirZf6Qq3OS2odxvbCvzdTK/3sq1RC9cuLCiewy1ZVCiXbt2qqbXp+OqVasW5s6di+PHj4tOp1+/9evXA7AeG5GbBwCHnsPiC8VXtKRJk6JmzZqYOHEiTp06hefPn2Py5MlIkiQJJk+ejIwZM6oebHLdunU4f/68yUO7XmhoKBIlSmTRSiJt2rQIDQ2VnGd0dDQiIyNNXuT6PDw88Ouvv6JXr16IioqyqI2We/CpW7euzb+z2AVj+fLl2Lt3r+obPvPWoWpOrsePH0eDBg0suqeZc1Qw193dHQcPHrTo+ixXBmtlMR+AS4ySgUX1ihcvjn379uHnn3826bopN2iW1DKs3XROnDgRZcqUMQRxHBlEHz9+PO7fv6+41jdJkiSSNzpdunTBsmXLZFu86r/r6G7t1pYfm9+VCqIrSauk5H01MmTIgKZNm1rsl+bz1nfdq1ixokXg37hHjZrWFxkzZkR4eLho0KRAgQJWAztSQXTjgZ4SJkyI7du34/Xr16hRo4bJtGL3CGLn2WPHjuHt27eyx8SdO3dw4cIF+Pn54fz58zh69KhNveNy5MiBdOnSIU+ePDZ1/xSbRipQCJhWXpn/dsaDVtmyr8kFspVcz8SCfkqPOaXTye1js2bNQpIkSbBkyRKkT59etIu/Nf369bPohaYnlxPdGvN0abaQSx0kx9Hnan13YT195ZVYK2UtGf8GU6dONUmNZt4baOvWrRbfHz58uOT8zI0ZMwZVqlRBixYtbC2uanLp/qTuSw4fPmzxvru7O44cOYIbN27A398f+/bts5jGnn1k4MCBoufamTNnom7dulbTfRjvJ9ZSCfXs2RODBg2ySG0gNRgv8HXdxK5Pnp6eFmMc7du3T9Vx9sMPP1ikYhEEQbIhjr5FbM2aNWXLam2sKGutuTNnzmx1TAEx9o4XooSbmxtq1qxpGBhQarBovUaNGommp9QzH49KSuLEiSUbZ2hxvbSV2G+dM2dOTJ8+3SLQ6WjWWi/rDRkyxGQsHWMhISEmz1XGg/GKzctWd+7ckb1XMqbT6VCyZEnVlaDG6UDs+b0TJEhg9R5qzJgxGDlypGTecCX3YMbTyJXX29vbJGjdrl072flL/V6DBw9GeHi4oYeYPdto+fLlFul4xo0bhzx58qhOA2UL8wpH89ii+bopGRtA3/sxa9asop+LpXPZunWr6EDsI0aMwJMnT6w2+jKnr8DS6XTo0qWL4ftSv+kPP/yADx8+oGPHjqqWQ+rZXC2cNGlSpEiRAilSpICvry/c3d0REhKi+PuPHj1Cr169sHr1akV5opSaMGECvL29DS/WpGjLkQ9zY8eOxYwZM5A0aVKTE3G9evVMcsmJnTic0aJU78yZM/jjjz8sBilUc5NRpkwZbNmyRbRVlfF8jG84pE7qtixfzN9//41s2bKhadOmNm1fJV1tra2DuapVq2LJkiWKHtr0F1Sx2nH9Ba5evXqi+7Sfnx+OHz8u21pILbmAoNRxpfR4e/z4MY4fP44SJUrgp59+QuXKla1+R9/yQN+VXylH56s3bx3QokULTJ06FalSpZJM56Bmmfam77Bn2Wo8e/YMT548Eb2GyT10Wlue1LF84cIFq/OSCqKL7RNiLQtPnDih6AbSzc3NIohhvuzs2bMbBkMqVqyYSX5gQH4/NT5n+Pr64sGDB7h69arVbWetp8fWrVtRo0YN2d/H+AFLEARcvnzZEFgyHhTUFnJBdLUt0dWSGkPB3NatW5E6dWrRoFm1atUQGRlpGMDbXIsWLRSnz7LGlvOYXH5OR55LYrvCs2rVqjh9+jTu3Llj8r7YwMJ6SsfjUJpz03yd69WrZ3UaOcOGDcP+/fsd0iJOSqlSpdCqVSuTgV71pI7HihUrWgSG9XLnzo0DBw6YVFrq2bqP6HsNSd0Hbdu2zTCNuaVLlyJz5szYtWsXXrx4gf/++09y+2bMmBGnTp3CzJkzMXHiRIvPY2Ji0K9fPwCWlSNK100QBFStWtVqfnKl8xLTsWNHXL582SJNmzVaHcNyFYHly5eP1XPF7t270bZtW5OUf47Ooyu1fmIVDmq3ha3PkXny5BF9v3fv3nalBlSz38vRPy8ZN2rQ6XSSA8rmzZsX7dq1w4EDB7BhwwbRYKO942ilSpXKZJwwLRhvr/79++PcuXPImTOn4T1H75tJkybFqFGjJHux79y5E6lSpZJNyzFy5EikSZPGYgBb/bpt3rwZ3333nUUqW60aJ9kTS/Hz87NoADl06FBcv37dIalBzH/P4sWLo2nTpobrSIkSJXD58mXD50p7Sxrr3r07Xr16hXv37mHt2rVWywB8rfSeNWuWyb4HfK1skxrrSAvGZfHw8LBpn3BmLC0uUry1YmJicPr0aUyePBm1atWCj48PypYti7lz58LPzw9z5szB3bt3FS/43LlzCA8PR/HixeHu7g53d3ccPnwYf/zxB9zd3ZE2bVp8/PgRERERJt8LCwsTrRXVGzJkCF6/fm14PXr0SHGZyDW5u7s77MZQi/mWLFkSPXr0sDj5aHXBNh/IUe/EiRNIkiQJZsyYYfV7tmjUqBHu3r2LDRs24MOHD4b3tdhme/fuRYsWLSRHklaTP1zK+fPn0blzZ9EblilTpmDXrl0WF8WUKVOKdvW0Z1sePHgQpUqVkg1ASFG6rTNkyKC4dlv/8F6zZk1ERERg2rRpqstlD6mBikNCQrBu3TosXLgQwNcbsps3b2LVqlXo168fwsPDFec9VxrskrphMO+6qqflTbh5qwnzFC1JkyaVvOESuyHVty5Xk69UrjyA8nQuSh+odDqd3YFipeR+q4QJEyIiIgKvX79GggQJkDBhQiRIkEDyeNu3bx8WLlxotbtuvXr1sGvXLtkbZfPfuVChQobAknFwX4uWdfakc1GrU6dOmDlzpqGSwHz8C71y5cohLCxMMr+wXDkTJUqEHTt2GIIC+haQcnn8jRnn6ZZLawSIb/8DBw5ItphVklfdVYmdB7/77juLFqbVq1c3CfAquT6Z9/rSD5rdsGFDu3OoanlfuGfPHs3nr9PpsHr1aowdO9biM7lgvr25dJXKnTs3Bg4cqPp7es2aNcODBw9QunRpw6CDUubMmSPbvTwmJgaTJ09GSEiIyWCIgPJ10zJVj1x6tUKFClltaS72PUcKDw8XTY3mSDlz5sTSpUsV35epoTS9nZ6npyeeP3+OV69eWZ1W6nOtBzqOLdYahly+fBmLFi2yqJyyxt/fXzLvuL33wlL32FqZMmWKy12TK1asiPDwcDRv3lxymowZMyI0NBTjxo0T/S0bNmyI06dPi6ZuMa7sNB+rR+nvpUUQVW3jODH6hm5i1049sfQtGzZsMDQQA6BJI139/Wbz5s2xdetWPH78WLIM/v7+hrFRjAcCBdSlR9Hvu/rePo4g1rPTWT3U4yrFR4uPjw/KlCmDmTNnImXKlJg+fTpu3ryJhw8fYvny5Wjbtq2qWsWqVasiODgYFy9eNLxKliyJwMBAw/8TJkyI/fv3G75z48YNPHz4UDZY5OHhAS8vL5MXacfeA0zJ6NfmMmTIoHhkYVfiiFpv45s8Pz8/vH371tC91JHLl8vLaIuAgACsXbvWoQNXFCxYEPPnzzdJ/aKXKFEi1KhRA0mTJjXZpw8fPmwxeBVg37asXLkyTp065fQburJlyyI0NNTkJklqcCQ59u5XHTp0wJkzZyxa6+bNmxfNmzdHkSJFcPv2bdy+fRu5cuUyBNXUnHvOnj1rUoGqtqV/hw4d8PPPP2sykIvYAHvA12tg1apVDT0BKlWqBH9/f9FugErWfeDAgXj79i0aN25sX4FlqGmJLiV79uwmaRscxbhMt27dMmkhox+gWen9QdWqVdGhQwfNbzBtzYmup7+ejhw5EkuWLLEIAhgf30oejsTyGStdZ3d3d/Ts2dPQCksf1NB/Zm2eavah27dv4+jRowgNDcWpU6dkH7SMJUyYEGFhYXj27JlNLZJTpUqFli1bGh6OcuTIgeDgYKxZs8YidZGtxHK2OurBpnPnzsiWLZvkQGFi1Ka6Mn4u0Ol0qF+/Ph4+fIiNGzeqK6wILbeL+aCgtlBTHv15XywYK9VCVKtlX716FVOmTMGlS5cMy7clbZPW+6U+VZna+U6aNAm9evWSrTxXy9ZxM5wlderUNo8tBWj3vKD1ttIH6PX3z1LpP9KmTYuUKVOa9FJVG0RXs/2UpiGJDRkzZkT9+vXRokUL0fvNTJkyoX379pr2wrF1f9m3bx8qVqyoyfnfnNqUws5ga+Wwku1ds2ZNHDlyBOHh4ejatSvu3buH3Llz4/vvv1ccnxO7T/zzzz+tls+Y0mNDf68j1sNz1qxZiIyMtHvwaC3PRzqdDvXq1TOJKZj/Lvv37zfc7xp/1rdvXwQGBipe1tatWzFw4ECTGKg5e8/ZYrERfeMXR6fyiy8UV7tOmTIF/v7+sgMXqJE8eXKLE17SpEmRMmVKw/vt27dH3759kSJFCnh5eaFHjx4oU6YMvv/+e03KQOI6duyIhQsXGgYz0NLatWsxdepUyRbIxrZv346VK1dizJgxePHihaFrjJZdwGzJoauUI1qiWxMcHKzpg4QYR3eJU7IMrS+MahQoUACZMmXSLGgSW8qWLatJ6w8t0rmULFlSNH2IntrB4swlSpTI5AbBuNWpkofjRIkSYcmSJRbvK7lJ14+NMH36dNy+fVvyeuXu7m6S2zZBggSKxhGQo3RAZVv3A7U55IGvXb71x0psnDv0jJeVM2dO9OjRw9CKVs1YDMZiM4iuxIEDBxAdHS3ZAjNjxoxYsGCB4soCsSC6PYNlpUyZEuHh4Yr2SzUtoFKmTGlI3yPVurVnz54YM2aMRfoX/QOetVb3cr/NiRMnMH78eIwaNQq5cuXS9OF9zZo1dg2Mrsb8+fNFc3rKMd4umTJlQunSpQ2DSosRe2bQt8iyd/93VO+/2JAiRQpDefXbXz9eQqdOnfDkyRNVgX01v2H+/PktBsjUeuwDpd9r3749zp49K5ljXMky7WlNLyUuBNFdcX/X+rln9+7dmD9/Prp27Qrg6xhIbdu2Rf/+/QEAmzZtQkhIiCYDqqppid65c2ecP39edr+NLTqdTnV6IXNqfzfj6+fgwYMV37PrG484wurVqzFixAiLvNx6rnQcz5w5E3/++SeuXbsmOY2a8upTpRkfB1mzZsX169dVzUvs3th8QHSt7pPHjh2LwoULS46XYN6S25ySfdZ4HlreL1StWhX79+9Ht27dTN6XWne1Pb4zZMggOeC33l9//YWaNWsajkU1+4tUT6qSJUvi6tWrogF2sqT4itG5c2dHlkPU9OnT4ebmhiZNmiA6Oho1atTA3LlzY70c35pZs2ahSZMmojcl9l6E0qVLh2nTpikKotepU8fQPcnHxwdhYWGIjo7WpHfBgQMH8PLlS81zsjlCmzZtcOjQIUUP6sbTOPoG2xkDs+k1btwYwcHBmnQbU9KyynhdCxUqJJobzRHSpk2LJ0+e2DWP3bt3Y/369RgxYoQmZSpdujQePnzo8rnTdDoddu3ahaioKJOgsT0Px7/88gvevHmDgIAAyWn0Xap79+6tat5y5FKY2XKcBwYG4sSJExYtTNTo1KkTli5dikWLFsmmTRMbBDW20hWYW758OQYMGGB1AGdHlkEpJb+rm5ub1RQGagYXEgssN2vWDFFRUbKpGORYG2hQz3jcEy2MGDECAQEBFmMs6FnbvnKtEgsUKIDVq1fbVT6pgE1sP+irXZ75YLUnTpxQPB81OUljO52LPQICArBv3z6LB2qlbt++jRcvXhhyDydMmBDjx4/XsogOoTbII2bRokVaFccu48aNM+Su//333yUDcbZyRE50NctZtWoVFi5cKDpwrbPJbZtMmTJh3Lhxhr+zZctmsg5yPe8c2RI9UaJEoqkfvxXG+6H5AI6//fYb/v33X0PFR2zJmDGjaOMXPVeqdOrZsyd69uzp8GuY2vmLHQOOetZLnDgx2rRpY/P3laQfTJs2LRYsWIDEiRNbBI6l9ocNGzagWbNmssf3zp078eDBA+TMmRPnz59XV3CNVKtWDdHR0ZKZAuR++9mzZ0t+Zl7BTtJcKgGYeT63xIkTY86cORa5nch+69evN8nLZXwR9PDwcMlWtlp2n7O3i5ASWnWHadu2LfLkyaO6hbkr3TAkTZpUVetia2UfOnQo8ubNq9nv6O/vj5cvX0oOENS1a1dD90PzgVMcae3atejQoYPowGRKVa9eXbKm3xbz589Hjhw5NB101VHEzmP2BNETJkxoMuBPokSJ8PHjRyRNmhRv374FID+ArK169+6Nq1eviqZ6sIW7uzvmz5+PoKAgXLlyRdV3+/fvj+fPn2P+/PmYM2cO3N3dZdPe2Ju6w1Ziy2jTpg1at26tOL2P2IBa1r6jhqt1mRQL7Op0OrRr186hy503b57mD2ru7u6oWLGi5OdS++Dq1avRp08fbNmyRdPy6B05cgR9+vSRfIhxpeu2GCXjJMQWWwYKc4SdO3fi0aNHis4XYnLkyGF37yst8rc78jv2HN+xsY8NHToUQ4YMwbNnz5A+fXqTtGpaLN8R66Bmfw8MDERgYKBkOUqUKOGQFBtyunTpgn///ddh95JaBBCdyVUqCcXI7XslS5bE27dvbe5R5erXQEeypbenks+VUhJEd+X9UoyahiQA0LRpU0RHR8uOe5EwYUKLgUPNzZ49G+XLl8eoUaNULV8Nd3d3FCpUCMHBwWjRooXi77nas0dc5VJBdIo9P/zwgyGI7uHhoXhgLlIua9asKFKkiGGgNVvpdDqULVtW9fdc6UZEzYAaSiRKlEjVBUOOTqfD/v37IQiC5IOev78/Hj58iHTp0sXq4EO5c+fGkSNHYm15SqRIkcKi5UlcIhVEl2qxKufatWv4559/4Obmhj59+mhSPjFJkiSxu+WrGFvOEVOmTDH8X38syB0Txjk6tR5bQY7agcmArznG9TkImzdvbjFos1YPD4sWLcLhw4dlz2HOOH83atQIZcuWNaRKiYuUDsQk1YqpVatWaNmypcMeFCtUqICzZ89Kfi72EBvXHlqlmK+H2hy9qVKlMuTZBywf7m0Z40ML7u7uNgfQteLqQXR7yhdb+79OpzMMCm3PIMvOZG1bpUuXDs+ePbN4v2/fvnB3d9e0wYU1c+fOtUgnNWbMGAwfPtxizJzY4GpBdFdm7f4ktlKSqRHXrqPGQdzYKrva+w+xni1lypTBqVOnNC2XGEfeI6sdOFpMuXLl8OHDB03HIhBz6NAhHD582GRgWYodrt0fn1yOVifyBg0aaDIfV6d1l1BXouQCph88y3i0bFek0+mstpTKlClTrAbQyTG0zHWaI0cO9O3b1yUfGJTQV6TqB++yVb169VCqVCnRQY59fX2xfv16bNq0CYkTJwYQOw8Ettxgr1mzBr/++ivu3LmDdevWyabRAb5WlNqyLu3bt8eKFStc7nzi4eGBoKAgq7kYXdHBgwcxbdo0w8BI1tibSsRREiVKhFWrVpmkubC2H8YmLR9cFy9ejGzZsol2mxb7DR4+fIinT58a/ta33t6wYQNKliyJxYsXa1a2uMbenhzOSrHlqoz389KlSzuxJKb0uXVtTRd37tw5LF++3KKXXqJEidC/f3/DwNC2khpIXYr5PjRs2DB8/PjR5vRhcvM2lyBBApMxP/RBKF9fX7uXrQVXPr5cqZGWUs6u6FQrY8aM6NKlC/r06SP5jFGyZEkAwM8//6zJMsWuI3LXFrHefmPHjsW4ceNk871rIS7sg44OoANfG7Y1atRIk8A/qeNaT3Dk8rS6qC9fvhw+Pj4WA1bEN868CXKFC8y0adMwYsQI1S3EXKHsFD8Zt7TQquVRXN1fBw8ejCJFiki2PFa6Xh4eHrItT3744QebymfMntzNSqVJkwZjx45VVIY3b97Aw8MDERERALQPdMbVfcpZKleujMqVKyue3pW3b2BgIAAgffr0mDVrFubPn+/kEv2PVMozW+TPnx93794V/UzsePf09ISnpycuXLiA//77zxBEb9q0KZo2bapZufRceR8xp7QHhr1svad1VjoXW79boEABQ6ozW8fQ0KIc5tq0aYMaNWogTZo0WLhwoervp0uXDm3atNG8h+PcuXOxfv169OvXz+55xWaPtTNnzqBDhw7w8/ND//79kTlzZlXXEUfo3Lkz/vzzTwwbNkz0c1doMR+Xzo379u3Dli1bHDIAsdbMA6HWxgEMCgpCaGgoMmfOrMnylbRE1/eMl3quT5o0qUnaS0cpXLgwgoKCbP6+Vvuwq1Z2uWq54hMG0ckpvL298e7du3hfc+bMGw1HL7tRo0bYuHGj1Vz1tnSxjks3aGQbZ3W9T506NTp16oQECRJolhcurh7nCRMmRP369TUsjTLx4eZO3+IuderUePHiBZImTerkEpEaTZs2xfTp0116EKVatWqhVq1azi6Gia5du+LVq1eoVq2a6u8qOe67dOmC3bt348cff5QcmK5o0aKqlx1f7d27Fzt37jTJ4W0LV07n4gz//PMPRo4ciQEDBhhSvNhDy/XXD5Qudu1XupyJEyfi6dOnmo130aVLF3Tp0kWTeWlF6eDExj1Y9BWYzjRv3jxMmzZN8p6iVatWmDlzpuwA92qpvY9s0aIFhgwZYtN1ILZVrVoVVatWdXYxrOrRo4fqYHiiRIk0C6AD4seMeQVo6tSp8d9//zn9nnfixIlIliyZyfh+ajRu3Bh///23Jud3+jYxiE6qLp5a3gh6enpqNi9XlTVr1lhfZrly5RAUFKRZznApLVu2hJ+fn93dP8XUqlULCRIkcKlutKStJk2aoHXr1ihTpkysL/vPP/+0eM+eYHR8rfSJa4EPY474TaS2R4oUKTRflnH5W7RoEScG8rWVM/az8ePHo2TJknEiCOBKEiZM6NCBssTyJJO0gIAATYNpaqj5jewJuNizL2TJksWm72XPnh0rV660ebmxQewaV79+faRKlcrqOEqpUqXCv//+66iiuYS4cA4RK6NOp5M9XpIkSYLg4GBHFsuqFClS4Pnz5y6Xki6u2b59Ozp37oyVK1fC39/f2cURJdaLKFWqVE4oiSkvLy9MnjzZ5u+3atUKGTJkcEgMg74NPPsROVCVKlUwc+bMWG3tduTIEbx9+xbJkyd3yPz1N+46nQ5VqlRxyDJ8fHwQFRUV73sqfMsSJEiAFStWOLsYmoivQfS4vF6xGUR3tLVr1zplufFZ4sSJ0apVK2cX45ui9PhxleCXKwQKYovSbW7c3V/NOdZaUFdru3btwr///otu3brF6nKdLXny5Hj27JlLpPyg+C020+7EV3Xq1MHjx4+dXQxZ9o634ap0Op0mqZtSpkxpf2FimRZjThCD6IRvo0W4s+h0OvTs2TNWl+nm5uawAHps0g9CSOTqnBlsdpWAk6PFRk50VxLXy09krwwZMuDJkydOWXaZMmVMBneN75SeX7Nnz47atWvD29tbcRCtWrVqsZ7XvEaNGhaDZzpDpUqVcPToUcUDHmvhW28dPGjQIEydOhVjxoxxdlGI4rz4GkTXSubMmbFs2TLN0oNqRey6+fz5c7x69crmHlpkikfGN+yff/5B9uzZsXPnTqvT6ruru1p+TiIiezRq1AgA0L9/f5vnwYCnOoUKFXJ2EWwSmxUW3KcovlF7/OzZswd169bF2bNnHVQiU/pBU8uUKYPjx4+7dL58Z9HpdNixYwfWrFkTq8uMqw4ePIh37945POUX/c/EiRPx/v17FChQwNlFIRtUrFgRABtSOcsPP/yAvHnzGv5mj3DrfvrpJzRo0MDZxbAqZcqUyJkzp7OLEW9829XV37j69esrHlTuwYMHCA8PR/bs2R1cKnJ1cfmBhsjchg0b8PDhQ2TLls3mecTVgUWdJUOGDLh69apDW27Exe1iLK6XXw1eU74Nan/n/PnzY9u2bQ4qjaW9e/di4cKFkgOaxmeOPAa/5eNbp9PBw8PDIfOuWrUqduzYgYwZMzpk/nEZU43EXZkyZcKjR49crmXvt2L9+vUQBAEDBgzA69ev7Xo2IorPGEQnRZIlS4ZkyZI5uxiykidPjjdv3qBo0aLOLkq89i0Fdyj+S5Aggd03ic44Jpo0aYJNmzahb9++DluGI0etd3QrT0f8JvpBKJMkSaL5vM3xPEvxjasHUzNlyoTRo0c7uxhO4cq/TYYMGZxdBJe0fPlyzJs3D61bt3Z2UYg0xYoh59LpdJg6daqzi0Hk0pjOheKNU6dOoWPHjtiyZYuzi0JE3xBnBDw3bNiAly9fonTp0prP+8iRI6hcuTJ27Nih+bxtpTTI07dvX7i5uWHEiBGalyFPnjy4ffs2nj17pvm8iYicxRWD6Dt37sSff/6JYsWKObsoLillypQYNmwY89sSEZGJ+DA2nqtjS3SKN/Lly4cFCxY4uxhERA6n0+ng6+vrkHlXqFABBw8edMi8HW3atGmYOHGiw7pz58iRwyHzNfcttUR3xQAeETlXzZo1nV0EIiKiOKdBgwZo2rQpvv/+e2cXJd5iEJ2IVOFgL0SmvqWAZ2xr1aoV1qxZg169ein+DvOhErkeVpa4Lv42sc/b2xuvX792djGIiCiecXd3x4YNG5xdjHiN6VyISJHx48ejYsWKaNu2rbOLQuRSHJk7/Fu3atUqvH37Fnnz5nV2UWLVt1Qx44iURESkHIPose/QoUOoUqUKTp065eyikJO4ublGGOZbut8gItKCa5y9icjlDRkyBIcPH4anp6ezi0LkUpo2bYqBAwdi8+bNzi5KvKPT6WJlIE9XU65cOWcXweEePXqEEydOoHDhws4uCsUCBmq/LSlSpAAA1K1b18klcU1FixbF/v37UapUKWcXhZxk8eLFSJ06NebMmePsohARkQpM50JERGQHNzc3TJo0ydnFoHikVatW0Ol08TrAkjFjRmTMmNHZxSD65jmiguPq1as4efIk6tWrp/m8ieKDwoULIywsjBWMRERxDIPoRERERC7Ezc0NgYGBzi4GkWYYKHJdjvht/Pz80LBhQ83nSxSfuMJ50RXKQEQUlzCdCxERERER0TeIQTSib8/AgQORJUsW9OjRw9lFISKKUxhEJyIiIiIih2GglojIdUyaNAn37t1DypQpnV0UIqI4hUF0IiIiIiKib9APP/wAAMiTJ4+TS0JEsYmVm0RE6jGITkREREREmhs/fjxSp06NyZMnO7soJGHEiBHYsGEDjh075uyiEBEREbk0nSAIgrML4UiRkZHw9vbG69ev4eXl5eziEBERERF9MwRBYItHIiIiInJZSmPHbIlOREREREQOwQA6EREREcUHDKITEREREREREREREUlgEJ2IiIiIiIiIiIiISIK7swvgaPqU75GRkU4uCRERERERERERERG5Cn3M2NqwofE+iP7mzRsAQKZMmZxcEiIiIiIiIiIiIiJyNW/evIG3t7fk5zrBWpg9jouJicHTp0+RPHnyb3Zgo8jISGTKlAmPHj2SHWWWiOIvngeICOC5gIi+4rmAiACeC4iI5wHgawv0N2/eIH369HBzk858Hu9boru5uSFjxozOLoZL8PLy+mYPCCL6iucBIgJ4LiCir3guICKA5wIi4nlArgW6HgcWJSIiIiIiIiIiIiKSwCA6EREREREREREREZEEBtG/AR4eHhg5ciQ8PDycXRQichKeB4gI4LmAiL7iuYCIAJ4LiIjnATXi/cCiRERERERERERERES2Ykt0IiIiIiIiIiIiIiIJDKITEREREREREREREUlgEJ2IiIiIiIiIiIiISAKD6EREREREREREREREEhhEj+fmzJmDrFmzInHixChdujROnz7t7CIRkY0mTJiA7777DsmTJ0eaNGnQsGFD3Lhxw2SaDx8+oFu3bkiZMiWSJUuGJk2aICwszGSahw8fok6dOkiSJAnSpEmDAQMG4PPnzybTHDp0CMWLF4eHhwdy5syJZcuWOXr1iMgGEydOhE6nQ+/evQ3v8TxA9G148uQJfvzxR6RMmRKenp4oVKgQzp49a/hcEASMGDEC6dKlg6enJwICAnDr1i2Tebx8+RKBgYHw8vKCj48P2rdvj6ioKJNpLl++jAoVKiBx4sTIlCkTJk+eHCvrR0TWffnyBcOHD0e2bNng6emJHDlyYMyYMRAEwTANzwVE8c+RI0dQr149pE+fHjqdDlu2bDH5PDaP+w0bNiBv3rxInDgxChUqhH///Vfz9XUVDKLHY+vXr0ffvn0xcuRInD9/HkWKFEGNGjUQHh7u7KIRkQ0OHz6Mbt264eTJk9i7dy8+ffqE6tWr4+3bt4Zp+vTpg23btmHDhg04fPgwnj59isaNGxs+//LlC+rUqYOPHz/i+PHjWL58OZYtW4YRI0YYprl37x7q1KkDf39/XLx4Eb1790aHDh2we/fuWF1fIpJ35swZ/PnnnyhcuLDJ+zwPEMV/r169Qrly5ZAwYULs3LkT165dw7Rp0+Dr62uYZvLkyfjjjz8wf/58nDp1CkmTJkWNGjXw4cMHwzSBgYG4evUq9u7di+3bt+PIkSPo1KmT4fPIyEhUr14dWbJkwblz5zBlyhSMGjUKCxYsiNX1JSJxkyZNwrx58zB79myEhIRg0qRJmDx5MmbNmmWYhucCovjn7du3KFKkCObMmSP6eWwd98ePH0fLli3Rvn17XLhwAQ0bNkTDhg1x5coVx628MwkUb5UqVUro1q2b4e8vX74I6dOnFyZMmODEUhGRVsLDwwUAwuHDhwVBEISIiAghYcKEwoYNGwzThISECACEEydOCIIgCP/++6/g5uYmhIaGGqaZN2+e4OXlJURHRwuCIAgDBw4UChQoYLKs5s2bCzVq1HD0KhGRQm/evBFy5col7N27V6hUqZLQq1cvQRB4HiD6VgwaNEgoX7685OcxMTGCn5+fMGXKFMN7ERERgoeHh7B27VpBEATh2rVrAgDhzJkzhml27twp6HQ64cmTJ4IgCMLcuXMFX19fw7lBv+w8efJovUpEZIM6deoI7dq1M3mvcePGQmBgoCAIPBcQfQsACJs3bzb8HZvH/Q8//CDUqVPHpDylS5cWOnfurOk6ugq2RI+nPn78iHPnziEgIMDwnpubGwICAnDixAknloyItPL69WsAQIoUKQAA586dw6dPn0yO+7x58yJz5syG4/7EiRMoVKgQ0qZNa5imRo0aiIyMxNWrVw3TGM9DPw3PHUSuo1u3bqhTp47FscrzANG3YevWrShZsiSaNWuGNGnSoFixYli4cKHh83v37iE0NNTkOPb29kbp0qVNzgU+Pj4oWbKkYZqAgAC4ubnh1KlThmkqVqyIRIkSGaapUaMGbty4gVevXjl6NYnIirJly2L//v24efMmAODSpUs4duwYatWqBYDnAqJvUWwe99/aMwOD6PHU8+fP8eXLF5MHZABImzYtQkNDnVQqItJKTEwMevfujXLlyqFgwYIAgNDQUCRKlAg+Pj4m0xof96GhoaLnBf1nctNERkbi/fv3jlgdIlJh3bp1OH/+PCZMmGDxGc8DRN+Gu3fvYt68eciVKxd2796NLl26oGfPnli+fDmA/x3Lcs8CoaGhSJMmjcnn7u7uSJEiharzBRE5z+DBg9GiRQvkzZsXCRMmRLFixdC7d28EBgYC4LmA6FsUm8e91DTx9bzg7uwCEBGRet26dcOVK1dw7NgxZxeFiGLRo0eP0KtXL+zduxeJEyd2dnGIyEliYmJQsmRJjB8/HgBQrFgxXLlyBfPnz8dPP/3k5NIRUWz566+/sHr1aqxZswYFChQwjGOSPn16nguIiDTGlujxVKpUqZAgQQKEhYWZvB8WFgY/Pz8nlYqItNC9e3ds374dBw8eRMaMGQ3v+/n54ePHj4iIiDCZ3vi49/PzEz0v6D+Tm8bLywuenp5arw4RqXDu3DmEh4ejePHicHd3h7u7Ow4fPow//vgD7u7uSJs2Lc8DRN+AdOnSIX/+/Cbv5cuXDw8fPgTwv2NZ7lnAz88P4eHhJp9//vwZL1++VHW+ICLnGTBggKE1eqFChdC6dWv06dPH0FuN5wKib09sHvdS08TX8wKD6PFUokSJUKJECezfv9/wXkxMDPbv348yZco4sWREZCtBENC9e3ds3rwZBw4cQLZs2Uw+L1GiBBImTGhy3N+4cQMPHz40HPdlypRBcHCwyQVz79698PLyMjyMlylTxmQe+ml47iByvqpVqyI4OBgXL140vEqWLInAwEDD/3keIIr/ypUrhxs3bpi8d/PmTWTJkgUAkC1bNvj5+Zkcx5GRkTh16pTJuSAiIgLnzp0zTHPgwAHExMSgdOnShmmOHDmCT58+GabZu3cv8uTJA19fX4etHxEp8+7dO7i5mYZ1EiRIgJiYGAA8FxB9i2LzuP/mnhmcPbIpOc66desEDw8PYdmyZcK1a9eETp06CT4+PkJoaKizi0ZENujSpYvg7e0tHDp0SHj27Jnh9e7dO8M0v/zyi5A5c2bhwIEDwtmzZ4UyZcoIZcqUMXz++fNnoWDBgkL16tWFixcvCrt27RJSp04tDBkyxDDN3bt3hSRJkggDBgwQQkJChDlz5ggJEiQQdu3aFavrS0TKVKpUSejVq5fhb54HiOK/06dPC+7u7sK4ceOEW7duCatXrxaSJEkirFq1yjDNxIkTBR8fH+Gff/4RLl++LDRo0EDIli2b8P79e8M0NWvWFIoVKyacOnVKOHbsmJArVy6hZcuWhs8jIiKEtGnTCq1btxauXLkirFu3TkiSJInw559/xur6EpG4n376SciQIYOwfft24d69e8Lff/8tpEqVShg4cKBhGp4LiOKfN2/eCBcuXBAuXLggABB+//134cKFC8KDBw8EQYi94z4oKEhwd3cXpk6dKoSEhAgjR44UEiZMKAQHB8fexohFDKLHc7NmzRIyZ84sJEqUSChVqpRw8uRJZxeJiGwEQPS1dOlSwzTv378XunbtKvj6+gpJkiQRGjVqJDx79sxkPvfv3xdq1aoleHp6CqlSpRL69esnfPr0yWSagwcPCkWLFhUSJUokZM+e3WQZRORazIPoPA8QfRu2bdsmFCxYUPDw8BDy5s0rLFiwwOTzmJgYYfjw4ULatGkFDw8PoWrVqsKNGzdMpnnx4oXQsmVLIVmyZIKXl5fw888/C2/evDGZ5tKlS0L58uUFDw8PIUOGDMLEiRMdvm5EpExkZKTQq1cvIXPmzELixImF7NmzC7/++qsQHR1tmIbnAqL45+DBg6KxgZ9++kkQhNg97v/66y8hd+7cQqJEiYQCBQoIO3bscNh6O5tOEATBOW3giYiIiIiIiIiIiIhcG3OiExERERERERERERFJYBCdiIiIiIiIiIiIiEgCg+hERERERERERERERBIYRCciIiIiIiIiIiIiksAgOhERERERERERERGRBAbRiYiIiIiIiIiIiIgkMIhORERERERERERERCSBQXQiIiIiIiIiIiIiIgkMohMRERERkahly5bBx8fH2cUgIiIiInIqBtGJiIiIiFxU27Zt0bBhQ4v3Dx06BJ1Oh4iIiFgvExERERHRt4ZBdCIiIiIisvDp0ydnF4GIiIiIyCUwiE5EREREFMdt2rQJBQoUgIeHB7JmzYpp06aZfK7T6bBlyxaT93x8fLBs2TIAwP3796HT6bB+/XpUqlQJiRMnxurVq02mv3//Ptzc3HD27FmT92fMmIEsWbIgJiZG8/UiIiIiInIFDKITEREREcVh586dww8//IAWLVogODgYo0aNwvDhww0BcjUGDx6MXr16ISQkBDVq1DD5LGvWrAgICMDSpUtN3l+6dCnatm0LNzc+WhARERFR/OTu7AIQEREREZG07du3I1myZCbvffnyxfD/33//HVWrVsXw4cMBALlz58a1a9cwZcoUtG3bVtWyevfujcaNG0t+3qFDB/zyyy/4/fff4eHhgfPnzyM4OBj//POPquUQEREREcUlbC5CREREROTC/P39cfHiRZPXokWLDJ+HhISgXLlyJt8pV64cbt26ZRJsV6JkyZKynzds2BAJEiTA5s2bAQDLli2Dv78/smbNqmo5RERERERxCVuiExERERG5sKRJkyJnzpwm7z1+/FjVPHQ6HQRBMHlPbODQpEmTys4nUaJEaNOmDZYuXYrGjRtjzZo1mDlzpqqyEBERERHFNQyiExERERHFYfny5UNQUJDJe0FBQcidOzcSJEgAAEidOjWePXtm+PzWrVt49+6dTcvr0KEDChYsiLlz5+Lz58+y6V+IiIiIiOIDBtGJiIiIiOKwfv364bvvvsOYMWPQvHlznDhxArNnz8bcuXMN01SpUgWzZ89GmTJl8OXLFwwaNAgJEya0aXn58uXD999/j0GDBqFdu3bw9PTUalWIiIiIiFwSc6ITEREREcVhxYsXx19//YV169ahYMGCGDFiBEaPHm0yqOi0adOQKVMmVKhQAa1atUL//v2RJEkSm5fZvn17fPz4Ee3atdNgDYiIiIiIXJtOME+OSEREREREJGPMmDHYsGEDLl++7OyiEBERERE5HFuiExERERGRIlFRUbhy5Qpmz56NHj16OLs4RERERESxgkF0IiIiIiJSpHv37ihRogQqV67MVC5ERERE9M1gOhciIiIiIiIiIiIiIglsiU5EREREREREREREJIFBdCIiIiIiIiIiIiIiCQyiExERERERERERERFJYBCdiIiIiIiIiIiIiEgCg+hERERERERERERERBIYRCciIiIiIiIiIiIiksAgOhERERERERERERGRBAbRiYiIiIiIiIiIiIgkMIhORERERERERERERCSBQXQiIiIiIiIiIiIiIgkMohMRERERERERERERSWAQnYiIiIiIiIiIiIhIAoPoREREREREREREREQSGEQnIiIiIiIiIiIiIpLAIDoRERERERERERERkQQG0YmIiIiIiIiIiIiIJDCITkREREREREREREQkgUF0IiIiIiIiIiIiIiIJDKITEREREREREREREUlgEJ2IiIiIiIiIiIiISAKD6EREREREREREREREEhhEJyIiIiIiIiIiIiKSwCA6EREREREREREREZEEBtGJiIiIiIiIiIiIiCQwiE5EREREREREREREJIFBdCIiIiIiIiIiIiIiCQyiExERERERERERERFJYBCdiIiIiIiIiIiIiEgCg+hERERERLFo1KhRKFq0qLOL4VRZs2bFjBkznF0MIiIiIiJFGEQnIiIiIlIoNDQUPXr0QPbs2eHh4YFMmTKhXr162L9/v7OLFi+9fPkSPXr0QJ48eeDp6YnMmTOjZ8+eeP36tbOLRkRERETfEHdnF4CIiIiIKC64f/8+ypUrBx8fH0yZMgWFChXCp0+fsHv3bnTr1g3Xr193dhHjnadPn+Lp06eYOnUq8ufPjwcPHuCXX37B06dPsXHjRmcXj4iIiIi+EWyJTkRERESkQNeuXaHT6XD69Gk0adIEuXPnRoECBdC3b1+cPHnSMN3Dhw/RoEEDJEuWDF5eXvjhhx8QFhYmOd/KlSujd+/eJu81bNgQbdu2NfydNWtWjB07Fm3atEGyZMmQJUsWbN26Ff/9959hWYULF8bZs2cN31m2bBl8fHywe/du5MuXD8mSJUPNmjXx7Nkzu7dFREQEOnfujLRp0yJx4sQoWLAgtm/fbvh806ZNKFCgADw8PJA1a1ZMmzbNpuUULFgQmzZtQr169ZAjRw5UqVIF48aNw7Zt2/D582e714OIiIiISAkG0YmIiIiIrHj58iV27dqFbt26IWnSpBaf+/j4AABiYmLQoEEDvHz5EocPH8bevXtx9+5dNG/e3O4yTJ8+HeXKlcOFCxdQp04dtG7dGm3atMGPP/6I8+fPI0eOHGjTpg0EQTB85927d5g6dSpWrlyJI0eO4OHDh+jfv79d5YiJiUGtWrUQFBSEVatW4dq1a5g4cSISJEgAADh37hx++OEHtGjRAsHBwRg1ahSGDx+OZcuW2bVcvdevX8PLywvu7uxUS0RERESxg3eeRERERERW3L59G4IgIG/evLLT7d+/H8HBwbh37x4yZcoEAFixYgUKFCiAM2fO4LvvvrO5DLVr10bnzp0BACNGjMC8efPw3XffoVmzZgCAQYMGoUyZMggLC4Ofnx8A4NOnT5g/fz5y5MgBAOjevTtGjx5tcxkAYN++fTh9+jRCQkKQO3duAED27NkNn//++++oWrUqhg8fDgDInTs3rl27hilTppi0rrfF8+fPMWbMGHTq1Mmu+RARERERqcGW6EREREREVhi37pYTEhKCTJkyGQLoAJA/f374+PggJCTErjIULlzY8P+0adMCAAoVKmTxXnh4uOG9JEmSGALoAJAuXTqTz80VKFAAyZIlQ7JkyVCrVi3RaS5evIiMGTMaAujmQkJCUK5cOZP3ypUrh1u3buHLly+Sy7YmMjISderUQf78+TFq1Cib50NEREREpBZbohMRERERWZErVy7odDqHDB7q5uZmEaT/9OmTxXQJEyY0/F+n00m+FxMTI/od/TRyFQL//vuvYdmenp6i00i970hv3rxBzZo1kTx5cmzevNlivYiIiIiIHIkt0YmIiIiIrEiRIgVq1KiBOXPm4O3btxafR0REAADy5cuHR48e4dGjR4bPrl27hoiICOTPn1903qlTpzYZ7PPLly+4cuWKtiugUJYsWZAzZ07kzJkTGTJkEJ2mcOHCePz4MW7evCn6eb58+RAUFGTyXlBQEHLnzm3Im65GZGQkqlevjkSJEmHr1q1InDix6nkQEREREdmDQXQiIiIiIgXmzJmDL1++oFSpUti0aRNu3bqFkJAQ/PHHHyhTpgwAICAgAIUKFUJgYCDOnz+P06dPo02bNqhUqRJKliwpOt8qVapgx44d2LFjB65fv44uXboYgvKuqFKlSqhYsSKaNGmCvXv34t69e9i5cyd27doFAOjXrx/279+PMWPG4ObNm1i+fDlmz55t04Cm+gD627dvsXjxYkRGRiI0NBShoaF2pYYhIiIiIlKDQXQiIiIiIgWyZ8+O8+fPw9/fH/369UPBggVRrVo17N+/H/PmzQPwNV3KP//8A19fX1SsWBEBAQHInj071q9fLznfdu3a4aeffjIE27Nnzw5/f//YWi2bbNq0Cd999x1atmyJ/PnzY+DAgYagdvHixfHXX39h3bp1KFiwIEaMGIHRo0fbNKjo+fPncerUKQQHByNnzpxIly6d4WXc2p+IiIiIyJF0gtJRkoiIiIiIiIiIiIiIvjFsiU5EREREREREREREJIFBdCIiIiIicorVq1cjWbJkoq8CBQo4u3hERERERACYzoWIiIiIiJzkzZs3CAsLE/0sYcKEyJIlSyyXiIiIiIjIEoPoREREREREREREREQSnJrOJWvWrNDpdBavbt26AQA+fPiAbt26IWXKlEiWLBmaNGki2VKFiIiIiIiIiIiIiEhrTm2J/t9//+HLly+Gv69cuYJq1arh4MGDqFy5Mrp06YIdO3Zg2bJl8Pb2Rvfu3eHm5oagoCBnFZmIiIiIiIiIiIiIviEulc6ld+/e2L59O27duoXIyEikTp0aa9asQdOmTQEA169fR758+XDixAl8//33iuYZExODp0+fInny5NDpdI4sPhERERERERERERHFEYIg4M2bN0ifPj3c3KSTtrjHYplkffz4EatWrULfvn2h0+lw7tw5fPr0CQEBAYZp8ubNi8yZM6sKoj99+hSZMmVyVLGJiIiIiIiIiIiIKA579OgRMmbMKPm5ywTRt2zZgoiICLRt2xYAEBoaikSJEsHHx8dkurRp0yI0NFRyPtHR0YiOjjb8rW9o/+jRI3h5eWlebiIiIiIiIiIiIiKKeyIjI5EpUyYkT55cdjqXCaIvXrwYtWrVQvr06e2az4QJE/Dbb79ZvO/l5cUgOhERERERERERERGZsJYGXDrRSyx68OAB9u3bhw4dOhje8/Pzw8ePHxEREWEybVhYGPz8/CTnNWTIELx+/drwevTokaOKTURERERERERERETxnEsE0ZcuXYo0adKgTp06hvdKlCiBhAkTYv/+/Yb3bty4gYcPH6JMmTKS8/Lw8DC0OmfrcyIiIiIiIiIiIiKyh9PTucTExGDp0qX46aef4O7+v+J4e3ujffv26Nu3L1KkSAEvLy/06NEDZcqUUTyoKNG35Pnz50iVKpWzi0FERERERERERBSvOD2Ivm/fPjx8+BDt2rWz+Gz69Olwc3NDkyZNEB0djRo1amDu3LkOKcfnz5/x8eNHh8ybyNEWL16MOXPmYNCgQWjevLnm80+UKJFJJRcREREREREREdG3QicIguDsQjhSZGQkvL298fr1a9HULoIg4OHDh3j+/LkTSkcUd6RKlQqZM2e2OtACERERERERERFRXGAtdqz3zTct1QfQM2TIgGTJksHNzSXSxBO5jJiYGERFReHJkycAgCxZsji5RERERERERERERLHnmw6if/782RBA9/Pzc3ZxiFxWsmTJAABPnjxBTEwMsmbNyhbpRERERERERET0Tfimm13rc6DrA4REJE1/nOzZswdnz55FPM8ERUSkmCAIiI6OdnYxiIiIiIiIyEG+6SC6HlO4EFmnP04SJUqEI0eO4MaNG04uERGRa2jQoAGSJk2K//77z9lFISIiIiIiIgdg9JiIVPHy8sLHjx/x8uVLZxeFiMglbNu2DV++fMG6deucXRQiIiIiIiJyAAbRicgmnz59cnYRiIiIiIhUu3v3Li5evOjsYhAREVEcwiB6HHTkyBHUq1cP6dOnh06nw5YtWyymEQQBI0aMQLp06eDp6YmAgADcunXLZJqXL18iMDAQXl5e8PHxQfv27REVFWUyzeXLl1GhQgUkTpwYmTJlwuTJky2WtWHDBuTNmxeJEydGoUKF8O+//8qWf9myZdDpdNDpdEiQIAF8fX1RunRpjB49Gq9fv1a1Le7fvw+dTsebYCIicjqOFUFEFDfkyJEDxYoVQ2hoqLOLQkRERHEEg+hx0Nu3b1GkSBHMmTNHcprJkyfjjz/+wPz583Hq1CkkTZoUNWrUwIcPHwzTBAYG4urVq9i7dy+2b9+OI0eOoFOnTobPIyMjUb16dWTJkgXnzp3DlClTMGrUKCxYsMAwzfHjx9GyZUu0b98eFy5cQMOGDdGwYUNcuXJFdh28vLzw7NkzPH78GMePH0enTp2wYsUKFC1aFE+fPrVj6xARERERSWOFF+nduXPH2UVwGZGRkUzXSEREJINB9DioVq1aGDt2LBo1aiT6uSAImDFjBoYNG4YGDRqgcOHCWLFiBZ4+fWpotR4SEoJdu3Zh0aJFKF26NMqXL49Zs2Zh3bp1hiD26tWr8fHjRyxZsgQFChRAixYt0LNnT/z++++GZc2cORM1a9bEgAEDkC9fPowZMwbFixfH7NmzZddBp9PBz88P6dKlQ758+dC+fXscP34cUVFRGDhwoGG6Xbt2oXz58vDx8UHKlClRt25dk5vdbNmyAQCKFSsGnU6HypUrAwDOnDmDatWqIVWqVPD29kalSpVw/vx51duaiGJPTEyMSUUfERGR1iIjI5ErVy707t3b2UUhchmCIMDb2xspU6bEu3fvnF0cIiIil8QguhFBEPD27VunvLRsEXPv3j2EhoYiICDA8J63tzdKly6NEydOAABOnDgBHx8flCxZ0jBNQEAA3NzccOrUKcM0FStWRKJEiQzT1KhRAzdu3MCrV68M0xgvRz+NfjlqpEmTBoGBgdi6dSu+fPkC4Gur+759++Ls2bPYv38/3Nzc0KhRI8TExAAATp8+DQDYt28fnj17hr///hsA8ObNG/z00084duwYTp48iVy5cqF27dp48+aN6nIRUewoU6YMkidPjsjISGcXhYiINPbixQtMnToVz549c2o5Fi9ejDt37mDmzJlOLQc5R3R0tLOL4JL0z1bA13SZREREZMnd2QVwJe/evUOyZMmcsuyoqCgkTZpUk3npc/ulTZvW5P20adMaPgsNDUWaNGlMPnd3d0eKFClMptG39Daeh/4zX19fhIaGyi5Hrbx58+LNmzd48eIF0qRJgyZNmph8vmTJEqROnRrXrl1DwYIFkTp1agBAypQp4efnZ5iuSpUqJt9bsGABfHx8cPjwYdStW9emshGRY+krxQ4ePIgGDRo4uTRE6jFFBJG0Vq1aYc+ePVi5ciUuXbrktHIYBwutEQQB9erVg5+fHxYtWqRZGa5fvw4vLy+kT59es3mSdcuWLcPPP/+MVatWObsoLo3XMiIiInFsiU4uRX/TptPpAAC3bt1Cy5YtkT17dnh5eSFr1qwAgIcPH8rOJywsDB07dkSuXLng7e0NLy8vREVFWf0eETmf/vgnom/H69evMWvWLA7yF4/t2bMHwNdB651JTYAwODgYO3bswOLFizVb/rNnz5AvXz5kyJBBs3mSMj///DMA4McffzS8x4CxJW6T+OvixYt49OiRs4tBNlq1ahVKlSqFx48fO7soRN8stkQ3kiRJEkRFRTlt2VrRt8gOCwtDunTpDO+HhYWhaNGihmnCw8NNvvf582e8fPnS8H0/Pz+EhYWZTKP/29o0xq3C1QgJCYGXlxdSpkwJAKhXrx6yZMmChQsXIn369IiJiUHBggXx8eNH2fn89NNPePHiBWbOnIksWbLAw8MDZcqUsfo9IiIiin0dO3bEhg0bMG/ePFy7ds3m+UyYMAHv37/H6NGjbZ7HmzdvcP78eVSoUAFubq7T3uTz588YMmQI/P39Ubt2bWcX55vw+fNnzecZHBys+TyJ7OVqgfOIiAh4e3uzYYWG7t27h2LFigFwvd9bjYkTJ+L58+eYOnWqs4sS61q3bg0A6N27NzZu3Ojk0hB9m1znycAF6HQ6JE2a1CkvLW8QsmXLBj8/P+zfv9/wXmRkJE6dOoUyZcoA+Jp7OCIiAufOnTNMc+DAAcTExKB06dKGaY4cOYJPnz4Zptm7dy/y5MkDX19fwzTGy9FPo1+OGuHh4VizZg0aNmwINzc3vHjxAjdu3MCwYcNQtWpV5MuXz5CLXU+fr12fQ10vKCgIPXv2RO3atVGgQAF4eHjg+fPnqstE34YPHz44PUeruTt37mDRokUmxx8RfT3fb9myxeWOWbLPP//8A+BrZbqtoqOjMXToUIwZM8YwSLot/P39UblyZfzxxx82z8MRli9fjqlTp6JOnTqqv/vp0yccOnTIrsGbIyMjcfDgQYt7LiXs+V3jk+fPn2PLli3OLgaRLGcHWM+cOQNfX1+0aNHCqeWw19ixY1G3bl3NK+MuXrwIf39/nDx5UtX3Lly4oGk5nGXIkCGYNm0abt68aXVaR1SEivnw4QOqVauGiRMnxsry5MaPevbsmUUjRyLSDoPocVBUVBQuXryIixcvAvhaq3zx4kVDqhKdTofevXtj7Nix2Lp1K4KDg9GmTRukT58eDRs2BADky5cPNWvWRMeOHXH69GkEBQWhe/fuaNGihSE/Y6tWrZAoUSK0b98eV69exfr16zFz5kz07dvXUJZevXph165dmDZtGq5fv45Ro0bh7Nmz6N69u+w6CIKA0NBQPHv2DCEhIViyZAnKli0Lb29vw8XH19cXKVOmxIIFC3D79m0cOHDAZNnA18FIPT09sWvXLoSFheH169cAgFy5cmHlypUICQnBqVOnEBgYCE9PT7u3PcVPuXLlQvr06XHnzh1nF8UgZ86c6Nixo8sFcbR29OhR5MyZE7t27TK8x1Z6JGf+/Plo1KgR8ufP7+yiWHB24CEuU9uY4Pbt26hRowYOHjxoeM8417U9gwfqGxgsX77c5nk4gj0p6QYNGgR/f3/89NNPNs+jcuXKqFKlCmbPnq36u654vCqh9TFdqlQpzJs3T9N5Uvw2c+ZMk3skRzHe1519LdO3MP7rr7+cWg57DR8+HDt27DBUEmvF398fhw4dUt1ozdm/q9bevXsn+3nfvn2RNGlS3Lp1y+FlWbVqFfbt24chQ4Y4fFlyPnz4gPTp08PPz0+0AiEiIgKVK1fGggULnFA6oviBQfQ46OzZsyhWrJihO1bfvn1RrFgxjBgxwjDNwIED0aNHD3Tq1AnfffcdoqKisGvXLiROnNgwzerVq5E3b15UrVoVtWvXRvny5U1OqN7e3tizZw/u3buHEiVKoF+/fhgxYgQ6depkmKZs2bJYs2YNFixYgCJFimDjxo3YsmULChYsKLsOkZGRSJcuHTJkyIAyZcrgzz//xE8//YQLFy4YUtC4ublh3bp1OHfuHAoWLIg+ffpgypQpJvNxd3fHH3/8gT///BPp06c3DEa4ePFivHr1CsWLF0fr1q3Rs2dPi4FUyTXYE+jQij6v3L///uvkklg6cuSIs4tg1dOnT21u6eHv7487d+6gVq1ahveGDRtmd5mioqI0z7s7duxY5M+fHy9fvtR0vqTOtm3bAHx9EKD4Q20QvUWLFtizZ4/FQOJ6jgwWfP78GTt37rToHefKpk+fDsC+oJS+FePKlSs1KZOzODOQdO/ePactm6S9e/cOpUuXxvDhw51dFBPHjh1D7969Te6R9uzZg5kzZzp0ufEt2OoIL1++NGkNLJcy1J4eQGJsvf9x5O+6bds2lCxZ0qV6HU2fPh0fP37E2LFjFU3/5csX9OzZ06br5Nu3b1V/R6n3799j9+7dJs/MUr/lixcvDP8XS1M8adIkHD58GJ07d9a+oETfCAbR46DKlStDEASL17JlywzT6HQ6jB49GqGhofjw4QP27duH3Llzm8wnRYoUWLNmDd68eYPXr19jyZIlSJYsmck0hQsXxtGjR/Hhwwc8fvwYgwYNsihPs2bNcOPGDURHR+PKlStW83S2bdvWUOaYmBhERETg1KlTGD58OLy8vEymDQgIwLVr1/DhwwdcunQJlSpVgiAIhhb1ANChQwc8fPgQX758waFDhwAAxYoVw5kzZ/D+/XvcvHkTTZs2xf3799G7d2/rG5hizeTJk5E4cWLDYGNxyaNHj3Dp0iVnF8PpTp06hQwZMqBChQo2fd+WtABKFC5cGEWKFMHu3bs1m+fw4cMREhKCGTNmaDZPIlvE1QDH6dOnkS1bNvz9998Wn6kNoosNqhUbuXNfvHiBatWqGRofxCZX+d2/pRzFctu8devWaNiwoea/S3BwMM6fP6/pPF3B58+fMWnSJJw+fdoh8z969Chq1KiBGzduqP7uypUrcfr0acXBttgiNgBkjRo10Lt3b80bWbhSS3RbNGvWDI0bN46Vsr99+xYpU6aEt7c3rl+/juDgYHh4eKBXr16i08fWOdNa6lJHbpv69evj3LlzaNmypcOWYSul23/9+vWYNWsWmjdvrnoZjty2bdq0Qc2aNdGzZ0+r01pbV7k0MESkDIPoROQ0+kqZ9u3bO7kk6mXOnBlFixbF/fv3nV0URe7du4e+ffuqSgdw/PhxZM6cWTZ/6+LFiwFAdV5GR9O39nNEV2BH5qm/evWqJvvUu3fvnP4QfOHCBRQrVkzTigxz7dq1Q6tWrZy+rrHpyZMnyJo1K8aPH+/soqhWv3593L9/H02aNMHu3btN8rNqHWSwtk+cP38ePXr0MGm1pcT3339vqLC3ZwDU2Kbl9nWlwVZtoWZbSO1HHz9+xKpVq/DPP/9o2rr88+fPKFy4MEqUKBHvgh0LFy7E4MGDDWMvaa1ixYrYs2cPmjRpovq7cq2IXZWa+zl9Qyel10pnX1PVnq9evXqFjRs3YvPmzQgPD3dQqf7n9u3bhv8XKVIEo0aNAgCrKRitpR+xx/Dhw5E6dWqTRnXOEJd7CdqTR9yRx4x+AFG1KVjEyuTsY5soPojbd8FERE6mdcoQW3358gUXL140yQlsLCAgANOnT7faU8RYrVq18OjRIzRq1Ehymrh2MxYTE4O1a9fi7t27zi6KhefPn6NgwYLIli2bXfN58OABkiZNirp162pUMtvUqVMHFy9eRM2aNTWdr/E+t3TpUqxduxZPnjzRdBm2io3jYeTIkXj48CF+/fVXhy9LC69evTKkezLu0l6zZk0UL17c8LfaoIm927pEiRKYPXu21TFczBkHT+ISLYPoca0lenh4OOrWrYutW7cC0OY4NW+1e+bMGZQqVQpHjx61a77GlbRqK3hcXWyNd/LkyRNs3boVmzZtUjS9K+/PcmVTsx9Xq1YNhQoVwrp16zSZn6uJ7Vb0xr+LkgoYnU6HJUuWIGnSpFi0aJFDyqTvRSF3TYvLv7GeI9fBnnm7yra1dj6LjXLaugxBEPDmzRvV34uJiYkzjdoofmAQnYjIDg0aNDAZJ8BZunTpgmLFiknm89QHja9evapofnfv3lXUCi42bxpDQ0PRqFEju9L/rFixAq1atUKOHDk0LJk2tGrNuGTJEgDOz/Efm/mipSqP4iNHpUByhAcPHiBFihSGlqdKWzCXLVvWph4ftpyPrly5oun8XMXz589N9pVvOYjer18/7NixwzBujhpK94HKlSvjzJkzqFixouplOFJkZGScDMbr0z7aIiIiAg0aNEDTpk05hsn/01fuKG3JGtvnvtWrV6Njx442j6/jbErOifpetx07dnRaWWL7d925cycKFCiAs2fPOmT+f//9N0qUKIGbN286ZP5K7Nixw6E9LqWo/S1v3LiBnTt3Oqg0//PlyxeULl1a9HobHBwsmqJKr0OHDvDy8lLdu7lTp07Ili0bB0ulWMMgOhG5lE+fPqFRo0aa5J1+8uQJ3r9/L/p+2bJlsXbtWruXAXztouxs+jIoSfGwcOFC5MqVS7ZF5S+//KJoubF5Q96jRw9s2bIFNWrUAPB1QFPjdBBKHD582BFF04QtgakvX77gwYMHds/HlcXExKBKlSpo27YtgPjdPXXFihX4888/ZaeJS+u6YcMGADDkd5bbN40/O3HiBPbu3Ss7b2vbQT/uirUKFkemJgkLC8Pvv/8e60HMixcvInXq1AgICDC89y2ncwkNDdVkPnL7nFZpGrQ+vr29vZEqVao4NQhuTEwMSpcujSpVqti9PWxp1Sjn8+fPGDhwYKwEo6yxZdvoU1FZm19sX2d+/PFHLFq0CKtXr7Z7XsZlDw0NNbkGzJ07F9myZcOdO3fsXo4aWp5/ly9fHmvLslft2rVx7do11KlTB8DX3+bu3buatfgeM2YMzp8/jzZt2thdVvN5G3v58iW6d++OM2fOmLx//fp11K1bFzVr1tRk8NimTZsqzuuvdpq8efOidu3aDk+/GRwcjDNnzhh6fuk9evQIhQsXRubMmSW/q28EpHZsCn1q0ZEjR6osrWu4deuW0ysQ165di8yZMzuswiu+cfpd8JMnT/Djjz8iZcqU8PT0RKFChUx+PEEQMGLECKRLlw6enp4ICAjArVu3nFhiIvr06ZOmJ3vji/zatWuxZcsW9OnTx6553rx5ExkzZkTOnDktPuvduzdOnDiBVq1a2bUMpe7evYvXr1+bvOfMQFinTp1w+/Zt5MqVS3IapblYY3M9zAcSzJAhA4oXL46QkBDZ7929exc9evTAvXv3NHm4cNQ6G5dN6TJatmyJrFmz2pT7/c2bN4aeCeHh4ShevDjmzJmjej6Odv78eRw8eFD2wdGe3+TQoUMoUqQIjh8/bvM8tPDx40f89NNP+OWXX+zKy+lKzH8XpUF0wLYW9+ZBoFKlSqFUqVKygXQ3NzfMmjULvXv3VlVeJWrXro1+/fqhRYsWds1HLX2lqnHAzHhd9u7da1ePBlcK0oi5d+8eChcubDXYpIRWwQx7iKWLuHjxIpo1ayY7iKbxb+yKg/1JuXv3Ls6cOYNDhw65XK7y5cuXY8qUKapS48VFzrpH1Q+MqfYcI3b/tHPnTqRLl87kXr9bt264f/++5ACgtixP7G9HCQsLMzQokBKbLdGPHDmCnj17Wq2s0j8D9e3bFzly5MDvv/9u8zLFnj/Nn7G01rdvX8yZMwelSpUyvHf79m3ky5fP8LfaIPrixYuRI0cOwzn85cuX2LRpEzZv3oz//vsPwNcKxQMHDqiar7VniYsXL6qan1pS+5gW6bzev38v+1vH1nG4bt06tGrVSrShnlqrVq1C7ty50bhxY9npPn36hNq1a2P06NF2L1NMq1at8OjRIzRr1swh849vnBpEf/XqFcqVK4eECRNi586duHbtGqZNmwZfX1/DNJMnT8Yff/yB+fPn49SpU0iaNClq1KihSW0fEan38eNHbN26VdEI4bbQqtXQtm3bAHxtrWwuNltk3b17Fzly5EDq1KkN7338+BHFihWzeiMcG6Kjo0XfN78RkXqQjc0HLamboxMnTsh+r3r16pg9ezaqVavmiGKpIgiCokGXlG5XfUvfSZMmqS5Lvnz5ULBgQRw9ehS//fYbLly4oDo/tJSIiAjNrtNKgn1S20tfGfTixQuUKFEC06dPt5jG398fly9f1iQNg74c8+bNQ65cuVTlaDQOckVFRdldFldgT1Da3ryez58/x7lz53Du3Dk8ffoUVatWxW+//WYxnZubG3r27ImZM2datDKz9/ymb4G/b98+u+Yj5uTJkyhVqhSCgoLw6tUrqw/GxttTf060lRYt0d+8eYMaNWo4pCdXjx49EBwcjLZt24pWstqTr9Xa/7U2efJkeHh44K+//jKpDCpdujQ2btwoO+aEcbDJGekGbGW8PV2twsa855cjXL16FYsXL471NGVq9+kXL15gwoQJsukZxDx79gyXLl0S/czW31vse/qemevXr7f4zNYB4l++fIlSpUpZHUBUSflsoaSBi9z5Wet9qlKlSpg1axa8vLwM74mtq35/0vcyHjhwoM3LHDJkiOrvrFq1ChMnTrQ6ndR+L5YKc/v27Yq+K6VDhw64e/cuOnfubPF9/f/nz5+PqlWrqiqrtSC6q51T1UiTJg18fHwkYwW2rNvNmzcxePBgQ8WFEi1btsTatWtVnwfETJs2DcD/4hZSNm/ejJ07dzq8tb2rVVy7KqcG0SdNmoRMmTJh6dKlKFWqFLJly4bq1asbctUKgoAZM2Zg2LBhaNCgAQoXLowVK1bg6dOn2LJlizOLTvTN0neLjoiI0KQGVgtiwTpXyQmoz0NpfMO+Z88eXLp0CcuXL8fkyZPx8OHDWCuPOamLpflNuIeHh+o0GkePHkW7du3sSmUwdOhQ9OjRQ3Yaa7+nvtuueffd2HgYNvfjjz/C19dXtNWzLS3RbZ0egGEwzr///tskFYEgCPjzzz8RFBQk+d13797JLjN//vyqy2MPsbIMGTIE3t7e2LZtGyZNmoTz58+jb9++kvOQC9ar3b5du3bF7du3VfWo+fvvvw3/v379OkaPHm3yoHDx4kVMmTLF5JjdtGkTevTooapV8YwZM2ItFYE9LdHVzlvqPQD466+/cODAAYwaNcriM+NzndSDWWhoKN69e2fx0OxM5cuXx5kzZ1C+fHlkz54dxYoVw7FjxySnN9++9qRN0OIhfPr06dizZw86deqkOghnzdu3bw3/t/dcJLVPxdbghYMGDQIANG/e3KSiTX8eMK+oO336NIYNG4YPHz7YHCiUExMT4xIP2Zs3b1b0LKjkd4qJiYmV+9mIUV7yuAABAABJREFUiAhF5SlYsCA6dOiA1atXO+1e1jygN3LkSGzcuNFkmp9++glDhw5VXQGdPn16FC1aVLZnuasG+iZOnIgzZ85YDA5qXl5H/TZK5mtclqdPn6oKDsp5+/at6uXrmQfvzf8OCQlRnHZLrBW7tf3ly5cvGDJkiKHyZtu2bZg3b57J51LrtnHjRtEUF1r95vrGTGLftyXtqKseO2pIbUt9AxOpsWxsWffixYtj0qRJ+PnnnwF83Tdv3ryp6PcMDw9XvTxbGT+nid3L2uLz5884dOiQy8Rz4hJFQXRfX1+kSJFC0UuNrVu3omTJkmjWrBnSpEmDYsWKmbRIuXfvHkJDQ01yOnp7e6N06dJWWx4SkeMlSZIEkydPNnlv5cqVWLp0qcl7O3bscFj+wUWLFsHT0xNr1qwxeV/uwmZ8Yfznn38cUi49Dw8Pi/eMA16DBg1yWKt+seWZU9KSQU8s56vcTUbFihWxdOlS9O/f3+Kzp0+fokCBApLfBb5e3CdMmIDZs2fLBrwnTpyIjh07omvXrqoeFqpXr654Wq3o99NGjRpZpGAx3uaOaoG2detWq3nkDxw4gF9++QXly5c3eV/fqvHKlStImjQpfvrpJ8l5PHv2zP7C/j9b0ynoWx316dPHrhvEwMBA5MuXz6aW9ba2xq9bty5GjhxpCKABQLFixTBw4ECTh6qmTZti9uzZigOiQUFB6NOnj6JUBMOHD0fOnDntqgSzJ4huS0t0qX1F7vdPkCCB7DIfPXqEdOnSIXPmzKhXr55smWKT8Xld37tlx44dktNrmcdci4d04y7ZQ4cOtXt+cpTuW4cPH8bgwYNNgsSxGUS/efMmpk6dKvm5krRdpUuXxrhx4zB58mSH5FgtU6YMPDw8ULlyZVU9bdSw1iL6zZs3aNy4MRo1amRSYWKrihUrmpxrpRw/ftzQ+wv4ms6hQ4cOigY13LVrF3x9fdG7d2/F5TLvGWNOy33w7NmzJvdExvMeNmwYRo8ebdHNXz/Iu637gZLApC30Zbel0vbXX39F8+bNRbftly9fMGXKFKvLHz9+PPz8/HD37l2ry3ME/bn+7du3yJAhA9KkSWO4p7R1nwkODkayZMnQunVrzcqpT1Py8OFD5M+fH+nSpdNs3lL0gfr69euja9euyJ8/P3Q6Hdzd3eHm5iY6MKVUegvza6oj7tsdkXolLo2rI0XqeLLlONNfQ/SxxV9++QV58uTBzJkzrX5X6W++Y8cOTRthiPWqtMWwYcPg7+9vUkEfH/aP2OCuZCItBvgTc/fuXcybNw99+/bF0KFDcebMGfTs2ROJEiXCTz/9ZDjRpU2b1uR7adOmlaytjI6ONklPoDSvLxHZZtCgQYZuee/fvzcM7rJnzx6sWrUKhw4dQt26dQE45sSsH+U+MDDQJO+hXHoL43I0bNjQ8H9H3OSKBdHNyQXytSiTXAWG1A2A2HLlumjKEWttNGzYMFy7dk32e8Zl+/jxo8nyjYOAt2/fNgySGhYWhk2bNhk+k2vlr+TB15pHjx4hPDwcJUqUEP3806dP6NSpE6pUqWLy8BEeHo7mzZsjb968KFy4MADpIPqqVatw48YNjB492q4bx0uXLqFBgwYALH8347/XrVtn+P+9e/eQLVs2TJkyBUOHDsXRo0cNrXdWrlyJFStWWF2u1tSeR+w5hq5cuWKo+Pj333+t5iw0Z+8579SpU4qmU9qCy3xcATn6gZ1+//13jBs3TvH3jMV2S3Spz+WmtRZc1j/ox/bgoFpT2mru+fPnWLNmDVq1aoVUqVKJTqP1wKKOHlBL7nxnrHLlygC+dhkX67Xy6dMn0Wu6Pcd5TEyMYXvmyZPH5vmYu3r1qt0t0YcOHYrw8HAsXLjQsP+cPn0awNcKh++//x4DBgxA165d4enpKTqPt2/f4o8//kCjRo0Ubyfj6cLCwtCuXTt06tQJr169wowZM0waTTx//hxJkybFhAkTrM73yJEjipY/ffp0BAYGIk2aNCbvlytXzuTvatWq4f79+9i5c6ehZ5cUfZD+jz/+UBScAawHaMS25/3797FlyxZ07NgRSZMmBQCrvfmAr5Ujxsehft6nTp2SHLDe3vtTsfOIs1vR6te1T58++P77700+k+v5YHwf/+uvvwKAoooZR9BvQ+Pr/ZcvX+Dm5mbzuUpfubd69WqsWrVK9ffFltu/f3+cP39esmGHIAii+4Obm5vNAWvzFJbm6b7UjLtnXjZ7g+hKGy/pucJ4HWLMe9UqOaYPHDigKsWc1Dy16H2lb9A7cuRIq5WeSn7zd+/eGeIgkZGRSJ48ud1llPLkyROEhYWhePHiiqbXX4sc3aAwPlJ0F/zTTz8pfqkRExOD4sWLY/z48ShWrBg6deqEjh07Yv78+TatDABMmDAB3t7ehlemTJlsnldcdejQIeh0OkV5d7W0bNky+Pj42DWP+/fvQ6fTyda8Omv9yDp9QBv4Gohbt26dxSjgL168QLNmzSTTCTjiBnrt2rWKuh8fOHAADRs2tPowpIbxA7ctNzOOvgGSmr9UkOTu3bvo16+f4eZc7U3cly9fEBYWprqFrvl+IbX/mHfxc0QuYmOZM2dGyZIlDUF8cytWrMCyZcsMlUvmpFoqGd+YtW7dGmPHjpVNryLF+IHB2gCsesbdlLNnzw7ga/7Kz58/o0uXLqLHqCPSBkRERGDlypWKxkmwNtCQXMtTOYUKFTL835bc7PYev1of/7acX+0ZgFJNEF2La7otrYaNz3VKKw9tERsVTnLrqXQ9mjZtil69eslWGGmxTeTmERYWZvXY1Js7dy4qVapk0mjG3uPG+HxuPK/mzZtrtgw98557tti5cyfu3btn8p5Op1N03/Pq1SvJrvETJkzA4sWLcf36ddHPw8LC0L9/f4wZMwYfPnwQPVf8+uuvGDp0qMkAfNYYB5kHDRqE/fv3o3nz5vjll19w/fp1NGrUyPB51qxZsXLlSkW9GSpVqqRo+X379jVUOMvRt8AWG3tHC+b7WJcuXUz+nj9/PvLnz49+/foZ3itevDj69OmDAQMGGN5TEpySqsgyv4c3JtYSd/v27ahVq5aibWJPUNectUrT9+/fmxy/5g4ePIhatWoZ/tYfOzt37kTfvn3x6dMnvHz5UvL71o41tefMt2/fom3btrI9U7RaltbzVNrgRu63v3HjBvz8/ERTt7i7W7YBDQkJUTRY6ZgxY1QFyuXERkt0Wyqstfr9BUFA69atLc47165dw5w5cyTPGVK/q3GjEPNrRdWqVbF582ar89CTWsewsDBs3bpV9rtaUvKbG/eElKsUAb6eh+vXry86eKiSc2XGjBlRokQJyWu2knk6uyIzrrCpKcmdO3cwbNgwtGzZ0pAyYefOnaKDLshJly6dRa7CfPnyGVoO+vn5Afh6QBgLCwszfGZuyJAheP36teGldZ5FZ9MHA6ReWuVIiuuyZs0KnU5n0qJSr0CBAtDpdFi2bFnsF0zGxIkTodPpLGo9O3fujBw5csDT0xOpU6dGgwYNrJ4cpfYP426I9evXR+bMmZE4cWKkS5cOrVu3tvtBwDylgFhKlcGDB2Pjxo2K0gmoJZXyo1WrVhgzZozhb6kL0ebNm/HPP/+YVAbYGxxMmDCh4f9y+ZgdSe7Cq6Yl+vz585EjRw78/vvvoi2ab926hXPnzsmWpWrVqvDz87M6nbVyx7bhw4cb/q8vl/G2kzomraWXkRpATex30beE7d27N8qVK2fy0Ga8fOOAiJKux9aYr5v5Tf2dO3eQNGlS5M+fHx07drQa9H748CGOHj2K9evXywZOmzRpgjZt2ihKuyM3IKrUtQBQFlzQUxJMNn/Ifvv2LerVq4clS5YoXo4tlN70ik23d+9edOnSxXBzr+WgpvYMLKp23oDpNUirluhaMW9osn//fhQpUsTQslcQBLtzTevX07xS6cuXLxZpL8S2yfz58w3Ba/14HmK03mZv375FmzZtDC09M2bMiMqVKysaDLNbt244cuSIYXAuMVpVphq31tLq+vTvv/+qmj4qKgqXL182ea927dqGCk89nU4nm95HL3369ChUqBACAgIke6pIDUCud+DAAaRKlcrQq8qYLek3jXMVP3/+3OJz83s9qUpqe+iDxy9evFAVHAsNDdU0MGx8zjRvZHb69GmL4OGrV68A2L/Pq819vXv3bqRIkQL16tXDrl27FKUpHDx4MLJmzWpy3dTPU2lDC305rQWD/vjjD5N0SObXoipVqmDXrl0W86hduzamT5+ORYsWxVpwaceOHUiWLBmWL19uUhkCqP9dzL8n9v3evXujcOHCsgE+R6y73Lr06NED4eHhJhVEemJBdACi05o7e/Ys8ubNq7yQMqz17hIEAf7+/qhfv76i+Znn2QeUXWtDQ0OxadMmvHnzRtOGHA8ePMCqVaswf/58k3uTAgUKoHv37pg7d67VeeiXf+LECZPAsHGFpi09lOT2R6n0O2pFRkaidu3aNj1D26pbt27Ytm2b6OChan5La6nA5LjSs7crU30XfPjwYRQqVAinTp3C33//bXjYunTpkurRYsuVK4cbN26YvHfz5k1kyZIFAJAtWzb4+flh//79hs8jIyNx6tQplClTRnSeHh4e8PLyMnnFJ8+ePTO8ZsyYAS8vL5P3xHIPK+EKgwRpTT9orbGTJ08iNDTU0MXRVZw5cwZ//vmn6ANIiRIlsHTpUoSEhGD37t0QBAHVq1eXDegY7xPPnj3DkiVLoNPp0KRJE8M0/v7++Ouvv3Djxg1s2rQJd+7cQdOmTTVdL7GLnJp0AmplzZpV8jM1gxHrK98ePnyIJEmSoH379jaXyXgb6FNjudIFSqwsly9fFm0FaHyDev78eYvv586dGyVLlpRNLaGfr7VUKlFRUQ7ZTrY+COhTWxgzfuCQqsBRk3JC6fdmzpyJ48ePm7SaMi6LcTobpelA5JjvC+bbcMKECfj06RNCQkKwaNEi0RYUxrJkyYKKFSuiRYsWJumUzOnTaJgT2zZygZpXr16ZVGZMmjQJv/zyi+h8goODJeejJIg+fvx4kxaxQUFB2L59u8k55Pr165rnubS2X0+dOhXZs2cX7WVTvXp1zJ8/H5MmTUKlSpWQPHly0eDlmjVrRHPYyrEniG7LsWrcYsrWILpxxakjz9UBAQG4fPkyqlWrBuDroMOenp52XSNjYmIQFhZmUaEtlpZRbN3MW5xJ0bol+rZt27By5UpDC2N9Czd9zmUlbM2NLdYKW26Q55iYGOzbt080uGsLnU5nNUhtrEiRIihSpIjoZ+YVYEqegfTByv3796tOV6V3/vx5vH371mqKNjX3YXrObBV34cIFpEqVCjVr1lQ0/datW5EuXTpDUF9foSwIgmRvNTnz5s1z2sDzaoO1NWvWNKm827Rpk2hQ0Njdu3fx8OFDk8psnU6H9+/fm7RKffv2reG8fODAAcN1es+ePfDz88P27dutnu/VDq75+fNnrFy50vC3LQPRG28fNfuxcUMeQD4lo7Xl6ok1/tCbOXMmgoODsX79esO0xtvr8uXLoutvrcWvtZbFtgYn7T0n2Bv4HDt2LLZv3261JfqdO3dw6NAhbNu2zWqlkH48DnNKguiFCxdG06ZN4eXlhcDAQItj4fPnzzalTLNWZn2g9u3btyhfvrxhHCKx66dxLA+ASc9a4/1EjvF6lSpVSrKS3Xz9hw0bZvNA6jt37pRtWKL1PaJYTn459sbv2OrcdqqD6IMHD8bYsWOxd+9eJEqUyPB+lSpVZLt8ienTpw9OnjyJ8ePH4/bt21izZg0WLFiAbt26AYChVe7YsWOxdetWBAcHo02bNkifPr3sg3d85ufnZ3h5e3tDp9OZvJcsWTLDtOfOnUPJkiWRJEkSlC1b1qTCYtSoUShatCgWLVqEbNmyIXHixAC+dqfu0KEDUqdODS8vL1SpUsUwkjXwtbLE398fyZMnh5eXF0qUKGHxUL17927ky5cPyZIlQ82aNU0GmIuJicHo0aORMWNGeHh4oGjRoqI1/8b+/fdf5M6dG56envD391c8gE1gYCAOHz5s0hthyZIlCAwMtKjFtrbed+7cQYMGDZA2bVokS5YM3333nUUrj6xZs2L8+PFo164dkidPjsyZMys6GUZFRSEwMBALFy6Er6+vxeedOnVCxYoVkTVrVhQvXhxjx47Fo0ePZLeD8T7h5+eHf/75B/7+/iYtlfT5/rJkyYKyZcti8ODBOHnypOZpGdQOFmfu3bt3WLp0qd0jYCsNqAD/e6ieOXMmPn/+bNGKVKy1RvPmzUVbwpmvb1RUlMMGjZQit75in0k9oCt17949kzQlx48fN/lbiRcvXlgMbKUkSGJtRHWtgj83b940yWvXvXt3k9aBYWFh+PLli6oguvHNUExMDARBQNeuXSW/KxVk1ppx8FgsNYr5/qzmt1aaskGpyMhIi5tK85bxgwcPxp9//oljx45Z/D7r16+XDGIqPW7legoJgoB8+fKhWLFisl3Dxb4nx9p+PWDAANy7d8+Qq1XM6NGjDTmDzXvNHDt2DIGBgfjuu+8Ulvgr83Lb0oL58ePHor+JtW1SoUIFRdOal8m4gk/rXN03btywCIhERkbi5cuXWLNmDWJiYvDnn39afG/r1q0WjU7ETJ06VbSnpi0pAeS44oOX0jLdvXvXJFdxjRo1VM1r5cqVqFatmuzA2KGhoYqDdps2bULixIlF8wyLlUPu/GochNHpdEiRIoXJ5y9evMDRo0clj4czZ85g1qxZANQFB4zT1unPk2KVjkrHbnAV+pbfe/futTptRESEoQJ51apVGDBgALy8vLB37170799ftpXvhAkTULBgQdFrwrBhw0z+VvqsHRupxKwdc+bBYKn5mr9n3tMiWbJkyJkzJy5cuICqVasaGhzVqFED4eHhkgM+23Oemj59ut09HIwHoTX36dMnzJgxA0WLFrWokDPfHjlz5sS2bdsUL1fsOqvk/kU/zaBBg5AmTRosX74cT58+RZEiRXDw4EGL6Y17+BrT6XQ4deqUSaWc2O8uVya1zy16nz9/xrBhw7B//36rqTNsNXz4cNSrV8/qvbBxOV+9eoVDhw5BEAQcOXLEkCNbz/y+QP/8IBfIPnToEC5fvmxyrVm7dq3Jcj9//ozChQsjZ86cylfw/ylNr7xw4UIEBQVhyJAhNp13/v77b4v3lJwnatasiTVr1sgOdnv06FGMGzcOP/74I44dOyaboeLly5eivWPlziPnzp1D69atZSvZjMut5vm/c+fOJhXT5uu/fPlyeHh4oHPnzujUqZPJs44r3qPFN6qfZoKDg01y0emlSZNGdauM7777Dps3b8batWtRsGBBjBkzBjNmzEBgYKBhmoEDB6JHjx7o1KkTvvvuO0RFRWHXrl2GoC9J+/XXXzFt2jScPXsW7u7uaNeuncnnt2/fxqZNm/D3338bWsU1a9YM4eHh2LlzJ86dO4fixYujatWqhhu7wMBAZMyYEWfOnMG5c+cwePBgk3QV7969w9SpU7Fy5UocOXIEDx8+NGkdP3PmTEybNg1Tp07F5cuXUaNGDdSvX18yP9mjR4/QuHFj1KtXDxcvXkSHDh1Ea2rFpE2bFjVq1MDy5csNZVu/fr3FdlCy3lFRUahduzb279+PCxcuoGbNmqhXr55FC5Fp06ahZMmSuHDhArp27YouXbpYffDt1q0b6tSpg4CAAKvr9PbtWyxduhTZsmVTnO8/LCwMO3bskG1N/fLlS6xevRply5Y1+T3FiF3YNm3apKjbNaD+xN6vXz+0a9cOadOmxfv37+Hv748JEybg7NmzqgIDgiAYAvFKL/JiZZ0yZYpoT4a//vpLtCeI+c1s8uTJTXoEqGV+Q/Xu3TvZbve3b9+W7SVk/KD76dMn0eNDjti23Lx5M3LkyGHynvnfSuZrfLOxfv16k4otOWoD9taYB9ImTZpkcQMMwPCQceTIEfj5+Vl04ZRLN7B69WqTAGVMTAyuX79u0q3dkfTnSTHm62+tC6vaHNpy28WcIAiSx++rV6/g7e1tsa9JBW6HDBli8d64ceOQKVMm0UCm0pvf48ePS35mXPaUKVMqSrfz8OFDq+d7qfPq+/fvTQaVM64kjY6Oxm+//WZ1+QAs0vVFRUUpGphXaUt0sYconU6HDx8+IFOmTMiUKZNdFbxyv53x/jFjxgwULFjQ8Le1lrVq5c2bFzlz5rQoT506dQz/N99Ghw4dQoMGDWzugt6zZ0/R4KU9QTYt0rkoSRvkiJ4A5ueHp0+fYtu2bSaBCLmW6PrW1MYBGvNp0qVLhzRp0licC+fMmSNZLrlAgFLG5x6dTmexn+XNmxcVK1Y06a1krmfPnti3b5+qbW/cqCo6OhqXL1+Gu7s72rZtq+j7T548sWnMDyXs2YfU3K/6+vqapETU359Wr15dMlfzkiVL0L59ewwdOhRXr17FpEmTLKYx34ekejGZT6cmRcLatWtF3wcst8Hu3bsNPdxic4yNhw8fyg4Ma95Qxlollk6nw7Vr19CzZ0+Txl565mmWzFPrqGX+3YkTJ6JPnz64dOkSUqdObfX7asaL0y/LuJeNXDoXc/r7kj59+sg+w0ptD51OZzEoqxi51JpyjUTk1mH8+PEYN24cAgICNOl1LteAy1pLdONyFi1aFP7+/li9ejUqVapkkmrr0aNHJudQAMiVK5ei66y/v7/s5y9evEBISIhNPSmOHTtm+L9+XcSC0MbXQvPnNP335BqNyB1X7969Q//+/REUFCR6HxcYGGhRAW283Y3PAxUqVEDmzJlNptWnv9JTUqluvC6nT5/GqlWrULZsWcl1MJY+fXqLyiep9V+wYAFKlChh+Nt8v9dfXxcsWICFCxdaHVz7xo0bimK1rtRb3pWpvgv28fERvdhcuHABGTJkUF2AunXrIjg4GB8+fEBISIhFrbVOp8Po0aMRGhqKDx8+YN++fcidO7fq5ajy++9AxozWX2I5rurXV/ZdBYNf2GvcuHGoVKkS8ufPj8GDB+P48eMmAbiPHz9ixYoVKFasGAoXLoxjx47h9OnT2LBhA0qWLIlcuXJh6tSp8PHxwcaNGwF8vYkJCAhA3rx5kStXLjRr1syk1eqnT58wf/58lCxZEsWLF0f37t1NuvBMnToVgwYNQosWLZAnTx5MmjQJRYsWFe1qDHztypgjRw5MmzYNefLkQWBgoOKbcgBo164dli1bBkEQsHHjRuTIkQNFixY1mUbJehcpUgSdO3dGwYIFkStXLowZMwY5cuSw6MpWu3ZtdO3aFTlz5sSgQYOQKlUq0dp7vXXr1uH8+fNWT3xz585FsmTJkCxZMuzcudOiJ4ic5cuXI3ny5KLddAcNGoSkSZMiZcqUePjwoc2jMzdt2lRRd9c9e/bIXiyfPXuGgQMHmrxnfOP4559/4tChQxg6dCi+++47i1yBcq5du4a0adNi0aJFdl0gzMtnjb21wcbfHzp0KDw9PU1ubOrWrYuKFStKfr9kyZImeSDNGd+ULF26VPUgZ2LbUiowKHcsKJ23Elq29H/37h0yZsxo8b7cwET6QdHMH8LEKln06/jjjz+avB8TE6N68FVbmQ9IZ8481YC1ILra7d+/f39MmTIFNWvWtJrWQG6f0F9rzFstSz2IyAVtfvnlF4vu90of/vv06SP52fTp003+VnI++fXXX20e7Hjq1KmSed+nTZsmOY6KefDYfLvnyJEDefLkMaR1kqIknVDZsmUlKxb14wAAlj0K1JwflLZEF+uebj4ujxbM9yXj1qXmx5c9uS0BGFoWa8nadS0qKgrz5s0TfV7QkwoK2bq+9lxr69evj2LFionOy54cs+bncLmxG7Rw4cIFw//Fguj6B2hr93rVqlVT1WrcuHfn6dOnDb2Fly9fLln5bRzcyJgxI8qXLy/aytqZLerEKlPlyO3vYtq3b2/S01Hs+qf0+qqktbyYXbt2oVWrVlaXq1ezZk1DgNSWyjRrvXvkfm+5Y8/4/mr06NFIkyaNSU83sfkWK1YMs2bNEm1xLradtdwXR4wYYfK3IAjYuXMnatWqJXrs6ZcttQ2Mg73638U4RaeaILp5uRxFbN5BQUEWz6vnzp1DuXLlDPdscmXSsnfjjRs3kDZtWsnPzfd/uXLpfx+xCswnT55YVPoobUUvFpw23gZa/X76+RgHoQ8dOmSxDPNrnv4z83tf4GtPlR07dsieRyZMmIBp06ahfPnymq3LoUOHEB0djbCwMIveWvoxauSIPVM/ffpUMkBtPkaN8bEfEREh28tazXOgcSWu+bnq3r17yJs3r6IKO1JG9dWvRYsWGDRoEEJDQw03aEFBQejfv79DBnZxishI4MkT6y+xWu7//lP2XaOcqY5inF87Xbp0AEwvslmyZDE5mC5duoSoqCikTJnSELBNliwZ7t27Z+hm1LdvX3To0AEBAQGYOHGiRfejJEmSmLTySZcunWGZkZGRePr0KcqVK2fynXLlyiEkJER0HUJCQlC6dGmT96Ty4YupU6cOoqKicOTIESxZskS0la2S9Y6KikL//v2RL18++Pj4IFmyZAgJCbFoiW68zfWpdqRqsR89eoRevXph9erVVntWBAYG4sKFCzh8+DBy586NH374QfGJVZ/CRmwZAwYMwIULF7Bnzx4kSJAAbdq0sTmHsxI1atQQ/f6TJ0/w6tUrNG3aVPZiokXXvI4dO5oEoV2Fklb1+soW41QL1gLT5hdvc8YPCrakzFETMFU6Wjgg3+I4Nh08eFBVEM28zNYeGKXW0REpf6SWZW0gUPNAr7UurLaUfeDAgdi9ezdWrFiBQ4cOSZZJbvBj48GEjAPZtraaNQ9cHzx4UFWXajG2jFti3lLGms+fP2Pnzp2IiIiQ7ZUhl//dnPlvqj9XyA3MKgiCRUWSWEWEXD5749+uQoUKJhV0as4PSluiq/0u8HV7q93njSsHrHHUedCRLdF79OiBrl27mqTUUcrWnkRygW8ljI/3WbNmoWfPnrGSEsOR7LmOGAe/BUHA3r17Ub58edFpje8dKleubFIxK1UxKtY7Uq5X3bdAbH9R2sLcfDsr2fc+f/6M2rVri35WsWJF1K9fX7byWElQWd+owHiZ5ozLqjRQ/fPPP5v8bdybbvHixVa/r9PpDKnfYmOge2vrtXnzZtSuXVsyxalcEP3KlSsmwV65nOhyzKd59eqVJuPqKF0eANFzTKVKlXD8+HGUL18eDx48kD2vaXnvLNcACbDczsbHyoQJE7BixQrFy7LWIEGN5s2bG/5vbXuMGjUKf/zxh9V5iv1Wjx8/NuQct8WiRYtQt25d2f3VOD6k9Le1dj7x9/dHly5dNE+JKdVrQyqVzrt37+Dr66uoV6cSchWpagb4ZioYZcSHN5Yxfvx4dOvWDZkyZcKXL1+QP39+fPnyBa1atbL5IHI5Xl6Aklb1YrU5qVMr+24sDHhqnJZDf0AYn4DMuzlFRUUhXbp0hppFYz4+PgC+nmxbtWqFHTt2YOfOnRg5ciTWrVtnSPFjngpEp9M59SHC3d0drVu3xsiRI3Hq1CnRwSuUrHf//v2xd+9eTJ06FTlz5oSnpyeaNm1qkXtXbP2lTvrnzp1DeHg4ihcvbnjvy5cvOHLkCGbPno3o6GgkSJAAAODt7Q1vb2/kypUL33//PXx9fbF582a0bNlSdv2PHj2KGzduGAaLMZcqVSqkSpUKuXPnRr58+ZApUyacPHlSVUWFHDUn4uLFi1vkeTfPO6/Etm3bsHPnTtXfE6PFhURpAG/AgAGyLZWtvWersLAwPH/+HEWLFpXN3yhm+fLlqoJBagdAsfVmWM2Nq5aCg4ORIUMGk9Zo1gbclguix9aNjNr9SeuW6MYmTJgg2zK+d+/eispr3LvJ1iC6cc574Gue21WrVuHx48c29bxTkwNdTxAEk26/Uvr164fy5csjJiYGBw8exNChQ1GkSBGLnle2nDsmTZokGSxfunQplixZgoiICMyYMQMtW7ZEnjx5RJe1efNm2UoQc+b5969du4aBAwciMjIS+fLls1r5Y0wuEGRt/7C2zXLmzIlkyZIhODhY8TGrb9ggxtrxpZWLFy+ic+fOsq1tmzZtikmTJlmkQDEO6Dx//hypU6fGq1ev0KxZM7Ru3drQol/tgHjmpk+fjl27dmHlypUm3Zpjw6xZs9ChQweL7a8kDY0r+PDhg2SuaCXM17N69er2FsmEWIs/sWNRzeCyYk6dOoVs2bLZNY/YEhMTYzWgq/R8oOT8aD7Yn7lt27aZ9G4w9v79e6uNNICv1+xevXoZ/tZqnIlly5bZ9X21gXtHP8ta60mgL6NYAyrzNLtyQUm16zF06FCrZbKV0rIYN67KmjWrbNpRLYPo1vZV84GSjZcttd2ktpmj0hRb2x76lH49e/aUnU4u9Y7cdMWLFzcZr0+M0t4nWv62S5cuVXxNe/36tSapgcwpHWz6zZs3SJ48udXjRer++ubNm6oqaZxd+R9XqA6iJ0qUCAsXLsTw4cNx5coVREVFoVixYsiVK5cjyuccfft+fdnCykjVrqx48eIIDQ2Fu7s7smbNKjld7ty5kTt3bvTp0wctW7bE0qVLRfPkm/Py8kL69OkRFBSESpUqGd4PCgpCqVKlRL+TL18+i+7VagewbdeuHaZOnYrmzZuLDtypZL2DgoLQtm1bw3pGRUUpHuBUStWqVS1aAv7888/ImzcvBg0aZAigm9O30LWW9gD42hqjRIkSigaK1F+clMxXDbEuRWLEtme1atVM/lYysKR5HmpnU3OTKQgCXr58aTV3nbULXExMDA4fPqxoYNuSJUsC+NoN3HwwJ2vUpFYC1AXR7WmJPnbsWMnPzFsohYeHIzIy0qZBd6zNW4mTJ0+KtgQTW3dbHliMbzqN52nc6lLNdtbpdFa7sNpzo2sttczLly9VpwUSGyhIT2maD2Ph4eE2BdGlWvxpRd9rSz+w5KVLlzQJogOwOhZJs2bNsG/fPpw+fdrQ+tx8PxBLKSbn2bNnotcuqeNbLrhpT0t0a9tMf76Ojo7W5EHY1nQGtliwYAGGDRsmmXN/06ZNuH79ukluXX0Z379/j8aNG2PXrl3YvHkzjh07hv3792P//v0WXaTVMF//kJAQ1K1b12qqDEdUOr57984wWKSeWOBRqgu4Mx9G5fKeK+HodGJi9wOO+A1btmyJFi1aaD5fR4iJiTHck8lNI8Z828nlBI+JiYGbm5uiezKpgbbFBg1VQkk6F6neyY7Kbx8bQXRry1D6uXHDKz3z31psXvr9xnw91FRGa83WbSr3vbNnz9paHAty49sAlunflNz7Su3/SlO0qmVPRbaS3l3W7tnN7x3EiN2DCYKAV69emYyXo2acB+Dr9Vvu/l+p3Llzm9xfyvUG+vjxIz5//owkSZLYvVy99u3bW+0VYU7/261Zs8ZkrEkl4toA4M6iOoh+7NgxlC9fHpkzZ7ZIzk9xW0BAAMqUKYOGDRti8uTJyJ07N54+fYodO3agUaNGKFCgAAYMGICmTZsiW7ZsePz4Mc6cOaNqkMQBAwZg5MiRhtzkS5cuxcWLF7F69WrR6X/55RdMmzYNAwYMQIcOHXDu3DnVrQ/y5cuH58+fS57QrK23Pk/633//bRiNe/jw4XbXiCZPntxkADMAhvzk+vfv3r2L9evXo3r16kidOjUeP36MiRMnwtPT0yQgkzdvXkyYMMGkMiMyMhIbNmwQHbTv1KlTOHPmDMqXLw9fX1/cuXMHw4cPR44cOay2Qrf3RlLq5liJ8ePH27VsNbQeUE6Jjh07KgrECoKAW7duSQ7m+vPPP6tujS03YJNW1ATRX7x4IVrppTV9F9inT58iXbp0aNeuHTw9PQ0DwDm6Nfj06dNFuxS+ePEClStXNnnPlrL8+++/uHLlimF8Cb1atWoZ/m9vS3Ql6VwEQcDjx48VD4gsRW0A3R5S53j9Df+RI0ewYsUKRYODAvL5waUqZaUGkZMjdwNs3CJbzf5k/AAhNh6AvteQcS8ge68Vagc5Nh9XwJg9QXSl9Ov75s0bJEmSRLIi3NVYW3/zQWX13ylevLghRdeQIUNM0nVpfd5UG+jRMg+stda6AByWztJR1x8l28d42WL7gL309wPGaTiWLFli6AH6LZo7d67VaaR+O7F95fXr1/D29rZ4P0uWLLh27Zpdx4nUc5scqbQF5mU3T9Wip2WllPEylR5njrwftCfIHmmWIlYqKGn8L/A1rWj+/PkNf1sLiCotk9LtZOtztFxFjBZpP22lZH2kUgLKta63h3FqFzmCYDlwri0p0kJDQ1X3/JHaX+bNm2fyt9r9JXXq1LL7w7hx4xTNR0kDPuBrzz13d3f8999/ePfuHTw9PRV9zxp9L3G157/g4GDVAXRSTvWTQ5UqVZAtWzYMHTrUKUEmchydTod///0XFStWxM8//4zcuXOjRYsWePDgAdKmTYsECRLgxYsXaNOmjSEvd61atQxdgZTo2bMn+vbti379+qFQoULYtWsXtm7dKtmTIXPmzNi0aRO2bNmCIkWKYP78+TYFUlOmTCl5MrO23gDw+++/w9fXF2XLlkW9evVQo0YN0dYAWkucODGOHj2K2rVrI2fOnGjevDmSJ0+O48ePI02aNIbpbty4YdGtct26dRAEQTTlS5IkSfD333+jatWqyJMnD9q3b4/ChQvj8OHD8PDwkC2T2larcTW3VvPmzU3K/vHjR5tSVqkJ0IgF0Ldu3YoKFSqY5Ik9f/48cufOjR49eojOx5Z0Jo66gTOmJoj+22+/xWorvkuXLuHRo0dYunQp5s6dG6s34mIDrxUoUEBRV2ljUVFRogPGFSpUCHPnzkW/fv0M7xn3glF7jBpPHx0djbVr15p8LpY6o2vXrsicObPJIGquTj+wtLnPnz/j8OHDqFSpEhYvXmxXq1u9KlWq2D0PMY44hpQO7h7brXDlBks0f/gyTkNl7Rwt153dXFhYGLy8vPDdd98p/o652Ernoqe0BdynT58M/9fpdCZBc7nxLpQ+gMpRMg97c6I7wosXL9CkSRObx1JwVGtwtSk1WrdurXkZ9PcDxj3arl69KporPT4yzxWulNyg5uakKiQeP36MjRs3xup9zuXLl5EnTx5Dui9jSlOr2HMusbcl+uPHj+16nrF2/2tPEN38fCc27datW/H27VuTaTNnzmxSQT5+/HjVY7DYQxAEvHv3zmXO1/aypxV8bDyDyTH/DU6ePGkyyHedOnVEfyfzNKRqexwC0umHzO/b5HoZi7F2flPSSl6NV69eGXqF3Lx5E/fv39f0Gq72OLE3YwJZIaj033//CbNmzRLKli0r6HQ6oUiRIsLkyZOFR48eqZ1VrHj9+rUAQHj9+rXFZ2/fvhXOnj0rvH371gklI4pb9MdL9erVhRIlSgjp06cXAMi+/vjjD2HChAlWp3PFV/r06YU2bdoY/p42bZqi7+kdPHhQWL9+vbB9+3ZNylOhQgWHru+CBQscvk2HDBmieNqyZcsK//33X6z93jt27BDu3r1r+PvNmzeCIAjCv//+G2tlsPaaMWOGcOXKFcnPGzdubNN8K1asqHjaEiVKCN27dzf8/cMPPzh9u9jzsmWbaX0sxsTEOGz9jM9h5q+WLVtqsgxBECz+FgRBeP/+faz9juZlMH/16tXLZNpmzZppXoYVK1YIvr6+issk9frtt99Mrr3jx4936LYLDw83LEvp9lVz3OzatUvVtqhTp47o+7/++qtw8OBBi3sT/ectWrQwvFeuXDlNtk1QUJBd32/evLnd+4MjXuXLl7f6m69cudKhZdDpdLG2TUJDQ4V9+/bZNY/FixdrVp6jR49qvo5bt24V3Z6RkZGxso3lXoIgyD4LjBw50vD/uXPnSk6XK1cuzcpUu3Ztw//TpEmj6DtLly512Dbq1q2b1WmSJEmiaF45c+a0+dg6e/as1Wmio6OFmJgYwc3NTfV+YPx38uTJBXd3d4dtU3tfAQEBsbYsNc9Hjnh9+vRJ9Lpq/Hr27JmieV28eFHVsjt16mTxXrVq1YTRo0fbtC5ubm6aX1s+fvxo2DZy5yj9a+HChQIAIXfu3KKfC4IgdOnSRfHyBUEQ5s+fr3j6NWvWCFu3bpWcl17ixImtTvOtkYsdG1PdEj1VqlTo3r07goKCcOfOHTRr1gzLly9H1qxZHdaSiojipmXLlmHIkCHOLoZNdDqdSYtuqVG3xYSEhMDf3x/NmzdH3bp1NSmPcUt0R3B3V53dSzU1LdHd3d1jtXXKL7/84vAcsPbq3bu3RQooY8a5A9VQu52NW1WqzdPnamzZZkePHtW0DH/88Yem81PK0cdXbB6/1hj3jnj69KnqQZSVaNOmjSat+EaOHGmSksfROWsFQcCnT59U/V5qelipbb0pNZDuuHHj4O/vb/JeeHi44f/r1q3DunXr8Pvvv6tanpywsDC7vm+cT9qW1EyO4go9BGOzDJkyZUJAQIBd89CyhbzxmCRakdqeXl5emi/LFmoGoZei5ZhNxtvL+DziLEqOB6U9B+w5tpR818PDA25ubqrTa5w4ccLk7zdv3mg20KwjxOY9TGw8g8n54YcfNOk1Bqgfu07qfsLW7a/lAKR6xmOMKCmXvoeuVAqrd+/eWaSr0dLZs2clj+UqVapoPv7dt8iuRJDZsmXD4MGDMXHiRBQqVAiHDx/WqlxEFA+oGQ3a1djzkOOIVFeOvpnbvn27Q+cPuHYQ/dGjRybjB7hSANCVnDt3zurAt6RO7969HTZvW1I7acURDzK2Ms6lX7FiRSeWRJkffvgB165dw6FDhzBhwgSHLuvNmzdIkyaNQwPjjlKzZk2Tv1u2bIl+/fpZDNpuK1u6phszvo4UK1bM3uJoxlV+v9i6lhinInIFrrL9Y8vSpUsxdepURdPam3Ylrpo9e7Zm83J0EN1Whw4dcti8HSE2xorSc/YYKps3b9asAvqXX35RNb1YQwFBEOx6DrM2ELlaWqe+Spo0qarp79y5I5r6U4rcb3nw4EGsW7dO1fLJks3VXkFBQVi9ejU2btyIDx8+oEGDBg6/0Sciiguc3aLAFra2YlZj4cKFiqf977//YnUgWQB4+PCh4f9HjhxB7dq1Xe7h2xFYYfBtcuTvHhMT41L7lfHAiHfu3HFiSZQ5evQoChQoECvL2r17NyIiIlR9R01Lfq2DMoIg4ObNm8idOzcuXLggOo35QHvO4koVScaU/CaxcfyKDar9LZAbZDo+sjZItHFPS7l9U6tBoG0VV4L4rhpEjyvbTy827/+dvW8DMOTzjm1igxTv27cPqVKlsnme6dOnt6dIFtq3b4/Pnz+jU6dOiqbX+vqZM2dO1d+RO96io6MRERHh8j2wXZnqI3bIkCHIli0bqlSpgocPH2LmzJkIDQ3FypUrLVqEEBF9a4YPH654oDY1XCkgZSs1F+vg4GCbB97SQt26dVGyZEk0aNDAaWUgcqT169c7ZL46nQ4ZMmTA8+fPHTJ/0paSykrzbvjONGDAAOTNm1fVoPbO4qpB9IiICPz666+yA8K2adPG4eXQKn1AXKNlyiG9uNwbfOXKlYqm0zLQaEtAd9GiRZot35FcNYjuCoFiVxUXKhhiu4yu1lq6c+fOzi6CKtZ+r9i4xsdnqs9mR44cwYABA/DkyRNs374dLVu2RJIkSRxRNiIil6E01+3YsWMd0sooPgTRXZ35DUdcTkekBvctskdQUJDFe6GhoQ7N96ikDM6mdfdfR1GSuqxs2bI2z1+n02ma91afdisuBNGNc/G7kkuXLmH8+PHIly+f08rgqhUMcZXSdCmuTqxVqp6WvYiMxytQ6tixY5ot35Hc3Nxw5swZm75rPOaN1uJCoNhZXKFF8KxZs2QD13xWAO7fvx9ntsP9+/dlP3fksf4tUB1EDwoKQteuXe3qYuFqeCNHZJ3+OHHVh0JHUxNQdcTDPc9Tjvet3uDHlRtCck3ly5cXfT82z1nnzp2LtWUpFddaLTnKx48fkTlzZmcXwyl43ZbXo0cPZxeBXIzWA3dLcaWBfrV27do1lCpVyqbvDh8+XOPS/I+anM7fmnHjxjm7CAC+jisihc8KX8eDjCu6devm7CLEazYl7l25ciXmz5+Pe/fu4cSJE8iSJQtmzJiBbNmyxamu74kTJ4abmxvu3buHDBkywMPD45sNohBJEQQB0dHRePDgAT58+IBnz57B09PT2cWKdc7Oo/utVl7Epvj8UCXn+PHjzi4CxUOxGUC8ceNGrC1LqVWrVjm7CC4hODhY80G+4opv9ZpCzsH7RHJlcr0MyHWcPXtW9H1WCn+ltGe6K2O8036qg+jz5s3DiBEj0Lt3b4wbN85wwfbx8cGMGTPiVBDdzc0N+fPnx71793Dv3j1nF4fIpV2/fh3z58/XtFs2KcebF8cLCwtzdhGI4o3YDOjMnTs31pZF6nzLD2tsuUexaenSpc4uAhHFcd99953o+3wO/cqRvTViy7d8X6YV1UH0WbNmYeHChWjYsCEmTpxoeL9kyZLo37+/poWLDR4eHsiTJw/Wr1+PFy9eIG3atPFqx4qKisKaNWucXQyKwwRBwOvXr/H69WsIgmAYGCY2Ry2n+FHzTUTfDmcODEyuw1peTiLSRseOHZ1dBCKKpxhEV44V6PGf6iD6vXv3UKxYMYv3PTw84uwo6zqdDt9//z3+/fdf3Lx5E56envEmkB4VFcXWlaSJxIkTQ6fTwd3dHa9evWJQl4iIiGTF5gCz5ByVKlXC4cOHnV0MIiJykEqVKjm7CKSRjRs3OrsIcZ7qIHq2bNlw8eJFZMmSxeT9Xbt2OXWUd3tlzZoVderUwZUrVxARERFvapBiYmJcYsRnih9iYmLw/v17hIaGMq0LERER0TcuvjwzERGRuAcPHji7CKSR3bt3O7sIcZ7qIHrfvn3RrVs3fPjwAYIg4PTp01i7di0mTJiARYsWOaKMsSZLliwWlQNxXaNGjVxywC0iIiIiIiIiIiKiuEB1EL1Dhw7w9PTEsGHD8O7dO7Rq1Qrp06fHzJkz0aJFC0eUkewgNcIyERERERGRPdgSnYiIKH64d+8esmXL5uxiuDQ3W74UGBiIW7duISoqCqGhoXj8+DFatmyJ48ePa10+slOiRImcXQQiIiIiIoqHOOAcERHRV4cOHXJ2EewSHh7u7CK4PJuC6HpJkiRBmjRpAAC3bt1ChQoVNCkUaad79+7OLgIREREREcVDQUFBzi4CERERaeDjx4/OLoLLsyuIbq9Ro0ZBp9OZvPLmzWv4/MOHD+jWrRtSpkyJZMmSoUmTJggLC3NiieOeBAkSOLsIRERERERERERE5KIYRLfOqUF0AChQoACePXtmeB07dszwWZ8+fbBt2zZs2LABhw8fxtOnT9G4cWMnljbucXNz+k9MRERERERERERELurFixfOLoLLUz2wqOYFcHeHn5+fxfuvX7/G4sWLsWbNGlSpUgUAsHTpUuTLlw8nT57E999/H9tFjZMYRCciIiIiIiIiIiIpjx8/dnYRXJ7iIPrWrVtlP793755NBbh16xbSp0+PxIkTo0yZMpgwYQIyZ86Mc+fO4dOnTwgICDBMmzdvXmTOnBknTpxgEF0hBtGJiIiIiIiIiIhISpcuXZxdBJenOIjesGFDq9PodDpVCy9dujSWLVuGPHny4NmzZ/jtt99QoUIFXLlyBaGhoUiUKBF8fHxMvpM2bVqEhoZKzjM6OhrR0dGGvyMjI1WVKb5JlSqVs4tARERERERERERELopjKlqnOIgeExOj+cJr1apl+H/hwoVRunRpZMmSBX/99Rc8PT1tmueECRPw22+/aVXEOK9Ro0bOLgIRERERERERERG5KAbRrXOpXB8+Pj7InTs3bt++DT8/P3z8+BEREREm04SFhYnmUNcbMmQIXr9+bXg9evTIwaV2bTwIiIiIiIiIiIiISArTQVvnUlsoKioKd+7cQbp06VCiRAkkTJgQ+/fvN3x+48YNPHz4EGXKlJGch4eHB7y8vExeRERERERERERERGRJbYrub5HidC6O0L9/f9SrVw9ZsmTB06dPMXLkSCRIkAAtW7aEt7c32rdvj759+yJFihTw8vJCjx49UKZMGQ4qSkRERERERERERESxwqlB9MePH6Nly5Z48eIFUqdOjfLly+PkyZNInTo1AGD69Olwc3NDkyZNEB0djRo1amDu3LnOLDIRERERERERERERfUN0giAISif+8uULgoKCULhwYfj4+DiwWNqJjIyEt7c3Xr9+/c2mdmGXDCIiIiIiIiIiIhKjIjwc7yiNHavKiZ4gQQJUr14dr169sruARERERERErqREiRLOLgIROUny5MmdXQQiInJhqgcWLViwIO7eveuIshC5vNmzZzu7CERERETkIL/99puzi0BETlKkSBFnF4GIiFyY6iD62LFj0b9/f2zfvh3Pnj1DZGSkyYsoPnNkapwECRI4bN5ERET07ejYsaOzixBnMQ0i0beL8QwiIpKjOoheu3ZtXLp0CfXr10fGjBnh6+sLX19f+Pj4wNfX1xFlJHIZjnywGjlypMPmTUSUKVMmZxeBiGJJwoQJnV0EIqI4p3jx4s4uAhERuTB3tV84ePCgI8pBFCc4MojOlk9EVL9+fWzdutUh8z527BiyZMnikHkDQGBgIFavXu2w+RORct/ywFD24raL+77//nucPHnS2cWgOMjNTXUbQyIi+oaoDqJXqlTJEeWgWJQiRQq8fPnS2cWIk5QEunPlyoVbt245ZN7WNGzYEFu2bLF7PkTkHClTpnTYvB2dMipdunQOnT8RKcdAsO247eK+SpUqMYhONmEQnYiI5Nh0lTh69Ch+/PFHlC1bFk+ePAEArFy5EseOHdO0cESuRkmgO1u2bDbNW4ubtg0bNtg9DwIGDhzo7CLQN6pevXoOmzfHXYi7duzYYfJ3vnz5nFSSb0vlypWdXQSbpU2b1tlFIHIaZzf6KleunFOXHx/FVko69gwmIiI5qqN2mzZtQo0aNeDp6Ynz588jOjoaAPD69WuMHz9e8wJS3PHy5UsEBAQ4uxgOpeTGytYWTFrctDFIpg3eQJOzNGjQwGHzdvT5gceN49SqVcvkb2ekzSlWrJjh/x4eHrG+fGeIy2P9cGBR28XlluitWrVC9+7dnV0Mp6tSpYpTl8+GZdqLrXsM3suQK0mUKJHTlm1830dE/6M6iD527FjMnz8fCxcuNBm0qFy5cjh//rymhSPHcNTDga+vLwoWLOiQebsKR95YaZHGgTd+6ixfvhxZs2Z1djHIQQoVKuTsIqiSIkUKh3YjdnQXZZ5/HMd82xYrVgxfvnyxaV4ZMmSw6XvG+0/dunVtmkdcY+s2dgXfSkWHI8TlIHqWLFnw66+/OrsYRJqz5x5DTS8/3stoZ9iwYc4uguaKFCkSq8t7//49vL29Y3WZert373bKch2pTZs2iqflfRRJUf1EfePGDVSsWNHifW9vb0RERGhRJnKwuPxwIMXdXXV6f5s48saqdevWdn2/Q4cOGpXEVHyuGPny5QtiYmIs3ucNdNz37NkzVTdK35oUKVJoPk8eN7HL1kqRPXv22L0840YU8ZnY9cFZGjdurGp6Ho/fLv723AbxkT2/qZqeeMyJrp0x/8feXcdHbf5xAP9cqQGlghZ3L1qsuHS4DYYWh6Hjh47BNmTAhutwGS4bOmDI0OLS4u4yoBQGpS1Om98f5bLkLrnLXe96bfm8X697tXcXeZJLniTfPPk+Y8Y4ugg2Z+324evra/X8MmbMKL6XNv4aOHCgVdPUKkOGDDadnqenp02nZ40sWbJoHtbd3d2OJTGNx7DEzeJawNfXFzdv3jT6/PDhw8iTJ49NCkX2Fd8geq9evVS/c9QOb4tHVzdu3IjIyMh4T8faA4S7uzsKFChg9XyLFi1q9bhqXr58iWPHjtl8uomFWhDd3KNzs2bNQpEiRexVrCSlTp06CTIfS1uzWHuy6kjW1J8dO3a0al5btmwR/0/oVjXxYa41mfTiwtvb276FSaKKFCliVfo96fb5uQTRAwICHF0Eq9njfOzXX3+1+TQTI0c1NrFFnxg6nY4X32AAwlFy5Mhht2lLf9POnTtbNO6HDx/E/0NDQ032X8Vth0yxdvuwVYO/6tWr4/fff8eZM2fQokULm0wzoYSHhzu6CBZxZMNT3sxL3Cz+db7++mv069cPJ06cgE6nw6NHj7Bq1SoMHjzYZHCVkialO5BTp07Fpk2bFIdPyiceX375JdKkSWNyGC3Ll5yCC56envH6TRN7CwRfX1+rguiurq52uWmRFG3btg1nz561+3wS+7bkKJMnT9Y8rPRkUFpP2SrfYoMGDawed/v27WZvQGbOnBkDBgwwOYz0pDMhT3779euXYPOSSqinsIC4datvwfPVV18l2HwdadCgQY4ugtXscT7miFzbCxcuTPB5OurC2RZp/dq3b8+Lb3KYGzduICoqyu7zsTSILj1WFilSxGT9yP3HMZJKv17Wbh8jR460ehzpMSlFihRo2bIlSpYsaddtNamlxNTKknMjRz6N6Kh6KCnH8hKSxVdfQ4cORWxsLGrVqoXXr1+jatWqcHNzw+DBg9G3b197lJHiaWCxYvC/cEF87/LqFT4oDBcOwDA8McbbG2mePpV95t6lC5oCkHZrtkdheksAaAknTwMQKnlfCIDWNqedAdmytATQGEAxPz88evQI/z5/rjjeVQBjJe99fX2BH38E7t7FChPzC1i4EI0BbJF85gFgruR9rmPHoBZKGg7gruR9RQDirad27TDp8WMotYWPAtDb4LMeACpJ3jc9cAAIDcVyg+GOGZQPAGYB0NRe/vBhuFWoIL4tkjo1hr56Jb53d3fH27dvFUf9BnGth4cPHw4AaIC438ec+4hbT1JDARTWMO5fAP6QvE8B4DcTwzf44w9Mf/ECbwCMB3Dl0+eurq4oCaC/yniVli1D+6xZ0QBADICuBt+3B1BLQ3nPAphu8Nl4AJk0jLsSwF7J+wwAJmoYD4hbn08k72sAkCY+adasGVxdXLD2999l4z0FMMRgWs5z5qDIqVMm1zMA7AeM9q350FZHGLZ9LAjgO3Mjde6Muhcv4nvI64hmgOr+KXUdwASDz0IaNcK5rVtNjle+fHl8d+IE/pJ85gFghoZ5ukZGAnfvyqcHwFT3gB79+2MRgGgYb69dAUjb0Xr064dFn/7P/fPP4v//Pn+OUwbjToW2OmIx4uqYkJAQ+Pv749KOHThq0AmmmkGAWN/Vq1cPDVOkQA0Tw6eMiEDBSZMwAsBohWkVBOD59Kk4TdfXr/HeYLidADZK3qfAf/VjCicnxJg4YZ4C4JrkfXHE1XMAUOrgQajdVvsI4/q7DYDqqnP6z3kAsw0+GwMA3bsDAOYLAj6qjLsGwAHJ+/QAfv40bt2zZ2EqXDcccecEelUBDLhzB/Xq1kVERAQybtuGeQrjPYPx8bsXAMNnHQoXKoQrV6/KPjsIoNPff6N27driZ79CWx0xF8A5yfv8ALQ+5Pw/yOuIJgDqfvrfrV8/o+MnEBeE+fPyZUw1+HwYAC3tMP9E3LaolxrAJDPj5DlzBoGIO0bcB3D69GmULl0aZRF3LmQo1aBBmCN5/wrAtwbDdEBcHWPOKQBLDT4bD8B0s4M4ywGckLzPhrj1pMVQxKWq03eS+gXifh9zHgIYZ/DZuEyZkObJE6XBZXbDIGABbfU3Pg13Q/LeD3HnaubEIK7+LlOmDJYuXQoAaIG4/c6ci4g7lrZo0QLz58+Hj48Por/9VjxuVq9WDQeCgxXHXYe4/U4vHYCRiGtA89Tg3N/QGMSdE+hVhrZzvPzly6PeibgtIjAwEHv27MHXANTCNSnd3fHm03nmYcjP8QBgMpTriBQDBsh+t0UALkje5wWwvW5dnA4NRbiZZR0MeR3RAHHnTTrEtUYTALxF3O8Y++k9Ro5EZ8RdC0n1AJDZ5Nzi7AVwSPI+FYz3X+jnZfB+IYAwyWfFAHypYZ6vEbc+pb5E3LHOnPMANiHu/Fl/Y34I4uo2czZCXn9nRtwxU2fw8nn+HC8//Z9n7lxMAjAKcXWbXiCARpJx8OlvgcuXsa5rV8TGxsKtXz/0iYiA4S3S7xB3DVp4zx6UVZgGELd+twGQnh2nADDv03cC/tsGlN7PAiB9nr8wgI4K89HPS79Nffy0rFINoa3+vgr5NTsQd72vJanfNsjr77T4L1ZQMSAARw2eVpbur9M+fXb48GFUrlwZ5T6VWU02X1/88/AhXkjG1WuLuN8GkG/zhv+fArDdYNxhiPuN1MbV/10Pef2dHXHnajEA0qRJg6ioKOgAdC9VClnq18dPo0eLv9eUT8PpVUfc+bf0d612+LB4fqT//B5gdN3+c/bs+PjgAfxLl0aDmBhg+HD0f/YMLz6NVzo0FPj+e6B2bTh5eIjjpUbcuZt0GzLcrvR/pyHuOKlXBkAQgPeI294G9O8fd+Ppu+8wXjLcK3w6B5VoDaC0wfQN5w/ExXoMA7SjEXeNpDaO3koAT3PkwP379wHEnUd8qzKO4fjDEHeNVLhwYUyaNAnhK1YYnVfrADinSIGPkn5wHgCYaXBDfSCAAgbjSb1D3Pa0G3H7jp4z/juPUPtNYhG3Dc1E3HaoX1d+iDvH09ch+nrJyWD+HxC3Tpo3b44NGzYAiKu/K376XjB4SevWSwCWfRru8ePHIA0EK7179064dOmScOLECSEqKsraydjdy5cvBQDCy5cvHV0Uh3k3fbogAGZft4z3L+Foxoyaxp3zaVMaNGiQOO5rDeMJgNDEYJ5VNY4nAIL7p3EGDhwoABB+1jjeAUAoXLiwOM8BAwYIQunSmsYdZlDedBaUt7TBuItr1tQ03lOF32aZxnmuVBg3TGuZly0TBEEQLl26JPTv3194smuX5mXN+Gmb0M9ziMbxziiUd5/GcccbjOdiwW9TXTLe9OnThYYax3unUN5fNY67RWHc6xrH7WMwXm4LljWfwbg9NY5nWEds2bJFEJo00TTuHIVltaSOkG5L1tQR+pcldcSUKVNk4yZEHSGEhMjGbatxvPjUEbszZTIaN9zJSdO47fXr5pPY06c1L2tG6boVBGGMh4em8c4oLGtC1xEAErSOkG7/SamOACBs0jiu/jzC2joivucR1tQRhssaonFcfR3Rp08fwdrzCEEQhOrVqydIHbESxtuh1vOI9gbzLGHBstryPOKlv7+mcccDwoYNG8TxErKO+PDhgziupXVE69atxXr4Y+7cmsZ1RB3xMUcOcZymTZsKltYR8TmPSEp1xFCD8dJbUN4eZcvKxg3SOF74p+HTpk0rjrtc47grID8XACA80ThuO4NlLWnBsmYAhKpVq4rjDtU43iU3N6Pf5oDGccd9Gj5r1qwCAMHVgvIa1hGNNI73FhDSpUsnG3eWxnH/hPF2eEPjuL0NxstjwbLmNdgeemkc76ZCef/UOO4shXHfahy3kcF41SxYVleDcX/RON5+g/E2bdokfChWTNt8f/lFjHMBcfuC1vKWMphvO43jhcN4/a7QOO5yQHj37p1s3HCN4wZBfnwsZcGypoe8btpZvbqm8UIBIVWqVLLy7tc4z18M1pGbBeWt9mkcd3d3Afh0Dazh9fbTeM2aNRPnO0fjuJskZf3caY0dW/ycQJcuXRAVFQVXV1cUKVIE5cqVg4eHB169eoUuXbpYOjlKAPF5VD+DpCOLxMzSR09KlSol63FaEARbFylZKVKkCKZNmybr2CQ5s1V6i+QuvvlbtT6qNnu2YZuBhFGoUCHzA9lBUFCQ+H+pkiXtPj+l7d0jtZb2Y3Gkj+DyMcDkoWYNU88EJE6fS4oZa7m4uODQoUPmBzRj2DCt7chtZ8iQIciWLZvm4TNlkj/P9fDhQ7hZcFx31DmhrdIzJea0CNKy8dxbG1vkyrdEs2bNsH///gSdZ3zI0rjFYzpaxzUczpKznviUb8qUKfEYm8xpmQjyizdt2tSi44CnpycCAwMBJMy2n8bDA/nz57d6PvG5RrDV8dGi/dXgGGVN6Vu2bInNmzdrn+env/p6zdp6yRJMYGU5i7fGZcuWYfz48Ua5o9+8eYPly5fjt9/MPdRPCS4oCLl7//cweaqUKfH6zRujwUqVKQOEhMg+O9C6NfK1bYugoCDxka07t28DAHJLOpKNgiQtySdFYL6y+XPzZrR6+hR/fv1fwoKTAHDrFgDg9evXOHXqFDob3KDJkD49cuTIgXenT8s+n4y4lAX/+9//xM/y5M1rNN/bW7fCM2tW8X1sbCyweTPw/j3y5sunWt6JEyZg7ndxiSTSpk2L58+f4wXiHgvVa9igAbb99Zfi+P8YvD+fK5c47q2bN1GnTh3c/LTsUtIEA2XKlEHu3LnhHBCAfJJeuW/eiHsI7ddff8WMmTPFz6MVylEB/z3aZsrNpk3lHxQuDFy/jvyfOkAdP24chqpcUP9r8H4h5GkU1BimXwDi0qOkBNC1SxcsNlHHvDB4/wHyx64MXb92DeXLl8eLiAjZb1O6dGl8qzLuwgULUK1aNQBAgYIFFac7GnGPY3Xp3Bm/LVkim9/WrVsxaPBgAPJHUPXqQFv6AsOuWf5BXDoLLe4ZvF8DYJ/k/YH9+5E5c2YUNAgiK6aNmDULb0eNQslSpUzOM0Lhs/9VqYL58+bhzZs3SJkyZdw8Pn6En0EeviP168ven8J/j3WquXrlCn777Te8myRPkjAdxmlllLwGMN8wyL9+PQqb6EDbv3RprFy5EgsMOp2NQFx9CADbtm5FpkyZULZcOaPxL1+6BOTOjSZNmmDVqriHbwcfOAA8fIgiKjn4L1+6BEEQUMnPz+i7YYDsMczLly7Jvl+wYAFcXV1Rp0ULlOrRA2fOnBG/uzp/Ptq1bau6rHpvfHxwSFrfFSxolNZk0MCBOH78OI4cPSr73LCOWJs6NdZEy2usrFmy4OGjRwCA9OnSYeLEiQjqaphACeiCuEdZc+XMibv34rbw7Nmy4cE/8lr3mcF4HxH3qCQgfwxZyV0AX3zxBd6+fYtDhw4hWDJu32++wa+zZonDftm0KTaZOGkeB2B//vy4/qnevnD+PIC4c6zJkgtlpcyyi5o0wYRPfQR07NgRpyW/m9Qjg/f/IO6x/gvnz2Px4sWYPsM4SUX/fv2QJUsWTO7SBQskfaL8AeCdv7/sHK+4QYe0QW3bYsnq1cbTBLC2cGEMGTIEnT7lsW3VsiV+/yMuMcNXzZtj/YYNeA7j84jy0HbR0mH4cAz86SfxoiMUcSlkihcrhvMXLpgc953B+1/x36P651T6e1i/fj2Gjh1r9HlbxB2rTJk9axYWG+QWjwBQEsDZM2dU69JTJ0+ibLlyuG7w+Y5P4xo6euQIKlb6L+nb0UOHULm8/OH/EYh7rFuf8qNsmTI4ZXAeCMiPrV988QXGjRuHQMRdRIwcMQI/jTZMsPQfw+PNdQClYLzPKNEn5JswYQK6dOmCaoUKYbfJMeLqG6RMCfz8s/iZr68vnk6YgHpV5QlSOnbogGXL5Q/TP0Hc8VvvI/57VN2cGwbvDwHwB9D966/Ro8d/iV38y5SRDad08TsRxqlAlLxU+nDTJuDdf1u24fz0Hhi89y1dGpg/HwBQpmxZo+FDTp3CX3/9hZGjRhmNuwEwSgumJGTzZsCg7vgWn1JNKShRvDjOfaoflZKuVIFyHXHi+HGUl6QjvGnw/RkAz7ZvR/r06bFgwQIsXLQIhlKnSoUDBw7gncHxei7i0gd6ennh+cuXcAbgirj9QV+Wv3ftwmBJx+u1atXC3r178Q20pUGSlnflypVI7+UFw27c9fOaPm0a+g8YIL5P7eUlG24/AKUka9LtLqBCBRw8fjxuujodqlevDiAuzdSL+vXx1/b/kmTs2rkTQ4YMEX8XAFBKANAS8vPZmjVqYJ9CcP6SwftbAFZ06ICly5fLmnNu37EDdevVgwBg3rx56NGzJyIgD8wtR9z5rHS80JAQQKeTvQY1awZ8up7V64i4tDkzZsxA3379jJvcIm6dG+5z7xF3LiBNj+Ck8v6KwbhHAVSTTB+f/vb73//w68yZcELc9ZoAoJNBAHImtF1XGZ73AHGpvMwdqwAYHW8eIy5lDgC0CwpCp06dAACBX3wBAMibJw9ufVqvhucgWxWmJ7Vo4UJ0+/prGEco4o5VMwGsWrECmzdvxvoNGxRTeBjWS0BcCjDD1BdK6XOaFC8OrFsnvr+IuHQYKQB8N2QIJkycKG57GTJkwN59+zBr9mwIML4+Wo643xb473cd9+maWfo7KyadnT0biIqK21YBQKdDu3bt8PhTOrK9e/fGfffpeiR79uwA4rZL/RFOP49CBQti4aJFqFylCgQA6dKmxZatW/G6ZUvg4X8JXXYiLjbg9ul98IEDkpX131pyd3HBn97eKCK5zhkDyNL7GR7P9O+fAWhjsA3Xg3IwUgCwdOlScfvSR0batm2L1atX4xoAwyOUoPJ/hMFwp0uUwHfS5ftk6NChGDf+v6umNzAOovd0cYGLpJNi6bc6/Lf+pOm0xo4di/Rp00J6Zico/E3x6aVPG1m7dm1s3rwZhxCXGki/DQuIiwu5urnh7bt3Yr0kTktS5smIS4VjmBpLP7x+WsrJj8kkS5q2R0RECDqdTrh586bw8uVL8fX8+XNh2bJlQubMma1vO28nTOcSB5JzAMNHU/Svu3fvGn22ZcsWQRAEYebMmUaPeRgOKwiCMHjwYMVpq70EQRCWL1+u+Lme9FEl/atixYqyMgwZMkT8f/To0arLrrYMffv2NTk8AMHLy0tYvXq1+L569eqKwy1dulS4fPmypuXv2bOnrExFihRRHG7evHni/998841Y1iZNmiiusytXrlj0O5j6fUxtT0uWLDE7vrl5uLi4mPxep9OJ/+vT9tjqJQiC4OPjI/vs/PnzQlhYmOo427dvN7ut6F+G+4PW8ez50rKP3rt3T1ZOpe2yXr164vK8fv3aqrI0atTI5Palf+lThln6206aNCle6+rvv/82mqb0vXT/BSBUqVLFbDm11EsnTpzQvM3oPX/+XAgPD9c0bzVz5syRDatWH0lfsbGxqr9fo0aNhKZNmwrv3r0TRo8erTqNlStXCoIgCJkzZxY/e/78ufDq1SvZ9DJlyiTs2bPHZHkKFiwo/r9x40az5f/qq6/E/9WOjYbbbOXKlY0+HzNmjOx9TEyM8NdffwmPHj0S6tSpozitP/74QwAgtG/fXlx3EydOVP3t7t69K0yePFl2PqN2HDK3HYwbN07xu19//VV1m6tRo4bi76x/KR2r9a8yZcoIBw8eFN9/88034v89evSQlc3S5ZFu24b128uXL432Y2uma+jDhw/CiBEjNO0jhq+dO3eK/+vTuZhb/u7du8u+y5Mnj9nfPzo62ui92vSfP38urFixQnjx4oXZ9bFv3z7ZZ8eOHZO9L1mypKb1YLgNBgYGmvwNrl+/rmm606dPF6ZOnSr7LDY2Vnj06JHRsCdPnhRSp04t++zt27fCunXrxPclSpQQ//fw8BAACKVLl7boN//pp59M7jvmfn8trzZt2qhur+bGbdy4sbBr1y4hIiJCHGfkyJFCrVq1jMq3cuVKi8tWoUIFxWVs3Lix2XErVaoke+/n56dpnjExMWaHefTokbis+s+++OIL8X/DcyHDl+F2Zriu/vrrL/F9w4YNrf5tIyMjZe/z5s0re3/8+HHZ+5s3b1o8j7Zt24r/f/3117LlXrNmjdC6dWvZstWoUUN1udXW2b1794ScOXMKo0aNMlue7du3G30WGxsrNGjQQKhVq5bw8OFD8fOaNWuanJYSU3V3bGysrA5Qe2XLls3q33TRokUmvzesvwEIy5Yts3g+5tb19OnTrV6GkSNHGv3e0vrS3PZg+Lp06ZLZYSyZnqWvt2/fqn537do18f/79++L5Vi8eLHm6R86dEjz8hnKlSuX6jD//POP6vT8/f1l60sfqzO1rKbKEd/1L03JYviSHieAuOOzYZmk9ZQlr6CgILHsP/zwg+Iws2fPNvrMzSDtk1q9Z+p169YtISIiwqrxTH1vWDb9S58mzdTL1L72ubN5Ohdvb2+kTZsWOp0OBQoUgI+Pj/hKnz49unTpgj59+midHCVCHpLOKfQaNozrAiQgIMDoOyWGj+nUN2hBaiuG85G+FwzuGm6XtJ5QI+192c3NTXGYJwYdUhnOR699+/YoXLgwJkww7JbQmOE05s2Lu5c7bpy8SyxpCybpY4vFiyt39+Pj42N23ragtg6kKklaws2cOdPocawYSScejiD97efNm4dixYrB3d09wcthmA7LkkfXLTHJoGW2Ev3veuDAAdSqVQsbN8rbuqRLl072mbnH8y5evKj4ubl0Ln5+fli+fLlYN2WQtIyND51Op6lOk5ZPqayG69KSxxSbNWum+l25cuWwYMEC7Nmj1GWzMh8fn3ivH31rFj0tdaepZe7bty82bdpkNj2SNH2Nno+PD1KlSmV2/qbKY5jSQUmtWv91AaylPlPbZg3Xg5OTE+rXr4/MmTNj586dRsP3798fLVq0wIMHD8SOBM2VIWfOnBg0aBA8Pf/r8tXc461r1641+b0lDJddf36g5+npiV9++UVxXFPHbLVtqHr16ujYsaNFZTRcf56envjiiy8wfvx4lTGs4+zsjJ9++gl9+/a1eFwty27IcLm0bKum1rmhNGnSoF27dvD29ra4LFIeHh44c+YMvvzyS7PTMdyeqlSpYnJ4tfIr7ZMfJC3F9OMqja/T6XD9urxtpJubm2wZT0ueeFy5ciVmzJihqW7UUnZbKqjyZJwWzs7OqF27NrwkLZhHjRqleAyyJFVMhgwZ8OjRIzQ1fKrRAobb2wUzT5boaVnnSsOUlzytkSOH6W6CW7VqZfJ7e10D6VtnSknr3rx58+KsylM01hAEAcUMnhDUUgcZypEjB+7evYtvv1XqIlVO6dim0+mwbds27NmzJ977lKnxdTodvvrqK9l5+IULFzBlyhS8e2f47JJ1zKXosWb9AsbH5ZEjR5ocPleuXFbNxx6sXWYg7ik+c8xd26ld/wMwysCgZ7gdtZU8wZlV8sS70rCWMLVusmbNircqT1Eajqcvg6llnaHwlKI19E8YK81fyYYNG2SxKOn1uVq8Q6sFCxZoKoMh6fpzdXW1KlVa7ty5ZecphtdEatulUlxOSil+UrZsWdl6U1OkSJF4nTOQBSlw9u/fj71790IQBKxfvx779u0TX4cPH8b9+/fxww8/2LOsZCNaD1LdunUTK5oyZcogODgYd+/etWheAwYMwO7d5h6+tZwlB9p69ZQeYlSf3tSpUxWHcXNzw8ePigktZPQVpdYbD1JVqlTBu3fvMHToUNVhElvOYX0wNUWKFDhy5IgsaA7IDxZ9+/Y1Kr+Wyt4WRowYoXgyKZ2//maFNEhlKX0aDktNmTIFAyXpebJkyWJ1GeJLvz9Uq1YNe/bsQcGCBWX58MuVKyc76JvaJhs3boyiKqlIzAXR27dvj/bt24vvV65cKf5vTYBVL2XKlFi/fr3Z4aTLNWDAAKPvDU+mtOZ4B+JO+E0FOL/++mtZgNcRcubMafJ7w4tqQ9J61fBiwhqCICielEtZGqC0tFxOTk6Kxx9L6uXBgwdj2rRpAOJulsnyuVp4EWnuhF7tBoY1F6uGy9irl2HyFfWLAVMBXX9/f8VxihcvLrvBEB/ffUrDZk63bt1sMj9TbHEM13LctCSIbkmZDLc56bak/79OHcPEE+bnaa4PCul+MmTIEPF/w3WRJk0a1YCH0jTTp0+vuZw+Pj743//+p+kGneF84qt06dLw9vZG9+7dFb+XrhN70AfCK1eurHkcnU6HzJkzJ8h5q4uLPBGetfO0pG60R+55L4NULFoZbmMlDFLmmKO0H0tZ2+CladOmqF+/vuz8TctvY8m6tea3NlxfSjdEpOvBz88PAwcO1NRn0vnz55EyZUpUq1YNBQqYSippe5aeG8dn37T3fm1JXaMlT3d0tFKCU22sufltKlC9evVqFCpUCKNGjdI0rVJmUmZK59WmTRvxf8N9Wbrdq51P61OWmnLs2DGzjb0s3T6yZMki3gzs1asXUkv6ZgoNDbVoWlLt2rWT7Rdaz1MB+fqzZnuvVasWdDqdrD4rZ5Ae7MWLF4rjmmsk06BBA6PPLCnj6dOnVRu5kXmaz+qqVauG6tWr486dO2jSpAmqVasmvgICAhwa8CHbMKzsDe+AVa1a1WxQxbCS1+l0ZscxvNjp/Clnqp6lF/vWVHLm5tG6dWsA0BRE16tSpQp27dqFWwo5zk3Rn6DpgyyGTLW6tyWlAImSL7/8EoIg4N27d6hYsaLRCZxagEQrWy1jqVKlFE9W1AJiv/zyi2JnyWrbV4UKFfD+/XtZKwRLtkVvb29Zq0ZH3ixRWid///23+L+tymaulZchW66TLFmymA1sSIMz0hscauUxNz1pS0sPDw+0atUK06dP11BaZYMGDbJ6XCWpLehMFADmzp2redgOHTpY1WpXShAEszcnLb3QkQbDpNu92nzUguiWMLWd2DqI/uqVUs8L6kzNX0sgUC24ayqg27lzZ8yePRvnJfl1lcbRwlxA1BzpeY+WVtnm9O/fH4B8O7NFPRafluhKrVgtKVPlypXFfMnWlEuNUmvl4OBg8X/p9ufr66s4jSZNmqBdu3ZG55GA8jKqtVBXu3C29rezJIh+/PhxxUZJFStWxL///ov58+cbBfI6d+5s9gZjfMunf9o4W7ZsuPep3wlz9EEwSwPDv/76q0XDA8CVK4bZpo05OTnJGtYoNZiwZBu2xc0RqaxZs+LYp/6npAy3O6UnU7Rsm+vWrYOLiwvWrFljUbkEQTCq27WuJy8vL/z111+KT5yZYu7YJr3WMBWsVCNdXxcvXrQq2K22zosVK4bXr1/jwIEDqk8dKq0/pXpLy/wsHcaa4VOmTIl169Zh69atJseNz/HN8GlKrR1hL1y40OY3ZgxZcxwwdd7TqFEjXLlyBWUV+p5QsmDBAvTr1w/nzp0zO6ypILipsnt4eKBRo0aaWn1XqFABDx48EM9xlNStW9ei+QNxje1u3bqF2bNnw8/PD99++y2mTZumGFBWOubpn8SXNugzbBzZW9JPoDnS/dTwKQ8t3nzqg1B6rJg6dap4Tjhu3Di4u7vj3LlzmDx5smzctGnT4i+VPvb04y5cuFDWKEyn02mum1OlSqXayI3Ms/jonzNnTjg5OeH169e4evUqzp8/L3tR4qe2cxkGzX/88UeLp214EaRlR5Y+0vb999/LHrlRY00rb1PMtcDQH5AsCaIDcZ1C5DHoiNBP0gGgqfVjmFpBT3oAyp07t0XlMaV06dKyGxqWPs6lPzmZM2cOChYsiMWLFwOIeyR45MiR4qOlhhdHlgRSu3fvHq9W4gCwefNmuLu7449PndqpBX2GDRsmLoMWnp6eRi2htOr6qaNE6fZg64szqTKfOhlr0qSJ4vdK26W0VZMlLRxN+emnn6waD1Auo1JwyBRz5ZaecCs9VmdpEF2phZC16+7PP/80OuGSsiagUq1aNbRt2xZjJR0m2qqOcXZ2xkxJh8fW0ul0Js81LNlvfvzxR1kwSrpNrVy5EqVLl8bIkSNlqYu0pnMxxVS9r7UFrZ65liq2TAtluOxKdadafWo4rnR9pUiRAr179zb7ZIMW//vf/+K1zDqdDnv27EHJkiWtfopOus9MmzYNgiDIOjuPT7BTT6kl9Lhx42QtnNTq6WEKnYFr2X715wQpUqTAfoXOAaW0XIRrOY5UlXQEqiWIsXnzZri6uiq2NFMbx1wQ3RYsqR/Kly+PsWPHGt0oEARB3I9sdQzW03LzSXo81HretnDhQgBxx+aGDRuK53/6YFnjxo0Vx/tG0vGuIAhmb8BWqlQJefPmNfsERJ48ebB9+3acPn0aoaGh8XqiDYg7ptsyZcvixYtRuHBhs8NZ+wTnV199hdevX+Orr76yeFzDlujx2UdsEfD08vLCypUrsXr1aosbAADazhVsUQ9I07+0bNkSALBlyxaj4ebNmydrhGNteUwtV8eOHTFixAiz0zA0a9YscbuRXudYW++0bt0a/v7+spuxadOmlT3xagnpk/PxpXZOZYtrsvi0as6QIQOmT59u8bHVVEt0qRYtWiAqKgpbtmyJ17osWbKk+P9PP/2E+Z86qpaWzdx5a548ecQyTJw4URaol25/hk++A8DVq1fx6tUr2bm04c0Zral5APn6W7RokcXbqD7NjnS9e3p6IiwsDM+fPxczDxQvXlzWMEr/9GT9+vXx9Ol/XWp/8akDXyCuRX23bt1kDZmdnJw0PS2jZrlBR+ukzuIa4enTp2jYsCHSpEmDokWLolSpUrKXtcaPHw+dTifbUd6+fYs+ffogXbp08PDwQPPmzY3yUpPltOTNHTRoENKlS2fxtK2peKUnSqVLlzaqXJVOpEaPHm3RPMzdEJCekCqdpFSoUAGA+ccZpb1Vq9F6Ad2kSRM0bNhQFtAC5BVxx44d8f3338taCVsrNDRU1prD2oBwvnz5cPXqVbEVd+rUqTFq1CgxCNujRw88fvxYHN7Hx8dkCyLpAblgwYJi8NtaTZo0QXR0NFq0aAHA/MWINJ2IKUrbfunSpRWHNWxJoL/QjO9jY1pt374dc+bMUU2VYO4kwXA7t7as1j62rMbSlkTmyp02bVr8/PPPmDhxoqabN/rp6S9SDFuZ27LVjrkTei03I5WmuWrVKlkryL1796oOb+6CztILUH2Zx4wZY3J6poKtauvT3d1dMdWSWhA9T548CA0NxahRo2T5nVOkSBHvdC6mdOnSBfXq1dN8w8Fca2lpfl9Lbd68WfbecBmVziWsCaKbI22NbE6qVKlw+/ZtFCpUSFNKEUM6nQ61atXCmTNnxJuNllLaNzt37gwnJyc0b94cFStWRFBQkEU3EfXnQbt370aNGjWwevVqo2GGDh2K48ePY8qUKTh48KDqOlaqJ7X8HtIbAVJKjRACAgKwYcMGjB07Fv7+/liyZInZeZorg7k6T63hganpa2mJbm4aWlgTgDGVB9/SG7g3btxQ/f0A9TpXylx+VgBGQcC0adMCiGspvHXrVjE4funSJWzfvt1sy1s96XmgEmnrWFP0661UqVKq52eWpnNRaimo9qSEOVq3u/gcg5ydnS3ejuPTEt3asmppNRwUFCRLXWEJ/bZpqjzmllHLckiD6L///jsEQVDMh26Y4sHaAL6pMgUGBlrceKVWrVqyPu+03MzUp8lTa2W9Zs0ahISEyG7G2uImui2Ehoaidu3aRp+rBabtlTYtPkwF0aXfSZ8m1ZIOR4ujR4+K/7u5uSmmH3vy5Al27dpl1fTHjh2L3LlzY9KkSVi5cqVRqj43NzekSpXK6v3HVCt+b29vTJkyBXXr1sVvv/2maXr6vu6k9Zm+bFr7r5Pe5E6ZMiVq166NSpUqKfZnoNPpZA2szJ0XSY0cOVJzzIOsCKL3798fEREROHHiBFKmTImdO3di2bJlyJ8/v+KdVS1OnTqF+fPnG91dGzBgALZu3Yp169YhODgYjx49MtkZG6mTBqbVOv6SsrT14ffff6/4uU6ns/pkUs/Dw8Po5N9U6xGlg5S5CwRzla3+BN5cS3RrDwpKnJ2dsXXrVqPHeg1b8P3888+yO5OWqFGjRrzKaO1BynCbMJULdcCAARgzZgxCQkIAyFu4WdOaBpAfzMwF0efOnSvL5ahG+rucO3cOCxYsUO10qnjx4rh58yaCgoJw7tw5cVxzHVnaSoYMGdCrVy+jANzZs2dx+/Zt1YvlY8eOYfDgwWY7KtLyWLU1EjrFjU6nw/fff6/aCZZaIGPUqFF4/PgxevbsaXYe5oIDpspmipeXl9nWHlrEpyW6Uv2wdetW+Pr6Kl6kNGzYEK9evbLqKSg9tfXi6uqq2EK5YMGCKFWqFKpXr65p+6pUqZJVQQGtdVXKlCmxfft29O3bV1Me7/Hjx8Pf31/xxlemTJksan0LyH8zwydVDOskpQC92oVYihQpZEF3S+o3aWtkLVxcXHDp0iXs2LFDdRhvb2/FoKIt6l2ldZs5c2a8fv0a69atg06nw8qVKzW3CMyVK5c4bGBgIPbt24d8+fKpznvgwIGoUqWK1a2VbdUSqVmzZvjhhx8QEhKCTp06Yd26dbJOOg2PM+bKJ63PKleuDBcXF9mTfeZu/NsiiG4tw+1KS4MLSzqTNbfd5suXz+TThaZaok+fPh39+vXTdFNJa6vsDBkyoF69eppbA5vaNqZOnSoGIxIqVZKevvz6c70MGTLgxx9/VOw/SkvZrA1Ma03noqe03k3NWymIbg/btm0T/7fF+Ysphg0NLFl/+mOzUtpNw1QRah0+Sm3atElTQ0Qt+4u0TlNqBWxIejNBiakgrNL0ChYsiODgYAwcOBCbNm0yW15bMff7GT4VrqZ48eKKTyHbom6x53WdGlO/n6Udtyux9DxDp9Mhbdq0FvfZoJctWzbcvn0bgwcPRqZMmYw6jdeS2kmtjDlz5sQff/yBn3/+WfysfPnyKFeunJjW19fXFzt27BCfrjJHfyNJ+ttraUBmqj7euXMnDh06JC6H4fLkypULsbGxOHXqlOaOuAHrG09+rizem/ft24epU6eiTJkycHJyQs6cOdGuXTtMnDgR48aNs7gA0dHRCAoKwsKFC2V3ZF6+fInFixdj6tSpqFmzptiS5ejRozh+/LjF8/ncPXz4EHv27EFsbKzJk+Xdu3dj8ODBqh0XKRk8eLBY4ShVTGnSpIl3UG3GjBkme9U2dddVC3PpXPSkQXTD4fz9/TU9Ri4dz5qcq/YMJCbkAV4f9DF30VWtWjX8+OOPYm516fJbk5/MkLkLg9SpU8tyOWoJShUvXhxff/21yd8qb968WLlypeymQM6cOdGsWTN06NDBJo/8GzLXkixHjhwmg6YVKlTApEmTjB6dlS6nn5+f2Q7itDLV+sqanMCWfq+kX79+svGlrXWlJzS+vr6apl+lShWsX7/eLunQ2rVrJ/5vbYe3ttawYUM8evRItdNUUzdItdSXahd4Op1OsWVbihQpEBISgn379pmsC65evYr58+ejZ8+esm1P3/muud96xYoVZstuSEtql8yZMyMkJERMCSXl5ORk0+OF0vFBmucfiOsjQynNkJOTEwoVKoRZs2Zh/fr1YodIWh/DV0rhpk9potSyWmnZ9f2z9OrVCxcvXlTsRNyex1c3Nzerpn/nzh1kzpzZ4vGsDaK3b9/e4nMT/UWh/qk9JV999RVKlSqFqVOnom7dukbptwzLt337dtl7aVAtTZo0iIyMFNPEAeqd6JpiaRDd0nRL0vlIHTx40Ow4lrT8ted2269fP0yfPt3iILA1ec0ByFI8mJMjRw7FTr/1wsLCrCqDVvo6cfny5Th27BgeP36MMWPGWJWjG9B2XhOfm8x61mwv1rZEt2T+ho2E4js9U6TnumrnxmrLOH78eLx48UKxYZ/hDXN9TmRD0nmaa/msZ7hOlPptcnJywj///IMdO3bg66+/NjvNihUrKvb5o0btHOvYsWPo2rUrZs2ahbx582LKlCk26VDemnLVrl1b9oRI06ZNzaYgkzLXUELrtm+4vqXxF2vrCGvmq+U7Wx1DpOeJjjhmaTkPUJr3+PHjUbduXWTMmFHWMLRcuXI4ceKEUT8SOp1O8xNQ+uHXrVuHJUuWmDyf0z8lb9gIS1/mmjVrGp23qDUQKFOmDLy8vMQ0UubYs5+95MjiiNmrV6/E4JePj4+Yp6dYsWKyFiZa9enTBw0aNEBgYKDs89DQUHz48EH2eaFChZAjRw7FTlfItIwZM4o9BJvaSQIDAzFp0iSr70apXbTZIqhmqsJVyg9qCWkLOcPKTdpSVJqrUKnjJy2k63/YsGEIDAxUfNRZjZYDj/SG1PDhwzWVBYhrDZEuXTrNLdHicxA8ffo0lixZotqq+fnz57h165ZRx7SGnXxMnjw5XulsEqJ1jVY6nQ4bNmzAsmXLjNbt4MGD4z39PXv2mPzeEa0kTDHXMsocc60slLZf6Y0wpe+lF006nU7WWtfa9de8eXO7P8pqLtemPdgqJcK2bdtQqlQpWW5yLQznU6FCBcUAjT7gqs/Pq5STtmDBgujevTucnZ1ly3XgwAHx2GqKqZvAar755hv4+/sbtbRRotRqT6fTxXuflqbYU1pGwxbwOp1OscNbfTn69OmD5s2bo0aNGjh+/LjmDgrXr19vFCxr0KABzp49i9DQUE3TuHTpEq5evYo5c+Yga9asSJEihewxdX3548uSdR6fdDvmWBtEByw/Lp48eRKDBg1STDNjaMCAAdixY4dREEGn02HatGnIkycPbt++LesAEpBv44IgwN3dXRZUUrsBbKrFm1oQ3dDMmTMxZMgQq1vPGbYyTZcuHU6dOoU2bdqo3ji0JJ2L1t/W2hRF1rCm/5qwsDCz5ylS5m72GF4b6PPPmmJNS3RXV1dUqFDBbOBXf7PT0t9B+vt26NDBqqehTKXzMTe+IAgm01nqj5nxOY9Jly6dbLkMj2mGN2ylLElZoOfk5IR58+Zh4sSJqjn+TW0LStven3/+afSE74sXLxTHT506Nfbu3Yt9+/aJdYD0N1AK7BtuX/PmzUNQUJCs5XT16tWRJUsW1K1bV1O9oNPpMGXKFMyaNUuxjwK1Jy4Nv6tQoQIWLVoU7869rSUty8aNG2XX7mPGjBF/44cPHyIkJMRky3SlJ/u0BocNyyR9Ej516tS4cuUKrl+/bvcnLfQMy6r1eGMtU+upYMGC4v/2CqLr52/p8nz33XeyMp0/fx4jR440m8lALRODkq+++sps312///47Xr9+bXQ+c+fOHSxfvtzonNWQ0npdu3Ytnj59KjZGVMMgumUsvroqWLAgrl27BiDuxHT+/Pl4+PAh5s2bZ3FLmbVr1+L06dOKLdjDwsLg6upqdJDKlCmTyZYF7969Q2RkpOxF6mzZMaUSaWcHWlhanvXr16Nz587o1auX+JklFfOGDRvQokULWUdbzZo1w6BBgzB79myMHTtWdje7du3aWLx4MU6dOoXatWsjPDzcovICxi3Rd+/ebVGHiFrS47i6uiI8PBxPnz41mT9eH5TQ5+erWLEinj59qjknVnwq3KxZs6JTp07ihfTUqVPRvn17DBw4EFu3boWPj4/iSY5h55uDBg2yOp2N4fS0ULvBZOsTAlOtsK1lLmBj7TLYsxWc2nyU1odhfrn06dPj5cuXskf+zZk1a5bi/MyVR+m94UmyLU9QtKxz/U0ELR0RmaJ/jBGARa15TD2ZY8m6aNCgAU6fPi27QL948aLFrevNdYi4aNEizJgxw2Qe+ITk5eWFkJAQTWld+vfvj/z588tShFjTEt3wd5E+rq4UHJ45cyYCAwPN3uBQGrd8+fKa+17JkiWLUctxnU6HEiVKaMrVDMRdwEov4oC4487OnTvF9/G9Ia8vl1bxvbllKh1UfOplS4PoBQoUwOTJky1O3yc9v9Lp4vpFunXrluK5oPTYKy3f7t270ahRI7FvEUP6+l8pwGm4jvT5UA33g759+2LChAmqy6HWSTcQV3/VrFnT6PMyZcpg9erVinlNlcpQuXJl1XJr/a2V9lNp/e5omTJlsmsLZKWWu/Fh6fwXLlyIV69eqR6TlY6Lho1EBEHQnM7l2LFjqFy5Mvbv328ynY8Whk+PScuwc+dODBkyRDE/vBKlsh4+fFg2Tel28Ouvvxr10SE1YsQIdOjQwejpFXN69Oihmq7PGkpBaP3TtkqtsmvWrGkyrabhjQPDc0oXFxesXLkSXbp0we3bt7F69WqLriel+vTpgz///BPXr183OZy1xxV9/we2qm9MNS4wVT9myZIF/v7+JlNquLm54fnz57L9VO36w/AGqeG8pfEJIK5RoTTtnT2un5TKunr1auTLl0/TjW5bz1tPehPalsttaWe5hvM2fGIDiLshOGrUKLPnl9b0H2iubEpPoufMmRPt27dXbTCj9L/0My03txhEt4zFt8H69esndgo4cuRI1K1bF6tWrYKrq6tqJ3VKHjx4gH79+mH37t1WtdBSM27cOIs7zfjc2HMnke683bp109wC/dChQ7h7965qRz9qmjdvjubNm1s0jlSzZs2MHsdzcnJSfBwdiFs+6Um4tAW7vQOJv//+O/766y+jfHtqtHQgW61aNYSFhSXocqgx9UiulLWdb6oNq3V/GDJkCC5duqTa6Yij1pstJbaW6OZaRhnq3Lkz9u7dK+tQ0NPTExcuXEC1atWMHqFXmr5aKxul+ZpqoaN///jxY6tSMdhC9erVcePGDataaUktXboUffr0MWppp7bv7Nu3Dw8ePDDZKi2+x6GiRYuiaNGislRLQPz2Q7U82Ybs2bGotdKmTSte/OpvnCZEOpcsWbJg9+7dVo2bGLi6uqJOnTpYs2YNtm3bpvn4aool6zy+62XMmDFIlSqVYs79hGqJHp992ZLOpaUXj9JWsYGBgUZPs0rpl9vHxwcrV67ElStXxBSEefPmBRAX3Hz69KnYoMKSZcqXLx+CgoLw559/Kn5v7lHqFStWoHbt2rI8rID8N1izZo3J6WjdjrJnz44pU6aIT4u8efPGpmkF7NE5ekKnBLDkt7d0/jqdDqlSpTIar2TJkrh48aJR/w+bN2/GF198YZQSROv+WaFCBRw6dMiiMioRBAF16tTB3r17xVbn0vWUI0cO1ZtMWo+XhQoVkgVwpdt0t27dTMYKPD09sWzZMvMLYiFbXC/36tUL2bJlQ6VKlcwOq8+frHYz0tQNpty5c5ttiKZle82fPz9iY2NVW/SaC9ipmTNnDlq2bKl6DaW2rvfu3auY/k/pSSZT7w2tWrXKZN8UPj4+suOT2vRKlCiBffv2iTdKAwICxH60tPR9oTVXu7X067VNmzYmO+G1RzoXffqzJUuWYNasWZgyZYrN5wfEZQbYsGGDrCPb5s2b4++//1ZszCOd96ZNm0zeBE9OzNVnltzAJguC6Hfu3EHu3LllOVb9/f1x7949XL16FTly5LDoEZ7Q0FCEh4fLgqYxMTE4ePAgZs2ahV27duH9+/eIiIiQtUZ/8uSJyZYuw4YNk+X2ioyMjHcAgbSTVkyW3A2vXLmyrJVNUqT1gGDtSVnLli0157XSSqfT2aTlnaMkZODKVCs0wHSP3ragtt1ERkZa9di0EmsDOtLfQekxSKns2bPjzZs3ZjsnNUe6Ppo1a4aWLVvCzc0N69atMzu8nrkgujn68QMCAnDs2DHF1gzx7Vg5vtQ6ILSEm5ubRfWzqZZVtla/fn3V1mf2qh8qV66MU6dOJci84sPJycnifdrU8alo0aKap3P58mWsX79ebCFkqyD6vXv3xBRftjwetm7d2mYt5CzdFgYNGoQpU6agQ4cOFs/Lw8PDKPiqVg61cildZFoSRNcSKFBjybpSa4luyTz0N93atm2LDBkyiC2+unXrJhvH0kBqfFKPlS5dGk+fPjVaF4GBgVi/fj0yZ85sdts094i3YXn1bNGISW35E1udqDV1UkK0xjPsxyEkJAQfPnww+j3Url/r1KmDX375RfZZfNe34VOehnQ6neyJCnusJ7WW6AmxLSk91WOLZXR2dsaXX36paVhPT09ERkaq3tiKbwoQ/U1Dc0ytb2uD6O7u7qhbt67m4fWUnuKxtFxK5SxcuDC2b9+uuTNkU8tao0YNXLt2DQcPHkSnTp1QtmxZLFy4EGPHjpVtx0pByoIFC2L69Ono37+/Yoem1kjIulc6r3379kGn02H58uWIiooSn77o1KmT2T5Q4pP219XVFRcvXpR91q1bN+TKlcts48wsWbIkumNVfFizLD/88APWrVtn0XkEWZDOJW/evMidOze6dOmClStX4p9//gEQl1updOnSFufAqlWrFi5cuICzZ8+KrzJlyiAoKEj838XFRfZY9bVr13D//n3FDqb03Nzc4OnpKXuRnPSkQJ+2w9IW4Fokp0pJi89teR1FraWTLTpbslblypVluYNtQWs6lzRp0qiecP/000+4fPkyChcurJryRtqJsLWBLul4adOmNTmsn58fwsPD8c0331g8H7V9bNq0aWjVqpXJcbVeDEmD3lrTuezfvx9Xr14V0yLFtwyfA60dSpqzYsUKWcoRnU6HFi1aoEKFCnY5rgHA2LFjMWnSJFmrOem2klhuCFvSEj1nzpzInj27+Mi11NGjRzF06FBZ2jNzChcuLOuPw5q6RemCM0eOHIiMjMSZM2cUO2NLDCw9Fxg/fjyOHj0qpiORbs99+/aNV1mkT1ZIy6Xv2HXSpEm4ffu20XhagtQRERF4/PixURote5FuQ6byM2tRpEgRk0/rJXRdrbTNLFiwAOPHjzfbD9TWrVsV+3GwZF7xYW0HovagNfjnaP369ZMFbVOkSCELoO/ZswcLFy4Uj2GGZa9atSqOHz8uvldL52KpsWPHIkeOHEaNHGy9P0jL2rt3b1y6dMloPgn9ezVt2hSLFy+WdVbsCGnSpFHtHNHalqJHjx7FihUrUK5cOc3j6M/l9ccKPWuD6PZmKnBui1SV5nKiFyhQAN26dYOzszPKli2LBQsWIGPGjOITjn369FFtZNSvXz8IgmCzdFPSctvrPFiJvgFN+/btzT7VJy3juXPncP78eZuWxcnJCbVr1zYbn0xM27C1tHYEr7asY8eOxbVr1yzuUP5zp/mW5r59+3DgwAEcOHAAa9aswfv375EnTx4xn1eNGjUsatGaJk0aozy1qVOnRrp06cTPu3btioEDByJt2rTw9PRE3759ERAQgAoVKmieD5n2448/oly5cpoeM9MisR5cgbi8mb1798aiRYscWg5HBNJGjhyJn376SWzlYCuOWBbpAVHaQcqYMWMwceJEvH//PsHL1K1bN6s749VKaV0r5a53dnbGx48fAfyXJ+7ixYuq++OAAQOwYMECAAmXcsHaukEaoLd02/v555+NnhYwLMf69etl+e20ltPNzc0o17K9Jbb61VLdunXDtm3bjDoPtFTatGnRv39/MR2UTqfDH3/8YYsiqkqVKpXJjn7Xr19v1/lrZemj1vXq1VMcJyAgwGTjBS0sufgfPnw4li5diiFDhih+nyZNGpO5wB3N0n3T2dlZtn779++PZs2aIVOmTPFOtdGlSxfMnDnTqFwbN27ElStXULx4ccXyagmie3l5WZSOJb6k5dTaotJwPHsxdTyydlv18fHR1B+C/pH5xEbrek+TJg2ioqJUv49vgLhBgwb466+/NDd0SIjzWjc3N0yYMEGWek5KKX2Fnn5d2KNT4h9++AHff/+9OI+goCAEBwcrps201Xrq1auX+DSLpX0x2JJhuk4g8TV8sLYlujXH8IsXL+Lw4cNGreil1wlq26+j6XQ6TfEIa1OCWrpdxLc/AmtcuHABK1as0NSZsiNI12GGDBnsfg2txpZP8DiK9MmmpH5tmJRojphUr14do0aNwoEDB/DixQvs3r0bbdq0wZUrV9CpUydkyZLFokd9tZg2bRoaNmyI5s2bo2rVqvD19TXbeRWZJ93hXVxc0KBBA5vdfTJ10IpvWgN9jjG1fOXmBAYG4vr160Y5BxOavsVsQgbdRo0ahbdv34rrMClzd3fH48ePER4ebnRCaeqC3lwLaWvot2lTFzz28vz5czEHpL4Vfvv27RVPlLW2SHV0sMEcaQc+lk5Hab83XF7DgK65nOiJmeHj4olNypQpsWvXLps/weEo0hQ2iSVFlqU3xey5/1vSWnn06NG4d+9eolmPjpAjRw6b5qo25OrqihIlSqj+5o4MZpny9OlTPHjwwKLgvTXbtS3q+Rs3bmD//v2yztQSA3vu59a0JN69ezeKFCmCXbt2WTw/LfPYvHkzbty4YfJpNWsCZEqdvzmSrX5X6XRWrlyJe/fuae682Zp5SEnrncRwrpUYyiCVkOd1mTNnRosWLYyus6QphmxRt+mfSh07dmy8pmPvp1DiE0RPaDqdDn5+fpgwYYLmcy9HBl+T8rzV0vD5+vpi1KhR8Zq2NUwtT2LfbpMaq25puru7o2bNmqhcuTJq1KiBHTt2YP78+bh69Wq8CnPgwAGj+cyePRuzZ8+O13Qp4ag9+gTEPZ74/fffI2/evJg2bZrFHXg1a9YMr169krU+Tky0VsSDBw+Gn59fvFv2WcrNzQ2NGjXC6NGjxRbK8T14OOrAZ8kNmcGDByNFihSqKRYaNWqErVu3WvV73LlzB1FRUZo6cbWUuXQu0hOj77//Hg0bNoSfn5/FAX1zeTAtpW91lylTJjx58gSNGzcGEBfgX7FihUUpIexNuo5PnDhh1OGXrbfv+JzArFmzBt999x3u379vcrjz588jLCwswVvGJ3b2rqtKlSqF0NBQxfzShhLqRDYxdOa5fPlyzJ8/32yfEobYmsY2tGyPShIqiG7p72xp6khr5gFYnhNdKaCaL18+m/RJoSR9+vRmjwWOpnW9ly9fXkznoSS+HYs6Oztb9Dto+e2fP38e73zy9uzA1JbUjiPxOY6pLQ+DPOqOHDmCHDlyiO8dtU3kzJkT27Zts1nDpF9//RXjxo2L940aw3N3Lefy+pzdAMQntrRMn9vpf5L6uVp8y58hQwYsXLjQqE+sR48eJfl1Q6ZZFER///49jh8/jv379+PAgQM4ceIEsmfPjqpVq2LWrFl271iPbCOhKn/DyqNo0aL4888/AQDffvutVS3TtQTQE3ul5ezsjIYNGzps/p06dRKD6PGV2E4klMrTqVMnk0/JLF++HGvXrsVXX31l8fzc3d1t0jGXEqXtuEKFCrI8mHpOTk5WPzJuqyD6mTNnsGPHDrFj5wsXLiA0NFTMW7xs2TLMmDHDohapCXlHXZ8r0lz94ahtXt/xob58auUsVqwYihUrliBlSmz7P+DY+j8hc09qobQ/a+1Ey1bat2+vmHaKEka6dOkQEhIS78YH1gSvE4uECKLXr18fDRs2xLZt2yyelzW2bNli9TE/sZ8jO1rZsmXNDmOLfgCsbcWrtG3aIie6pXWErY7/asFJaf7o+HaoaS1Hn+NI103FihUBxB3XY2Nj49Whc3wZ5kmPL1s86WBNTvRixYph/vz5SJ8+PZo1a6Z5+o7eLsxhHW+ePvWpLRocKaWi4W+Q/GmOmNSsWRM+Pj7o3bs3wsPD0aNHD9y6dQvXrl3DwoUL0b59e9kdUkq8rG2ZpIXWVpyZM2e2WwWT0Bd7+gOvWv5WSjhdu3YFAFSpUkXzON7e3ujZs2eiDxIIgqCpkzl9y2+1DmwMZcmSRfw/PvtkyZIlMWzYMDEFQYYMGVC3bl0xkKfT6Wxy4anvkNKSDpLUKC1vYu7XgcgShkH02bNnY8uWLQ4qDTmKv7+/RR1PAvKg1eHDh+P9pKma4sWLA9B+vEqsnJ2dsXXrVtStWzdB5hefNAoJ9TSnI46ftphnq1atsGTJEpOt423B19cXN2/exJMnT8wOq2W5LO2se9OmTZg1axbmzZuHUqVK4eeff7ZofK2BRKXhtKRz8fb2xokTJ3DmzBmrO9SMLy3LuG7dOqRIkQK///57ApQIOH36NIKCgngsN8Fw+zKVb7t79+5mA+hK00xubNH5alISERGBFy9eWFxvKklMN1WS6u+RFGm+tXvo0CFkzpwZNWvWRPXq1VGtWjVZB2yUdJQqVQpz585Fzpw57TqfhH6UfNWqVdi9e7fNerfWat26dXj48KEsTxw5xpgxY1CtWjVUrlwZnp6eAORBYkeyR8oXJf369UOuXLk0dxbs7e2Nixcv2q1Fva2FhoZi4cKF6NGjh5gf0toTGHMnG7bOiW7LE63EcKKUmE4cyZjhMThHjhyqwQj+liS1Z88etG3bFnPnzrVZx/NKUqdOjejoaLt2KuaonOiJVbt27bBmzRq79OViTU50S6ZpyFzaO62k10M6nQ6dOnWyajqmKK0PSzrINTUdIO53/f333zX/rk2bNhX/79Gjh8XliC9PT09ERkbK1oFhPxi2aCwRH1q2p6+++gpv375NsNbyJUqUSBb9W9maqZbo1t6EYdqh5MsWwfPEyNRxd968eahUqRLGjBmTgCVKvjTX+BERETh06BAOHDiACRMmoE2bNihQoACqVasmBtUTKkhE8dezZ0+7zyOhgzxt27ZF27ZtE3SeQFygwlwAvUqVKjh06FAClcg06WNzjuoN215cXFzEziGvXbuGt2/f2qT1c3wcPHgQw4YNs7hvB2svDp2dndG8eXOL5mXrTqHtqWDBgpg8eTKioqKsnoapix22RE/aDH+zRYsWoXfv3li/fr2DSpTw2rVrh5UrV2L48OGOLkqyZ+5plqSqWrVqePjwYYLMKzFezFobJGnRogV27tyJXLly2bZANuTu7o69e/fadJr169fHoUOH0KRJE/GzhNgPbDWP9u3b4+rVq6hevbpNpqfEnoE3QRDg5uaGv//+227zUJpnfISHh+Pjx4+yBhzVq1fHyJEj4efnF9/i2cSWLVvQuHFjTJ8+3eRw9gqgJ9Y+wBIjU+futvh9XFxckD17dkRFRSXq+h1I2HOQFi1aYPLkyRY3zPTx8UGdOnUQExPzWXcib2umfvuyZcvi9evXDkuPldxoXoupU6dG3bp1xUcVo6KicPjwYezfvx8TJ05EUFAQ8ufPj4sXL9qtsJS0JLae6ymOj48PVq9eDRcXlyTT+tgaCdmLvSlVqlTB4cOHHV2MZEd6caH1BGzdunXo27cv1q1bByD5BsASij51T2LWtWtXdOrUyWGPgzvCsmXLMG7cOKPUbWw9lTDYoCRxSciW6J06dULu3LmtzleeFBUpUgS9e/fGx48fZQ0zbNkSXeu0rJ1nihQpMH78eKvGTQjmlsteHdiaMnLkSDRq1AgdOnSwanw3NzejcwidTodRo0bZoHS2UaVKFfz7778O66R79uzZaNSoEQYPHuyQ+SclhvuINDWQLYKGOp0Ot2/fRmxsbKJvgObl5ZVg8ypXrhxu3Lhh8VPfOp0OO3futFOpPl/mcrwzgG47Vq/J1KlTI23atEibNi18fHzg7OyMK1eu2LJslESNHDkST58+RaFChRxdlEQjsQUv2rRpY5PpJLblSs64ruVSpEiBZ8+eISYmRvPNoK+++grNmzc32zmnnq0D6sklncvw4cNx69YtlC9f3mFlsERiC6Db++kYJycnxb5PWIckjMWLF6NTp0749ttvHV0UQsJ0LKrn5OSEGjVqWDy/pCgkJASXL18Wl9eegSWtv4c16VGSsps3byIyMhKZM2dO8Hk3bNgQT548SfY3DR0VQAeAPHny2D03f1Jlql7X6XSIiYkR39sqcJjYA5Bz587FqVOn0KhRowSdryNu4pHckSNHsHr1aov7tiDraa4NYmNjERISggMHDmD//v04cuQIXr16haxZs6JGjRqYPXv2Z3PiSHL+/v6y94mpFUFiMWXKFJQvXx4//PCDo4tCScT48eOxc+dO8UQwf/78Di5RwjMX/LCmXw5LAueJOSe6I40ePdrRRVCVmJ8kWLp0KTZu3Ih+/fo5uihG6ylr1qwOKknykzt3bgQHBzu6GPSJvYLoFSpUwPHjx9G5c2dripXk+fv7G53/SzkincuYMWPw5s0bh6R2dARH3zRI6h0CU9JVrVo12XvDmx0fP34U/7c2+J3U0un07NkzQdL1klxiuLarWLEiKlas6OhifFY01yre3t549eoVfH19UaNGDUybNg3Vq1d3+AGcHOfSpUs4efIkWrVq5eiiJHrlypXDu3fv4Orq6uiiUBLh5+eHN2/e4NixY9i1axd69eolpiH5XNj7xMRcOhdbB9Ft2YolMQeLSVnHjh3RsWNHh81fbdtdtGjRZ5V+gj4v9qor//77b4SEhKBq1ap2mX5SZ8vW0Wr9Dhn+tl5eXli4cKHN5qvn4eGB6OhoAMB3331n1TRsFXBODAEbIkeQ5sovWbIkQkNDxQYAhnWB9AlVa6+9f/31VzRo0OCzSKfDawoiy2i+op80aRJq1KiRaPIMk+MVKVIERYoUcXQxkgwG0MlSLi4uqFq1qniRbk3La1KXUDnRZ8+ejQkTJuDXX3+1+bSJtFILvnTt2jWBS0KU9KVJk4ZP4CrYuHEjrl+/jkqVKtlkeoIgoGbNmhg/frzDOpy8fv06Tp06hYYNG1qc3mPDhg1YtGgRxo0bZ6fSJW4M+ic+zZs3x4YNG2y2jyaUYcOGyd6XLl1acThBEJAhQwbMnTtXMfe+Vnnz5sXVq1etGjepYUMKIstoDqL36NHDnuUgIiIzateujb59+yb7k50UKVIgJiYGgYGBDi2HrVqi9+7dG71797ZFkURsNaKM64WIpKypE9q0aYNffvkFX3zxhR1KlLx9+eWXNp2evmNRa1uA20LmzJnRuHFjq8Zt1qwZmjVrZrOy8BinTcOGDeHn54c6deo4uiiJzm+//Yb69eujadOmji6KzeTIkUP8X98PDlObmHfu3DmcPn06WW0LjrRmzRoUL17c0cWgBJC4e0ggIiKRTqfDzJkzHV0Mu3vy5AkePnxo9xOR6dOno2PHjhg0aJD4mbl0LokFW3eRpfg0lO2lSZNG/P/y5cvw9PR0YGlIiTX1eJo0aXDnzp1EfQygz4e0c+z06dM7sCSJ39ixYzFt2jRMmzaNHR6q8PT0RJcuXRxdDEXOzs74+PEjsmTJYtF4qVKlQnh4OFxcXBzaGWxSU7x4cQZ94ylTpkzi/61bt3ZgSSghMYhORESJSrp06RIkdU2HDh1Qt25dZMiQQfwsqQTRSRl/M2M//vgjTp8+LWuRx5swttGiRQusW7cOVatWReHChR1dHLIh1iWJ3+fyGzk5OSEkJATv3r2Dj4+Po4uTqP3www8YNmwYA6lJ1MmTJ/HTTz/hl19+MfrO3P4uPZcnSij16tXD0KFDUapUKUcXhRIQg+hEZDUGYiips7Szr7JlywJwfGuwzyV4QPE3ZswYRxch2XJxccGmTZscXQwyIbnXlbbswDOpSe6/rZS/v7+ji5BkMICedJUqVQqbN29W/E76RAZRYqHT6T7bPi8+ZwyiExERfWLuotzb2xsRERFwd3dPoBIREZG1kmug9e+//0Z4eDgKFCjg6KLYlanGGvqb2kSUfPXv3x9Hjx5FkyZNHF0UIiIADKITERGJtARcvLy8EqAkppUoUcLRRUiUkmvAjIisk1z7AvhcOj1Nmzat0WcXL17E+vXrZf2ZEFHyNG3aNEcXgYhIhkF0IiKiTxJ7TvQXL14gOjqauR9VJMbfLDHieqLPRcqUKR1dBLLC5s2bMWnSJCxatMjou6JFi6Jo0aIOKBVZimkfiYgouWEQnYis5ubm5ugiENlNYrz48/b2hre3t6OLkSzkz5/f0UUgIjtjED1patKkCdM3EBERUaLDIDoRWWzkyJHYv38/WrVq5eiiENkUW+gmbVp+v4MHD+LQoUNo165dApQoceKNGPpcMG82EREREdkKg+hEZLFRo0Zh1KhRji4Gkc0xiJ605ciRw+wwVapUQZUqVRKgNIlX586dsXv37s8mrzJ9fs6cOYMLFy6gbt26ji4K0WerdOnSji4CERGRTTGITkRE9Eliz4lOyvbs2YMFCxZgxowZji5KkuDq6or169c7uhhEdlOyZEmULFnS0cUg+iydO3cOu3fvRt++fR1dFCIiIpvSCYkx6asNRUZGwsvLCy9fvoSnp6eji0NERIlYREQEfHx8AAD37t3T1LKZiIiIiIiIiJImrbFjpwQsk5G5c+eiePHi8PT0hKenJwICArBjxw7x+7dv36JPnz5Ily4dPDw80Lx5czx58sSBJSYiouSMrc+JiIiIiIiIyJBDg+jZsmXD+PHjERoaipCQENSsWRNNmjTBpUuXAAADBgzA1q1bsW7dOgQHB+PRo0do1qyZI4tMRESfCQbUiYiIiIiIiAhIhOlc0qZNi0mTJuGrr75ChgwZsHr1anz11VcAgKtXr6Jw4cI4duwYKlSooGl6TOdCRERavXz5Et7e3gCA+/fvI3v27I4tEBERERERERHZTZJI5yIVExODtWvX4tWrVwgICEBoaCg+fPiAwMBAcZhChQohR44cOHbsmANLSkRERERERERERESfC2dHF+DChQsICAjA27dv4eHhgU2bNqFIkSI4e/YsXF1dxRaBepkyZUJYWJjq9N69e4d3796J7yMjI+1VdCIiIiIiIiIiIiJK5hzeEr1gwYI4e/YsTpw4gV69eqFjx464fPmy1dMbN24cvLy8xBcfxSciIiIiIiIiIiIiazk8iO7q6op8+fLB398f48aNQ4kSJTBjxgz4+vri/fv3iIiIkA3/5MkT+Pr6qk5v2LBhePnypfh68OCBnZeAiIiIiIiIiIiIiJIrhwfRDcXGxuLdu3fw9/eHi4sL9u7dK3537do13L9/HwEBAarju7m5wdPTU/YiIiIiIiIiIiIiIrKGQ3OiDxs2DPXq1UOOHDkQFRWF1atX48CBA9i1axe8vLzQtWtXDBw4EGnTpoWnpyf69u2LgIAAVKhQwZHFJiIiIiIiIiIiIqLPhEOD6OHh4ejQoQMeP34MLy8vFC9eHLt27cIXX3wBAJg2bRqcnJzQvHlzvHv3DnXq1MGcOXMcWWQiIiIiIiIiIiIi+ozoBEEQHF0Ie4qMjISXlxdevnzJ1C5ERGTSu3fv4O7uDgA8bhARERERERElc1pjxw5tiU5ERJSYuLm54fDhw/j48SMD6EREREREREQEgEF0IiIimUqVKjm6CERERERERESUiDg5ugBERERERERERERERIkVg+hERERERERERERERCoYRCciIiIiIiIiIiIiUpHsc6ILggAgrqdVIiIiIiIiIiIiIiLgv5ixPoasJtkH0aOiogAA2bNnd3BJiIiIiIiIiIiIiCixiYqKgpeXl+r3OsFcmD2Ji42NxaNHj5AmTRrodDpHF8chIiMjkT17djx48ACenp6OLg4ROQDrASICWBcQURzWBUQEsC4gItYDQFwL9KioKGTJkgVOTuqZz5N9S3QnJydky5bN0cVIFDw9PT/bHYKI4rAeICKAdQERxWFdQEQA6wIiYj1gqgW6HjsWJSIiIiIiIiIiIiJSwSA6EREREREREREREZEKBtE/A25ubhg5ciTc3NwcXRQichDWA0QEsC4gojisC4gIYF1ARKwHLJHsOxYlIiIiIiIiIiIiIrIWW6ITEREREREREREREalgEJ2IiIiIiIiIiIiISAWD6EREREREREREREREKhhEJyIiIiIiIiIiIiJSwSB6Mjd79mzkypUL7u7uKF++PE6ePOnoIhGRlcaNG4eyZcsiTZo0yJgxI5o2bYpr167Jhnn79i369OmDdOnSwcPDA82bN8eTJ09kw9y/fx8NGjRAqlSpkDFjRnz77bf4+PGjbJgDBw6gdOnScHNzQ758+bB06VJ7Lx4RWWH8+PHQ6XTo37+/+BnrAaLPw8OHD9GuXTukS5cOKVOmRLFixRASEiJ+LwgCRowYgcyZMyNlypQIDAzEjRs3ZNN4/vw5goKC4OnpCW9vb3Tt2hXR0dGyYc6fP48qVarA3d0d2bNnx8SJExNk+YjIvJiYGAwfPhy5c+dGypQpkTdvXowZMwaCIIjDsC4gSn4OHjyIRo0aIUuWLNDpdNi8ebPs+4Tc79etW4dChQrB3d0dxYoVw/bt222+vIkFg+jJ2O+//46BAwdi5MiROH36NEqUKIE6deogPDzc0UUjIisEBwejT58+OH78OHbv3o0PHz6gdu3aePXqlTjMgAEDsHXrVqxbtw7BwcF49OgRmjVrJn4fExODBg0a4P379zh69CiWLVuGpUuXYsSIEeIwd+7cQYMGDVCjRg2cPXsW/fv3R7du3bBr164EXV4iMu3UqVOYP38+ihcvLvuc9QBR8vfixQtUqlQJLi4u2LFjBy5fvowpU6bAx8dHHGbixImYOXMm5s2bhxMnTiB16tSoU6cO3r59Kw4TFBSES5cuYffu3di2bRsOHjyI7t27i99HRkaidu3ayJkzJ0JDQzFp0iSMGjUKCxYsSNDlJSJlEyZMwNy5czFr1ixcuXIFEyZMwMSJE/Hrr7+Kw7AuIEp+Xr16hRIlSmD27NmK3yfUfn/06FG0adMGXbt2xZkzZ9C0aVM0bdoUFy9etN/CO5JAyVa5cuWEPn36iO9jYmKELFmyCOPGjXNgqYjIVsLDwwUAQnBwsCAIghARESG4uLgI69atE4e5cuWKAEA4duyYIAiCsH37dsHJyUkICwsTh5k7d67g6ekpvHv3ThAEQRgyZIhQtGhR2bxatWol1KlTx96LREQaRUVFCfnz5xd2794tVKtWTejXr58gCKwHiD4X3333nVC5cmXV72NjYwVfX19h0qRJ4mcRERGCm5ubsGbNGkEQBOHy5csCAOHUqVPiMDt27BB0Op3w8OFDQRAEYc6cOYKPj49YN+jnXbBgQVsvEhFZoUGDBkKXLl1knzVr1kwICgoSBIF1AdHnAICwadMm8X1C7vctW7YUGjRoICtP+fLlhR49eth0GRMLtkRPpt6/f4/Q0FAEBgaKnzk5OSEwMBDHjh1zYMmIyFZevnwJAEibNi0AIDQ0FB8+fJDt94UKFUKOHDnE/f7YsWMoVqwYMmXKJA5Tp04dREZG4tKlS+Iw0mnoh2HdQZR49OnTBw0aNDDaV1kPEH0etmzZgjJlyqBFixbImDEjSpUqhYULF4rf37lzB2FhYbL92MvLC+XLl5fVBd7e3ihTpow4TGBgIJycnHDixAlxmKpVq8LV1VUcpk6dOrh27RpevHhh78UkIjMqVqyIvXv34vr16wCAc+fO4fDhw6hXrx4A1gVEn6OE3O8/t2sGBtGTqWfPniEmJkZ2gQwAmTJlQlhYmINKRUS2Ehsbi/79+6NSpUrw8/MDAISFhcHV1RXe3t6yYaX7fVhYmGK9oP/O1DCRkZF48+aNPRaHiCywdu1anD59GuPGjTP6jvUA0efh9u3bmDt3LvLnz49du3ahV69e+N///odly5YB+G9fNnUtEBYWhowZM8q+d3Z2Rtq0aS2qL4jIcYYOHYrWrVujUKFCcHFxQalSpdC/f38EBQUBYF1A9DlKyP1ebZjkWi84O7oARERkuT59+uDixYs4fPiwo4tCRAnowYMH6NevH3bv3g13d3dHF4eIHCQ2NhZlypTBL7/8AgAoVaoULl68iHnz5qFjx44OLh0RJZQ//vgDq1atwurVq1G0aFGxH5MsWbKwLiAisjG2RE+m0qdPjxQpUuDJkyeyz588eQJfX18HlYqIbOGbb77Btm3bsH//fmTLlk383NfXF+/fv0dERIRseOl+7+vrq1gv6L8zNYynpydSpkxp68UhIguEhoYiPDwcpUuXhrOzM5ydnREcHIyZM2fC2dkZmTJlYj1A9BnInDkzihQpIvuscOHCuH//PoD/9mVT1wK+vr4IDw+Xff/x40c8f/7covqCiBzn22+/FVujFytWDO3bt8eAAQPEp9VYFxB9fhJyv1cbJrnWCwyiJ1Ourq7w9/fH3r17xc9iY2Oxd+9eBAQEOLBkRGQtQRDwzTffYNOmTdi3bx9y584t+97f3x8uLi6y/f7atWu4f/++uN8HBATgwoULsgPm7t274enpKV6MBwQEyKahH4Z1B5Hj1apVCxcuXMDZs2fFV5kyZRAUFCT+z3qAKPmrVKkSrl27Jvvs+vXryJkzJwAgd+7c8PX1le3HkZGROHHihKwuiIiIQGhoqDjMvn37EBsbi/Lly4vDHDx4EB8+fBCH2b17NwoWLAgfHx+7LR8RafP69Ws4OcnDOilSpEBsbCwA1gVEn6OE3O8/u2sGR/dsSvazdu1awc3NTVi6dKlw+fJloXv37oK3t7cQFhbm6KIRkRV69eoleHl5CQcOHBAeP34svl6/fi0O07NnTyFHjhzCvn37hJCQECEgIEAICAgQv//48aPg5+cn1K5dWzh79qywc+dOIUOGDMKwYcPEYW7fvi2kSpVK+Pbbb4UrV64Is2fPFlKkSCHs3LkzQZeXiLSpVq2a0K9fP/E96wGi5O/kyZOCs7Oz8PPPPws3btwQVq1aJaRKlUpYuXKlOMz48eMFb29v4c8//xTOnz8vNGnSRMidO7fw5s0bcZi6desKpUqVEk6cOCEcPnxYyJ8/v9CmTRvx+4iICCFTpkxC+/bthYsXLwpr164VUqVKJcyfPz9Bl5eIlHXs2FHImjWrsG3bNuHOnTvCxo0bhfTp0wtDhgwRh2FdQJT8REVFCWfOnBHOnDkjABCmTp0qnDlzRrh3754gCAm33x85ckRwdnYWJk+eLFy5ckUYOXKk4OLiIly4cCHhVkYCYhA9mfv111+FHDlyCK6urkK5cuWE48ePO7pIRGQlAIqvJUuWiMO8efNG6N27t+Dj4yOkSpVK+PLLL4XHjx/LpnP37l2hXr16QsqUKYX06dMLgwYNEj58+CAbZv/+/ULJkiUFV1dXIU+ePLJ5EFHiYhhEZz1A9HnYunWr4OfnJ7i5uQmFChUSFixYIPs+NjZWGD58uJApUybBzc1NqFWrlnDt2jXZMP/++6/Qpk0bwcPDQ/D09BQ6d+4sREVFyYY5d+6cULlyZcHNzU3ImjWrMH78eLsvGxFpExkZKfTr10/IkSOH4O7uLuTJk0f44YcfhHfv3onDsC4gSn7279+vGBvo2LGjIAgJu9//8ccfQoECBQRXV1ehaNGiwl9//WW35XY0nSAIgmPawBMRERERERERERERJW7MiU5EREREREREREREpIJBdCIiIiIiIiIiIiIiFQyiExERERERERERERGpYBCdiIiIiIiIiIiIiEgFg+hERERERERERERERCoYRCciIiIiIiIiIiIiUsEgOhERERERERERERGRCgbRiYiIiIhI0dKlS+Ht7e3oYhARERERORSD6EREREREiVSnTp3QtGlTo88PHDgAnU6HiIiIBC8TEREREdHnhkF0IiIiIiIy8uHDB0cXgYiIiIgoUWAQnYiIiIgoiduwYQOKFi0KNzc35MqVC1OmTJF9r9PpsHnzZtln3t7eWLp0KQDg7t270Ol0+P3331GtWjW4u7tj1apVsuHv3r0LJycnhISEyD6fPn06cubMidjYWJsvFxERERFRYsAgOhERERFREhYaGoqWLVuidevWuHDhAkaNGoXhw4eLAXJLDB06FP369cOVK1dQp04d2Xe5cuVCYGAglixZIvt8yZIl6NSpE5yceGlBRERERMmTs6MLQERERERE6rZt2wYPDw/ZZzExMeL/U6dORa1atTB8+HAAQIECBXD58mVMmjQJnTp1smhe/fv3R7NmzVS/79atG3r27ImpU6fCzc0Np0+fxoULF/Dnn39aNB8iIiIioqSEzUWIiIiIiBKxGjVq4OzZs7LXokWLxO+vXLmCSpUqycapVKkSbty4IQu2a1GmTBmT3zdt2hQpUqTApk2bAABLly5FjRo1kCtXLovmQ0RERESUlLAlOhERERFRIpY6dWrky5dP9tk///xj0TR0Oh0EQZB9ptRxaOrUqU1Ox9XVFR06dMCSJUvQrFkzrF69GjNmzLCoLERERERESQ2D6ERERERESVjhwoVx5MgR2WdHjhxBgQIFkCJFCgBAhgwZ8PjxY/H7Gzdu4PXr11bNr1u3bvDz88OcOXPw8eNHk+lfiIiIiIiSAwbRiYiIiIiSsEGDBqFs2bIYM2YMWrVqhWPHjmHWrFmYM2eOOEzNmjUxa9YsBAQEICYmBt999x1cXFysml/hwoVRoUIFfPfdd+jSpQtSpkxpq0UhIiIiIkqUmBOdiIiIiCgJK126NP744w+sXbsWfn5+GDFiBEaPHi3rVHTKlCnInj07qlSpgrZt22Lw4MFIlSqV1fPs2rUr3r9/jy5duthgCYiIiIiIEjedYJgckYiIiIiIyIQxY8Zg3bp1OH/+vKOLQkRERERkd2yJTkREREREmkRHR+PixYuYNWsW+vbt6+jiEBERERElCAbRiYiIiIhIk2+++Qb+/v6oXr06U7kQERER0WeD6VyIiIiIiIiIiIiIiFSwJToRERERERERERERkQoG0YmIiIiIiIiIiIiIVDCITkRERERERERERESkgkF0IiIiIiIiIiIiIiIVDKITEREREREREREREalgEJ2IiIiIiIiIiIiISAWD6EREREREREREREREKhhEJyIiIiIiIiIiIiJSwSA6EREREREREREREZEKBtGJiIiIiIiIiIiIiFQwiE5EREREREREREREpIJBdCIiIiIiIiIiIiIiFQyiExERERERERERERGpYBCdiIiIiIiIiIiIiEgFg+hERERERERERERERCoYRCciIiIiIiIiIiIiUsEgOhERERERERERERGRCgbRiYiIiIiIiIiIiIhUMIhORERERERERERERKSCQXQiIiIiIiIiIiIiIhUMohMRERERERERERERqWAQnYiIiIiIiIiIiIhIBYPoREREREREREREREQqGEQnIiIiIiIiIiIiIlLBIDoRERERERERERERkQoG0YmIiIiIiIiIiIiIVDCITkRERERERERERESkgkF0IiIiIiIiIiIiIiIVDKITEREREREREREREalgEJ2IiIiIKAGNGjUKJUuWdHQxHCpXrlyYPn26o4tBRERERKQJg+hERERERBqFhYWhb9++yJMnD9zc3JA9e3Y0atQIe/fudXTRkq0ePXogb968SJkyJTJkyIAmTZrg6tWrji4WEREREX1GGEQnIiIiItLg7t278Pf3x759+zBp0iRcuHABO3fuRI0aNdCnTx9HFy/Z8vf3x5IlS3DlyhXs2rULgiCgdu3aiImJcXTRiIiIiOgzwSA6EREREZEGvXv3hk6nw8mTJ9G8eXMUKFAARYsWxcCBA3H8+HFxuPv376NJkybw8PCAp6cnWrZsiSdPnqhOt3r16ujfv7/ss6ZNm6JTp07i+1y5cmHs2LHo0KEDPDw8kDNnTmzZsgVPnz4V51W8eHGEhISI4yxduhTe3t7YtWsXChcuDA8PD9StWxePHz+O97qIiIhAjx49kClTJri7u8PPzw/btm0Tv9+wYQOKFi0KNzc35MqVC1OmTLF6Xt27d0fVqlWRK1culC5dGmPHjsWDBw9w9+7deC8HEREREZEWDKITEREREZnx/Plz7Ny5E3369EHq1KmNvvf29gYAxMbGokmTJnj+/DmCg4Oxe/du3L59G61atYp3GaZNm4ZKlSrhzJkzaNCgAdq3b48OHTqgXbt2OH36NPLmzYsOHTpAEARxnNevX2Py5MlYsWIFDh48iPv372Pw4MHxKkdsbCzq1auHI0eOYOXKlbh8+TLGjx+PFClSAABCQ0PRsmVLtG7dGhcuXMCoUaMwfPhwLF26NF7zBYBXr15hyZIlyJ07N7Jnzx7v6RERERERaeHs6AIQERERESV2N2/ehCAIKFSokMnh9u7diwsXLuDOnTtikHf58uUoWrQoTp06hbJly1pdhvr166NHjx4AgBEjRmDu3LkoW7YsWrRoAQD47rvvEBAQgCdPnsDX1xcA8OHDB8ybNw958+YFAHzzzTcYPXq01WUAgD179uDkyZO4cuUKChQoAADIkyeP+P3UqVNRq1YtDB8+HABQoEABXL58GZMmTZK1rrfEnDlzMGTIELx69QoFCxbE7t274erqGq/lICIiIiLSii3RiYiIiIjMkLbuNuXKlSvInj27rJV0kSJF4O3tjStXrsSrDMWLFxf/z5QpEwCgWLFiRp+Fh4eLn6VKlUoMoANA5syZZd8bKlq0KDw8PODh4YF69eopDnP27Flky5ZNDKAbunLlCipVqiT7rFKlSrhx44bVecyDgoJw5swZBAcHo0CBAmjZsiXevn1r1bSIiIiIiCzFluhERERERGbkz58fOp0OV69etfm0nZycjIL0Hz58MBrOxcVF/F+n06l+FhsbqziOfhhTNwS2b98uzjtlypSKw6h9bk9eXl7w8vJC/vz5UaFCBfj4+GDTpk1o06ZNgpeFiIiIiD4/bIlORERERGRG2rRpUadOHcyePRuvXr0y+j4iIgIAULhwYTx48AAPHjwQv7t8+TIiIiJQpEgRxWlnyJBB1tlnTEwMLl68aNsF0ChnzpzIly8f8uXLh6xZsyoOU7x4cfzzzz+4fv264veFCxfGkSNHZJ8dOXIEBQoUEPOmx4cgCBAEAe/evYv3tIiIiIiItGAQnYiIiIhIg9mzZyMmJgblypXDhg0bcOPGDVy5cgUzZ85EQEAAACAwMBDFihVDUFAQTp8+jZMnT6JDhw6oVq0aypQpozjdmjVr4q+//sJff/2Fq1evolevXmJQPjGqVq0aqlatiubNm2P37t24c+cOduzYgZ07dwIABg0ahL1792LMmDG4fv06li1bhlmzZlnVoent27cxbtw4hIaG4v79+zh69ChatGiBlClTon79+rZeNCIiIiIiRQyiExERERFpkCdPHpw+fRo1atTAoEGD4Ofnhy+++AJ79+7F3LlzAcSlS/nzzz/h4+ODqlWrIjAwEHny5MHvv/+uOt0uXbqgY8eOYrA9T548qFGjRkItllU2bNiAsmXLok2bNihSpAiGDBki5jsvXbo0/vjjD6xduxZ+fn4YMWIERo8ebVWnou7u7jh06BDq16+PfPnyoVWrVkiTJg2OHj2KjBkz2nipiIiIiIiU6QStvSQREREREREREREREX1m2BKdiIiIiIiIiIiIiEgFg+hEREREROQQq1atgoeHh+KraNGiji4eEREREREApnMhIiIiIiIHiYqKwpMnTxS/c3FxQc6cORO4RERERERExhhEJyIiIiIiIiIiIiJSwXQuREREREREREREREQqGEQnIiIiIiIiIiIiIlLh7OgC2FtsbCwePXqENGnSQKfTObo4RERERERERERERJQICIKAqKgoZMmSBU5O6u3Nk30Q/dGjR8iePbuji0FEREREREREREREidCDBw+QLVs21e+TfRA9TZo0AOJWhKenp4NLQ0RERERERERERESJQWRkJLJnzy7GkNUk+yC6PoWLp6cng+hEREREREREREREJGMuDTg7FiUiIiIiIiIiIiIiUsEgOhERERERERERERGRCgbRiYiIiIiSkD///BNdunTBmzdvHF0UIiIiIqLPQrLPia7Vx48f8f79e0cXgyjRcnd3h5MT77sRERE5WtOmTQEA+fPnx7BhwxxbGCIiIiKiz8BnH0QXBAH379/Hs2fPHF0UokTNyckJRYoUgZubm6OLQkRERAAePXrk6CIQEREREX0WPvsguj6AnjVrVnh4eLClLZGC2NhY3LlzB7dv30bBggW5nxARERERERER0Wfjsw6if/z4UQyg+/r6Oro4RIla1qxZcefOHaxduxZVq1ZFtmzZHF0kIiIiIiIiIiIiu3Noc9JcuXJBp9MZvfr06QMAePv2Lfr06YN06dLBw8MDzZs3x5MnT2w2f30OdA8PD5tNkyi50qdxef78ObZv346HDx86uERERERERERERET259Ag+qlTp/D48WPxtXv3bgBAixYtAAADBgzA1q1bsW7dOgQHB+PRo0do1qyZzcvB1BRE5ul0OgCAr68vwsPDcf36dQeXiIiI6PMmCIKji0BERERE9FlwaPQ4Q4YM8PX1FV/btm1D3rx5Ua1aNbx8+RKLFy/G1KlTUbNmTfj7+2PJkiU4evQojh8/7shiE33WdDod3N3d8fLlS0cXhYiIiIiIiMhqL168QM+ePXHs2DFHF4WIErlE0wT7/fv3WLlyJbp06QKdTofQ0FB8+PABgYGB4jCFChVCjhw5TFZu7969Q2RkpOyV3Bw8eBCNGjVClixZoNPpsHnzZqNhBEHAiBEjkDlzZqRMmRKBgYG4ceOGbJjnz58jKCgInp6e8Pb2RteuXREdHS0b5vz586hSpQrc3d2RPXt2TJw40Whe69atQ6FCheDu7o5ixYph+/btJsu/dOlSMXVPihQp4OPjg/Lly2P06NEWB2bv3r0LnU6Hs2fPWjQexR9bvxEREREREVFSNmjQIMyfPx8VK1Z0dFGIKJFLNEH0zZs3IyIiAp06dQIAhIWFwdXVFd7e3rLhMmXKhLCwMNXpjBs3Dl5eXuIre/bsdiy1Y7x69QolSpTA7NmzVYeZOHEiZs6ciXnz5uHEiRNInTo16tSpg7dv34rDBAUF4dKlS9i9eze2bduGgwcPonv37uL3kZGRqF27NnLmzInQ0FBMmjQJo0aNwoIFC8Rhjh49ijZt2qBr1644c+YMmjZtiqZNm+LixYsml8HT0xOPHz/GP//8g6NHj6J79+5Yvnw5SpYsiUePHsVj7RARERERERERmXft2jVHF4GIkohEE0RfvHgx6tWrhyxZssRrOsOGDcPLly/F14MHD2xUwsSjXr16GDt2LL788kvF7wVBwPTp0/Hjjz+iSZMmKF68OJYvX45Hjx6JrdavXLmCnTt3YtGiRShfvjwqV66MX3/9FWvXrhWD2KtWrcL79+/x22+/oWjRomjdujX+97//YerUqeK8ZsyYgbp16+Lbb79F4cKFMWbMGJQuXRqzZs0yuQw6nQ6+vr7InDkzChcujK5du+Lo0aOIjo7GkCFDxOF27tyJypUrw9vbG+nSpUPDhg1x69Yt8fvcuXMDAEqVKgWdTofq1asDiMu3/8UXXyB9+vTw8vJCtWrVcPr0aYvXNRERERERERFRUvHq1Su8f//e0cUgSnYSRRD93r172LNnD7p16yZ+5uvri/fv3yMiIkI27JMnT+Dr66s6LTc3N3h6espen5s7d+4gLCxMlgrHy8sL5cuXF1PhHDt2DN7e3ihTpow4TGBgIJycnHDixAlxmKpVq8LV1VUcpk6dOrh27RpevHghDiOdj34Ya/KJZcyYEUFBQdiyZQtiYmIAxFX+AwcOREhICPbu3QsnJyd8+eWXiI2NBQCcPHkSALBnzx48fvwYGzduBABERUWhY8eOOHz4MI4fP478+fOjfv36iIqKsrhcRERERERERJSwYmNjMXLkSOzcudNu89DpdHabtiO8evUKHh4eyJUrl6OLQpTsODu6AACwZMkSZMyYEQ0aNBA/8/f3h4uLC/bu3YvmzZsDiHvM5v79+wgICLBLOQRBwOvXr+0ybXNSpUpls8pbn+4mU6ZMss+lqXDCwsKQMWNG2ffOzs5ImzatbBh9S2/pNPTf+fj4ICwszOR8LFWoUCFERUXh33//RcaMGcXfXu+3335DhgwZcPnyZfj5+SFDhgwAgHTp0slurtSsWVM23oIFC+Dt7Y3g4GA0bNjQqrIRERERJSbsn4SIiJKz9evXY/To0QB4zNPq/PnzAIDHjx87uCREyY/Dg+ixsbFYsmQJOnbsCGfn/4rj5eWFrl27YuDAgUibNi08PT3Rt29fBAQEoEKFCnYpy+vXr+Hh4WGXaZsTHR2N1KlTO2TeiYn+wKi/oXDjxg2MGDECJ06cwLNnz8QW6Pfv34efn5/qdJ48eYIff/wRBw4cQHh4OGJiYvD69Wvcv3/f/gtBRPQZWbhwITZv3ow//viDxzEiIiIispl79+45ughJTnJrWU+UmDg8iL5nzx7cv38fXbp0Mfpu2rRpcHJyQvPmzfHu3TvUqVMHc+bMcUApkxZ9i+wnT54gc+bM4udPnjxByZIlxWHCw8Nl4338+BHPnz8Xx/f19cWTJ09kw+jfmxvGVModU65cuQJPT0+kS5cOANCoUSPkzJkTCxcuRJYsWRAbGws/Pz+z+b06duyIf//9FzNmzEDOnDnh5uaGgIAA5gUjIrIxfYfUM2fOxLBhwxxcGiIiIiKizxeD6ET24/Ageu3atVUfy3F3d8fs2bMxe/bsBClLqlSpEB0dnSDzUpq3reTOnRu+vr7Yu3evGDSPjIzEiRMn0KtXLwBAQEAAIiIiEBoaCn9/fwDAvn37EBsbi/Lly4vD/PDDD/jw4QNcXFwAALt370bBggXh4+MjDrN37170799fnP/u3butSrkTHh6O1atXo2nTpnBycsK///6La9euYeHChahSpQoA4PDhw7Jx9Pna9TnU9Y4cOYI5c+agfv36AIAHDx7g2bNnFpeJiIi0efnypaOLQERERERERGQXDg+iJyY6nS5JPIoeHR2Nmzdviu/v3LmDs2fPIm3atMiRIwd0Oh369++PsWPHIn/+/MidOzeGDx+OLFmyoGnTpgCAwoULo27duvj6668xb948fPjwAd988w1at26NLFmyAADatm2Ln376CV27dsV3332HixcvYsaMGZg2bZo47379+qFatWqYMmUKGjRogLVr1yIkJAQLFiwwuQyCICAsLAyCICAiIgLHjh3DL7/8Ai8vL4wfPx4A4OPjg3Tp0mHBggXInDkz7t+/j6FDh8qmkzFjRqRMmRI7d+5EtmzZ4O7uDi8vL+TPnx8rVqxAmTJlEBkZiW+//RYpU6a0xeonIiIFzFNJRERERElNcmu5ndyWhygxcXJ0AchyISEhKFWqFEqVKgUAGDhwIEqVKoURI0aIwwwZMgR9+/ZF9+7dUbZsWURHR2Pnzp1wd3cXh1m1ahUKFSqEWrVqoX79+qhcubIs+O3l5YW///4bd+7cgb+/PwYNGoQRI0aIj+4DQMWKFbF69WosWLAAJUqUwPr167F582aT+cqBuJbxmTNnRtasWREQEID58+ejY8eOOHPmjJiCxsnJCWvXrkVoaCj8/PwwYMAATJo0STYdZ2dnzJw5E/Pnz0eWLFnQpEkTAMDixYvx4sULlC5dGu3bt8f//vc/o45UiYjIdhhEJyIiIiIiouRKJyTzq97IyEh4eXnh5cuX8PT0lH33+vVrXLlyBYULF7ZpOhWi5Ei/v9y9exd37txB3rx58eWXXzq6WETJjiAISaoFib6sgwcPNrrRSUT2od/vevfunWBpD4mIyHZu3bqFnDlzwtmZyQFMmTRpEoYMGQLAfg02qlSpIqaNTQ7hsVOnTqFcuXIAksfyECUEU7FjKbZEJyIiSiQGDBiAnDlz4sWLF44uisV4kk5ERERk3po1a5AvXz40a9bM0UWhZI7n50S2xSA6ERElaY8ePcKqVavw/v17Rxcl3qZPn44HDx5g3rx5ji6KxXiSThR/s2fPxuTJkx1dDCIisiN9Pb9161YHl4SSI+kTrTw/d5wbN24gICCA+3kyw2eHiIgoSStRogSePXuG27dvY/jw4Y4uDhGRVd6/f49vvvkGABAUFCT2EUNEZOjkyZPInj0764kkKiml7fscJOffg0F0x2nfvj1OnDiBxo0b83dIRtgSnYiIkrRnz54BALZv3+7gkiQeUVFROHnyZIKesPHkkCh+YmJixP9fv36tOkxUVFRCFYmIEqGQkBCUL18eWbJkcXRRyEq2DNq+evUKFy5csNn0KOljS/TE4fnz544uAtkBg+hEZHM7duzAyZMnHV0MoiQrvhdXFSpUQPny5fH777/bqETmxcbGJti8yLxnz55h586d/F2SmSpVqsg6O+LFMdHnJzg42NFFUPXs2TPMnDkTT58+dXRREkxsbCxOnTrlsLSCpUuXRvHixbFjxw6HzD85YEt0sofkvF19zhhEJyKbunv3LurXr4/y5cs7uihEn63Lly8DAFatWuXgkpCt3b59G1u3bjV7UVSsWDHUq1cPv/32WwKVjGxJ7fc9duxYApeE6PO1YcMGjBo1ikEoC7Ro0QL9+vX7rDrMnDBhAsqVK4e2bds6ZP7Xr18HAKxdu9Yh808Okuo+/vbtW1SsWBHff/+97HO2RE8cGERPnhhEJyKbunfvnqOLQESf6E/ebt68iXPnztl1XjxJTxh58+ZF48aNsXPnTpPDhYWFAQA2bdqUEMUiIkqUoqKiMHr0aPHmsiW++uor/PTTT9i/f78dSpY8HThwAABw+PBhxxYkAU2dOhVA3E0XrewRXGPA7vOzbt06HDt2DOPGjVMdhufnjsN9MnliEJ2IbCohDxb//PMPbty4kWDzSwp4opQ82Ho/yp8/P0qWLGnXx6u57SWsI0eOaBqO6VwoocydOxfz58+XffbhwwfcvXvXMQVKABcuXMDRo0cdXQwyYejQoRg5ciSKFi1q9TT0NyUTCwZmEhdXV1eLx0nuQfRXr17hwIED+Pjxo6OLokliWndSsbGxiI6OVv3+w4cPip+zJXrikFi3K4ofTUF0Hx8fpE2bVtOLiCihZM+eHQUKFMCLFy8cXZREITw8HLlz58bIkSMdXRRKJAxP3g4dOmS3efEkPXFKrkH0iIgIWUecyUFSvtiKiIhA79690bNnT9kFf2BgIHLnzo2///7bgaWzn+LFi6NSpUqJLshK/zl+/Hi8p5HYjm9Jua5Ijtzc3CweJ7kH0Zs0aYIaNWrgl19+cXRRkrRq1aohTZo0+OeffwAAu3btQrFixRASEqJ5Gomt/oqPV69e2X0er1+/tllsITHtk2Q7zloGmj59up2LQbZ04MAB1KhRAy9evIC3t3eCzXfp0qXo378/IiIirJ7G3bt3kTt3bpw5cwYlS5ZUHMZRy0eJ1507d+Dj4+PoYjjc+PHjce/ePYwePRo//fSTo4tDiVDz5s3tdjKdnE7Sk5PkGES/d+8ecuXKhXLlyuHEiROOLg4BePPmjfi/tHO9gwcPAgDmz5+P2rVrJ3i5EsqDBw/g6+vr6GIQafLu3TurAr+kzJqW6Mnd3r17AQDz5s3DiBEjHFyapEufFmndunUYMGAA6tatCwCoW7cunj17pjpecmyJPn36dAwYMAArV65EUFCQ3eaTPn16vHnzBhEREfDy8orXtBhET540tUTv2LGj5hfZl06nM/kaNWqUo4uYKOTKlQs6nU6xg5WiRYtCp9Nh6dKlCV8wE8aPHw+dTof+/fvLPu/Rowfy5s2LlClTIkOGDGjSpAmuXr1qclqdOnUy2jb0B129n3/+GRUrVkSqVKlsejMiuR0sYmJiEBUV5ehiaKL2SJ9Wv/32G2bPnm2j0iR+8V1f9mSr/Uin05k9eX706BGmT58erxugQPI5SU9ukmMQ/Y8//gAAnDx50sElIT1zF+ysH4gSh61bt8Ld3Z2N5GzIxcXF0UUAoP3cUe0prrCwMPz999+sr5MA/Tm7lt88ufyeAwYMAAC0a9fOrvPRNwo4f/58vKeV3OIiFMeqnOi3bt3Cjz/+iDZt2iA8PBwAsGPHDly6dMmmhSNjjx8/Fl/Tp0+Hp6en7LPBgwdbNV1pq6HkInv27FiyZInss+PHjyMsLAypU6d2UKmUnTp1CvPnz0fx4sWNvvP398eSJUtw5coV7Nq1C4IgoHbt2mYfY69bt65s21izZo3s+/fv36NFixbo1auXTZfFEex5clCuXDl4enomiUe147MePn78iK5du+Kbb76x67K+fPkSO3futEuOREuWf+DAgXBzc8OVK1dsXo7EREsQvXr16hgwYAC+/vprzdNNbmk0kiKt23tyDKIn14sS6W+aVG7e0ufl4cOHaNGihV1Tg6n5448/sHLlygSfr70tWbIEefLksarjU2u0bdsWwH8BKXIMR6Vz+e677+Dt7Y3bt28bfZczZ07UqVMHGzdutHnZKP6kT3yZkxxbotvKvXv3NF3H2GIfTa7nq587i4PowcHBKFasGE6cOIGNGzeKeQ/PnTvHPLwJwNfXV3x5eXlBp9PJPvPw8BCHDQ0NRZkyZZAqVSpUrFgR165dE78bNWoUSpYsiUWLFiF37txwd3cHEHdXs1u3bsiQIQM8PT1Rs2ZNnDt3Thzv3LlzqFGjBtKkSQNPT0/4+/sb5eTatWsXChcuDA8PDzGQqxcbG4vRo0cjW7ZscHNzQ8mSJbFz506Ty7x9+3YUKFAAKVOmRI0aNTR3UBUUFITg4GA8ePBA/Oy3335DUFAQnJ3lmYzMLfetW7fQpEkTZMqUCR4eHihbtiz27Nkjm0auXLnwyy+/oEuXLkiTJg1y5MiBBQsWmC1ndHQ0goKCsHDhQsWUJN27d0fVqlWRK1culC5dGmPHjsWDBw/Mrgc3NzfZtmE47Z9++gkDBgxAsWLFzJbREsntYHH69GkAcS137CkiIgKdOnXCvn377DL98+fPmwwYSwNtpjqwia8vvvgC9erVM9mLfEKYNm0aBEHA6NGjHVoOa+zduxcDBgzAu3fvNA1vLoiq75z3r7/+0jS9tWvXIk2aNNi+fbvsc2tO0levXo1WrVpZdGGgVVRUlKz+/1wlxyB6fN2+fRsPHz4EELfdjhs3Drt27XJwqeRatGjh6CJYxJYX7IIg4Ouvv8bMmTMVv9da95nz8eNH/PXXX+xXxQKdO3fG+vXrUbVq1QSd7/v379GqVSu0b98e//77b4LOG7BvEKpLly64c+cOunTpYrd5UPLw6NEjMb2HEi3XYBMnTkR0dLRi2kd9ozpb9mGRVK4Lk0I5+/XrZ/SZWrmlnz979gzTp08XG79+zrZs2YJcuXKhSZMmZodNCtsEOYbFQfShQ4di7Nix2L17tyz/V82aNW3ScQvZzg8//IApU6YgJCQEzs7ORidnN2/exIYNG7Bx40acPXsWQNxFW3h4OHbs2IHQ0FCULl0atWrVwvPnzwHEBaazZcuGU6dOITQ0FEOHDpU9wvb69WtMnjwZK1aswMGDB3H//n1Z6/gZM2ZgypQpmDx5Ms6fP486deqgcePGYhDH0IMHD9CsWTM0atQIZ8+eRbdu3TB06FBNy58pUybUqVMHy5YtE8v2+++/K56kmlvu6Oho1K9fH3v37sWZM2dQt25dNGrUCPfv35dNZ8qUKShTpgzOnDmD3r17o1evXrKbF0r69OmDBg0aIDAw0OwyvXr1CkuWLEHu3LmRPXt2k8MeOHAAGTNmRMGCBdGrVy+HXHSQdkOHDsWyZctQq1Ytq6ehdpEXGRmJEiVKoEiRIpoCara8WIyJicGECRPEvMWnTp0CEHdDa+XKlbhz547N5mWNxHqCpFSu6Oho7NixA4GBgZg+fTpmzJghfvfPP/+gR48eRk+EaWmJbqk2bdrgzZs3aNCggexza+YTFBSEP/74QzVYFh/p0qVDjhw5km0gXS1lxtmzZ2U3whhEl4uIiEDevHmRLVs2AHE3j77//nujlGeOIP1Nb9265cCSWM5cXWpJ/bBv3z4sWrRIMWCwd+9euLu726SzukmTJqFhw4aoUqVKvKeVEB4/foygoCAcOXLEYWVQar2aEKTp16RPaSxevBgtW7a02Y0VNQnRktPUMhg2bkiM5y6xsbF2awjiCIIg4NKlS2ZbrH78+NGqdHjW/IZZs2ZFlSpVcOzYMYvHtcX8rWHrfScmJgZVqlRBp06dbDpdNZGRkQkyHwDYv38/GjRooNpQbtGiRUafafkdW7VqhQEDBqBRo0bxLWKSN23aNADaGg7ZYh9xctIWbn379i0qVqyI4cOHx3uelhIEAcHBwXjy5EmCzzupsjiIfuHCBXz55ZdGn2fMmNFk5wZJytSpQLZs5l+NGxuP27ixtnGnTrX7Yvz888+oVq0aihQpgqFDh+Lo0aN4+/at+P379++xfPlylCpVCsWLF8fhw4dx8uRJrFu3DmXKlEH+/PkxefJkeHt7Y/369QCA+/fvIzAwEIUKFUL+/PnRokULlChRQpzmhw8fMG/ePJQpUwalS5fGN998I3YsAgCTJ0/Gd999h9atW6NgwYKYMGECSpYsqZqXb+7cucibNy+mTJmCggULIigoyKKDZpcuXbB06VIIgoD169cjb968Rh2WalnuEiVKoEePHvDz80P+/PkxZswY5M2bF1u2bJFNq379+ujduzfy5cuH7777DunTp8f+/ftVy7d27VqcPn3abKvcOXPmwMPDAx4eHtixY4fRTSxDdevWxfLly7F3715MmDABwcHBqFevXrJNwZAcHlOzxYWp2nqQpmfRsg3Ycn3+9ttvGDp0KCpUqCD7/O7du2jfvj3y5Mljs3lpYY9e3S9evIiXL1/afLqGWrRogfr164vvpTcgvvrqKyxYsAD+/v6ycXQ6XYIFUeOz3Tx9+tSGJYmjD7qYarVl6fTmzp1r9saoI23fvh2lSpVC6dKlxc8YRJczvDi9d++eYwpiIwl1/Hv9+jWKFSumKQVEfMtkKmjRvXt3AHENReJL3zeOrdNRHjt2DD///LPNz7m6d++O1atXo3Llymb363fv3mHQoEGyc/DE7vz585g1a5bielMLZnTr1g3r1q3Db7/9Zu/i2Z3aMv7www9IkyYNduzYkcAlssyKFSvi1RBEK0EQ4lXHrF27Fm3btpVdEyuZNm0a/Pz8zPb5Vrx4cfzzzz9m52u4XccnQBccHKz4eWK8uWJrJ06cwOHDh8VGcva0bt06eHl5JdhTqzVr1sT27dvRoUMHxe8t+X2lw+r7jzl58mSyjQVoZe06tPf8Vq1ahWPHjmHs2LHxnqeldu7cierVq5ttoEn/sTiI7u3tLUvPoXfmzBlkzZrVJoVyuMhI4OFD8y+li/6nT7WNmwB3NaX5tTNnzgwAssd4cubMiQwZMojvz507h+joaKRLl04M2Hp4eODOnTtii6iBAweiW7duCAwMxPjx441aSqVKlQp58+aVzVc/z8jISDx69AiVKlWSjVOpUiXVNBNXrlxB+fLlZZ8FBARoXgcNGjRAdHQ0Dh48iN9++02xFbqW5Y6OjsbgwYNRuHBheHt7w8PDA1euXDFqiS5d5/pUO2qPTj148AD9+vXDqlWrxHQ6aoKCgnDmzBkEBwejQIECaNmypcmTv9atW6Nx48YoVqwYmjZtim3btuHUqVM4cOCAyfnYgvRg8fvvv4stj20tsQfO+/fvr9iKzp7is06k49oy6JZQOT61WL9+PTw8PGQ3reJ7gnTixAkUK1YMOXPmjG/xzDJMfSUt+5kzZwAot2TT+nvaIgWDtXQ6HcLDw1G2bFnMmzcvXuVQmrYtzJw5E71790ahQoVsMr34Ulrf+r4vpE93Jccg+ucQKEhsVq9ejYsXL6o2ekhqv8nixYtx/fp1m05zyJAh+Prrr1GxYkX8+OOPWLx4sU2nf/PmTfF/w3Rahn799VdMnTpV01OOlrDnuVeJEiXQt29fzJo1y+Jxk3NKHv1TF/3793dsQczYsGGD3efx8eNHNG7cGOXKlbM6GNimTRusWbMGv/76q8nhxowZAyAuuGWKlr51+vTpg0yZMsWrwYD0us8W+6GldfbNmzc172f2zLcvbdlry/pIaX306NEDABI8ZbE+3ZwhWxxn06ZNix9//DHe00mqEmsQ3dzTVLdu3RJTzGphyb6hv76UPvFFplkcRG/dujW+++47hIWFiS3cjhw5gsGDB6veNUtyPD2BrFnNvyQBaFGGDNrG9fS0+2JI06zod2DpxbRh55rR0dHInDkzzp49K3tdu3YN3377LYC4XOqXLl1CgwYNsG/fPhQpUgSbNm1SnKd+vo4Mdjo7O6N9+/YYOXIkTpw4gaCgIKNhtCz34MGDsWnTJvzyyy84dOgQzp49i2LFihl1yKq0/GoBjNDQUISHh6N06dJwdnaGs7MzgoODMXPmTDg7O8tODr28vJA/f35UrVoV69evx9WrV2Xr3Zw8efIgffr0sguwhNC6dWuUK1fO7vMxtY3NmTPH6GkAQRAsbjlsyYH0xYsXmDFjBmbOnJmgaXTU1oMje25PTDc7OnfuDAD4/vvvxc/ie4K0bds2ALB5S3RLfrN79+6pdg6dVFqiC4KAkSNHIiQkJNF2dnz06FFHF8HsE38pUqQw+iwpBNHfvn2L+fPnJ0ir8MRUJxkyV7ZHjx5pms7Hjx9x/PhxdOjQQfVi3FLSc5Jt27ahaNGi4s07Q2qphrRSq/8WLlxos3Qi3bp1i/c0DJdp0qRJssftr169Gu95qM3PXDDL0anS4qN///4mA+nx3b6skRD1RlK5ERUcHIygoCCjRkJa0xZYSh9cWr9+Pdzd3bFt2zaEhISIqUitpRTQvnLlinist+XvMWfOHPz777+YM2eO+Jkl04+OjoaXl5f4Pj7n+9YMe/v2beTPnx9p06bVNLzazVZbkPZrZu9W1Ulhn9SSE10qMjISP//8sz2LlCAuXLiAr7/+2uKUjZaknrNFnWY4v6VLl2LYsGEWH1Py5csHf39/TeeBJ0+ehK+vr+anNZLCdp7YWLxl/PLLLyhUqBCyZ8+O6OhoFClSBFWrVhVbXVjq4cOHaNeuHdKlS4eUKVOiWLFiso4qBUHAiBEjkDlzZqRMmRKBgYGq+bNtZuBA4J9/zL8MUnkAiPtMy7gDB9p3GaxQunRphIWFwdnZGfny5ZO90qdPLw5XoEABDBgwAH///TeaNWuGJUuWaJq+p6cnsmTJYpTL8ciRIyhSpIjiOIULFxYfQdKzNPd+ly5dEBwcjCZNmih23KlluY8cOYJOnTrhyy+/RLFixeDr66u5g1M1tWrVwoULF2SB+zJlyiAoKAhnz55VDIYA/z3GaEn+x3/++Qf//vuv+ESCPVlbEX/48AGDBw8225nNy5cvsXbtWk2dXx44cAB9+vRBzZo1ZZ+3a9cO3t7edmslf/HiRfF/rSd4trhA0zINtWGkn9vyYjExB6yAuPIdOXIEr1+/tmp8R554vH37FhUqVECuXLlUh7EkiK70Wz158kTTY8rSaezcudOqvHr2SLUDJOxvFBERYdeWHOYeK1c64Tf1+5sq65MnT8R+QextzJgx6NmzZ4K38hcEweT2IQgCJk2aZJc8v9K8zlqZ2tf1YmJiUKBAAQQEBGDFihXizUNbatSoES5fvizLr2rLY4jab6JP5ZIYKS2zveue7du3o1evXopPJtpy3tHR0QgODkZMTEyCHdP79u0re2/LnPvWsGT6d+/eRdasWTFVJXXngAEDFFMsJtQyxnc61atXx+rVqy3+jawxYcIEuLu7Y/fu3WjRooVsnekbD8yYMQN169a1uINypfVQpEgRVKpUKV59qfzvf/9T/c7aoNyhQ4dUG0tISX+D8+fPm7zpaMnvdfDgQc3DGnr69KlNb+ZLG6zZO5WivW4M3b9/H506dZLdCDL3xINOp7NbeZKikiVLYtGiRWjZsqVF45nb7qXbqj3qtM6dO2P8+PFWN8zREgfV3+TUmgKZQXTLWbwnurq6YuHChbh16xa2bduGlStX4urVq1ixYoVq0E/NixcvUKlSJbi4uGDHjh24fPkypkyZIgt0Tpw4ETNnzsS8efNw4sQJpE6dGnXq1DGbx4wsFxgYiICAADRt2hR///037t69i6NHj+KHH35ASEgI3rx5g2+++QYHDhzAvXv3cOTIEZw6dQqFCxfWPI9vv/0WEyZMwO+//45r165h6NChOHv2rGrai549e+LGjRv49ttvce3aNaxevVrMYalV4cKF8ezZM9Vgv7nlBoD8+fOLHbCeO3cObdu2jfcJQZo0aeDn5yd7pU6dGunSpYOfnx+AuDv/48aNQ2hoKO7fv4+jR4+iRYsWSJkypSw3cqFChcSW6dHR0fj2229x/Phx3L17F3v37kWTJk2QL18+1KlTRxzn/v37OHv2LO7fv4+YmBgxkK8lOG0Pc+bMwZQpU2RlVNKiRQu0adMGX3/9teL3MTExYhoetZZYq1evBhDXaswUa26UxMbGomrVquJ7LRcrz58/t8kJpnReao99CoKAx48fo2jRorKOKaUtctTKHBISopqHManS55c17CQzKVi7dq3YYasp1m5bgiDA19dXvGmuZfhVq1ahXr16yJ8/v1XzTEgxMTH4+PGjzaYXFhYGHx8fFC1aVHUfev/+PQ4cOGB1J3jmLmSVLrDUbuSNGDEC7u7uRo+HXrp0CWvXroWvry/SpUuXIEGzPXv2AECCnNtZsjxbtmzBkCFDbJ7n9+eff4anpyfWrVtnUdm03KC5e/eu7Nhnzxz+0tzlSkF0aa7xP//80+S04pvn2JSnT58qpqKML3Np0Ox5YarT6dCgQQPMmzdPdizXU6oLBEHQFIgzVKdOHVSvXl3skM0RzN2kMbXtqP0O9+7dkzV6sJXcuXPj0aNHGDRokOL306dPx86dO3Ho0CFN5TS0bNkyi6+FrGXqxonhObKtAnwfPnwQpz106FAAyjfQ3r9/j7t376J///7YtWuXmD5JX5ecOnXK5DHF1DZz+/Ztq/dfU2lipOvI3PQfPXqk2j+EvgHI3LlzFTubDA8PR4kSJWQpVtVER0dj9+7dsuOLqbLFxMRgzZo1uH//vqY6++PHj2jWrJnZ4bSSBtFtOV1pytNOnTrh33//NVoPe/fuNTpuW6N169ZYtmwZSpUqJX7Wrl078f/bt29j/vz5snNFw5v++nVvaUv0xO79+/eoVq0ahg0bpjqMtIHQ+fPnLZq+JTcr7ZnOxdpGKvZ4ujypbiuOZPHRTt9BV44cOVC/fn20bNnS6ovlCRMmIHv27FiyZAnKlSuH3Llzo3bt2mKFLwgCpk+fjh9//BFNmjRB8eLFsXz5cjx69AibN2+2ap6kTqfTYfv27ahatSo6d+6MAgUKoHXr1rh37x4yZcqEFClS4N9//0WHDh3EvNz16tXDTz/9pHke//vf/zBw4EAMGjQIxYoVw86dO7FlyxbVbShHjhzYsGEDNm/ejBIlSmDevHlibkBL6J90sGa5AWDq1Knw8fFBxYoV0ahRI9SpU0fWcZu9uLu749ChQ6hfvz7y5cuHVq1aIU2aNDh69CgyZswoDnft2jXxbnyKFClw/vx5NG7cGAUKFEDXrl3h7++PQ4cOwc3NTRxnxIgRKFWqFEaOHIno6GiUKlUKpUqVkj0JkpC0PqK9e/duAHH51vWkB4vmzZsjX758WL16tWIOfClzgSxz+RKVzJ07V/be8EAWHh4uu4g9c+YM0qVLZ5OWjtJ5mTr5GDFiBC5fvizm13z//r0sp7fawbds2bKoXr26ap5/W9q8ebPFeVHjcxJgi/4C7NE5pilaAsCWtEQ3XH/S8bSkhIiNjRXT21jTytZeJ3FK0xUEAcWLF0e+fPk0B9Kl0wkODkbfvn1lref1OQVv3LiBggULKrasHzhwIGrUqIGuXbtauhhGlPZTSxozjBkzBrGxsRgyZIjscz8/P7Rp08bkfBwtPtuKJS2mpcelv/76y+p5GtI/uZkQLasT6uJIml5EX3cY9pujRhAEBAYGIjAw0ObbW2xsLDJmzIgsWbLY/GkXc2W1dxBdT/q00JkzZ/DLL78o3nCpV68ePD09Lb5417eYW7x4sdH+kxCdamthzXaTK1cuFCtWzKonp2zB8NijZXt5/fo1OnXqhHPnzil+99dff5m9Gal1u3zw4AEyZsyommLNMGhuq+29Zs2ayJ07t3hzVc27d+9kKSPnzp2Lly9fIm/evHBzc0O5cuVkDY4sYYt66NmzZzh37pysLy/9Ort3755qp+dt2rRBjhw5kDVrVtX0KYIgoHLlyujdu7esUZH+N9Ba9wJA48aNUbt2bVnnmYbLL32/YMECtG3bFjlz5kSRIkU0PQFg7iaqJaRB9Pi0kJcyfBp12bJlGDhwoNE2HhgYiJYtW8b7aXQtnVn37NnTqM80pX3MHscZw5utsbGxGDVqFBo0aID58+fbfH5SmzZtwsGDBzF+/Hjcvn3bpo1dDC1evNgoFmDrlui2/n3003v69Klq7ESa8khJVFSUzdPWfG5Mr2EFNWvWRNasWdGmTRu0a9dONQ2HFlu2bEGdOnXQokULBAcHI2vWrLKDwZ07dxAWFibrFMfLywvly5fHsWPH0Lp1a6Npvnv3TrYzqN3BTQ46deqk+JhG9erVjQ5+JUuWlH02atQojBo1ymjcNGnSYObMmZg5c6biPPWdlmktT9OmTY120pEjR6p20JErVy6jsjds2BANGzaUfWbu8WRzB7eIiAjZe3PLnStXLqMgZ58+fczO09J8fYaBvCxZspjtPAqQn9ykTJkSu3btMjvO0qVLrWrJYq+LRltdOOtP1KZMmWJ22C1btmDatGmqHeBYsyzr16+XvZcu1507d5AnTx7kzZtXzE9ft25dzdN+9eoVXr9+LesQGAAeP35slHLjjz/+UGw1JgiC0QWW4QW1ud/i8ePHsps4plj7u3755ZcAgBo1aqBo0aJWTcNWZdE6zSdPnhj9NloZBrrv3LljNtWElu0zvulcLBXfzkXtQWm6b968ETu9ffDgAXLnzm3RNKtXrw4grm+R8ePHA5Av+40bN7Bx40a0b98eQFzLutatW2Pjxo0A4h7bXblypcXLYo6lTwQC9j15DgsLQ7p06Yz6C7HHfE6ePIkGDRqoroN79+6he/fuqFatmuxzrftYw4YNE1XKCK207lcxMTEWbz/S8vbs2dPoc63pFZ49eyaeYyndjDx9+rTVud2lT2I8fPgQBQoUsGo6SszdkDG1bz158gShoaGoW7duvPdB6bxNNfDQnxv++eefVqX5MdyWevbsiQULFmD//v1inQjEPVmSMWNGFC9e3OJ5qDG3b8Rn37l58yYyZcqEf//9F+vXr0erVq3g6elplF5UycWLF+Hj44OsWbNaPF/D9allXzX1JEH79u2xceNGdO7cGb/99pvF5TE0cuRIPH/+HPPnz1fs8FtL+c2dxyjRB5el81QKpN27d09WX1y+fBkDBw6UPYmzf/9+PH/+XDEYbWqb+fDhQ7zPSZTOB/X7umGaSam1a9eK/1ua89uanOj6fqNMBUel60p6c+Pq1av4888/FWMy1tCnUCtSpIjRtX98DRw4ECEhIdi7d6/snCQ2NhYlS5Y0Gv7mzZuq63PUqFFwdnbGggULEiwAaen2aO32q6/Xr1+/jnz58gGI6zRY32hy+/bt6NChg2rjxPiS1nH6hrVHjx6V3YyKD+l66datG+7evSt2IgwYt0RXqsNiY2MRFRUl66dAjb22D/11+OPHj+Hr6yv7Trp9v3r1StYP4unTp+Hv74+goCDxOoQt0S1n8a+qfzwtODgYfn5+KFmyJCZNmmRRzlS927dvY+7cucifPz927dqFXr164X//+5+YBD8sLAwAxNbAepkyZRK/MzRu3Dh4eXmJr+zZs1tcLiJKePHtlNCQ1h6sB0r6J3j9+jXKlSsHV1dXnDt3zqqLdlOtN7Z86kfh1q1b4kmoUqvutWvXKuZKS5cuHTJmzGgU9M6SJQvKlSun2smb4eN/hgdLwwO8uUelLTnYSsfTn4xZIiE7ZrXG2LFjxf+tOVFas2YNevTogaJFi6JEiRLi53PmzJGd1CnR+jtYum9FRETgwIEDRi0Zr1+/LrswN5y/vfIg28qrV68UO+QxnO/ly5dx/fp1TdOUtvYyXP5ly5aJLY7XrVsnBtBtRWvQ7syZMyYvjp2cnHDu3DnV1ovW/q6XLl1C5syZUbZsWbx48cJoe3r//j327NmDN2/exPu3L1SoEJo0afJ/9u46PmrzjwP451oqQGmLlwLF3YYNiutwlw0ZVob7hm2DwY/hw4YOGTpgMIYOGQ7DdXhxp8iguLb5/dHlluSSu+SkV/m8X6++4HKR53K5J8k3z/N9MGfOHM15OnTogD///BPffPONeZq7W9k7o4WV9DM8evQITZs2NbyOdevWwdfX15zqzNZ21EjHuxEf3NlqEfvmzRscPHjQZsuv4sWLo379+hbTjaYmceX3bTQneq5cuVCnTh388MMPTiuDsoGIFmm5RowYga5du+raN9HR0bJtzJ49GwBkjXIuXbqE6tWry85nQEwKweHDhzulJ5taWR1JBSWur379+ujSpQvatm2LsWPHolSpUla3eevWLRQqVAiZMmWye9tGy2ntmBLPMXrHqrLFVv2kpyV6gwYN7N6+tHeL2nGj1pNHLY2j9HuUsnbMf/rpp3qKaJi4jxwdIFmr7DNnzkTFihU1e7dKGxdau4Yzcn3nzHznu3fvxsCBA2XjbTjLpEmTsHfvXmzatEk2/dq1a6p5pgVBkB3j0t/DwoULMW/ePKs91E6fPo1cuXKhSpUqTuupKi2Po+ez9evXq07/6aefzA8zRDdv3pTNE9sD1pcpU0b2Wi2tjV7KY1vZ8FD62Z48eYIcOXJY9NisWbMmAgMDdQ0e7ux0O8rl1NLZSFui+/n5yd4bN24cAHkOfgbRjTN8x58mTRr06NED+/btw5UrV9CsWTMsXLgQWbNmtfpUVU10dDSKFSuGUaNGoWjRoujUqRO++OIL1afdeg0ePBhPnz41/zkyMAgRWRJPVv/884/um0a9N2dq5syZg8aNG9udQ9iIyZMn48iRI3j//j0++ugjWWsQMQAkCAL2799vNU+htdei6tWra5ajRYsWKFu2rMV0cR9oPSA4duyY+f9Pnz7F8OHDcfHiRcOt5dTmcUb3Nr3dS6Xb8vb2tmtbauwt98uXL3H58mXMnDnTatDGnvW3bNkSs2fPxoULFyxys2r12BHpDdobbYlevHhxVK5cWdZi12QyIU+ePLI0JCaTSXYB6WhOY+n+W716tV0pYaytNzg4GBkzZrSax3POnDkoUKAA8uTJg4MHD9rMQW3tQn779u0YOXIkjh07ZiiNxJ07d/DDDz/YlS9R65jo0qULRo8erfreli1b8NFHH+GTTz5Rfd+e73TMmDHmsT3+/vtvpEqVyqLnYv/+/VG9enW0bNnS8PqVxJQS1m5o7W3JbK/Hjx9rNvgQOXsMkgEDBqj2gDt79iyyZ8+u2fusQYMG+PDhA1q1amVoe1o5wcXptn4/n376KUJDQ829OUR661JpKgc99B7LW7ZsQfPmzfHo0SPd6zMaRBfrt4EDB8qmr169WvOBuDV///23bEwpa6TlGjp0KGbNmmUzdQYQkzrQVqBe6wFk5cqVMWzYMLtbrNr67pTHkD3Exgvr1q3THBRUymguXqXo6GjzeEaA+vGifMiidUw563xphK0GGYB2oE4Pe849atc7Ys9PI+t/8uSJRSOOTZs2YdGiRQBijpEDBw4YLp+zWqVaK/uePXvMD/Cl1qxZI2s5ay2FnzX2NqD466+/8OWXX1qkTpFSnqejo6Nx5swZQ2nYbNH78Fr50EqtR530vkupcOHCuHz5Mnbu3Om0QXiN5ES3tZ/UHkzrXV56rFy7ds1c79+/fx/btm3TXPbDhw/o2rWrU/LK27Jr1y60b99e9jAOsH3cS8s+Y8YMXLt2zWIMNTG1rDgOgz2U6Zyk2z137hx69eqleg2pLL9abxVrvQqly4sPJxlEN86hmjxbtmwYNGgQxowZg0KFChkecC5DhgwWN1X58uUzP+0SuyYoc9Xdv3/fotuCyMfHB/7+/rI/InIeQRBw4cIFjB49WtaK2xo9+dO0TridOnXC6tWrMWfOHBw5ckR1nmnTpqFx48ayFoZ61w/8l5vOWl7Mbt26Yc2aNViyZAnKli2L0qVLY+HChahcubLsQttaEN1ZJyk9F7ovX77EsGHDdHWnVp5stVpkxBbpAxNnBtHtCVhduXIFfn5+yJUrF7p16ya7kFLuE+XN0enTp/Hll1+6rDW9npsxI+lcRGILqcOHD1udLzo62pxXH3BuEL1x48Zo3ry53etSIz74ErsuK7cbFRUla9kWGhqqmQtWjdZnj4yM1H3j/OHDBxQvXhz9+/dH27ZtdS3z+PFj/PHHH3j//r3VcQS+/vprq+tRDnInsuc7VRuTQRnIENOnOXOMG2v72VYPG/F1z549MXLkSMPbjo6OxpAhQzBz5kxERUUhderUyJYtm6EWso7Ws1oPCsLCwnDt2jW0b9/e7ha7ts5f0npGq85Rfj6xd9bkyZPtKtPff/+Ny5cvo0uXLpotO9X26dixY62ut2bNmli5ciX69+9vsY7o6Ghs3LjRoseK0SC6miNHjqBx48YoVqwYBEGw6OVr7fgwkhpOrVyffPKJ3QOHir2TrT00Er8fZf2rl/Szv379Gl27djWPQ+Goa9euWYy3ZE9qLKNmzpxpc2BE8RgEYo49rZaPYnDXGd69e6d6Pr927ZrsekZZ3zo7bYE918+ubCFbu3ZttG3bFlu3bkWDBg0sWsfqERtBdC3KNKTR0dEWA1fasz29+7x8+fKYOHEiBg8ejOHDh6sOeq3czldffYVChQrJrl+cfT+itT5lS3Q1eseFU7uvik+Uvz9xMNvo6Ghkz54defLkwbhx4xAUFITq1atj1apVqutZvHgxZs2ahebNm+PVq1f4+++/sWLFCtk8zvh+P3z4gMqVK2PBggXo0aMH1q9fb74HVH6WY8eOmbNgiJ9J7f/20qq7xo4di8mTJ6vm9f/oo48wdepU82Cz0jEF7H34pba8mO3D2Q06EgO7a/J9+/ahW7duyJAhA1q2bImCBQsaHnSpbNmyFhXoxYsXzQPcZcuWDUFBQdi+fbv5/WfPnuHQoUNOy4tERMaJLaHVbnzVWuqOHDnS5vgEtk6akZGRskFvpJYsWYLVq1dbHXRWbfwAka2bP1Hz5s3N3Z/Onz+Pdu3aYdeuXbIWw9aeaCtZa8FgjZEcicoW/GrdgZWvmzZtirNnz+LPP/80l98VDwO0SFvhSVt+zJ07FyaTSfO7dEWgf/r06bLX27Ztw9y5cxEaGmrRRVh5sV24cGFMnDgR3bp1c7gc9gZo1ILozhqICZB3g7QWRBcEwfCgfs4KkOjNO6s2UJu0lYmt/W3td6n3xrlIkSLmh3lq42Go7d8yZcqgbt26Vus4R9y7dw9fffUVxowZg6JFixoasMxVnN09VnT27FlMmzZNtRWfVOvWrdGmTRvZtFWrVuH7779Ht27dzPXGmzdvkDRpUqROnRqFCxc23HLVaHBZa9Ax6XnAmelDrP3e1d53RR1dtWpV/PTTT7p6Uoj/HzRokK513759G/Xq1UOZMmXM9eiCBQtQp04dFChQwNzbQrkdkdHjUfoZBgwYgMyZM1ucg7TWrecaxla59DaMUHP27Fmbvaec5YcffsCsWbNQq1Ytp6yvTZs2Fo0wlEF0vd+vkQZl4kDc1tYndfXqVc3UJHofXAmCIAuYKJe7f/8+kidPjiZNmsim37t3D9mzZ0eaNGk0y2tv/Xv16lXV8ROkZdfbG9VoDnF72HvtDsTs70OHDmm+f/DgQdXpzkifpzym582bJxsPRrm/f/31V3OPOHsD7Gp+/PFHDBs2TNe4euKDPen36uh5xMjyrnroYc9v5Z9//rEoz82bN83pOWxt0xHK8p4/fx6A/J5f2qtKmTJHJD1PLVq0CB999BE+/fRTXfcl0t420vIoy3b9+nXZvePSpUtRv359pEiRQnV+ICZGEBUVhWPHjsl6KtjzIFyroY6avn37WozTA/zXi08cl6Nhw4bm99Tu65WsfffK8ty/fx8zZszQnJ/UGa4ZBg8ejGzZsqFKlSq4efMmpkyZgoiICCxevNhQKwgg5sA5ePAgRo0ahcuXL2Pp0qWYPXu2+UmpyWRCnz598P3332PdunU4ffo02rRpg+DgYNnBRESxR9k6VUzDJFI7Gdy+fRsBAQFWn3TaOtmLg3vYa9GiRVZzHOq5GdNq1au3JbpSiRIlbG5TjSNPxvXuw4IFC6JGjRrm1gT2BtGNfmcPHz6UpbKRXvSLx9nChQtx6dIlhIeHq/YeCA8Pt+i+p4daF3rlvt61axe++OILHDx40KJnhLhf/vjjD1lOe735+bW8fftWdXBVvd+DMk90xYoVzYNqShm56FKzaNEizdYn7dq1g5+fn2YQ0VauVyCmZUmdOnUMB2pspZiKiIhA+/btrd7Y2rJt2zbZwIrK7avdiJ0+fRqZM2fGzz//jDt37kAQBNXvRYv4GcTGCNbyWTvi008/xYQJEzB48GCcPHnSrrENYovRGx7lMa980KO2vgcPHuCXX37B4sWLZSl3pIOLKwPVjx8/xunTpy0CU7bKIw56HRkZqSs4pBVElx5/to4xaYsna2WzRqw37Qmi66kLpMTeq+LDHbEVrdo2jfaWEQQBGzZswMGDB80tgLXSU1SoUMFimvRzvH79GjVq1MCUKVM0tydNlSIeQ44EtrUY2b9iTz09HEm7p3Zdc/bsWdUHMtJWg/aydRzoCaIrXbt2TTbAqi3K78Fojn/R1KlTVfffvXv3kCVLFllrWWXdFBgYaD4mt23bhjZt2uDDhw+yNDOA+nWMnnQuthw6dAg5cuRA0aJFLd6z55rfSBD96tWrunIaA/Kc7NJ8w0avx4cMGYLSpUurvrdnzx7VRoKCIFgESu3ZN9Jyi+7du2f+v7T+WbBgAT777DNUq1bNYntaLWFPnDhhTq2mhzIF2OLFiy3SGrqT0XORHm/evMGWLVsseoTpaWTy/fffW9xHh4aGOpxW6tGjR4YDsfYcfydOnNDsUfD777+jZMmSVscOKlSokPn/1lIpqo2VoEfv3r1RokQJh865H3/8MapUqWK+Nz1y5IhdaZ+sUY6XpVYHaX0/N27csLhXMNoImmIYPtvt2bMH/fv3x507d7Bhwwa0aNECyZIls2vjJUuWxOrVq7Fs2TIULFgQI0aMwOTJk2U5GQcMGICePXuiU6dOKFmyJF68eIHNmzfD19fXrm2qie3BEYjiI7FCVp6s58yZg7lz5+oaNMXazbut36EzcqIru4xJnTx50pxeQIuHh4fqiUn61Fr5fq9evQyW8j/dunXD0KFDLabHRhBdJLY0tpYT/fLlyyhSpIhskBJ7t3fjxg1d84WHhyNv3rwWqb3E6alSpTK0XcBy4BrA2L728PDAjRs3ULduXdmDAFt5dW3ZunWrudWHlJ7udyaTSTbom0jMm2yk9aIjxK7m0ht4ZXDf1s3Kpk2bsHHjRs0eKVpMJpNFcEL6vX7xxRdYsGCBQz0G6tata/V9teBCu3btcPv2bYSFhSFTpkzmgKm03HGBVsu4uMjaPtO6SZTeUEiPC+VgU2rzSAM20ula4/Go5ZOuXr261RzYN27cQMqUKXX1wNT6/Mrj7927d+jevbtqQNhIIxWt+n3//v2q9ZO4j/bv32+RqkSLtTRrSpGRkUiZMiVq1KihWUYjA7xJl33y5AlKlChhKP2Q9PuYPXs2/vzzT/Tp08c8IKdRWoEsV6Vbi4yMlLW2t8XeOuvSpUuq5+yCBQtq5vF3lK19pmdMLeXn1fMgVrpd5XnJ3gfuvXr1Un2wMHLkSNy6dUt2DaAcIO/58+fo06cPXr16herVq+PPP/80v7dkyRKr2927dy9Kly6NxYsXA9D//b979w6LFy/GnTt3zGMPhYeHY9SoUZg6dap5Pnt6zdkKoksfEq5btw758uXDgAEDkD9/fqsBdTHtASB/wGJr3Acla+m0rJ1zlK1bjT4MBNQHXbVFz/gMgiBg+/btKFasGPLly2d4G0BMr4w2bdrYTLUlbs8o5ff04MEDFChQABMmTNBcJjIy0lCd9uTJEzRt2tScpkzqxIkTKFKkCOrUqYOaNWtaHAfK6z+97t69azFtw4YN2Llzp679tGLFCqRNmxZfffWVxXuHDx82P2Qx2hPi559/tkixpmxkJ+39M2XKFBw9etRqQwO994e2xhPS+k7FXl/SgZltff/S96V1j/i9NGrUyHphbXj16pVFkFtZLxoJojOTh/NYPpK0Yd++fU4tQN26da3efJpMJvzvf/8zfNOsh5hr98WLFxYj1xKRnBjE1mploCfYaPSptjTgMGLECNVW7rHpzZs3qnlXrQXR165di1u3biFDhgyaLfy0zJw5EwAs6j9pKz9Xt9oQLxCkn6tmzZq4du2a+Ubiyy+/xKlTp9C6dWvDA9NJRUVFWQSLBUHA/fv3LZ7ka+XH37Vrl93bV7u5MRpEVwsM2RqIzRZHgqlay0ZHR2P8+PGyG+rYyHsvPZ6krUVMJpNqWZ89e4aZM2di48aNugfNUxIDa9JtST+r3pZoWje4gO19pxZEVwZQrLVQtWeb9tAagC0uWLNmDe7cuYNkyZLJ0nFI69/Vq1dj9OjRqjnZ1fbXH3/8IRvcSew6C8TUc2rpVLSCl/Y+3Ny2bRsqVqyIZ8+eqZZRfPirVedplU1KevwJgoCffvoJM2bMwIwZM2weR48fP0alSpVspmSTatOmDcqVK2fO5ynd9okTJ1QHzpZ+Bunn0BoDSc3atWvx6tUrbN26FevXr0e9evUsWqJLc0zbIl123LhxhtM4SD+HtMVn586dDa1H5KxGP3pbDBsdjNfec9XAgQM1ry0nTZqE9u3bO72+c2Rf/vPPP6oNO1q0aGF1uTdv3qgOTugMaunIjHxGe3LiRkVF4dChQzh06BBat25tswfgixcvcObMGWzduhVDhw5FYGCg7PrI2rhGeknrcKmNGzdi3bp1qmM0iWPd6E2JJg2i29t7wAi1BwNGg+iOXEfa6o0iHSBXWs/psW3bNlSrVs1Q3dqhQweb85w6dQrJkydHjhw58O7dO2TOnNn83rlz57Bw4UKcO3cOX331FRo0aKC6josXLyJHjhy6y/Xtt99i1apVWLVqlbmHlLJMWpw1Nkz+/PnN91F6cvaLra4nTpyIy5cvy34Dp06dQnBwMEaNGmUxpo6e469UqVL4+++/0bZtW1y4cMFi8GOt+sLV9yJGfgtG5hXv2YGY38Tr168dHtD+/fv3NhvpGAmiG/19kjbDQXTgv0EBrl27hgMHDiBLliyYPHkysmXLplkRxUVJkiRBmjRpzAe4n5+f0wdFIUoIoqOjcePGDVy4cAFPnz5V7X2i50QTERGBe/fuIUOGDOYBisSUJspcfD4+PhYX1EYHL3YFtZa70hYOaicuDw8PTJkyBTt27HBKGcQT5uzZszVTSGiJiooy1KJALYh+69Yt7N2719xtWXoCX7dunc0R37V8+eWXFoHE6Oho1SCKtGut6NChQ7L8js54QGrkJlQrEOyIvn37ylpVOpOyRZqzbd68Gc+fP0ezZs3M08RzrJ6cfgBQrVo1XcFDa9RuuKTb03Pe37Fjh8UNAKD++1CbJ75cW2jlsVTz8OFDhIaGok2bNqo9ZtQMHz4cgwYNgo+Pj2y69Hdz7tw5i1ypY8aMUQ2MA5Z5hb/++mtUqFDBaqBWpGz5aavnkDIYYTSIrlU/qB1bIkd/p8rjb/ny5ebWn3pMmjQJp0+fVn3P2nH/119/qQbRHf09WyNtqVa/fn2L9C2CIOhuzaaklrPZFul+19PCUo0zHtQo/fHHH6hSpYqhBxR6uKL3jBhA1BNYWbRoEcqXL29xHaAWoDO6L8Xtf/jwwZwX/Ndff9W9/HfffYfvv/9eNs6XNStXrnQo9zbg3O/D1royZMhgs9dI8eLFZYPxOtrAwIg6derYnEfvuC3S33XHjh1V57EnxYbWPnY0z7ujQcnr169bTeciCLYH4NSydOlSc8oYJa1W+7Z6xz158gRFihQB8N9gvNJ7BuX1irX9o+dz3b17F8HBwbJW4fXq1bO5nKhnz56GekhZI22IJE0rqUV5/6bWil5tUHo9x/ejR4/QpUsXbNu2zea8UkYedLuaWi9gLdIUWNHR0ejdu7crimRxvOoJoj958sTuhkikznAQfebMmRg6dCj69OmDkSNHmiv2wMBATJ48OV4F0QEgJCQEgiA4/KSIKKF78+YNZs2aZb5Ysqf1hdhN/O3bt8iePTuAmJaPmTJlkg3gN2nSJAwaNEiWY9ZZHF2n0XQuQEyuN6MDxCm3Kb1ojY6ORq9evWTdXm0tLzKaS1TcrvIkLQ0oJE2a1Pz/tm3b4urVq9izZw9q1aql++L9n3/+UW2Jq7X8rFmzVKdLg0ODBg3ChAkTLAJ21oSHh8PT0xM7d+7EyZMnZS0LbImKinL6COeTJ092aPA0rZsyozdV9qT0EMstvbEQy6N2s6pWVmsBt6ioKIu8tXooxzbQE2iw1QvP2v68fPmyrtQASrZunO25Mf7w4QPq1q0ra5UlZST91NixY3HlyhV89913KFu2LKpWrWpzmWHDhsHb29siIC49vkqUKIFXr14BiAmy5MiRw2r3XLVAjNrDTqM5PwHLYyN79uwoX768+fXbt28xcuRI1KpVy+HeWI4S8+qrceQhjjNSqYkEQUDy5MmtzrNhwwa7053YGi9BEATNdJB79+5Fvnz5ZAMn2jsWiD3LWEvzoFYeRyxduhQbN260a+wQa4zuo5UrV+L777+3mhJDen1lS9u2bQHE9C7KkycPAGj2jjO6LwVBQM+ePTFt2jTzNCOBUrFHod4AUfPmzQ2VT7nv79y5E6uDxVkLoJ8+fRoHDx6UBdDjIrXWw2qkx45WmkgxiKvXtm3bZL2ipNRSdhhtie7IQO3K3nsrV660WL+95xhBEDBjxgxZ3n6R1gMKW6T3OfY8/JTSk3YsMjISwcHBsmlqPUO0SOuU2GZvy+SjR49i2bJlNtO/aY0hYo2eBwrK88Lz58/NA4fqTRWnh60xZJYvX46cOXOiU6dOsl5GgiBYpKy0xd7z+7x585A3b16rqddSpUrllJ4+9B/DQfSpU6dizpw5aNiwIcaMGWOeXqJECdV8SnGdyWRC1qxZce3aNZw5cwYBAQHw9fWNM7lIneHy5cu6W/C2a9cOa9asQdq0aXHp0iWHtluqVClkypRJ1mpj0aJF5ovlsmXLQhAEc/60o0ePGjrpiEJCQjQvfEJDQ80t2qRBWlcKCwuz2J44TTn9s88+M9QizB5JkybVfREhlvP9+/fmHMZATDDn3r17+PDhA5ImTYqoqCjVIJje1hLSbuHjx49H5cqVZe+Lx4E9ATJbpC2U7KG2L20F0R3Jiw7EBLCl+yI6Olp3AF3p77//drglOmA9D2S1atVw/PhxDB48WPdFwejRo1WnOxI0mD59OqZPn46TJ0/qvqHJmzev3dsrWLCgwxfsaowMNgnIL1qNBNGt7Wu1mzi9pAPviuVRCxgZOe+KLZPbtWuHuXPnyn4f06ZNs3rDOGXKFBQvXtz82tbN36hRo1Rb50jLbC2Aau8gR7ZMmDBBltZEjy1btlhNS2OEtL6vVq2aOXAtzR2rRqtVs0j6GxoxYoTN/JbS40ukt96wNZ+yJej169dlD2InTJiAH3/8Ed9++62u7TlaHi1Lly7VDBba6gkhvZY3ylZ5leNBCIIge+iqRk9XfSOULdG1HqqKA4NKv0tHg+jjx4/XPRCycuBAqaioKDx8+FD2mzMywHKtWrXwySefyKZFRkY6/aGO0Ye2egLFRlqii7Zu3YqMGTMiMjJSs+62p1W/Mtg1cuRIw+uwVf85S6ZMmWJlO3r079/faecdV9KbssrRluFqqlevrvmeWm9Eo0F0Rxry2NpedHS0Qw9qu3fvrjpdbZwlLe/evTOn6ZXmF3e0ntNzTb93715kzZo1VlIixiUtW7aMtXGVrHn9+jX8/f3x5ZdfolixYjZ7xNj7PW3cuBG1a9eWTbt16xY6d+6MOnXqyILoRs8vUVFR6Nmzp655lefZzZs3Y/PmzRbXOkr2nK9Im+Eg+rVr11RH0Pbx8dHdDSouKl++PD58+ICzZ8/i3bt3CaoivHXrlu6B7fbv34/Lly87JS/qrVu3zIMhFC1aFIGBgXj06JE5+Cbmh46OjkbSpElx584duwbgs7bM7du3za2OHB3cTy8xZ7Z0e9I82tLp169fj7Vy6SGWc//+/Rbl8vX1hSAI+PDhA27fvm3RgslkMukeYEd6sfXTTz9ZdMcXf39qI8nHRbaC6I5SrtORFkrz58/XnffRWhmk37XyhC6mSFi6dKnuhxZaF6qff/65kWKqGjZsmNUR353FSAD9yZMnNltkiowOOCRNp6OVI97ocbps2TJD80uptURX276RIJXYknnBggUoV66c7EGlrQvRo0ePytKF2Lr509N6w56AjJ7xDHbu3Inhw4dj5syZyJIli8U+MjoYqjNv/pX7TUwNYauXkp4yXLlyxWYLdJFaAw69D4ls/WalD5PV2BqMWsnaMX7+/Hm702uILXDVXL582aKVnJRampzo6Gg0aNAA2bJl02y5LbKWb1f5cMHR3Lz2kH7vmzZtsnnT//3336sua8+DxJcvX+LBgwe6HlRY63VTr149i1RLRhq6iDfZSkZ7YtiiNv/Zs2ctAoRGUq2J11dGWvV5enoiY8aMVoOi9rREdwZbPTvev3+PiRMnOmVbUrZ+e0ZSeRkVHwLoRrgiiG7NlStXHFpeEASHUkHZqgcmTZqkK12OGmf8rqZPn44ePXpgy5YtFg8L9fRkcbQMXbp0wcqVKxPl+HrOTgnmiAkTJhjKYW9Uw4YN8dtvv6kOuPz8+XPzQxwAsgHr9TCS5k7P8ZqQ4phxleEIVbZs2XDy5ElkyZJFNn3z5s12j8gcFyRJkgRVqlRB0aJF8erVqwR18G3YsMHmCOuirl27YsGCBU7ZrrTbnvj/5MmTWzxsmThxIlq3bo106dJpthix1+PHjxEaGop8+fLF2hO4zz77DID8iZ84TTm9du3aLrlYtpda2aUEQcC7d+80gyR6fzfK4IsynZJ4seeKluiuIL1Ic8XDREfrI+XI3srfuJ6W6MoLcGtBdOl0PQN9Dho0SDXPPuCcVlsmk8mleXiNunfvHoKDgx3uFaGHVrdGte88KirKPMCWkj29hETSfIp6cogb5UjZAPsGVIstVapUAQCLHOEio78PWwFRI7R+97aCRHoCEDlz5sTq1avtvh4R6yvxeO7fv7/qMTdp0iS71u8Kn332GXbu3GnXsrYCJEZbCR4+fNj8cNtaTva3b98iffr0ssCzNe64tpZu02jPDemy9p6L3rx5o+s4s7ZvbAU4nblfX716hZIlS6JixYqaLUS1qNUJnTp1skgZkCJFCnPKJlvE66uBAwcaKodWAD08PBy///674R4PtgaDddZ30LNnT9XBL22xFejs1KmT1QcR9jSuSKxiO4iu5ocfftA9r6NBdHEdWsLDw2UBxNhOkdujRw8AMQP7KnumKcfFcJXt27fHu5TGCZGtB07r1q2z+0H++/fvNb9jZY8/o73Fjaawc9YYawAD7vYyHETv168funfvjjdv3kAQBBw+fBjLli3D6NGjMXfuXFeUMdZ4enrKciEmFAEBAVYHrZKyN/+YXlrlmDlzJgYNGqS7nEa2J22hGBvEB0zSz5IlSxbs2LEDuXLlkk0PCgpy+md2hFrZ9WrXrp1FCwAttlrWxseW6Dt37sSmTZsMDUKil6MXv+Lo6/bQk87FWhBdj7Fjx7o0V5uHh4dT8/o66s8//wQQ07PLXaKjoy3yXAKuGWxUmhJDvMh0tCW6lDt7wbk79ZvRi1/pja6j7B0ETW8AolGjRobLJIqOjsbTp0/Nx/MXX3wR58e+OXXqlOFeJ0BM/lBnB9GlD8qPHj1qc/u2AoyiXr162d1i0V6O3CA64+bS0XW48gZXbd2rVq3CuXPncO7cOacE0bV+73ofSnz48MFwHW/teBdTtjl7oHpb42boZU8AHbDd4nbu3LmGc/SSOnsHCXYmI+NStWrVSveAtmr0XOdI05wpU3TGFrXrfD1BdGddx4k97CnuatCggUsa/ardTxkxf/58Q/M3adLEYppyTUUAAQAASURBVNrQoUMxbNgweHh4GCqLcsymo0ePokSJEobKkxgZjlB17NgRSZMmxbfffotXr16hZcuWCA4OxpQpU2StbSnuiC9PmBwNFMZlu3btUh10TdmjIz7buHEjNm7cqGteW60Lz549i7Zt27pkYFFXOHTokLnFqCuIA626itrAfFJqF6Hnzp3DrFmz0LFjR1lef+m6jARuXFlPOXpx4wx58uTBn3/+qZqSw13csU/u3buHkSNHqub4tHe/SD+Hs3JTJ1TO+s6vXLmi2RIuMDDQ6rKx0YpP7DUlstaDKi6xlT5GjZ5UVY7kq3Vmi6eff/4ZAQEBTlufHu4OouvlyHlBbVwAPewZbNcaI59B74Ch9+/fNzyuhJ7j3dkpRqyl+3H39YcotvKxJ3R60ozFJatWrXJoeUEQbD5Qk/YcNpJqypm/DbVzvJ4gelz5fVLs0DuAsBEmk0lXHMtZsS61c+2IESOQO3dutG7d2tAxrRzUt3Hjxi7ZRwmNXc08W7VqhVatWuHVq1d48eIF0qVLh1evXmH//v0oU6aMs8tIDtKTTiEuSMhBdGe3eHGVe/fuObW7v73Onz/vkhbd8dXgwYNRsmRJl6x7586dVh8AzJgxA7du3bJ4Si7meLUWmDKSx9GVF7FGn8q7wsWLF5E1a1bMnj07TvzGtAZydbX169dj/fr1ql0XHQ2iv3r1KtYHzrE1gJGrGQ1IjxgxwinbLV++vN3LxkYQ/enTp3FqvBGRux6gORJEd7bY7H0nCIJDAS9ntC6WprPSsmzZMofOUStWrLBruTZt2lhMcySNntrxrfW5lIN0WmM0v6w76mWt33ajRo3w4MGDWC6NOnHwXCIjzp49a3MeW41xtNjz4FiL2rhc7r72p7jHFfEmvY219D48tiY6OtpiXDrR559/jqZNmzq0/vg8xmVscihXQrJkycx5bC9duoTy5cvHiTxh9J9Xr17h559/dncxdDGS3y0umz9/Ptq3by+bFldantpibfAxci/l4KvOoqcF/fr16zUvOnr37u2UcrgyqBuXfn+dOnVy2QMRI5wxeLQjlK0coqKiMH36dLvWJV64unJgNC3Pnj1DeHh4rG9XZPR7tDfntpIyx7ER9raaNcLogKsJXVwKosdmfRwXPreeAHDLli1jPc0NoD5gtDOD6NHR0Th8+LDqvHoCc/ZyR48krWNtzZo1sVsQK+wNdAKOpdei+C0+N3J7/fq1zeDmr7/+GkulobjAnUF0tQc9zjZs2DDdY46ocUagPzFw/9UluZS9QQmyn1r+ab2DbhFpiY0TrzXOCr6RsVHYEwujLQ2lbty4gYCAAIdbX9hDEASnPUhKLCIjI2P9In3YsGGxur24Ji4Ek0VxqSxkSfr9REREGFpWGUSPKy2wY0NceljvCvEhHRa5Rnw6tpVlbdiwoc3g5tChQ11ZJIpjXDFGlt4guisfHovGjh3rUDpcd8cb4ov4MWof2Y03K7HvzZs3OHXqlGwaKyRylLu7JA4cONCt23dEVFSU0wb9Itd4+PCh3cu6M2WZIAjxupWWO4SHh8PLyytWtzlz5sxY3Z6WN2/euGW7Rq8Ft27d6qKS2D9wYkKnlUc4ts/90u0ZHWh6+vTpsuWt9ZRxZw8eV4hPgUYiI+LzAxR397qkxOHkyZO4ffu2zflatmwZC6VxDGNW+jDCmsDxoi72vXnzBkWKFHF3MSiBMZJf3BW08q/FB7/99hu++eYbdxeDEqATJ07EiRz3FD88e/bMLds1GkRn77nYd/HiRdXpsZ0mU5qj+OTJk4aXnzFjhvn/tWrV0pzPFa0B3YmNliihiu8DtnNAXXK1Jk2a4Pjx4zbnc/e9vB4fPnzAhQsX3F2MOE93S/R169ZZff/atWsOF4acj0F0ooRhy5Ytbt3+06dP3bp9orgqtltVExll6xqeSLRx40bz/x3tZfPixQtHixNv8H6LKG7q3Lmzu4tAFK8cO3YMefPmdXcx4jTdQfSGDRvanIcXEHEPW0YQERG5jrtTLVH8Mnz4cHcXgYicLD60MCRKjJiegsgYRwYYTyx0B9GZ8zN+4oMNIiIi12EQnYxI7IOcEiVEU6dOdXcRiIiIHMYgum1sppzAsSU6ERGR67CRARFR4sa0pkRElBAwiG4bI6wJHFuiExERuQ6D6EREREREFN8xiG4bg+gJHFuiExERuQ6D6EREREREFN8xiG4bI6wJHFuiExERuQ6D6EREREREFN8xiG6boSB6VFQU9uzZg8jISBcVh5yNQXQiIiLXuX37truLQERERERE5JAkSZK4uwhxnqEguqenJz755BM8efLEKRsfNmwYTCaT7C9v3rzm99+8eYPu3bsjderU8PPzQ5MmTXD//n2nbJuIiIjIUWfOnHF3EYiIiIiIiBzClui2GU7nUrBgQVy9etVpBShQoADu3btn/vvrr7/M7/Xt2xfr16/HypUrsXv3bty9exeNGzd22rYTA0EQ3F0EIiIiIiIiIiIiiqMYRLfNcFv977//Hl999RVGjBiB4sWLI3ny5LL3/f39jRUgSRIEBQVZTH/69CnmzZuHpUuXokqVKgCA+fPnI1++fDh48CBKly5ttOiJEoPoREREREREREREpIVBdNsMB9Fr164NAKhfv74s37YgCDCZTIiKijK0vkuXLiE4OBi+vr4IDQ3F6NGjERISgmPHjuH9+/eoVq2aed68efMiJCQEBw4c0Ayiv337Fm/fvjW/fvbsmaHyEBERERERERERESUWzIlum+E9tHPnTqdtvFSpUliwYAHy5MmDe/fuYfjw4ShfvjzOnDmDiIgIeHt7IzAwULZM+vTpERERobnO0aNHY/jw4U4rY3zHluhERERERERERESkxcfHx91FiPMMB9ErVqzotI3XqlXL/P/ChQujVKlSyJIlC1asWIGkSZPatc7BgwejX79+5tfPnj1D5syZHS5rfPX+/Xt3F4GIiIiIiIiIiIjiKG9vb3cXIc4zPLAoAOzduxetW7dGmTJlcOfOHQDA4sWLZYOC2iMwMBC5c+fG5cuXERQUhHfv3iEyMlI2z/3791VzqIt8fHzg7+8v+0vMNm7c6O4iEBERERERERERURzl5eXl7iLEeYaD6KtWrUKNGjWQNGlSHD9+3Jx//OnTpxg1apRDhXnx4gWuXLmCDBkyoHjx4vDy8sL27dvN74eHh+PmzZsIDQ11aDuJiTIdDhEREREREREREZHo3bt37i5CnGc4iP79999j1qxZmDNnjuwpRdmyZXH8+HFD6/rqq6+we/duXL9+Hfv370ejRo3g6emJFi1aICAgAGFhYejXrx927tyJY8eOoX379ggNDdUcVJQsMYhOREREREREREREWrJnz+7uIsR5hnOih4eHo0KFChbTAwICLFKv2HL79m20aNEC//zzD9KmTYty5crh4MGDSJs2LQBg0qRJ8PDwQJMmTfD27VvUqFEDM2bMMFrkRO3Dhw/uLgIRERERERERERHFUcmSJXN3EeI8w0H0oKAgXL58GVmzZpVN/+uvvww/tVi+fLnV9319fTF9+nRMnz7daDHpXwyiExERERERETmma9eumDlzpruLQUREbmI4ncsXX3yB3r1749ChQzCZTLh79y5++eUXfPXVV+jatasrykgOYBCdiIiIKO4KCwtzdxGIiEgHk8nk7iIQEZEbGQ6iDxo0CC1btkTVqlXx4sULVKhQAR07dkTnzp3Rs2dPV5SRHPDll1+6uwhEREREpEEQBHcXwab//e9/7i4CEZHbMYhORJS4GU7nYjKZ8M0336B///64fPkyXrx4gfz588PPz88V5SMHFStWzN1FICIiIqJ4rFChQu4uAhGR2zGITkSUuBluid6hQwc8f/4c3t7eyJ8/Pz7++GP4+fnh5cuX6NChgyvKSEREREQU53zxxRcOryM+tESPy2VMkSKFu4tARIkEg+hERImb4SD6woUL8fr1a4vpr1+/xqJFi5xSKCIiIiKiuG727NkOryMuB6hFcbmMf/75p7uLQESJhIeH4fAJERElILrPAs+ePcPTp08hCAKeP3+OZ8+emf+ePHmCjRs3Il26dK4sK1Gi9tFHH7m7CEQUj0VHR8fpQFh80aRJE7Rp0wYjR450d1ESnfbt27u7CC4RH36X0dHR7i6CqlmzZqF06dLYvHkzWrVq5e7iEFECx5boRESJm+4gemBgIFKlSgWTyYTcuXMjZcqU5r80adKgQ4cO6N69uyvLSpSoJU+e3N1FICIHubPFpCtv/Dp27OiydSsNHTo01ralplSpUli4cCGCgoLcWo7EqFOnTlbfv3XrViyVJPFJkyaNu4ugSnwAUaNGDSxZssTNpSEijsel35EjR7B69Wp3F4OIiAzQHUTfuXMntm/fDkEQ8Ntvv2HHjh3mv7/++gs3b97EN99848qykp0yZMjg7iKQE7DlA1H8V716dXcXwSXmzJkTa9tiV+rEK1u2bFbfj6/HRmy2RP/ss88ML9O1a1dUrFjR6WVxRrAtPrTid9SQIUNkr2fNmuWmkhDZltDvV5z5+UqUKIGGDRs6bX2UeJUsWVL3vH5+fi4siTFskELxke67jYoVK6JSpUq4du0aGjRogIoVK5r/QkNDERwc7MpyEiV6Cf2ilCghiIiIcHcRHFanTh0cOXLE3cXQ5O66UM/Nhz3pt1KmTGlHaRKP9evXw9PT0+o87j424gN7bp5Hjx7tkn1br149BAQEOLSOQoUKOak0cZfy4VBcCoDEhnbt2rllu5kyZXLKen766SenrCe+iIqKcncRVDmrN018fVhLCVft2rVx8OBB3fPHpYfPf/31l7uLYFViuMYg4wyfBbJkyQIPDw+8evUKFy5cwKlTp2R/FPfwpjJh4PdIpO6HH35wdxEAAI8fP0b69OkxaNAgdxfFIT///DNKlCjhlm1nzpzZZq82d9eFHTp0AGD9JmT37t2G18sbc+s8PDxs3vi5+9iIS5x5PLnq2OzduzeePn1q17KjR4/Gb7/9hnLlyjm5VI67fPmyU1NaKI9rd9YVzZo1c9u2HdG9e3ecPXvW0DJZs2Z1yrbr1q3rlPXEFx8+fNB8z8fHJxZLInf79m0cP37c4fU46zyzdu1ap6wnoUqfPr27ixBv/PHHH4bOC3EpiM5rX4qPDB+1Dx8+RN26dZEiRQoUKFAARYsWlf1RwlWzZk13FyFRS5s2rbuLQPFYQr5I+fLLL7F37153F8PcktjW4Ic5cuSIjeLYzegN4ooVK2J12+48lleuXKkrCGDPTXZc/o2mSJEiVrf36aefxur2bAkJCVGdHhoa6pT1u2LQztOnTzttXa44NseNG+dQ74vChQujSZMmTiyR8+TIkcOlDzHc+bAoXbp0NudJkiSJ1fe3bt3qrOLYFBISgsKFC2Pq1KnInz+/oWWdtZ8TW88Ba0F0d17/+Pj4IGnSpA6vx1nHRf369Z2yHmebOXOmzdRpscFWzzOylDFjRl3zxaUguhrGPCius36Vo6JPnz6IjIzEoUOHUKlSJaxevRr379/H999/jwkTJriijOSg9FFRyKljvjcADium5QeQ+t//f/TsGZavW4c5c+Zg3fr1svnuAbisWLYs9D2lOQfgH8nrAAB6O84c8/bGj9On44svvgAAZAGQWcdyTwEoby8/AqDnMvc6gNuS10kAlNKxHACcBPBS8jotgNw6lvt66FD8phgwLde/y9vyCMBFxbSSALx0LHsJQHTq1Pjnn5hvKBmAIjqWA4CjAN5LXgcj5vux5RWAvxXT8gPwV0zbu2cPyleoIJt2F8BNyWsT1L+bPLlzI/yifK+cA/BM8jolgDw6yisAOKSYlhWAnvYTkQDCFdOKAPDVsex1APclr31g/bvZ/McfqFmrFoCY/ftW8l46xJTZlrew/G5yAQi0skyF8uWxZ+9ePABwQ/FeCcR8R2qaNG6MVb//DiDmOIyUvJcCiu/myBEkP3cOam2njyHmOxJlBKBnlIjnsPxu8iPmN6Dp3xQoHq9fyyYngeS7OXoUjTJnxs4rV1RXcR4xvwFRKgB6bmU+wPK7yfrv8jNnzIi5ITp2DACgbB/5GDHHk8jDwwP4+2+L+dTkrl5d1jIxKYC8OpYDYupg6a12egAF371Dhnv3YO2RfNpHjyym5YS++vsBYuqJBQsWYM2aNVi7Zo3V303aNGnw8N/tXQbQtGlT83ter17hI5Vl6tSujRSXL5vfE2D53WQEoOxYniY6GspP9gzANcnriRMnYk6/fvC2UmbRHUC2Pm/o/24uAHgnef3j0KGY1L+/zeXeASjUrBlWrlxpnpYFlvW3mseIKTMAdOvWDb/++isK4r86wu/qVXgmS6Z6fXADMftKDG4kh77fDQCchbyOSA/Lc+v2n39G1WrVZNNeAhaNR3JAvf5u26YN+vfvj4L/dgu+D/l3E/3uHQooltm7Zw9GjRqFTZs3y6ZfQcz1migAgFrSCd/Ll2XrjELM9+rr+18JM/67vC0ed+8CuXLJpuUBoCfEcQcx11wiHwDZAaR58AA4dw75rCx78d9yi1Ij5nwFAH43bwLnzlkskw8x56qriukhsFF//+sfAA8V0/T+bm7iv/rbZDLBDzH7WA/l+SY9/ju3pv3nH9k5z//uXfPrFwCK1K6NjRs3mt/PDn3XePchP7fu3b4dYVWrWl0m7ePHyI2Yekl6jRfwb5lT+Pnh1atX0Ero8R5AmTJlZNOCEfOb1ZL+6VPkQsxx9EDxXk5oX0cAwLlNm+Dh4QHTy5eAJJidFLa/m+9atkSXvXtxBfI6IjVirhFteY2Y49/f/78aMBNi6uIoxTqlohHzvbyQTPNAzDGs577qNmLq4s8//xyLFy9GCsR8N9L9pPb/KFjey0nrCOV+lr6OxH/3RmIQPT9irn+k8+V88wbe/04Tz683EFP/i5L+u6y1sopOQH4dEYyY/aQ2L/btQ9IbN1AGMfW38rxcCDG/uSSenvD28sLrN//VtNJ1pVb0njEBqKS1TZXyPpFOePQIOHUKlW0sJwDYpZiWE9rHsPjbTIKYOk3ZByM//jsOoyX/CgAyvnqFhvnzY8O1a3gAef3tBX33C0DMdaW0jgjEf/W3Ne8RU78kT/5frZAR+q7xIiG/NwJizssC5J8RKv8+hvzc6oWYa2i1eZX/SuMYQMx1gI/GvNJ/oxTbxL/LmawsI/4b/e+fmSDA699yi8ubNP4PxYP7JNB37ylAHsfAv8vpCSh+gOVn9QNgev4cymYan5QujXnz5iHtvw9t30B+LHkAFstIlS5VCgcPxdydP4O8rvVFTB1jSxTkcQEg5lpWz7n1NeT3coC+mA0QcwxLP6sPrN9nSymPfX9YP7eK3kJeB5MOgkFBQUHCoUOHBEEQhBQpUgjh4eGCIAjC2rVrhbJlyxpdncs9ffpUACA8ffrU3UVxm0EBAYIA2Py7ElPHyP5W61hOAIQZKsu+0rlsA8kyKVOmFCroXE4AhC5t2wqCIJiXH6lzuV0q5T2qc9nBiuVSGyhvMcWyLXUu9y4gQPj6669lyy7UuewSlc8aoXPZzwEhVapU5uWKGPis6RTbHKBzuRMq5d2hc9kx/87fo0cPAYDgZaC8lRTbrKtzubf/zl+yZEnzslN1LrtO5bNe1Llsd8ky/v7+QjYDnzWnYptddC4XF+oIAIbqCF/FsrFRR9zv3Vu2XGzUEQ9VymtvHfHPP/8IQrp0upaNXrDAfK6JrToiIkMGi89qtI4QBEFo2LCh4TpCakuPHrqWE+sI6Z+9dYQgCHbVEQDsriM8PDyEPS1a6FruCiCEhYXJtnsiSxZdy0rriD179gj21BERERFCbNYR3bp1k12D2Hsd0b5ePd3ldbSOuH//vnlZvXXEh08/lX1Oo9cR0uWKGPhu8qdOLVt2bq5cupY7odimPXWE+GfPdYQgCMLHH39s+DrC3joiOjpatqy9dcSlLVt0f1ZHriNev34tW3a1zmUduY4QVq+WHcOxeR1hTx0xBBB+//1383JpDZRXrCNat24tABBa6VxO7Tpikc5lF0uWGT16tDBlyhThvs5lWyu2+ZGBz5pWsexAncsdV/mseuuInaVKyZZLq/M+W4D8XkMQBEFYt07Xco7UEetVltVbR3T7d/5hw4YJAITsBr6bhgULyrbZVedyl/+dv1ChQuZl1+hcdrrKZ32tc9n6iuUqGvisPoplowYM0HcsqZT3mM5tDoLiWLp/X3d5S3t7y7apt454oFJee+oI8c9oHZE1a1YhtusI6XGot44Yrdimt4HyVlIsW0/ncm9U9u80ncuuVSyXmOmNHRvua/jy5UtzV76UKVPi4cOY9hqFChVySp4xStzev39veyYJV3SBjqvclWdZEAS3bNceHTt2xOHDhzF16tRY3/a0adNifZsiZ3RPJedxdKA8dzOShiA+56COT3WbOxndTyNHjpS9zqyRCsUVYvt4dNYxZC39gbPpSceh5K7fuXK7njbShMQFYpnt2WetW7d2aJuOiq3v2dfXF6lSpbI9YyL2HvKBMO252xEEwS2/3f79+6N48eKxvt0///wzVraj3Ke9e/c2vI7s2bM7qzg2qR07RgNAYo9vIxxN8+u0es0pa9GvVq1asZqer3r16sYXcvP1b/r06TF79mwEBgYaWs4dY3K4817BHSnrfv3111jfZnxk+Go0T548CA8PR9asWVGkSBH89NNPyJo1K2bNmoUMGfR0kqfYdtbbG2N0zPdEZdpq/NfFNFeuXGjcqBEAYOy4cbL5UlSrhjy3biE8/L8OqROh7wC7JPn/+/fvcQvAOMU8bdu0wcJFiyyWVd527lVZVk36UqXw9+zZ8Pf3R/bs2SEIAhYD2KGYLzhDBty9d082TZm64zWA8Tq2CVh2szmvc9nmDRsiS4oUWL9+PQYPHowzZ85gEyy7tao5oTJtJvR1izsH+YOKhwD0Jm1SdmM6onPZuyrTVsLyc/Tt0wdXrl7FunXrzNP6NWiA1CVLml9HI+Y4VApKnx4R92O+DQ+TCZ6enritCGJcAzBJR3nFLsvSi72dkHfF0qI2xNUCAJl8fNC1a1fs3LkTJ/9WdjiNoZyat2RJTP43nYi3tzfevfsvGcMn1asjf/78mDxlCgB5920gJq3GZB3lVevqtQGWaVqksmfLhqvXrmGfynvTod4trnWrVvD19cXcefMAWHbLvwPgR8nrXj174vbt2/h99WqLdSm7lB9QLKtFLdnKrwD2//v/2rVqIXPmzPhp9mzz+z179AAA+JQpg+rVq5vzvr4BMFUyz6bNm3H5srLTdAxlGoGL/y4rrnuqxsMaZfdKANiGmK6IPbp3l02fNn267PVRxXImkwno0AF4/lw2b768eXH+wgXz606dOsE7jzzp0SPEfK96vFa8PgFgcYoUyJ07N47+m3pGTaHChYF/6+VTp06hcOHCWIuY+lTU5vPPsW7dOkQqul0flPxfEAREA5ihso1uXbsCABYuXIiXr2JqM2Xd9CJ1asxUWbZrly4AgJmzZgGwPAYB4C9YpsLIlSsXLl26JJumltV6GfR1C/UtXtycwgeISVE0S8dygLz7tiAIeJIhg3nZIkWKIF26dObju1jRojh+IqaG/gfAN4rBwJ5+/DF+UxmzoGSJEvjw4QNOnDwJIGafiMT6dB7+qyNqfPIJsmbNirNnz+KvffIa5bpiuXsAZkNd9WrVsHXbNvNr5fdzRGXZjmFh5vpIdAmW1gBQNicpWbIkPipSBAAwZ+5cADGp3aTeApijmPZFx47Ytn07rl27JpuuTPlzBcBclbI0a9oUAQEBeP/+PRYuWiRLDSHajf/S9tSrVw/rFan6RB0qVbKY9gv0pelR1nSPARz76CMUK1oUJpMJ27Zvx40b6mcRadfv+fPn487cuRC/hU8++QSZM1kmspn388+4ZTEV2AR5aiQ1JgB5W7cGliwxT4sG8LON5UQRkAfRbwGYr2M5teuIg4jphl2nTh2kS5sW8xcsML9XuXJl7Ny5E0DMtUA9AH///TdWrFiBkSNH4nfoSyl3QfE6OlkyLFCbUUK8D3wumTZgwAAcGTcOCwB4eXlZbRDzCMBXABYtWmQecHMn5HWOUs4cOXD5yhVZ/S36Bda717dt0ybmP5nlyR7vA1gEoEH9+lgruY6UalC/Pg4cOICoh/Iz84l/l7VFmaIHADYiZr97Iub7VgvQeCLmfFZXEoh7A+BIzpy4ePkyrIV0TPjvWi06Ohp79uzB9JYtcS9PHmzdtk22rPL/WnWEp68vXr95Y3VZ6b2RmMt6Ef671xDnz5olC679+3vv1q0bAODiDPlZ+CH+u2bS2p5Ieh1hMplwBPLrfum8X/brh8dPnuDn+fNV7zWWIyataZ7cuZEuXTrs+esv2fviuj4uVw44+N/RKHh4YKTKfGrEms4cM8mZExg8GKNGj7aylPp1xFZA9juU8sF/aVosk17F/G7SISaYrvwrW7Ys7t65g2vXr5vTgYrH6QsACwFky5oVFRQpNQFg2bJlePfv77/v0KH4bvFi83vhiLnHadSwIfbs2YN/HlveVfj6+ODW27cW03dAX7qJAxqf1QcxvyvxF2VS/AvEXON9/fXX6N69OzJmzIhHiImDaKVGkf4r/X46deoEPHmCTVbmF/89pVLeI4i5T/v432ukk/9eIymXFc9z5jEovL1x2McHb96+NTcpBoBKlSphx65dAP5ravxMUe/cAyB9BFWtWjVsk1wniZT19Mcff4wzhw/D2uMrsbxnFNO/+OILYOtWvIqIsBjXKl26dCj60UfYsWMH3n/4ADESIx6HzwEINWvi2LFj5ga9QEyKqBIlYpJ7iqnwpKkJgZh7yj9UylmwYEGcOXNGNp/SAajXk0oW51YAeoYRTuLpiUdR/x1NQUFBOIyYa0slZT2j1hTjbwC/W1lWTJ0q3ge2bNkSzZs311FSMtxef/HixcL8+fMFQRCEo0ePCmnSpBE8PDwEX19fYfny5UZX53JM5yIIq1atsujeofevcOHC5v83btzYvE7lfGFhYUK+fPkMrXvgwIEW01KkSCF7nTt3bqFdu3YWXVXFv88//9yiPGrrVf717NnT/FnevHmjWYbQ0FC7950z/7Zt22Yu74sXL5y23vXr1wuffvqp1XmKFi3q9s+v9hcdHS0IgiDkz5/fPE3K2rL/+9//zP8fO3asUKtWLYfLc/jwYad9tnTp0pk/h/Q3aG1+aToZf39/2fuLFi2S7RNvRTc+6V/27Nmd+j01atTI8DLnzp0zp2WQ/lWsWFFo3769xXRBEIQdO3a49HhT/v3222/m84u0HKLOnTurLicIgtC8eXOr627cuLFw+vRp8+vhw4frOq7FvyxZsmiWS886pOdL6fQOHToIXl5e5tfib9BI2cTP9+uvv6q+ly1bNuHbb79Vfe+TTz4RmjZtKkycOFH22apXry777GL5nz9/rrqe2bNnC4IgCPXr19csoyhjxoya+3LOnDlWl23atKmhY+ro0aM25zGyn2vUqGH38a38mzVrlvn/c+fOlX1/ghCTukLcprKM+/fv1/wsCxYsUH1v7969wuPHj4VBgwaZp63+Nx3D1q1bNcv54MED8//TpUunOs9vv/1m+PN/+PBBdXrXrl1tfidjxoyx+RupXbu26v5p0qSJ3d/ZpUuXVLerVY4DBw5orisqKsrQsWfrT6px48aa8+XNm1cAICRPnlx4+vSpbH9s2rTJom6TlrGgIpWArb+UKVNarMPDw0OYMmWKofV4enoKgiDYdf34+eefq34vyn2vvK5X+/z2/J09e9bmPF26dLGYNmLECPP/ldcf1r7/ZcuW6SpXu3btnHKsqe2f8+fPay574cIFoWzZsqrv/fjjj4bKoDbd2rWY+N1LX//000+GPvtnn31m9bNr1b/Kv6CgINnrIUOG2Py8f/31l+p733//vTB37lxhx44ddh+zasdYhw4drJ4bxHLduHHD5vqbNGkiO6aVf+/fv5e9lt5T6P1TpsA1urzyb8mSJQ6vQ/xbuHCh8Nlnn5lfZ8yYUbh9+7ZsnhYtWqjWvwEBAeZ5oqKiLNZ94cIFQRAEoXjx4qrbDg4ONv9feW/m4eHhtM+o9Tdp0iSHvw9nfaeCIAi7d++2OV+dOnXM29S6llBOS5Ikieb61GIr1rZtz2eT3ucq76UACA0bNhQEQRDWr18vm96vXz/Z51JeZ9etW9fu/b969WrV6VrX+q74y5Ahg+y+X0xP66o/5X5q3bq16u86MXF6OhexJUzr1q3Rrl07AEDx4sVx48YNHDlyBLdu3cKnn36qd3UUi6opBsMyQvoU0la3KqPdrlKmtByWp2/fvrLyDh8+HPPnz9dct9hKOv2/Ld8qVqyIMWPG4MmTJ1a3LUiewPr4+MjeWyJpgSSdD4hp+eQO0q7ezuyaWbNmTTT6t3eBFukAcXGJI/th4MCBGDBgAHLnzo3OnTvjq6++cmt5lKRdqfSu982bN5rvKUe4t9aNep1GiyyjJkyYgEyZMmH8+PEoV66coWVNJhPSpUuHqooBznbt2oXZs2dj+fLlFssof6vOtuvfVhyi6Ohoq9+NI+UxmUwoWLCg+bVWepiPP/5YdXqIg+kzrJVdeuzYe8yvWrVKs6WDyWTSXO+WLVuwcuVKi/JJ579+/bp5ELdkySyHEezbt6+5W7Ke72jy5Mk255GaNeu/tt5+fnr6+/zHy0vPcEXWXZQMmOzM34R0H7dr185i3evXr8fkyZPxyy+/GFqvWhmzZ8+Ojz/+GClTpsRoSes8PZ9HWs79+/dbmdMYra7ZztrHpUqpD09uZP1ffvml3csClr/nhg0b4scff8T8+fNd2jXdWi9Wb29v3Lt3D6dOnZINzgg4/5pUWl/s3r0b5cqVw4kTJ6yu59y5c9isGPjVkXQuerli3XrvFfQcV9JBTq2RDhxojSv3pSAIuHnzpu0ZFdKm1TtMnDZb6S6Uv7uwsDBD67eV8rJt27a61qMsR38dg0znzp1bdbqnpyfCwsJQubKtoTTlpNeR0mvavHnz4sCBA5g9e7auc2hISIjN9Jhqx7j083h4eKBOnTp6ih0r0qZNi1atWtmVqkuN8vM3adJE9/lEesyp/W7z/Nt7Ues3LT0XKq+hatSoYXP75cuXl71W206BAgVw6NAh3L592+I9V99LGKWnPNLf55gxY3TVl9bW64x7YiP8/f1x4MABHD2q7BcLc28lkTL1nbJucva1yqeffmq43pXSm9Jo0aJFSJ06NX777Ten3AvYKz6n6Ixtuo+0HDlyIFu2bOjQoQOWLFlirniSJUuGYsWKyfK2UdziyAlBepFo7YdlMpkMBwyU2rdvj0GDBpm7iOvRq1cvAMCdO3ewf/9+bNmyBQAM59hKIsmzqbWsh4eHxc2SLfnz57c9kw56g+jKXLS2eHp6Wj0+FixYgBw5chhapxZX5Sm35/j29vbG2LFjER4ejoCAAFSpUsXhcjjzxFO6dGnz/8eP15csaPbs2UiVKhXmKVIOAJYXFSaTCcWKFQMAi7yVyoC7vfr164ebN2/adfx4eHjAZDKp1gVJkiRxywPbihUrYrUkXYyfn5/uIPrMmTMxYMAA/P57TKc6oxd5KVJYG4M+9nh6erp8HApn/o48PDwwePBgdP03NYuSnrqjadOmhnISdu7cWfe8SsogoT1y5cpl/r+rbgbVzhvp0qVD7969kTp1aov5jX6nFy9ehLe3t655W7dubfjBjq15xDQZRpYRqX2H1pY9ceIEHj9+rNqoADD2HQ4ZMkQW6ImKUksAoE1ZzsyZM6Nnz57mhjOuMmLECKvvBwUFqeYPtvWdGK2rpPu6QoUK2Lt3LwoXLmyzbMrAjrNvQsX11a5d2zzNVQ817K0zpMsJgoBatWrhzJkzmDhRLaFe7JVLDz8/P2RWpHoRWfsunXEu9PDwMKceUKO8HvP09MSYMWPQrl078zUcoB2wbtiwoe6y/PDDD5rvKfdDihQpMHbsWNV5xcYPadOmRXh4OO7cuSPLGW7vNWaWLFlUp587dw6lS5eGp6cnypUrpys4P3r0aDRt2lTzfUEll/wCSTolZ/zG9ZzjIiIiDK3TWb8T5edX+7w9/k0xaK0MtuIGambPno0+ffrg1KlTFuceZ1wjiT7++GNkzJjR4uGhNBWmltgco6xkyZJInjy51bGvpPuyUKFCVhtViXx9fZ1SPj1GjRplMe3HH+WJNUuXLi27H9U6lm0F0Z11DwvENNBctmyZQ793vfcEn3/+OR4+fIgyZcogODjYPD22U2XHZi7/+E73ntqxYwfatm2Lq1ev4osvvkCWLFmQK1cudO7cGcuXL8f9+8pszxSfBQYG4pgiJ62tgJH0AgMAuvybF9baMqLatWvj559/tjhJSOcRA8Q5c+bEvn378OjRI3NLTE9PT4SGhlq0KtezbQA4fPgwgJicoNKn2MryuOsJnfRmWFoG5UWM1kWNFkdacp08eRI9e/bUvS1rgWo9rZ+1bhLiWqsBe3399dfm/0v3u54BY5IkSYLSpUvj0aNH6NChg8X7ajcf69evx/Dhwy1y4DrzGLe3RZ54EjeyXGwcBw0bNsTUqVPRvn17XS1iRF26dMHYsWPNvT70/u4mTZqEevXqqQ42N9pK/kxX7YuePXs6vG61IKujrO3PUaNGYcYMtazn+tk7AJ7e47dBgwaYOHEismbNatd2tDjyXV29qpYN0jnrtrUerZsgcV7pMosXL8b27dtRvnx57FPkSbenLhs8eDAqqeT/tuXnn39G5cqVMWTIEEPL5c6dGylTptQMpBkJ1AUEBOD48f8yshsdrNSZdX+ZMmV0z6v1AMFekyZNQtKkSVUfKKupXr06PD09Zb0Qpawd69ZuOPU2LpI+NLfGnh5qatauXavZE0jP8Wbrty++X6BAAfTt29fifb0NAxyRNWtWBAUFYfZsrZERYoK8EyZM0Ayg2xIb1xxqdeHAgQMxf/58/CXJ192iRQuL+Xbs2IHPPvtM97a0focHDhwwFJiSDu6ZO3duBAcHy3p0OSNIoxWo9fT0xI4dO1T3h9Lz51rZxG1/t8rfnz3HgvLh4W+//WYxT/r0ekY2UD83ApatsvUSBMFiXdLXlStX1qzj9Z6ztOqwNGnSYNKkSShUqBBq164t6xH/+eefW8yv7HFmtA5TluPVK+WIXjGkDexGjx6NFy9eYMyYMS4fzDZZsmT4559/8LfG+FgALO77bD2g6dSpEz766CPN960dz6dOqWVxl1PmUpc2smzZsiUeP35sszGUVhmUjQOU9UkSBwYfV26zQIEChs61S5cuRaZMmXDk3/HJAGPnanHemTNn4pNPPsGGDRvQt29fNGjQQPc6tKxYsULXfAyi66d7T1WqVAnDhg3Drl278OTJE2zduhUtWrTA+fPn0a5dOwQHB6NAgQKuLCvFos6dO8taOQC2K4J8+fKZ/x8SEmKz9aTRi46vv/4aT58+xaVLl1CmTBmbwRgjlU7RokUhCALWrVsHk8mEhQsXIl++fPjpp5/MFb2yqzSgfbIVOesiWxqwk34P0ov/+vXrO/UpvXJbSkWKFMGYMWMwa9Ys3LqlNoyX9XVJA/D16tWzuby1Cwg1jt6Yqw2YY42jAQjp8Wp0XWLXL63lQkNDLaYFBwdj6NChyJAhg0VrdHezpyWBq1tIi3r06IGff/4ZHh4edv++9X6/ffr0wbp162QXxA8fPsSaNWt0d7e0p4eQWhqUIUOGoFChQg7XaUYv0JTnITX2PmyR/v/9+/eaLXNc/fC0Xbt2FsEmvYE1a+z9rm7fvo1s2bI5bd3WgonK9agdeyKtY/mjjz7Cnj17UKZMGd0t0e1J36BGrHvbt2+PHTt2qJ531MrUvXt3PHr0yPx5Q0NDVXu6GW1NLu0GbHRZZ1qkMhC8NXfvqg3zZ0nPcdenTx88f/5cM0WOUo8ePfDmzRvNFqxGg+ji9z1t2jSUL18ekyZNsrp96W/d2n2U9Pi3t07asmUL6tWrpxpo6Nq1a6wEhvUcl3369LFrcDMx5cf06dNx9+5dc+ouNWFhYejXr5/hbVhz7NgxdOnSRTVNhBpb+9vDw8NcR2RSDKJrrWUqEBPodMa5q3Tp0rIHOCKtsts6x9sb5Pr2228B/DcYqaPy5s1raH5nXwdkzJhR9tqR1Ksi5XWwNC3g4MGDzf9XuyeQUvus0sYE1h74661D1LahlqKwatWqePLkCQ4dOqSaQkf5WYzWYd98843stdqDi/Xr1+Px48eYOHEiVq1aBSAmFdXAgQMNH0f28PHxsXpfZOShde7cufHTTz/ZXZZChQrZTNEp/Y1PnToVJUuWNL/OnDmzQ/fnrmyJbi1VpB4tWrTArVu3rPYukqpduzYyZsxo0QsoY8aM2LJlC+rUqYOkSZNisWRwXmvEXhxq9N5TMJ2LfnY9bvD19UWVKlXw7bffYvjw4ejVqxf8/Pxw4YJyLFr9xBxO0i//zZs36N69O1KnTg0/Pz80adKELd7toHZC8fDwQKVKlWQtGWwxmv9XOm3q1Kk4evSo7OmcnnUrW4gYCRJLUy9YK5uaNm3a4Ny5c8iVKxcWLlyIvXv3qnZHSpo0KQYMGAAA+OWXX/Do0SOcOHFCdxmV9uzZgyJFisi+l1GjRsla2GvtKzEXrzNTP2htS+xilyxZMnTu3Nni4l7Puqx9B5UrV7a4MJKeKNVabCgpgySZM2dGs2bNLFpeqxk1ahR2795tcz5pmZSfz57WjFrrssVo/jRrDzSsbfvixYto06aNOaehvdtzxvxi4F8Msrq7R4KRFtbSzzdt2jSr7yulSZMGDRo0sLgR1eqFojc4Jbpw4YLq8STeWBh9WDFv3jycO3fO/FpPK3zpPGo9WFzRCjpJkiSa69UqsyvKcf78eUyfPl13Lx9rQSKt3ju2KG/u1ej97B06dLBaP0nX07RpU9U85pMnT0a7du3MQQYjN63ifqxZs6Z5mslkcrgrc+rUqZE7d26LG3C9veFSpEhhUWfUqFHD3JK8ZcuWAIz/3qT1gtGW6M7y/v17q2m8GjdubDFN2mVZmrrF2nFm7Tg1eiNtb2BPLWAoHluZM2fGnj17rKaNAGJyBP/55584ffo0+vTpgyFDhsh+B2r1j94WqlIBAQH45JNPVMedCA8PR+PGjW3+rps1ayZ73a1bN6RNm1aWMsvWOvQEfCZNmmR1vB6t8Yl27NiBy5cvo3bt2jbPNXrrsGfPnqlOVytfsWLFMHPmTGTMmFF3Kjtr5fT09MSBAwfQrFkzQ6ku9VBrGKQ0ZcoUADEBmCJFisjek9ZN0mCtLfYGufLmzYs3b95g+vTpNr87PfXw8OHDzb+jefPmyQKLgiDYLKfye9PqYaG3kYqe41H64ER6/Gm1RBfPI6Lnz5/j0qVLFnmmldTOj9LxC6y1dNbbs0MZSC1QoIBFC2ZRYGCg5hhAADBu3Djz/621oBdJ67GKFSvin3/+waZNm9CnTx907NhRNm+XLl1Qt25dmEwm9O3bV/X8FRuc1ULYketWcSwEI73Yu3fvLgvgOhKknTp1qsVDWGXd06pVK7vXr+SMgLK1deTIkQO3bt2yWRfr/e6/+OILzbRcer93tkTXz9CeevfuHfbs2YPhw4ejcuXKCAwMRJcuXfDkyRNMmzbNPPioUUeOHMFPP/1kkXuwb9++WL9+PVauXIndu3fj7t27bqu8EprChQtj586dKFu2rOr7aj82aUUgPom1plChQub/e3p6onjx4rKnc9Z+0Js3b8aUKVMMD0go5axchj4+PihXrpzmTdbYsWPx6tUrtGzZEqlTp7baRcqW8uXL4+TJk7LvRW8lLt6EGg2oWvselDcqzZo1w9q1ax1OjwBYtqqRWr9+Pfbv3493795h5cqV2Lp1q6xil96caJVf2WoxMDAQK1assHnxCMhbbFjz9u1b8/+l31O6dOlU8+qK9u/fjxEjRmjeCMd2EF1re+PHj5ftR/Gh0oQJEwxtT8lWjjjpd/3999+rziOmo9mwYQMA9wTRpdtUDnZqrTzWck36+Pjgf//7n+GySFsOizdXwcHBqg/VTp8+rbmenDlzWt2Okf38yy+/oEOHDrJeSraObT3BIeUNnLNaTjj7GJKWS5mXXetz5s2bF926ddP9m/by8rJovbp3714MHz5c1l1cb0slrRY0Yj5msQWa3nNoqlSpZC3RlRf40n2+cuVKi0ANAPTu3Vs2uGXmzJlx6NAhXLp0yWJe5bEwZcoUPHz40CKvvaMPRgYOHIjw8HCL77FZs2YoU6YMBg4caHVbWtspWrQooqOjzQO0Gg2iS+tOay1+xZtaacDD3uCW8jrBWkC6VatWqq1a9Ro6dCiAmDrAWb1fHak/1G447Un/VL16dRQsWNBc/2u1FP31118xatQoqwElLdaObfGBm7XjrUiRIliwYAE6deoEICb4NH36dEREROhKXZMkSRJz6iWRtQch0n0rPYcAMemT1Hh5eekOXusdqFjrfGmt14y4rKM8PDxQuHBhrFixwqktXjt37mw1BzoATJw40TzuFGC8IZUWW9cY1uh9SDlixAjVcRSkAgICEBERAUEQ0KFDB/NxDcR8ni5duiB37tzImDEjDh8+bPPza/UOPHDggOp05SCgeup6ae8ateC89Hu4fPmyxT20n58fcubMafP7Spo0qWoqJj3Wrl2L6tWrY+/evVbnmzVrluzzVK5c2e5GYNJzjrX92KlTJ/z+++8WD79TpUqFmjVrYtKkSS67vnSUu69z27VrZ76mNHKtoPd+U48SJUpYNA7o27cvhg4dim3btuHkyZNWB/xVS3cq5WhLdC3i2BRqAX5njOPjTAyi66d7T1WpUgUpU6ZEt27d8ODBA3Tu3BlXrlxBeHg45syZg88//xwhISGGC/DixQu0atUKc+bMkT2VfPr0KebNm4eJEyeiSpUqKF68OObPn4/9+/fj4MGDhreTmGm1RDe6jPRH3LhxY1lLXWWFKgiCLI+v2vaUrQClatSoIbt4i+u0ulU6IyjjqkpdS/bs2fHw4UNERkZaXOQlS5YM9evXt9mNVI/evXvjiy++UM2HLrZ48PLyQtOmTVGtWjXNVt+uDJ7aal1jb+u10NBQfPvtt1ZbsmtR66ql98ZCa1ta2xZ7GSlpPXzTu72ZM2dafegq3S9aN6oZMmQwp6NxFVspLaSM3OBKB42RHr9//PEHXrx44fDNcq9evbB69WrNXjHWjmtb5wYjQT3pusRAW/fu3a0uM2rUKJu/hQ4dOqB48eLmgJq9daKeFkvW1i9tmWXLmDFjZK/v3btndf3SstSvX19zvZ6enhZ5uMuVK4ehQ4ciderUuHDhAq5fv66719mePXtUp2fKlAkPHz5EeHi4RfmsSZEiBZInT45z584hPDzc8AM/LR9//LFqMEatbjMy8L3eQaC0jgkfHx/s27fP4vs2QrpuW6kvpHWJkrVr8tWrV2PYsGE4cOAADh8+jBMnTlhcx+n5XTVq1AhbtmyxOkaDVO7cuQ2dN5VlKFKkCF69eiV7gO1qymNdOkiitXQuImcOdNa8eXPzQ36j91zSPNFa3621dfbo0QPJkiVD8eLFcf/+fWzfvh2A7XPGnTt3MHjwYFy+fNmiZ1GxYsVkrUilpOtVXvc4kvfWFiMp0G7dumXR2leL2ny26lG9x47Rc6DaNbyyLLbqaun8eq4Ldu7ciSlTpugeT0bZIljKVk+iTJky4cqVK3jz5o1d6QoFQUBgYCDCw8Nx+/ZtlCxZ0mIfax23Slq/D+W1ra1jIXny5LIySPe5Wkt05cMkrVR2arJnz271QZ214y1v3rz4888/bTaCy5Iliyye48i9rd7rpVy5cqFRo0ZOuw4xwsgA9c4g7n/xQcWUKVPg7e1tHr/O6L1z8+bNzfea0oZ0auvRGgTYCOl6586di0GDBqFUqVLmXoViHebt7Y3hw4ejatWqKFKkiOZxlCxZMkyYMMFqT2plmiK9x+SmTZtw+fJl1fdMJhOWLFmC1atXW4zRoXf9WnWIWso6R2NEDKLrp3tP7d27F6lTp0aVKlVQtWpVVK9e3SnBi+7du6NOnToWucCOHTuG9+/fy6bnzZsXISEhmk91gZiWoc+ePZP9JXZqJwt7fmTKH1aFChUwevRoZMuWDcOGDbM6v1ar40mTJiFz5syYOHGi4fLooZV3K7ZarcbHIPrly5eRJk0aBAQEOHW9ynL7+vpi9uzZuvKhK5ePrVHFN27cqKvLK6D/e5G2wjMatPvss8/MT7SBmAuZtGnTWgzqK73JN0rZSlotABUYGGiox4UyyG8ymazmVLTnIYk9v7W1a9daTGvZsiW6d++Oo0ePqtZreuXPn1/zvW+++QbNmjXDqlWrZDc6tWvXdijAJEqSJAkaNmxo8RDMkXWKjOxn6TlgzZo12LNnj2wAXTV60uIkT54cR48exfDhw3WXRQ+xFbTeG6xmzZqhXr165lbaStLv0t/fX/Zg2Ug9bq1l6zfffGMefFja+0uUJ08eZMmSRff2rD0gTZMmjbmVlq3vaebMmahSpYq5NVu+fPlU08u4oweJMp2FNMhirV7SM1id1vaU9H5uW0H0yZMno2XLlrJu8BcuXMDhw4cRFBSkuVxQUBC+++47ZMyYESVLlrS7B534OfQMgA3Yn2JIytGH+CNGjDCnpAOM13nSBy16bjiDgoLQsGFDNG3a1GbrWDWO9ppYt24dli5dKsvNLl1nrly5zP9PnTq1xfgzW7ZswaBBg2T7LF26dBYBXjFwojwWgoODMWrUKM3ASv/+/REZGWnxQEg6HoatgfLsodx/a9euRc6cObFx40bd68iUKZPmb0f5vc2ZM8dwGfUGNJSfxdrDNWeRblMM2FkL+leqVAm9evXSfS6ytr/WrVuHbNmy2ewV7ePjg99//x358uUz1IPWVkMyQN47Qm/PQ2u00pX+/vvvCAkJwZ9//qkZRLc2zYjFixdj4cKFFtcSzrrvVGYccMU2xJQjrtyGPcLCwqy+bysNjtGHs7///jvGjRtnvs/p1asXXr16ZbgRlBplz6A5c+agaNGi5tepU6fG6dOnVQPLer8D6W8qLCwMo0ePhslkQosWLbBhwwZcuXJFd3lHjBiBJ0+eIDAw0Or2ixcvLhuQXG9Za9asqdkDymQyIXny5GjYsKHN3ktatM4Dao2K7blekI7HwyC6frr3VGRkJGbPno1kyZJh7NixCA4ORqFChdCjRw/89ttvePjwoeGNL1++HMePH1dtwRIREQFvb2/ZaMhATBfoiIgIzXWOHj0aAQEB5j97R11PSPz8/DB+/HhZTm8jJxKxVaRaK4pBgwbh6tWrmhds69atw7BhwzSDDH369MHNmzfturHQ4+TJk5g+fTpq1arlkvXHBmtBdD0tZY38Br755hunddlUcvTixWQyYdCgQfjiiy/suhE30qpYlDlzZvzwww9WWzI2adIEZcuWVQ1gqZEOlqXWkgSwvq+kQZWuXbvi/v37FikQvvvuO6cEK4CYEb1LlSplcWOp1u0ya9asWLNmjcXo7dOnTze0TelJXO8xp2y93bZtW5vLKFus/Pbbb5g3bx6mTZuG4sWLOxRQ7tGjB4YNG6aa49nf3x8rVqxA48aNUaNGDUyePNlq+h89nBGM1NNiy8hNmnT/JU2aFOXLl7d54W9PCxY9dYv4G5F2p1Tus1WrViEsLMycl9oWLy8vrFu3TvOm7bvvvkOWLFkwcuRIAMCPP/6IQYMG4cyZMzbXbe1mWUzXExYWhvTp0yNVqlR48eKFQ+NxGFWrVi306tULCxcuVH2/S5cu2L59u9MHGLdF73lGOp/em4alS5ca3o6jpPW9Wm+CNGnS4JdffkHVqlXN0/LkySMbyMteetKliA94ihcvjr/++svmgK1GB4u09jDSXt9++63hcT2kpMesnpboJpMJq1evxsqVK2Xfk9r61DgaRK9Xrx5atGghe/ggXafy4ZAy0PXJJ59g9OjRNh/w7t27F6NHj5YFIfQKCAiwaByRPXt2HD9+3HxMzZw5E0DM9YQzekMq1a9fH5cuXZK17lPue7Uesnq/h2TJkqkOXmtteXt7MRw+fNiu5YyQlnvChAkYOXIkzp8/b9e65s2bh7Jly5q/Y1tjgnz88ce4evWqrhSvISEhOHfunEVKNTUDBw6Eh4eH6hhY9pIeQ2LrerWGY15eXrh3757F9USjRo1w48YNlClTRnY82GqJbo3afIMGDULr1q3Rpk0bXevQS9qi3dqYVI4E76Sfx8vLS3OMIHu2Yetcb61evHr1qu7tKFPMKHvFKcuhlT5IlDZtWvTv31+Wck56/BjtyWRt/o4dO2L+/PmyshYsWFA1sKz32knrvtvDwwN16tTR1ZBX/LzVq1c3P4hVNshTpjCUpnzRU1blOCFK1tZhz/WqrV699lybSnsHxZX0RfGB7iZvyZMnR82aNc3dKJ4/f46//voLO3fuxLhx49CqVSvkypVL180hENMFrnfv3ti6datTW5UOHjxYNtr6s2fPGEjHf5WtrVaAIunDi6NHj+LKlStWnyBrqVevnmZL49hogRYSEoJu3bqZu52KjAwC6AhXfEZpBZc1a1Zs3brVakvFLVu2oGPHjqrBPGUZtfJPxxVqD9z07OOUKVOaB161h7Vt6Bnk1Oh6jeTzV5vX09MTnTt31mxFb2390mPJw8MD+fLlM5RCq0GDBhbTcubMiStXrqBs2bKaI4dL2XOhmzVrVhw6dAipUqVCUFAQkidPrhng06LsbmkroCttHadsYeDl5YXvvvvO5jZNJpNDPQecZeHChbKW0kriMdOqVSvMnj1b10jvRr7HR48e4f379/Dz8zN8Eadn/sOHD+PBgweyXlHK319ISAjmzp1r1/rVBAcH4/r16+bXKVOm1J32Qkr5m1+8eDF27dolC8gZSS2j5vz584bykXp4eJgHnXOEvS1ztOgNONoKhNpi5NzuyE2J9LtXa0Hmql5ZQ4YMsdlyrkqVKrLjWauFW968ebFt2zakSpVK974+cuQI5s+fb9f4EHpYG5dCyVpDBrXP8/nnn2uua+TIkbh06RLCwsKszqe1PVf49ttvnbKezJkzY9CgQXYvr/abkrZu7NKlC1q1amWup77++muHgp32XJ+rLWPPdZx0Hmvz2VM3+fj46BocWsno/pDOnyJFCt33l2o6dOhgDl41bdo01u7RlMaMGYMRI0Y43IO7RYsWWLZsGcqVKydbbuDAgRg7dqzmPVtQUJDVHkQ//vgjKlasiEGDBuHJkycW70+fPh1t27a167vQOxYUYGxfrFixAl9//TX69etnNRDrrCA6EHMvO23aNIv5XFGXZsiQAZ07d5YNTCuyp/EWADx58sSiN7iy7I5e802ZMgUfPnzA4cOHLR5+q9UFth6qO2vf/vbbb5gzZw7Gjh3r8LoiIiJw8+ZNWa8maTlfvHiB6OhofP3116q96Wx9pt27d6NChQoOl9MW6W/jhx9+wNu3bw33HvT19UXatGltNnqOrZ7+CYHdSeWSJ0+OVKlSIVWqVEiZMiWSJEli6An0sWPH8ODBA9mBHRUVhT179mDatGnYsmUL3r17h8jISFlA9/79+1ZPMD4+PobzAydGWiern3/+GatWrZIFdZInT25XAN0Wd3TjBmIGeHDkQv+3335Dp06ddA2O5ep0LoIgWKRCkvrxxx+RL18+7Nu3zyknOEfW4aobQWv7+PLlyzh79qzVHHl65M6d22oaKXs5I4iupUePHnj+/Llq/klrOdFTp06NzZs3w9fX12orKD0t8KSyZ8+Ou3fvqs5Tr149lCtXzjwYnz0t0QHYNdiaNRUqVMCUKVMsui6KkiZNioULFyIqKsquweTiEk9PT103MZMnT0blypV15TU1clMkvWl2xYNvb29vq4MZW+OOlhnS4155bCVPntzq4En2cOagdda0bt0a3333nbl3WPPmzbF06VJUrFgxVrYPxHyf0nrUmTmr1ai1mtWbd9lafd+sWTNdD7PsMWDAAJv7Rdk4QYvJZDIc1CtRooTmILdGHDx4EPv27cMff/yBHTt2yMpkrzx58qBy5cpInTq1eT0XL17E4sWLUbhwYdUHyaK0adOaex3pDaJrtbpesmQJqlatKkvTYg935Ae2l/RB38iRI+0KoletWhXbt2+3+ZBILyPXKGoP80qUKIEjR46ozq/3HGoymbB48WJ07doVa9as0V0ea2VzZmo3I4yMYeEK9vwe1B7IP3361FzPf/fdd3j8+LFDg6oCMefpiIgImEwmi7FQAKBNmzaoXbu26j40khPdmbJkyWIeKNsaZ+VEB2ARgG7SpAn++OMP1YEdnWHWrFk4d+6czcFU9VJmYQBiBmEuXbq0uVGTo9el6dKlw8qVK9GhQwdZK3J72XowHRwcjLt378pSkqpp0qSJ0/LHp0mTxuK3IC2bp6cnPD09MX78eNXlbe1jPdeO1tahlaVBSTl+mq1ro0ePHmHUqFHImzcvXrx4gTdv3iB9+vQ4duwYNmzYgC+//BKvX7+WLTNu3DgsWrTI0MO0xE53ED06OhpHjx7Frl27sHPnTuzbtw8vX75ExowZUblyZUyfPl21m5qWqlWrWox43r59e+TNmxcDBw5E5syZ4eXlhe3bt5t/TOHh4bh586bmqPWkn9aPun379mjfvr3D69dzgnZ2wEuv1atXO7R8kyZN0LhxY7d1eTFyYavWJTJDhgxImTKlOWjhyA2AEXr3l1bA0h45cuTQzFNmxLJlyzBo0CAUKlTIosudI/SmcJESu+mrXWRJeXt7a7aEtrUtPQFSe45/rWWyZcuGtm3bqgbR3c3WAMfO7vpqL7UBZozQ+9tOmjQpPvvsM9X3lK1xbH2Pbdq0waJFiyx+U23atMG5c+dQuXJl7Nq1y2aZXF0XuzqYYGv93333Hc6fP68rRVFclypVKjx8+NDcBdrb29tQDmJb9B4LRoLoajdYeh70jB49Gps3b5blkp4+fTpWrlypq0cOoJ0TPSgoCCtWrNC1DiDm4VefPn0wYcIEXfM78zflzu7BpUqVQqlSpbBp0ybZdCMt0ZU8PDxkAXkgJq+40VbzWbNmxfXr1zVvpEePHo379+9rprSpWLEi3rx5Y9cgm3Gxy/a8efNQpUoVp7RAtObPP//Es2fPNK+hrNXnrgg+fvfdd+Y0JkpGroVat26Nli1bOu36yV0NnaTCwsIwb948dOvWzd1FQdq0aTXfU95nmEwmWY5zR8bXURJ/u7169TL3HpZ+V3oeQhjpURFb9NZJtWrVsqjPbVm5ciXev3/vkrEVRIMHD8bevXvRtGlTl6zfZDJh//79Tr8/ctb1q61z6sWLF3H37l3ZGBzuYOTcZ2teRxsWiqlZjJRDz/eVOnVq1Wu9zJkzo2vXrhgyZIhFEL1///5WxxMgS7qvvAIDA/Hy5UsEBQWhcuXKmDRpEipVqmR3gCpFihQoWLCgbFry5MmROnVq8/SwsDD069cPqVKlgr+/P3r27InQ0FCXtbxJTNx5AX3x4kWcOXNGd+URF8Xm/nP2BX3SpElx9uxZ82t7bsDsYU/uL3eoW7euxbQsWbJg2bJl2Lp1q9VlkyZNitevX+uuo+z5/lKmTInHjx87lBPUWkt0d1C2DLW3JbpSq1at8Msvv1jt9l2hQgXs2bMnXo+bAMQM7LVp0ya3XqAqu67autifO3cuevToIeuRBsTUST/88AMA6Aqid+zYEevXrzfcctXdN40iW4OYpUqVCn/++WdsFsmlYuucY420vunRowf27t2LKlWqWMxXtGhRWe7RDRs2YN++fTbzYAIxOWaVvd66detmKCBUtmxZQ4NHaenduzdat27tljQJ7j6/qGnatCkGDBiga15X1RMXLlzA06dPNQeA1tNj0tpvKVWqVNiwYYPqe3HxO6lcuTLevn3r0kAXEHNestYIQbpPU6dOjS5dupjTATZr1gzTpk2TPUTTOj6UrWG1pE+fHps3b8aePXsQFBQke3Bv6xxaqVIl7Nq1y5yKzZEAW+rUqVGuXDnVsRcA6ymxXGXGjBlo166dw40EnCFLlixYsGABUqZMaZ62a9cu7Nmzx6ktnPXuV2lQX5r32l5GevG7ov7Qe+wWKlTIIoiuZ1wJe+sVI8H9u3fv6v4uQkJCbI4hYq0szvr96a2ntIjlsBVET548udsD6IBzg+iOrMPoAK9ZsmTBo0ePnDLe2Zo1a1C3bl1MnjzZ4XUlZrrPtuPHj8f58+dx584dLFmyBGFhYU5p4WnNpEmTULduXTRp0gQVKlRAUFAQfv/9d5duk1wvV65caNSoUaxexH/66acA4LIBTLW4Ip2Ls9fXsGFDlCpVSnfLOCOkQbU0adK4pPeBs/aP2MXJkZ4KJ06cwKBBg3QPrGV0cDPxN5MyZUq78paJLSqV5atXrx4CAgIMBZKlrV3EAXDEARSNUgbRnXWhuGDBApw6dcrcwl3N77//jpkzZ+rqbhrXWRshXumrr76S5Xy3tZ+ttcLSYuumyMvLCyVLlnQ4nUb9+vXt6kobV4LoamIzPVBcDKjZS28eYmkL7+rVq+PmzZvYsmWLxbzKY6ROnToYNWpUrPWW+d///odx48YhPDxcNt2e78xIAD2htETXkjVrVvP/bZXPGb0z1fj4+GgG0J1h1KhRmj134+J3AsDlAXQ9PD09cfDgQezZswcpU6aU5R6uUKECzp49i3PnzpmnaZ1HFi1ahEKFCllN/SguW6NGDYwcOdKi96itemb79u2IjIx06H580aJF6NatGxo2bIjdu3ebp9s6RowMMm4vb29vlCtXLs6kHGrbtq0sPWTFihUxZMgQl6cE07Jjxw5UqFDB8H2L8pidOXOm23Mh662TYrsVvZF1Z8iQwepvVkxl8sUXX+DGjRs2x12KDUOHDkXVqlWxYMEC8zR79qcjvbtik5grX++YVSK1HlJ6rzeNTNdy+fJl/PPPP05JWV2uXDk8fvxY1kuSjNPdHEg5SrArKFuc+fr6Yvr06Zg+fbrLt53YSCt5Pz8/vHjxwo2lcb1mzZohS5YsTk0VEhc4Y2AkHx8f3QNHGt3e2bNnsX79emTNmtXm0+5MmTLh9u3bmgPROqtMWurUqWMzz7Ct1t958uRRHTgwZcqUWLhwoUVO5uXLl+Obb75Bnz59YuWG5KuvvkKvXr0sblT9/f1lKRb0mDx5Mh48eIDu3bujWbNmGDZsmNXxKmyR1knSGxJHvt8kSZKgUKFCVus3saVZYjN+/HiMGzfO5k364sWLsX//fjRu3NjmOpVBOr15n53BlXW7q28IgoODLaZVqVIFffr0QaFChVy67YsXL2p2/y5VqhQOHTqkOuBSXKX3u5I+FEqRIoWsdWFckixZsnjfxTYu3lAbKVOqVKnw/v17fPPNNxa9ZhKqfPny4fz585qpZOKKkiVLauYTd4S05bPyHKncJ1rXKHnz5sWpU6ccKoet87OHh4ddLUmlZf7888915+cn63LmzInLly/r6qmkxUjdVLlyZUOpdEXKY7ZmzZpOK5O97EnFJorLDSKklixZYjEovMjoIOvS62tHBhlNlSoVtm3bBkEQLIKqM2bMQLdu3bBy5Uqb61Hm7Y6rKlSogNevX+t6aCT9HAMGDECHDh2QLl06pxxvRvdRkiRJVO/RU6ZMiSdPnhhu2BGX0qbGV9yDiZT0x7tr1y6UK1cO+/fvd2OJXMtkMqFUqVKyHHWxQU9FqzaCuNF16CG2xnV1952KFStiypQpOHjwIJImTYrmzZubW6BbO2kcPnwYixYtMpw7UOyCHxvfbdmyZe0e9KhevXooWrSobFpISAgWL16M4sWL61qHMy5MtFp6eXl5GVp/xowZsXv3bjRv3hwmk8mhALrJZEKGDBnQqlUrtG/fXjZ4mLMlpIGnHT0e9LT4b926NWbMmKGrpVXbtm3x+eefo2DBgmjfvr1TRq13ZXDcWXWrva0A161bh0mTJqn20DGZTJg0aRI6dOjgaPE0DRs2DLly5dIMIK9btw6TJ0/GsmXLXFaG2CKt90wmE3x8fPDPP//gyZMncSK9jFGurscSWkt0MYWO2gC2esqXJEkSjB071tyrMS4Tu8xbG7RM7cGd1ObNmzFgwABs3rzZqWVztr1797r8IZOtYIPYulTPOAlffvmloW07+7czcOBApEuXzmrvPL1liS+By9h0+vRp3LhxI84/bCtSpIjstbta0kvF1SC6M3+D4qDwYgBXeu/36aefombNmqoNsdQkS5YMu3fvxq5duwwH4NWofc6uXbvi9evXuvK8x4XzvF56e10oU1RaG6RUi7NaomvZsWMHqlWrprsxJDlP/LtzIId4eXnh/fv3styfxYsXd9qI0iSn58Tu6Gjteo0ZMwaDBw92KP+Ztc8j5pbu0qWL5sCD1mTIkMGu1jATJ05Enjx5nDaatzUmkwkPHjzAwoULUbhwYaeuu3DhwvD391e9uRVb6btqwBp3E4PmS5YssXjP2U/8f/31V3z11VfmAZnis7jSxVnk5eWFRYsWOXWdbdu2xYMHD1SDX45y1o1XSEgI9u7da7g1s9FeN87i5eWFa9eu2QykpUuXDr17946lUjmH1o3Jp59+am5lJc4TmylznGXJkiUYNGiQrpZhcUVcuLlu1KgRwsPDLW6KgbhRPmc6e/Ysnj9/bvX4HjRoEK5du6bZYjYkJMTlA3w6g4+Pj8uvofv27Yuff/5ZM+91gQIFcOPGDV0pz+rWrYubN28iJCRE17ad3VpwzJgxutNR2WrMwCC6JV9fX93frZbY2K+NGjXC0KFDzYMhGw2iuzMnenw97tQaMP3000/IkiULOnToAG9vb0MDpppMJqc0VLFFK+CcJk0aPHr0yHwd64p87e6ydetWLFu2THWwcJPJZP589vQUzZAhA+7du2d++Oqojz76yOZ4beQaDKInMuHh4diyZYvLcjySnDMuNIyejKzN7+gAItb8+eefuHz5stXuv644saZIkUI28JurmUwml+QR8/HxwcOHD1UvZk+fPo0LFy7EicGVnGnmzJn49ddfDbfOMkr6OyxcuDAuXbrk0u3FlrgWRHcFT09PXQPsuZKeerxcuXKxUBLnyZgxo7uL4BJa35W78706S6tWrZw6iJ0Wd7REr1GjBrZs2WKRF9pZtAbkSmhBdC8vL5sPiPz8/BLEOCCA6wM26dOnR0REhNUgn5HAqa0W699//z2+/fZbAK7pcm9rndOmTcOuXbvQokULq/PF90BZYiP9vkwmEzp16mR3EN0VHAmix+VjccCAATh79iwqVapk8V6aNGkwceLE2C+UE5w5cwaHDx8293iSnnPiwvHkiGrVqqFatWo259OTRkd5fXHy5Ens378fdevWtbt8FDcwnUsiky1bNnTp0sXlXYHj8gktNsydOxepU6fGsmXLsHr1avj5+WHNmjV2rcvavozt/Wwtx7GPjw8KFCiQ4G5IY5O3t7fqxUdgYCBKly6d4PZtly5dsHPnTqupeOwZ0NKahLQPnZmGIjHW2XpbIiekY4aAEiVKuLsIcZ47guhr167FkSNH0KtXL6dtmxK+0qVLu3wbzg5mi72Bu3btavFex44dzf93R6qp7t27Y+XKlTYf0ifGa4bYkDdvXpest2zZsrLX0u8vLgQ9E2o6l7Fjx2LDhg1xYh87U/r06VGvXj3z50qTJg3WrVuHP//8M16myIst6dKlQ8OGDbmPEgB+g0QuEBYWhg4dOsBkMqFkyZJ4+vSp5kW4rRO0Wvdjkb35uY2aO3cu5s2bp9q1yQgGo8ioNm3a4MCBA7IUVEYpW+AkFM5siV6mTBmnrSu+EAfH7dGjh9X5EtIxk5g9ffoUL168QPr06d1dlHirQYMGWLt2LZo3b657Gb2/Hx8fH7c84ODvO34rUqQI9u/fH69612zcuBEXL15EwYIFLd5Lnz49+vTpA29v71gdnNsoBtFdo3bt2pgxYwY++ugjp6zv6tWr+Pvvvy3Sx0mD0UYfErmiztQ7rlWGDBkspjVr1gzffvutSwZCDg0Ndfo64zp7e+65K0VhXMbri4SLQXQiF5FWnOIFir+/P549e6Zr+W3btmHXrl2qecLXrFmDBw8emAeQksqWLRtOnDhhZ6nVhYWFISwszOH18KKbjPLy8sLcuXMdWkdCDaI7oyXDw4cP8ejRI9W6JKELDg7Grl273F0MchHlb93f3z/WBxePr7TqySVLlmDz5s2oVauW7nXF5UAgJQzxLdDl4+NjNZ/upEmTYrE09uH1vGuYTCbVHgr2ypYtm2pjLGkQ3WgraWc+sJo6dSrWr1+v+zP36dMHX3/9tWxa7ty5ERER4dRxTi5evIjDhw/bTGuUkAwfPhz3799Hvnz53F2UBCMh3XOSHNO5EMWiGzdu4O+//5ZN0xrcrWrVqhgxYoTqxU2DBg3wxRdfqC63cuVKNGjQAPv373e8wOQUvNkgVwgMDHR4HWnSpHFZ92GKmxJLfeSMz2mtJ1hi5Ofnh6ZNm+rKBbpkyRLkz5/f4YegrsabXCLbihUrJnvdunVrAEyPFV9FRUWZ/683iL5u3TqEhYWhT58+TitHjx49sGXLFiRLlkzX/EmTJlUdgyZ9+vRO7Z2ZK1cutGrVKlGdH4YOHYrp06e7uxhxmtjavkCBArrmT0zHT2LDluhEsSgwMNAi8FWwYEHMnDkTmTJlcso2cuTIYXf+daKEKKEGDceMGYPTp0+jc+fO7i5KglahQgVMmTLF3cWgWLR7927MmjUr3g765Shn3PjF1iCoROR6EyZMQNq0adGyZUsAMUGk+/fvO7X1L8UeIy3RxfNBvXr1mLIjjmBw1j0WLFiAhQsXGkppRwkTg+hEcUCXLl3cXQSiBEvawiVdunRuLIlzBQUF4dixY+4uRoLXqFEjrFq1ymk5St0lefLkePnyJYoXL+7uosQKR24yK1SogAoVKjixNBRXMRhBZFtgYCDGjBkjm5aQrqcSGz050Xv27IkFCxagb9++sVUsp/Hz88OLFy9QuHBhdxfFJRJq46C4LjAwEL1799Y9P68vEi6mcyEicjGmy3AvT09PPHjwABEREXYPmEOJl8lkQuPGjZE9e3Z3F8UhR44cQdeuXfHbb7+5uyixgjeZ9uONHxFRwqWnJfqPP/6IJ0+eOK2ndGw6fPgwOnbsiLVr17q7KJSI8Voq4WJLdCIiFzl27BgmTZqEkSNHursoiV7atGndXQQit8qXLx9mzJjh7mK4lK+vLypXrowXL14ga9as7i4OxQO8ySWixEZvTnSjg47GFfny5cOcOXPcXQynS5EiBZ4/f45q1aq5uyhEiRqD6ERukCNHDly5csXdxSAXK1asGBYvXuzuYhARJQomkwnbt283/5/sw31HRJRwSVuXs76PP+7evYvHjx8jJCTE3UUhHfjbSriYzoVcgt2orfvjjz9Qv359HDlyxN1FISIiSjBMJhNvXByUmPZfYvqsRERATG7nc+fO4erVq+4uChng5+fHADpRHMCW6ERukCdPnkSZp61JkyY4fPgwu9kTERERERG5Qb58+dxdBKIEjQ/pEy62RCeiWNOvXz+sXbuWLfCJiIjiqMR045eYPisRUXw3cOBAAEDTpk3dXBIiSqzYEp2cKk+ePAgPD0fjxo3dXRSKg5IkSYL69eu7uxhEREREREQUj9StWxd37txBUFCQu4tCZBUf0idcDKKTU+3ZswebN29Gs2bN3F0UIiIiIjIoMd34JabPSkSUEAQHB7u7CESUiDGITk6VLl06tGnTxt3FICIiIiKyikF0IiIicjYPD2bOTqj4zRIRERERUaLj5eXl7iIQERFRAtGhQwcUKFAAderUcXdRyEXcGkSfOXMmChcuDH9/f/j7+yM0NBSbNm0yv//mzRt0794dqVOnhp+fH5o0aYL79++7scRERERERBSf9ejRA7Vq1UKpUqXcXRQiIiJKIObNm4fTp0/D19fX3UUhF3FrED1TpkwYM2YMjh07hqNHj6JKlSpo0KABzp49CwDo27cv1q9fj5UrV2L37t24e/cuB6wkIiIiInKiJEkSV4bHqVOnYuPGjexuTURERE7FVHEJm0kQBMHdhZBKlSoVxo8fj6ZNmyJt2rRYunQpmjZtCgC4cOEC8uXLhwMHDqB06dK61vfs2TMEBATg6dOn8Pf3d2XRiYiIiIjiHUEQ0KxZM6RPnx7Tp093d3GIiIiIiGKN3thxnGl2EhUVhZUrV+Lly5cIDQ3FsWPH8P79e1SrVs08T968eRESEmIoiE5ERERERNpMJhN+++03dxeDiIiIiCjOcnsQ/fTp0wgNDcWbN2/g5+eH1atXI3/+/Dh58iS8vb0RGBgomz99+vSIiIjQXN/bt2/x9u1b8+tnz565quhERERERERERERElMC5PRFgnjx5cPLkSRw6dAhdu3ZF27Ztce7cObvXN3r0aAQEBJj/MmfO7MTSEhEREREREREREVFi4vYgure3N3LmzInixYtj9OjRKFKkCKZMmYKgoCC8e/cOkZGRsvnv37+PoKAgzfUNHjwYT58+Nf/dunXLxZ+AiIiIiIiIiIiIiBIqt6dzUYqOjsbbt29RvHhxeHl5Yfv27WjSpAkAIDw8HDdv3kRoaKjm8j4+PvDx8TG/FsdNZVoXIiIiIiIiIiIiIhKJMWMxhqzFrUH0wYMHo1atWggJCcHz58+xdOlS7Nq1C1u2bEFAQADCwsLQr18/pEqVCv7+/ujZsydCQ0MNDSr6/PlzAGBaFyIiIiIiIiIiIiKy8Pz5cwQEBGi+79Yg+oMHD9CmTRvcu3cPAQEBKFy4MLZs2YLq1asDACZNmgQPDw80adIEb9++RY0aNTBjxgxD2wgODsatW7eQIkUKmEwmV3yMOO/Zs2fInDkzbt26BX9/f3cXh4jcgPUAEQGsC4goBusCIgJYFxAR6wEgpgX68+fPERwcbHU+k2CrrTrFe8+ePUNAQACePn2aaH8QRIkd6wEiAlgXEFEM1gVEBLAuICLWA0a4fWBRIiIiIiIiIiIiIqK4ikF0IiIiIiIiIiIiIiINDKInAj4+Pvjuu+/g4+Pj7qIQkZuwHiAigHUBEcVgXUBEAOsCImI9YARzohMRERERERERERERaWBLdCIiIiIiIiIiIiIiDQyiExERERERERERERFpYBCdiIiIiIiIiIiIiEgDg+hERERERERERERERBoYRE/gpk+fjqxZs8LX1xelSpXC4cOH3V0kIrLT6NGjUbJkSaRIkQLp0qVDw4YNER4eLpvnzZs36N69O1KnTg0/Pz80adIE9+/fl81z8+ZN1KlTB8mSJUO6dOnQv39/fPjwQTbPrl27UKxYMfj4+CBnzpxYsGCBqz8eEdlhzJgxMJlM6NOnj3ka6wGixOHOnTto3bo1UqdOjaRJk6JQoUI4evSo+X1BEDB06FBkyJABSZMmRbVq1XDp0iXZOh4/foxWrVrB398fgYGBCAsLw4sXL2TznDp1CuXLl4evry8yZ86McePGxcrnIyLboqKiMGTIEGTLlg1JkyZFjhw5MGLECAiCYJ6HdQFRwrNnzx7Uq1cPwcHBMJlMWLNmjez92Pzdr1y5Ennz5oWvry8KFSqEjRs3Ov3zxhUMoidgv/76K/r164fvvvsOx48fR5EiRVCjRg08ePDA3UUjIjvs3r0b3bt3x8GDB7F161a8f/8en3zyCV6+fGmep2/fvli/fj1WrlyJ3bt34+7du2jcuLH5/aioKNSpUwfv3r3D/v37sXDhQixYsABDhw41z3Pt2jXUqVMHlStXxsmTJ9GnTx907NgRW7ZsidXPS0TWHTlyBD/99BMKFy4sm856gCjhe/LkCcqWLQsvLy9s2rQJ586dw4QJE5AyZUrzPOPGjcOPP/6IWbNm4dChQ0iePDlq1KiBN2/emOdp1aoVzp49i61bt2LDhg3Ys2cPOnXqZH7/2bNn+OSTT5AlSxYcO3YM48ePx7BhwzB79uxY/bxEpG7s2LGYOXMmpk2bhvPnz2Ps2LEYN24cpk6dap6HdQFRwvPy5UsUKVIE06dPV30/tn73+/fvR4sWLRAWFoYTJ06gYcOGaNiwIc6cOeO6D+9OAiVYH3/8sdC9e3fz66ioKCE4OFgYPXq0G0tFRM7y4MEDAYCwe/duQRAEITIyUvDy8hJWrlxpnuf8+fMCAOHAgQOCIAjCxo0bBQ8PDyEiIsI8z8yZMwV/f3/h7du3giAIwoABA4QCBQrItvXpp58KNWrUcPVHIiKdnj9/LuTKlUvYunWrULFiRaF3796CILAeIEosBg4cKJQrV07z/ejoaCEoKEgYP368eVpkZKTg4+MjLFu2TBAEQTh37pwAQDhy5Ih5nk2bNgkmk0m4c+eOIAiCMGPGDCFlypTmukHcdp48eZz9kYjIDnXq1BE6dOggm9a4cWOhVatWgiCwLiBKDAAIq1evNr+Ozd998+bNhTp16sjKU6pUKaFz585O/YxxBVuiJ1Dv3r3DsWPHUK1aNfM0Dw8PVKtWDQcOHHBjyYjIWZ4+fQoASJUqFQDg2LFjeP/+vex3nzdvXoSEhJh/9wcOHEChQoWQPn168zw1atTAs2fPcPbsWfM80nWI87DuIIo7unfvjjp16lj8VlkPECUO69atQ4kSJdCsWTOkS5cORYsWxZw5c8zvX7t2DREREbLfcUBAAEqVKiWrCwIDA1GiRAnzPNWqVYOHhwcOHTpknqdChQrw9vY2z1OjRg2Eh4fjyZMnrv6YRGRDmTJlsH37dly8eBEA8Pfff+Ovv/5CrVq1ALAuIEqMYvN3n9juGRhET6AePXqEqKgo2Q0yAKRPnx4RERFuKhUROUt0dDT69OmDsmXLomDBggCAiIgIeHt7IzAwUDav9HcfERGhWi+I71mb59mzZ3j9+rUrPg4RGbB8+XIcP34co0ePtniP9QBR4nD16lXMnDkTuXLlwpYtW9C1a1f06tULCxcuBPDfb9navUBERATSpUsnez9JkiRIlSqVofqCiNxn0KBB+Oyzz5A3b154eXmhaNGi6NOnD1q1agWAdQFRYhSbv3uteRJqvZDE3QUgIiLjunfvjjNnzuCvv/5yd1GIKBbdunULvXv3xtatW+Hr6+vu4hCRm0RHR6NEiRIYNWoUAKBo0aI4c+YMZs2ahbZt27q5dEQUW1asWIFffvkFS5cuRYECBczjmAQHB7MuICJyMrZET6DSpEkDT09P3L9/Xzb9/v37CAoKclOpiMgZevTogQ0bNmDnzp3IlCmTeXpQUBDevXuHyMhI2fzS331QUJBqvSC+Z20ef39/JE2a1Nkfh4gMOHbsGB48eIBixYohSZIkSJIkCXbv3o0ff/wRSZIkQfr06VkPECUCGTJkQP78+WXT8uXLh5s3bwL477ds7V4gKCgIDx48kL3/4cMHPH782FB9QUTu079/f3Nr9EKFCuHzzz9H3759zb3VWBcQJT6x+bvXmieh1gsMoidQ3t7eKF68OLZv326eFh0dje3btyM0NNSNJSMiewmCgB49emD16tXYsWMHsmXLJnu/ePHi8PLykv3uw8PDcfPmTfPvPjQ0FKdPn5adMLdu3Qp/f3/zzXhoaKhsHeI8rDuI3K9q1ao4ffo0Tp48af4rUaIEWrVqZf4/6wGihK9s2bIIDw+XTbt48SKyZMkCAMiWLRuCgoJkv+Nnz57h0KFDsrogMjISx44dM8+zY8cOREdHo1SpUuZ59uzZg/fv35vn2bp1K/LkyYOUKVO67PMRkT6vXr2Ch4c8rOPp6Yno6GgArAuIEqPY/N0nunsGd49sSq6zfPlywcfHR1iwYIFw7tw5oVOnTkJgYKAQERHh7qIRkR26du0qBAQECLt27RLu3btn/nv16pV5ni5dugghISHCjh07hKNHjwqhoaFCaGio+f0PHz4IBQsWFD755BPh5MmTwubNm4W0adMKgwcPNs9z9epVIVmyZEL//v2F8+fPC9OnTxc8PT2FzZs3x+rnJSJ9KlasKPTu3dv8mvUAUcJ3+PBhIUmSJMLIkSOFS5cuCb/88ouQLFkyYcmSJeZ5xowZIwQGBgpr164VTp06JTRo0EDIli2b8Pr1a/M8NWvWFIoWLSocOnRI+Ouvv4RcuXIJLVq0ML8fGRkppE+fXvj888+FM2fOCMuXLxeSJUsm/PTTT7H6eYlIXdu2bYWMGTMKGzZsEK5duyb8/vvvQpo0aYQBAwaY52FdQJTwPH/+XDhx4oRw4sQJAYAwceJE4cSJE8KNGzcEQYi93/2+ffuEJEmSCD/88INw/vx54bvvvhO8vLyE06dPx97OiEUMoidwU6dOFUJCQgRvb2/h448/Fg4ePOjuIhGRnQCo/s2fP988z+vXr4Vu3boJKVOmFJIlSyY0atRIuHfvnmw9169fF2rVqiUkTZpUSJMmjfDll18K79+/l82zc+dO4aOPPhK8vb2F7Nmzy7ZBRHGLMojOeoAocVi/fr1QsGBBwcfHR8ibN68we/Zs2fvR0dHCkCFDhPTp0ws+Pj5C1apVhfDwcNk8//zzj9CiRQvBz89P8Pf3F9q3by88f/5cNs/ff/8tlCtXTvDx8REyZswojBkzxuWfjYj0efbsmdC7d28hJCRE8PX1FbJnzy588803wtu3b83zsC4gSnh27typGhto27atIAix+7tfsWKFkDt3bsHb21soUKCA8Mcff7jsc7ubSRAEwT1t4ImIiIiIiIiIiIiI4jbmRCciIiIiIiIiIiIi0sAgOhERERERERERERGRBgbRiYiIiIiIiIiIiIg0MIhORERERERERERERKSBQXQiIiIiIiIiIiIiIg0MohMRERERERERERERaWAQnYiIiIiIiIiIiIhIA4PoREREREREREREREQaGEQnIiIiIiJVCxYsQGBgoLuLQURERETkVgyiExERERHFUe3atUPDhg0tpu/atQsmkwmRkZGxXiYiIiIiosSGQXQiIiIiIrLw/v17dxeBiIiIiChOYBCdiIiIiCieW7VqFQoUKAAfHx9kzZoVEyZMkL1vMpmwZs0a2bTAwEAsWLAAAHD9+nWYTCb8+uuvqFixInx9ffHLL7/I5r9+/To8PDxw9OhR2fTJkycjS5YsiI6OdvrnIiIiIiKKCxhEJyIiIiKKx44dO4bmzZvjs88+w+nTpzFs2DAMGTLEHCA3YtCgQejduzfOnz+PGjVqyN7LmjUrqlWrhvnz58umz58/H+3atYOHB28tiIiIiChhSuLuAhARERERkbYNGzbAz89PNi0qKsr8/4kTJ6Jq1aoYMmQIACB37tw4d+4cxo8fj3bt2hnaVp8+fdC4cWPN9zt27IguXbpg4sSJ8PHxwfHjx3H69GmsXbvW0HaIiIiIiOITNhchIiIiIorDKleujJMnT8r+5s6da37//PnzKFu2rGyZsmXL4tKlS7Jgux4lSpSw+n7Dhg3h6emJ1atXAwAWLFiAypUrI2vWrIa2Q0REREQUn7AlOhERERFRHJY8eXLkzJlTNu327duG1mEymSAIgmya2sChyZMnt7oeb29vtGnTBvPnz0fjxo2xdOlSTJkyxVBZiIiIiIjiGwbRiYiIiIjisXz58mHfvn2yafv27UPu3Lnh6ekJAEibNi3u3btnfv/SpUt49eqVXdvr2LEjChYsiBkzZuDDhw9W078QERERESUEDKITEREREcVjX375JUqWLIkRI0bg008/xYEDBzBt2jTMmDHDPE+VKlUwbdo0hIaGIioqCgMHDoSXl5dd28uXLx9Kly6NgQMHokOHDkiaNKmzPgoRERERUZzEnOhERERERPFYsWLFsGLFCixfvhwFCxbE0KFD8b///U82qOiECROQOXNmlC9fHi1btsRXX32FZMmS2b3NsLAwvHv3Dh06dHDCJyAiIiIiittMgjI5IhERERERkRUjRozAypUrcerUKXcXhYiIiIjI5dgSnYiIiIiIdHnx4gXOnDmDadOmoWfPnu4uDhERERFRrGAQnYiIiIiIdOnRoweKFy+OSpUqMZULERERESUaTOdCRERERERERERERKSBLdGJiIiIiIiIiIiIiDQwiE5EREREREREREREpIFBdCIiIiIiIiIiIiIiDQyiExERERERERERERFpYBCdiIiIiIiIiIiIiEgDg+hERERERERERERERBoYRCciIiIiIiIiIiIi0sAgOhERERERERERERGRBgbRiYiIiIiIiIiIiIg0MIhORERERERERERERKSBQXQiIiIiIiIiIiIiIg0MohMRERERERERERERaWAQnYiIiIiIiIiIiIhIA4PoREREREREREREREQaGEQnIiIiIiIiIiIiItLAIDoRERERERERERERkQYG0YmIiIiIiIiIiIiINDCITkRERERERERERESkgUF0IiIiIiIiIiIiIiINDKITEREREREREREREWlgEJ2IiIiIiIiIiIiISAOD6EREREREREREREREGhhEJyIiIiIiIiIiIiLSwCA6EREREREREREREZEGBtGJiIiIiIiIiIiIiDQwiE5EREREREREREREpIFBdCIiIiIiIiIiIiIiDQyiExERERERERERERFpYBCdiIiIiCgWDRs2DB999JG7i+FWWbNmxeTJk91dDCIiIiIiXRhEJyIiIiLSKSIiAj179kT27Nnh4+ODzJkzo169eti+fbu7i5bgCYKAWrVqwWQyYc2aNe4uDhERERElIkncXQAiIiIiovjg+vXrKFu2LAIDAzF+/HgUKlQI79+/x5YtW9C9e3dcuHDB3UVM0CZPngyTyeTuYhARERFRIsSW6EREREREOnTr1g0mkwmHDx9GkyZNkDt3bhQoUAD9+vXDwYMHzfPdvHkTDRo0gJ+fH/z9/dG8eXPcv39fc72VKlVCnz59ZNMaNmyIdu3amV9nzZoV33//Pdq0aQM/Pz9kyZIF69atw8OHD83bKly4MI4ePWpeZsGCBQgMDMSWLVuQL18++Pn5oWbNmrh3757D+yIyMhKdO3dG+vTp4evri4IFC2LDhg3m91etWoUCBQrAx8cHWbNmxYQJExza3smTJzFhwgT8/PPPjhadiIiIiMgwBtGJiIiIiGx4/PgxNm/ejO7duyN58uQW7wcGBgIAoqOj0aBBAzx+/Bi7d+/G1q1bcfXqVXz66acOl2HSpEkoW7YsTpw4gTp16uDzzz9HmzZt0Lp1axw/fhw5cuRAmzZtIAiCeZlXr17hhx9+wOLFi7Fnzx7cvHkTX331lUPliI6ORq1atbBv3z4sWbIE586dw5gxY+Dp6QkAOHbsGJo3b47PPvsMp0+fxrBhwzBkyBAsWLDAru29evUKLVu2xPTp0xEUFORQ2YmIiIiI7MF0LkRERERENly+fBmCICBv3rxW59u+fTtOnz6Na9euIXPmzACARYsWoUCBAjhy5AhKlixpdxlq166Nzp07AwCGDh2KmTNnomTJkmjWrBkAYODAgQgNDcX9+/fNweb3799j1qxZyJEjBwCgR48e+N///md3GQBg27ZtOHz4MM6fP4/cuXMDALJnz25+f+LEiahatSqGDBkCAMidOzfOnTuH8ePHy1rX69W3b1+UKVMGDRo0cKjcRERERET2Ykt0IiIiIiIbpK27rTl//jwyZ85sDqADQP78+REYGIjz5887VIbChQub/58+fXoAQKFChSymPXjwwDwtWbJk5gA6AGTIkEH2vlKBAgXg5+cHPz8/1KpVS3WekydPIlOmTOYAutL58+dRtmxZ2bSyZcvi0qVLiIqK0ty2mnXr1mHHjh2YPHmyoeWIiIiIiJyJLdGJiIiIiGzIlSsXTCaTSwYP9fDwsAjSv3//3mI+Ly8v8//FATbVpkVHR6suI85j7YHAxo0bzdtOmjSp6jxa011hx44duHLlijldjqhJkyYoX748du3aFWtlISIiIqLEiy3RiYiIiIhsSJUqFWrUqIHp06fj5cuXFu9HRkYCAPLly4dbt27h1q1b5vfOnTuHyMhI5M+fX3XdadOmlQ32GRUVhTNnzjj3A+iUJUsW5MyZEzlz5kTGjBlV5ylcuDBu376Nixcvqr6fL18+7Nu3TzZt3759yJ07tzlvul6DBg3CqVOncPLkSfMfEJMffv78+YbWRURERERkLwbRiYiIiIh0mD59OqKiovDxxx9j1apVuHTpEs6fP48ff/wRoaGhAIBq1aqhUKFCaNWqFY4fP47Dhw+jTZs2qFixIkqUKKG63ipVquCPP/7AH3/8gQsXLqBr167moHxcVLFiRVSoUAFNmjTB1q1bce3aNWzatAmbN28GAHz55ZfYvn07RowYgYsXL2LhwoWYNm2aXQOaBgUFoWDBgrI/AAgJCUG2bNmc+rmIiIiIiLQwiE5EREREpEP27Nlx/PhxVK5cGV9++SUKFiyI6tWrY/v27Zg5cyaAmHQpa9euRcqUKVGhQgVUq1YN2bNnx6+//qq53g4dOqBt27bmYHv27NlRuXLl2PpYdlm1ahVKliyJFi1aIH/+/BgwYIA533mxYsWwYsUKLF++HAULFsTQoUPxv//9z65BRYmIiIiI4gKToHeUJCIiIiIiIiIiIiKiRIYt0YmIiIiIiIiIiIiINDCITkREREREbvHLL7/Az89P9a9AgQLuLh4REREREQCmcyEiIiIiIjd5/vw57t+/r/qel5cXsmTJEsslIiIiIiKyxCA6EREREREREREREZEGpnMhIiIiIiIiIiIiItLg1iB61qxZYTKZLP66d+8OAHjz5g26d++O1KlTw8/PD02aNNHs7klERERERERERERE5GxuTefy8OFDREVFmV+fOXMG1atXx86dO1GpUiV07doVf/zxBxYsWICAgAD06NEDHh4e2Ldvn+5tREdH4+7du0iRIgVMJpMrPgYRERERERERERERxTOCIOD58+cIDg6Gh4d2e/M4lRO9T58+2LBhAy5duoRnz54hbdq0WLp0KZo2bQoAuHDhAvLly4cDBw6gdOnSutZ5+/ZtZM6c2ZXFJiIiIiIiIiIiIqJ46tatW8iUKZPm+0lisSxWvXv3DkuWLEG/fv1gMplw7NgxvH//HtWqVTPPkzdvXoSEhBgKoqdIkQJAzI7w9/d3SdmJiIiIiIiIiIiIKH559uwZMmfObI4ha4kzQfQ1a9YgMjIS7dq1AwBERETA29sbgYGBsvnSp0+PiIgIzfW8ffsWb9++Nb9+/vw5AMDf359BdCIiIiIiIiIiIiKSsZUG3K0Di0rNmzcPtWrVQnBwsEPrGT16NAICAsx/TOVCRERERERERERERPaKE0H0GzduYNu2bejYsaN5WlBQEN69e4fIyEjZvPfv30dQUJDmugYPHoynT5+a/27duuWqYhMRERERERERERFRAhcngujz589HunTpUKdOHfO04sWLw8vLC9u3bzdPCw8Px82bNxEaGqq5Lh8fH3PqFqZwid8EQcCxY8fw8uVLdxeFiIiIiIiIiIiIEim350SPjo7G/Pnz0bZtWyRJ8l9xAgICEBYWhn79+iFVqlTw9/dHz549ERoaqntQUSM+fPiAd+/eOX29ZL8tW7Zg8ODByJ07N5YvX+7u4iRo3t7est8fERERERERERERxXB71Gzbtm24efMmOnToYPHepEmT4OHhgSZNmuDt27eoUaMGZsyY4dTtC4KAmzdv4tGjR05dLzkuJCQEv/zyCwDg/Pnzbi5NwpcmTRqEhITYHEiBiIwTBAGA7YFKiIiIiIiIiCjuMQninX0C9ezZMwQEBODp06eqqV1u3LiBR48eIWPGjPDz84OHR5zIcEMUa6Kjo/HixQvcuXMHadKkQZYsWdxdJKIEJTo6GqGhofDz88O2bdsYSCciIqI47eTJk+jVqxdGjx6NsmXLurs4RETkgO3bt2PFihWYMGEC/Pz83F2cOMlW7Fjk9pbo7vThwwdzAN3aYKVECZ1Ykd65cwd+fn5InTq1m0tElHBcu3YNhw8fBgC8ffsWvr6+bi4RERERkbbq1avj0aNHKFeuHBJ4mzsiogSvWrVqAIDAwECMHTvWzaWJ3xJ1s2sxBzqfxBD99zvYsWMHnjx54ubSECUc0ptPtkInIiKiuI6pTomIEp5r1665uwjxXqIOoouYwoXov99BREQEtm/f7ubSECVMDKITERERJR5syU9EcQXrI8cxekxEMn5+fnj48CE+fPjg7qIQJQi8WCEiit+ioqLw5s0bdxeDiOKZK1euICQkBJMmTXJ3UeKsFy9e4NmzZ+4uBlGiwPtSxzGITkQyHh4eiI6ORlRUlLuLQkREROR2pUqVgp+fHwM9RGTIV199hdu3b6Nfv37uLkqcFBUVhRQpUiAgIMCcapeIKC5jED0e2rNnD+rVq4fg4GCYTCasWbPGYh5BEDB06FBkyJABSZMmRbVq1XDp0iXZPI8fP0arVq3g7++PwMBAhIWF4cWLF7J5Tp06hfLly8PX1xeZM2fGuHHjLLa1cuVK5M2bF76+vihUqBA2btxotfwLFiyAyWSCyWSCp6cnUqZMiVKlSuF///sfnj59amhfXL9+HSaTCSdPnjS0HBFRbOETfyKi+O3YsWOIiorC7t273V0UIopH2LPXulevXpn/f//+fTeWhChx4H2p4xhEj4devnyJIkWKYPr06ZrzjBs3Dj/++CNmzZqFQ4cOIXny5KhRo4asK2qrVq1w9uxZbN26FRs2bMCePXvQqVMn8/vPnj3DJ598gixZsuDYsWMYP348hg0bhtmzZ5vn2b9/P1q0aIGwsDCcOHECDRs2RMOGDXHmzBmrn8Hf3x/37t3D7du3sX//fnTq1AmLFi3CRx99hLt37zqwd4iI4hZerBBRXCAIAkaPHo0tW7a4uyhERERERPEOg+jxUK1atfD999+jUaNGqu8LgoDJkyfj22+/RYMGDVC4cGEsWrQId+/eNbdaP3/+PDZv3oy5c+eiVKlSKFeuHKZOnYrly5ebg9i//PIL3r17h59//hkFChTAZ599hl69emHixInmbU2ZMgU1a9ZE//79kS9fPowYMQLFihXDtGnTrH4Gk8mEoKAgZMiQAfny5UNYWBj279+PFy9eYMCAAeb5Nm/ejHLlyiEwMBCpU6dG3bp1ceXKFfP72bJlAwAULVoUJpMJlSpVAgAcOXIE1atXR5o0aRAQEICKFSvi+PHjhvc1EZEzMaBORO7yxx9/4Ouvv0bNmjXdXRQiIiJeF8dxHTt2RLt27dxdjDgvKioKW7ZswePHj91dFJv4m3Mcg+gSgiDg5cuXbvlz5sF87do1REREoFq1auZpAQEBKFWqFA4cOAAAOHDgAAIDA1GiRAnzPNWqVYOHhwcOHTpknqdChQrw9vY2z1OjRg2Eh4fjyZMn5nmk2xHnEbdjRLp06dCqVSusW7fOnI/75cuX6NevH44ePYrt27fDw8MDjRo1QnR0NADg8OHDAIBt27bh3r17+P333wEAz58/R9u2bfHXX3/h4MGDyJUrF2rXro3nz58bLhcRERFRfHf9+nV3FyHeM5lM7i4CERGRzPHjx1GmTBns3bvXaet8+vQp5s2bh4ULFzLVjg2zZs1CzZo1UbJkSXcXxSYG0R2XxN0FiEtevXoFPz8/t2z7xYsXSJ48uVPWFRERAQBInz69bHr69OnN70VERCBdunSy95MkSYJUqVLJ5hFbekvXIb6XMmVKREREWN2OUXnz5sXz58/xzz//IF26dGjSpIns/Z9//hlp06bFuXPnULBgQaRNmxYAkDp1agQFBZnnq1Klimy52bNnIzAwELt370bdunXtKhsRkaN44UJERERATFrMrFmzIjg42N1FIQdcvXoVly5dQo0aNdxdFEqkqlatisjISFSoUMFp9xpio0UA5gaOrvD06VMcOnQIVapUQZIk8TM8uWLFCgAxdQElfGyJTnGKWOmLLX0uXbqEFi1aIHv27PD390fWrFkBADdv3rS6nvv37+OLL75Arly5EBAQ8H/2zjq8aqSLw7/blrbUadGixeniXhwKFHd358N1cVvcbXFf3GGBxRZdKC7dxV2KFK0CbWmb74+SkOTGb64U5n2e+7Q3dzJzkkxGzpw5Bx4eHoiJiZE9j2BbEIUj4UeA1GMCwTY5ffo0jh07Zm0xCASCCURFRWHixIm4f/++tUVRxYULF1C+fHlkzpzZ2qIQTCRXrlyoVauWoBUwGQMqh+z00U5ERITueVrqeVSuXBlBQUEcl8EE80HaJNMhSnQWLi4uiImJscrHxcVFt+ugLbL5227evHnD/JYxY0a8ffuW83tCQgI+fvzISSOUB7sMsTRsq3A13LlzBx4eHvDx8QEA1K9fHx8/fsTKlStx8eJFxtVMfHy8ZD4dO3ZESEgIFixYgHPnziEkJAQ+Pj6y5xFsh5s3b8LX1xdLly61tigEgkmwBytk4EIg2AZfv35FlSpVUKNGDcZFnZ4kJibixo0bNvXO25IsBIJeDBw4EOPHj0eBAgWsLYoqTp8+bW0RUjSJiYmYO3cu49rTFrhw4YK1RSAQUhz//vsvgOR4fATzQ8aCpkOU6CwMBgNcXV2t8tFzpc/Pzw8ZM2bE8ePHmWNRUVG4ePEiAgICAAABAQGIiIjA1atXmTQnTpxAUlISypQpw6T5559/8PXrVybN33//jXz58iFNmjRMGnY5dBq6HDW8ffsWmzdvRqNGjWBnZ4cPHz7g3r17GDNmDAIDA1GgQAGjiS7tr52/xSg4OBj9+/dHnTp18Msvv8DJyQnv379XLRPBenTr1g1hYWHo3bu3tUUhEAgEwg9GXFwc8785LLi6deuGwoULY9q0abrnTbAexFLS9ggODgbAdT2QEiB1yTQ2bNiAIUOGMPNWAoFA0IPIyEg0btwYO3futLYoBBuFKNFTIDExMQgJCUFISAiA5ECiISEhjKsSg8GAgQMHYvLkydi3bx9u3LiBDh06wNfXF40aNQIAFChQALVq1UL37t1x6dIlBAcHo2/fvmjVqhXjl69NmzZwdHRE165dcevWLWzbtg0LFizA4MGDGVkGDBiAw4cPY86cObh79y4mTJiAK1euoG/fvpLXQFEUwsLC8Pr1a9y5cwdr1qxBuXLl4OnpienTpwMA0qRJAx8fH6xYsQIPHz7EiRMnOGUDycFIU6dOjcOHD+PNmzeIjIwEAOTJkwcbNmzAnTt3cPHiRbRt2xapU6c2+d4TLIc5fa8RCJbkR1jx//r1K2JiYqwtBoFgFsyhzFq3bh0A4LfffsOGDRvQt29fqyv5foS2iEAgEIDkHauElM/P1i89f/7c6mMBW8VW6sLEiROxd+9eNG/eXPE5tiK7ElKSrLYKUaKnQK5cuYJixYqhWLFiAIDBgwejWLFiGDduHJNm2LBh6NevH3r06IFSpUohJiYGhw8fhrOzM5Nm06ZNyJ8/PwIDA1GnTh1UqFABK1asYH739PTE0aNH8eTJE5QoUQJDhgzBuHHj0KNHDyZNuXLlsHnzZqxYsQJFihTBzp07sXfvXhQsWFDyGqKiopApUyZkzpwZAQEBWL58OTp27Ijr168jU6ZMAAA7Ozts3boVV69eRcGCBTFo0CDMmjWLk4+DgwMWLlyI5cuXw9fXFw0bNgQArF69GuHh4ShevDjat2+P/v37GwVSJZiXhIQEk84nFjqEHxFzD1woisLRo0fx6tUrXfPNnz8/3N3dzWKxSyD8yCQlJaFDhw5YvHgx9u7da21xbI53796hatWqKWYbNxmb2B4p9ZmkVLl/RCiKwu+//25TrmEIPx5bt25F9uzZ0a5dO2uLohq95y/Pnj3Drl27bHJBge/y+EeDKNFNJ2WGv/3JqVKlimzlNxgMmDhxIiZOnCiaxtvbG5s3b5bMp3DhwoJBUtg0b95c1Updp06d0KlTJ0Vpq1evjtu3b3OO8a+9W7du6NatG+dYsWLFcPnyZc6xZs2aKZaRYBrt2rXD/v378ejRI6RNm9bk/Fq1aoVBgwaRLZsEUZKSkmBnZ5vrwpYcrOzfv59ZTNSzXDrafHBwMOrWratbvkLQu1Ds7e3NWg6BYAnYE8QPHz5YURLbZPTo0Th16hROnTqFtm3bWlscggCxsbEAwDHEISgjPj6ecT3JhyjRbYcdO3agf//+AIiCSY6wsDB4e3uL1muCOFOmTAEAbNmyRVYHYwuYs43KkSMHAGDjxo1mK4NAMBe2qXEgEAgpmk2bNiEqKgrr16/XJb9t27ahbNmyms/fv38/x/8/IWUhN6EJDQ1FxowZMXbsWAtJpB1TJmdsH85i/P3335rztwUoikKhQoWQJ08eUZdOYWFhGDJkCO7fv29h6Qg/EpZSlLCV6G/fvsXHjx8tUq4Q/Gu+du0a1qxZY1WlkTmCuhL0IyEhAWnSpEHq1KnRq1cvfPr0ydoipRhmzZoFJycnHDt2TPB3okQ3DT3brVu3bqk+Jy4uDtHR0brJoASKonDixAmrLcjeuXMHmTJlQpEiRcyS/8/8Trx//x579+41eSe3HCEhIZpcIZlrnHDq1Cmzl0HgQu6z6RAlOoFA+KG5ffs2GjRogJIlS1pbFLMSFxeHsWPH4sKFC7rkt2/fPptwPTB9+nT4+vriyZMnomnGjx+Pd+/eYfLkyRaUzLL06tULzs7OshO9lD4BiYmJwZ07d/DkyROEhoYKpmnVqhXmzp2L0qVLW1g68/AzDWZ3796NLFmyMIEAzcXJkycxY8YMxffWUu/NmDFj4OPjYzPbl0uUKIGuXbviwIED1hYlxRMWFoa1a9fiy5cv1hZFV96+fctYoi9btgxTp061skTG2Gq/N2zYMABA165dBX+3Vbl/RrQ8i6xZs8LDwwNRUVGS6fTs47du3YrAwED4+/vrlqca6ECLd+/etUr5KR2pulC6dGk0btzYyHWtFq5fvy54PCoqCsWKFUOhQoXMrqxPyZC2mSAHUaITCARRnjx5YtLgz9rKofv376NmzZpWlcFSzJ07F5MnT0ZAQIDJeX369AkNGzZE48aNcf36dbx48UIHCbUxcuRIhIWFYeTIkVaTwVTY74HWd2LZsmUAwARe/lFRMnA9d+4cADCBpFMyt2/fRoYMGbBgwQLB363dhupN06ZN8fLlS9SpU8es5VSrVg0jRozA7t27zVqOVqwVOFusPt24ccPCksgTFxeHo0eP2pxSWqyNCggIQJcuXTBq1CgLS2RZHj16ZG0RjCAKj58Ta/eP7969AyCusDQHe/bsAfBj+Wy29nO0FWhjoV27dpmcF9u6mw1dZwHg69evJpdDSJmQd850iBKdQCAIsnjxYuTMmZPxEZgSKV++PF6+fKnqnPXr12PVqlVmksg8fP78GYcPH9YtP/Z27eLFiyNr1qy65a0Va1tuBgcHo0yZMoxvcD3RU6FmbmWCJZUVP8Mgr0+fPnj37h0GDhxo9NvRo0eRPn16/Pnnn5YXzMzEx8dbpBxbVPgByt6jxMREtG7dGrNnz7aARLbHgAEDEBQUhPbt21tbFEU8ffoUAFL0+5qYmIhy5cqhadOmzDE92/xdu3YhJCREt/zMxcWLF/HPP/9YWwxVhIeHY8uWLfj8+bO1RUmRqK3nbCven2GsQiN3rVoUs6bcv/DwcOzfv99mFMJJSUm4dOkSs3vHmnLIYSv11lbksAYxMTFWMRT4me+5XhAlOoFAEIT2L71o0SKrlK/HxO39+/eq0sfGxqJjx47o3r27qL/BCxcu2JwFiJ+fX4qb8KlFrw4/MTFRkw/eChUq4NKlS8iVKxfn+JMnTzBz5kzJ7bxSskdERMDX1xcdOnRQLZM5CA0Nxbx582S3J5uLn82iUKpuBAUF4f3792jUqJHlBLIQtjCAVyLDmTNnMG3aNERERJhfIB6HDx/G1q1b8euvv5q9LFt4HnyWL18OQB+rPFOx1s4BmmfPnllEKXPjxg2cP3+es4ODXzek7gVFUThy5AiOHj1qlO7ixYto1qwZihUrpq/QGomNjRX0756QkICyZcuicuXKZvfXr2d/V69ePbRp08bqhi9JSUn43//+h5UrV+Ly5cs2N17Wi6VLl1pbBJtj9+7dcHR01C0elhIqV66MBg0aYNq0aRYrU4r58+ejTJkyaNy4sVXlEOvTTWlzbHGcYE0SExMxffp0nD17VtP5d+/ehbu7O1xcXLBlyxadpSOYG6JEJxAIgujRWaa0DpdtHSlkzXPq1CkEBAQgc+bMlhRLFr0nKbb43EJCQrBs2TKTLdKrVasGb29v3YJSFi9eHMOHD+dMXENDQ9GhQwfBLb78e7tp0ya8ffsWGzZsUFSe3ADY1El52bJlMXjwYPTp04c5NmPGDJPy1Iot1cM7d+6gZMmS2Lhxo7VFSTHExsbi4cOHgr/FxcVh9erVFpZIHKH35uXLl6hUqRJGjRqF+vXrW1ymmJgY3fO01jv16dMnzq6AcePGIV++fCkiqGj79u2RPn16q5UfEhKCHDlyoGjRoorSL1q0CC1bttTk71bJYgHtE1mIHTt2oFatWggKCsLgwYM5v92+fZv5f8aMGahevbrVrDUpikLatGnh5ubGkeHz58/w8/Njvps7CLCeSnTazdmmTZt0y1MLBw4cwPLly9GjRw+ULl0aGTNmNFtZerZn7GfRuHFj2bHm0aNHzSKHnoSGhiJfvnxYuHChRcqjd7B07NhR1Xmm3D/aFdnmzZs156En9L3Wc3ewFsTqr9p7bat121ycOXMGjRs3xvPnz2XTbtq0CSNHjkTFihUFf09MTMSePXsQFhYm+DvtphMA2rRpo01gjfxsz9UcECU6gUAQJC4ujvm/dOnSoj57fyTkBs1HjhwBABKMRQSKotCyZUt06dKFc0yPifLDhw/Rq1cvk1fraYt9pUprOWgL1ZMnTzLHWrdujQ0bNqB48eIA9B2s6D3wef/+PWbOnIlXr14BAPOXrusAMGLECF3LlMKSFkxqaN++Pa5evSoaII5gTNmyZZEnTx5R35zdunWzrEA85N4l9kKbVksjrWU/efIErVq10rVMKcwxoaIoisk3d+7cyJ07N+PKY9KkSbh//74u44qzZ8+iRIkSOH/+vMl5CbFx40aOMlXPhcwXL17g3r17opNsIFkxDQD37t1TpNTt168ftm/fju3btyuWg8bURepDhw4x//MVd+z7MmLECBw/fly39l6LMpq2Qme7aNu9e7dZYsCIyfcj7rziL4ylRGXN3r17ceHCBck0KeHZjRw5Evfv38eAAQN0y9NcfQWNmvvKbq+s7fKRRk4OJfdPj3tsDncutvouh4aGYsSIEYoU33JUqlQJe/fuxenTp2XTyhljLVmyBE2aNEHBggUFf7fm/UwJ7Zeto0iJniZNGnh7eyv6qOXly5do164dfHx8kDp1ahQqVAhXrlxhfqcoCuPGjUOmTJmQOnVqVK9eHQ8ePFBdDoFA0M7ly5cxcOBAzrtpbrQ28Pfu3UPXrl1FLSDFOHfuHNKkSaOpTEIyoaGh2L59O9auXcv4eOvQoQNSp04t2m7v3LkTzZo1U+w+xJQATsHBwZrPVQN/8qVHYFGlqH1v2rRpg+HDhxsF4LXW4K53795Wl0EI2jVUfHw8Dh48iAoVKqhuY4RQ+7xevXqF3r1749atWyaXbW7+/fdfANZdGOHXITXv4tSpU80ikxLMpUAXu2ZT3rWtW7eibt26HOVZUlISAgICEBQUBIqiGCXx/v37Oefq4SalYsWKuHbtGsqXL29yXnrAv5dXr17FkCFDBAMhZ82aFfnz50emTJkwc+ZMwfycnJyY/318fHDixAkAwLx587B27VpRObS45DJnm2tnZzzltFbQWHP3yatXr9YU1Pjy5cs/3Rx32bJl6Nevn6bnIHTOs2fPMHXqVNW7XPh9MduQSIscatm3bx+qVKmCZ8+emZwXjZprMCeJiYlo37495s+fr1uevXr1QrZs2ZjvtjJetBU5xJTo7HqekvymS1GvXj3MmDEDtWrVsmi5cuP3AwcOAICoe9iUcG8J4jgoSaRno8cmPDwc5cuXR9WqVXHo0CGkS5cODx484CiyZs6ciYULF+KPP/6An58fxo4di6CgINy+fRvOzs5mkYtAIAhTqlQpQaVEYmIiHByMmxOpDuLmzZvYsmULhg0bBk9PT1VyfPz4EdWqVUPbtm2N/MVWrVoVr1+/xpo1a1Tl2axZM1Xpf2S0duxCChHa/cWCBQsE/es3b94cQLKl4vTp080mG5Ds19xc0IOpf/75R5ViSK0SVW/rgb///hsAFCtlbcF6QaklT0hICH755Rc4OjrqWn7dunUBJFun09avN27cwKFDhzBgwACO0ktvWrdujX/++QerV6/WdYKclJSE0aNHo2zZsmjYsCFzfN26ddi0aRN27NgBLy8vTXmvXbtWdXtsDkaPHo3169fjypUryJAhA+c3oXp97Ngxs8kiV4f1CIg6ZMgQJCQkKLL2NqVdbd26NQBgwoQJTFmPHj3CxYsXAXADzSktR4tVoaUmpGrbwJIlSwJIds9D+3kXYvjw4Rg2bBjz/cyZM7hy5YpR+zV58mTkzJmTcZfSuXNn0TyTkpIEldd8Pnz4AHt7e9SpU8foN6H7um/fPlSvXh0uLi6yedMokcNSKK0rWvq7p0+fKt5lw87/5cuXKF26tCr55PK0BmKLQWL06tULQLIrkCpVqqg6V+g+BQQE4PXr1xg9ejSaNGmiOaaCmjZI7nmxf//y5QtSp05tlIbud7t3785xFWPLUBSlqL7t2bMHGzduxMaNGwWDqMvdv4SEBKM5JtsVBpByLNGVIHVPExMTcejQIZQpUwbp0qUzSQ5bVOIKyXT79m3s2LEDgwcPhru7u9Hv//33H4Bkt4u2RKpUqSxa3t27d9GyZUuMHTuW6DQsgKIRTceOHRV/1DBjxgxkzZoVa9euRenSpeHn54eaNWsygdsoisL8+fMxZswYNGzYEIULF8b69evx6tUr7N27V/XF/iycOnUKBoPB4oGw1q1bp3mSTfP06VMYDAZmy68Q1ro+gjCNGzeGr68voqOjVZ1XqFAhTJ061chvphJmz56Nf//9lzPhPHz4MMqUKYPXr1+Lnsf2ec4mNjZW8jyC+VHq193Sg77Xr18L+sfnQw96x48fb/SblNWbXtdz4sQJ7N+/X7cJtC0OrtWwePFiFC9e3KxBOdmBiwsXLozhw4erViAohfaPffXqVQDibZlWdu7cienTpxvdr86dO+PYsWMmW2WHh4fj4MGDRsfV9ht81ExYp06dihcvXmDWrFkA1NdxIWui6OhoLFq0CC9fvlSVlxymKhyjoqIwd+5cLFy4EG/evFF0jqlW4QsXLhTMg90m8e+5WHslVS+io6Oxa9cuwaCQfGxFsQJ8992rlEqVKmHw4MEcFyk0Ssa/vXr1QoECBWQX20JDQ5E2bVqkSZNG1GKOT8OGDdGzZ08AwvFjhLBVJbpWVxJiqAlozy5PrzgtcoSGhqJfv35ms3hn+75Xg5adE/fu3TM6xh7L7969W1E7IYRc/6C1rri6ugruSqF59+6dpnytgZ2dnaKYOXIuksTu9dOnT3Hx4kV4eHjIuqRhL9ZaE61j5ydPnijKY+nSpahfvz6KFSsGiqJw9OhRhIaGGqXTS4luC3OBX375BRMmTNDNtSRFUfj3339NdjXKbwP494qtRG/RogWaNWtm1l1QHTt2xH///ccYpxHMi6YRzaNHjzBmzBi0bt2aUXwcOnRI9fbiffv2oWTJkmjevDnSp0+PYsWKYeXKlczvT548QVhYGKpXr84c8/T0RJkyZczm+9DWMRgMkp8JEyZYW0SbIEeOHDAYDNi6davRb7/88gsMBgPWrVtnecEkmD59OgwGg9Eqfc+ePZErVy6kTp0a6dKlQ8OGDXH37l3Z/O7cuYMGDRrA09MTrq6uKFWqlC7+wvj8+eefePfuHbNtiY2SDkKLixj2pDA+Ph6vXr1C7dq1cenSJcnzaB/VfNq2bauoXGtb+FgTW3FDsmfPHtk0EREROHr0qCalUM+ePZnB+osXL+Dr6wtfX1/BtHoHRdPqHoSiKAQGBqJBgwYpagImhyl1jt5BRyugYmJicPr0ac1KNaWymMvlFR241lzvodwkV2rSz+fdu3dGE9rKlSszFvxslOw+EWPOnDlImzat6rEnfQ/V3kuhcvr164d+/fqp3uUiV7ZahSM7TsfHjx9Ru3Ztwd/Eyt23bx9cXV0Fx0x8li5dijJlyggqC2/evGl0TO8626ZNGzRr1gw9evSQTLd582Z4enqadUeBEPT13r9/Hzlz5mSOnz9/HkuXLpW9H4mJiRxLVL6yU839vH//PuP+RQyhxS0lbNy4EYsWLYKrq6uioH7mVKKzxw+jR49GmzZtFN8nveunUAwIg8GAhIQETJo0SZVbud9++w2lS5cWVAQ/ffoUkyZNUrzwAST3h9myZcOiRYs0uz/au3cvChYsyFH66QG9yCnGhQsXUL16dWYx6sSJE5zYLabCH4PqaYnOTysWJ0RtuTT37t3D5MmTTV6U1oKYYvP+/fvMmFbLQsbHjx/h5+eHsmXL4suXL7LBUc0RiJvPiBEjUKpUKUk3VFrbk+HDhytKR8+BXr58iaNHjyIoKIhxayO1YE2j1p0LG63XRlGULgvacnN8pWzZsgVFixZFtWrVTMpHbt7K3kW2Y8cO7Nq1i2Mwpnffo2Yh8mfWZ+iF6hHN6dOnUahQIVy8eBG7d+9mGq1///1X0AJPisePH2Pp0qXIkycPjhw5gl69eqF///74448/AIDxocjfdpshQwbRIDxxcXGIiorifH4kXr9+zXzmz58PDw8PzrGhQ4dqyldvqzZbgN7lwObChQsICwuDq6urlaQS5vLly1i+fDkKFy5s9FuJEiWwdu1a3LlzB0eOHAFFUahZs6akgvDRo0eoUKEC8ufPj1OnTuG///7D2LFjbdIFkpaAS+zfSpYsicyZMysqS0zZIuS7Uqh8cyqS4+Pj0bp1a5twe6AVUyyulXboT58+lU1TsWJFBAUFqXZF9uLFC6xYsQILFy7E58+fGeWDmALx999/Z/7XOiBhn6fVFyZ7cKok8JwSlAzAUxKBgYGoUqWK4ESMoig0a9bMyEqEJj4+3iwLkIDpi0dr165FmzZtzN6HK237Hjx4gPTp06NIkSKc42JWuGoUQMD3mBePHj3C0KFDER4ejoIFC2ryEa9He04vHitpl6QICwvDs2fPsGXLFjRt2lSxdS+QvGCeKlUqGAwG3LlzBz4+Pjh37pyq8q9evYq4uDjGNYsUvXv3xqVLlzBx4kSj3+j6LFav9VBs0vdcTnHbtm1bxMTEGLkosZRlXa9evYwUjb1795ZVas+dOxdBQUGiv6uVf9y4carSq6Ffv34AlBkiWEqJPnXqVGzZsgVHjx5FcHCw4P0ypyU638UgXcbq1asxbtw40QU3obInTJiAy5cvY/Xq1Ua/BQQEYNy4caqCXbPfBa0L7o0bN8atW7c4C0R6cPHiRUmlVkBAAI4fP874PdYrOLwYaly0qEWqnmlRNubPnx9jx47FsGHDzN6+Kc0/X758yJMnjyILcaE81e6UsES7PmPGDFy5ckWy7zG3oQY7namLMZayRK9atSr8/f05C/ps9J5XvH79mtGXCEEb7Co1yBXrQ/ly82N2CblzYetu9K6zau7jwYMHUapUKZvZwZESUT2iGTFiBCZPnoy///6bs8JSrVo12UjWfJKSklC8eHFMnToVxYoVQ48ePdC9e3cjP1dqmDZtGjw9PZlP1qxZNedli2TMmJH5eHp6wmAwcI65ubkxaa9evYqSJUvCxcUF5cqV42x7mzBhAooWLYpVq1bBz8+PUa5GRESgW7duSJcuHTw8PFCtWjUmOBiQvFhStWpVuLu7w8PDAyVKlDCyvDty5AgKFCgANzc31KpVi7O1LikpCRMnTkSWLFng5OSEokWL4vDhw5LXfPDgQeTNmxepU6dG1apVFU9W27Zti9OnT3O2Oa1ZswZt27Y18q0md92PHj1Cw4YNkSFDBri5uaFUqVJG1k05cuTA1KlT0aVLF7i7uyNbtmxYsWKFrJwxMTFo27YtVq5cKRjYskePHqhUqRJy5MiB4sWLY/LkyQgNDZW8D6NHj0adOnUwc+ZMFCtWDLly5UKDBg2QPn16WXnMRVxcnG6NNXsypnaLtFL06tzev3+P1atXy1qIrFu3Dlu3blU1ITIXcpNOJfCVB+baGstnzZo1jDWkEus4NmxFpJLrVar0Vrp9j30P1Fi5swdlertzMcV6ROs2ar4MWmAP1r9+/cpYsAjtQHr//j127dqFXbt2CSp1ab/xtgD/nnTp0gVbtmxhjA+szc6dOwEo900p9ow/ffqE6tWrGy16VKpUCWvWrEG9evU4xwsWLChZDtvwgn5H1CrP9GgXxc7LlCkTcuTIgTZt2mD37t2qLApHjx7N/O/v76+4XKmFl4iICM6C3MaNG9GvXz9OeyCk6Be6t3xMCQ6tBbYsI0eORNasWbF161ajIKdKUdrGirlRefz4MT58+CCqJOK/y0IL0mrqnam7Y5SWJafUtPQCbK1atVChQgXBBUhruCgQahOV3hOhd5Vu006ePKkpTymeP3+O3377zeR81KJEcfrq1SsA+rtqknPNIAU7rRLjDalnJLfrS0quZcuWoVOnToK/mTr/OnPmDMqVK4dr166pOu/vv/9WdU30/2rrsZrnFRcXZ5L/bCmLaLYcy5Yt43z//PmzqLsjdjql91jKtfGHDx9kn7ml2sHTp0/j3r17mowd2CiVN1u2bKhVq5ZocGe1dWvSpEmixrts2HOeiRMnCu7WsSUXc1euXMHx48etLUaKRbUS/caNG2jcuLHR8fTp06vyAwckTxr4A/4CBQowFl8ZM2YEACN/jm/evGF+4zNy5EhERkYyHyE/UT8Lo0ePxpw5c3DlyhU4ODigS5cunN8fPnyIXbt2Yffu3YwP8ubNm+Pt27c4dOgQrl69iuLFiyMwMJCZTLVt2xZZsmTB5cuXcfXqVYwYMYKz0vb582fMnj0bGzZswD///IPnz59zrOMXLFiAOXPmYPbs2fjvv/8QFBSEBg0aiA6cQkND0aRJE9SvXx8hISHo1q2bYp9YGTJkQFBQEDMh+fz5M7Zt22Z0H5RcN23NdPz4cVy/fh21atVC/fr1jawT58yZg5IlS+L69evo3bs3evXqJeizj02fPn1Qt25djtsiMT59+oS1a9fCz89PdIEoKSkJf/31F/LmzYugoCCkT58eZcqUsUocAbrD+/LlC9KlSwc/Pz+jCeCbN2+wbNkyVUoDUycJsbGxqiz9aLRYiderVw/dunWTVY6rbT9tgXXr1qF9+/aCAzU5pZYYhw4dwsyZMyUHS82aNcNff/0l+JteixAGg8FsA8wdO3YIuj2IiIhAbGwsjh8/jtSpUwtOYoXqvjmU6OHh4TAYDLC3t9d0/vr16+Hm5ia7BddchIeHM/+zlYFC94dtRZmUlIQvX75g1apVjJ9rrYPeiIgI1K5dW7XF3Nu3b1GpUiXOMTnlJO0jOTg4GHPmzLGaH0u96t+yZctw/PhxIz+o9FZYJS7NgOT7lZCQwAQ4NiflypUTHF/oQZ48ebB06VJN54o9k1atWgkeT0xMRJo0aeDj48Ms5rVv3x6LFi2SdaclZG3MV5CIuVVjwzZiMBV2+dOnT8fLly/RunVrNGjQwKyxUKTewbRp0yJv3ryCv4lZ60mVc+PGDd3dXKpx4QQAHTp0kNwBYS2f6HJKdCn3Tnq1Z1p2XLIxd3t+9uxZJjgfkGw5qsY9KEVRFo8rpLRf1voMmzdvLmnpK/ZMaCW/GtiKdzV6CyEPAOvXrweQLB+9qA0kK8FNoVKlSjh//rzg4mNQUJDoomzdunWZOCRqMPXdS0xMRMmSJWEwGDB79mzOb4GBgfD39xdVssohZSDHrpe9evXiKCn5O3YePHiAPn36qNqFyr4vUuOgxYsXI3/+/JxjHz9+5LgTEXqHKIrCkSNHmPfZFnyiq4XuQ8UC9GqpW0KL4mz3U3xXVOPHjxfsD9n3XM29vX37NubOnSsZ40ROryH2vAnaUD2i8fLyEuwor1+/rtilAk358uWNFIz3799H9uzZAQB+fn7ImDEjpwGKiorCxYsXERAQIJink5MTPDw8OB/VzJ0LZMki/2nQwPjcBg2UnTt3rnq5VDJlyhRUrlwZ/v7+GDFiBM6dO8exboyPj8f69etRrFgxFC5cGGfPnsWlS5ewY8cOlCxZEnny5MHs2bPh5eXFdMTPnz9H9erVkT9/fuTJkwfNmzfnbNv++vUrli1bhpIlS6J48eLo27cv5/nNnj0bw4cPR6tWrZAvXz7MmDEDRYsWFV25X7p0KXLlyoU5c+YgX758aNu2regquxBdunTBunXrmMFErly5ULRoUU4aJdddpEgR9OzZEwULFkSePHkwadIk5MqVC/v27ePkVadOHfTu3Ru5c+fG8OHDkTZtWiMrETZbt27FtWvXMG3aNMnrWLJkCdzc3ODm5oZDhw4Z7QRh8/btW8TExGD69OmoVasWjh49isaNG6NJkyY4ffq0grumL+/evYOLiwuio6Px8uVLfPr0Cf/73/+Y38PCwtCrVy/07t2bc55Sdy5qoSgK6dKlg6urq2RnJFSG0uCXbC5evAggWXEqhRpFnTW2X/E72g8fPqBz587YuHEjY91rynOhJ9h16tTB8OHDJVfHd+3axViiPnz4UNSnq6mW0HKwr1fq2tnWCCdPnkSLFi1QqFAho3RNmzaFr68v8y4oncSy646YoiI6Olq16wxToAONywWDkkJscKf3Nmq+pfnYsWPRvXt3lCxZ0qT8p0yZgsOHD6NDhw6q5Bk7dqzqCS/93CtUqIChQ4di+/btqs5Xi9i7pZf1mFyfqIbixYuLuligoYOVr1ixQvQ9kbNEP3/+vJELOTHU1uGHDx8a9ZFa86IRU4iz/b3yjVjkFi+E3LlI7cTh1xdaEVOlShXJctQgdX+sEVBc7h2RU6ILWaIXLlwY5cqVEx2jnDx5UrRNEJPHy8sLS5YskZSFj5Qlsdx1R0ZGYs2aNar9OiclJQkuSkshVCfq1aunOD6OXpjDOv/z58/4559/FMeEefXqFSpWrMiZyz1+/FhVmZ07d4avr69FdhvQfZ3SMbPSwMp82WNiYlC1alXR9HqOQwYNGqQpHyGXWjS7du3ifBdyLcFmxYoVaNasmSbXcEePHsWmTZtUn0ejhyV6QkICjh07xoxN9uzZwwRi5/f/dFwCdhw+rcTGxnIM6vj1gt0m8o3ZKlSogCVLlqCBkD5JA/x7xn6PKYqCj48PypYtKyorkFxvatWqxejilO6kNQUt+QYHByseb/HRo52Kj4/nuNkaNmyYovO0KtF/+eUXDBkyxGhBiI3cYoxQm1mnTh2iSNeIaiV6q1atMHz4cISFhcFgMCApKQnBwcEYOnSo5ERRiEGDBuHChQuYOnUqHj58iM2bN2PFihXo06cPADBBFidPnox9+/bhxo0b6NChA3x9fdGoUSO1oisnKgp4+VL+I+RP7t07ZedawFc72792pkyZAHCVgNmzZ0e6dOmY7//++y9iYmLg4+PDKGzd3Nzw5MkTPHr0CAAwePBgdOvWDdWrV8f06dOZ4zQuLi7IlSsXp1y6zKioKLx69coomE358uVFt1XduXMHZcqU4RwTW0ARom7duoiJicE///yDNWvWCFqJKbnumJgYDB06FAUKFICXlxfc3Nxw584dI0t09j2nXe2ITWpCQ0MxYMAAbNq0SdZXedu2bXH9+nWcPn0aefPmRYsWLUTdPdCNZMOGDTFo0CAULVoUI0aMQL169UxylaSVVatWcb4PHDhQcBVfjaWgKR1gXFwcE8vBXDtVwsLCMHv2bFU+J5VOCHbu3AlHR0ezWlYq6VDZdb1Hjx748OGD5Hn0by9fvsTy5cuNVsz5z1Qu0CFNnjx5RCdJ9+7dM2nBQc3A4vHjx6AoSnAC0rRpU+Z/tiuD2NhYI0tttgW1UpRYont4eCBt2rScOCF6B6GSe/4LFiwwS1Bwofsu5qpDru04deoUY2mlZPumFFr907MtApXCv6779+/LnrNo0SKMGjUKAIz6cim2b98ONzc3zJw5U52QAojVGbkFHzmFABsxl1/8stu1a4eePXuiSZMmsnkuXLgQJUuW1PS+ysmh9hytbgeUwK9XY8aMEf1N7JiaMsuVK6dCOmOio6Nx9uxZxRNVqYV0cyF3P/jKTyF3LmLfxfrNatWqoWXLlli7dq3iXRwAmPmYUviysfsboQVeur58/foVXl5e6Nq1Kzw8PODn54c///yTk++NGzcE+3M5RYpcm0/LLBVg9ddff0X37t0l87ElKleujHnz5ilKqzUWCxtLuhNLSkrCxYsXjcbMS5YsEfSpnjNnTkXjSUu6GzJ3WUeOHDEyUnRycpI8p2fPnti1a5dmxaTanSs0L1++FGyT1N6jT58+oUaNGoy3BCXyCJWRkJCADRs2KHYd6+/vj+zZszPjNn69lGrvaf2A2JiPoiicPHkSYWFhCAsLQ48ePZiFAaG0an3tf/36FZ07d8a6deuYHdq0i129jLX0VNCy86pQoQK6dOliZO3N7j/FFhL1eP/4MRelgs2y0apEpzEluKpYebQxweLFi9GhQwfFC7A/O6qV6FOnTkX+/PmRNWtWxMTEwN/fH5UqVUK5cuU4g2sllCpVCnv27MGWLVtQsGBBTJo0CfPnz+dYAgwbNgz9+vVDjx49UKpUKcTExODw4cPmDZDo4QFkziz/YSmgGdKlU3auFgt5lbAnmXSDwX55+cE1Y2JikClTJoSEhHA+9+7dY1ZxJ0yYgFu3bqFu3bo4ceIE/P39OdZM/ImtOV0iKMHBwQHt27fH+PHjcfHiRUErEyXXPXToUOzZswdTp07FmTNnEBISgkKFChkpboSuX0w5evXqVbx9+xbFixeHg4MDHBwccPr0aSxcuBAODg6cRszT0xN58uRBpUqVsHPnTty9e1fUiixt2rRwcHCQdJUkxcePH40s7JUgZqXH9z8vNUBTqnQyZVuwEqtdU4iIiECmTJnw66+/olmzZprkkqJ58+YAkrfXWxL+8+VvWZ2rcHdNqVKl8L///U/WLZNekwyt1tdq/c4CwJ9//ikb0I+d59SpU2XdPSmB3VbI1Wl2eVp2aok9l//++w/p06fHokWLBAdgu3btwsCBA0WVZO/fvzdSdiYkJKBOnTpo0KCB5LNo3rw5PDw8FEW9598ffhvesmVLRQpotXz58gXHjx+XtPJq3LgxkpKSBBdI5dy5aGnL+vXrh2nTpuHmzZuqLE7pXQbDhw/XRQ4lfPjwgaO0F9uJxUfofh0/fhzTp083mszQLqL++ecf2bwGDBggOplVi9p2JikpCRUqVBB0rSjEzp07Ub58ecXBcU1Ryssp0eXqman3tHLlyqhYsSJn8Z5uy2mXR2y0KNHpawwPD0eJEiWMLMOk3IMAyYvOUiiZwIotosg9uy5duqBAgQIAkl1IFC1a1Kyu5NhWj1J1g7/r6unTpxxjqUWLFqFw4cKCgW/VBhBnl8v/X4i4uDjMnj0bq1at0j3AtNIFXi3zKD2sbPUia9asgm7NtM4Py5YtazRm7tOnj+jOXyV+f03ZRWVrlpx08FU2Tk5OeP36NQoWLIjff/8d9+/fF9yJExERgUGDBqFz586qrkuL0jU2NhZZsmThWPxrtUSnoXcWaj1/2bJl6NChg+LAufROU3pOLrfoqYa//voL1apVQ6ZMmZApUyasXLlSdHFgy5Ytgsel+qNNmzZh3bp16Ny5M9KmTQt3d3ejPtHUeq72fLVl8Hc/sY3XhPp8QFvd4Mul1c2jnj7Ro6Oj0axZM9md7jRi95Yec/Tt2xcbNmzgLGATxHGQT8LF0dERK1euxNixY3Hz5k3ExMSgWLFiyJMnjyYB6tWrZxQgio3BYMDEiRMltyzpzuDByR8taFA+2grFixdHWFgYHBwckCNHDtF0efPmRd68eTFo0CC0bt0aa9euVTSZ8/DwgK+vL4KDg1G5cmXmeHBwMEqXLi14ToECBYwUumoD2Hbp0gWzZ89Gy5YtBQN3Krnu4OBgdOrUibnOmJgYxavUYgQGBhopjTp37oz8+fNj+PDhor6I6Qmh2OTP0dERpUqVknSVJMWJEyd03eLMV6JLdSCvXr1CzZo1ZSfStqxEZ9cxMWWMEJYONvL161ccOHAAlSpVgo+PD+c3LQMlpQFs6Lp16NAhzu/8QY3BYNBlp4DYfVVqnSZE3759sWjRIqM81Fp0nT17VlE6djAeIbnZ12jKdakhMTERTZs2RcGCBZGQkIAZM2YASFbMCm03lAri9Mcffwi66frll1+Y/8PDw+Ht7S14Pr1tedOmTcy2aKWW6Eq2rasZcIvtEGrbti327NmDAQMGiCp99u7di/PnzzMxSuRgKyRNWXTi70iIiIiAl5eXprzMZWHXoUMHjqWoKeXQC+Xs+qTGOlcPTHkPb9++zSzWderUSdYPJu1SqU+fPqhYsaIq2eTcqvGtd+WeC39RU+/6Qu/04S/Wt27dGtu2bTNKHxcXh4SEBKNxihLmzJmDa9eu4dq1a5zYP6bCd+fCryt67aCj20o9/c/zURq8T25xhe5f+C4qAMi6cpFb2JFaMKfdPNGo2QEjVebKlSuRP39+0frPtyqVai+U+FuPj48XdOd49epVxQqTxMREzTFSXrx4gQ4dOhgZf5jSDlrbWpJtERoUFKTqXEtYvfPv7ZMnT7Bo0SLcunUL/fv3F02XlJTEjFHGjBnD7M6WQ6kbmDZt2iBz5syYMGGC4JjOVCW6Gg4dOoTcuXPj7NmzTKw92pWe1l1bWpTodnZ2guloq3AlCLWNQLIr0RYtWgjmz17Yot3g0LGA9EKLP3xTYPefYu21lrq1e/du3L17F4sWLYKjo6PR/eS7hRRDyhL9yZMnyJo1K2c88uzZM2TLlk0wr+nTp2PXrl3YtWuXSQsU2bJl44yZzO0K9UdBtQaJnvRny5YNderUQYsWLTQr0Am2RfXq1REQEIBGjRrh6NGjePr0Kc6dO4fRo0fjypUr+PLlC/r27YtTp07h2bNnCA4OxuXLlxmrFiX8+uuvmDFjBrZt24Z79+5hxIgRCAkJEfWb+7///Q8PHjzAr7/+inv37mHz5s2M/2WlFChQAO/fvxe1gJa7biDZZQQdgPXff/9FmzZtTFZ6uru7o2DBgpyPq6srfHx8mKCMjx8/xrRp03D16lU8f/4c586dQ/PmzZE6dWrUqVOHySt//vwcy/Rff/0V27Ztw8qVK/Hw4UMsWrQI+/fvF/WpykbpwCExMZFjlXPw4EHBQZSayemyZcsUWaKZMriS216slYSEBMGAO0qxtBJ9+vTpaNKkieLt81omO5MnTxY9X0hpzv/es2dP1WXyEZNb7nqkJtaLFy8GIH8NcihNz/YPLCSTJSeTX79+xcePH3HixAn8+eefmDJlCqPgoOEvJvj7+4tahFy5ckVRnAsl1ixiaaSU6ErqtZoF0yNHjggep9vnhQsX4q+//mJiJfDlkQtCypaX7WpBz7aMtjQXK1dsoUALStsVKVcLWvNnxyqoUaOGSXmxcXZ2xrVr1xSlVZOvEH/88YfiyZvSnV5q5OEH7jLVnYsapOo8v70RUqADycpZFxcXnD9/HklJSapcANBu4fRGzic6v31l31/+4rQemNPKlr5Wsf5BTIadO3eia9euinYSKKmTUkoD9nMW67MnTpwoGWyQT48ePVCpUiVRC2k9rVkBYOTIkahZs6bR8ZIlSxr132IsX77cJBmEMGXcK6Y0FELJWEssTVJSkuD9N2UHhyUs18eOHcv53rhxY9G+W2zsFBoaiowZMyJDhgyy5Sm1RN+yZQtmz56NEydOaPK/Dmh31SLEo0ePMGnSJOY7f5e+GHx3f7SOQY07FxqxebKa90PMnYvUooDQAqRU2yPUbnbt2hXTpk1DuXLlBAPxyu06BsDxLQ4kL8goDdDLl4ndf27dupXZvc2Gf5+io6Nlx/lDhgzBypUrmXZQTR/CRuqZ5syZE97e3pg2bRoSExOxcuVK5MiRQ3QurHZcLFV2586dmf+1Lpb+bKiedVWrVg1+fn4YNWoUbt++bQ6ZCFaCtiqqVKkSOnfujLx586JVq1Z49uwZMmTIAHt7e3z48AEdOnRg/HLXrl0bv/32m+Iy+vfvj8GDB2PIkCEoVKgQDh8+jH379okuxGTLlg27du3C3r17UaRIESxbtgxTp05VfW0+Pj5InTq1pusGkl1VpEmTBuXKlUP9+vURFBSE4sWLq5ZDLc7Ozjhz5gzq1KmD3Llzo2XLlnB3d8e5c+eQPn16Jt29e/c4g4rGjRtj2bJlmDlzJgoVKoRVq1Zh165dqFChgm6yNWjQgGPZvmnTJsa/Ls3JkydVKXeUbq02RWHEDoBsZ2dnst+3u3fv4tq1a5g9e7ZJwWH4nVtSUhIePXokOQCT6hApikJISIjoIJUOMibkukLMNQ+N0KKX0DnsQbycYkBIIW2qT2ogeQL8999/i94HMQW0EncuplrKKFFqXbx4UXSyFh0djZo1a4pOcNgTAxopmdkBf8WoX78+fHx88Pvvv8umpblz5w6z8ACAEzRTbQAzKZQo2i9duqTKJ2GZMmXQr18/fQT8Vl69evU4bg7YiCkq5Oqankp0Le68aNS+E0oVkVrftdGjR4v+JvXshdxAKVV8xMXFoXr16pJp2Fusu3XrpihfUxGbZPNhT8zOnTtnFMeGRigvuh4qtaJVyunTp5EvXz6cOHHCqCwhlO4sOHnyJL5+/Ypu3bqhZs2a8PLykgyOCXy3DmT3HUIWg1qvW8kzYufNrj98xZkYUgHvpcrSm6FDh8qODYRkaN68OdasWaOLYnflypVwd3cX/G3s2LGc+iA05rp9+zbGjx+vadGfrURnP3c9jCrYBiNq+msxtC5ksvH39+fIYm1rciUULVoUlSpV0vU9UPJ84+PjjayCv379apIcQm0mRVEcS3q2bPRuWiUKQrVzKbH5khJLdCF3NXyEDCbEYpSx2yAXFxfm/9SpUzPGdHwyZcrEcR3y9OlTzJkzx2hMEx8fj7t370oGexdTomu1hudz7tw5TJ8+XVEeUmXyf5s1axbWrFmDUaNG4fz585KBeJVCURSKFi2KzJkzK7LEp93w0fDblJ07dyI+Ph7r16/Hixcv8OXLFyNdg6+vL/z8/BQFlu7fvz/i4uI0t9FVq1ZlxpdC9zo6OhqjRo3CH3/8wYxfxVxzsXetKtkJrbQ+admZ91NCqeTdu3fU77//TpUrV44yGAxUkSJFqJkzZ1KhoaFqs7IIkZGRFAAqMjLS6LdPnz5RV65coT59+mQFyQgE24J+H+rWrUsVKlSIsrOzowAYfWiEfvP09DT6rUiRIoJphT7du3eX/J1mwoQJivOU+rx8+ZIaOHCg4G9CbZrUfciaNatseWz27dtHFS1alLpx4wZFURQ1bNgwTrpevXpRAKgFCxaIypAmTRpq/PjxguUsWLCAAkDVq1dP8HkXLFhQUC6KoqjQ0FCjPOPi4qjPnz9TefLkEby2IUOGUI8ePZK8/vv37zP/582bl3M93bt353zfuHEjlSlTJtn7KXfPS5YsSQGgevfuzTk+ZswY6sSJE5STkxO1YsUKiqIo6uHDh8zvERER1KpVq0TzDQ4OpgYMGMA5tnDhQlkZx4wZIytz3rx5RX/r2LEj85xcXFyMfm/cuLFkPb106ZJgXTL3x97eXlCuzp07Kzr/3bt3zDnstolfh/z9/alNmzZRzs7OzPEbN25w8po9ezaT182bNzVfU+7cuQXvJU2XLl1k629gYKCislxdXanLly9TDg4Ogr8vWbKEI8fEiRMpikoes/3777+CbQCd9vz584KyCb2fSUlJgulo5syZo+oeNmnShHN+UlKS4P3k90dubm6iMiut2/Xr11cl659//kn99ttv1IYNG0x6FwBQT58+pRo1amTUhsh9TKmzZcqUoWbMmGGy7PSnZ8+eVP/+/TnHHj58SFEUty2NiooSzWP8+PFUs2bNjK5RSfmOjo6K08p92G3uqFGjZOsSRX3vowFQrVq1Yv7Pnj07RVEUVbZsWdVyUBRFZciQgXMsXbp0RukuX76s23OU+1y/ft2k87dv305RFEXt3btX8Hd+38C/HxRFccYC7GcyatQo2fI7depk1E5FR0drupZjx44Z5XXu3DlB2fgf/rsCgPL29mb+P336NPN/fHw8J69p06YZlUv/JjTu5t+/VKlSKa5/YnnVqVPH6Dc17S37c/HiRYqiKOrz58+iMrB5+/atSXVw/fr1gvk+ffqU6ty5M3X58mWqZs2aknkkJCRQ8fHxjM5AyX2kqV27Nuf3ffv2CT5L9vnFixengOR3naKS52hp0qQRTKv0PnTq1Mno2JcvXzjff/vtN+Z/ofmF2Gfo0KEmPSP68/TpU4qiKGrq1Kmq6ic/3dq1aznHOnToQAGgDh06ZJS+R48eVFhYGOXj4yP5PPnH//rrL12u2d3dXXDsni1bNsV5NG7cWPA979evnypZKlasyJHh9evXzPcHDx5w6q3QGJcP+7fr169T7969o5o2bSr4HABQBQoUMMqP/r948eKydUCob5QaZ6l5f+jP9OnTqRcvXmh+3m3atKEoiqK6desmmmbYsGFU2rRpjY7Xr1+foiiKSkhIkCzj4MGD1Nq1aznPQuye8z87d+40eo4/E1K6YzaqTZfSpk2Lvn37Ijg4GI8ePULz5s3xxx9/IEeOHIJRsQkEws+NGn+bSq0N9bK6tLOzE/VPTLFWbPfu3cuxYKdhWzmq9VPaoEEDhISEoEWLFgCMLVOWLl0KAEbW/WzCw8NFd4LMmzcPAHDgwAFVcgHca2cfW79+vaSVntB5bNgW7Pfv3+cE4Vy5ciWnrrRr104X3/y0FQnf56rBYECzZs0QFxcnGOiNkrFEL1++PON/Vwp+bAK5eyTHly9f8ODBA2zevFnQF7Jc/jNmzFBskWJuPnz4IBlomA39flAUJWoBsnLlSty+fRtt27bl3IdChQpx0g0dOhSPHj1i8rMmStu8T58+oVSpUqJWm/w28evXr/j111+RLl06FClSxMiaSq69Ylv8AsDly5dx584dWesbU3ZnREZGMvFW+Kix+lG6g0Wt+61x48Zh/PjxugR1Hj58OPbu3YsFCxaYnJdSzFHXlbi00jsYI42euy+07Ehj10m9gswqxZLtlqlu1Vq0aIGlS5di06ZNgr+rDaTKflZiwfTYrFu3Dh8/fmTazsePH3N8QquhevXqRq6BlLZ5ap4ZPy39/dSpU0Z1LTIyEsOGDdOlbKl0FEWpclMlxciRIwEob9fZO2+1EhoaihcvXnCONWvWDGvXrkWpUqWMXFMJkTt3bri6uspaZsfFxUnujDMYDLh79y62bt0qes/pe01boZ4+fRrh4eGyMkqhxB2qlNxSvHnzRotIouULzX1MaffWr18PAKhdu7bg77NmzRLcgUbLotTtkRaE3GdMmTJFl77T1B0kbDcnevQ7Q4YMwa5du0SfgxRKyhfabaD3OOvp06cm3Qu6rTElD7nA0XXq1EHnzp05QdaV3nMl7pIIGty5sPHz88OIESMwffp0FCpUSDBoCYFA+LF4+PAhpk2bJvibqR2s0m3MerU1UuUFBQXhwIEDePHiBRo3bmzkn+3Tp0+aXAsB3K2DdGelt090Ncqs27dvo06dOqhfv76k8ljK3Y6c0hkw9tfKdxMwZswYhRKbDl/WEiVKcALBKqnLSgLH5s+fn/N969atCiUUZvv27cibN6/otkN+PSpTpgynvu3atQsjR44UnSyYC6H6qManKP08WrVqpSi9nGsoWoFqjlgE1lDM8+/vpEmTOAFe+e4bcubMKZlfYGAgZ1ErJCQE/v7+urs42r17NxM7YdOmTXj48KHRwubChQuNzhOSIzY2Fu/evUOmTJlUyaAUPQMwmrJAWKZMGU3nKWmjTUXo+YttoRdLr5TY2FhRxaxalLgU4cNW/tKLcmy03mtLBNRTAzuAolZ69+6NHTt2aD6ffS/Z8QvYcQ2k+OWXX+Ds7Izp06ejevXqihdvhaANHPRAyg83n9evX6Nq1aooWbKk0W96Be+TqrOnTp1CiRIldCnHYDDgzp07ou4fIiIisGDBAl0MKYBklxrZsmVD1qxZOQq1GzduKM6DHQdKLvi3s7MzOnToIJmmQIECaN26taz7NNrXvqXaBXa7psbdjlw8F6VIPXM1inq19+vLly+iv02bNk3Qt7de7oiEZNUyHxLKR6hvkoLfBgQEBKgqr3PnzkzMHyHkDDiUBqMWQ+2YXsrNjhhSxjxKMCWeCv18lCz6AUD37t0BJI+1ldK1a1f1gv2EaFaiBwcHo3fv3siUKRPatGmDggULGvklIhAIPx558uSRtI42BSWWZbt27RINxqQnd+7cQf369UWjYmvpQCmKQmxsLMeS8cuXL7hw4YLoJJ49oFHj/zM6Olpx2l9++QWHDh3CgQMHEB4eLuoPWG5QaqqCRu091RqUSIhr166hS5cummUBlO1GUDugVQv/GVy6dInjg5xGasJgDvhyJSYmKg50yIY/4FUafIiPnZ0d7t69a/Ik/d9//0WWLFk4x/Ssl0qxs7OTfP+8vLw435UoDYsWLWp0jB0smE1sbCxOnDihyaJ37NixGDFihGj7LxZ4nM/mzZtx+fJl1eVbA1MUIkoDWPGh+x+9oBVhbObNm4fixYubFHTv1q1bitO2a9dOczls2O8D+9mI3a8zZ85IxtPQE2vvlrEF2PdAixFFWFgYEhMTMXLkSMWKdzHYY4OkpCRVilgp2HWQH6CaoijO+ELpgh57B5cSKIoSDcKr55iBoig0aNBAtL3u3LkzBg4cCF9fX5MWX2jYsg8cOJD5X2kcJoC7eElbNUuxceNGXLp0SXRnJ43SRSpzKdH58vHrt6WRUx4rXThVe7+03N+GDRuqPsfWkYu19fnzZ/z++++igTjXrVsnGvNHL6TmUWrrbMuWLTXJoEe/LJeH0O/0/EJN+W/fvkXTpk3VCUeQRbUSfeTIkfDz80O1atXw/PlzLFiwAGFhYdiwYYOiQA8EAuHHxRKW6Gq34EsxfPhw2TRi16RlwOXr6wsXFxeONXJ4eDgCAgI4CnIhxeDdu3cVBX6k0arE+PLli2jQXKlrNnVlns5DDT4+PprLUrIgoFYevazBTEFuwkZj7YBeBQsWRLly5RSn57vjoRFys6SE5cuXo0CBAiaNWx4+fIj27dsbBf+i64ElLUoNBgNat24t+rvQdmEt8N1Hde3aFXv37kXXrl0RGBgo61ZAjBkzZogqb5TStWtXTqAvW0Zr3TClj6UoChMmTNB8Pp+vX78aWUP9/vvvuH79OmcSrVbmggUL6iKfGtiusR49eoQJEybg48ePotZbjx8/Fm1Dnz9/jqpVq2pa7OjcuTMnICSgvS8nmIczZ84wO8FGjBgh6A5OiEWLFhkdY7cD7GDEjRo14qSjKAp169ZlvgstcAqhNnB3UlKS4t1eQLJRixauXLli5FqF5tixY/jzzz+Z77TLQ1NQOi6Sgm19TluHy1GmTBlBhbuWdtxc4wm+IQHbUt8aSvTY2FhRi/Pg4GDdFk7ZxMTEcAKKKkWvBU5T3fQAygydlMB2s8kfk1EUhdGjR6N///5W6aevX7+OI0eOIDAwUDSNJcbdX758UeTOUw4591lCv9MLgmrGBVoMlgjyqFai//PPP/j111/x8uVLHDhwAK1bt9bU8BAIhB8T/gRQDUo6PyURqJXyxx9/aD5Xy+ApLCxMkauUv//+26icxo0bqy5PC2LW1HLXO2/ePERERJhUttoBuylb4uSwhOsDcyCkuBHyiSjlYsES3L17V1X6iRMn6lr+7du3dclHyJKN77ZICr0G/AaDQVIJzS5HT2vtNWvWoHHjxti8ebPJeemhLNTDatESyLkDEMNUJbqerF692uQ8bMV1CdsH6NatW/Hbb7/Bx8dHdDxjZ2cnuRB56tQp3Lx5U7Uc69atE4x18bNjafdjctC7XtQsnGuxOqRJSEgwqX1U+u6rXVxv1qyZqDJcitjYWFGZatSooXtbxb+uL1++GLnaMxdCbk70vD5T88qVKxfnO3tcbQ0lOkVRKFy4sOBvasaNavqWzZs3w83NTXF6c6Bm97Cl4C+oURTF7AT/9OmT7D3mL+K9e/dOdX19+PAh53utWrV01QNoYf369SbNyWNjY2V91YvNQePi4pCQkICzZ88qLk/P+DGE76i+q7Qbl7Rp05pDHqtgjU6CQLA16PfAVAtVU3xpXbhwQfL3TZs22UzsBXO2G506dWL+//LlC5YsWaLKooi/7ZaiKCxatAj79++XHcCI+b9TYuXAtpTSgtKAgHohZ1lvLUwpm+/7GgDmzJljdGzSpEmay9CCrSjLLIE16o4SlwLPnz/HpEmTULp0aQtIpB5XV1fFacXc0aQUt4JaFxzZC6xq0SsooJ7Y+kKl2EK7wWDgjJUsfR22ft/0gl48tfbOKSH0aEeV9ovmdgNHo+U+Z82aVfU5lp5388vbv38/7t+/b5GyhZ6x3PvLD4Yulg9g3ntpDf3IhQsXRI08zNnuOTk5mS1vJfCDv6vlzz//VOWeSAv8eeCBAwdE0wYHBxst0NSsWVO1z/M8efKoSp9S5hp169bV5P+doij8/vvvqs4hSnTz4KDlpA0bNmDZsmV48uQJzp8/j+zZs2P+/Pnw8/NLUf6hnJ2dYWdnhydPniBz5sxwcnJKMS8fgaAXFEUhLi4Oz549Q2xsrEmKzOjoaOzcuVPz+VevXpX83Rzb+LRiyUlsnz59VKWfN28e5/uxY8fQr18/5rtWn7py7aOp1mJ6Bu5TgpS8UVFR6NmzpwWl+Y4l6paebpGUoEffaouWOkIT8fPnz2uyQjUFfjBOPgaDAZUqVbKoBY+dnZ2qSbiagb65J4u2yo/mNvH58+cmjRnMjdjCvsFgIAY4FmD8+PEYN26ctcUwG0r7Ra1BG9WOJSxVpxMTE+HgoEkFoQn+7rAtW7ZYrOxjx44ZWb3LPReh8YNYXTHnApO1LNHFUBPDRigWkNZyLYGpO3ktIf9///2H//77j/kupS9YtmyZ4HE1wWG10K1bN7PmrycPHjyQ/F3omb569QqDBw9WVY4WJbpe7oF+ZFT3YEuXLsW4ceMwcOBATJkyhWm8vby8MH/+/BSlRLezs4O/vz+ePHlicqAZAiGlc/fuXSxbtgyJiYkp1pWFJbHlCfTo0aM53/mKvh49eqj2kbZy5UqLTnqsDd/3syX5Ed89Pa5JLKilLVKoUCGbi3Bv6S2wP2I9JqhHSvGxZs0aC0qiH3xLdEtDgoTZJmrHheZ2q0YHE1Yql6XqtKXnGMeOHeN837t3r8XKBozdkLCvXel9EFNoqYktoxZb2wEiFhtHiJUrV6rKm+iB5FETL8FamFtJryda2kB+DCYlaFGiJyUl6RZL6UdFtUbk999/x8qVK9GoUSNMnz6dOV6yZEkMHTpUV+EsgZOTE/Lly4edO3fizZs3yJgx4w+38qI0AArh54SiKERGRiIyMhIURcHDw4P5nyBOSro//DZAaXR7NgMHDkSpUqX0EsnmseaAOiXVLUuipy9vS3D48GHZNJYab6SEcc358+etLQLBDNjSDjK9uHbtmlXduWjxQ51SSUnKLUsrZ5Wgxu2MLRuH/EiwLeOVtB2HDx8W3X0lt4PXFH6m+kB0JQRLI/fum7o7gWb27NmqzyFKdHlUK9GfPHmCYsWKGR13cnLS7CLA2tDbnA8cOIB79+4hVapU1hZJV/QI1kX48XF1dYWdnR0+ffr0U03QtJKSBpfs7XemkNKUmFLcunVL8ndr9gMpqW4pRcyHtRqE/L3bMnIWI6GhoTh69KhFZJFSoptLSUUWgwg/KnPmzEH9+vWtLcZPgS0qpsVYvny5tUXgQFGUongZNLZmefyjsmrVKuZ/JeO92rVrm1McUWwlBhWB8CMSHh5ukXIWL16s+pwfcR6qN6qV6H5+fggJCUH27Nk5xw8fPowCBQroJpilyZAhA+rXr48HDx4gKirqh5r8qdn+RPh5oSgKX79+RUREhFFgSoIxP1Ib8TOye/duyd+t6bqG1K2fA0v6bpRSordp08ZichAIPwpkkkngY6lFUXNhKSV60aJFNQXV+xGZOXOmtUUQRc0CjC3BjgFFIBDUQ8Y38qjWEgwePBh9+vRBbGwsKIrCpUuXsGXLFkybNo2zspoSSZ8+PdKnT29tMXTH0n5QCYSfAdLB/NjwfWhaElK3fg702iFCIBAsj9rAdQSCpdm2bZuq9JYae9y8eVOX3WkEghCLFi2ytggEQoqGzEPlUa1E79atG1KnTo0xY8bg8+fPaNOmDXx9fbFgwYIUEXCAQCAQ9CAl+ekkEAi2R1hYmMXKio+Pt1hZBMLPQFRUlLVF+ClIqdawpnL79m2T8xg/fryq9JayRCcKdAKBQBBHix9zPSFKdHkMlAn7xj9//oyYmBikT58enz9/RkhIiFmjRGshKioKnp6eiIyMhIeHh7XFsQopIaAYgUAgEAgE8+Du7o7o6Ghri0EgEAgEG+Xp06fIkSOHtcUgEAgpnHbt2mHjxo3WFoOgkYiICHh6elpbDKugVHdsktNXFxcXuLi4AAAePHiAihUrkqAkBAKBQCAQCDYEUaATCAQCQYrIyEhri0AgEAgEK0Ms0eWxs7YABPNCFjUIBAKBQCAQCAQCgSBGkSJFrC0CgUAgEKwMUaLLQ5ToPzi7d++2tggEAoFAIBAIBAKBQCAQCIQfGBO8RRNsAKJEl4co0X9wyNY8AoFAIBAIBAKBQCAQCASCOdm0aZO1RSCYAFGiy6PYJ/q+ffskf3/y5InJwhD0hwQVJRAIBAKBQCAQCAQCgUAgEAhiECW6PIqV6I0aNZJNQxS2toedHdlsQCAQCAQCgUAgEAgEAoFAIBCEIUp0eRRrWJOSkmQ/aoNYTpgwAQaDgfPJnz8/83tsbCz69OkDHx8fuLm5oWnTpnjz5o2qMn52iBKdQCAQCAQCgUAgEAgEAoFAIIixbds2a4tg81hdw/rLL7/g9evXzOfs2bPMb4MGDcL+/fuxY8cOnD59Gq9evUKTJk2sKG3K49y5c9YWgUAgEAgEAoFAIBAIBAKBQCDYKPHx8dYWweZR7M7FbAI4OCBjxoxGxyMjI7F69Wps3rwZ1apVAwCsXbsWBQoUwIULF1C2bFlLi5oiuXDhgrVFIBAIBAKBQCAQCAQCgUAgEAiEFIvVLdEfPHgAX19f5MyZE23btsXz588BAFevXsXXr19RvXp1Jm3+/PmRLVs2nD9/3lripjiIOxcCgUAgEAgEAoFAIBAIBAKBQNCOVS3Ry5Qpg3Xr1iFfvnx4/fo1fvvtN1SsWBE3b95EWFgYHB0d4eXlxTknQ4YMCAsLE80zLi4OcXFxzPeoqChziZ8iIEp0AoFAIBAIBAKBQCAQCAQCgSCGwWCwtgg2jyolemJiIoKDg1G4cGEj5bYWateuzfxfuHBhlClTBtmzZ8f27duROnVqTXlOmzYNv/32m8my/SgQJTqBQCAQCAQCgUAgEAgEAoFAIGhHlYbV3t4eNWvWRHh4uFmE8fLyQt68efHw4UNkzJgR8fHxiIiI4KR58+aNoA91mpEjRyIyMpL5hIaGmkXWlAJRohMIBAKBQCAQCAQCgUAgEAgEgnZUa1gLFiyIx48fm0MWxMTE4NGjR8iUKRNKlCiBVKlS4fjx48zv9+7dw/PnzxEQECCah5OTEzw8PDifnxl7e3tri0AgEAgEAoFAIBAIBAKBQCAQbBTizkUe1T7RJ0+ejKFDh2LSpEkoUaIEXF1dOb+rUVoPHToU9evXR/bs2fHq1SuMHz8e9vb2aN26NTw9PdG1a1cMHjwY3t7e8PDwQL9+/RAQEICyZcuqFfunhSjRCQQCgUAgEAgEAoFAIBAIBAJBO6qV6HXq1AEANGjQgLNKQVEUDAYDEhMTFef14sULtG7dGh8+fEC6dOlQoUIFXLhwAenSpQMAzJs3D3Z2dmjatCni4uIQFBSEJUuWqBX5p4a4cyEQCAQCgUAgEAgEAoFAIBAIYhBLdHlUK9FPnjypW+Fbt26V/N3Z2RmLFy/G4sWLdSvzZ4Mo0QkEAoFAIBAIBAKBQCAQCAQCQTuqleiVK1c2hxwEM0GU6AQCgUAgEAgEAoFAIBAIBAKBoB1NGtYzZ86gXbt2KFeuHF6+fAkA2LBhA86ePaurcATTIUp0AoFAIBAIBAKBQCAQCISURcWKFa0tAuEngrhzkUe1hnXXrl0ICgpC6tSpce3aNcTFxQEAIiMjMXXqVN0FJJgGUaITCAQCgUAgEAgEAoFAIKQsiFKTQLAtVGtYJ0+ejGXLlmHlypVIlSoVc7x8+fK4du2arsIRTMfe3t7aIhA00Lt3b2uLQLAg6dOnx7Bhw6wtBoFAIBAIBAKBQCAQCISfEGdnZ2uLYPOoVqLfu3cPlSpVMjru6emJiIgIPWQi6AhRoqdM8uXLZ20RCBbk6NGjmDFjhrXFIBAIBAKBQCAQCASCjUAs0QmWpEuXLtYWweZRrUTPmDEjHj58aHT87NmzyJkzpy5CEfSDuHNJmbi7u1tbBIIFoSjK2iIQCASC2cmQIYO1RSAQCAQCgUBIMZB5ojx//PGHtUX4Iahfvz5cXFysLYbNo1rD2r17dwwYMAAXL16EwWDAq1evsGnTJgwdOhS9evUyh4wEEyBK9JRJ27ZtrS0CwYKQwRFBjnr16uHQoUPWFoNAMAknJyfOd0dHRytJQiAQCAQCgUD4EejQoYO1RSD8RKjWsI4YMQJt2rRBYGAgYmJiUKlSJXTr1g09e/ZEv379zCEjwQSIEj1l4ujoiBIlSlhbDIKFIEp0y1KnTh1ri6CayZMno0KFCtYWg0AwCX5bt3nzZitJQiAQCAQCgWD7kHmiNMR9sX4Q10HKUK1hNRgMGD16ND5+/IibN2/iwoULePfuHSZNmmQO+QgmQpToKZeEhARri0CwEJYaHDVt2tQi5dg6Bw4cSBF5somLi9NtYFO5cmVd8iH8vIwfP17Tefy2jrguIxBSHkRhQbAlHBwcNJ/boEEDHSUhEMwDUaIDqVKlEv3tR7o/uXLlsmr5RImuDNUa1i5duiA6OhqOjo7w9/dH6dKl4ebmhk+fPhEn9DaILSrRX716hXTp0llbDABA3bp1Fae19E6LxMREi5ZHsB6W6rBssT2wBua432raEi24uLjoJneZMmXQpk0bXfIiKGfr1q3WFsFkOnfujK1bt+q2bbZ69epYt26dLnkRCATLMHXqVLPmX7ZsWbPmT/ixMMUt2J9//qmjJCmfq1evol27dtYWg0ONGjWsLQLBxrE1JfqsWbM0n5s9e3YdJREmMDBQ9DeiRFeGao3KH3/8gS9fvhgd//LlC9avX6+LUIQfm0yZMmH48OG65DVs2DCTzp8/f77itG5ubiaVpRZiif4dSwe46Nu3r+SKtxLOnz+vKF2lSpVQtGhRk8pSCukYv7NmzRpri6CKggULCj4/b29vTfnlyZPHVJE0kRIXcvSK9+Lr66tLPtbEz88PLVu21GyJyp/o2NnZoWPHjhgxYoQe4glSqFAhs+VNsD2klGKlS5e2oCTW4X//+5/Z67y5FRbFixfXdJ6rq6vOkhBSArY8tm3YsKG1RVCFn58fPn/+bG0xOHTv3h0vXrzAo0ePVJ2nRBlpyi4GS5I3b15ri/BTYepuK1PapKSkJJPKliMoKIj4j9cBxbPZqKgoREZGgqIoREdHIyoqivmEh4fj4MGDSJ8+vTllJfxA6DXgKV++vEmKdDUKnf79+2suRwspwRK9RIkSWLFihdnLqVWrltnL4GOqsq9s2bI4evSobLrTp09bTLGYIUMGi5RjbSpVqiSbpnPnzhaQRF+E2k2DwSBZf5ydnVG4cGHmu6enJwYMGGDyAqRWypcvrzht27Zt8fXrVzNKI4+Dg4Nu/ZUtT/SVQl+D3tcyZcoUXfNjY+lJspubG8qUKWPRMs3F6dOnzZq/v7+/rvl5e3tLumewlV2Q5uLDhw9YsmSJzVnliTFjxgzB4xRFYdWqVarzY1+3s7OzZrkIKQtb7ltTmuGAwWDAkCFDrC0Gh+bNmyNz5szImTOnqvMuXrwomyalzAV+lDGFKUi953r3eTt27BD9LUuWLIry0Oqhw9z9t52dneS9tOX21JZQ3LJ7eXnB29sbBoMBefPmRZo0aZhP2rRp0aVLF/Tp08ecshIIRpiqaFbTUAj5bj158qRJ5UuREizRr1y5gu7du2s699dff1Wc1hoNuh5l1qhRAxkzZtRBGn343//+Z20RzM7ly5dx5MgRRWmVLHLYEmKTMakBl6OjI2dr7ocPH+Dr6wsXFxcUK1ZMdxnl4MvaunVr0bS1a9e2upWQqTtS2PwIA1NzXYMSRQM92eXXiUOHDkmet3LlStHfzGWxawvPulSpUiadf+nSJUULkqYQEhKCDx8+6Jaf3OQzpSiXtULP01IKgwcPFjxOURS6dOmC2rVrK86Lbzn4Iz/rRo0aISAgwCZ9048ZM8biZSqt82rqk16kRCV6uXLlrC0GQ8+ePVWl9/PzY/5XEnNFrdVvUFCQqvR6Ya523cHBIcXEprFkmy61wP/LL78oykPLQvDGjRuJEj2FoLhlP3nyJI4fPw6KorBz506cOHGC+Zw9exbPnz/H6NGjzSkrwUSmT5+uKN21a9fMLIl+mLrlRc3gRqhRMYdl786dOwGkDEt0UxCzQBLCGoNQLWVevHgRGTNm5LgJsqWJnJ4KQVsla9asii3QLOlnUY8dG0JtEN1eKIU96bZG3eSXuWzZMsF0Bw4ckFSwW4pUqVKZzRLdnH70zeW2okqVKiadb0qdW7NmDRISEhAdHc0cmzdvnuROpefPn6NgwYKiv4eEhGiWRwyDwWDxSYjQYrbSPqxu3brIli2b0XFTlfBKSJUqlWaXVARx9GrbxdwhpEmTRpf8xRZJKYqCwWBQtVPhv//+43xXMz+whuLXFEqWLIlz585pNuQxp5V+/fr1zZa3GErbug0bNpil/DRp0mD69OmC9TklKtFthWLFimHu3LmqzsmfPz/zv5J7r1aPcODAAVXpbZ3g4GBri5DiUNK/ah0HtmzZ0uzuXIgSXR8MlMqR1rNnz5A1a9YU0ylERUXB09MTkZGR8PDwsLY4Fqdly5agtm/HKACZM2fGy5cvRdO+BFAPwI0bNxjrrLkAqiooZwcAfpihiwCcBNIWKVwYb9+9w+vXrwEAgwCwh4ElAKxWUCYAPNiwAZdv3MDMmTMBAP0AdFVw3tVv6UJDQ5E1a1YAwBYAYsN1dzc3ZM+RAzdv3sTvAFYBuHXrFlKlSoXSefNC6YbnVgDusL7XAcBe2nB3d0eOb5OWj+HhzPOKAMC3B5sCQMlQ9S8AI3nHTgFQMm0dDWA/63s+AGyVXcFvq7E3b90yOrcKALZ9WRckP2sgecCZ2ddX8Lx7AJrxjp3MkQNpnz41Suvt7Y3IyEhmwWENgHms3x0AhBidJUwXAJe+/d+vXz88XLkSs2JjZc9LAFD02//x8fHJ7h+mTAE2bwYA3L9/HwkiCyKnAPRmNcEGgwGHABirM4yZAmAz63sWAHL217ly5cKjR49QG8Bz1vGWAMYrKPMFgJq8Y0fz5UOWe/fg4eGBqKgo0XO3ApjIO3YdgJKpXF8Ax1nfSwEQi8CRO3duONjb4+69ewCSn00c6/dBAObmy8d8p9PxuQyA7zFuFwAx+4N8efPi3v37AJLr4HLWb14AnmbMiLCwMJGzv9MUAPutqA9gQ4YM8PT0BIXk+kTj6emJjBky4N79+4gAwA/FNgNAEzs7eHt74/379wCAvCxf6M+eP0dcXBz2AxjKO/ccAB9ZaYHhAPayvucHsE8ivbOzM2K/vVcBAN5/U5YAQHcA9P6UPLlzM+c8ePiQk8cdAHwvoxsAKNnsuhIAO9xPKgC3JdLb2dnB3c0NkVFRaIfkfo2mGrjPGYDge/AVyX3LuXPnGAuv8QD6enggUuKdAYATAHrwjh0HIOfp09fXFz1fvQJbZZAV3L5WikAAz1jf2wCYBCDnNyuvhIQEPA8NNTovFMltP5tlAOjlKnt7e84CcU6W1dikJ08wjnfubXwfR7DTPn7yBADg4+0NT09P1HzyBH+zziuN5DYna9assLezw9Nn7KtJxmAwIEf27HB++pTTRgwF0NsotTGXkNyns9kHoLDBAEdHR8TFxQmclcwsAEtY39MAUGq+UB/ATdb3hgBWubkhJiaGk87J0RFx8fHM93AAfE/TcwG0c3GBm5sb3r59y/kt+zfF+rPnz/EngAG8c68ASKtA3sEAdgNYtGgR+vbtC38A9N6BbN/GX0J1CUgeD77/9n/u3LlR4+FDSHnPtzMYkCVLFhwODQXf5nQrgKqs9keMpeCOy1IBEPLE6+7uzlnQAZL70vNIVszY2dmhOpLHJXJ8BZCLd2wSgI4Kzj2G5PEL8H1yf83FBekF4lfxGQtgHet7NgC0SsXHxwefPn0SvF+ZM2dGzpcv8ZR1rD2AaQrkfQ6AtnOlleWrAbDtO11cXJDGywuRUVGcer0BxuPZh0geR2T29cWr169FFRxdwR0jlUVynw4IP0s2uQCw78IIJM835LiA5D6dzWEAhQXS8pkOYCHruze+v/fubm5wc3NDQmIi3r17Z3RuLQDsJYUmABYpKPMjAP6S40IAzRWcuxtAHwBhYWHMDswbUNZG9EfyPJLmFyTXayUMCgzE4atXERERASB5vCi2JJIhfXq8+dbO3UJyP0exxiC7AChxOLcIwGS2vHny4GZEBKKio43eFycnJ05f0ATf3zEgeUytRLX/FcnjfDbT8P3dl+Iokt9PNhcA5ETymMzR0ZEZt/j4+MDOYMC7b2PGkeDOybMjeXyshDIAnrC+dwJ3/CXGMwAlAcydOxeDBn2bObZvDxw6hPffdi7Z2dnBydERjo6OSEpMxKdPn2AAcCJHDjT7Nl+MjY2Fs7Mz3gJIDYBWDSYCoNWUqRwdER8fDwpAO3zvm4DkMSodYSPh2ydrlix48eIFwMoPSG4j2D3+SCTXawBIzet32OedB9CId/3HARQB4PVNfwUAri4uiI2NBcVSsE5Cch9O4wPgicGQXKdZxw28vwBQAcnz46SkJHh6eqJudDTWSqSn//8AIBNP3tUA2kKefzJlwsupUzkudO4BULJfuyeAXalSMS4eCwM4w0vj4e6OKIF2PBe+jyOA5DHJxG/3SQwXFxdc+PzZqD04CKCqnR0SZRTdN2rUQNmjR5m2ZdjAgRgvE4ePQvJz7uPnhyUs/UhtANtF0rOJh3F7OwvJcyv2OakcHJDK0RGfP39m8jiM5HE+ADRt2lS1gdaPhFLdsep90rRVwufPn/H8+XPEswboADi+VwnWx2AwwBvflHwvX0LKGyRdTdgTXD98VxBKIRRCsRCSOy0j/vsP6QHQHvT51dMVyZ2HEu7xlJMZFZ4b8e0vezEoDyQGtjExwM2bKAwgHYDDhw/D398f9+/fh73UeTz498MLyfeJIToauJk8TPbGd0X3exiThX+uCP8JHMsPQIkNvRfvuzN4A+xvjbyQnR9/k2ladrrwcCA8XPA8ISc26T5/FlZefvwIdqg+/jUZIK705MMPXepuMCg6l24B06ZN+93SOywMuJO8XCIVCkZoYp4LyXVRDr4dWCqILwJ9L/AR/AE4CuRVQEGZQotiVfPkgcO9e0BUFDJLnCs0SMoHkTaCBz+kb2ok12FBvilc6d/56+m9mjUDWIMDsXzeCBzLjmSZBbl/n/mNv0BlD8AzLAyeYuey4N9jdwCeb94Ab97AwC8/MhKIjEQ+fG8jLl26xFghZwSQOykJeP/+u0wPHnCuh07HJyeUtRH8TaBOkKm/rIkEv41Iwz6XpTjn5/dJINvMcuV+Q2hhILfAMYakJCAqCulgXFddhM6NigI/OgzdRrCtO9ICSBsVJatgEFLwZ4Wxws2IV6+M+lYHJed9g79nxQPJdQLflNcO9HcFZGCn5S8oPvk+xRa6FznAuu+stEx+Hz8CHz+iXNGi+PubVfnq1avxR9eu8AOAb8rZ7+p3FhQFPH1q1EakEUvP47nAMV8A2SkKkFCgAzBqC+yQfK1K4LffrgDSxsQY3z/e+FwoNLoPkvtXfP5svDDzPPkKs0P4vckCZW0EHeqxZs2aKFKkCPDvv98Xir89H7GFY3qENn/+fOzZswfuDx9KLzJTFBAaKtimpQeQXsHCuJfAsaxCCaOjjdLS7Tf9rjuLncsjXuCYl8Jzhd4bn8REI4WbEPwwnPZgKeo+fBDvn1++NJpAugKSYwAGJyc8vHULbm7fa6Q3/9xvddIT3HdFqA/1xbc24tUrzniQD71g/++//6JIkSJw/HYuACA62qgvk8Kdfa4EQu9NWhgroYTgPxsD+7yYGCAmBg4iefGfjbPCMoX2KnpCmZLLE8D69es5O3TTQVkbwTemcFBYJgD06NYNR1g7qF2kynz7lvnttcDPaaTOZcFvSw0GA/DuHTxgPKfl9wX8e+wIGI0ZhBBqI9wUnusJYNasWRw3mt5Ifj6IjQViY7/rB74pqenv9LOJiIiAl5cX7Fi/yUGP8dasWYMuXbrAGcoWVQRNC6KjgQ8fvp+flMTIDnxve51ZYwx6ju8OCYOd+HjmXeM/m1QQuNYXLxS1rW5g1eHYWNHxv5fAMU98azsiI7+P3T9/Npof8L8bALgrtI2l+1a6r7KHMqMmIcWhg4AsQtSoWhVUx44cJXoaCLwzAqQCdwxtJ3RedLRgXvwxXu3AQLgePy6QksXnz4L9nzMAZwWW4m6O3JGat7e3kZ5BrFwD7xnaQ3j8xkeojXCGQL+ZkAAkJHDGkuz8iSW6MlQr0d+9e4fOnTuL+qD80V1QpEQSAXxB8rZZqSBtdDfP3kYS/+1cOYRyFZuqpHZ2RkJCAr5+8/nNb4qSACiNC873G/5V4bn0tbIbilgIK2eA5JVBCsmLR1+RbAEKfLf6ETqPb30AGF9rIu9ce3t7ODt974o+fYuQLnRNcQAoV1d8+iQm9fd0ND179sTy5cvxGUCM2Aks+ArtJADsNV73b5Og6Bjj3MaPH48Ljx9jw4YNyJMnD/o3aIDoOXMAJNdFZycnwfOErvWrvT2M15aT80lISGCeg1AHIm3nmYydnR22b9+O9M2SbeApikKSnZ3Rua4C95uu+5xdHs7OwDcfc9ExMaKr3ULvVgyASAUy86+VUnCe2zdrRX49jMf3hSUphJ6Bg4cH8M1KmraYEELoWiPBrZ9i8NuXBCRbVQrh6ekJO4MB4d+skvjkKVQIOPbdxin+61fBd0jo/YhCsqWWEN5p0uBjeLJU/LaPAhAn8a7SbbOrqysSeWniASR6esLezg4UgPDw71fu5OQEVxcXfAwPZ54f2wXDp2/ypnZxwedvbYkPy3VCxLddHELXGg7hAYKBZb3h4OCAeF4bnAjuDhQ+Dg4OTLvNfyu+AICPsdrhPc9ncoRAvlEQXmzkI9S+GNvxfcfe3h6OqVLhS2ysUT2MFzg3Xdq0iIiM5PS19H/s/iYGAJU2LbNDwM7OTnALp1D79RHAW4HjbLy8vPCF9w4kKTiPhj+S+4LkhaUM3wLIU4CR5TKQ/OznzZv33XoMye85vSjFv84MrID00QL5vcX3iR07LW1N6O7mBhcXFwwfOxYBrq6oVq0aXr9+jVUAwpAcSNLOzg5v3hgvixkMhuQ8eb/FfDtXDqG24AOANwYDHBwcJMdb/JaAgrBSx9vbG06OjnjN2sVCv3F79+5Fo0aNEAsgkvWO0/DHfELyRgCIdHWFs7OzkW9y30zJardXr18LvnNvYFxPaDw8PEAlJSE6JoZp+ymKgqurKyIBvBIoQwj+GxGD5F2TYtjb2SFjxox49+qV0W/vAbwXGJelZb2HgPA790LgGPu8LJkz483bt4jjPfNYkXP5CNWU1BkzAt/cb717/15wZ0OWzJnxQWCH6Xt7e0X+Ovltf46cORH6+DGA5HcnJiYGX3gW7d5p0sDV1RUJL7hX9gnJO1EY2bJkwYcPH4zOD3d0ROFc3OW890helMqaNSsoioLdt7YyIjKSs7NHqN9/gWQFTrasWRH64oXseMvVNVllFofvu228PD0RITF+oZDsGop2exQB7k4dMdxy5kRJb29cuXKFORam8Fx+PUwCGMt/Ly8veH2bh3z4+BEJCQmc+8wfH35inQtw+3E2Qvf3PbjWxGK8AzCwPdfe+TkA7yxZ8CkmRnRMBhjXw3iFZQIAeK4JIgE8Zv3M3sEEfN/FJNSOvOady8bLy4uxdue3pQaDAfDzw7v37zk7GnL6+eHtu3ec3RQ16tXDKZZLkM8QNqjh4+rlBfDu4XuF54YBGDRoEEeJ/hzJysUsWbKAoihmDpMzZ07YGQx4+Cg550gAnTp1Yua9CUje/aEEfrsWpfBcuh3hKPMyZQJy52Z2Jjo6OjK7pWAw4N43A5FwlvKSVqLfQnIbQdd4eyRfuwHJfVX0tzaG3y/HfpPXgGQlrh2S29wXL18yeQm1NkePHsXfNWt+f189PRH+rX1hpxfr958jWfGfJ08e3P92XRkyZICXlxcofN9Byx9rJwJ4nDo10xak8fbGx48fOeXSf/nzlHAk7w5mw5cVEB5/py1RAo8fPpRsQwGgeI4cRgrah5Aeg9Pwc44FAH9/3LqdbGri5OSE3LlyMd/ZJCLZxeGlS8n7zT+lTo1nMruP8uTJg0csoyOaJwCyC+z8Y+Pt7Y0CVXl+HAwGoHBh/MtzO8b8/O1v4UKF8Jk3F4hG8q4eflr+/0JGiG/A9YAAAB5ubnB3d+eMu9jtIVGiK4RSSZs2bajy5ctTly9fplxdXamjR49SGzZsoPLly0cdOHBAbXZmJzIykgJARUZGWlsUq9CyZUsKyW0fdffuXeZ/qc+VK1ckf8+VK5eifMQ+FEVRc+bMMSkP+rN27Vpq2LBhms8PCwtTLHNcXBzz/eLFixRFUdTt27clz1mxYoUqeRo1asR5fkJpAgMDOWWwf3v16pVk/q9fvxbNV+uzFMvv6dOnFEVR1JMnT6gvX75w0nXr1o2iKIoaO3YsBYDau3evZDlt2rQRPN63b18qe/bsJl/Hr7/+ypGvb9++lLe3t+D1itU3MTJkyKDoHur5XMQ+//77r+550iQmJppdfiWfd+/eURRFUU2aNFH8nPS6D1K/b968mfPd39+f+f/r16/UvXv3RPN49OgRRVEUlZSUxDneu3dvo3P4393d3akZM2YIXn+hQoVUX2fmzJmZ/ytUqKD6/Nq1a4vKW7FiRbM9H62fkJAQqn///qrqQaVKlQR/u3Dhgui1Z86cmZoyZYpovunTp+d8nzt3rqQc8fHx1C+//GLy9deqVctIZpqoqCjq6tWrRuf8/vvvovllzJhRND8l95afdsGCBUb15cWLF8zvL168oL5+/SqYn5ubmy71i98Hubu7a3o3hD7Xr18XlLF9+/ac47179zZKExAQoKiMqKgo6vjx46L3W4vcFEVRmzZt4hy7d+8eVa5cOeb77NmzFZexdOlSqnLlyrLp/P39JfPj12cAVHBwsKZrPHr0KOd6S5Uqxflu6rMvXrw4c3+CgoJE77PQM2P3L2o+9evXZ/4/duwY1aJFC6M0q1evVvW+8o+XK1dO9L3nM3LkSEVy0/PP1KlTy6Z9+fIl53uXLl2oiRMnyp7H73+VfCiKkm2rpT5VqlRh/t+5cyfz/9SpUzn3iT+/K1u2LDP/FfoouU9aPkLPNCwsTNH91fr5+++/KR8fH1mZxOoj+xi7D7506RLz/5MnT6ikpCQqbdq0gmUUKFCAoiiKGjduHHPswYMHFEVRVPv27Tlpd+zYoek6hdp4tc9G6PiVK1eos2fPMt9jYmKM0vbq1Ut1m1a4cGHm/8OHD2uSedGiRaLPr1ChQpzjAwYMoLJnz07t3r2bSZOYmEj17NlTsox27dqpvo/sd1Howx8Xaa3/7OtduXIlRVHG8wD+5+bNm8z/hw4dUlSGu7u7yXXryZMnitKprUfsj6Ojo1F+1apVowBQHz9+lMz71q1bzP979uyh6tWrJ1nWw4cPRX+rUaOG6G///vuvYH2dNm0aRVEU1bBhQ056Nzc3qmvXrpxrWrRokar7kitXLurMmTOK0zdv3txoTsr+tGjRwui9+5lQqjtW7dj8xIkTmDt3LkqWLAk7Oztkz54d7dq1w8yZMzFtmhJveARroTRQAT8dP+hTjhw59BLJiLFjx3KC/VWsWBE7duwQTW+qb36tgUXp8+TuqSVX85ydnZEpk/SGTSl5pO6zlvT0PcqRI4dRECM6uOHEiRMRFRWFhg0bqiqbjVhgKiGKFCmiKJ3BYBCtGy1atFBcnh7Q8QmU0rNnT9HI4VqDlQQGBmo6zxrQdW3WLGPPi+zt43pStGhRo2N8v5j8+rRq1SrUr18fo0ePhoODA/LmFXf84/jNsob//lIKtm1KpVFyPh92cFr+Nf31119o1qyZaKDAatWqoXHjxqJ5swNCaUEomOaCBQswf/58rFq1SnV+FEUpbjNMhaIoDB48WPT3KVOmcL737NlTMr9UqVLhxo0b6NpVSZQQY+jr7tCBHxngO+7u7pxAtTRS/YyWOieFUFlsH4afP382ez9cr149RXKxURrkOX164c36/PpgCu7uahxZKEfuHgwZMsToWO3afE/mQLZs2dCxY0fOsZEjRwr2S3T9WrVqlWCwVT6mXDu/LqupZ8OGDVOdvxq0nsu+BoPBwMQb0ksufhlscuY0dhCl9J7SQZrl0s+cORO+vt8dsTRq1AirVyuLwqS1HRG6X2JjND7sPrZp06bo378/smTJYtT+y7WDfCw5N8mQIYPs2FNN0PuWLVtyvufMmRP9+inxUC8PO5BuqVKlcO7cOdy8eRM5vlnQigVkpZ/TsGHD0L59e+zduxe5v8V14V+blh37LVu2NNsz4+crVA7/2LZt25j/xQKknzp1Cj169MDYsWNRsyY/mpIy1NSL+fPn48mTJ4zFPJAsNx33TIykpCRcY7kDUkLTpk2xa9cuBAQEKErPfo9dXV0xefJknDt3TlWZ9DOQqgdBQUHIxdrlI5T27NmzRsfod6ppU34EB+XkyJEDnTp10ny+Eg4ePGh07Pjx46AoSjbYtb+/P27cuIH169ejYcOGJr1PUn2gXL67du3CM1aMnjRp0hjNTXv16qVKHi8vL1SoUEFx+uHDhxNrcx1QrYH89OkTM6hPkyYNE9CkUKFCqhshgmVR2nHzBzunT59GsWLFmO9iig41CumaNWsKpp84cSJnENOjRw80a8YPM5msjClZsqSoQlOu06RRIjO9/U1Iic6WVQ+UNGpiSigl50pdr9B9punbt69kerYLCSl5pkyZghw5cmD8+PHMMSWTWKlr27Jli9ExsYFNSEiI4D0Q6hD1Cp6sZsL5zz//GE0QhJRU27cLhRhJJmfOnJwBLhut7raU3Atb6JC3bdvGDEZy5szJBJ2lKArBwcF4wvKprBQhpQ7NgwcPMHLkSOzfv59zvGvXrnBy4noI5N9De3t77Nu3D5MnT4YcaiYSekFveecjpkS3s7NDnTp1sGPHDnTr1s3oPIqicPz4ccH6LMeGDfJht9KmTYuLFy8aHe/fvz8GDBigWpnMdu9gzrrdrl07AMCYMWNUKZ+VyGQwGIzaE6WcPXsWly9fRqtW/NCZXAoVKoT69bkhrpXeLy8vL02yycGekLi7u5u9bZoxYwZ+//13zjG5Mci+fVLhd7/DVvixkbqmwMBAUZeLfHKzAviaG62Lfs+ePUPq1Kk51zx16lTBhQT6/K5du2LFihWy+ffo0UO3hR01+bCv5ePHj2jPc4MBqF/0Zo+rtF4Tf4yQPXt2zgJGrly5ZNsErYwZYxwOsnx5JWEev8O+bqHxOdudBWBa2y616AmA4xucj4uLIu+4RvItWLAAz58/N1qoVltX2PmePXtW8F3RE7n6KLTwLqYU4i965MyZE2PGjDEah2nBw8MDT58+xetvbg4CAgIULXjQ99PV1ZVR0tHwFe9yLjiFsOO5rNET/thUiRKdfY7YQnuaNGmwfPlyTJw4UbPsase+fDdFBoMBffr0QcGCQhG4kqEoiqPjkOIAyw1PkyZNROfNPjy3hOz23cHBAaNHj1asgFcDxQqSK4ZQmzpv3jwsWbIE82UCX8qxdu1ak84HhA2gaEw16CpYsCDat29vdI+EjJj0NgZhfM/b2zNuwcTKUqt/EJJVbOwIJLeZUtdnC/P5lIBqLVG+fPlw75svpiJFimD58uV4+fIlli1bJmsFS7AuWi3R+X49M2cWDh3k5uamePWsYMGCePr0KWbMmCGZTuxFPn78OC5fvixqFSDVeCjJn2bLli2MJQ47La0IcnNz4/rCVpm/WnLmzImqfD9bKlDaMPPT2dnZ4eTJk6LphazlhK591KhRePLkieq2Quo+shX41apVg6+vr2RHLtT5CQ3Wxe4Vf3CklqpVq6Js2bKCv1WsWBFbt25Fvnzfw0fy5T1y5IiR0opNYmKiqAJUqxKdr/gUCiBt7U7X1dXVaFHNw8ODeY7lypVD2rRKQhpxkbqu7NmzY+rUqciShRtmSO0kRA5TlOgURYkO+KQGgiHfgjTyYbf/JUqUYP6XsnpjI3XdYvLQimYp9K5/Yu/5woULZc+dO3eu4HGh61u3bh3u3buH//3vf5zjBw8e5FiByg3axSzm2Tu71ODm5oaSJUvK3lc7Ozvs27ePYxnJPmfz5s3M/1evXuVcx4kTJzTJJofBYEBwcDAOHjyIjBkzmlw37t69K/m7q6srZ6HZYDBg3rx5JpUpB/+a2IvRmzZtQq1atQR3ZtAMHDgQv/76K46x4kOoQevOU7lnIVXPhw8fDgBo3ry5prL5HDp0CFOnTpVMY29vj6CgIF3KY8Pui9KkSSO4w5N9L5RM2rUadZQsWZL5nz3eF7J8fPDggej4QilidUDoGtmL2Gp3AR48eFDUSpYvC7tstqJMCrn5jtD1nDp1imOFKAS7v1MylgCM521q3pHy5csLLnzLMXPmTIwdO1ZRWqn627JlS8FdI+y4GmxcXV2N5hD29vaoV6+eye2uwWBA9uzZkTGjcFhTseuQatf4BhVsa1+xOSwAjuLXYDBwyujbty+qVKlilLdSKleuzMmbjZI6xzcqGzdunGyZoaGhsmn46GFA4uXlhRs3bqBLly6Cv9PzqfPnz6Nt27aSecm1J0ByEFV+W8xXmmpByThGiRJdCFp/w5/LmAsxRXmVKlVE+1st19WkSRNF6cR2z7I5cuQI87/UDlV+W0wvlmg1aNHK/fv3Od/ZRkb89oSgDdVK9AEDBjArtOPHj8ehQ4eQLVs2LFy4UHYwSrA87JekQIECnN/EVtf5gwS+Er1Nmzai5S1ZskSxbFmzZpUdjOu5fVIIOUUWWz4hS3RAWmHfsmVLVRMbOXny5s0Lf39/DB06VHK1Vgyt99NgMKBKlSqiLgSEFmj0bKCV5tW3b1+8ePGCo4SmoSep7LoxdOhQ7N27Fw0aNDBKL/YscuTIgTx58nCOSSkr2KRLlw67d+9mLMbEXNGwrRj5dblmzZqS9yMpKYkzIWdbOgttl1YC/17QbQC/TdGb/v37mzV/JWhZrRc67siL1C527pw5c4zS8r/rhZSCVcxCNUuWLNi3bx9OnDiB3377jTmuVOGj1w4PPmrbG6mdN3yGDh0KNzc39O3bV9G28RIlSiA+3jjMsdB9sbe3R968eWEwGDiLVSVKlOBYTbLbWP6A397eHiEhIYKuF5Ty33//Yfz48ShSpAj27Nmj+nz2tbHbR3Y94lt7KbX+kkLsuZcrV05yF4kahPoTKSiKEnXDQqO3CxWhhdnJkyeL7lzLnDkzZs6cqWh8wn7PaUaMGCF7npYxgFTbUatWLbx+/Rpbt27VnD8/PyVtq96TTRcXF/Tp0wdNmzbFH3/8IZrOFAt5pUYzixcv5ihO2O0Wfd1si2r2vWArpcQUnqbCLo+iKNly2PfM399fViEu9Gzr1q0rudtP6txKlSpJpqtcubIihRqtpGErO6VgP+9t27ZhwIABis4TklEpvr6+gq6shGDLd/r0ac5vW7duFX0PxZT7YgZYAwcOVOXikY/cO6dFic7ur8PDwznuRsT466+/cP78eea7v78/p4zff/8dJ0+eFBxPXb58WdX7KKYgZyvh+OWwFzHs7OwUuWvJkiWLoHHCn3/+KXqOlBJdj3Z5y5YtzM6asmXLYuPGjZwy5YzWhGTo3LkzgO/zOCmjJzWYU4kuxtChQ3XLS0m+erv7U3rvhcrl38eaNWuiVatW6NSpE6ZPny66oMI3Vjtz5gwiIiJEXSHrfc00bP1VmTJljOYNxBLddBTPZult8O3atWN8HpUoUQLPnj3D5cuXERoaavFVFoI6UqVKxRkMsztoNvwGICEhgfNCZc+eHZESEZg3btyIwYMH62K9IzTY/Ouvv2TP00uJzoZ9D+QmyDRubm54/Fg41ju7gZsxYwYyZcokqwShr2vWrFlGnZBQozdx4kTOd60KLDpvMUtmofutZ8egtEEXG0Bs3bpV0NWDn5+foG80g0HcJzrAHdgvWbJEseVSu3bt4OXlhaCgIJw6dUrUMoN979hKcNrnm9T9oJ9RUlISHj9+jFGjRiE0NBR3795VZYnN3qrMt0QfMmQIDhw4IOhbT0/mz5+P9+/f4+TJkxzLoNSpU5u1XDZSWy7F6ogSJboYgwcPxtu3bznHzOXOZcqUKViyZImgn0Ex7OzsUL9+fVStWpXThilVorPvjdQuHjn4i5dK2jb2NlY1MSCyZMmC8PBwI5cdUmh5Zg4ODti6dSvWrFlj1Mew72nq1Kk5+Yv1MWooVKgQJkyYgJCQEDRq1Ej1+Wz5AgMDsWTJEpw+fZrzXKw1MBcr11qLdL1790a5cuVUncOvT7Qy4tq1a9i+fTtnNxV9vW5ubli3bp1gfunSpeN8l3o248aNw6dPn3D06FHB3zt16qTInaOSxbXq1atL5pExY0ZNu1mkfpc7R43ltBI8PDyQOnVq7Ny5k3GFIFQG3y2BGpTK1rt3b07eQot/o0ePRrNmzbBz507O8ZUrV3LyYSPlj17r/aQoCnPmzDHqH5XMCcQQq0tKLLmFrmPv3r3M//T1CBkbyPWRV69exadPnxS7vGKPzevVq6fJbRpNmTJlFKVr1aqV4nrJVqILLTQIQVEUVqxYgXfv3hkt+Ldu3Rpt27bF8uXLjc4zRYmuFan7MGDAAJQrVw6zZ89W/DxLly4NNzc3nDt3DqNGjcKQIUMU3+uSJUuK7objl+Hn52dUP+ly2Ivh9LFdu3Zh2rRpnP6L70JFiiNHjhhZ8QoZMdEIuQqlETNgUypL2rRpZeuwKbvlTp48ifHjxxtlazmGAAA7vElEQVT1weZSmtKwr0fs2vr06SObT8WKFTFr1izBPkEP1BpR0NeiJi6fKfda6N5t2bIFa9euRapUqTjzfvY7xNeT2Nvbyy6cmTo2ljt/1KhRRvWC/Z2vDyRKdGUo1qjlypULfn5+6NKlCzZu3IgXL14ASLaoKF68uKZt8mymT58Og8GAgQMHMsdiY2PRp08f+Pj4wM3NDU2bNsWbN29MKudnhz0RE7KEatiwIWewU6RIEZQuXdrohZLaut+2bVvMmTMHhw8f1iQjuyy+m42NGzeiTp06mvIVQk7xwm90Tp8+jUOHDkn6OlRSxvLlyzlKtWHDhuHly5eaLYXF4FuLKVWi8wfg9H2gLdH5fslGjhwJINmyy5qIWV+1bNlS8cIHkNzxCrksoWHXi169ehkpJOQwGAyoXLmyoi2j7JX0BQsWABB+jnSsAnqrqMFggJ+fHwwGA7JkyaLampItG7u8Jk2awMHBAXXr1lW0Bc4UDAYDfHx8UKVKFY4fTHMFCOUHcQ0ICJC0xBAbaAg9H/7ETo0VgFqFLP/+iA0kXVxc0KtXL8UxJABhH/38MpRaovMnQVLnHT9+nON2QMkWZD3RY2LOlvHOnTuCaVq2bMlYMrFh3xsnJyc4ODjg5s2buH79uqqtwrTfYb0tR/kKv169eqFSpUpGz0XvCaTWwK/dunUTtLA2BdqqmzYgEOoX0qRJg8WLF6uur1euXGH+X7FiBeMGoFixYpIKPw8PD4SGhnL6v+7du8tuW+fj4uKC6tWrY/78+UaKhUyZMilS2klZyb169Qr//POPqh0icopnIdRMwIVgz1Hk5NmyZYui7f9imNsSXcgdidDuS3d3d+zYscMo6JydnR0OHjyIP/74w2jnkpSFsik7TA0GA9KlS8epJ+xdtWrzNqXfEDpXKLhdUFAQli9fjgsXLijO297eXrHfdID7vNnvophxm7+/v2heo0ePVlSmGkW9XF2mfUbzLX8NBoOgfsHBwQEbN25Ejx49VJclhZw7C7G8peZW7u7uCA4OFgykLAZdtwICAjBlyhQ4OzvL1tX58+eLLmYK7co6f/48Hjx4YDS+FCqHvr4mTZoYzSvVvEMlSpQQdRXI5uXLlwgJCRGcEx85cgR16tRR7cdfaVwZseNCC7z8ORDbWCtXrlyYMGECk4ZetBcyllMyd9bTEl2Jb3Ha6MRcRjyXL1/G8OHDOffDYDCI9tH0dal5v5WmNdXdDnscqsVtqpLdKTRKfOnzdzDJuW8RczFLkEaxEv3EiRPo2LEjHj9+jO7duyN79uzIkycPevbsia1bt5qk3L58+TKWL19upLQaNGgQ9u/fjx07duD06dN49eqVYv9GhGT4LluUWNywB9HXr1+Hg4OD2RpRc6/I8nF0dORYAqi1zK5UqZJgZ6c2InW+fPk0KYGkVuX5BAYGKhocCcG30KPPK1myJN68ecPxDQYk35cPHz5g06ZNzDFLP1stZUrdjzVr1mg6Tw/41zF06FCULFmSUZYIlR8SEoKXL18qCoLEh1bOs2G/G3KLb5bAFKs8OXbs2IH8+fNz/DcDQHBwsKTPSTWDcLGFKSXnq22n2JMUvd9DU5XoSn2n86lWrRouX77MfLe0El2KKlWqYPny5bKBzdKkSYOWLVuiadOmmlyEbNmyBTly5GCs6H/55RcULVqUSaPkHkyaNAkURSmyVFMrnxCmPJfs2bOLThj+++8/7NixAxUrVtSUd6VKlXS3WDx79ixmzZrFWOjSxiZstN4P9vhYrZ/7LFmycJToK1asMLp2Je2EwWDAgAEDBBVdQjtt1FxrhgwZULFiRfj5+WHhwoWKDHOELBHlrkPI7YDUOfzf1Ex2W7VqpXiXGvt66fZebeA59uIpW6nq7+8vaPiRK1cuANzntHTpUlVl1q5dWzCwoCmW0GKwn0Xx4sWZ/9mKa61jQLmF39u3bwMQjwkFwMjnMp2nwWBAjx49OBbe/PLULGQLIaZEF9tVtGPHDrRp0wZXr141+k2Nn20tluhC5MiRA1FRUZwYDVrHLvzFHiX8/fffWLVqlWYXY3qPP4TGfHKLhgMGDODIv3XrVgwYMAAnT5402kVClyH0ngqVI7XoYmdnp/s409fXV3SBvGbNmvjrr79E3xlLzj3btGmD9u3bY8aMGYiNjZV07Tl//nyEhoYKukUtVKgQUqdOrTjQt9IAnqbsolI6RtU6pre3t8f06dONgj27u7vj5cuXRju1aUW32iDKShDaZarmnWaPfxISElSXP3jwYAQGBmLZsmXMMbGAvadOnTI6xpeV1hV1794dxYsXR1BQkNGuUHYfKpcfQRjFM/MqVapgwoQJOHXqFMLDw/H333+jdevWuHPnDjp16gRfX19NypuYmBi0bdsWK1eu5AyEIiMjsXr1asydOxfVqlVDiRIlsHbtWpw7d07Vav7PztChQzF69GhR1y18DAYDSpQogT59+mDOnDnMi6RkUGUuRbsc9DZStsWF0kmRXEOhtCFZs2aNqqApWjr5qVOnYtSoUYrTS1kTyOHj48Ox+Oe7shEaeHl7e1vd37Geq6kZMmQQbWu0djBaA6LNmjWLE0hXqHwnJyfFAXXZvH371mjRpECBAujevTtmz56NrFmzmuRrWStsy3M+etezZs2a4c6dO5xAToC+Awl+/Adz+qPLlSsXM4hSsuVaTXmmKtHr1KmDdu3a6R54Uc9ndenSJVXpu3Xrhh49eijyD7t161bs3LlTsbx0Xa9atSpatWqFJ0+eiA5+xe47vZ141apVisrUk4IFCyJr1qzMLgI1fZ+XlxfOnj2LBQsWGE0cChUqpMpq2RJkyZIFQ4cOZRbqTVUs8xdynz59iqtXr2qypjbnpMjOzg758uVj+l86CDl/gcPBwYGJKSC1ENCvXz+0bt1attzMmTMbufKQql9i/t/lxg163zshGXv06IFWrVph/fr1uHPnDiZPnow5c+ZInkO3DQsWLECLFi04/u/Ziob//vtPcnzKvj5asc4/rhYpJbpYvuxA1ULw49n88ssvGDhwoGYljhz0TpIFCxYw2/XZOwP51yE1ZuHDf57snUla7jvb+pF978Xeh+zZs2PTpk2SihQxcuTIwShllcrKjyMkhLu7O2dsx74ONfeErYhSSvXq1dG1a1fZdFos0bUgdL1q60XLli0xf/58VKlSxWhXg9Lx5/nz5zFt2jTB3XHs9GoXzf7++2/kyZNHUCFoLky1RBciVapUWL9+PYYNGyarJ6F3BQuRJ08ehIeH486dO9i4caNsuWKGe0ot0aXi0Z09exZTp05ldofIwd+dtW3bNsW7WfjQz8jX1xdZsmRBhw4dkClTJgQFBWly26XUtaTQIrPBYGBc4ortWqTHMezA8los0d3d3XHs2DHOAssff/yBESNGGJUtNK4UW7xZsWIFrl69CkdHR6N6kTNnToSEhDDGHuz+lyjRlaHJDMfZ2RnVqlVDhQoVULVqVRw6dAjLly/H3bt3VefVp08f1K1bF9WrV+f4/r169Sq+fv3K2T6TP39+ZMuWDefPnydbDxTi7OzMua9yL4adnR0MBgMWLVrEOa5EQS5nhWcusmfPji9fvsDJyQnbtm1Tda4ady5y6aS2AdaoUQN///23Ktn40C5T1DJgwADG0ljueurWrYu//voL7du3h7e3N+Mr2doNqtzKc3h4OCIiIky25uFTpkwZVKxYEWfOnOEcVzNgnj59Orp06YLAwEDFlmVafbRqge9yoE+fPsz7P2TIEKMtqOa28li7di1atWrFLBgIlZstWzaEhYVZTK4cOXLg6dOnitML1Q83NzccP36c2UapdBKj1D8pn0OHDuHgwYNo0qSJKl/ecih12yB1/oYNG0yWg3//pAL00UycOBGBgYGCW8Bp3NzcVO34uXbtGscanE2qVKk4gbm1vLfv3r1DWFiYpCWYHB07dkSLFi3MGktAbDtsqlSp8PjxY+adUPue2tnZ2USAYRo7OztOf0S70dKb+Ph4o3FX9uzZRRXBPj4+zBZete7FTIXeKsw31vD19cWrV68wYcIExMXFIXfu3MiTJw+KFi0KPz8/XcquU6cO/P39GUthKezt7QXdbcgFr6tevToOHjxo1Pbp2ec4OTlhy5YtzHclSghaMd6/f3+jd4Qtm729Pezt7XHw4EEcOHAAS5YsAcBVmAthLiU6n0ePHuH58+ei7SgN+5pSpUqFmzdvKsp/9erV6Nq1KxOQlg3dLgmNHW/cuIELFy6ILo7K3R819UNKqaUEdptk6viQDuC6c+dOo8WXQYMGcXYxKX2PO3XqhJcvX6JKlSoAkl1ytG7dWnBht3///rh06RLHFZKaa3J3d0fr1q0575O5sQVLdFMQk79s2bKy+hY7OzvFMX9oqlevzglcqidibib79OnD8U+uhxLdVA4ePIhjx46hc+fOzO4wMTeffLnKly+P4OBgzjG+El3sWmrUqIE2bdoIWvuXL1+eEz9IDr7LshYtWqBFixaYMmUKgOS+IDExUTRIsBRC43pL7jQYM2YMOnbsKKpbOHToED5+/MgZc2lRoosxbdo0REVFYfz48aJpmjdvjmnTpsnmJVQv2M9///79jCGeWB0kcFG1dBofH49//vkHv/32G6pWrQovLy/873//Q3h4OBYtWsQEH1XK1q1bce3aNcGHHxYWZuR6A0heLeIrT9jExcUhKiqK8yF8hw7oIuZTWMxPqlwHuXnzZkkFoZeXF/bs2WOkiNKrMVTiL04Ic1lO89m8eTOmT59u1jLE3BuwJ1dy92j//v34/PkzsmTJwunwlN5bdj1Rq7A5ffq0YAAmQL5T8vLyMrLOM2WrPvt6hfJRU9c6d+6MFy9eqFpEsaQSXS1yE28hdu3ahdGjRyvqmP38/IwU6Hy2bNmC2rVrMxaP5kbMfzUfWnFAuwxgb9HPmzcvM4EElD9DscCAgHQ98fHxQfv27RVNztW0w2JtplJLdL3g3z8lPh6rVauG8PBwSUs1te1GsWLFRJ8l/95ruS/e3t4mKdBpzB2Md+jQoejevbtgkFoHBwdFfW21atXMIZquFClSBE+ePMHLly/x6dMnxYo8JVSvXh25cuXCjBkzVO/sMxgMOHnyJE6ePClYH+n+XEwhQu8UcHR0RIMGDVQZJEi1ZZkyZcLy5cuxbt06Jl3evHl13bko1fbQCmMgWTFdtWpV9O/fX7E/XYqi0K9fP/zxxx949OiRZNrZs2cDSI5xozdC91hqXC5keFC7dm0sXrwYp0+fxuzZs9GwYUPRvE1FjVI4Z86cnL5RDK39SpcuXRAbGyvoH5y+9g4dOjAB02kyZMiAhg0bilpEm6JEV3otprpL0fps586di2fPnnGOzZs3z8gNmLe3N+MHmr0Tgo+9vT3GjRvHzEFr1qyJ9+/fC56zYMECnD9/nlO/1V6H0vRSAXCFMIfbMqE8hMYh5ooFJCWHErQo0c1JiRIlMGbMGKOdISVLluTEahNyYwlYVrleu3ZtzJkzh/O8lbYNQuNCpZbodnZ22LRpk+K+ii5Li+/wKlWqIDw8XFGfq0R2SynRaeOAbNmyicplb29vZLSgpxJdCaNHj1bUNsjd20yZMmH37t1o1qwZxo4dq5d4PzSKZ4vVqlXDxYsX4efnh8qVK6Nnz57YvHkzMmXKpKng0NBQDBgwAH///beswkQN06ZN0z1Y1I/E4sWLUaBAAaOtssWLF8eRI0dE/VB26NABBw8e1Gx1ZWdnJ+qbzxwo3cLDb1SyZcuGmjVrMtYRWjtN/nlp06bF8OHDcfPmTdy7d88oYKo5UCM7bcFmMBgYZQt74qB0scHFxQXr1q3D169f4ePjo0La5AWe27dvo2rVqkZb/MylABK7R2zrmg4dOuDkyZMcVx9q64WUH00hrOFPXq7sEydO4M8//zTyX6eEJk2aoEmTJor9+MmRM2dOQWWduXB2dkaaNGkQHh4umS40NBS3bt1iFLr379/HnTt3ULp0aTg4OGjy667H5ETP+iSmZLa2El0p/IV5INlPOD1o1NNPdq5cuQR9zv6IuLi4KJokSdWNvXv34uzZs4wrMWu2g1Kocady+fJlxTsbfH19TdqxJvVO9O3bF8WLFxe19vXw8EBkZCScnZ1VtzmmWtEKoebZFylSRHShs1evXujRoweePn3KLACLKU9oLl68yNkB5ODgIOqflE3FihXx6dMn2YCQWuq10DlSz1uqjEqVKjHKTClMURpJGdWozXfEiBGYPXs2Z1etGPTuaP7cVMzVAi2Lg4MDswgihRolulL4FtPW3vlJl8+XQ2x3QenSpfH161fVLj2sfZ0DBgzQza2cKdfSvHlz7NixA9OmTYO/vz8SEhIE25DBgwfj2LFjil2XSiHVRmlZsLAlJTqQPKYTIigoCLNmzYKXl5do0F1rw19gLlGiBK5evcpxsQokGy6sXLkSHTt2RHBwMB4+fCh7TVp3tp4+fRrHjx9HXFwcOnbsqOpciqIEx92WQM370bdvX44XBq3vtN5KdLlr0LIgK3ZO48aNJRdDCVwUm+GeOXMGPj4+qFatGgIDA1GjRg3NCnQg2V3L27dvUbx4cTg4OMDBwQGnT5/GwoUL4eDggAwZMiA+Ph4RERGc8968eSNpzThy5EhERkYyHzV+qn8GvLy8MGbMGCNrUjs7O8lATi1atMCFCxc4kafVoKYxkrK6U9pYiKWT84mWPXt2JiiYOdiwYQMuXbqke0AzIehrYw9uxJThJ06cUJSXEjp27Khp2xbNpk2b8L///Y/jh1tNoCMaLR3gsWPHMGTIEMbPPpB8PefOncO5c+dU56cVW1QeVa1aFfPnzzdpQYNd/9auXasqjoYt3hM+mTJlQvXq1Zm6lyZNGpQrV45535VOwNlWZVrqvjmgA+qxfcKy0UOJruY8Pbcbsv0h6mkhu23bNs62WGsrDfjQC2Js38tSmHui7O7ujtq1a5u1DLWwA3IC6ut2yZIlMXToUOa71M4Sc2JnZ4cKFSpIWix5eHioesazZ89GxYoVOf2lNWBPfIWej729veIdVA0bNuT4F+W/s3JKCDkFup4o7UNMyUcLe/fu1TXPadOm4fPnz0YxS4RYv349xo8fb+TmQAxTLJwtYYmulDJlyqB8+fKKFnvkYMtGG9jI4eDgwLkfSs+zBrQP/c6dO6t+/ubwib5p0yZcu3YNw4YNQ/369UWVWB4eHjh79iwTV0IL69atQ+HChbF48WLRNFreiVy5cllNUaqWoUOHSs5Rab/UbHfClqRChQqoVq0a069evHgRMTExRhbPefPmxZcvX7B27VpcunQJx44dE3RVOHHiRJQoUQK7d+/G0aNHNcmUNm1atGzZUlOcF73bOnPNBX///Xc8fPiQ+W4rSnT2HFDIW4QWJbo5grP+jChu9SMiIrBixQq4uLhgxowZ8PX1RaFChdC3b1/s3LkT7969U1VwYGAgbty4gZCQEOZTsmRJtG3blvk/VapUOH78OHPOvXv38Pz5c0kLBycnJ3h4eHA+BNMxGAwoU6aM6P0Ue4npwFJKArbQ9OnTBxMmTLCo0pLGkkoO2s0K35+YVviy05G1s2TJgj59+kgGPtHLN7we+Pr6YunSpShUqBBzrEGDBhYpOzAwELNnzzbaRhoQEAB3d3fmmLndAFlTYazXsxay8GHn3alTJ0UuOCwNrfTkB8XTC/odlFLquLu7o1WrVmjWrJlRsFilQaL15vHjx7h06ZKoyw2xOnv16lW8efNGMm9asce3tBHiyJEjqFatGjZt2iSbVgtKFjjp9kjO/UiuXLks5nIISLayApQr8mbMmIGnT59i8ODBitLrEcjTVhbD2IuBtO9OmpYtW6JXr14ICAiQXWBWi5LgsymFIUOG4J9//rGYmwEx2LvetNavBQsWIFu2bEYLSvz8atWqhR07duDu3buay8qZM6em89SgxyRZrbHHiRMnMHPmTKPxGr0AS6NljKF0cTNt2rSYMGGCYl/damWh319+EEy1sOsOe2zJRyxgHB97e3ucPXtWUWwQNbDd26ip77SrIL3Qcw4SGhqKu3fvCvqD1oop8qVKlUrSLZwU9I4SpXEwOnbsiH///VdTcGoxMmbMiFSpUiEsLAyvX79Gly5djOJIyTF//nxd3NbpwYwZM/DXX39hz549Vinf3t4ex48fZxY67O3tRXd70a5s06RJg8DAQKM2yWAwYOzYsbhy5QoaN25ssk7MXOM3euGIH4PLVJR6JaBRu4NeCLkA2WpxdnbGn3/+id27dxu50wL0tUQnqEPxCMnV1RW1atVCrVq1AADR0dE4e/YsTp48iZkzZ6Jt27bIkyePYv+Q7u7uRlYFrq6u8PHxYY537doVgwcPhre3Nzw8PNCvXz8EBASQoKJmwFxK0r/++gtnzpxRtaKbKlUqySAKpiDmN1wv6KBjSgYDY8aMQWBgoGSD6+3tjY8fP6qS4ezZs9iyZQtnOxs/UKxarG1BWbNmTVy4cMFm3n1z3w9bdOeiFqEJpqViEJjCnj17sGHDBsWR6dUSHh6OhIQEWYt+saBYWt4BNdsBDxw4IBgk2dvbWzRgEz8P9v/FixeXle/Ro0e4ceOGIp/YNWvWZHzOyyFmNS+FEsXR+vXrsXv3bou6KFNC4cKFcefOHcW7BA0Gg2igSnNh7cF7u3bt8PHjR86zGzVqFPr06cNY0rm5uXF8abOxtvwE8yAUnFMIg8HALCY9fvxYUd5ubm6IiYlhvusV8FAvS3R+u967d288fvxYsQKXpmrVqqhatarR8YcPH+LOnTuMws9cwXi1oHZMUqtWLQQHByNv3rzw8fFhgo4LBchU2lZI7b4pVaoUTpw4oVnpya4jLi4u+Pz5s6rztS6Q9enTB0+ePLG5nUUATDKwW7hwIVq1amV03JI7UNhs2rQJCxYsQJcuXSxe9p49exAaGsosRjg5OSFjxoxGvsiVMGDAAPTt2xc1atTQFHdJTxwdHRUZdKQELDF318MSfefOnXj9+rUi16dK29USJUoomn+IofbeRUZGIioqyixBOaUMCYXuh5z7NzKO1QfNGg1XV1dmUp0mTRo4ODgoDr6mlHnz5qFevXpo2rQpKlWqhIwZM2L37t26lvGzs3DhQnh7ewsOAPXA3d0dderUUbRFmO8H2xSkGgixIEFCqG1Er127hjZt2mDfvn2yae3t7VGhQgVJZVqvXr1k81m9ejUcHR2Zd6N8+fJYtGiRrrswrKFE52+bLVOmDE6dOiW4EqsVKRdGUpj7fvAtt4R4/PixqgjqlqZz587InTu3ZGBbNX5e9fILJ0e6dOkwePBgI8sevZ556tSpJS3PrE3NmjWNLLSkBqL0O1SuXDnmmNpnkT59egQGBupyj4cMGYJixYohMjISf/75p+Lz6IVbqW3ONJ6enujcuTPSpEmjWU5zkT9/fkXthxZS8sB706ZNmDNnDjZs2IC//vrLaLHEXPeMoI3mzZsDUB/IzBbr6PPnzzmBM/WyApVSlPfp0wfA990pUkyaNAlVqlTBhg0bACS3gYcOHdJt0Ttt2rSoWLEigoOD0bt3b0ybNk2XfPVAS59Trlw5pE2bFgaDAU+ePAFFUZzdtnSfqNSliZD1KJuqVasqtqyXwlRjGjU4Ojpi4cKFuinRaQM+PWOoaaFly5Z4//4951j+/PmxdOlSVfnQFq/scZMW0qdPjylTplhF8dyoUSOTXMvwsbe3x4kTJ8zqUpVgGubqX+3s7BTHDlNjeV2iRAkcPXoU9+7dU3wOWyY1eHh4CBogmRulYySiRNcfxZboSUlJuHLlCk6dOoWTJ08iODgYnz59QubMmVG1alUsXrxY0AJBDXwlqrOzMxYvXqxoUkvQRr9+/dC3b1+TlRd6+MC1hA+9DBkyIF++fDh27BgA/ZXoRYoU0dXNgJL72qVLF3Ts2FFVUJ9OnTqp8s1qbUt0msqVK6Ny5cqK3A8okblJkyaa5DD3/Vi8eDFatGgheZ1+fn4oVKiQYt+fNAcPHrSIlYW7uzvu378vOShJSR35qlWr0KRJE0yePBldu3Y1SzA9ayFXn6V21pw/fx4rV67k+OqzxkCSRklwOD4GgwETJkzAr7/+atbnaivtqDWx1jvfpk0bXfJJSW1WSqZSpUq4deuW6p0Slnw+lStXRpo0aWR9dadJkwZFihTR1VAEkFaijx49GlWrVkXJkiVl80mXLp1F3E6VK1fOZKVhSuDSpUvYsGED+vbtq+l8a8dBscV+qnfv3kifPj0qVKhgbVE4Lh86duyoKc7FhQsXsGrVKkEfxwTbxBbfC0ujNsC12Dl6yyBFjRo1FKf19PREhw4dkJiYaBaLciFMrVdKXTmlS5cOnp6eMBgMKSZ+ga2jWInu5eWFT58+IWPGjKhatSrmzZuHKlWqWH3bDcF09OgYLLWtXU3j2bp1a2bb7L59+zBr1iwsXryYE+QLMN5qa0sovV41CnQgOahjSlSi641WSytz348cOXLg0qVLZsm7du3aWLt2LTp37myW/AEIBtIEkrex16pVC9OnT1edp7WVV40bN0ZMTMwPpTwXQqhuS9X33LlzY8aMGZxjAwYMwOPHjy0Wy8BU6Lr1oz9bU7H2O5hSUdrPFC1a1LyCpDC0+Mi1ZB11cXHBmzdvLBIoXggpJbqDgwPjPoUgjp6+oWn8/Pwwbtw4yTRC9XT+/PlYtWoVfvvtN91lAoBixYopSif2Dlmz/XdwcBB0o2JttM4FcufOrWkcTCCoQe+5qpY2wNpKdLXoHVdCjLVr12Lo0KHYvn27Rcqzt7dn4lOp1RkRhFE88ps1axaqVq2KvHnzmlMeQgpk7NixNqd8cHR0xNKlSxkleo0aNRj/uOXKleNEqH737h3jUoXfOFtbeWzOCMpq/K1b+z7YGrbi29vWnsuLFy8wb948Zis5n9KlS+P9+/fM/VMzGLIFBZ6ttXN6wb63etSp1KlTY8WKFSbn8yPAHqymT5/eipKkPPRwYaA3WtqhIUOGYPPmzUZxFh4+fIjDhw+jZMmSOHPmjGbLVcJ3fvnlF4uWpzTgpTkw5/jwR+fQoUPYu3cvfv31V6uUL9SODBgwAAMGDDBbmUWLFsWxY8dUu0giEAi2N9+yBmrGP9mzZ8ezZ890CUjPZuDAgRg1ahTq1q1rUj7Wfp6dOnVCx44dLSqHtXc5/WgoVqL37NnTnHIQUiC///47tm/fbmTZrQa9FWNr167FxIkTsWbNGnh6ejK+T9l+9IYPHw5PT0/GV5+1fexJYU7F4d9//43evXsbWZGy6d+/P3bs2KGr3ztrs27dOnTq1AnLly/XnIe1O1+aMWPGYM+ePejWrZuq88xVrzJnzizrTsNWFiAIwqi1RP8RMOf12dnZ4e7du4iLiyN+t6Gs7Tl9+jSWLFmCefPmWUAiY6Tqg5ZAe+nTp8fz58+N8s2VKxez4FimTBnV+RK+c/XqVSxbtgwTJ07UJb85c+ZgyJAhWL9+vS75maON+dHbZXNSq1Ytxs/2z0RgYKC1RfghyJUrFx49eoSWLVtaWxRdIG2JPLZgyGOLiNWdq1ev4tKlS6hZs6au5Q0fPhxVq1b9IXbukfcuZWOdPYiEH4K+ffvanOVUp06d0KlTJ+a7kO9nZ2dnDBw4UPB8foNm7QbOnJZGxYsXx4ULFyTTLFiwAPPmzUuRik+xZ9exY0c0b94cLi4uuudtaXx9ffHq1SubkYdgGTJlyoTXr18zPv379++PhQsXomPHjoLp1Qz+U6ISPUOGDNYWQZJ8+fJZWwRd0GMSOXjwYEyYMAGNGzcWTVOpUiWbc0Wxfft2TJkyRZP/W8D236GUTvHixXXd/TJ48GD06NFD06KJuencuTO+fv1qMZ+tBP1JiQq5lCizuQgJCcHjx49RuHBha4uiC/nz57e2CAQzYE13Lj4+ProFFmZjZ2eHsmXLyqYjYy6CuSFKdEKKwtHR0aLlWbsRtoVBq7UU6OYcnJqiQAdsa/eCljoqtKXrf//7H1auXIkhQ4boIZYitASpUZPXj8qdO3fw+PFjxsfpnDlz0KJFC5QqVUowvZLgcjTWbvO0YKqv1JR4zdZAj3dszJgxCAoKUuyf11Zo3rw5mjdvbm0xCBbEFhXoALBmzRpri0Ag2DRjxozB5s2b0bt3b7Pk7+bm9sMo0IHk4McvXrxgXJsSjEmJ40RLKNFJbETCz0rKMy8l/FBUrFhRUbpx48ahWrVqjOWluShdurRZ81fLz+zzMlOmTLh37x5ev35tbVGMaNGiBSpUqIBRo0ZZWxRNNGvWDFWqVMHYsWOZY0uXLsWXL1+QM2dOi8nx66+/wtHRUdFE52dSksvh6enJUUI6ODigfPnyoouMNWvWxPbt23H79m3B3+UWymx98mDqxI/ULWXocZ/s7e1RtmxZ4puRQCD8tKTEPiclyVygQAHExcVh8eLF1hYlxZA5c2Z4e3tbWwyCjugd/4DdBrx//x4vXrwgbgoJPy3EEp1gVWiXIlmzZpVMZ65o9TS3bt3C3r17jYL6uLu7m7VcOSpVqmQ1v7C2gK0GMnZycsKZM2esLYZmHB0dcfLkSaPjlg6SliNHDsTExCBVqlRYsmQJAHHXFylpAmdrGAwGSStaf39/1KhRA+nSpRM93xaZN28eNm3ahGHDhllbFAKBQBDFVttQgnWw1HjmZ653lt65TCDYChcvXsT79+/NGpzdx8fHbHnrwc/c9hEsA1GiE6yOLQTU8vf3h7+/P/N93rx5ePTokdUt0xs2bIi9e/f+UNsGLUWRIkVw6dIl0pHaOLTi/uXLl4iOjkb69OmtLNHPh8FgwNGjR60thmoGDhwoGt9CDSVKlDBdGMIPA+kzCAQCgUAg0KSkcYG5dBe2Hn+IkAwxOrMMRIlOIAigh2JGDwwGAxo2bGhtMVIkO3fuxG+//Wa0u4Bgm/j6+lpbBIIIKWnyoIaHDx/i+fPnKc4/t7UgA3MCgUAwHVtuS8V2pGXOnNnCkhAItgPxFw/UqlULI0eORNGiRa0tiiht27bFpk2bUqy7VULKgSjRCQTCD0nWrFmxatUqa4tB0AmxSWe2bNnw/PlzVK9e3cISEVI6uXLlIkGRVJA7d25ri0Ag/JT06NEDR48eRbly5awtCuEHZdu2bXj69CmKFy/OOb5//36cP38ezZo1s5JkBIL1WLVqFRYsWID58+dbWxSrYzAYMHXqVGuLIcmGDRswa9YsZMqUSTLdj2ocRLAcRIlOIBAIhBTLmTNnsHHjRvTs2dPaovywkMHmz82pU6ewc+dOjBkzxtqiEAg/JU2bNsWtW7fIoh9BFWr67hYtWgger1evHurVq6eXSARCiqJr167o2rWrtcUgKMRgMMgq0FM669evR4cOHTB79mxri/JTQ5ToBAKBQEixZMuWjWzbMzNEif5zU7lyZVSuXNnaYhAIKRY92lB23B5CysaW3bkQCAQCwXZp3749GjVqBHd3d2uL8lNjZ20BCAQCgUCQg0w6rQdRohN+Jkh9JxAIPwK0+x97e3srS0IgEAi2Q0of5xEFuvUhSnQCgZBiseXgJgTCj4Kzs7O1RSAQLAZZsCPoTa9evQAATZo0sbIkBFvAUm1M5syZERoaivDwcIuURyAQCATrki9fPmuL8FNA3LkQCIQUx/Xr13HmzBl06tTJ2qIQLARRbFmeuXPnYs2aNcQXNoFAIJhA7ty58enTJ6ROndraohB+MrJkyWJtEQgEAsGmKFSoEHbv3m1tMXTl7NmzOHnyJLp06WJtUX4KiBKdQCCkOIoWLUqs0H8yyHZkyzNo0CAMGjTI2mIQCBalRo0a1haB8APi4uJibREINgIxCiAQCATrMXz4cCQlJaFBgwbWFkU3ypcvj/Lly1tbjJ8GokQnEAgEgs1Tr149lCpVCqVKlbK2KAQC4Qfk5cuXCAkJQe3ata0tCoFAIBAIBALBDKROnRoTJ060thiEFAxRohMIBALB5nF0dMSlS5esLQaBQPhB8fX1ha+vr7XFIBAIPzjEEp1AIBAIhJQLCSxKIBAIBAKBQCAQCASCmSFKdAKBQCAQUi5EiU4gEAgEAoFAIBAIBAKBQCAQCASCCESJTiAQCAQCgUAgEAgEAoFAIBAIBIIIRIlOIBAIBAKBQCAQCAQCgUAgEAgEgghEiU4gEAgEAoFAIBAIBIKZIT7RCQQCgUBIuVhVib506VIULlwYHh4e8PDwQEBAAA4dOsT8Hhsbiz59+sDHxwdubm5o2rQp3rx5Y0WJCQQCgUAgEAgEAoFAUA9RohMIBAKBkHKxqhI9S5YsmD59Oq5evYorV66gWrVqaNiwIW7dugUAGDRoEPbv348dO3bg9OnTePXqFZo0aWJNkQkEAoFAIBAIBAKBQFBNr169AABVq1a1siQEAoFAIBDUYqBsbDnc29sbs2bNQrNmzZAuXTps3rwZzZo1AwDcvXsXBQoUwPnz51G2bFlF+UVFRcHT0xORkZHw8PAwp+gEAoFAIBAIBAKBQCAIkpSUhAsXLqBo0aJwcXGxtjgEAoFAIBCgXHdsMz7RExMTsXXrVnz69AkBAQG4evUqvn79iurVqzNp8ufPj2zZsuH8+fNWlJRAIBAIBAKBQCAQCAR12NnZoVy5ckSBTiAQCARCCsTB2gLcuHEDAQEBiI2NhZubG/bs2QN/f3+EhITA0dERXl5enPQZMmRAWFiYaH5xcXGIi4tjvkdFRZlLdAKBQCAQCAQCgUAgEAgEAoFAIPzgWN0SPV++fAgJCcHFixfRq1cvdOzYEbdv39ac37Rp0+Dp6cl8smbNqqO0BAKBQCAQCAQCgUAgEAgEAoFA+JmwuhLd0dERuXPnRokSJTBt2jQUKVIECxYsQMaMGREfH4+IiAhO+jdv3iBjxoyi+Y0cORKRkZHMJzQ01MxXQCAQCAQCgUAgEAgEAoFAIBAIhB8Vq7tz4ZOUlIS4uDiUKFECqVKlwvHjx9G0aVMAwL179/D8+XMEBASInu/k5AQnJyfmOx03lbh1IRAIBAKBQCAQCAQCgUAgEAgEAg2tM6Z1yGJYVYk+cuRI1K5dG9myZUN0dDQ2b96MU6dO4ciRI/D09ETXrl0xePBgeHt7w8PDA/369UNAQADKli2ruIzo6GgAIG5dCAQCgUAgEAgEAoFAIBAIBAKBYER0dDQ8PT1Ff7eqEv3t27fo0KEDXr9+DU9PTxQuXBhHjhxBjRo1AADz5s2DnZ0dmjZtiri4OAQFBWHJkiWqyvD19UVoaCjc3d1hMBjMcRk2T1RUFLJmzYrQ0FB4eHhYWxwCgWAFSDtAIBAA0hYQCIRkSFtAIBAA0hYQCATSDgDJFujR0dHw9fWVTGeg5GzVCf9v785jq6q2OI7/Ot62YCljCwgUZJQiAgWshYdIQyWNsWJksCIIBMGiLSKDMQyRKJMQZQZNKIkgQxQQZEjDGGYoUwtNIQFEkUIUSpkp7Xp/vHie98nlUQK9pf1+kpv07r04Z+0me5GzcnrOEy8/P1+VKlXSlStXyu2GAMo76gAAiVoA4D+oBQAkagEA6kBxeP3FogAAAAAAAAAAlFY00QEAAAAAAAAA8IAmejngcrk0btw4uVwub6cCwEuoAwAkagGA/6AWAJCoBQCoA8XBM9EBAAAAAAAAAPCAO9EBAAAAAAAAAPCAJjoAAAAAAAAAAB7QRAcAAAAAAAAAwAOa6GXc7NmzFRkZqaCgILVv31779u3zdkoAHtLEiRPVtm1bPfXUU6pRo4YSExOVk5PjFnPr1i0lJyeratWqqlixot544w1duHDBLebs2bNKSEhQSEiIatSooREjRuju3btuMVu3blXr1q3lcrnUsGFDpaWlPe7lAXgIkyZNko+Pj1JTU50x6gBQPpw7d05vv/22qlatquDgYLVo0UIHDhxw5s1MY8eOVc2aNRUcHKy4uDidPHnS7RiXLl1SUlKSQkNDFRYWpgEDBujatWtuMUePHlXHjh0VFBSkOnXqaMqUKSWyPgD/X2FhocaMGaP69esrODhYzzzzjCZMmKC/v/qOWgCUPdu3b9err76qWrVqycfHR6tWrXKbL8l9v2LFCjVt2lRBQUFq0aKF1q1b98jXW1rQRC/Dli1bpo8++kjjxo3TwYMH1bJlS8XHx+vixYveTg3AQ9i2bZuSk5O1Z88epaenq6CgQF27dtX169edmGHDhmnNmjVasWKFtm3bpt9//13du3d35gsLC5WQkKA7d+5o165dWrRokdLS0jR27Fgn5vTp00pISFDnzp11+PBhpaamauDAgdq4cWOJrhfA/e3fv1/z58/Xc8895zZOHQDKvsuXLys2NlYBAQFav369jh8/rmnTpqly5cpOzJQpUzRjxgzNmzdPe/fuVYUKFRQfH69bt245MUlJSTp27JjS09O1du1abd++XYMGDXLm8/Pz1bVrV9WrV08ZGRmaOnWqxo8frwULFpToegHc2+TJkzV37lzNmjVL2dnZmjx5sqZMmaKZM2c6MdQCoOy5fv26WrZsqdmzZ99zvqT2/a5du9S7d28NGDBAhw4dUmJiohITE5WVlfX4Fu9NhjKrXbt2lpyc7HwvLCy0WrVq2cSJE72YFYBH5eLFiybJtm3bZmZmeXl5FhAQYCtWrHBisrOzTZLt3r3bzMzWrVtnvr6+lpub68TMnTvXQkND7fbt22ZmNnLkSGvevLnbuXr27Gnx8fGPe0kAHtDVq1etUaNGlp6ebp06dbKUlBQzow4A5cWoUaOsQ4cOHueLioosIiLCpk6d6ozl5eWZy+Wy77//3szMjh8/bpJs//79Tsz69evNx8fHzp07Z2Zmc+bMscqVKzu14a9zN2nS5FEvCcBDSEhIsP79+7uNde/e3ZKSksyMWgCUB5Js5cqVzveS3Pc9evSwhIQEt3zat29v77333iNdY2nBnehl1J07d5SRkaG4uDhnzNfXV3Fxcdq9e7cXMwPwqFy5ckWSVKVKFUlSRkaGCgoK3PZ906ZNVbduXWff7969Wy1atFB4eLgTEx8fr/z8fB07dsyJ+fsx/oqhdgClR3JyshISEv6xV6kDQPnw008/KTo6Wm+++aZq1KihVq1a6ZtvvnHmT58+rdzcXLd9XKlSJbVv396tFoSFhSk6OtqJiYuLk6+vr/bu3evE/Otf/1JgYKATEx8fr5ycHF2+fPlxLxPA//Hiiy9q06ZNOnHihCTpyJEj2rFjh7p16yaJWgCURyW578vbNQNN9DLqjz/+UGFhodsFsiSFh4crNzfXS1kBeFSKioqUmpqq2NhYRUVFSZJyc3MVGBiosLAwt9i/7/vc3Nx71oW/5u4Xk5+fr5s3bz6O5QAohqVLl+rgwYOaOHHiP+aoA0D5cOrUKc2dO1eNGjXSxo0bNWTIEH344YdatGiRpP/u5ftdC+Tm5qpGjRpu8/7+/qpSpUqx6gUA7xk9erR69eqlpk2bKiAgQK1atVJqaqqSkpIkUQuA8qgk972nmLJaF/y9nQAAoPiSk5OVlZWlHTt2eDsVACXo119/VUpKitLT0xUUFOTtdAB4SVFRkaKjo/XFF19Iklq1aqWsrCzNmzdPffv29XJ2AErK8uXLtXjxYi1ZskTNmzd33mNSq1YtagEAPGLciV5GVatWTX5+frpw4YLb+IULFxQREeGlrAA8CkOHDtXatWu1ZcsWPf300854RESE7ty5o7y8PLf4v+/7iIiIe9aFv+buFxMaGqrg4OBHvRwAxZCRkaGLFy+qdevW8vf3l7+/v7Zt26YZM2bI399f4eHh1AGgHKhZs6aeffZZt7FmzZrp7Nmzkv67l+93LRAREaGLFy+6zd+9e1eXLl0qVr0A4D0jRoxw7kZv0aKF+vTpo2HDhjl/rUYtAMqfktz3nmLKal2giV5GBQYGqk2bNtq0aZMzVlRUpE2bNikmJsaLmQF4WGamoUOHauXKldq8ebPq16/vNt+mTRsFBAS47fucnBydPXvW2fcxMTHKzMx0+w8zPT1doaGhzsV4TEyM2zH+iqF2AN7XpUsXZWZm6vDhw84nOjpaSUlJzs/UAaDsi42NVU5OjtvYiRMnVK9ePUlS/fr1FRER4baP8/PztXfvXrdakJeXp4yMDCdm8+bNKioqUvv27Z2Y7du3q6CgwIlJT09XkyZNVLly5ce2PgAP5saNG/L1dW/r+Pn5qaioSBK1ACiPSnLfl7trBm+/2RSPz9KlS83lcllaWpodP37cBg0aZGFhYZabm+vt1AA8hCFDhlilSpVs69atdv78eedz48YNJ2bw4MFWt25d27x5sx04cMBiYmIsJibGmb97965FRUVZ165d7fDhw7ZhwwarXr26ffLJJ07MqVOnLCQkxEaMGGHZ2dk2e/Zs8/Pzsw0bNpToegE8mE6dOllKSorznToAlH379u0zf39/+/zzz+3kyZO2ePFiCwkJse+++86JmTRpkoWFhdnq1avt6NGj9tprr1n9+vXt5s2bTswrr7xirVq1sr1799qOHTusUaNG1rt3b2c+Ly/PwsPDrU+fPpaVlWVLly61kJAQmz9/fomuF8C99e3b12rXrm1r166106dP248//mjVqlWzkSNHOjHUAqDsuXr1qh06dMgOHTpkkmz69Ol26NAh++WXX8ys5Pb9zp07zd/f37788kvLzs62cePGWUBAgGVmZpbcL6ME0UQv42bOnGl169a1wMBAa9eune3Zs8fbKQF4SJLu+Vm4cKETc/PmTXv//fetcuXKFhISYq+//rqdP3/e7Thnzpyxbt26WXBwsFWrVs2GDx9uBQUFbjFbtmyx559/3gIDA61BgwZu5wBQuvxvE506AJQPa9assaioKHO5XNa0aVNbsGCB23xRUZGNGTPGwsPDzeVyWZcuXSwnJ8ct5s8//7TevXtbxYoVLTQ01N599127evWqW8yRI0esQ4cO5nK5rHbt2jZp0qTHvjYADyY/P99SUlKsbt26FhQUZA0aNLBPP/3Ubt++7cRQC4CyZ8uWLffsDfTt29fMSnbfL1++3Bo3bmyBgYHWvHlz+/nnnx/bur3Nx8zMO/fAAwAAAAAAAABQuvFMdAAAAAAAAAAAPKCJDgAAAAAAAACABzTRAQAAAAAAAADwgCY6AAAAAAAAAAAe0EQHAAAAAAAAAMADmugAAAAAAAAAAHhAEx0AAAAAAAAAAA9oogMAAAAAAAAA4AFNdAAAAAD3lJaWprCwMG+nAQAAAHgVTXQAAACglOrXr58SExP/Mb5161b5+PgoLy+vxHMCAAAAyhua6AAAAAD+oaCgwNspAAAAAKUCTXQAAADgCffDDz+oefPmcrlcioyM1LRp09zmfXx8tGrVKrexsLAwpaWlSZLOnDkjHx8fLVu2TJ06dVJQUJAWL17sFn/mzBn5+vrqwIEDbuNfffWV6tWrp6Kioke+LgAAAKA0oIkOAAAAPMEyMjLUo0cP9erVS5mZmRo/frzGjBnjNMiLY/To0UpJSVF2drbi4+Pd5iIjIxUXF6eFCxe6jS9cuFD9+vWTry+XFgAAACib/L2dAAAAAADP1q5dq4oVK7qNFRYWOj9Pnz5dXbp00ZgxYyRJjRs31vHjxzV16lT169evWOdKTU1V9+7dPc4PHDhQgwcP1vTp0+VyuXTw4EFlZmZq9erVxToPAAAA8CThdhEAAACgFOvcubMOHz7s9vn222+d+ezsbMXGxrr9m9jYWJ08edKt2f4goqOj7zufmJgoPz8/rVy5UpKUlpamzp07KzIysljnAQAAAJ4k3IkOAAAAlGIVKlRQw4YN3cZ+++23Yh3Dx8dHZuY2dq8Xh1aoUOG+xwkMDNQ777yjhQsXqnv37lqyZIm+/vrrYuUCAAAAPGloogMAAABPsGbNmmnnzp1uYzt37lTjxo3l5+cnSapevbrOnz/vzJ88eVI3btx4qPMNHDhQUVFRmjNnju7evXvfx78AAAAAZQFNdAAAAOAJNnz4cLVt21YTJkxQz549tXv3bs2aNUtz5sxxYl5++WXNmjVLMTExKiws1KhRoxQQEPBQ52vWrJleeOEFjRo1Sv3791dwcPCjWgoAAABQKvFMdAAAAOAJ1rp1ay1fvlxLly5VVFSUxo4dq88++8ztpaLTpk1TnTp11LFjR7311lv6+OOPFRIS8tDnHDBggO7cuaP+/fs/ghUAAAAApZuP/e/DEQEAAADgPiZMmKAVK1bo6NGj3k4FAAAAeOy4Ex0AAADAA7l27ZqysrI0a9YsffDBB95OBwAAACgRNNEBAAAAPJChQ4eqTZs2eumll3iUCwAAAMoNHucCAAAAAAAAAIAH3IkOAAAAAAAAAIAHNNEBAAAAAAAAAPCAJjoAAAAAAAAAAB7QRAcAAAAAAAAAwAOa6AAAAAAAAAAAeEATHQAAAAAAAAAAD2iiAwAAAAAAAADgAU10AAAAAAAAAAA8oIkOAAAAAAAAAIAH/waagavQnF/l1AAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "detector.plot(ptype=\"line-exceedance-df\", title=f\"Peaks Over Threshold\", xlabel=\"Hourly\", ylabel=\"Water Level\", alpha=1.0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "detector.fit()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " col_1_anomaly_score | \n",
+ " col_2_anomaly_score | \n",
+ " col_3_anomaly_score | \n",
+ " col_4_anomaly_score | \n",
+ " total_anomaly_score | \n",
+ " datetime | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-15 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-16 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-17 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-18 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-19 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-20 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-21 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-22 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-23 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 1.175629 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 1.175629 | \n",
+ " 2014-05-24 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-25 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-26 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 7.899353 | \n",
+ " 0.000000 | \n",
+ " 1.296878 | \n",
+ " 0.000000 | \n",
+ " 9.196231 | \n",
+ " 2014-05-27 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-28 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-29 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-30 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-05-31 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 0.000000 | \n",
+ " 15.510736 | \n",
+ " 0.000000 | \n",
+ " 4.002776 | \n",
+ " 19.513511 | \n",
+ " 2014-06-01 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-06-02 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 2014-06-03 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " col_1_anomaly_score col_2_anomaly_score col_3_anomaly_score \\\n",
+ "0 0.000000 0.000000 0.000000 \n",
+ "1 0.000000 0.000000 0.000000 \n",
+ "2 0.000000 0.000000 0.000000 \n",
+ "3 0.000000 0.000000 0.000000 \n",
+ "4 0.000000 0.000000 0.000000 \n",
+ "5 0.000000 0.000000 0.000000 \n",
+ "6 0.000000 0.000000 0.000000 \n",
+ "7 0.000000 0.000000 0.000000 \n",
+ "8 0.000000 0.000000 0.000000 \n",
+ "9 1.175629 0.000000 0.000000 \n",
+ "10 0.000000 0.000000 0.000000 \n",
+ "11 0.000000 0.000000 0.000000 \n",
+ "12 7.899353 0.000000 1.296878 \n",
+ "13 0.000000 0.000000 0.000000 \n",
+ "14 0.000000 0.000000 0.000000 \n",
+ "15 0.000000 0.000000 0.000000 \n",
+ "16 0.000000 0.000000 0.000000 \n",
+ "17 0.000000 15.510736 0.000000 \n",
+ "18 0.000000 0.000000 0.000000 \n",
+ "19 0.000000 0.000000 0.000000 \n",
+ "\n",
+ " col_4_anomaly_score total_anomaly_score datetime \n",
+ "0 0.000000 0.000000 2014-05-15 \n",
+ "1 0.000000 0.000000 2014-05-16 \n",
+ "2 0.000000 0.000000 2014-05-17 \n",
+ "3 0.000000 0.000000 2014-05-18 \n",
+ "4 0.000000 0.000000 2014-05-19 \n",
+ "5 0.000000 0.000000 2014-05-20 \n",
+ "6 0.000000 0.000000 2014-05-21 \n",
+ "7 0.000000 0.000000 2014-05-22 \n",
+ "8 0.000000 0.000000 2014-05-23 \n",
+ "9 0.000000 1.175629 2014-05-24 \n",
+ "10 0.000000 0.000000 2014-05-25 \n",
+ "11 0.000000 0.000000 2014-05-26 \n",
+ "12 0.000000 9.196231 2014-05-27 \n",
+ "13 0.000000 0.000000 2014-05-28 \n",
+ "14 0.000000 0.000000 2014-05-29 \n",
+ "15 0.000000 0.000000 2014-05-30 \n",
+ "16 0.000000 0.000000 2014-05-31 \n",
+ "17 4.002776 19.513511 2014-06-01 \n",
+ "18 0.000000 0.000000 2014-06-02 \n",
+ "19 0.000000 0.000000 2014-06-03 "
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "detector.fit_result.head(20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAPYCAYAAADevQv7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU1d3H8c8kkAAJq0jCvqPsu4hUFkXBhYq1ihQFsS5VUCnaChZwQ3FDqUrBpYpFLLRSlccFi1FcEEFBEAsCKouiYSmFkCBbMs8fCQNDQkxCkgnk876v88rMuefe+7sJUfjm5NxAMBgMIkmSJEmSJEmSchQV6QIkSZIkSZIkSSrJDNIlSZIkSZIkScqFQbokSZIkSZIkSbkwSJckSZIkSZIkKRcG6ZIkSZIkSZIk5cIgXZIkSZIkSZKkXBikS5IkSZIkSZKUC4N0SZIkSZIkSZJyYZAuSZIkSZIkSVIuDNIlSZJ0QunZsycjRoyIdBkR16BBAyZNmlTs1w0EArz66qvHdI68fA0jdX+SJEkqnQzSJUmSVGyuuuoqAoEAgUCAmJgYmjRpwj333MOBAwciXVquXn/9dXr06EHFihWpUKECnTt3Ztq0aRGp5fDPYU6tQYMGEalLkiRJOpEZpEuSJKlY9e3blx9//JG1a9dy6623ctddd/Hwww9HuqyjeuKJJ7jooovo1q0bixYt4osvvuDyyy/nd7/7HbfddluRXnvfvn3Z+v785z/z448/hhrA888/H3r/6aefFvh6+/fvL/CxkiRJ0onMIF2SJEnFKjY2lsTEROrXr88NN9xA7969mTNnDgB79+7ltttuo3bt2sTFxdGlSxfmz58fOva///0vAwcOpHbt2lSoUIHWrVvz97//PdfrvfHGG1SuXJkZM2YAMH/+fE477TTi4uKoUqUK3bp1Y8OGDTke+91333HrrbcyYsQI7r//flq0aEGTJk249dZbefjhh5k4cSKLFi0iIyODOnXqMGXKlLDjP//8c6KiokLn37FjB9dccw0nn3wylSpV4qyzzmL58uWh8XfddRft2rXj2WefpWHDhpQrVy5bTZUrVyYxMTHUAKpUqRJ6f/LJJ4fG7t69m6uvvpqKFStSr149nn766dC+9evXEwgEmDVrFj169KBcuXKhz9Gzzz5L8+bNKVeuHKeeeip/+ctfQsft27eP4cOHU7NmTcqVK0f9+vWZMGFCWI3btm3j4osvpkKFCjRt2jT09T3o/fff57TTTiM2NpaaNWsyatSoXH8rYcuWLfTr14/y5cvTsGHDUJ2SJElScTFIlyRJUkSVL18+NPN6+PDhLFy4kJkzZ/LFF19w6aWX0rdvX9auXQvAnj176NixI2+88QZffvkl1113HVdeeSWLFy/O8dwvvfQSAwcOZMaMGQwaNIgDBw7Qv39/evTowRdffMHChQu57rrrCAQCOR7/8ssvs3///hxnnl9//fXEx8fz97//naioKAYOHMhLL70UNmbGjBl069aN+vXrA3DppZeyZcsW3nrrLZYsWUKHDh04++yz2b59e+iYr7/+mtmzZ/Ovf/2LZcuW5fvzebiJEyfSqVMnPv/8c2688UZuuOEGVq9eHTZm1KhR3HLLLaxatYo+ffowY8YMxo0bx3333ceqVau4//77GTt2LC+88AIAjz/+OHPmzOEf//gHq1evZsaMGdmWk7n77ru57LLL+OKLLzj//PMZNGhQ6B43bdrE+eefT+fOnVm+fDlTpkzhr3/9K+PHjz/qfVx11VV89913vPfee7z88sv85S9/YcuWLcf0uZEkSZLyJShJkiQVkyFDhgQvuuiiYDAYDGZkZATnzZsXjI2NDd52223BDRs2BKOjo4ObNm0KO+bss88Ojh49+qjnvOCCC4K33npr6H2PHj2Ct9xyS/DJJ58MVq5cOTh//vzQvv/+979BIKwvN7/73e+ClStXPur+Nm3aBM8777xgMBgMfv7558FAIBDcsGFDMBgMBtPT04O1a9cOTpkyJRgMBoMffvhhsFKlSsE9e/aEnaNx48bBp556KhgMBoN33nlnsGzZssEtW7bkqb5gMBgEgq+88kq2/vr16wevuOKK0PuMjIxgjRo1QvWsW7cuCAQnTZqUrZ6XXnoprO/ee+8Ndu3aNRgMBoM33XRT8KyzzgpmZGQctZ4xY8aE3qempgaB4FtvvRUMBoPBO+64I3jKKaeEHT958uRgfHx8MD09PRgMHvoaBoPB4OrVq4NAcPHixaHxq1atCgLBxx57LLdPjSRJklRoykQww5ckSVIp9PrrrxMfH8/+/fvJyMjgN7/5DXfddRfz588nPT2dZs2ahY3fu3cvJ510EgDp6encf//9/OMf/2DTpk3s27ePvXv3UqFChbBjXn75ZbZs2cKCBQvo3LlzqL9atWpcddVV9OnTh3POOYfevXtz2WWXUbNmzWO+r3bt2tG8eXNeeuklRo0axfvvv8+WLVu49NJLAVi+fDmpqamheznop59+4ptvvgm9r1+/ftjyLMeiTZs2odeBQIDExMRsM7k7deoUep2WlsY333zDb3/7W6699tpQ/4EDB6hcuTKQOTv8nHPO4ZRTTqFv375ceOGFnHvuuUe9blxcHJUqVQpdd9WqVXTt2jXstwC6detGamoq33//PfXq1Qs716pVqyhTpgwdO3YM9Z166qlUqVIlv58OSZIkqcAM0iVJklSsevXqxZQpU4iJiaFWrVqUKZP5V9LU1FSio6NZsmQJ0dHRYcfEx8cD8PDDD/PnP/+ZSZMm0bp1a+Li4hgxYkS2h3K2b9+epUuX8txzz9GpU6ew0Pb555/n5ptvZu7cucyaNYsxY8Ywb948Tj/99Gy1NmvWjJ07d/LDDz9Qq1atsH379u3jm2++oVevXqG+QYMGhYL0l156ib59+4aC89TUVGrWrBm25vtBh4fCcXFxefgs5k3ZsmXD3gcCATIyMsL6Dr9eamoqAM888wxdunQJG3fwa9KhQwfWrVvHW2+9xTvvvMNll11G7969efnll/N1XUmSJOl44hrpkiRJKlZxcXE0adKEevXqhUJ0yAy/09PT2bJlC02aNAlrBx+quWDBAi666CKuuOIK2rZtS6NGjVizZk22azRu3Jj33nuP1157jZtuuinb/vbt2zN69Gg+/vhjWrVqlW1t84MuueQSypYty8SJE7Ptmzp1KmlpaQwcODDU95vf/IYvv/ySJUuW8PLLLzNo0KDQvg4dOpCcnEyZMmWy3V/16tXz/gksQgkJCdSqVYtvv/02W40NGzYMjatUqRIDBgzgmWeeYdasWcyePTtsnffcNG/enIULFxIMBkN9CxYsoGLFitSpUyfb+FNPPZUDBw6wZMmSUN/q1avZsWNHwW9UkiRJyidnpEuSJKlEaNasGYMGDWLw4MFMnDiR9u3bs3XrVpKSkmjTpg0XXHABTZs25eWXX+bjjz+matWqPProo2zevJkWLVrkeL733nuPnj17UqZMGSZNmsS6det4+umn+eUvf0mtWrVYvXo1a9euZfDgwTnWVK9ePR566CFuvfVWypUrx5VXXknZsmV57bXXuOOOO7j11lvDZm43aNCAM844g9/+9rekp6fzy1/+MrSvd+/edO3alf79+/PQQw/RrFkzfvjhB9544w0uvvjisCVWIunuu+/m5ptvpnLlyvTt25e9e/fy2Wef8b///Y+RI0fy6KOPUrNmTdq3b09UVBT//Oc/SUxMzPNSKzfeeCOTJk3ipptuYvjw4axevZo777yTkSNHEhWVfZ7PwSVkrr/+eqZMmUKZMmUYMWIE5cuXL+Q7lyRJko7OGemSJEkqMZ5//nkGDx7MrbfeyimnnEL//v359NNPQ+tmjxkzhg4dOtCnTx969uxJYmIi/fv3P+r5TjnlFN59913+/ve/c+utt1KhQgW++uorLrnkEpo1a8Z1113HsGHDuP766496jhEjRvDKK6/w4Ycf0qlTp9AM9ilTpvDII49kGz9o0CCWL1/OxRdfHBb2BgIB3nzzTbp3787QoUNp1qwZl19+ORs2bCAhIaHgn7RCds011/Dss8/y/PPP07p1a3r06MG0adNCM9IrVqzIQw89RKdOnejcuTPr16/nzTffzDEEz0nt2rV58803Wbx4MW3btuV3v/sdv/3tbxkzZsxRj3n++eepVasWPXr04Fe/+hXXXXcdNWrUKJT7lSRJkvIiEDz8dyolSZIkSZIkSVIYZ6RLkiRJkiRJkpQLg3RJkiRJkiRJknJhkC5JkiRJkiRJUi4M0iVJkiRJkiRJyoVBuiRJkiRJkiRJuTBIlyRJkiRJkiQpFwbpkiRJkiRJkiTlwiBdkiRJkiRJkqRcGKRLkiRJkiRJkpQLg3RJkiRJkiRJknJhkC5JkiRJkiRJUi4M0iVJkiRJkiRJyoVBuiRJkiRJkiRJuTBIlyRJkiRJkiQpFwbpkiRJkiRJkiTlwiBdkiRJkiRJkqRcGKRLkiRJkiRJkpQLg3RJkiRJkiRJknJhkC5JkiRJkiRJUi4M0iVJkiRJkiRJyoVBuiRJkiRJkiRJuTBIlyRJkiRJkiQpFwbpkiRJkiRJkiTlwiBdkiRJkiRJkqRcGKRLkiRJkiRJkpQLg3RJkiRJkiRJknJhkC5JkiRJkiRJUi4M0iVJkiRJkiRJyoVBuiRJkiRJkiRJuTBIlyRJkiRJkiQpFwbpkiRJkiRJkiTlwiBdkiRJkiRJkqRcGKRLkiRJkiRJkpQLg3RJkiRJkiRJknJhkC5JkiRJkiRJUi4M0iVJkiRJkiRJyoVBuiRJkiRJkiRJuTBIlyRJkiRJkiQpFwbpkiRJkiRJkiTlwiBdkiRJkiRJkqRcGKRLkiRJkiRJkpQLg3RJkiRJkiRJknJhkC5JkiRJkiRJUi4M0iVJkiRJkiRJyoVBuiRJkiRJkiRJuTBIlyRJkiRJkiQpFwbpkiRJkiRJkiTlwiBdkiRJkiRJkqRcGKRLkiRJkiRJkpQLg3RJkiQpAu666y7atWsX6TIiqkGDBkyaNCnSZUiSJEk/yyBdkiRJyqfk5GRuuukmGjVqRGxsLHXr1qVfv34kJSVFurQT1tNPP03Pnj2pVKkSgUCAHTt2RLokSZIklSIG6ZIkSVI+rF+/no4dO/Luu+/y8MMPs2LFCubOnUuvXr0YNmxYpMs7Ye3evZu+fftyxx13RLoUSZIklUIG6ZIkSVI+3HjjjQQCARYvXswll1xCs2bNaNmyJSNHjuSTTz4Jjdu4cSMXXXQR8fHxVKpUicsuu4zNmzcf9bw9e/ZkxIgRYX39+/fnqquuCr1v0KAB48ePZ/DgwcTHx1O/fn3mzJnD1q1bQ9dq06YNn332WeiYadOmUaVKFd5++22aN29OfHw8ffv25ccffzzmz8WOHTu4/vrrSUhIoFy5crRq1YrXX389tH/27Nm0bNmS2NhYGjRowMSJEwt8rREjRjBq1ChOP/30Y65bkiRJyi+DdEmSJCmPtm/fzty5cxk2bBhxcXHZ9lepUgWAjIwMLrroIrZv387777/PvHnz+PbbbxkwYMAx1/DYY4/RrVs3Pv/8cy644AKuvPJKBg8ezBVXXMHSpUtp3LgxgwcPJhgMho7ZvXs3jzzyCNOnT+eDDz5g48aN3HbbbcdUR0ZGBueddx4LFizgxRdfZOXKlTzwwANER0cDsGTJEi677DIuv/xyVqxYwV133cXYsWOZNm3aMV1XkiRJioQykS5AkiRJOl58/fXXBINBTj311FzHJSUlsWLFCtatW0fdunUB+Nvf/kbLli359NNP6dy5c4FrOP/887n++usBGDduHFOmTKFz585ceumlANx+++107dqVzZs3k5iYCMD+/fuZOnUqjRs3BmD48OHcc889Ba4B4J133mHx4sWsWrWKZs2aAdCoUaPQ/kcffZSzzz6bsWPHAtCsWTNWrlzJww8/HDbLXpIkSToeOCNdkiRJyqPDZ3nnZtWqVdStWzcUogO0aNGCKlWqsGrVqmOqoU2bNqHXCQkJALRu3Tpb35YtW0J9FSpUCIXoADVr1gzbf6SWLVsSHx9PfHw85513Xo5jli1bRp06dUIh+pFWrVpFt27dwvq6devG2rVrSU9PP+q1JUmSpJLIGemSJElSHjVt2pRAIMBXX31V6OeOiorKFtTv378/27iyZcuGXgcCgaP2ZWRk5HjMwTG5/VDgzTffDF27fPnyOY45Wr8kSZJ0InJGuiRJkpRH1apVo0+fPkyePJm0tLRs+3fs2AFA8+bN+e677/juu+9C+1auXMmOHTto0aJFjuc++eSTwx4Amp6ezpdfflm4N5BH9evXp0mTJjRp0oTatWvnOKZNmzZ8//33rFmzJsf9zZs3Z8GCBWF9CxYsoFmzZqF11CVJkqTjhUG6JEmSlA+TJ08mPT2d0047jdmzZ7N27VpWrVrF448/TteuXQHo3bs3rVu3ZtCgQSxdupTFixczePBgevToQadOnXI871lnncUbb7zBG2+8wVdffcUNN9wQCuZLoh49etC9e3cuueQS5s2bx7p163jrrbeYO3cuALfeeitJSUnce++9rFmzhhdeeIEnn3yywA85TU5OZtmyZXz99dcArFixgmXLlrF9+/ZCuydJkiTpaAzSJUmSpHxo1KgRS5cupVevXtx66620atWKc845h6SkJKZMmQJkLp3y2muvUbVqVbp3707v3r1p1KgRs2bNOup5r776aoYMGRIK3Bs1akSvXr2K67YKZPbs2XTu3JmBAwfSokUL/vjHP4bWP+/QoQP/+Mc/mDlzJq1atWLcuHHcc889BX7Q6NSpU2nfvj3XXnstAN27d6d9+/bMmTOnsG5HkiRJOqpAMK9PTJIkSZIkSZIkqRRyRrokSZIkSZIkSbkwSJckSZIUUTNmzCA+Pj7H1rJly0iXJ0mSJLm0iyRJkqTI2rVrF5s3b85xX9myZalfv34xVyRJkiSFM0iXJEmSJEmSJCkXLu0iSZIkSZIkSVIuykS6gOKWkZHBDz/8QMWKFQkEApEuR5IkSZIkSZIUAcFgkF27dlGrVi2ionKfc17qgvQffviBunXrRroMSZIkSZIkSVIJ8N1331GnTp1cx5S6IL1ixYpA5ienUqVKEa5GkiRJkiRJkhQJKSkp1K1bN5QZ56bUBekHl3OpVKmSQbokSZIkSZIklXJ5WQLch41KkiRJkiRJkpQLg3RJkiRJkiRJknJhkC5JkiRJkiRJUi5K3RrpkiRJkiRJUmlw4MAB9u3bF+kypIiJiYmhTJnCicAN0kupvCygf6RgMFgElUiSJEmSJKkwBYNBNm7cyLZt2yJdihRx1atXp169egXKQw9nkC5JkiRJkiSdQA6G6LVr1yY+Pp6oKFd3VumTkZFBamoqmzZtAqB+/frHdD6DdEmSJEmSJOkEceDAgVCInpiYGOlypIiKj48HYNOmTXzzzTd069aN2NjYAp3LH0dJkiRJkiRJJ4iDa6IfDBCl0u7g98J//vMf5s2bV+DnBhikS5IkSZIkSScYl3ORMh38XjjppJP4z3/+w3fffVew8xRmUZIkSZIkSZIklTSxsbEEg0FSU1MLdLxBuiRJkiRJkiSpVAgGgwU6ziBdkiRJkiRJkqRcGKRLkiRJkiRJKpGCwSDjxo2jZs2alC9fnt69e7N27dpcj/nggw/o168ftWrVIhAI8Oqrr2YbEwgEcmwPP/xwEd2JjncG6ZIkSZIkSZJKpIceeojHH3+cqVOnsmjRIuLi4ujTpw979uw56jFpaWm0bduWyZMnH3XMjz/+GNaee+45AoEAl1xySVHchk4AZSJdgCRJkiRJkiQdKRgMMmnSJMaMGcNFF10EwN/+9jcSEhJ49dVXufzyy3M87rzzzuO8887L9dyJiYlh71977TV69epFo0aNCqd4nXCckS5JkiRJkiSpxFm3bh3Jycn07t071Fe5cmW6dOnCwoULC+06mzdv5o033uC3v/1toZ1TJx6DdEmSJEmSJEklTnJyMgAJCQlh/QkJCaF9heGFF16gYsWK/OpXvyq0c+rEY5AuSZIkSZIkKeJmzJhBfHx8qO3fv79Yrvvcc88xaNAgypUrVyzX0/HJNdIlSZIkSZIkRdwvf/lLunTpEnq/d+9eIHPplZo1a4b6N2/eTLt27Qrlmh9++CGrV69m1qxZhXI+nbhKxIz0yZMn06BBA8qVK0eXLl1YvHhxno6bOXMmgUCA/v37F22BkiRJkiRJkopUxYoVadKkSai1aNGCxMREkpKSQmNSUlJYtGgRXbt2LZRr/vWvf6Vjx460bdu2UM6nE1fEg/RZs2YxcuRI7rzzTpYuXUrbtm3p06cPW7ZsyfW49evXc9ttt3HmmWcWU6WSJEmSJEmSiksgEGDEiBGMHz+eOXPmsGLFCgYPHkytWrXCJtaeffbZPPnkk6H3qampLFu2jGXLlgGZDy1dtmwZGzduDDt/SkoK//znP7nmmmuK43Z0nIt4kP7oo49y7bXXMnToUFq0aMHUqVOpUKECzz333FGPSU9PZ9CgQdx99900atSoGKuVJEmSJEmSVFz++Mc/ctNNN3HdddfRuXNnUlNTmTt3bth65t988w3btm0Lvf/ss89o37497du3B2DkyJG0b9+ecePGhZ175syZBINBBg4cWDw3o+NaRNdI37dvH0uWLGH06NGhvqioKHr37s3ChQuPetw999xDjRo1+O1vf8uHH36Y6zX27t0bWk8JMn/SJEmSJEmSJKnkCwQC3HPPPdxzzz1HHbN+/fqw9z179iQYDP7sua+77jquu+66Yy1RpUREZ6Rv27aN9PR0EhISwvoTEhJITk7O8ZiPPvqIv/71rzzzzDN5usaECROoXLlyqNWtW/eY65YkSZIkSZIklR4RX9olP3bt2sWVV17JM888Q/Xq1fN0zOjRo9m5c2eofffdd0VcpSRJkiRJkiTpRBLRpV2qV69OdHQ0mzdvDuvfvHkziYmJ2cZ/8803rF+/nn79+oX6MjIyAChTpgyrV6+mcePGYcfExsYSGxtbBNVLkiRJkiRJkkqDiM5Ij4mJoWPHjiQlJYX6MjIySEpKomvXrtnGn3rqqaxYsSL01N1ly5bxy1/+kl69erFs2TKXbZEkSZIkSZIkFbqIzkiHzKfmDhkyhE6dOnHaaacxadIk0tLSGDp0KACDBw+mdu3aTJgwgXLlytGqVauw46tUqQKQrV+SJEmSJEmSpMIQ8TXSBwwYwCOPPMK4ceNo164dy5YtY+7cuaEHkG7cuJEff/wxwlWeONJI4wZugF8C8ZGuRpIkSZIkSQo3efJkGjRoQLly5ejSpQuLFy+OdElS5GekAwwfPpzhw4fnuG/+/Pm5Hjtt2rTCL+gE9i7vMpWp8BqwD/gQmAu8BfwnoqVJkiRJkiSplJs1axYjR45k6tSpdOnShUmTJtGnTx9Wr15NjRo1Il2eSrE8BelVq1YlEAjk6YTbt28/poJUtOYy99CbGODsrPYwsJFDoXoSsKv465MkSZIkSVLp9eijj3LttdeGln2eOnUqb7zxBs899xyjRo2KcHUqzfIUpE+aNKmIy1BxeYiHOI/z6De5H5wHNDpsZz3guqy2H/iIQ8H6imIvVZIkSZIkSaXIvn37WLJkCaNHjw71RUVF0bt3bxYuXBjByqQ8BulDhgwp6jpUTOKI40IuhIMr6TQjM1A/D+gBlMvqLwv0ymoPAt/DNVzDeZxHb3pTmcrFXbokSZIkSZJOYNu2bSM9PT307MSDEhIS+OqrryJUlZSpQA8b/eabbxgzZgwDBw5ky5YtALz11lv85z8usn3cWQP8GegLVAPOB54Avj5iXB34K3/l1/yakziJ7nRnAhNYxjKCBIu56HCBQCDfTZIkSZIkSZLyKt9B+vvvv0/r1q1ZtGgR//rXv0hNTQVg+fLl3HnnnYVeoIrRT2Qu43Iz0DSr3QS8mbUvSzrpfMiH3MEdtKc9tajFEIYwgxlsZnMECpckSZIkSdLxrnr16kRHR7N5c3i+tHnzZhITEyNUlZQp30H6qFGjGD9+PPPmzSMmJibUf9ZZZ/HJJ58UanGKsK+BJ4ELgGrwFm9xMzfTlKZhw5JJ5m/8jSu4gkQSaUc7/sgfeYd32MOeSFQuSZIkSZKk40xMTAwdO3YkKSkp1JeRkUFSUhJdu3aNYGVSAYL0FStWcPHFF2frr1GjBtu2bSuUolQC7YG+9OXP/Jk1rOFrvuZJnuQCLqACFcKGLmc5D/Mw53AOValKX/ryKI+yghURXwZGkiRJkiRJJdfIkSN55plneOGFF1i1ahU33HADaWlpDB06NNKlqZTL08NGD1elShV+/PFHGjZsGNb/+eefU7t27UIrTCVbYxozLGvby14WspB/Z21LWRoKzPewh7ezNoCa1OQczuFczqU3vUkgIbfLSJIkSZIkqRQZMGAAW7duZdy4cSQnJ9OuXTvmzp2b7QGkUnHL94z0yy+/nNtvv53k5GQCgQAZGRksWLCA2267jcGDBxdFjSrhYomlJz25n/v5jM/YwhZmMpOruZo61Akb+yM/hi0D0572LgMjSZIkSZKkkOHDh7Nhwwb27t3LokWL6NKlS6RLkvIfpN9///2ceuqp1K1bl9TUVFq0aEH37t0544wzGDNmTFHUqONMdaozgAH8lb+ykY2sZCWTmMT5nJ9tGZhlLMu2DMxEJrKc5WSQEaE7kCRJkiRJkqRD8r20S0xMDM888wxjx47lyy+/JDU1lfbt29O0adOfP1ilToAAzbO2W7glX8vAVKc6Z2VtZ3M2jWlMgEAkb0eSJEmSJOm41IlOJJNc7NdNJJHP+KzYrysVtnwH6R999BG/+MUvqFevHvXq1SuKmnQCO7gMzMGlYLaylSSSQsH6JjaFxm5jG//I2gDqUY+zs7azOIua1IzUbUiSJEmSJB1XkkkOy10k5U++g/SzzjqL2rVrM3DgQK644gpatGhRFHWplDiZk7k8awsSZBWreId3SCKJ+cwnhZTQ2I1s5PmsDaA5zTmbs+EiYD6wMyK3IEmSJEmSVOIlkliqrisVtnwH6T/88AMzZ87k73//Ow888ABt2rRh0KBBDBw4kDp16vz8CaSjCBCgRdZ2MzdzgAMsZSlJWdsCFoQ9kHRV1sarQDqwBEjKagsgt2eXBgL5XyImGAzm+xhJkiRJkqSSwOVVpGOT74eNVq9eneHDh7NgwQK++eYbLr30Ul544QUaNGjAWWedVRQ1qpQqQxlO4zRGM5p3eIf/8T+SSOIO7qALXYg6/I9vNHAaMBp4B9gBvAv8CTidAvzISJIkSZIkScVpwoQJdO7cmYoVK1KjRg369+/P6tWrf/a4HTt2MGzYMGrWrElsbCzNmjXjzTffDBuzadMmrrjiCk466STKly9P69at+ewzf7igvMt3kH64hg0bMmrUKB544AFat27N+++/X1h1SdmUoxxncRb3cR+f8Anb2c4c5sAkYMURg2OBXsB4YCHwP+At4HagCwbrkiRJkiRJJcz777/PsGHD+OSTT5g3bx779+/n3HPPJS0t7ajH7Nu3j3POOYf169fz8ssvs3r1ap555hlq164dGvO///2Pbt26UbZsWd566y1WrlzJxIkTqVq1anHclk4QBY4TFyxYwIwZM3j55ZfZs2cPF110ERMmTCjM2lTCFGQ5lPzKz/IplalMP/rB77M6apAZnp+d1RodNjge6JvVAFKBj8hcW30+mcvCHDiGwiVJkiRJknRM5s6dG/Z+2rRp1KhRgyVLltC9e/ccj3nuuefYvn07H3/8MWXLlgWgQYMGYWMefPBB6taty/PPPx/qa9iwYeEWrxNevmekjx49moYNG3LWWWexceNG/vznP5OcnMz06dPp27fvz59AKipbgFnAdUBjoCFwDfAS8MMRYw8G6w8An+CMdUmSJEmSpBJm586dAFSrVu2oY+bMmUPXrl0ZNmwYCQkJtGrVivvvv5/09PSwMZ06deLSSy+lRo0atG/fnmeeeabI69eJJd9B+gcffMAf/vAHNm3axOuvv87AgQOpUKHCMRUxefJkGjRoQLly5ejSpQuLFy8+6th//etfdOrUiSpVqhAXF0e7du2YPn36MV1fJ6j1wF+BQUBtoClwLTADg3VJkiRJkqQSLCMjgxEjRtCtWzdatWp11HHffvstL7/8Munp6bz55puMHTuWiRMnMn78+LAxU6ZMoWnTprz99tvccMMN3HzzzbzwwgvFcSs6QeQ7HlywYEGhFjBr1ixGjhzJ1KlT6dKlC5MmTaJPnz6sXr2aGjVqZBtfrVo1/vSnP3HqqacSExPD66+/ztChQ6lRowZ9+vQp1Np0gvk6qz2b9b4J0DOr9QJqHTY2h6Vg+tKXnllbRzpSlrLFUrYkSZIkSVJpM2zYML788ks++uijXMdlZGRQo0YNnn76aaKjo+nYsSObNm3i4Ycf5s477wyN6dSpE/fffz8A7du358svv2Tq1KkMGTKkyO9FJ4YCPWx0+vTpdOvWjVq1arFhwwYAJk2axGuvvZbvcz366KNce+21DB06lBYtWjB16lQqVKjAc889l+P4nj17cvHFF9O8eXMaN27MLbfcQps2bX72m0rK5mCofgV5mrH+Nm8zmtF0pStVqMLZnM3d3M27vMtudhdv7ZIkSZIkSSeo4cOH8/rrr/Pee+9Rp06dXMfWrFmTZs2aER0dHepr3rw5ycnJ7Nu3LzSmRYsWYcc1b96cjRs3Fn7xOmHlO0ifMmUKI0eO5Pzzz2fHjh2h9YaqVKnCpEmT8nWuffv2sWTJEnr37n2ooKgoevfuzcKFC3/2+GAwSFJSEqtXrz7qAwf27t1LSkpKWFPJFQgE8t0KTT6C9d3s5l3e5S7u4mzOJm5/HIFPAgQeDhD4ZYBAtUKuTZIkSZIk6QQXDAYZPnw4r7zyCu+++26eHgjarVs3vv76azIyMkJ9a9asoWbNmsTExITGrF69Ouy4NWvWUL9+/cK9AZ3Q8h2kP/HEEzzzzDP86U9/CvtJT6dOnVixYkW+zrVt2zbS09NJSEgI609ISCA5Ofmox+3cuZP4+HhiYmK44IILeOKJJzjnnHNyHDthwgQqV64canXr1s1XjSrFcgvWvztibFngdOAPwBxgO/AF3MiN/J2/8z3fF1vZkiRJkiRJx6Nhw4bx4osv8tJLL1GxYkWSk5NJTk7mp59+Co0ZPHgwo0ePDr2/4YYb2L59O7fccgtr1qzhjTfe4P7772fYsGGhMb///e/55JNPuP/++/n666956aWXePrpp8PGSD8n32ukr1u3jvbt22frj42NJS0trVCK+jkVK1Zk2bJlpKamkpSUxMiRI2nUqBE9e/bMNnb06NGMHDky9D4lJcUwXQVz5Brr9YEzD2vNjxjfGqZkbQANaMCZnEl3unMmZ9KMZgRw1rokSZIkSRJkroQBZMv4nn/+ea666ioANm7cSFTUobnBdevW5e233+b3v/89bdq0oXbt2txyyy3cfvvtoTGdO3fmlVdeYfTo0dxzzz00bNiQSZMmMWjQoCK/J5048h2kN2zYkGXLlmX71Ye5c+fSvPmRSWLuqlevTnR0NJs3bw7r37x5M4mJiUc9LioqiiZNmgDQrl07Vq1axYQJE3IM0mNjY4mNjc1XXVKebMhqL2a9Pxn4BYeC9fbAoV/aYH3WNp3pANSgBr/gF5yZtbWlLWXy/y0pSZIkSZJ0QggGgz87Zv78+dn6unbtyieffJLrcRdeeCEXXnhhQUuT8p/ajRw5kmHDhrFnzx6CwSCLFy/m73//OxMmTODZZ5/9+RMcJiYmho4dO5KUlET//v2BzKfoJiUlMXz48DyfJyMjg7179+br2lKh2wq8ktUg8wGlu97mQz7kAz5gEYvYy6E/p1vYwr+yNoAKVKALXTiDM+hGN07ndKpStdhvQ5IkSZIkSVK4fAfp11xzDeXLl2fMmDHs3r2b3/zmN9SqVYs///nPXH755fkuYOTIkQwZMoROnTpx2mmnMWnSJNLS0hg6dCiQue5R7dq1mTBhApC55nmnTp1o3Lgxe/fu5c0332T69OmhX/2QSoxUODdrA9jLXj7jMz7M2j7iI1I49PDb3ezmvaztoJa05IysrRvdaEITl4ORJEmSJEmSilmB1pEYNGgQgwYNYvfu3aSmplKjRg12797Nxx9/zBlnnJGvcw0YMICtW7cybtw4kpOTadeuHXPnzg09gPTIdY/S0tK48cYb+f777ylfvjynnnoqL774IgMGDCjIrUhFKhDIJfSOAlqTuQzMGUA3oF74kP9kbc/wDAAnc3IoWD+DM+hEJ8pRrmiKlyRJkiRJkgRAIJiXxYfyYPny5XTo0IH09PTCOF2RSUlJoXLlyuzcuZNKlSpFupyIyTXgVeTUgZnfzeTjrO1zPiedo39PlaUsHelIN7qFwvVEjv58AUmSJEmSdGLbvXs3q1atonnz5lSoUCHS5UgRd/B7Yv369axdu5a+ffvSrl07IH9ZsU82lEqS72FA1gaQRhqf8ikLWBAK13ewIzR8P/v5JGubyEQAGtEobJ31VrTyIaaSJEmSJEnSMTBdk0qwOOLombUBZJDBV3wVCtUXsIA1rAk75tus7UVeBDIfYtqZznShC6dzOl3oQi1qFfetSJIkSZIkScctg3TpOBJFFC2ytmu4BoBtbGMhC0Oz1j/lU/awJ3TMbnbzftZ2UF3qhkL10zmdDnSgPOWL/X4kSZIkSZKk40Geg/Q5c+bkun/dunXHXIyk/KtOdfplbQD72MfnfM7HfMwiFvEJn7CBDWHHfJe1/ZN/AlCGMrSlbVi43oQmBDj2tfTzux5/IT22QZIkSZIkSSo0eQ7S+/fv/7NjfIClFHkxxNAlazsomeRQqL6IRSxmMWmkhfYf4ABLsrbJTAagGtXCloM5jdOoStVivx9JkiRJkiQp0vIcpGdkZBRlHZKKUCKJXJS1AaSTzkpWhoL1T/iElawkyKHZ4NvZzltZ20GncApd6ELnrK0tbSlHuWK/H0mSJEmSJKk4uUa6VApFE03rrO1argUghRQ+5dOwcH0rW8OOW521/Y2/AVCWsrSmdShY70xnWtCCMsfwn5aC/GZLQZaDKa7rSJIkSZIk6fhnkC4JgEpU4uysDSBIkHWsC1sSZilL2c/+0DH72c/SrO0pngKgPOXpQAc60YnOdIamwNeAGbQkSZIkSZKOUwbpUglTUmZKBwjQKGsbyEAA9rKX5Szn08O2VawKWxLmJ35iQdYGwBpgB/AZ8Olh7ftCL1mSJEmSJEkqEgbpkvIsllhOy9oOSiWVpSwNC9e/5dvwA6sAvbPaQckcCtU/y2rhK8lIkiRJkiRJJUK+gvT09HQWLFhAmzZtqFKlShGVJOl4Ek883bO2g/7Lf/mMz/iUTxn72ljoDNQ64sBEoF9WO+h7YAmwNKstAX4s0vIlSZIkSZKkn5WvID06Oppzzz2XVatWGaRLpVBBlp0JqUVmoH6wdQKqHTGmTla76LC+ZA6F6gcD9o2FWJckSZIkSZL0M/K9tEurVq349ttvadiwYVHUI+lE9QPwWlY7qDGHQvUOWa3yEcclAudntYO2cShUPxiyH7GajCRJkiRJklRY8h2kjx8/nttuu417772Xjh07EhcXF7a/UqVKhVacpBPcN1ltZtb7ANCIzEC9I4fC9ZOOOK46cG5WO2gH8DnhM9fXAIX/HFZJkiRJkiSVMvkO0s8/P3Na6C9/+cuw5RSCwSCBQID09PTCq05S6RLkULj+z8P663MoVO+Y1WoccWwVoFdWOygV+AJYltWWAyuAnwq7cEmSJEmSJJ3I8h2kv/fee0VRhyQd3Yas9sphfbUIn7XeEah9xHHxwBlZ7aB0MmeqLyM8YN9c6FVLkiRJkiTpBJHvIL1Hjx5FUYck5c8PWe3/DutLANpzKFhvR+ZSMYeLBppntYGH9SeTPVxfA2QUct2SJEmSJEk67uQ7SAf48MMPeeqpp/j222/55z//Se3atZk+fToNGzbkF7/4RWHXKEl5sxmYm9UOqgy0ITNUb5v1sRUQe8SxiUDfrHbQbjKXglmW2RaykNa0Jp74wq9dkiRJkiRJJVZUfg+YPXs2ffr0oXz58ixdupS9e/cCsHPnTu6///4CFTF58mQaNGhAuXLl6NKlC4sXLz7q2GeeeYYzzzyTqlWrUrVqVXr37p3reEml3E7gQ+AJ4BqgE5lLvrQGrgQeAd4BtuVwbAWgC3A9MAXO4AwqUYlmNONSLuUe7uEVXuFrvibDqeuSJEmSJEknrHzPSB8/fjxTp05l8ODBzJw5M9TfrVs3xo8fn+8CZs2axciRI5k6dSpdunRh0qRJ9OnTh9WrV1OjxpFPE4T58+czcOBAzjjjDMqVK8eDDz7Iueeey3/+8x9q1z5ygWSpdDj8wb95FQwGi6CS48QB4Mus9uJh/bU5NGv9YGsafmiQIGuztpd5OdQfRxwtaUnrrK0NbWhNa6pTvQhv5Nj450aSJEmSJClv8h2kr169mu7du2frr1y5Mjt27Mh3AY8++ijXXnstQ4cOBWDq1Km88cYbPPfcc4waNSrb+BkzZoS9f/bZZ5k9ezZJSUkMHjw439eXpJBNWe3Nw/oOzl5vB9f+5VqWs5wv+II97Ak7NI00Fmdth0skMSxYb01rWtCCcpQr2nuRJEmSJElSocl3kJ6YmMjXX39NgwYNwvo/+ugjGjU68ql+udu3bx9Llixh9OjRob6oqCh69+7NwoUL83SO3bt3s3//fqpVq5bj/r1794aWnwFISUnJV42SSrlUYGFme/ovTwOQTjpf8zUrWMEXfMGKrO1bviVI+Izt5KxtHvNCfVFE0ZSmYeF6a1rTkIZE5X/FLUmSJEmS8qQgv5l8LPyt5qI3bdo0RowYUaAJzsqffCc21157LbfccguLFi0iEAjwww8/MGPGDG677TZuuOGGfJ1r27ZtpKenk5CQENafkJBAcnJyns5x++23U6tWLXr37p3j/gkTJlC5cuVQq1u3br5qlKQjRRPNKZzCr/l12DrpKaTwCZ/wDM9wMzfTi16cxEnZjs8gg9Ws5p/8k3GM42IupglNqEQlTud0ruEaHuVR3uZtvuf7bOG8JEmSJEknol27djFixAjq169P+fLlOeOMM/j000/DxqSmpjJ8+HDq1KlD+fLladGiBVOnTg0bk5yczJVXXkliYiJxcXF06NCB2bNn53rtq666ikAgkK317du30O9TxyYYDDJu3Dhq1qxJ+fLl6d27N2vXri3y6+Z7RvqoUaPIyMjg7LPPZvfu3XTv3p3Y2Fhuu+02brrppqKo8ageeOABZs6cyfz58ylXLudlEkaPHs3IkSND71NSUgzTJRWJeOLpkrUdFCRIMsmhWesHZ7CvZCV72Rt2fBppLMraDleJSrSgBS0P21rQgtrUJkDxziaQJEmSJKmoXHPNNXz55ZdMnz6dWrVq8eKLL9K7d29WrlwZejbiyJEjeffdd3nxxRdp0KAB//73v7nxxhupVasWv/zlLwEYPHgwO3bsYM6cOVSvXp2XXnqJyy67jM8++4z27dsf9fp9+/bl+eefD+uLjY0tuhsWADt27CAqKopKlSrlafxDDz3E448/zgsvvEDDhg0ZO3Ysffr0YeXKlUfNiAtDvmekBwIB/vSnP7F9+3a+/PJLPvnkE7Zu3cq9996b74tXr16d6OhoNm/eHNa/efNmEhMTcz32kUce4YEHHuDf//43bdq0Oeq42NhYKlWqFNYkqbgECFCTmpzLudzKrbzACyxlKamkspKVzGIWYxjDRVxEQxrmeI6DM93/yl8ZyUj60Ie61CVqRxSBjwMEngnwGI/xb/7NJjaVyhnsOc0a+LkmSZIkSSo5fvrpJ2bPns1DDz1E9+7dadKkCXfddRdNmjRhypQpoXEff/wxQ4YMoWfPnjRo0IDrrruOtm3bsnjx4rAxN910E6eddhqNGjVizJgxVKlShSVLluRaQ2xsLImJiWGtatWqAMyfP5+YmBg+/PDD0PiHHnqIGjVqhLLNHTt2cP3115OQkEC5cuVo1aoVr7/+emj8Rx99xJlnnkn58uWpW7cuN998M2lpaaH9e/fu5bbbbqN27drExcXRpUsX5s+fH1bjtGnTqFevHhUqVODiiy/mv//9b9j+b775hosuuoiEhATi4+Pp3Lkz77zzTtiYBg0acP/993P11VdTsWJF6tWrx9NPPx025vvvv2fgwIFUq1aNuLg4OnXqxKJFhyb+vfbaa3To0IFy5crRqFEj7r77bg4cOABkzhi/6667qFevHrGxsdSqVYubb775qJ/35cuXk5iYyBVXXMG8efPIyMg46thgMMikSZMYM2YMF110EW3atOFvf/sbP/zwA6+++upRjysM+Q7Sr776anbt2kVMTAwtWrTgtNNOIz4+nrS0NK6++up8nSsmJoaOHTuSlJQU6svIyCApKYmuXbse9biHHnqIe++9l7lz59KpU6f83oIkRVwZytCc5lzGZdzLvbzKq3zLt+xiF3QGrgIeJvPBp+uPcpIqwBnAtYQC9jrUoSpV6UY3ruVaJjGJeczjB34olQG7JEmSJOn4cODAAdLT07PNKC5fvjwfffRR6P0ZZ5zBnDlz2LRpE8FgkPfee481a9Zw7rnnho2ZNWsW27dvJyMjg5kzZ7Jnzx569uxZ4Pp69uzJiBEjuPLKK9m5cyeff/45Y8eO5dlnnyUhIYGMjAzOO+88FixYwIsvvsjKlSt54IEHiI6OBjID7r59+3LJJZfwxRdfMGvWLD766COGDx8eusbw4cNZuHAhM2fO5IsvvuDSSy+lb9++oWVLFi1axG9/+1uGDx/OsmXL6NWrF+PHjw+rMzU1lfPPP5+kpCQ+//xz+vbtS79+/di4cWPYuIkTJ9KpUyc+//xzbrzxRm644QZWr14dOkePHj3YtGkTc+bMYfny5fzxj38MBdwffvghgwcP5pZbbmHlypU89dRTTJs2jfvuuw+A2bNn89hjj/HUU0+xdu1aXn31VVq3bn3Uz2337t156623iI2N5de//jX169fnjjvuCNVzuHXr1pGcnBy2zHflypXp0qVLnp+5WWDBfIqKigpu3rw5W//WrVuD0dHR+T1dcObMmcHY2NjgtGnTgitXrgxed911wSpVqgSTk5ODwWAweOWVVwZHjRoVGv/AAw8EY2Jigi+//HLwxx9/DLVdu3bl6Xo7d+4MAsGdO3fmu9YTCWAr5c0/N8XzOSu0z3M8QToT5CqCPESQNwiynmB+tirBKsEzgmcErwleE3wk+EiQ8wnSkCBRJe9zkF8l+espSZIkScUpLS0t+NlnnwXT0tKy7Svp/47u2rVrsEePHsFNmzYFDxw4EJw+fXowKioq2KxZs9CYPXv2BAcPHhwEgmXKlAnGxMQEX3jhhbDz/O9//wuee+65oTGVKlUKvv3227lee8iQIcHo6OhgXFxcWLvvvvtCY/bu3Rts165d8LLLLgu2aNEieO2114b2vf3228GoqKjg6tWrczz/b3/72+B1110X1vfhhx8Go6Kigj/99FNww4YNwejo6OCmTZvCxpx99tnB0aNHB4PBYHDgwIHB888/P2z/gAEDgpUrV8713lq2bBl84oknQu/r168fvOKKK0LvMzIygjVq1AhOmTIlGAwGg0899VSwYsWKwf/+9785nu/ss88O3n///WF906dPD9asWTMYDAaDEydODDZr1iy4b9++XOvKye7du4MvvfRSsG/fvsEyZcoEu3TpEpwyZUpwx44dwWAwGFywYEEQCP7www9hx1166aXByy67LMdzHvyeePnll4MTJkwIfv7556F9+cmK87xGekpKCsFgkGAwyK5du8J+OpSens6bb75JjRo18nq6kAEDBrB161bGjRtHcnIy7dq1Y+7cuaEHkG7cuJGoqEMT56dMmcK+ffv49a9/HXaeO++8k7vuuivf15ek40Iq8GlWO1w80AKeW/Qc/zls+47vsp1iBzv4OGsD4I2sHXuANcBXwKqsj19l9e0OP0dBlkQJltCntJ9I9yJJkiRJJ4Lp06dz9dVXU7t2baKjo+nQoQMDBw4MW5LliSee4JNPPmHOnDnUr1+fDz74gGHDhlGrVq3QLOWxY8eyY8cO3nnnHapXr86rr77KZZddxocffpjrzOhevXqFLSMDUK1atdDrmJgYZsyYQZs2bahfvz6PPfZYaN+yZcuoU6cOzZo1y/Hcy5cv54svvmDGjBmhvmAwSEZGBuvWrePbb78lPT092/F79+7lpJNOAmDVqlVcfPHFYfu7du3K3LlzQ+9TU1O56667eOONN/jxxx85cOAAP/30U7YZ6YcvlR0IBEhMTGTLli2he2nfvn3YvR95LwsWLAjNQIfMfHjPnj3s3r2bSy+9lEmTJtGoUSP69u3L+eefT79+/ShT5uej6PLlyzNw4EAGDhzImjVrGDhwIDfccAN79uxhxIgRP3t8UcpzkF6lSpXQurI5/YEIBALcfffdBSpi+PDhYb/GcLgj1wFav359ga4hSSekVGAxDGVoWHcKKaxiVShYX8nKowbslAPaZLUjredQsH54yL6lMG9CkiRJkiRo3Lgx77//PmlpaaSkpFCzZk0GDBhAo0aNgMx11O+44w5eeeUVLrjgAiAzEF62bBmPPPIIvXv35ptvvuHJJ5/kyy+/pGXLlgC0bduWDz/8kMmTJzN16tSjXj8uLo4mTZrkWuPHH2dOTtu+fTvbt28nLi4OyAyAc5Oamsr111+f41rh9erV44svviA6OpolS5aEloM5KD4+PtdzH+62225j3rx5PPLIIzRp0oTy5cvz61//mn379oWNK1u2bNj7QCAQWrolL/dy991386tf/SrbvnLlylG3bl1Wr17NO++8w7x587jxxht5+OGHef/997Nd90gHDhzg3//+N9OnT+e1116jUaNGPPTQQwwaNAgg9FzNzZs3U7NmzdBxmzdvpl27drme+1jlOUh/7733CAaDnHXWWcyePTvbT2Pq169PrVq1iqRISSoJjqcZzJWoRJes7XAppLCa1XzFVwy+bzA0B04FmgI5/b+sQVbre0T//wgP1g8G7euA9EK8EUmSJElSqRMXF0dcXBz/+9//ePvtt3nooYcA2L9/P/v37w9bvQIgOjo6FALv3p35q9W5jSmob775ht///vc888wzzJo1iyFDhvDOO+8QFRVFmzZt+P7771mzZk2Ok5A7dOjAypUrjxrUt2/fnvT0dLZs2cKZZ56Z45jmzZuHPfAT4JNPPgl7v2DBAq666qrQzPXU1NR8T0xu06YNzz77LNu3b89xVnqHDh1YvXp1rj90KF++PP369aNfv34MGzaMU089lRUrVtChQ4ccxy9dupTp06fz97//nQMHDjBw4EA++OCDbM/HbNiwIYmJiSQlJYWC85SUFBYtWsQNN9yQr/vMrzwH6T169AAyF3SvW7dutj+MkqSSrxKV6Jy1DR4z+NCOMkAjMkP1g+1gyF4lhxNVJfNBp2cc0b8P+JrMZWGy2gd8QDOakUACAfL/wwhJkiRJUunw9ttvEwwGOeWUU/j666/5wx/+wKmnnsrQoZm/hV2pUiV69OjBH/7wB8qXL0/9+vV5//33+dvf/sajjz4KwKmnnkqTJk24/vrreeSRRzjppJN49dVXmTdvHq+//nqu19+7dy/JyclhfWXKlKF69eqkp6dzxRVX0KdPH4YOHUrfvn1p3bo1EydO5A9/+AM9evSge/fuXHLJJTz66KM0adKEr776ikAgQN++fbn99ts5/fTTGT58ONdccw1xcXGsXLmSefPm8eSTT9KsWTMGDRrE4MGDmThxIu3bt2fr1q0kJSXRpk0bLrjgAm6++Wa6devGI488wkUXXcTbb78dtqwLQNOmTfnXv/5Fv379CAQCjB07Nt8/QBg4cCD3338//fv3Z8KECdSsWZPPP/+cWrVq0bVrV8aNG8eFF15IvXr1+PWvf01UVBTLly/nyy+/ZPz48UybNo309HS6dOlChQoVePHFF0Nfr5x8+OGHnH322Zx33nn85S9/4cILLyQmJibHsYFAgBEjRjB+/HiaNm1Kw4YNGTt2LLVq1aJ///75us/8ynOQftDBG969ezcbN27M9msBh6+vI0k6ThzgUPg954h9CYQH6wdbTv//iwFaZLUsPcj8QWxFKtIsa2tK09DrZjSjMpUL934kSZIkSdmU9Oc+7dy5k9GjR/P9999TrVo1LrnkEu67776w5UBmzpzJ6NGjGTRoENu3b6d+/frcd999/O53vwMylyx58803GTVqFP369SM1NZUmTZrwwgsvcP755+d6/blz54YtFwJwyimn8NVXX3HfffexYcOGUBhfs2ZNnn76aQYOHMi5555L27ZtmT17NrfddhsDBw4kLS2NJk2a8MADDwCZmen777/Pn/70J84880yCwSCNGzdmwIABoWs9//zzjB8/nltvvZVNmzZRvXp1Tj/9dC688EIATj/9dJ555hnuvPNOxo0bR+/evRkzZgz33ntv6ByPPvooV199NWeccQbVq1fn9ttvJyUlJV9fh5iYGP79739z6623cv7553PgwAFatGjB5MmTAejTpw+vv/4699xzDw8++CBly5bl1FNP5ZprrgEylwh/4IEHGDlyJOnp6bRu3Zr/+7//C631fqQWLVqwadMmTj755DzV98c//pG0tDSuu+46duzYwS9+8Qvmzp0b9kzPohAI5vM7aOvWrQwdOpS33norx/3p6SX7d/pTUlKoXLkyO3fupFKlSpEuJ2IKskSFpPwryF9SimsJmWP+70Ac0IzsM9ibkrnuej7UoEZYsH5wa0xjyuXhZCX5v2kl/S+qkiRJkk4su3fvZtWqVTRv3pwKFSpEuhwp4g5+T6xfv561a9fSt2/fsGVh8poV53tG+ogRI9ixYweLFi2iZ8+evPLKK2zevJnx48czceLEAt2MJOk4lAZ8ntUOFwDqkhmyN4ObJ9/MmqxtPevJIPuvlG3J2j7ioyNOFaA+9cNmsjelKU1oQgMaUDbHhd0lSZIkSZIKV76D9HfffZfXXnuNTp06ERUVRf369TnnnHOoVKkSEyZMCD0xV5JUSgWBjVntHfjz5D+Hdu1lL9/yLWtYw1rWhgL2NazhR37M4VRB1mdt/+bfYfuiiKI+9WlCE/gLmWuzfw18A3wL/FRkdyhJkiRJkkqZfAfpaWlp1KhRA4CqVauydetWmjVrRuvWrVm6dGmhFyhJx7OSvORIJMQSS/Os7Ui72MVa1tLx8o6h2ew0A06BnJZQzyCDdVkbOT2Y+3syQ/XDA/aDH/O3PNwxKa6leiRJkiRJUtHJd5B+yimnsHr1aho0aEDbtm156qmnaNCgAVOnTs22GL8kSXlVkYp0oAPMymHnyRwK1psAjbM+NiHHkB2AOlmtRw77tpJzwP41sO0YbkKSJEmSJJ2Q8h2k33LLLfz4Y+av399555307duXGTNmEBMTw7Rp0wq7PknSca5QZuVvzWoLcth3EodC9cZHvK5xlPOdnNW65rBvJ5mh+joyl4hZd9jrDcDegt6EJEmSJBWfjIzsz6eSSqPC+l7Ic5C+bt06GjZsyBVXXBHq69ixIxs2bOCrr76iXr16VK9evVCKkiQpz/6b1RblsK8SmYH6wYD98KC9zlHOVxnokNVysonsAfvB15vIXCNekiRJkiIkJiYGgNTUVOLj4yNcjRR5qampAOzfv/+YzpPnIL1x48bUr1+fXr16cdZZZ9GzZ0/q1KlDhQoV6NDhaGmDJEkRlAJ8ntWOVA5oRPaAvQlQj6P/H7J2Vjszh317yZy1ntNs9nXA/wp4H5IkSZKUR2XKlKF69eps2rQJgPj4eKKioiJclVT8MjIySE1NZdOmTezYsSM0M72gvzmf5yD93XffZf78+cyfP5+///3v7Nu3j0aNGnHWWWfRq1cvevXqRUJCQoGKkCSp2O0BVma1I0UDdckM2htmtcNfH+1/d7EcWss9JzsJD9jXkxm8H2w7838bx8IHoZZcfm0kSZJ0LOrVqwcQCtOl0mzHjh1s3ryZffv2AVChQoUCnScQLMC/uvbs2cPHH38cCtYXL17M/v37OfXUU/nPf/5ToEKKS0pKCpUrV2bnzp1UqlQp0uVETKGsWSypxChIgOZ/B45BHNCA8ID98KC9oL89uQPYAP3a9qP+EVsDGnAyJxOg8L5uhrUll18bSZIkFYa0tDTmz5/Pt99+68x0lTrBYJB9+/aRnp5Oeno6KSkpnHLKKZx33nmhMD0/WXGBgvSD9u3bx4IFC3jrrbd46qmnSE1NJT09vaCnKxYG6ZkM0KQTi0F6CXMyOc9kb0Tuy8b8jPKUpx71sgXsB1/XohbRROf5fIa1JZdfG0mSJBWWn376iXfffZfvv/+eAwcORLocKSLKlClD7dq1Oeuss8JmpBdZkL5v3z4++eQT3nvvPebPn8+iRYuoW7cu3bt3p3v37vTo0SP0qyMllUF6JgM06cRikH4ciSbzQaeNgPo5tLpATMFOXYYy1KFOtoC9XtZWhzpU4NBfGIojrDUQLhg/b5IkSSps6enpBukqtcqUKUN0dPaJZ0USpJ911lksWrSIhg0b0qNHD84880x69OhBzZo1C1Z9hBikZzJAk04sBuknkCj4Lv07NuSwrWc9G9jAT/xU4NOfxEnUzdr+b/L/wXeEt01ALg8yN0gvHn7eJEmSJKnoFUmQXrZsWWrWrEn//v3p2bMnPXr04KSTTiqUgouTQXomAzTpxGKQfmLJ7esZJMg2tmUL15947YlDs9qrHsPFM4DNZA/YD28/Zo0rIsX157kkB88n2v1IkiRJUklUJEF6WloaH374IfPnz+e9995j2bJlNGvWjB49eoSC9ZNPPrlQbqAoGaRnMkCTTiwG6SeWY/56ViJ8uZh6ZC4Zc7DVpsDrtANwgMyZ6zmF7Juy2mYKHLYbpJ949yNJkiRJJVGxPGx0165dfPTRR6H10pcvX07Tpk358ssv83WeyZMn8/DDD5OcnEzbtm154oknOO2003Ic+5///Idx48axZMkSNmzYwGOPPcaIESPydT2D9EwGaNKJxSD9xFLkX88oIJHwcP3Ilpg1rqAOAMkcCtaP1tKyH2qQfuLdjyRJkiSVRPnJigs8Hy0uLo5q1apRrVo1qlatSpkyZVi1alW+zjFr1ixGjhzJ1KlT6dKlC5MmTaJPnz6sXr2aGjVqZBu/e/duGjVqxKWXXsrvf//7gpYuSSccQ3HlSwbwQ1ZbdJQxZYFa5B625/aLaGXIfKhqnZ+pZSeZgfoPhML1yUym9mFbAglEk/2hMJFgwC1JkiRJpVOeZ6RnZGTw2WefhZZ2WbBgAWlpadSuXZtevXqFWv369fN88S5dutC5c2eefPLJ0DXq1q3LTTfdxKhRo3I9tkGDBowYMcIZ6QVk6CZJJddx8xsG5cgMyo9cNubwVoNjm9kORBNNIolh4frBrWbW1qpaK/hf/s5bkme+G9hLkiRJUtErkhnpVapUIS0tjcTERHr16sVjjz1Gz549ady4cYGK3LdvH0uWLGH06NGhvqioKHr37s3ChQsLdM6c7N27l71794bep6SkFNq5JUkq1fYAX2e1oykD1CR7wF6bzBnvB1/HHf0U6aSzKWs7qu1Z9SST+TDUH494fXjbQpE+LFWSJEmSdOLJc5D+8MMP06tXL5o1a1YoF962bRvp6ekkJCSE9SckJPDVV18VyjUAJkyYwN13311o55MkqaidUL81dIBDDyLNTWVCofpz/34uFJwfvm1hC0FymXVdDmiQ1XKTDmyBDnQIzWg/fEskMfQ6ltg83qgkSZIk6USW5yD9+uuvL8o6iszo0aMZOXJk6H1KSgp169aNYEWSJCmbnVltJQxlaI5D9rOfZJLDwvUfs7YX3n4hc+Z7TXJfux0gOnPc51lbbqpSNSxk52Fgcw5tK5kBvSRJkiTphFTgh40eq+rVqxMdHc3mzZvD+jdv3kxiYmKhXSc2NpbYWGeTSZJ0vDjmGfllgQQgkUPheg4tuk406T+Tfv8va1vJysyO244yMAP4LzmG7M/zPAmHbTWoQQwxx3aPkiRJkqRiFbEgPSYmho4dO5KUlET//v2BzIeNJiUlMXz48EiVJUmSjnf7ge+zWi72BfexjW2hWe05bckk8yM/8hM/5X6yKDJnwp8MtArfdTVXZxtelaph4frBgP3ga07jUBi/J4/3LUmSJEkqMhEL0gFGjhzJkCFD6NSpE6eddhqTJk0iLS2NoUMzf6V78ODB1K5dmwkTJgCZDyhduXJl6PWmTZtYtmwZ8fHxNGnSJGL3IUmSjj9RRFEja2tL26OOCxIkhRR+5Eea92ieOds9t1b+5699cKb7VxzluTCLDnu9i8ylY36mrWMdNahBXG5PbpUkSZIkFUhEg/QBAwawdetWxo0bR3JyMu3atWPu3LmhB5Bu3LiRqKio0PgffviB9u3bh94/8sgjPPLII/To0YP58+cXd/mSJOk4VmQPdY0nLFj/y7/+wuajbKmk/vz5Kma1RrkPa5Q1oDzlOTkfWyUqEeAEesCtJEmSJBWBQDAYDEa6iOKUkpJC5cqV2blzJ5UqVYp0ORFTZOGBJEkKk9tftXazO8eAfdyT4w6F8QeXjKlG5hIyhSyGGKpTnRrUCAvYq1Odkw7bDn9fPi/T7iVJkiSphMtPVmyQXkoZpEuSVDwK8letHP8/HQWcxKFg/Yh26fBL2XrYto1tZJBxLKUfVXnKZwvajwzbj3zvzHdJkiRJJY1Bei4M0jMZpEuSVDwKLUjP90mAquQcvNc4Sn/ZY7/s0ZShDNWolqcA/iROohrVqEpVYogpuqJOMAX5c1PK/ikgSZIkhclPVhzRNdIlSZJURILA9qy2Oo/HVOZQqF6dzBnwB1vW++6/6s5/s7ZtbOMAB/J06gMcYEvWlh9xxFGVqqFg/ciPR+urTGWiic7XtSRJkiTpaAzSJUmSlGlnVvv66EM+4IPwjorkGLgf9f1JZD6QNY/Ssrbv+T7vBwEBAlSmcp6D98P74ohzGZrjkDPyJUmSVJQM0iVJklRwu7La+nwcE0v2cP3IwL0qmQ9YrXrY63J5v0SQIDuytvwqQxmqUpUqh22VqZzr68P74oknqiieDCtJkiQpYgzSJUmSVLz2Aj9ktfwox6Fw/YiQfcyjY9jOdv6XtR18ffBjfh68eoADoYe2FsTB2fB5CeBzel2ZypQtygXrJUmSJOWbDxstpXzYqCRJxSNiDxtVuIocNYQ/al/lrBaJpdZTyVxmZweQUsC2C0jP/TIn0j8FXNpFkiRJ+eXDRiVJkqTDHVyCZkM+jwuQuaZ7ZaAKfLDiA3ayM7RszOGvj3y/k538j/+xn/35rzc+q9XO/6Fh0sg1bP8Tf6JSHrZYYo+xEEmSJOn45oz0UsqZbpIkFQ9npJ9Y8vv1DBJkD3uOGr4f7fXHX34MVchs+Xg4a1GJIYZKVKJi1hZPfOjj4a/zuq885Qv9ga7OSJckSVJ+OSNdkiSphDAUL90CBCiftSWSmPfjWh/25yaKzKVpKhVCK+AzUPexj21ZW2EIEMh3AH+08XFZmyRJklSUDNIlSZKkkiyDzPXSdxbCueIIC9bnLZ5HSh63nexkF7tIJZW97D2mMoIE2ZW1FZoDZC5lszvrYx7an/lzKIiPI44KVAh7f3h/dEQWy5ckSVJJ4dIupZSz4yRJkvKvuP7qXOL/rlaGQ+u4V/yZ13npq0hkHuqaD+UoRxxx/HfDf7OH8jmF97uz2k/5+Jhx6Hql7J9pxxWXEZIk6cTh0i6SJEmSis4BYEdWKyzlCIXry9ctJzVrOzgL/uDHI/vSsrb3P30/c8b94a184ZW3J2ujfuGdM5t9hEL1xjSmPOWpQIUi+egMe0mSpPwxSJckSZIUeXuy2jZoQ5t8Hx44LYdZwgGgAtkD9qz20pyXQkH84dtudufYn0Ya3/z4zaFzFHYWHZPVqsC3fFvIJw9XlrKUoxzlKU+5o2y57TuWY8tSttAfNitJklTUDNIlSZKkPHJJh+JRaEvbBDm01EoOfhP4zbGdP5ZDofqRgX0FMmfEF/Bj9frV+Ymf2M1ughT+n6H9WVuhrlOfV+kc+sHJUdoFZ18QCt5jc9liiMlX/5H7DPUlSVJeGaRLkiRJUkHszWrbC//UW4NbgcwHs+5jH7vZHQrWj/Zx8HWD8xfYx0LDFg35iZ9CS9fsYU/h38yRojn0A4ejeIM3ir6OLPkN35nBoa/9vsNeH9n2ZbX98AqvEEMMZSkb9jEvr6OIKrbPhSRJOjofNlpKlfgHWEmSJEmlWEH+mVYYvzFxMLg/GKofGbIfueVl//R/TM9cA//IVj6HvrL5voUTXjTR+Qrej/a6IMeVoUy2j91P7w77yXxWQk4fc+orJqUs3oiYE+23s060+5GUPz5sVJIkSZKUbwECoZnXlalcKOecPmB63gdHk7lkzpFBe2xWiznsdWx4/2NTHmNvDts+9h21/8NFH+Z4rrD3EZaetRXLbwvkxScFOCado4fsuQXw+RmzH+7gjhx/AHDwdTTROX7Ma19+x/vbBJJ0YikRM9InT57Mww8/THJyMm3btuWJJ57gtNNOO+r4f/7zn4wdO5b169fTtGlTHnzwQc4///w8XcsZ6ZmckS5JkiSVXJGakV4UiuvfHkX2OTs8WM8lyM+xryyHHiL7c6+P6Otxbg/2sY/97Gdf1na01/vYl+97V/EorFA+L+MPblFE5fl1fsYefP2by36T+cORDDI/5uH1p4s/LVB9R3tdmM82KKn/7ZRUPI6rGemzZs1i5MiRTJ06lS5dujBp0iT69OnD6tWrqVGjRrbxH3/8MQMHDmTChAlceOGFvPTSS/Tv35+lS5fSqlWrCNyBJEmSJJUeJXVSTpHVdXCt82J+Luv84Pw8jw0SJJ10ylYom+/A/uX/eznHYP4AB0IPpT34+gAHeGTSI5lJQtmsVuYoH3Pb93Njogv4SSuBDmRtJ5R/5P+QznQu3BoyyB7YH9mCR+k/ct+q/B/Xk55EHbEFCGTrKyn7Dr4P5LAVV//5fc/P/PwFD/scB3Noh/V//PHHxV5nXvtz24Bc9+VHSf5hdGkU8RnpXbp0oXPnzjz55JMAZGRkULduXW666SZGjRqVbfyAAQNIS0vj9ddfD/WdfvrptGvXjqlTp/7s9ZyRnqmk/uVXkiRJUsmeke6/JYpHSf0zUCxf/wAFCuCTPkzK8QcA+9lPOukc4EC2j3ntO3zf9BnTDwX+h3/Mpa9lu5b5vrakE0cDGrCOdfk+ziC96B03M9L37dvHkiVLGD16dKgvKiqK3r17s3DhwhyPWbhwISNHjgzr69OnD6+++mqO4/fu3cvevXtD73fu3AlkfpIkSZIkqSQqrn+v+O+ikqtU/xkIcug3AfKhU0qnoqgmm+lX5GPd/ywf7/w438dkkJEtZP+5vjPOOCMzxI8GorJa9GEfc+ifPnM66aSTQQbppId+w+HwvoOvM8hg1OhR2c935HmPvGbgKOMLctzR7i1wWH9U1vsj+47cH5XLmCP7pWMQJEgKJfC/t1lK5P8LisnBe8/LDxMiGqRv27aN9PR0EhISwvoTEhL46quvcjwmOTk5x/HJyck5jp8wYQJ33313tv66desWsGpJkiRJKlqVKxfOgz5LynWUf/4ZyL+SfC8lubYrK18Z6RKkE94GNhTaQ7yLQkn+b1Rx2bVr189+HiK+RnpRGz16dNgM9oyMDLZv385JJ51Uan8lMSUlhbp16/Ldd9+V6uVtpJLK71GpZPN7VCrZ/B6VSja/R6WSze9RlTbBYJBdu3ZRq1atnx0b0SC9evXqREdHs3nz5rD+zZs3k5iYmOMxiYmJ+RofGxtLbGxsWF+VKlUKXvQJpFKlSv5HUSrB/B6VSja/R6WSze9RqWTze1Qq2fweVWmS1xn5EV3lKSYmho4dO5KUlBTqy8jIICkpia5du+Z4TNeuXcPGA8ybN++o4yVJkiRJkiRJOhYRX9pl5MiRDBkyhE6dOnHaaacxadIk0tLSGDp0KACDBw+mdu3aTJgwAYBbbrmFHj16MHHiRC644AJmzpzJZ599xtNPPx3J25AkSZIkSZIknaAiHqQPGDCArVu3Mm7cOJKTk2nXrh1z584NPVB048aNREUdmjh/xhln8NJLLzFmzBjuuOMOmjZtyquvvkqrVq0idQvHndjYWO68885sS95IKhn8HpVKNr9HpZLN71GpZPN7VCrZ/B6Vji4QDAaDkS5CkiRJkiRJkqSSKqJrpEuSJEmSJEmSVNIZpEuSJEmSJEmSlAuDdEmSJEmSJEmScmGQLkmSJEmSJElSLgzSS5nJkyfToEEDypUrR5cuXVi8eHGkS5IETJgwgc6dO1OxYkVq1KhB//79Wb16daTLknQUDzzwAIFAgBEjRkS6FElZNm3axBVXXMFJJ51E+fLlad26NZ999lmky5KUJT09nbFjx9KwYUPKly9P48aNuffeewkGg5EuTSqVPvjgA/r160etWrUIBAK8+uqrYfuDwSDjxo2jZs2alC9fnt69e7N27drIFCuVEAbppcisWbMYOXIkd955J0uXLqVt27b06dOHLVu2RLo0qdR7//33GTZsGJ988gnz5s1j//79nHvuuaSlpUW6NElH+PTTT3nqqado06ZNpEuRlOV///sf3bp1o2zZsrz11lusXLmSiRMnUrVq1UiXJinLgw8+yJQpU3jyySdZtWoVDz74IA899BBPPPFEpEuTSqW0tDTatm3L5MmTc9z/0EMP8fjjjzN16lQWLVpEXFwcffr0Yc+ePcVcqVRyBIL++LfU6NKlC507d+bJJ58EICMjg7p163LTTTcxatSoCFcn6XBbt26lRo0avP/++3Tv3j3S5UjKkpqaSocOHfjLX/7C+PHjadeuHZMmTYp0WVKpN2rUKBYsWMCHH34Y6VIkHcWFF15IQkICf/3rX0N9l1xyCeXLl+fFF1+MYGWSAoEAr7zyCv379wcyZ6PXqlWLW2+9ldtuuw2AnTt3kpCQwLRp07j88ssjWK0UOc5ILyX27dvHkiVL6N27d6gvKiqK3r17s3DhwghWJiknO3fuBKBatWoRrkTS4YYNG8YFF1wQ9v9TSZE3Z84cOnXqxKWXXkqNGjVo3749zzzzTKTLknSYM844g6SkJNasWQPA8uXL+eijjzjvvPMiXJmkI61bt47k5OSwv/NWrlyZLl26mCGpVCsT6QJUPLZt20Z6ejoJCQlh/QkJCXz11VcRqkpSTjIyMhgxYgTdunWjVatWkS5HUpaZM2eydOlSPv3000iXIukI3377LVOmTGHkyJHccccdfPrpp9x8883ExMQwZMiQSJcniczfHElJSeHUU08lOjqa9PR07rvvPgYNGhTp0iQdITk5GSDHDOngPqk0MkiXpBJm2LBhfPnll3z00UeRLkVSlu+++45bbrmFefPmUa5cuUiXI+kIGRkZdOrUifvvvx+A9u3b8+WXXzJ16lSDdKmE+Mc//sGMGTN46aWXaNmyJcuWLWPEiBHUqlXL71NJ0nHBpV1KierVqxMdHc3mzZvD+jdv3kxiYmKEqpJ0pOHDh/P666/z3nvvUadOnUiXIynLkiVL2LJlCx06dKBMmTKUKVOG999/n8cff5wyZcqQnp4e6RKlUq1mzZq0aNEirK958+Zs3LgxQhVJOtIf/vAHRo0axeWXX07r1q258sor+f3vf8+ECRMiXZqkIxzMicyQpHAG6aVETEwMHTt2JCkpKdSXkZFBUlISXbt2jWBlkiDzYS7Dhw/nlVde4d1336Vhw4aRLknSYc4++2xWrFjBsmXLQq1Tp04MGjSIZcuWER0dHekSpVKtW7durF69OqxvzZo11K9fP0IVSTrS7t27iYoKjyCio6PJyMiIUEWSjqZhw4YkJiaGZUgpKSksWrTIDEmlmku7lCIjR45kyJAhdOrUidNOO41JkyaRlpbG0KFDI12aVOoNGzaMl156iddee42KFSuG1p2rXLky5cuXj3B1kipWrJjtmQVxcXGcdNJJPstAKgF+//vfc8YZZ3D//fdz2WWXsXjxYp5++mmefvrpSJcmKUu/fv247777qFevHi1btuTzzz/n0Ucf5eqrr450aVKplJqaytdffx16v27dOpYtW0a1atWoV68eI0aMYPz48TRt2pSGDRsyduxYatWqRf/+/SNXtBRhgWAwGIx0ESo+Tz75JA8//DDJycm0a9eOxx9/nC5dukS6LKnUCwQCOfY///zzXHXVVcVbjKQ86dmzJ+3atWPSpEmRLkUS8PrrrzN69GjWrl1Lw4YNGTlyJNdee22ky5KUZdeuXYwdO5ZXXnmFLVu2UKtWLQYOHMi4ceOIiYmJdHlSqTN//nx69eqVrX/IkCFMmzaNYDDInXfeydNPP82OHTv4xS9+wV/+8heaNWsWgWqlksEgXZIkSZIkSZKkXLhGuiRJkiRJkiRJuTBIlyRJkiRJkiQpFwbpkiRJkiRJkiTlwiBdkiRJkiRJkqRcGKRLkiRJkiRJkpQLg3RJkiRJkiRJknJhkC5JkiRJkiRJUi4M0iVJkiRJkiRJyoVBuiRJkqRcTZs2jSpVqkS6DEmSJCliDNIlSZKkEu6qq66if//+2frnz59PIBBgx44dxV6TJEmSVJoYpEuSJEk6qv3790e6BEmSJCniDNIlSZKkE8Ts2bNp2bIlsbGxNGjQgIkTJ4btDwQCvPrqq2F9VapUYdq0aQCsX7+eQCDArFmz6NGjB+XKlWPGjBlh49evX09UVBSfffZZWP+kSZOoX78+GRkZhX5fkiRJUqQZpEuSJEkngCVLlnDZZZdx+eWXs2LFCu666y7Gjh0bCsnzY9SoUdxyyy2sWrWKPn36hO1r0KABvXv35vnnnw/rf/7557nqqquIivKfGJIkSTrxlIl0AZIkSZJ+3uuvv058fHxYX3p6euj1o48+ytlnn83YsWMBaNasGStXruThhx/mqquuyte1RowYwa9+9auj7r/mmmv43e9+x6OPPkpsbCxLly5lxYoVvPbaa/m6jiRJknS8cLqIJEmSdBzo1asXy5YtC2vPPvtsaP+qVavo1q1b2DHdunVj7dq1YYF7XnTq1CnX/f379yc6OppXXnkFgGnTptGrVy8aNGiQr+tIkiRJxwtnpEuSJEnHgbi4OJo0aRLW9/333+frHIFAgGAwGNaX08NE4+Licj1PTEwMgwcP5vnnn+dXv/oVL730En/+85/zVYskSZJ0PDFIlyRJkk4AzZs3Z8GCBWF9CxYsoFmzZkRHRwNw8skn8+OPP4b2r127lt27dxfoetdccw2tWrXiL3/5CwcOHMh1KRhJkiTpeGeQLkmSJJ0Abr31Vjp37sy9997LgAEDWLhwIU8++SR/+ctfQmPOOussnnzySbp27Up6ejq33347ZcuWLdD1mjdvzumnn87tt9/O1VdfTfny5QvrViRJkqQSxzXSJUmSpBNAhw4d+Mc//sHMmTNp1aoV48aN45577gl70OjEiROpW7cuZ555Jr/5zW+47bbbqFChQoGv+dvf/pZ9+/Zx9dVXF8IdSJIkSSVXIHjkIomSJEmSlAf33nsv//znP/niiy8iXYokSZJUpJyRLkmSJClfUlNT+fLLL3nyySe56aabIl2OJEmSVOQM0iVJkiTly/Dhw+nYsSM9e/Z0WRdJkiSVCi7tIkmSJEmSJElSLpyRLkmSJEmSJElSLgzSJUmSJEmSJEnKhUG6JEmSJEmSJEm5MEiXJEmSJEmSJCkXBumSJEmSJEmSJOXCIF2SJEmSJEmSpFwYpEuSJEmSJEmSlAuDdEmSJEmSJEmScmGQLkmSJEmSJElSLgzSJUmSJEmSJEnKhUG6JEmSJEmSJEm5MEiXJEmSJEmSJCkXBumSJEmSJEmSJOXCIF2SJEmSJEmSpFwYpEuSJEmSJEmSlAuDdEmSJEmSJEmScmGQLkmSJEmSJElSLgzSJUmSJEmSJEnKhUG6JEmSJEmSJEm5MEiXJEmSJEmSJCkXBumSJEmSJEmSJOXCIF2SJEmSJEmSpFwYpEuSJEmSJEmSlAuDdEmSJEmSJEmScmGQLkmSJEmSJElSLgzSJUmSJEmSJEnKhUG6JEmSJEmSJEm5MEiXJEmSJEmSJCkXBumSJElSBNx11120a9cu0mVEVIMGDZg0aVKky5AkSZJ+lkG6JEmSlE/JycncdNNNNGrUiNjYWOrWrUu/fv1ISkqKdGknpO3bt3PTTTdxyimnUL58eerVq8fNN9/Mzp07I12aJEmSSokykS5AkiRJOp6sX7+ebt26UaVKFR5++GFat27N/v37efvttxk2bBhfffVVpEs84fzwww/88MMPPPLII7Ro0YINGzbwu9/9jh9++IGXX3450uVJkiSpFHBGuiRJkpQPN954I4FAgMWLF3PJJZfQrFkzWrZsyciRI/nkk09C4zZu3MhFF11EfHw8lSpV4rLLLmPz5s1HPW/Pnj0ZMWJEWF///v256qqrQu8bNGjA+PHjGTx4MPHx8dSvX585c+awdevW0LXatGnDZ599Fjpm2rRpVKlShbfffpvmzZsTHx9P3759+fHHH4/5c7Fjxw6uv/56EhISKFeuHK1ateL1118P7Z89ezYtW7YkNjaWBg0aMHHixAJdp1WrVsyePZt+/frRuHFjzjrrLO677z7+7//+jwMHDhzzfUiSJEk/xyBdkiRJyqPt27czd+5chg0bRlxcXLb9VapUASAjI4OLLrqI7du38/777zNv3jy+/fZbBgwYcMw1PPbYY3Tr1o3PP/+cCy64gCuvvJLBgwdzxRVXsHTpUho3bszgwYMJBoOhY3bv3s0jjzzC9OnT+eCDD9i4cSO33XbbMdWRkZHBeeedx4IFC3jxxRdZuXIlDzzwANHR0QAsWbKEyy67jMsvv5wVK1Zw1113MXbsWKZNm3ZM1z1o586dVKpUiTJl/CVbSZIkFT3/1ilJkiTl0ddff00wGOTUU0/NdVxSUhIrVqxg3bp11K1bF4C//e1vtGzZkk8//ZTOnTsXuIbzzz+f66+/HoBx48YxZcoUOnfuzKWXXgrA7bffTteuXdm8eTOJiYkA7N+/n6lTp9K4cWMAhg8fzj333FPgGgDeeecdFi9ezKpVq2jWrBkAjRo1Cu1/9NFHOfvssxk7diwAzZo1Y+XKlTz88MNhs+wLYtu2bdx7771cd911x3QeSZIkKa+ckS5JkiTl0eGzvHOzatUq6tatGwrRAVq0aEGVKlVYtWrVMdXQpk2b0OuEhAQAWrduna1vy5Ytob4KFSqEQnSAmjVrhu0/UsuWLYmPjyc+Pp7zzjsvxzHLli2jTp06oRD9SKtWraJbt25hfd26dWPt2rWkp6cf9do/JyUlhQsuuIAWLVpw1113Ffg8kiRJUn44I12SJEnKo6ZNmxIIBIrkgaJRUVHZgvr9+/dnG1e2bNnQ60AgcNS+jIyMHI85OCa3Hwq8+eaboWuXL18+xzFH6y9Ku3btom/fvlSsWJFXXnkl231JkiRJRcUZ6ZIkSVIeVatWjT59+jB58mTS0tKy7d+xYwcAzZs357vvvuO7774L7Vu5ciU7duygRYsWOZ775JNPDnsAaHp6Ol9++WXh3kAe1a9fnyZNmtCkSRNq166d45g2bdrw/fffs2bNmhz3N2/enAULFoT1LViwgGbNmoXWUc+PlJQUzj33XGJiYpgzZw7lypXL9zkkSZKkgjJIlyRJkvJh8uTJpKenc9pppzF79mzWrl3LqlWrePzxx+natSsAvXv3pnXr1gwaNIilS5eyePFiBg8eTI8ePejUqVOO5z3rrLN44403eOONN/jqq6+44YYbQsF8SdSjRw+6d+/OJZdcwrx581i3bh1vvfUWc+fOBeDWW28lKSmJe++9lzVr1vDCCy/w5JNPFughpwdD9LS0NP7617+SkpJCcnIyycnJx7RMjCRJkpRXBumSJElSPjRq1IilS5fSq1cvbr31Vlq1asU555xDUlISU6ZMATKXTnnttdeoWrUq3bt3p3fv3jRq1IhZs2Yd9bxXX301Q4YMCQXujRo1olevXsV1WwUye/ZsOnfuzMCBA2nRogV//OMfQ8F2hw4d+Mc//sHMmTNp1aoV48aN45577inQg0aXLl3KokWLWLFiBU2aNKFmzZqhdvisf0mSJKmoBIJ5fWKSJEmSJEmSJEmlkDPSJUmSJEmSJEnKhUG6JEmSpIiaMWMG8fHxObaWLVtGujxJkiTJpV0kSZIkRdauXbvYvHlzjvvKli1L/fr1i7kiSZIkKZxBuiRJkiRJkiRJuXBpF0mSJEmSJEmSclEm0gUUt4yMDH744QcqVqxIIBCIdDmSJEmSJEmSpAgIBoPs2rWLWrVqERWV+5zzUhek//DDD9StWzfSZUiSJEmSJEmSSoDvvvuOOnXq5Dqm1AXpFStWBDI/OZUqVYpwNZIkSZIkSZKkSEhJSaFu3bqhzDg3pS5IP7icS6VKlQzSJUmSJEmSJKmUy8sS4D5sVJIkSZIkSZKkXBikS5IkSZIkSZKUC4P0UiZIkBGM4BM+iXQpkiRJkiRJknRcKHVrpJd2b/AGf87aLuRCxjOetrSNdFmSJEmSJEnKpwMHDrBv375IlyGVWDExMZQpUzgRuEF6KfNX/hp6/XrWNoAB3M3dnMIpEaxMkiRJkiRJeREMBtm4cSPbtm2LdClSiVe9enXq1auXpweK5iYQDAaDhVTTcSElJYXKlSuzc+dOKlWqFOlyit1+9vM8z3MP97CJTaH+KKIYwhDu5E7qUz+CFUqSJEmSJCk3GzZsYNu2bdSuXZv4+Hiioly9WTpSRkYGqampbNq0ierVq1O/fvbMMz9ZsUF6KbWHPUxlKvdzP1vZGuovS1mu4zr+xJ+oSc0IVihJkiRJkqQjHThwgOXLl1O7dm0SExMjXY5U4iUnJ7Np0yYqVapEkyZNwmam5ycr9sdVpVQ5yjGCEXzLt9zHfVShCpA5Y30yk2lMY27ndv7LfyNbqCRJkiRJkkIOrokeHx8f4Uqk48PB75X33nuP5cuXU9B55QbppVw88dzBHXzLt9zBHcQRB8BP/MRDPEQjGnE3d5NCSoQrlSRJkiRJ0kEu5yLlzcHvlejoaObPn8+mTZt+5oijnKcwi9LxqypVuY/7+JZvGcEIYokFIIUU7uIuGtGIB3iAXeyKcKXZBQKBfDdJkiRJkiRJpUeVKlXYs2cPO3bsKNDxBukKU4MaPMZjfM3XXMd1lKEMAP/lv4xmNA1owAQmlMhAXZIkSZIkSZJyc+DAgQIdZ5CuHNWhDk/xFF/xFVdwBVFZf1S2s507uIMGNOB+7nfJF0mSJEmSJEknPIN05aoxjZnOdFayMlug/if+REMach/3GahLkiRJkiQpX4LBIOPGjaNmzZqUL1+e3r17s3bt2lyP+eCDD+jXrx+1atUiEAjw6quvZhvzr3/9i3PPPZeTTjqJQCDAsmXLiuYGVKoYpCtPTuEUXgy8SEazDPgbkJ7Zv53tjGEMlbdXJvCnAIFKrkUuSZIkSZKkn/fQQw/x+OOPM3XqVBYtWkRcXBx9+vRhz549Rz0mLS2Ntm3bMnny5FzH/OIXv+DBBx8sirJVSpWJdAE6zqwFhgDjgT8BVwDRQDXgPuBW4FHgCXCSuiRJkiRJknISDAaZNGkSY8aM4aKLLgLgb3/7GwkJCbz66qtcfvnlOR533nnncd555+V67iuvvBKA9evXF2rNKt2cka6CWQtcBZwKTAMOrtFfjcyQfT1wZ+aMdUmSJEmSJOlw69atIzk5md69e4f6KleuTJcuXVi4cGEEK5NyZpCuY/M1MJTMQP15DgXqVYG7oB71+AN/4Ed+zNPpDl8WJq9NkiRJkiRJx5fk5GQAEhISwvoTEhJC+6SSxCBdheMb4GqyBepppPEIj9CQhtzADaxjXeRqlCRJkiRJUkTMmDGD+Pj4UNu/f3+kS5LyxSBdhetgoN4EmAyxxAKwl71MZSpNacpgBrOSlZGsUpIkSZIkScXol7/8JcuWLQu16tWrA7B58+awcZs3byYxMTESJUq5MkhX0dgADIf1rOeP/JF44gFIJ53pTKclLfkVv+IzPotsnZIkSZIkSSpyFStWpEmTJqHWokULEhMTSUpKCo1JSUlh0aJFdO3aNYKVSjkzSC+limst8kQSeZAH2chG7uZuqlEttO8VXqEznelDH97nfYIEC+v2JEmSJEmSVIIFAgFGjBjB+PHjmTNnDitWrGDw4MHUqlWL/v37h8adffbZPPnkk6H3qampoVntkPnQ0mXLlrFx48bQmO3bt7Ns2TJWrsxcEWH16tUsW7bMtdd1TAzSVSyqUpVxjGMDG5jIRGpSM7Tv3/ybnvSkG92gP/6plCRJkiRJKgX++Mc/ctNNN3HdddfRuXNnUlNTmTt3LuXKlQuN+eabb9i2bVvo/WeffUb79u1p3749ACNHjqR9+/aMGzcuNGbOnDm0b9+eCy64AIDLL7+c9u3bM3Xq1GK6M52IAsFgsFRNA05JSaFy5crs3LmTSpUqRbqciCnoDPP8Otofrz3s4QVe4EEezP4A0jXAROBvwJ7irUuSJEmSJKkk2717N6tWraJ58+ZUqFAh0uVIJd7B75n169ezdu1a+vbtS7t27YD8ZcXO/VVElKMc13M9a1jDi7xIK1od2tkMeIrMddbHwGGrwUiSJEmSJElSsTNIV0SVoQyDGMQXfMGbvAnvHrazBnAvsBF4HGgQiQolSZIkSZIklXYlIkifPHkyDRo0oFy5cnTp0oXFixcfdey//vUvOnXqRJUqVYiLi6Ndu3ZMnz69GKtVUQgQ4DzOg7OBjsBMID1rZxxwE/B1Vn/HyNQoSZIkSZIkqXSKeJA+a9YsRo4cyZ133snSpUtp27Ytffr0YcuWLTmOr1atGn/6059YuHAhX3zxBUOHDmXo0KG8/fbbxVy5isxSYCDQhMyZ6GlZ/dHAAOAzMmeunwcUz1LvkiRJkiRJkkqxiAfpjz76KNdeey1Dhw6lRYsWTJ06lQoVKvDcc8/lOL5nz55cfPHFNG/enMaNG3PLLbfQpk0bPvrooxzH7927l5SUlLCm48R64BagHplrpW8+bF8v4E1gJfA7wGdrSJIkSZIkSSoiEQ3S9+3bx5IlS+jdu3eoLyoqit69e7Nw4cKfPT4YDJKUlMTq1avp3r17jmMmTJhA5cqVQ61u3bqFVr+KyXbgPjLXSL8OWH3YvlOBKcD3wANAneIuTpIkSZIkSXmVnyWepZIkokH6tm3bSE9PJyEhIaw/ISGB5OTkox63c+dO4uPjiYmJ4YILLuCJJ57gnHPOyXHs6NGj2blzZ6h99913hXoPKkZ7gGeA5sBFwHuH7asK3A6sI3Md9dOLvTpJkiRJkiTlIr9LPEslSZm8DKpatSqBQN4Wo96+ffsxFZQXFStWZNmyZaSmppKUlMTIkSNp1KgRPXv2zDY2NjaW2NjYIq9JxSgIzMlqbYERZK6pHkvmn+gBWe0TYBIwGzgQgTqLUV6/Pw8XDAaLoBJJkiRJkqScHb7EM8DUqVN54403eO655xg1alSEq5Nyl6cgfdKkSUVy8erVqxMdHc3mzZvD+jdv3kxiYuJRj4uKiqJJkyYAtGvXjlWrVjFhwoQcg3Sd4JYDQ4FRZK6VfgNw8BccTidzdvr3wJNkzmYv+p/zSJIkSZIk6QgHl3gePXp0qC8/SzxLkZanIH3IkCFFcvGYmBg6duxIUlIS/fv3ByAjI4OkpCSGDx+e5/NkZGSwd+/eIqlRx4nNwN1krpN+OfB7MmerQ+a66Q8A44CXgMmRKFCSJEmSJKn0ym2J56+++ipCVUl5V6A10r/55hvGjBnDwIEDQ2sYvfXWW/znP//J97lGjhzJM888wwsvvMCqVau44YYbSEtLC/2Kx+DBg8N+UjVhwgTmzZvHt99+y6pVq5g4cSLTp0/niiuuKMit6ESzF3gBaAf0BF4FMrL2VQCuAT6HMziDGcxgL/4ARpIkSZIkSVLu8h2kv//++7Ru3ZpFixbxr3/9i9TUVACWL1/OnXfeme8CBgwYwCOPPMK4ceNo164dy5YtY+7cuaGfTm3cuJEff/wxND4tLY0bb7yRli1b0q1bN2bPns2LL77INddck+9r6wT3PnAx0JTMtdJ3Htq1kIVcwRXUox5jGMN3+BBaSZIkSZKkolLQJZ6lkiIQzOcTB7t27cqll17KyJEjqVixIsuXL6dRo0YsXryYX/3qV3z//fdFVWuhSElJoXLlyuzcuZNKlSpFupyIKcjDKQsivw+0LNK64oArgGFA6/Bd0URzERcxjGH0ohcBiufzU1h82KgkSZIkSaXD7t27WbVqFc2bN6dChQqRLidfunTpwmmnncYTTzwBZC7XXK9ePYYPH+7DRlVkDn7PrF+/nrVr19K3b1/atWsH5C8rzveM9BUrVnDxxRdn669Rowbbtm3L7+mk4pMGPAW0gfd5n0u5lDJZjwlIJ51/8S/O5mxa0pLJTCaFlIiWK0mSJEmSdCL5uSWepZIs30F6lSpVwpZaOejzzz+ndu3ahVKUVNS6051/8A82sIE7uZNEDv0K0SpWMZzh1KY2v+N3fM7nEaxUkiRJkiTpxPBzSzxLJVm+g/TLL7+c22+/neTkZAKBABkZGSxYsIDbbruNwYMHF0WNUpGpRS3u4i42sIGZzORMzgztSyWVp3iKDnSgM515lmdJJTWC1UqSJEmSJB3fhg8fzoYNG9i7dy+LFi2iS5cukS5JypN8B+n3338/p556KnXr1iU1NZUWLVrQvXt3zjjjDMaMGVMUNUpFLoYYBjCAD/iA5Szneq4njrjQ/s/4jGu5llrU4gZucJa6JEmSJEmSVIrkO0iPiYnhmWee4ZtvvuH111/nxRdf5KuvvuL/2bvzuKjq/Y/jrwHZEXAFURTcct+V3DcSl2vaYmmWpu2pZWapP7e6mktlWWra9XbVTNOWa3WzLCNX3FJzSzQtt1RQU0BQEZnz+2OGkZFFBoFBeT+/j+8D5nu+55zPgQGdD9/5nMWLF+Pq6loQMYoUqgY0YB7zOMUp5jGPxjS2bbvIReYxjyY0oQUttEpdRERERERERESkGCjh6A4bN26kTZs2VK5cmcqVKxdETCJFgh9+PGNt29nOv/gXS1lKMskA/GJtIxhBf/rzDM/QiEbODVpEREREREREip1mNCOW2EI/bxBBbGd7oZ9XxBkcTqR36tSJihUr0q9fPx599FHq1KlTEHGJFCnNrO1t3mYpS/mQD9nFLuD6KvV5zKM5zXmKp3iYh/HDz7lBi4iIiIiIiEixEEssJznp7DBE7mgOJ9JPnTrFsmXL+PTTT5k2bRoNGjSgf//+9OvXj0qVKhVEjCJFhh9+PMuzdqvUP+XTTKvUX+RFHuRBBjOYdrTDxfEqSiIiIiIiIiIiuRJEULE6r4gzOJzdK1u2LEOHDiU6Opo//viDPn36sGjRIkJDQ+nUqVNBxCi3MZPJ5FC/XZgw0ZzmzGc+pzjFXObalXW5zGUWs5iOdKQGNZjEJI5z3HkBi4iIiIiIiMgdazvb+csJzZGyLlOnTqV58+aULFmS8uXL07t3bw4ePJjjPh06dMgyf9SjRw/bnNdee41atWrh4+NDqVKliIiIYOvWrXn+Wopk55aWyYaFhTF69GimTZtG/fr1WbduXX7FJXLbSF+lvpOd/MIvPM/zBBBg2/4nfzKBCYQSSiSRLGMZV7jivIBFRERERERERArZunXrGDJkCFu2bGH16tWkpqbSpUsXkpOTs93nv//9L6dPn7b1ffv24erqSp8+fWxzatasyezZs9m7dy8bN24kNDSULl26cPbs2cK4LClGTIZhGHnZMTo6miVLlvDFF19w5coVevXqRf/+/enatWt+x5ivEhMT8ff3JyEhAT+/4lvD+nZa/V0Q8vi0z7XLXOYrvmIBC/iJnzCwP18AAfSnP4MYRBOaYOLWvh95+X4W9NdARERERERERPLfpUuXiImJoXbt2nh7ezs7nDw7e/Ys5cuXZ926dbRr1y5X+8ycOZMJEyZw+vRpfHx8spyTnvv76aef6Ny5c36GLLep9J+Zo0ePcujQIbp27UqjRo0Ax3LFDq9IHzNmDGFhYXTq1Injx4/z3nvvERsby+LFi4t8El2ksHjhRT/68SM/cpSj/JN/EkaYbXs88cxhDs1oRiMaMZOZxBHnxIhFRERERERERApPQkICAKVLl871Ph999BF9+/bNNol+9epV/vWvf+Hv70/Dhg3zJU6RdA4n0tevX88rr7zCyZMn+fbbb+nXr99t/dcvkYJWmcqMZzyHOczP/MxjPIYXXrbte9jDS7xERSrSne58yqdc4pITIxYRERERERERKThms5nhw4fTunVr6tWrl6t9tm3bxr59+3jyySczbfv222/x9fXF09OTd999l9WrV1O2bNn8DluKOYcT6dHR0Tz//PN6Moo4yAUXOtKRj/mY05zmQz7kbu62bU8jje/5nkd4hCCCGMxg1rAGM+YCicfRG8EW93JAIiIiIiIiIpI/hgwZwr59+1i2bFmu9/noo4+oX78+LVq0yLStY8eO7Nq1i02bNtG1a1ceeughzpw5k58hi+TtZqOLFy+mdevWBAcHc+zYMcBSo+jrr7/O1+BE7lT++PM0T7OZzexnP2MYQwghtu0XucgCFtCJToQSyhjGsJ/9ToxYREREREREROTWDR06lG+//ZY1a9ZQqVKlXO2TnJzMsmXLeOKJJ7Lc7uPjQ/Xq1bn77rv56KOPKFGiBB999FF+hi3ieCJ97ty5jBgxgu7duxMfH09aWhoAAQEBzJw5M7/jE7mt5WaVdx1THaaapnLC5QR0AD4CEq8f4wQnmMY06lIX0w4TpuEmTIFaKS4iIiIiIiIitw/DMBg6dCgrVqzg559/Jiws7OY7WX3++eekpKTw6KOP5mq+2WwmJSUlr6GKZMnhRPqsWbOYP38+Y8eOxdXV1TberFkz9u7dm6/BiRQrBrAOeBIIAh4GvgWuZZjTFJgJnARWAo8AvoUapYiIiIiIiIiIw4YMGcInn3zC0qVLKVmyJLGxscTGxnL58mXbnAEDBjBmzJhM+3700Uf07t2bMmXK2I0nJyfzf//3f2zZsoVjx46xY8cOBg8ezMmTJ+nTp0+BX5MULyUc3eHIkSM0btw407iHhwfJycn5EpRIsXcZ+MzaywH9gMeAZtbtJYDu1n4JS8L9U+B7QH9wFREREREREZEiZu7cuQB06NDBbnzBggU8/vjjABw/fhwXF/t1vwcPHmTjxo38+OOPmY7p6urKgQMHWLRoEefOnaNMmTI0b96cDRs2ULdu3QK5Dim+HE6kh4WFsWvXLqpUqWI3vmrVKmrXrp1vgYmI1VngfWuvhSWh3h9I/xH0Bh6y9gRgBbAMiMJ+NbuTOFp6xjCMAopERERERERERJwlN6/3165dm2nsrrvuynZfT09P/vvf/95qaCK54nAifcSIEQwZMoQrV65gGAbbtm3j008/ZerUqfz73/8uiBhFJN0BYCwwDmgN9AX6AOWt2/2Bx639LPAFlpXqG7GUjhERERERERERERGHOZxIf/LJJ/Hy8mLcuHFcunSJRx55hODgYN577z369u1bEDGK5Lu83KCzSK2UNrAkxzcCLwKdsJR/uR9LMh0sJWGes/a/gOVYkuo7CjtYERERERERERGR25vDNxsF6N+/P4cOHSIpKYnY2Fj++usv+vXrx6ZNm/I7PhG5mTRgNTAYCAR6Y0maX8owpxLwMrAdOAxM43q9dREREREREREREclRnhLp6by9vSlf3lJT4tChQ7Rt2zZfghKRPEoBvsZS8qU88AjwDXA1w5xqwCjgF+AI8BYQXrhhioiIiIiIiIiI3E5uKZEuIkVYMpZSLr2AIOAJLCvXM96ANBQYCWwBjgHvAK0AxyvfiIiIiIiIiIiI3LGUSBcpDi4A/wG6YEmqPwmsAlIzzKkMvAREAyeA94C26LeEiIiIiIiIiIgUe0qRiRQ3fwMfAd2w1FQfBKzEvvxLReAFYD1wEpgDRMBVu0kiIiIiIiIiIiLFQ4ncTvzmm29y3H7kyJE8BzFnzhzeeustYmNjadiwIbNmzaJFixZZzp0/fz4ff/wx+/btA6Bp06ZMmTIl2/kikoMLwEJr9wfuBR4EIgEP65wg4HlLL095etCD3vSmK10pScnCj1lERERERERERKSQ5TqR3rt375vOMZkcL6y8fPlyRowYwbx58wgPD2fmzJlERkZy8OBB241MM1q7di39+vWjVatWeHp6Mn36dLp06cJvv/1GxYoVHT6/SG7l5fl9W0kAFlt7SaAnlqR6N8AzfUoCS62NFOAn4CssNzQ9U/ghi4iIiIiIiIiIFAaTYRiGMwMIDw+nefPmzJ49GwCz2UxISAjDhg1j9OjRN90/LS2NUqVKMXv2bAYMGJBpe0pKCikpKbbHiYmJhISEkJCQgJ+fX/5dyG3mjk8KS/7xxbJCvTfwDyAgizlmYBOWpPrXwOG8n87Jv5JEREREREREirRLly4RExND7dq18fb2dnY4IkVe+s/M0aNHOXToEF27dqVRo0aAJVfs7++fq1yxU2ukX716lR07dhAREWEbc3FxISIigs2bN+fqGJcuXSI1NZXSpUtnuX3q1Kn4+/vbekhISL7ELlJsJAFfAo8B5YEILDXT/8owxwVoA7wNHAL2ApOApoUaqYiIiIiIiIiISIFwaiL93LlzpKWlERgYaDceGBhIbGxsro4xatQogoOD7ZLxGY0ZM4aEhARbP3HixC3HLVJspQJRwFCgMtAceAP47YZ59YBxwHYsCfcPsdRf1x/KRURERERERETkNpTrGulF0bRp01i2bBlr167F09MzyzkeHh54eHhkuU1EboGBJVG+HUvSvAbQC0sJmJZc/zNdReBpa78CrAG+tfbjhRqxiIiIiIiIiIhInjh1RXrZsmVxdXUlLi7ObjwuLo6goKAc93377beZNm0aP/74Iw0aNCjIMEUkNw5hKe3SBggGngJWApczzPHEcvPSOcAxYA8wBWiFk38biYiIiIiIiIiIZM+h1FVaWhrr168nPj4+X07u7u5O06ZNiYqKso2ZzWaioqJo2bJltvu9+eabTJo0iVWrVtGsWbN8iUVE8lEc8G8sNyctY/04D/u66gD1gTFANHAG+BiWs5x44gsvVhERERERERERkZtwKJHu6upKly5duHDhQr4FMGLECObPn8+iRYuIiYnhueeeIzk5mUGDBgEwYMAAxowZY5s/ffp0xo8fz3/+8x9CQ0OJjY0lNjaWpKSkfItJRPLRZSwr058DQoBGwFhgM2DOMK8M8Bj0pS9lKUt72jONafzKr5jtJmZmMpkc7iIiIiIiIiIiIrnlcI30evXq8eeffxIWFpYvATz88MOcPXuWCRMmEBsbS6NGjVi1apXtBqTHjx/HxeV6vn/u3LlcvXqVBx980O44EydO5LXXXsuXmESkAO229ilAOSylXv4BRAJ+lilppLHe2sYwhkACiSSSrnTlHu6hLGWdFLyIiIiIiIiIiBRHJsMwDEd2WLVqFWPGjGHSpEk0bdoUHx8fu+1+fn75GmB+S0xMxN/fn4SEhCIfa0HSilwpctyAtvBS1Ev8j/9xmMNZTjNhojnN6UpXIomkBS1wM7k5fDoHf/WJiIiIiIiIFAmXLl0iJiaG2rVr4+3t7exwRIq89J+Zo0ePcujQIbp27UqjRo0Ax3LFDifSM64Oz5iMNQwDk8lEWlqaI4crdEqkWyiRLkVV+q+kP/iDH/iBVaziZ34mmeQs5wcQQPxn8bAK+AE45dh5RERERERERG4nSqSLOCa/EukOl3ZZs2ZNngIWEXFENarxvLWlkEI00ayytr3stc2LJx4ewtIB9gI/Aj8BGyCb/LuIiIiIiIiIiEiuOZxIb9++fUHEISKSLQ886GRtb/ImJznJj/zIKlbxIz9akunp6lv7y0Aqlpua/mTtvwDXCj18ERERERERERG5zbncfEpmGzZs4NFHH6VVq1acPHkSgMWLF7Nx48Z8DU5EJCsVqcggBrGc5ZzlLLQEXge2AOYME92AdsA/gU3A38DXwDDYz34MVN5FRERERERERERuzuFE+pdffklkZCReXl7s3LmTlJQUABISEpgyZUq+BygixYvJZHKou5ncLAn017Ak1MsCDwAfAL/fcHA/4F7gfahLXSpSkcd4jEUs4i/+KszLFBERERERERGR24jDifTJkyczb9485s+fj5ubm228devW7Ny5M1+DExFx2AXgv8AQ4C6gCjAYWAqcsZ96mtN8wic8zuOEEEJtajOUoXzBF5aV7iIiIiIiIiIiIuQhkX7w4EHatWuXadzf35/4+Pj8iElEJP8cBxYA/YEgoAEwArrTHR987KYe4ABzmEMf+lCe8tSjni2xfubGLLyIiIiIiIiIiBQbDifSg4KCOHz4cKbxjRs3UrVq1XwJSkSkQBjAXuBdWMlKznOe9axnAhNoRStccbWb/hu/2RLrgQRi+s2EaY4JUx8TpvK5Kz0jIiIiIiIiIlJQQkNDmTlzprPDKBYcTqQ/9dRTvPjii2zduhWTycSpU6dYsmQJI0eO5LnnniuIGEVECoQ77rSlLa/zOtFEc57zfMd3vMqrtKAFLjf+iqyLpWTM51jKxOwDZgMPAuUKOXgRERERERGRDBy959itdketX7+enj17EhwcjMlk4quvvso0xzAMJkyYQIUKFfDy8iIiIoJDhw7ZzTl//jz9+/fHz8+PgIAAnnjiCZKSkmzbDx48SMeOHQkMDMTT05OqVasybtw4UlNTs43t6NGj2V7nli1bHL5WKVh79uyhbdu2eHp6EhISwptvvlko5y3h6A6jR4/GbDbTuXNnLl26RLt27fDw8GDkyJEMGzasIGIUESkUfvjRzdoAEkkkmmjWWtu2tG3YLVqvy/XkOsBvwAZr34ilrIyIiIiIiIiIkJycTMOGDRk8eDD3339/lnPefPNN3n//fRYtWkRYWBjjx48nMjKS/fv34+npCUD//v05ffo0q1evJjU1lUGDBvH000+zdOlSANzc3BgwYABNmjQhICCA3bt389RTT2E2m5kyZUqOMf7000/UrVvXbqxMmTL5cPWSk+PHj1O5cuVczU1MTKRLly5EREQwb9489u7dy+DBgwkICODpp58u0DgdXpFuMpkYO3Ys58+fZ9++fWzZsoWzZ88yadKkgohPRMRp0hPr05nOVrZCKaAbMB3YCly7YYe6wLPAEuAYcBwe4RE+4AP2sAcz5kKNX0RERERERKSo6NatG5MnT+a+++7LcrthGMycOZNx48bRq1cvGjRowMcff8ypU6dsq9djYmJYtWoV//73vwkPD6dNmzbMmjWLZcuWcerUKQCqVq3KoEGDaNiwIVWqVOHee++lf//+bNiw4aYxlilThqCgILvu5uaGYRhEREQQGRmJYRiAZWV8pUqVmDBhgm3///3vfzRv3hxPT0/Kli1rd60pKSmMHDmSihUr4uPjQ3h4OGvXrrU7/8aNG2nbti1eXl6EhITwwgsvkJycbNt+5swZevbsiZeXF2FhYSxZsiTTNbzzzjvUr18fHx8fQkJCeP755+1W7C9cuJCAgAB++OEHateuja+vL127duX06dN2x/nPf/5D3bp18fDwoEKFCgwdOtS2LT4+nieffJJy5crh5+dHp06d2L17t2377t276dixIyVLlsTPz4+mTZuyffv2bL/uAwcOpF69erz11luZ4rjRkiVLuHr1qi2+vn378sILL/DOO+/kuF9+cDiRPnjwYC5evIi7uzt16tShRYsW+Pr6kpyczODBgwsiRhGRfJent61dBFYBo4G7gdLknFgPgU/5lCEMoSENcY13xbTShGmMCVNbEybP/KurXhhvwyvM84iIiIiIiEjxcuTIEWJjY4mIiLCN+fv7Ex4ezubNmwHYvHkzAQEBNGvWzDYnIiICFxcXtm7dmuVxDx8+zKpVq2jfvn2eYzOZTCxatIhffvmF999/H4Bnn32WihUr2hLpK1eu5L777qN79+78+uuvREVF0aJFC9sxhg4dyubNm1m2bBl79uyhT58+dO3a1Va65o8//qBr16488MAD7Nmzh+XLl7Nx40a7BPbjjz/OiRMnWLNmDV988QUffPABZ86csYvVxcWF999/n99++41Fixbx888/8+qrr9rNuXTpEm+//TaLFy9m/fr1HD9+nJEjR9q2z507lyFDhvD000+zd+9evvnmG6pXr27b3qdPH86cOcP333/Pjh07aNKkCZ07d+b8+fOA5V0DlSpV4pdffmHHjh2MHj0aNze3bL++n332GU8//TTLly8nJCSE7t27s3z5cq5cuZJp7ubNm2nXrh3u7u62scjISA4ePMiFCxeyPUe+MBzk4uJixMXFZRo/e/as4erq6ujhCl1CQoIBGAkJCc4Oxamw3HZRXV09P7svBp0xmIjBTxgkYeTYrmCwAYOpGPTAoJTlOIX1M12UzyMiIiIiIiJZS05ONrZv324kJyfbjRf2a+BbARgrVqywG4uOjjYA49SpU3bjffr0MR566CHDMAzjjTfeMGrWrJnpeOXKlTM++OADu7GWLVsaHh4eBmA8/fTTRlpaWrbxHDlyxAAMLy8vw8fHx65n9Nlnnxmenp7G6NGjDR8fH+P333+3O1///v2zPP6xY8cMV1dX4+TJk3bjnTt3NsaMGWMYhmE88cQTxtNPP223fcOGDYaLi4tx+fJl4+DBgwZgbNu2zbY9JibGAIx3330322v7/PPPjTJlytgeL1iwwACMw4cP28bmzJljBAYG2h4HBwcbY8eOzfJ4GzZsMPz8/IwrV67YjVerVs348MMPDcMwjJIlSxoLFy7MNqac7N+/3xg1apRRqVIlIyAgwHjmmWeMzZs327bfc889mb5Ov/32mwEY+/fvz/KY6T8zX3zxhTF16lTj119/tW1zJFec6xrpiYmJGIaBYRhcvHjRVpcIIC0tje+++47y5cvn9nAiIneeJCDK2sFyF4pGQBtrbwtk/DXpkWFbuhgYxCBa0pK7uZu61MXVrjC7iIiIiIiIiNzM8uXLuXjxIrt37+aVV17h7bffzrQyO6t9ateune32Pn36sGLFCqZNm8bcuXOpUaOGbduuXbt46qmnstxv7969pKWlUbNmTbvxlJQUWw323bt3s2fPHrtyLYZhYDabOXLkCL///jslSpSgadOmtu21atUiICDA7pg//fQTU6dO5cCBAyQmJnLt2jWuXLnCpUuX8Pb2BsDb25tq1arZ9qlQoYJtZfuZM2c4deoUnTt3zvJadu/eTVJSUqba8ZcvX+aPP/4AYMSIETz55JMsXryYiIgI+vTpY3e+nNSuXZtp06YxZcoU3nrrLcaPH8+yZcuIj4/P1f4FKdeJ9ICAANvb9G/8poPlLQ6vv/56vgYnInJbuwZst/aZ1rEaXE+etwFu/HVaGxZaG4AvvrSgBS2tLZxwylI2X8JT2RUREREREREpKoKCggCIi4ujQoUKtvG4uDgaNWpkm3NjKZNr165x/vx52/7pQkJCAKhTpw5paWk8/fTTvPzyy7i6Zr9YLSQkxK6EyY0uXbrEjh07cHV1tZVkSefl5ZXtfklJSbi6utr2zcjX19c255lnnuGFF17ItH/lypX5/fffsz1+uqNHj/KPf/yD5557jjfeeIPSpUuzceNGnnjiCa5evWpLpN9YZsVkMtlqv+d0HelxVqhQIVN9d8CW1H/ttdd45JFHWLlyJd9//z0TJ05k2bJl2dbHz+jEiRMsWbKExYsXc+TIEfr06cOgQYNs24OCgoiLi7PbJ/3xjc+B/JbrRPqaNWswDINOnTrx5ZdfUrp0ads2d3d3qlSpQnBwcIEEKSJyxzhk7Qusj8sDrbGsVm8FNAaul/kiiSR+trZ0NajB3dxtW7Ven/qFFLyIiIiIiIhIwQgLCyMoKIioqChb4jwxMZGtW7fy3HPPAdCyZUvi4+PZsWOHbWX2zz//jNlsJjw8PNtjm81mUlNTMZvNOSbSb+bll1/GxcWF77//nu7du9OjRw86deoEQIMGDYiKirJL+qZr3LgxaWlpnDlzhrZt22Z57CZNmrB///5sE/m1atXi2rVr7Nixg+bNmwNw8OBBu5XaO3bswGw2M2PGDFxcLLfG/Oyzzxy6xpIlSxIaGkpUVBQdO3bMMs7Y2FhKlChBaGhotsepWbMmNWvW5KWXXqJfv34sWLAg20T6xYsX+fLLL/n4449Zt24drVq1YsSIEfTp0wc/Pz+7uS1btmTs2LGkpqba/iCwevVq7rrrLkqVKuXQtToq14n09IL8R44cISQkxPbNEBGRW3AGWGHtAB4QfSWazWxmC1vYzGZOctJul0PWtpjFAHjjDWuAzVhuevoLcKrQrkBERERERETkppKSkjh8+LDt8ZEjR9i1axelS5emcuXKmEwmhg8fzuTJk6lRowZhYWGMHz+e4OBgevfuDVjKfnTt2pWnnnqKefPmkZqaytChQ+nbt69tge+SJUtwc3Ojfv36eHh4sH37dsaMGcPDDz+c4w0vAf7++29iY2PtxgICAvD09GTlypX85z//YfPmzTRp0oRXXnmFgQMHsmfPHkqVKsXEiRPp3Lkz1apVo2/fvly7do3vvvuOUaNGUbNmTfr378+AAQOYMWMGjRs35uzZs0RFRdGgQQN69OjBqFGjuPvuuxk6dChPPvkkPj4+7N+/n9WrVzN79mzuuusuunbtyjPPPMPcuXMpUaIEw4cPt1tBXr16dVJTU5k1axY9e/YkOjqaefPmOfy9eu2113j22WcpX7483bp14+LFi0RHRzNs2DAiIiJo2bIlvXv35s0336RmzZqcOnXKdrPVunXr8sorr/Dggw8SFhbGX3/9xS+//MIDDzyQ7fl69+7Nn3/+yWOPPcb8+fNzLAPzyCOP8Prrr/PEE08watQo9u3bx3vvvce7777r8HU6zOGK7xmKtMfExBi7d++260WdbjZqgbNvyqiurp5tv9EJ44TxmfGZ8ZLxktHSaGm4G+4538TUwOAkBl9hMBaDLhiULjrXIyIiIiIiInmX3c1Gi7o1a9Zk+Zpx4MCBtjlms9kYP368ERgYaHh4eBidO3c2Dh48aHecv//+2+jXr5/h6+tr+Pn5GYMGDTIuXrxo275s2TKjSZMmhq+vr+Hj42PUqVPHmDJlinH58uVsY0u/2WhW/dNPPzXOnDljBAYGGlOmTLHtc/XqVaNp06a2G6EahmF8+eWXRqNGjQx3d3ejbNmyxv333283f8KECUZoaKjh5uZmVKhQwbjvvvuMPXv22OZs27bNuOeee2yxN2jQwHjjjTds20+fPm306NHD8PDwMCpXrmx8/PHHRpUqVexuNvrOO+8YFSpUMLy8vIzIyEjj448/NgDjwoULhmFYbjbq7+9vd/0rVqzI9Pp93rx5xl133WWLddiwYbZtiYmJxrBhw4zg4GDDzc3NCAkJMfr3728cP37cSElJMfr27WuEhIQY7u7uRnBwsDF06NAcv/4HDhwwzGZztttvtHv3bqNNmzaGh4eHUbFiRWPatGk5zs+vm42aDMNaACeXzp49y6BBg/j++++z3J6WlubI4QpdYmIi/v7+JCQkZHprQHGi2sgiRdfNfi2nkMIudtmtWj/O8Zsf+A8sq9XT+04g+dbjvRkH/5kRERERERGRHFy6dImYmBhq165tq3ktItlL/5k5evQohw4domvXrnblg3KbK851aZd0w4cPJz4+nq1bt9KhQwdWrFhBXFwckydPZsaMGXm6GBERyT0PPAi3tnSmYBPcDbQAmgPNAP8bdqxm7X2tj9OAGOyT63uAqwUavoiIiIiIiIjIbcfhRPrPP//M119/TbNmzXBxcaFKlSrcc889+Pn5MXXqVHr06FEQcYqISE5OY19r3QRUx5JUT++NgYyLFVyBetaefi+Uq8Be4FcsK9Z/BXYDlws2fBERERERERGRoszhRHpycjLly5cHoFSpUpw9e5aaNWtSv359du7cme8BiohIHhjAIWtfah1zBepin1yvD2S814o70NTa06UBB7ieXN8J7AIScheKo6Wk7rRSMHkppXWnfQ1EREREREREbncOJ9LvuusuDh48SGhoKA0bNuTDDz8kNDSUefPmUaFChYKIUURE8kMaltIte4CPrGOeQEOuJ9abAXdhSbqnS0/A1wUezTD+B9dXrad/PFNw4YuIiIiIiIiIOIvDifQXX3yR06dPAzBx4kS6du3KkiVLcHd3Z+HChfkdn4iIFKQrwFZrT+cNNMBSCqaJtdfDslo9o/Sa630yjJ3kejmY9KT9ISxJfBEREREREck3ZrPZ2SGI3Bby62cl14n0I0eOEBYWxqOPXl+O2LRpU44dO8aBAweoXLkyZcuWzZegRETEiS4BW6w9nRuWFelNuJ5gb4R9zXWAitb+jwxjl4HfsCTVMybYz+d/6CIiIiIiInc6d3fLKqekpCR8fX2dHI1I0ZeUlARAamrqLR0n14n0atWqUaVKFTp27EinTp3o0KEDlSpVwtvbmyZNmtxSECIiUsSlYqmLvivDmAtQE/vkehMg4IZ9vbCUjGl2w/hfXE+qpyfYf8/XqEVERERERO44JUqUoGzZspw8eRIAX19fXFxcnByVSNFjNptJSkri5MmTxMfH3/LK9Fwn0n/++WfWrl3L2rVr+fTTT7l69SpVq1alU6dOdOzYkY4dOxIYGOhwAHPmzOGtt94iNjaWhg0bMmvWLFq0aJHl3N9++40JEyawY8cOjh07xrvvvsvw4cMdPqeIiOQDM5abkB7g+g1NASpjqbvewNobAjWwJN4zqmTt3TOMpYDpV5Mlsb4Xy0r237Ak3XOgm3OKiIiIiEhxUrlyZQBbMl1EshcfH09cXBxmsxnDMPDw8MjTcXKdSO/QoQMdOnQA4MqVK2zatMmWWF+0aBGpqanUqlWL3377LdcnX758OSNGjGDevHmEh4czc+ZMIiMjOXjwIOXLl880/9KlS1StWpU+ffrw0ksv5fo8IiJSiI5b+/8yjHlhKQ2TnlhP/1jqhn09sKxub3zDeAKwn+uJ9fR+Kp9jFxERERERuQ2YTCaqVKnCiRMn2LVrF35+fnh7e2MymZwdmkiRkpqaitlsJi0tjdOnT1OmTJks8865YTJuYRnf1atXiY6O5vvvv+fDDz8kKSmJtLTc31EuPDyc5s2bM3v2bMCy3D4kJIRhw4YxevToHPcNDQ1l+PDhN12RnpKSQkpKiu1xYmIiISEhJCQk4Ofnl+tY7zT6xSoiRUIlrq9cT0+u3wW45nL/C8Bv8HSbp6mboQUSiImi8XsuL79vtcJeRERERERyIy0tjbVr17J79267/JeI2HNxcaF06dJ069aNSpUq2cYTExPx9/fPVa441yvSwZI437JlC2vWrGHt2rVs3bqVkJAQ2rVrx+zZs2nfvr1Dx9qxYwdjxoyxu6CIiAg2b97sSFg5mjp1Kq+//nq+HU9ERPLRX9b+XYYxT6AOlhXsdYF61o+hWexfCmgD/+JfdsOlKW1LqtehDrWsrRKVikyCXURERERE5Fa5urrSoUMH6tatS3JyshbliGTDzc2NUqVK3dLC6lwn0jt16sTWrVsJCwujffv2PPPMMyxdupQKFSrk6cTnzp0jLS0tU131wMBADhw4kKdjZmXMmDGMGDHC9jh9RbqIiBRRV4Cd1p6RL1Cb6wn29F458yHOc54N1paRDz7cxV22xHptalOLWlSnOp545v+1iIiIiIiIFDBXV1eCgoKcHYbIHS/XifQNGzZQoUIFOnXqRIcOHWjfvj1lypQpyNjyhYeHR54LyIuISBGSBPxi7Rn5waaETfx2QzuVRQH1ZJLZaW0ZueBCGGG2BHvGVpayBXZJIiIiIiIiInJ7yHUiPT4+ng0bNrB27VqmT59Ov379qFmzJu3bt7cl1suVK5frE5ctWxZXV1fi4uLsxuPi4vRXNBERyb1EaGltGV3gAvvZz4Eb2p/8iRmz3VwzZv6wtpWstNtWhjK2pHqNDK061fHCq8AvT0REREREREScL9eJdB8fH7p27UrXrl0BuHjxIhs3bmTNmjW8+eab9O/fnxo1arBv375cHc/d3Z2mTZsSFRVF7969AcvNRqOiohg6dKjjVyIiIsWWQzf0dAeqwxe/fZEpyZ5EUqbpf/M30dZ2oxBC7JLr6a0qVfFA74YSERERERERuVM4dLPRjHx8fChdujSlS5emVKlSlChRgpiYGIeOMWLECAYOHEizZs1o0aIFM2fOJDk5mUGDBgEwYMAAKlasyNSpUwHLDUr3799v+/zkyZPs2rULX19fqlevntdLERGR4uQqsB8e4AG7YQODU5zKlFw/wAH+4q8sD3XC2n7mZ7txF1yoTGVqUANmA4cy9CPAtQK4LhEREREREREpMCYjl7fzNZvNbN++nbVr17JmzRqio6NJTk6mYsWKdOzY0darVKniUACzZ8/mrbfeIjY2lkaNGvH+++8THh4OQIcOHQgNDWXhwoUAHD16lLCwsEzHaN++PWvXrs3V+RITE/H39ychIeGW7tJ6u3No9aaIyB3IkbvZX+QiBznIoSzaec47duJrwFHgD+DPDD398UXHYhMRERERERGRvHEkV5zrRLqfnx/JyckEBQXZkuYdOnSgWrVq+RJ0YVEi3UKJdBEp7vIrWX2e81km2A9xiAQSHD/gOWhetjlVM7RqVKMqValEJVxxzZe4RURERERERIq7Akmkf/jhh3Ts2JGaNWvmS5DOokS6hRLpIlLcFfSqbwODc5yjfKvyUIPMvaTjx3TDjSpUyTLJHkooAQTk5yWIiIiIiIiI3NEKJJF+p1Ai3UKJdBEp7grrn79sf9+WAaoC1awfM3RTFRMGjsfnhx9VqEIooVTJ0NIfl6McJvT7X0RERERERAQcyxXn+WajIiIicgv+tvZfMm+6bFzmOMf5kz/5gz/4M0P7gz9IIinLQyaSyF5ry4oXXlkm2NNbBSqodIyIiIiIiIhIFpRIFxGRYikv78wprFXsHnhQw9oyxYDB3/ydKcF+jGMc5SjHOU4qqVke9zKXOWBtWXHDjRBCbEn2kAytEpUIIQQ/iu+7uURERERERKT4UiJdRETkNmLCRFlrCyc803YzZmKJ5ShHOWZtGT8/xjEucSnLY6eSakvMZ6ckJTMl19M/pn9eMi8F4EVERERERESKMNVIL6ZUI11EpOgqyH+a02+CmlWSPf3zBBJu6Rz++GebaK9IRYIJxg8/1WsXERERERERp1KNdBEREcmSCRPlrK0ZzbKcE088xzjGX/zFCU7YPmb8/ApXsj1HgrXtY1+2c7zxJphgW2I9u+aN9y1fs4iIiIiIiMitUiJdRERE7ARYW0MaZrk9vU57Ton2v/iLFFKyPcclLnHY2nLij78tqZ5d0r0CFXDH/ZauWURERERERCQnSqSLiIjcAQqrZJdhGHZ12hvRKOt51hIyNybaT93QblZGJn11ewwxOc4rQxmCrC2QQLuPGT8vS1lccc3r5YuIiIiIiEgxpUS6iIiI5LuMJWSa0CTbeckkc5rTdsn1l99+GSoCwdZeEW5W4eVva/uN33Kc54IL5SiXbaI941gpSuGCi6OXLiIiIiIiIncg3Wy0mNLNRkVEiq68/NNcmCvSC1qW1+LH9cT6jb0ihLUKI5ZYLnM53+IoQQkCra085W1/GEhvN46VpKRuoCoiIiIiInIb0c1GRURE5M6SaO0Hst78p/EnBgZJJBFrbXHE2X288fNUUnM85TWucdLacsMDj5sm2zM+9sNPiXcREREREZHbhBLpIiIiRcyd9K6hwrqWPJ0nAAgCAq0fs/u8PLn6H1MKKfxlbbmSApwDzlg//n29z5wwkzJZNH/8s02+F9V3JeQlrmL2hkkREREREbkNKJEuIiIixVO8tWezyt3GhCXpXh7WH1jPWWs7wxnb5xkfn+Mc17h28/N7YKn/XjHzpuEMz3IXV1wpTeksk+yMwi4Zb9dzXnwvIiIiIiIiN6FEuoiIiEhODOCCpbelbS6mG8QTb0ust72vLZTDsrK9XIae8bFb7kJJI82WuM9kWg47XsSSUL9wQ4/PYuzG8Vz8TUBEREREROROp0S6iIiISD4yYaKUtd3FXfBVLnbyA8pc75+s+oS/b9KSSMp9UCWtPdTx6yEJuwR7L3rZri+9BRCQ6bE//njjnYcTioiIiIiIFD0mo5gVoXTkTqx3sjup/q6IiBSewqiPXZTl5b9NBVUjPIUUznPelljvcH8Hu2R8pl4aKAW4OxxOnrniStrfaZCA5WaxCVn0LMb3Ru/FDz/88ackJXHBpfCCFhERERGRYsORXLFWpIuIiIjkUlH6w4AHHlSwNgBW5HJHbywJ9fQecMPjnLZ5ORZjGmnXE/kOqE992+cmTJSkJP4ZWnqS/caxkhmaL752j0tSErfc1tARERERERG5gRLpIiIiIsXJJWs/mYd9PeDUlVNc4ALxxHMhmxZPPIkkkkACOw/vBH8sPQ+r4Q0MEq3tBCfyEHTG8D0yJdezSrjndo4rrrcUj4iIiIiI3D6USBcRERGR3EnBfhV8LphqZFjF74mlHrx/Fj3D+OARg0mwtvSEfHq7zOVbCN/SznEuz8fIyAsvfPHFJ0O78XFetnnhpXI2IiIiIiJFjGqkF1NF6a3pIiIiYq+warHnhdPr5JcgU+Idf/j464+5aG1JJNk+z6mlkJK/seWn5Aw96YbHN/ZLwOUsPmY1lnFbHl8FOP05kI077WVNQd1fQURERESuU410EREREbkzXQP+tvYMHuMxhw9lcjNBSSzdl+uf56ZnnO9j7d6OX0620o9ZkK6QpwT827yNF15442330QsvPPHEAw88MzR8ree6VsDXIyIiIiJSgLQivZjSinQRERHJi6K6GrlIMGFJpvvY95+2/EQyySSRRHIuWhJJbNu3LdNxbntpWBLqKdaP2fWbbXfkGCnA1Qwfr9qHVJRfCmlFuoiIiEjB04p0EREREZHCZnC93EoGnens8KFM9W9IopoALzIn132s497ZfHR0W0Em7F0pGn8UyJBYDyYYd9zxwKNAPt5sjluG5o47brjpJrYiIiIiRZQS6SIiIiKSa8VqhXlRYmApr3IJOFvA5/Igb8l5T+u+nrnoN87zKOBrysjd2oHTnC7EE+eSGUgFLlo/XrV+vLFnMd6LXraEfFZJ+lsdd8ONEpSgSf0mlnNey0VPK7yV8lrFnzeOft30NRMRkeJKiXQREREREbkuxdrjC/GcJrJOwuc1MZ9x3N3Bj85+heRijSMPf1z4hm/yO5qs7XVseolCaswi18n99P5v/o1rPjcXXPK0j4iIiBRtzv5vIgBz5szhrbfeIjY2loYNGzJr1ixatGiR7fzPP/+c8ePHc/ToUWrUqMH06dPp3r17IUYsIiIiIiL5xuB6fXNnc+H6qvUbE+3usHX3Vq5ylRRScv3xjTffyDpp72bt7hk+d3Ng/DbJvaZZWwopBXuioY7v8hRP5X8ceZTfSXuXmzRbAv8LLO+EyGUfwpBMx7iVVlDHMGGyfczt53nZp6COa0LvABMRKWqcfrPR5cuXM2DAAObNm0d4eDgzZ87k888/5+DBg5QvXz7T/E2bNtGuXTumTp3KP/7xD5YuXcr06dPZuXMn9erVu+n5dLNRC70tW0RERKRw5OW/2/q/muSKC3YJ9tPnT5OaRbvK1Vsev8pVrlnbvPnzLEuyCrK7FdLXUKQIK8zEf1aPMyb0c3qcmznFZZ9/8A960Ss/nwYiDlOpM8c4kit2eiI9PDyc5s2bM3v2bADMZjMhISEMGzaM0aNHZ5r/8MMPk5yczLfffmsbu/vuu2nUqBHz5s3LND8lJYWUlOsrHxISEqhcuTInTpwo1ol0f39/Z4cgIiIiUiwkJCQ4vI/+ryZ5kZfnWl4UxvMzPiEeM2Zb8v4a10gjze7xjWNt2rWxJOFdsU/K3/i4BJY/Qrhm0fM6fuP2Gx53u7cbaaRhxmxboZ+x5TTu6D4i4jyv8ipjGevsMKSYy8u/04X1f4iiKDExkZCQEOLj42/6tXNqIv3q1at4e3vzxRdf0Lt3b9v4wIEDiY+P5+uvv860T+XKlRkxYgTDhw+3jU2cOJGvvvqK3bt3Z5r/2muv8frrrxdE+CIiIiIiIiIiIiJymztx4gSVKlXKcY5Ta6SfO3eOtLQ0AgMD7cYDAwM5cOBAlvvExsZmOT82NjbL+WPGjGHEiBG2x2azmfPnz1OmTJli+5bZ9L+0FPdV+VK06HkpRZGel1JU6bkpRZGel1IU6XkpRZWem1IU6XkpRVFBPy8Nw+DixYsEBwffdG6RuNloQfLw8MDDw/6W9wEBAc4Jpojx8/PTL0YpcvS8lKJIz0spqvTclKJIz0spivS8lKJKz00pivS8lKKoIJ+XuS2H49T7vJctWxZXV1fi4uLsxuPi4ggKCspyn6CgIIfmi4iIiIiIiIiIiIjcCqcm0t3d3WnatClRUVG2MbPZTFRUFC1btsxyn5YtW9rNB1i9enW280VEREREREREREREboXTS7uMGDGCgQMH0qxZM1q0aMHMmTNJTk5m0KBBAAwYMICKFSsydepUAF588UXat2/PjBkz6NGjB8uWLWP79u3861//cuZl3FY8PDyYOHFippI3Is6k56UURXpeSlGl56YURXpeSlGk56UUVXpuSlGk56UURUXpeWkyDMNwdhCzZ8/mrbfeIjY2lkaNGvH+++8THh4OQIcOHQgNDWXhwoW2+Z9//jnjxo3j6NGj1KhRgzfffJPu3bs7KXoRERERERERERERuZMViUS6iIiIiIiIiIiIiEhR5dQa6SIiIiIiIiIiIiIiRZ0S6SIiIiIiIiIiIiIiOVAiXUREREREREREREQkB0qki4iIiIiIiIiIiIjkQIn0YmbOnDmEhobi6elJeHg427Ztc3ZIUsxNnTqV5s2bU7JkScqXL0/v3r05ePCgs8MSsTNt2jRMJhPDhw93dihSzJ08eZJHH32UMmXK4OXlRf369dm+fbuzw5JiLC0tjfHjxxMWFoaXlxfVqlVj0qRJGIbh7NCkmFm/fj09e/YkODgYk8nEV199ZbfdMAwmTJhAhQoV8PLyIiIigkOHDjknWCk2cnpepqamMmrUKOrXr4+Pjw/BwcEMGDCAU6dOOS9gKTZu9jszo2effRaTycTMmTMLLT4pnnLzvIyJieHee+/F398fHx8fmjdvzvHjxwstRiXSi5Hly5czYsQIJk6cyM6dO2nYsCGRkZGcOXPG2aFJMbZu3TqGDBnCli1bWL16NampqXTp0oXk5GRnhyYCwC+//MKHH35IgwYNnB2KFHMXLlygdevWuLm58f3337N//35mzJhBqVKlnB2aFGPTp09n7ty5zJ49m5iYGKZPn86bb77JrFmznB2aFDPJyck0bNiQOXPmZLn9zTff5P3332fevHls3boVHx8fIiMjuXLlSiFHKsVJTs/LS5cusXPnTsaPH8/OnTv573//y8GDB7n33nudEKkUNzf7nZluxYoVbNmyheDg4EKKTIqzmz0v//jjD9q0aUOtWrVYu3Yte/bsYfz48Xh6ehZajCZDy0WKjfDwcJo3b87s2bMBMJvNhISEMGzYMEaPHu3k6EQszp49S/ny5Vm3bh3t2rVzdjhSzCUlJdGkSRM++OADJk+eTKNGjbQSQ5xm9OjRREdHs2HDBmeHImLzj3/8g8DAQD766CPb2AMPPICXlxeffPKJEyOT4sxkMrFixQp69+4NWFajBwcH8/LLLzNy5EgAEhISCAwMZOHChfTt29eJ0UpxcePzMiu//PILLVq04NixY1SuXLnwgpNiLbvn5smTJwkPD+eHH36gR48eDB8+XO/QlUKT1fOyb9++uLm5sXjxYqfFpRXpxcTVq1fZsWMHERERtjEXFxciIiLYvHmzEyMTsZeQkABA6dKlnRyJCAwZMoQePXrY/e4UcZZvvvmGZs2a0adPH8qXL0/jxo2ZP3++s8OSYq5Vq1ZERUXx+++/A7B79242btxIt27dnByZyHVHjhwhNjbW7t9zf39/wsPD9VpIipSEhARMJhMBAQHODkWKObPZzGOPPcYrr7xC3bp1nR2OCGazmZUrV1KzZk0iIyMpX7484eHhOZYlKghKpBcT586dIy0tjcDAQLvxwMBAYmNjnRSViD2z2czw4cNp3bo19erVc3Y4UswtW7aMnTt3MnXqVGeHIgLAn3/+ydy5c6lRowY//PADzz33HC+88AKLFi1ydmhSjI0ePZq+fftSq1Yt3NzcaNy4McOHD6d///7ODk3EJv31jl4LSVF25coVRo0aRb9+/fDz83N2OFLMTZ8+nRIlSvDCCy84OxQRAM6cOUNSUhLTpk2ja9eu/Pjjj9x3333cf//9rFu3rtDiKFFoZxIRuYkhQ4awb98+Nm7c6OxQpJg7ceIEL774IqtXry7UemsiOTGbzTRr1owpU6YA0LhxY/bt28e8efMYOHCgk6OT4uqzzz5jyZIlLF26lLp167Jr1y6GDx9OcHCwnpciIrmUmprKQw89hGEYzJ0719nhSDG3Y8cO3nvvPXbu3InJZHJ2OCKA5bUQQK9evXjppZcAaNSoEZs2bWLevHm0b9++UOLQivRiomzZsri6uhIXF2c3HhcXR1BQkJOiErlu6NChfPvtt6xZs4ZKlSo5Oxwp5nbs2MGZM2do0qQJJUqUoESJEqxbt47333+fEiVKkJaW5uwQpRiqUKECderUsRurXbt2od6lXuRGr7zyim1Vev369Xnsscd46aWX9G4eKVLSX+/otZAURelJ9GPHjrF69WqtRhen27BhA2fOnKFy5cq210LHjh3j5ZdfJjQ01NnhSTFVtmxZSpQo4fTXQ0qkFxPu7u40bdqUqKgo25jZbCYqKoqWLVs6MTIp7gzDYOjQoaxYsYKff/6ZsLAwZ4ckQufOndm7dy+7du2y9WbNmtG/f3927dqFq6urs0OUYqh169YcPHjQbuz333+nSpUqTopIBC5duoSLi/1LCldXV9uqIZGiICwsjKCgILvXQomJiWzdulWvhcSp0pPohw4d4qeffqJMmTLODkmExx57jD179ti9FgoODuaVV17hhx9+cHZ4Uky5u7vTvHlzp78eUmmXYmTEiBEMHDiQZs2a0aJFC2bOnElycjKDBg1ydmhSjA0ZMoSlS5fy9ddfU7JkSVudSn9/f7y8vJwcnRRXJUuWzFSn38fHhzJlyqh+vzjNSy+9RKtWrZgyZQoPPfQQ27Zt41//+hf/+te/nB2aFGM9e/bkjTfeoHLlytStW5dff/2Vd955h8GDBzs7NClmkpKSOHz4sO3xkSNH2LVrF6VLl6Zy5coMHz6cyZMnU6NGDcLCwhg/fjzBwcH07t3beUHLHS+n52WFChV48MEH2blzJ99++y1paWm210KlS5fG3d3dWWFLMXCz35k3/lHHzc2NoKAg7rrrrsIOVYqRmz0vX3nlFR5++GHatWtHx44dWbVqFf/73/9Yu3Zt4QVpSLEya9Yso3Llyoa7u7vRokULY8uWLc4OSYo5IMu+YMECZ4cmYqd9+/bGiy++6OwwpJj73//+Z9SrV8/w8PAwatWqZfzrX/9ydkhSzCUmJhovvviiUblyZcPT09OoWrWqMXbsWCMlJcXZoUkxs2bNmiz/Tzlw4EDDMAzDbDYb48ePNwIDAw0PDw+jc+fOxsGDB50btNzxcnpeHjlyJNvXQmvWrHF26HKHu9nvzBtVqVLFePfddws1Ril+cvO8/Oijj4zq1asbnp6eRsOGDY2vvvqqUGM0GYZhFHy6XkRERERERERERETk9qQa6SIiIiIiIiIiIiIiOVAiXUREREREREREREQkB0qki4iIiIiIiIiIiIjkQIl0EREREREREREREZEcKJEuIiIiIiIiIiIiIpIDJdJFRERERERERERERHKgRLqIiIiIiIiIiIiISA6USBcRERERkRwtXLiQgIAAZ4chIiIiIuI0SqSLiIiIiBRxjz/+OL179840vnbtWkwmE/Hx8YUek4iIiIhIcaJEuoiIiIiIZCs1NdXZIYiIiIiIOJ0S6SIiIiIid4gvv/ySunXr4uHhQWhoKDNmzLDbbjKZ+Oqrr+zGAgICWLhwIQBHjx7FZDKxfPly2rdvj6enJ0uWLLGbf/ToUVxcXNi+fbvd+MyZM6lSpQpmsznfr0tERERExNmUSBcRERERuQPs2LGDhx56iL59+7J3715ee+01xo8fb0uSO2L06NG8+OKLxMTEEBkZabctNDSUiIgIFixYYDe+YMECHn/8cVxc9BJDRERERO48JZwdgIiIiIiI3Ny3336Lr6+v3VhaWprt83feeYfOnTszfvx4AGrWrMn+/ft56623ePzxxx061/Dhw7n//vuz3f7kk0/y7LPP8s477+Dh4cHOnTvZu3cvX3/9tUPnERERERG5XWi5iIiIiIjIbaBjx47s2rXLrv/73/+2bY+JiaF169Z2+7Ru3ZpDhw7ZJdxzo1mzZjlu7927N66urqxYsQKAhQsX0rFjR0JDQx06j4iIiIjI7UIr0kVEREREbgM+Pj5Ur17dbuyvv/5y6BgmkwnDMOzGsrqZqI+PT47HcXd3Z8CAASxYsID777+fpUuX8t577zkUi4iIiIjI7USJdBERERGRO0Dt2rWJjo62G4uOjqZmzZq4uroCUK5cOU6fPm3bfujQIS5dupSn8z355JPUq1ePDz74gGvXruVYCkZERERE5HanRLqIiIiIyB3g5Zdfpnnz5kyaNImHH36YzZs3M3v2bD744APbnE6dOjF79mxatmxJWloao0aNws3NLU/nq127NnfffTejRo1i8ODBeHl55deliIiIiIgUOaqRLiIiIiJyB2jSpAmfffYZy5Yto169ekyYMIF//vOfdjcanTFjBiEhIbRt25ZHHnmEkSNH4u3tnedzPvHEE1y9epXBgwfnwxWIiIiIiBRdJuPGIokiIiIiIiK5MGnSJD7//HP27Nnj7FBERERERAqUVqSLiIiIiIhDkpKS2LdvH7Nnz2bYsGHODkdEREREpMApkS4iIiIiIg4ZOnQoTZs2pUOHDirrIiIiIiLFgkq7iIiIiIiIiIiIiIjkQCvSRURERERERERERERyoES6iIiIiIiIiIiIiEgOlEgXEREREREREREREcmBEukiIiIiIiIiIiIiIjlQIl1EREREREREREREJAdKpIuIiIiIiIiIiIiI5ECJdBERERERERERERGRHCiRLiIiIiIiIiIiIiKSAyXSRURERERERERERERyoES6iIiIiIiIiIiIiEgOlEgXEREREREREREREcmBEukiIiIiIiIiIiIiIjlQIl1EREREREREREREJAdKpIuIiIiIiIiIiIiI5ECJdBERERERERERERGRHCiRLiIiIiIiIiIiIiKSAyXSRURERERERERERERyoES6iIiIiIiIiIiIiEgOlEgXEREREREREREREcmBEukiIiIiIiIiIiIiIjlQIl1EREREREREREREJAdKpIuIiIiIiIiIiIiI5ECJdBERERERERERERGRHCiRLiIiIiIiIiIiIiKSAyXSRURERERERERERERyoES6iIiIiIiIiIiIiEgOlEgXEREREREREREREcmBEukiIiIiIiIiIiIiIjlQIl1ERERExAlee+01GjVq5OwwnCo0NJSZM2c6OwwRERERkZtSIl1ERERExEGxsbEMGzaMqlWr4uHhQUhICD179iQqKsrZod2xnnnmGapVq4aXlxflypWjV69eHDhwwNlhiYiIiEgxoUS6iIiIiIgDjh49StOmTfn5559566232Lt3L6tWraJjx44MGTLE2eHdsZo2bcqCBQuIiYnhhx9+wDAMunTpQlpamrNDExEREZFiQIl0EREREREHPP/885hMJrZt28YDDzxAzZo1qVu3LiNGjGDLli22ecePH6dXr174+vri5+fHQw89RFxcXLbH7dChA8OHD7cb6927N48//rjtcWhoKJMnT2bAgAH4+vpSpUoVvvnmG86ePWs7V4MGDdi+fbttn4ULFxIQEMAPP/xA7dq18fX1pWvXrpw+ffqWvxbx8fE888wzBAYG4unpSb169fj2229t27/88kvq1q2Lh4cHoaGhzJgxI8/nevrpp2nXrh2hoaE0adKEyZMnc+LECY4ePXrL1yEiIiIicjNKpIuIiIiI5NL58+dZtWoVQ4YMwcfHJ9P2gIAAAMxmM7169eL8+fOsW7eO1atX8+eff/Lwww/fcgzvvvsurVu35tdff6VHjx489thjDBgwgEcffZSdO3dSrVo1BgwYgGEYtn0uXbrE22+/zeLFi1m/fj3Hjx9n5MiRtxSH2WymW7duREdH88knn7B//36mTZuGq6srADt27OChhx6ib9++7N27l9dee43x48ezcOHCWzovQHJyMgsWLCAsLIyQkJBbPp6IiIiIyM2UcHYAIiIiIiK3i8OHD2MYBrVq1cpxXlRUFHv37uXIkSO2RO/HH39M3bp1+eWXX2jevHmeY+jevTvPPPMMABMmTGDu3Lk0b96cPn36ADBq1ChatmxJXFwcQUFBAKSmpjJv3jyqVasGwNChQ/nnP/+Z5xgAfvrpJ7Zt20ZMTAw1a9YEoGrVqrbt77zzDp07d2b8+PEA1KxZk/379/PWW2/ZrbJ3xAcffMCrr75KcnIyd911F6tXr8bd3f2WrkNEREREJDe0Il1EREREJJcyrvLOSUxMDCEhIXarpevUqUNAQAAxMTG3FEODBg1snwcGBgJQv379TGNnzpyxjXl7e9uS6AAVKlSw236junXr4uvri6+vL926dctyzq5du6hUqZItiX6jmJgYWrdubTfWunVrDh06lOe65v379+fXX39l3bp11KxZk4ceeogrV67k6VgiIiIiIo7QinQRERERkVyqUaMGJpOJAwcO5PuxXVxcMiXqU1NTM81zc3OzfW4ymbIdM5vNWe6TPienPwp89913tnN7eXllOSe78YLk7++Pv78/NWrU4O6776ZUqVKsWLGCfv36FXosIiIiIlK8aEW6iIiIiEgulS5dmsjISObMmUNycnKm7fHx8QDUrl2bEydOcOLECdu2/fv3Ex8fT506dbI8drly5exuAJqWlsa+ffvy9wJyqUqVKlSvXp3q1atTsWLFLOc0aNCAv/76i99//z3L7bVr1yY6OtpuLDo6mpo1a9rqqN8KwzAwDIOUlJRbPpaIiIiIyM0okS4iIiIi4oA5c+aQlpZGixYt+PLLLzl06BAxMTG8//77tGzZEoCIiAjq169P//792blzJ9u2bWPAgAG0b9+eZs2aZXncTp06sXLlSlauXMmBAwd47rnnbIn5oqh9+/a0a9eOBx54gNWrV3PkyBG+//57Vq1aBcDLL79MVFQUkyZN4vfff2fRokXMnj07Tzc5/fPPP5k6dSo7duzg+PHjbNq0iT59+uDl5UX37t3z+9JERERERDJRIl1ERERExAFVq1Zl586ddOzYkZdffpl69epxzz33EBUVxdy5cwFL6ZSvv/6aUqVK0a5dOyIiIqhatSrLly/P9riDBw9m4MCBtoR71apV6dixY2FdVp58+eWXNG/enH79+lGnTh1effVVW/3zJk2a8Nlnn7Fs2TLq1avHhAkT+Oc//5mnG416enqyYcMGunfvTvXq1Xn44YcpWbIkmzZtonz58vl8VSIiIiIimZmM3N4xSURERERERERERESkGNKKdBERERERERERERGRHCiRLiIiIiIiTrVkyRJ8fX2z7HXr1nV2eCIiIiIiKu0iIiIiIiLOdfHiReLi4rLc5ubmRpUqVQo5IhERERERe0qki4iIiIiIiIiIiIjkQKVdRERERERERERERERyoES6iIiIiIiIiIiIiEgOSjg7gMJmNps5deoUJUuWxGQyOTscEREREREREREREXECwzC4ePEiwcHBuLjkvOa82CXST506RUhIiLPDEBEREREREREREZEi4MSJE1SqVCnHOcUukV6yZEnA8sXx8/NzcjQiIiIiIiIiIiIi4gyJiYmEhITYcsY5KXaJ9PRyLn5+fkqki4iIiIiIiIiIiBRzuSkBrpuNioiIiIiIiIiIiIjkQIl0EREREREREREREZEcKJEuIiIiIiIiIiIiIpKDYlcjXQRyV/foRoZhFEAkIiIiIiIiIiKOMwyD1NRUrl275uxQRIqsEiVK4ObmlqdcYKZj5UM8IiIiIiIiIiIiUkhSUlI4evQoSUlJzg5FpMjz9fUlNDQUDw+PWzqOEunFTCqpdLe2vvSlAhWcHZKIiIiIiIiIiOSS2Wxm//79lChRgrCwMDw8PPJlta3IncYwDFJSUjh58iS//fYbNWvWxNfXN8/HUyK9mPmBH/jJ2kYykk50oj/9uZ/78cPP2eGJiIiIiIiIiEgOrly5gtlsJiws7JaSgiLFgY+PD+7u7hw8eJD//e9/dOrUicDAwDwdSzcbLWaiibZ9bsbMT/zEIAYRSCAP8RDf8A1XuerECEVERERERERE5GZcXJTWE8mN9J+V8+fP8+2333LhwoW8HSc/g5KibypTiSGGcYwjjDDb+BWu8Dmf04teVKACz/IsG9iAGbMToxURERERERERERG5dYGBgZw5c4a4uLg87a9EejFUi1pMYhJ/8Aeb2MQQhlCWsrbt5znPh3xIO9oRRhhjGMM+9jkxYhEREREREREREZG8M5lMmEwmrly5kqf9lUgvxkyYaElLZjObU5xiJSt5hEfwxts25zjHmcY06lOfhjTkTd7kBCecGLWIiIiIiIiIiIhI4VIiXQBww43udGcJS4gjjsUspitdccXVNmcPexjFKKpQhQ50YD7zOc95J0YtIiIiIiIiIiK3K8MwmDBhAhUqVMDLy4uIiAgOHTqU4z7r16+nZ8+eBAcHYzKZ+OqrrzLNSUpKYujQoVSqVAkvLy/q1KnDvHnzCugqpLhQIl0y8cWXR3mU7/mek5zkfd4nnHDbdgODdazjaZ4miCD+wT/4hE+4yMVMx0p/y0Rue144eo68nkdERERERERERPLPm2++yfvvv8+8efPYunUrPj4+REZG5lh6Izk5mYYNGzJnzpxs54wYMYJVq1bxySefEBMTw/Dhwxk6dCjffPNNQVyGFBNKpEuOAglkGMPYwhYOcYjXeZ2a1LRtTyWVlazkMR6jPOV5kAf5gi+4xCUnRi0iIiIiIiIiIkWZYRjMnDmTcePG0atXLxo0aMDHH3/MqVOnslxlnq5bt25MnjyZ++67L9s5mzZtYuDAgXTo0IHQ0FCefvppGjZsyLZt2wrgSqS4UCJdcq061ZnABA5wgG1sYwQjqEhF2/YrXOFLvqQPfShPefrTH/4BuDsvZhERERERERERKXqOHDlCbGwsERERtjF/f3/Cw8PZvHnzLR27VatWfPPNN5w8eRLDMFizZg2///47Xbp0udWwpRhTIl0cZsJEc5ozgxkc5zjrWc/zPE95ytvmJJPMUpbC/4BY4N/APZCh5LqIiIiIiIiIiBRTsbGxAAQGBtqNBwYG2rbl1axZs6hTpw6VKlXC3d2drl27MmfOHNq1a3dLx5XiTYl0uSUuuNCWtsxhDic5yWpW8wRPEEDA9UmlgCeAH4FTwBygLaBS5SIiIiIiIiIixcKSJUvw9fW19dTU1AI716xZs9iyZQvffPMNO3bsYMaMGQwZMoSffvqpwM4pd74Szg5A7hwlKEGEtX3AB6xmNf9Y/A/oDZS0TioPPG/tJ4HPgOXANsBwRtQiIiIiIiIiIlLQ7r33XsLDw22PU1JSAIiLi6NChQq28bi4OBo1apTn81y+fJn/+7//Y8WKFfTo0QOABg0asGvXLt5++227UjIijtCKdCkQ7rjTgx4wAEvy/AEsSfPLGSZVBF4CtgDHgHcgmmjMmAs9XhERERERERERKTglS5akevXqtl6nTh2CgoKIioqyzUlMTGTr1q20bNkyz+dJTU0lNTUVFxf7tKerqytms3JOkndKpEvBuwL8F3gYS1L9EeBr4GqGOSHAS9CGNoQQwgu8wHrWk0Za4ccrIiIiIiIiIiIFymQyMXz4cCZPnsw333zD3r17GTBgAMHBwfTu3ds2r3PnzsyePdv2OCkpiV27drFr1y7ActPSXbt2cfz4cQD8/Pxo3749r7zyCmvXruXIkSMsXLiQjz/+mPvuu68wL1HuMCrtIoUrCfjU2gOwlH15EMuNSN0tU05xilnWFkQQ93M/D/IgbWlLCT1lRURERERERETuCK+++irJyck8/fTTxMfH06ZNG1atWoWnp6dtzh9//MG5c+dsj7dv307Hjh1tj0eMGAHAwIEDWbhwIQDLli1jzJgx9O/fn/Pnz1OlShXeeOMNnn322cK5MLkjmQzDcHpl6jlz5vDWW28RGxtLw4YNmTVrFi1atMhy7n//+1+mTJnC4cOHSU1NpUaNGrz88ss89thjuTpXYmIi/v7+JCQk4Ofnl5+XIVkwmXJ5R1F/oCf0XNyTH/iBq3bL1S3KUc6WVO9AB1tSPdfnuEVF4EdFRERERERERIq5S5cuERMTQ+3atfH29nZ2OCJFXvrPzNGjRzl06BBdu3a11eF3JFfs9NIuy5cvZ8SIEUycOJGdO3fSsGFDIiMjOXPmTJbzS5cuzdixY9m8eTN79uxh0KBBDBo0iB9++KGQI5d8lQB8At/wDWc5yxKWcB/34cn1v0Ce5Swf8iH3cA9BBPEUT/EDP+h9FSIiIiIiIiIiIlKgnL4iPTw8nObNm9tqHZnNZkJCQhg2bBijR4/O1TGaNGlCjx49mDRp0k3nakV64XJ0tfiNT8eLXOQ7vuMLvmAlK7lsd7dSq/PAV8AXQBRksZg9X2hFuoiIiIiIiIg4m1akizjmjliRfvXqVXbs2EFERIRtzMXFhYiICDZv3nzT/Q3DICoqioMHD9KuXbss56SkpJCYmGjX5fZRkpI8zMN8zuec5Syf8zkP8zA++FyfVBoYDHwHnMVSf/0hwNcZEd8+TCaTw11ERERERERERKQ4cmoi/dy5c6SlpREYGGg3HhgYSGxsbLb7JSQk4Ovri7u7Oz169GDWrFncc889Wc6dOnUq/v7+th4SEpKv1yCFxwcfHuRBlrGMM5zhv/yXR3gEMv5txA/oCywHzgHfAk8A5ZwQsIiIiIiIiIiIiNwRnF4jPS9KlizJrl27+OWXX3jjjTcYMWIEa9euzXLumDFjSEhIsPUTJ04UbrBSILzx5j7uYwlLoDxwL7AQ+DvDJA+gB/Bv4DSwDhgOVCncWEVEREREREREROT25tREetmyZXF1dSUuLs5uPC4ujqCgoGz3c3FxoXr16jRq1IiXX36ZBx98kKlTp2Y518PDAz8/P7sud5gU4H/AICAQ6ATMAjL+zcQVaAe8CxwFdgLjgfqFGagUJSptIyIiIiIiIlL45syZQ2hoKJ6enoSHh7Nt2zZnhySSK05NpLu7u9O0aVOioqJsY2azmaioKFq2bJnr45jNZlJSUgoiRLndpAFrgBeAykBzYAoQc8O8xsA/gT3AIeAtoBWgXKmIiIiIiIiISIFYvnw5I0aMYOLEiezcuZOGDRsSGRnJmTNnnB2ayE05vbTLiBEjmD9/PosWLSImJobnnnuO5ORkBg0aBMCAAQMYM2aMbf7UqVNZvXo1f/75JzExMcyYMYPFixfz6KOPOusSpCjbDowF6gC1gDHAjX/orA6MBKKBU8A8oCuW0jAiIiIiIiIiIpIv3nnnHZ566ikGDRpEnTp1mDdvHt7e3vznP/9xdmgiN1UiN5NKlSqV67IG58+fdyiAhx9+mLNnzzJhwgRiY2Np1KgRq1atst2A9Pjx47i4XM/3Jycn8/zzz/PXX3/h5eVFrVq1+OSTT3j44YcdOq8UQweBadZeEegN3Ae05/pPQhDwjLUnAT8A3wDf5e2UeSkHYhhG3k5WRDn6NbjTrl9ERERERERE4OrVq+zYscNuwayLiwsRERFs3rzZiZGJ5E6uEukzZ84s0CCGDh3K0KFDs9x2401EJ0+ezOTJkws0HikGTgJzrL008A8sSfVIwMs6xxd4wNrN0IY23Mu99KQntaiFSXVgRERERERERERy5dy5c6SlpdkWz6YLDAzkwIEDTopKJPdylUgfOHBgQcch4jzngY+t3RvoAvTEklwvb53jAtHWNopRVKc691pba1pTInc/SiIiIiIiIiIiInIbylON9D/++INx48bRr18/280Avv/+e3777bd8DU6k0F0CvgKeACpguQHpNOCGp/ZhDvMO79CBDpSnPI/yKMtZTgIJhRywiIiIiIiIiEjRV7ZsWVxdXYmLi7Mbj4uLIygoyElRieSew4n0devWUb9+fbZu3cp///tfkpKSANi9ezcTJ07M9wBFnMYMbMZyg9J6cIhDvMM7dKQjrrjapl3gAktYQl/6Upay3MM9vM/7HOGIsyIXERERERERESlS3N3dadq0KVFRUbYxs9lMVFQULVu2dGJkIrnjcCJ99OjRTJ48mdWrV+Pu7m4b79SpE1u2bMnX4ESKkupU5yVe4md+5ixnbclzP/xsc65xjZ/4iRd5kapUhd3AFKANZMi9i4iIiIiIiIgUOyNGjGD+/PksWrSImJgYnnvuOZKTkxk0aJCzQxO5KYcLO+/du5elS5dmGi9fvjznzp3Ll6Ck4JlMjt8o0zCMAojk9lSKUjxibVe5ygY28D/+xzd8Y78SvYG1jwEuAD8AK4FVgH5cRERERERERKQYefjhhzl79iwTJkwgNjaWRo0asWrVqkw3IBUpihxekR4QEMDp06czjf/6669UrFgxX4ISuZ24405nOjOTmfzBH+xlL1OYQjjhlvIw6UoBfYHFQByWsjHjgaaA43/XEBERERERERG57QwdOpRjx46RkpLC1q1bCQ8Pd3ZIIrnicCK9b9++jBo1itjYWEwmE2azmejoaEaOHMmAAQMKIkaR24YJE/WoxxjGsIUtEAQ8BizDsiI9nQtwN/BPYDtwCvgP8AC6YamIiIiIiIiIiEgR43AifcqUKdSqVYuQkBCSkpKoU6cO7dq1o1WrVowbN64gYhS5fZ0FPgH6AeWAtsBUYM8N84KAQcAXUJaydKQjb/EW+9mPwc1L6phMJoe7iIiIiIiIiIiI5I7DNdLd3d2ZP38+48ePZ9++fSQlJdG4cWNq1KhREPGJ3DnSgI3W/n9AJaC7tUcAPpZp17jGWmt7lVepQhW6W1sHOuCLr3PiFxEREREREZEiqRnNiCW20M8bRBDb2V7o5xVxBocT6Rs3bqRNmzZUrlyZypUrF0RMIsXDX8C/rN0DaAf0gGovVuMP/rBNO8Yx5lqbG260pS2R1taABphUYF1ERERERESkWIsllpOcdHYYInc0hxPpnTp1omLFivTr149HH32UOnXqFERcUgSpHEgBSgFWW/rhFw/zO7/zHd+xkpWsYx2ppAKQSio/W9soRlGBCnShi+UmpquBv514DSIiIiIiIiLiFEEEFavzijiDw4n0U6dOsWzZMj799FOmTZtGgwYN6N+/P/369aNSpUoFEaNIsVPT2oYznItcJIoofuAHVrGKoxy1zTvNaRaxCD4FzFhuXLoK+AHYiqWcjIiIiIiIiIjc0VReRaTgOXyz0bJlyzJ06FCio6P5448/6NOnD4sWLSI0NJROnToVRIwixVpJStKb3sxlLn/yJwc5yPu8T3e644339YkuQAtgAhANnAM+B54EQpwQuIiIiIiIiIiI1dSpU2nevDklS5akfPny9O7dm4MHD950v5kzZ3LXXXfh5eVFSEgIL730EleuXLFtT0tLY/z48YSFheHl5UW1atWYNGkShmEU5OVIMeTwivSMwsLCGD16NA0bNmT8+PGsW7cuv+ISkSyYMNlWqw9jGCmksJGNRLwVAZFAgwyTA4AHrR1gP5aV6j8A64HLhRm5iIiIiIiIiBRn69atY8iQITRv3pxr167xf//3f3Tp0oX9+/fj4+OT5T5Lly5l9OjR/Oc//6FVq1b8/vvvPP7445hMJt555x0Apk+fzty5c1m0aBF169Zl+/btDBo0CH9/f1544YXCvES5w+U5kR4dHc2SJUv44osvuHLlCr169WLq1Kn5GZuI3IQHHnSmM7yKpQcDXbAk1bsApTNMrmPtL2GpyR4N/GTtO7CUhhERERERERERKQCrVq2ye7xw4ULKly/Pjh07aNeuXZb7bNq0idatW/PII48AEBoaSr9+/di6davdnF69etGjRw/bnE8//ZRt27YV0JVIceVwaZcxY8YQFhZGp06dOH78OO+99x6xsbEsXryYrl27FkSMIpJbp4CFQD+gHBAOTAQ2YV8v3QPoBEwBtmEpA/MF8CxQrfDCFREREREREZHiKSEhAYDSpUtnO6dVq1bs2LHDlhT/888/+e677+jevbvdnKioKH7//XcAdu/ezcaNG+nWrVsBRi/FkcMr0tevX88rr7zCQw89RNmyZQsiJinGTCaTs0PIVlGOLUtmLEnybcA/sZR6iQDusfawDHNLAQ9YO8BRrq9Wj8KSaBcRERERERERyQdms5nhw4fTunVr6tWrl+28Rx55hHPnztGmTRsMw+DatWs8++yz/N///Z9tzujRo0lMTKRWrVq4urqSlpbGG2+8Qf/+/QvjUqQYcTiRHh0dXRBxiEhBi8ey6vwL6+OqWBLrEUBn7MvAhGK5SemT1se/Aj/Bj/xIG9rY3+RURERERERERMQBQ4YMYd++fWzcuDHHeWvXrmXKlCl88MEHhIeHc/jwYV588UUmTZrE+PHjAfjss89YsmQJS5cupW7duuzatYvhw4cTHBzMwIEDC+NypJjIU430xYsXM2/ePI4cOcLmzZupUqUKM2fOJCwsjF69euV3jCJSEP4E/mXtLkBjrifW2wCeGeY2tvRIInHHnda0JoII7uEemtAEV1wLO3oRERERERERuQ0NHTqUb7/9lvXr11OpUqUc544fP57HHnuMJ5+0rPSrX78+ycnJPP3004wdOxYXFxdeeeUVRo8eTd++fW1zjh07xtSpU5VIl3zlcI30uXPnMmLECLp37058fDxpaZbCywEBAcycOTO/4xORwmDGcsPR6VjKvpSyfpxOphuRXuUqa1jDWMbSghaUuFAC09cmTC+aMDUwYXIxYTJd78Vdxq9FbruIiIiIiIjIncYwDIYOHcqKFSv4+eefCQsLu+k+ly5dwsXFPn3p6upqO15Oc8xmMyL5yeFE+qxZs5g/fz5jx461PXEBmjVrxt69e/M1OBFxkitY6qOPBpoB5YGHsKxeP3LD3FJAL+A9YA9wBvgceB6oXUjxioiIiIiIiEiRNmTIED755BOWLl1KyZIliY2NJTY2lsuXL9vmDBgwgDFjxtge9+zZk7lz57Js2TKOHDnC6tWrGT9+PD179rTlJXv27Mkbb7zBypUrOXr0KCtWrOCdd97hvvvuK/RrlDubw6Vdjhw5QuPGjTONe3h4kJycnC9BiUgR8zeW5Pjn1sdhXL9xaQegXIa5ZYEHrR0gFliToR8u+HBFREREREREpGiZO3cuAB06dLAbX7BgAY8//jgAx48ft1tdPm7cOEwmE+PGjePkyZOUK1fOljhPN2vWLMaPH8/zzz/PmTNnCA4O5plnnmHChAkFfk1SvDicSA8LC2PXrl1UqVLFbnzVqlXUrq3lpyLFwhFgvrWbgHpAR2vvAARkmBsE9LN2gL+wJNR/tn48VhgB317yUt4l/S1tIiIiIiIiIkVRbl63rl271u5xiRIlmDhxIhMnTsx2n5IlSzJz5kyVnJYC53AifcSIEQwZMoQrV65gGAbbtm3j008/ZerUqfz73/8uiBhFpCgzgL3W/j6WglGNuJ5YbweUzDC/EvCYtYMlKZ9xxbqIiIiIiIiIiEgR43Ai/cknn8TLy4tx48Zx6dIlHnnkEYKDg3nvvfdsd8cVkWLMDOy09hlYfss05XpivQ3gnWF+mLUPtjysTnXa0Y72tKcd7QglFBO6AaeIiIiIiIiIiDiPw4l0gP79+9O/f38uXbpEUlIS5cuX59KlS2zatIlWrVrld4wicju7Bmy19mmAO9CC64n1loDn9el/WNsCFgBQiUq2pHo72nEXdymxLiIiIiIiIiIihSpPifR03t7eeHtblpYeOnSItm3bkpaWli+Bicgd6iqw0donYUmit8SWWHdv485Vrtqm/8VfLLE2gHKUs1uxXp/6uOCS6TQiIiIiIiIiIiL5pUhkn+bMmUNoaCienp6Eh4ezbdu2bOfOnz+ftm3bUqpUKUqVKkVERESO80WkiLuCpTb6BKAtxBPPWtbyOq/Tmc544WU3/Sxn+ZIveYEXaEQjylCGnvTkbd5mG9tIJdUZVyEiIiIiIiIiInewW1qRnh+WL1/OiBEjmDdvHuHh4cycOZPIyEgOHjxI+fLlM81fu3Yt/fr1o1WrVnh6ejJ9+nS6dOnCb7/9RsWKFZ1wBSKSn7zwor21AVzlKjvZyXrWs451bGQjiSTa5scTz7fWBuCDD61oRXva05a2tKAFnhlrx4iIiIiIiIiIiDjIZBiGkR8H2r17N02aNHG4tEt4eDjNmzdn9uzZAJjNZkJCQhg2bBijR4++6f5paWmUKlWK2bNnM2DAgEzbU1JSSElJsT1OTEwkJCSEhIQE/Pz8HIr1TmIyqcZ0UZWXH8k76ft5s+tPI4097GF9hnaOc9nOd8ONpjSlDW1obW3lKJenr1lR/t7k069yERERERERKeIuXbpETEwMtWvXtpVcFpHspf/MHD16lEOHDtG1a1caNWoEWHLF/v7+ucoV53pF+jfffJPj9iNHjuT2UDZXr15lx44djBkzxjbm4uJCREQEmzdvztUxLl26RGpqKqVLl85y+9SpU3n99dcdjk1EiiZXXGlsbS/yIgYGMcTYkurrWMcpTtnmp5LKFmt7m7cBqEEN+AiItvaDTrkUERERERERERG5TeQ6kd67d++bznF05eW5c+dIS0sjMDDQbjwwMJADBw7k6hijRo0iODiYiIiILLePGTOGESNG2B6nr0gXkTuDCRN1rO1ZnsXA4AhHWMc6NrCBaKL5nd/t9jnEIRiMpQOcBTZxPbG+HTLc7/SOVVir8kVEREREREREbne5TqSbzeaCjCNPpk2bxrJly1i7di2enlnXQPbw8MDDw6OQIxMRZzFhoqq1DWIQYLlB6SY2sZGNRBPNdrbb35S0HNDL2sFyA9TtWJLqG7Ek2c8X4kWIiIiIiIiIiEiR4tSbjZYtWxZXV1fi4uLsxuPi4ggKCspx37fffptp06bx008/0aBBg4IMU0Ruc+UoRy9rA7jMZbzbekNrLL0VUCbDDp5AG2sfZR2LgSd5kru5m5a0pDa1ccGlEK9CREREREREREScxalZIHd3d5o2bUpUVJRtzGw2ExUVRcuWLbPd780332TSpEmsWrWKZs2aFUaoInIH8cLLstJ8OnAvlhXpdYCngIXA4Sx2qg0f8RFP8RT1qEcpStGFLkxgAt/zPee1ZF1ERERERERE5I7l1BXpACNGjGDgwIE0a9aMFi1aMHPmTJKTkxk0yFKSYcCAAVSsWJGpU6cCMH36dCZMmMDSpUsJDQ0lNjYWAF9fX3x9fZ12HSJyGzOAGGv/t3UsEMtK9TZYVq03Adyu75JIIqutLd1d3GVbsX43d1OXuoUTv4iIiIiIiIiIFCinJ9Iffvhhzp49y4QJE4iNjaVRo0asWrXKdgPS48eP4+JyfeH83LlzuXr1Kg8++KDdcSZOnMhrr71WmKGLyJ0sDlhh7QBesP7Serawhc3WFkus3S4HrW0RiwDwwQeigC3AZuvHc4V2BSIiIiIiIiIikk8cSqSnpaURHR1NgwYNCAgIyLcghg4dytChQ7PctnbtWrvHR48ezbfziojk2mVoa20ABgbHOc4Wa9vMZnay0+4mpskkQycsPd1h7BPre4BrhXYVIiIiIiIiIiKSBw4l0l1dXenSpQsxMTH5mkgXEbndmDBRxdoe5mEArnCFX/nVlljfwhZOcMJ+x+rW/qj18WXgV2Ab8Iv1Y1Y12kVERERERERExGkcLu1Sr149/vzzT8LCwgoiHhGR25YnnrS0tpd4CQBTRRPcjaW3BJoCXhl28sJSi71VhrELXE+qp3+0ryIjIiIiIiIiIiKFyOFE+uTJkxk5ciSTJk2iadOm+Pj42G338/PLt+BEpPgxmUwO72MYRgFEklleYgPgv9YOlhuWNuR6Yr05UOOG+aWALtae7i/sE+vbgcS8hSMiIiIiIiIiIo5xOJHevXt3AO699167pJJhGJhMJtLS0vIvOhGRO00qliT4dmC2dawU0AxokaEH3bBfJWu/P8PYAWzJ9a1spSEN8cSzAIMXERERERERESmeHE6kr1mzpiDiEBEpvi4Aq609XSUsq9XTE+vNgBvf8FPL2gfA3dyNG240oAHNaEZTmtKEJtSnPu64F8JFiIiIiIiIiIjcuRxOpLdv374g4hARkYz+svYV1scm4C6uJ9ebA40Aj+u7pJLKDmtL54Yb9alP0wytPvXxyLij5FpRLj0kIiIiIiIiIgXHJS87bdiwgUcffZRWrVpx8uRJABYvXszGjRvzNTgREbEysJRyWQwMw1Jj3Q9LQv15GMhAalMbE/aJ3lRS2clO5jOfZ3mW5jTHF18a0xjmA89aj6G8uoiIiIiIiIhIthxOpH/55ZdERkbi5eXFzp07SUlJASAhIYEpU6bke4AiIpKNq1hqrc+FhSxkP/tJIIF1rOMd3uFRHs0yuX6Na+xiFzxp2ZdtwEXgV+Aj4HkgHFRuXURERERERETEwuHSLpMnT2bevHkMGDCAZcuW2cZbt27N5MmT8zU4ERFxTElK0s7a0iWRxC52sYMd7GQnO9hBDDGYMV/f0Q1LqZhGwGDr2DVgP7ATS5L9V0ggAX/8C/QaVD5FRERERERERIoahxPpBw8epF27dpnG/f39iY+Pz4+YREQkH/niSxtrS5dMMr6tfKEplt4EqIP9vwolgAbW/rhlKIAAwgij0Q0thJBMK99FRERERERERO4UDifSg4KCOHz4MKGhoXbjGzdupGrVqvkVl4iIFCAffGAzlp7OC0vSPGNyvR6Z/qU4Ym0rbHdChdKUzpRcr0Ut3HAr4CsRERERERERyNu7e2+F3hlcNHTo0IFGjRoxc+ZMZ4dyx3O4RvpTTz3Fiy++yNatWzGZTJw6dYolS5YwcuRInnvuuYKIUUREbsJkMjncM7kMbAU+AJ4AGgO+QAvgKWAOtKKVJQl/g/Oc52d+5h3eYQADaEADfPGlKU15gieYzWw2spFEEgvwqyAiIiIiIiJF1fr16+nZsyfBwcGYTCa++uqrTHMMw2DChAlUqFABLy8vIiIiOHTokN2cN954g1atWuHt7U1AQECW5zp+/Dg9evTA29ub8uXL88orr3Dt2rUc48vutXPG0tZSNOTl+5sfHF6RPnr0aMxmM507d+bSpUu0a9cODw8PRo4cybBhwwoiRhERcZYU4BdrB6KHRGPGzB/8wa/8yq4M7TSn7Xa9ylV2WltG1ahmW7XegAbUpz5VqIKL43/bFRERERERkdtEcnIyDRs2ZPDgwdx///1ZznnzzTd5//33WbRoEWFhYYwfP57IyEj279+Pp6cnAFevXqVPnz60bNmSjz76KNMx0tLS6NGjB0FBQWzatInTp08zYMAA3NzcmDJlSo4xLliwgK5du9qNZZesl/zz119/UbFixVy9q+JWvr+3yuGshclkYuzYsZw/f559+/axZcsWzp49y6RJkwoiPhERKWJccKEGNXiIh5jCFL7jO05xilhi+YEfmM50+tGP2tTOMjn+B3/wJV8ynvH0ohdVqUoAAbSiFc/yLDwPtAUCCvvKREREREREpKB069aNyZMnc99992W53TAMZs6cybhx4+jVqxcNGjTg448/5tSpU3ar119//XVeeukl6tevn+VxfvzxR/bv388nn3xCo0aN6NatG5MmTWLOnDlcvXo1xxgDAgIICgqy6+kJ/MGDB9OgQQNSUlIAS0K/cePGDBgwwLZ/dHQ0HTp0wNvbm1KlShEZGcmFCxcAMJvNTJ06lbCwMLy8vGjYsCFffPGF3fn37dtHt27d8PX1JTAwkMcee4xz587ZticnJzNgwAB8fX2pUKECM2bMyHQNixcvplmzZpQsWZKgoCAeeeQRzpw5Y9u+du1aTCYTUVFRNGvWDG9vb1q1asXBgwftjvO///2P5s2b4+npSdmyZe2+bykpKYwcOZKKFSvi4+NDeHg4a9eutW0/duwYPXv2pFSpUvj4+FC3bl2+++67bL/u48ePp2rVqkycOJE///wz23lwa9/fW+VwIn3w4MFcvHgRd3d36tSpQ4sWLfD19SU5OZnBgwcXRIwiIjnKl7Imkis5fU2DTEFEmiIZZRrFp6ZPiTHFYPY2s4UtzGMez/Isd3M33nhnOu5FLrKZzXzIhzAHWA9cAI4D3wJTgX5Yarar7LqIiIiIiMgd58iRI8TGxhIREWEb8/f3Jzw8nM2bN+ewp73NmzdTv359AgMDbWORkZEkJiby22+/5Tm+999/n+TkZEaPHg3A2LFjiY+PZ/bs2QDs2rWLzp07U6dOHTZv3szGjRvp2bMnaWlpAEydOpWPP/6YefPm8dtvv/HSSy/x6KOPsm7dOgDi4+Pp1KkTjRs3Zvv27axatYq4uDgeeughWwyvvPIK69at4+uvv+bHH39k7dq17Nxp/y7w1NRUJk2axO7du/nqq684evQojz/+eKbrGTt2LDNmzGD79u2UKFHCLq+7cuVK7rvvPrp3786vv/5KVFQULVq0sG0fOnQomzdvZtmyZezZs4c+ffrQtWtXWxmeIUOGkJKSwvr169m7dy/Tp0/H19c3x6/t+PHjWbduHTVq1KBdu3b85z//4eLFi5nmFtT3N1cMB7m4uBhxcXGZxs+ePWu4uro6erhCl5CQYABGQkKCs0NxKkC9iHZ9P9XvtH6ja8Y144BxwFhmLDPGGmONe417jVAj1CC3LQWD3Rh8gsGrGHTDOGGcMMyG+VZ/NRbIz5qIiIiIiEh+Sk5ONrZv324kJyfbjTv7tZ4jAGPFihV2Y9HR0QZgnDp1ym68T58+xkMPPZTpGAsWLDD8/f0zjT/11FNGly5d7MaSk5MNwPjuu+9yjMnT09Pw8fGx68eOHbPN2bRpk+Hm5maMHz/eKFGihLFhwwbbtn79+hmtW7fO8thXrlwxvL29jU2bNtmNP/HEE0a/fv0MwzCMSZMmZYr7xIkTBmAcPHjQuHjxouHu7m589tlntu1///234eXlZbz44ovZXtcvv/xiAMbFixcNwzCMNWvWGIDx008/2easXLnSAIzLly8bhmEYLVu2NPr375/l8Y4dO2a4uroaJ0+etBvv3LmzMWbMGMMwDKN+/frGa6+9lm1MOTl69KgxadIko2bNmoa3t7fRv39/48cffzTMZstr/rx8f9N/Zr744gtj6tSpxq+//mrb5kiuONc10hMTEzEMA8MwuHjxou1tDWCpTfPdd99Rvnz53B5ORESKKVdcucvaHuZh23giiexjH62faQ0NgPpYPgbccAB363gDoL9lKIQQAgigPvVpQAPqZmhlKFMIVyUiIiIiIiK3u3fffdduRTxAcHCw7fOWLVsycuRIJk2axKhRo2jTpo1t265du+jTp0+Wxz18+DCXLl3innvusRtPLw8DsHv3btasWZPlyu0//viDy5cvc/XqVcLDw23jpUuX5q677rKbu2PHDl577TV2797NhQsXMJvNgOUGnXXq1LHNa9Cgge3zChUqAHDmzBkqV67Mrl27eOqpp7K8lr1795KWlkbNmjXtxlNSUihTxvL6+4UXXuC5557jxx9/JCIiggceeMDufDmpUqUK48aNY9y4cSxatIihQ4eyZMkSLly44PR69blOpAcEBNjevn/jFwosb/d//fXX8zU4keJIZUekuPLDj1a0gn/dsKES9on1+kAtMpV4iSeeDdaWUSCB1KUudahjl2AvTemCupRblpffA4ZhFEAkIiIiIiIihSMoKAiAuLg4W2I3/XGjRo0cOs62bdvsxuLi4uzOkdO+1atXz3a72WwmOjoaV1dXDh8+bLfNy8sr2/2SkpIAS8mUihUr2m3z8PCwzenZsyfTp0/PtH+FChUynS8rycnJREZGEhkZyZIlSyhXrhzHjx8nMjIyU/1wN7frL6rTX4OmJ91vdi2urq7s2LEDV1dXu23pfwR48skniYyMZOXKlfz4449MnTqVGTNmMGzYsJtew7lz5/j0009ZvHgxu3btolu3bgwcOBB/f3/g1r6/tyrXifQ1a9ZgGAadOnXiyy+/pHTp6wkId3d3qlSpYvcXGhERkXzxl7VnvC+JG5ZkujW53m1UN/awh5OczLR7nLX9zM9240EE2ZLqGZPspShVcNciIiIiIiIiWQoLCyMoKIioqChb4jwxMZGtW7fy3HPP5fo4LVu25I033uDMmTO26hmrV6/Gz8/PbkV2Xrz11lscOHCAdevWERkZyYIFCxg0aBBgWeEdFRWV5ULjOnXq4OHhwfHjx2nfvn2Wx27SpAlffvkloaGhlCiROWVbrVo13Nzc2Lp1K5UrVwbgwoUL/P7777ZjHjhwgL///ptp06YREhICwPbt2x2+zvRrSb+2jBo3bkxaWhpnzpyhbdu22R4jJCSEZ599lmeffZYxY8Ywf/78bBPpKSkpfPPNNyxevJhVq1ZRt25dHn/8cVauXEm5cuXs5hbk9/dmcp1IT/+GHDlyhJCQEFxcHL5PqYiISP5IBfZa+1L4bpQly36e8+xjH79laPvZzxnOZDpErLVFEWU3XoEKdivX0xPtAZlqzIiIiIiIiEhuJSUl2a2qPnLkCLt27aJ06dJUrlwZk8nE8OHDmTx5MjVq1CAsLIzx48cTHBxM7969bfsdP36c8+fPc/z4cdLS0ti1axcA1atXx9fXly5dulCnTh0ee+wx3nzzTWJjYxk3bhxDhgyxrf7OTnx8PLGxsXZjJUuWxMfHh19//ZUJEybwxRdf0Lp1a9555x1efPFF2rdvT9WqVRkzZgz169fn+eef59lnn8Xd3Z01a9bQp08fypYty8iRI3nppZcwm820adOGhIQEoqOj8fPzY+DAgQwZMoT58+fTr18/Xn31VUqXLs3hw4dZtmwZ//73v/H19eWJJ57glVdeoUyZMpQvX56xY8fa5WgrV66Mu7s7s2bN4tlnn2Xfvn1MmjTJ4e/VxIkT6dy5M9WqVaNv375cu3aN7777jlGjRlGzZk369+/PgAEDmDFjBo0bN+bs2bNERUXRoEEDevTowfDhw+nWrRs1a9bkwoULrFmzhtq1a2d7vueff56VK1fSv39/Jk+enGMZmFv5/t6yPFV9txZpj4mJMXbv3m3XizrdbNSCInADQnV1dfX86jdzxjhjrDXWGnOMOcbzxvNGe6O9UdYom/sbnBoYwUawwWoMZmHwPAadMAi+9djy63e0iIiIiIgUD9ndbLSoS7/J5Y194MCBtjlms9kYP368ERgYaHh4eBidO3c2Dh48aHecgQMHZnmcNWvW2OYcPXrU6Natm+Hl5WWULVvWePnll43U1NQc48vutdbUqVONy5cvG3Xq1DGefvppu33uvfdeo1WrVsa1a9cMwzCMtWvXGq1atTI8PDyMgIAAIzIy0rhw4YLt2mbOnGncddddhpubm1GuXDkjMjLSWLdune14v//+u3HfffcZAQEBhpeXl1GrVi1j+PDhthttXrx40Xj00UcNb29vIzAw0HjzzTeN9u3b291sdOnSpUZoaKjh4eFhtGzZ0vjmm28MwHaDzfTvQ3pchmEYv/76qwEYR44csY19+eWXRqNGjQx3d3ejbNmyxv3332/bdvXqVWPChAlGaGio4ebmZlSoUMG47777jD179hiGYRhDhw41qlWrZnh4eBjlypUzHnvsMePcuXPZfu0PHTp00+9PRo5+f/PrZqMm4//bu/P4qKrz8eOfSUIStoQ9EGQXBAVB1iLKJi0utdLaitQKrt0ExbhBK7iDSrVUQXD7Sl2oy8+6lFatRVBBRAFRUUCqIIokQJUEgoSQzO+PDEMCSciEJBPI531e5zV3zj333ucGLiTPnJwTjGxS1a1bt3LxxRfzyiuvFLs/Ly8vktNVuaysLJKTk8nMzCQpKSna4USN83BLOppE+F9Z2Ba2hEetFx7F/j/+V/aTZAFrQnV1oe3/AnvLF5tzpEuSJEkqya5du1i9ejVdunShTp060Q5Hqvb2PTMbNmxg3bp1nH766UWmDyprrrjMU7vsM378eLZv387SpUsZPHgwL7zwAhkZGdx+++3cc8895boZSZKioVmoDGFIuC1IMJxgPzDJ/i3fHnySJKBvqBaWC3wOIxhBZzrThS50DpVkkivxriRJkiRJUkWLOJH+xhtv8NJLL9G7d29iYmJo06YNP/zhD0lKSmLq1KmcddZZlRGnJEkVqly/mdMY6ELBQqedC223BQ5cOiS0IOpLoVLENxw8in0tBYuqHmUDyx1dL0mSJEk6GkScSM/Ozg6viNqwYUO2bt1Kp06d6NatGytWrKjwACVJqjb+BywK1cISgU7sT7DvS7IfB9Qu5jypoTr0gPbvKZgS5rNi6rYKuQNJkiRJklQOESfSjzvuONauXUvbtm3p3r07Dz74IG3btmX27Nm0aNGiMmKUJKl62w18FKqFBYDWFB3Fvi/J3qyY89QGuoXqgbZTfIJ9HbDzcG9AkiRJ0pEmPz8/2iFIR4SKelYiTqRfddVVbN68GYCbbrqJ008/naeeeor4+HjmzJlTIUFJkhSJaruAchD4MlRfPWBfIwpGrO9LsnekYFT7sUB8MedqQPFzsQN8A4GFgYKkeuEk+xfAnlLCcwoVSZIk6YgTH1/wA8POnTupV69elKORqr+dOwtGn+Xm5h7WecqcSF+/fj3t2rXjV7/6VbitV69efPnll6xZs4bWrVvTpEmTiAOYOXMm06ZNIz09ne7du3P//ffTt29xWQL45JNPmDx5MsuXL+fLL7/kz3/+M+PHj4/4mpIkRd23wJJQLSyWglHsnQ6oHYE2HDwXO+yfKmbwAe15wAYKpov5/IDXLw7/FiRJkiRVvbi4OJo0acKmTZsAqFevHjExxf2gINVs+fn57Ny5k02bNrF9+/bDHple5kR6hw4daNOmDUOGDGHo0KEMHjyYY445hjp16tCzZ89yXfyZZ54hLS2N2bNn069fP6ZPn87w4cNZu3ZteB72wnbt2kX79u35xS9+wdVXX12ua0qSVK3lAetD9bUD9iUAHTg4yd4JSCnmXLGh/h2Kv1RLWnIsx9KBDge9NqBBBdyMJEmSpMrQunVr8vLywsl0SSXbvn07GRkZ4fdxcRFP0gJAIFjG3+teuHBhuC5dupQ9e/bQvn17hg4dypAhQxgyZAgpKcX9FF+yfv360adPH2bMmAEUfErQqlUrxo0bx4QJE0o9tm3btowfP/6QI9JzcnLIyckJv8/KyqJVq1ZkZmaSlJQUUbxHk2o7DYIkqXyS2D89zIG1HP/dNaLRQcn1fdsppBCgbP+PlOf/G6eckSRJkg4tGAzy9NNPs23bNlq0aGGuRypGbm5ueCT6d999R05ODueeey5t2rQBCnLFycnJZcoVlzn9PnjwYAYPHgzA7t27eeedd8KJ9b/+9a/k5ubSuXNnPvnkkzKdb8+ePSxfvpyJEyeG22JiYhg2bBhLlhz4e+7lN3XqVG655ZYKO58kSdVSFrA8VA/UhIK51zsUeu0ATU9uyla2Fnu6b/mW90LlQHWpG06s7yvtQqUNbUggoaLuSpIkSVIJAoEAp512GvPmzWPt2rXExsZGOySp2goGg9SqVYtTTjmF1q1bl+sc5RrHnpiYyNChQznllFMYMmQIr7zyCg8++CBr1qwp8zm2bdtGXl7eQaPYU1JSIjrPoUycOJG0tLTw+30j0iVJqjG2heq7RZu3BLeQRRafh8p/+W+R7a/5miAHjw7PJpuPQuVAAQKkkhpOrHMzBdPUfBF6/QaomAXTJUmSpBqvWbNmnH322XzxxRfhBRUlHSw+Pp7GjRvTpUuXcv/2RkSJ9D179vDuu++yYMGC8BQvrVq1YuDAgcyYMYNBgwaVK4jKlJCQQEKCI+MkSSpOEkmcFCoH2s1u1rO+2CT7BjaQy8ErngcJsilUFrEIbjqgwx7gS/bPA39g3VbBN1jBnKpGkiRJ1U3Tpk1p2rRptMOQjnplTqQPHTqUpUuX0q5dOwYNGsRvfvMb5s6dS4sWLcp14SZNmhAbG1tkoneAjIwMmjdvXq5zSpKkipNIIl1C5UB72ctXfMXnfM4XfMH6A0pJU8YQT8Fc7h1LuOgO6Ea38Ij2wlPGtKENDWhQ5vnZJUmSJEmqKGVOpL/99tu0aNGCoUOHMnjwYAYNGkTjxo3LfeH4+Hh69erF/PnzGTFiBFCw2Oj8+fMZO3Zsuc8rSZIqXxxx+6dvKcZOdrKBDXQ7uxu04+Ba0hou9WFVqBS/uz5taENrWoeT64W3W9CCGGIO/wYlSZIkSSqkzIn07du38/bbb7Nw4ULuuusuRo0aRadOnRg0aFA4sR7pr5GkpaUxZswYevfuTd++fZk+fTrZ2dlcfPHFAIwePZqWLVsydepUoGBqmU8//TS8vWnTJlauXEm9evU49thjI7q2JEmqPPWoR1e6wrwSOjQC2lNskj2+Uzx72FPsYTvYUWqivRa1OIZjwon1AxPtrWhFIolA+aZp0dHFqXokSZIklVUgWM6fBnbs2MGiRYvC86V/+OGHdOzYkVWriv/BtiQzZsxg2rRppKen06NHD+677z769esHwODBg2nbti1z5swBYMOGDbRrd/DIt0GDBrFw4cIyXS8rK4vk5GQyMzNJSippONzRz+SBJKkqEoLl+f8mL5jHN3wTniZmAxv4ki/ZyMbwaw455Y4phRTa0Ib3nn0PNlIwZ/uXwFeh+r9yn7pYJl6rLxPpkiRJUs0WSa643In0/Px83n//fRYsWMCCBQtYtGgRu3fvJi8vr1xBVxUT6QVMpEuSqmsi/VBx5ZPPFraEE+v7SuH329lezoiB74GvQ/WrEl4jSLabeK2+TKRLkiRJNVskueIyT+2Sn5/PsmXLWLhwIQsWLGDx4sVkZ2fTsmVLhgwZwsyZMxkyZMhhBy9JkqrGkfqhagwxNA+VvvQttk8WWaUm2jezmSAlJERrU/qCqLA/2V5Sov0r4Nty3qAkSZIkqdop84j0pKQksrOzad68OUOGDGHIkCEMHjyYDh06VHaMFcoR6QWO1OSJJOnoVxUjfvewh4T2CdCG/fUYoFWh1+TDvMgu4GsY0mkIrWjFMaHSkpakkkpLWtKMZsQSe5gXUnk5Il2SJEmq2SplRPq0adMYMmQInTp1OuwAJUmSoimeeFhPQS1JfQqS6gcm2Au/lpZsrwN0ggUsKLHLvtH1+5Lr+xLshV9TSaUhDQngh+CSJEmSFC3lniP9SOWI9AKOSJckHU3K8+1MhfxfuC/ZXlKivRVQEd9ufA98E6qbit/OXpdNHepUwMVKF+nXrTp/q1lVI9Id+S5JkiRVT5UyIl2SJEkH2AGsDtUSZAYz+Yqv+DpUvuEbNrGJb0JlE5vIIKPkOduhYN72DqFagrrUJZnk8Gj2FrQIzyVfeLs5zWlAA0e4S5IkSVIETKRLkiRVoiSSOCFUSrKXvWSQEU6w//SKn0IqBbUl+7cblX6tzFBZXVpmH0ggoUhivbhk+76SQEKEdyxJkiRJRx8T6ZIkSZWoQqdTqw20oGiCPfQ6cNRANoXKbnaXepoccvgyVA6lIQ2LJNv5E5BeqG4OvX4LpQ2qr2xOWydJkiSpMjlHeg3lD5uSpKNJ1OZIr0b2fQ2CBNnOdtIPKJvZfFDbVrZWXAB7ga3AlqJ1ytVTaEYzUkihWaFS0fO5V9Wfp3OkS5IkSUePSHLFJtJrqKMteSBJqtlMpJfva5BLLlvYcsiE+2Y2s4tdFRpvXeoWm2AvXPbta0xjYokt9Xwm0iVJkiRFysVGJUmSaphKTyTXA5ofUFsU2m4WqilQlmnVs8lmfagcSoAATWhSJMnelKY0KVQYSsGI+G3A/4A95blJSZIkSSqeiXRJkiQd2k7gv6F6KPUpSKg3g78v/jtbDigZZIS3/8f/Dnm6IEG2hsonfFJ8p/kHvM+iIKm+L7leuBbXFuU53iVJkiRVbybSJUmSVLF2hOp/4af8tNSue9nLNrYVm2QvLgH/Pd+XLYakUG1fxpjzKEiml5Zw/xbe4R0a05hGNKIhDYnz22lJkiSpRvA7f0mSJEVNHHE0D5VDCRIkm2y2sIVtB5RrplwDTYEmB9TGQEwZAoml4PimpXcbwICiDZkUTCXzbaH6vwO2zzrg/XcUJO5L4bzqkiRJUvXiYqM11NG2wJokqWZzsdHqq6q+1SzxzzMGaMj+xHpxyfYD26riW8RMDk66F/f+WwoS79tDr7tLPmUN+7ZekiRJOmwuNipJkiQB5FOQnP4fsLaMx8RTfLK9IQUj3BsVqoXfx0YQV3KotovgGIAciibWC73+gT/QkIY0oEGxr8kkExtRkJIkSZL2MZEuSZKkSnNETlGyB/gmVMsqQMEiq4UT66Ul3cubgE8AmofqAaYy9dDHZ1KQfN8OfAfnDD6n1OR7Ekkkh0p96puIL6cj8jmQJElSESbSJUmSpMMVBLJCdX0ExxWXgD8w0d6AgtHwB76WZwqafSPh2xS8fYmXIjq8HvVIJrlIgj3S7UQSyxG4JEmSFF0m0iVJkqRoKW8CHgpGsidRfJK9uNcD2xIiD3dnqGxiU+QHh8QTH06sHyrxnkQS9UsodahDANc6kCRJUtUwkS5Jko54LhyqGimPgvnRvyvn8YkcOtmeTEGyPnn/durxqWSSSTbZ5brsHvawLVQORwwx1KNeOLG+5r01sIPy1z1lu65TrkiSJNVMJtIlSZKkmmg3sDlUI7ApWDAafS972cEOMkMli6xybeeRV67w88knK1QA6Fuu0+y3h5KT7DuB7IJ6K7dSN1TqUa/I64HbdalLDDGHGZgkSZKqAxPpkiRJkiIWRxwNQ6W8ggTZxa4Sk+xZZLGjjGUnOw/vhuIpmJu+cendbuKmiE5bm9qQQTgRXzgpH94upu1Zni02OV+PetShDgkkOLWNJElSFTKRLkmSpGrFqXpqjgCBcII4ldTDO1dMAOpSsHhrRdTahxVO2Pd8D80iP24kI0vvkA/sAr4Pve6Cnl16UqdQqU3tIu/Lsy9aCfvy/DvgtDtVwz8bSVJNZSJdkiRJ0pEvSMFo7p1EPF1NsWLZn1Svu7/Oe3Me2WSzk51kh8qhtletX1XkHBUiBqgXqiErWFFBJ98vQOCQCfjaoZJI4kGvh2orbn8talX4fUiSJB0uE+mSJEmSdKA8QHWS0gAAab9JREFUYHuoFnIWZ0V8qkD7QiN4A0AdChLq9Q54LWn7wLbaoXPsq6H3scmx5Z5zviRBguEPBqpKDDEFH4jspmDE/e4Dtktom8CEYpP0CeUoscRW2f1KkqQjg4l0SZIkSdVKdZ7e57BjC7J/PvQtFRBQIXuDe8kll12h8j3fh7dLakv7Y1qRZPxBtaT2Shw0nk9+uUbv38VdFRZDLLEkkEAiieVKxJe31KIW8aHStkVbyKVgIdw9FGznlx63U6hIklR5TKRLkiRJ0lGiFrVIDpWySJuSVr4LxVE0yZ4Yel/49XDaStpXRQPF88gLf9gQNcVNUZTH/sT6vuR6ofcncVI4Eb+vFE7Ol+f9gW2cWui6ucDeEl4LbQcJujiuJOmIZyJdkiRJkhSZvcCOUK1KcZSYcF+wdAG72c33fB9+/Z7vyamEEiRKI79jQ/dcwmK4K1lZ+TG8FfkhMcQQSyxxxFErVPZtH/ha2r7DPb64tn1xVcZrDDF+gCBJR5FqkUifOXMm06ZNIz09ne7du3P//ffTt2/fEvs/99xzTJo0iQ0bNtCxY0fuuusuzjzzzCqMWJIkSaqZqvO0KzVdjfiz2cv+RWUPMJjBEZ+u3F+zOCChlJp4iP3F1VpAfKgW3i7ufQl94uvHs4c95bunSpYXKjnkRDuUqrW3oNZJrFNq4r2ikveFy74PMEp63bd944QbC6YNyqPk10LbTz35VJnOW/j1lP6nHPK8B75u/mZzmc5/uB9WlOffAadRilxVfZ398/RrUJminkh/5plnSEtLY/bs2fTr14/p06czfPhw1q5dS7NmzQ7q/8477zBq1CimTp3Kj3/8Y+bOncuIESNYsWIFXbt2jcIdSJIkSZJqlFBytArXYC2TnGDBaPm9FMyXv6dQOdT7svTJJZfb77p9f/I+joKEfq1C28W8/mDgD8glNxzXga/FtUVt1H9FiyuoUZ0m6FDujKz7BVwQ+TWWRH5IC1qUue++hHpMqJS0Xdw+vqIgeR8MvZa2HXrfk55lvmYksVTk8YVLedtiiKEZzRjDmMj/AKWjUCAY5Y8c+vXrR58+fZgxYwYA+fn5tGrVinHjxjFhwoSD+o8cOZLs7GzmzZsXbvvBD35Ajx49mD179kH9c3JyyMnZ/4l3ZmYmrVu35quvviIpKakS7ujIkJxctjkTJUmSJOlIkJmZGfExR9vPReX5GkSqPF+z8sSVT36RJPu+Uvh94cR7HnkHJeQP3C6cuN/Xf/JNkwumzIkDYkKvsYVeYw94X1K/uNL7djmxC3vZGx6Zn0de+P1e9pJPfpH3eeQdPR8m6Ih2PMezpDyfhBygqv7tqKrrVGd+DSKTlZVFq1at2L59+yG/dlEdkb5nzx6WL1/OxIkTw20xMTEMGzaMJUuKf0iXLFlCWlrRBXGGDx/Oiy++WGz/qVOncssttxzU3qpVq/IHLkmSJEmqVo62pHh5VNevQXWNqyqtZnW0Q5DK5VM+LfMC1hWtqv7t8N8ovwYAO3bsqN6J9G3btpGXl0dKSkqR9pSUFNasWVPsMenp6cX2T09PL7b/xIkTiyTe8/Pz+fbbb2ncuHHNmEOwGPs+aanpo/KlSPjcSJHzuZEi53MjRc7nRoqMz4wUOZ+bo1cwGGTHjh2kpqYesm/U50ivbAkJCSQkJBRpa9CgQXSCqWaSkpJ8+KUI+dxIkfO5kSLncyNFzudGiozPjBQ5n5ujU1lH5MdUchylatKkCbGxsWRkZBRpz8jIoHnz5sUe07x584j6S5IkSZIkSZJ0OKKaSI+Pj6dXr17Mnz8/3Jafn8/8+fPp379/scf079+/SH+A119/vcT+kiRJkiRJkiQdjqhP7ZKWlsaYMWPo3bs3ffv2Zfr06WRnZ3PxxRcDMHr0aFq2bMnUqVMBuOqqqxg0aBD33HMPZ511Fk8//TTLli3joYceiuZtHFESEhK46aabDpryRlLJfG6kyPncSJHzuZEi53MjRcZnRoqcz40AAsFgMBjtIGbMmMG0adNIT0+nR48e3HffffTr1w+AwYMH07ZtW+bMmRPu/9xzz3HjjTeyYcMGOnbsyN13382ZZ54ZpeglSZIkSZIkSUezapFIlyRJkiRJkiSpuorqHOmSJEmSJEmSJFV3JtIlSZIkSZIkSSqFiXRJkiRJkiRJkkphIl2SJEmSJEmSpFKYSK9hZs6cSdu2bUlMTKRfv36899570Q5JqramTp1Knz59qF+/Ps2aNWPEiBGsXbs22mFJR5Q777yTQCDA+PHjox2KVK1t2rSJX/3qVzRu3JjatWvTrVs3li1bFu2wpGorLy+PSZMm0a5dO2rXrk2HDh247bbbCAaD0Q5Nqjbeeustzj77bFJTUwkEArz44otF9geDQSZPnkyLFi2oXbs2w4YNY926ddEJVqomSntucnNzueGGG+jWrRt169YlNTWV0aNH880330QvYFUpE+k1yDPPPENaWho33XQTK1asoHv37gwfPpwtW7ZEOzSpWnrzzTe54oorePfdd3n99dfJzc3lRz/6EdnZ2dEOTToivP/++zz44IOceOKJ0Q5Fqta+++47BgwYQK1atXjllVf49NNPueeee2jYsGG0Q5OqrbvuuotZs2YxY8YMVq9ezV133cXdd9/N/fffH+3QpGojOzub7t27M3PmzGL333333dx3333Mnj2bpUuXUrduXYYPH87u3burOFKp+ijtudm1axcrVqxg0qRJrFixgr///e+sXbuWn/zkJ1GIVNEQCPqRfY3Rr18/+vTpw4wZMwDIz8+nVatWjBs3jgkTJkQ5Oqn627p1K82aNePNN99k4MCB0Q5HqtZ27txJz549eeCBB7j99tvp0aMH06dPj3ZYUrU0YcIEFi9ezNtvvx3tUKQjxo9//GNSUlJ49NFHw23nnnsutWvX5sknn4xiZFL1FAgEeOGFFxgxYgRQMBo9NTWVa665hmuvvRaAzMxMUlJSmDNnDueff34Uo5WqhwOfm+K8//779O3bly+//JLWrVtXXXCKCkek1xB79uxh+fLlDBs2LNwWExPDsGHDWLJkSRQjk44cmZmZADRq1CjKkUjV3xVXXMFZZ51V5P8dScV7+eWX6d27N7/4xS9o1qwZJ510Eg8//HC0w5KqtZNPPpn58+fz2WefAfDhhx+yaNEizjjjjChHJh0Z1q9fT3p6epHv1ZKTk+nXr585AikCmZmZBAIBGjRoEO1QVAXioh2Aqsa2bdvIy8sjJSWlSHtKSgpr1qyJUlTSkSM/P5/x48czYMAAunbtGu1wpGrt6aefZsWKFbz//vvRDkU6InzxxRfMmjWLtLQ0/vCHP/D+++9z5ZVXEh8fz5gxY6IdnlQtTZgwgaysLDp37kxsbCx5eXnccccdXHDBBdEOTToipKenAxSbI9i3T1Lpdu/ezQ033MCoUaNISkqKdjiqAibSJakMrrjiClatWsWiRYuiHYpUrX311VdcddVVvP766yQmJkY7HOmIkJ+fT+/evZkyZQoAJ510EqtWrWL27Nkm0qUSPPvsszz11FPMnTuXE044gZUrVzJ+/HhSU1N9biRJlS43N5fzzjuPYDDIrFmzoh2OqohTu9QQTZo0ITY2loyMjCLtGRkZNG/ePEpRSUeGsWPHMm/ePBYsWMAxxxwT7XCkam358uVs2bKFnj17EhcXR1xcHG+++Sb33XcfcXFx5OXlRTtEqdpp0aIFxx9/fJG2Ll26sHHjxihFJFV/1113HRMmTOD888+nW7duXHjhhVx99dVMnTo12qFJR4R9eQBzBFLk9iXRv/zyS15//XVHo9cgJtJriPj4eHr16sX8+fPDbfn5+cyfP5/+/ftHMTKp+goGg4wdO5YXXniBN954g3bt2kU7JKnaO+200/j4449ZuXJluPbu3ZsLLriAlStXEhsbG+0QpWpnwIABrF27tkjbZ599Rps2baIUkVT97dq1i5iYoj/OxsbGkp+fH6WIpCNLu3btaN68eZEcQVZWFkuXLjVHIJViXxJ93bp1/Oc//6Fx48bRDklVyKldapC0tDTGjBlD79696du3L9OnTyc7O5uLL7442qFJ1dIVV1zB3Llzeemll6hfv354rsDk5GRq164d5eik6ql+/foHrSNQt25dGjdu7PoCUgmuvvpqTj75ZKZMmcJ5553He++9x0MPPcRDDz0U7dCkauvss8/mjjvuoHXr1pxwwgl88MEH3HvvvVxyySXRDk2qNnbu3Ml///vf8Pv169ezcuVKGjVqROvWrRk/fjy33347HTt2pF27dkyaNInU1FRGjBgRvaClKCvtuWnRogU///nPWbFiBfPmzSMvLy+cJ2jUqBHx8fHRCltVJBAMBoPRDkJVZ8aMGUybNo309HR69OjBfffdR79+/aIdllQtBQKBYtsfe+wxLrrooqoNRjqCDR48mB49ejB9+vRohyJVW/PmzWPixImsW7eOdu3akZaWxuWXXx7tsKRqa8eOHUyaNIkXXniBLVu2kJqayqhRo5g8ebKJDClk4cKFDBky5KD2MWPGMGfOHILBIDfddBMPPfQQ27dv55RTTuGBBx6gU6dOUYhWqh5Ke25uvvnmEn9TfcGCBQwePLiSo1O0mUiXJEmSJEmSJKkUzpEuSZIkSZIkSVIpTKRLkiRJkiRJklQKE+mSJEmSJEmSJJXCRLokSZIkSZIkSaUwkS5JkiRJkiRJUilMpEuSJEmSJEmSVAoT6ZIkSZIkSZIklcJEuiRJkiRJkiRJpTCRLkmSJKlUc+bMoUGDBtEOQ5IkSYoaE+mSJElSNXfRRRcxYsSIg9oXLlxIIBBg+/btVR6TJEmSVJOYSJckSZJUotzc3GiHIEmSJEWdiXRJkiTpKPH8889zwgknkJCQQNu2bbnnnnuK7A8EArz44otF2ho0aMCcOXMA2LBhA4FAgGeeeYZBgwaRmJjIU089VaT/hg0biImJYdmyZUXap0+fTps2bcjPz6/w+5IkSZKizUS6JEmSdBRYvnw55513Hueffz4ff/wxN998M5MmTQonySMxYcIErrrqKlavXs3w4cOL7Gvbti3Dhg3jscceK9L+2GOPcdFFFxET448YkiRJOvrERTsASZIkSYc2b9486tWrV6QtLy8vvH3vvfdy2mmnMWnSJAA6derEp59+yrRp07jooosiutb48eP52c9+VuL+yy67jN/+9rfce++9JCQksGLFCj7++GNeeumliK4jSZIkHSkcLiJJkiQdAYYMGcLKlSuL1EceeSS8f/Xq1QwYMKDIMQMGDGDdunVFEu5l0bt371L3jxgxgtjYWF544QUA5syZw5AhQ2jbtm1E15EkSZKOFI5IlyRJko4AdevW5dhjjy3S9vXXX0d0jkAgQDAYLNJW3GKidevWLfU88fHxjB49mscee4yf/exnzJ07l7/85S8RxSJJkiQdSUykS5IkSUeBLl26sHjx4iJtixcvplOnTsTGxgLQtGlTNm/eHN6/bt06du3aVa7rXXbZZXTt2pUHHniAvXv3ljoVjCRJknSkM5EuSZIkHQWuueYa+vTpw2233cbIkSNZsmQJM2bM4IEHHgj3GTp0KDNmzKB///7k5eVxww03UKtWrXJdr0uXLvzgBz/ghhtu4JJLLqF27doVdSuSJElSteMc6ZIkSdJRoGfPnjz77LM8/fTTdO3alcmTJ3PrrbcWWWj0nnvuoVWrVpx66qn88pe/5Nprr6VOnTrlvuall17Knj17uOSSSyrgDiRJkqTqKxA8cJJESZIkSSqD2267jeeee46PPvoo2qFIkiRJlcoR6ZIkSZIisnPnTlatWsWMGTMYN25ctMORJEmSKp2JdEmSJEkRGTt2LL169WLw4MFO6yJJkqQawaldJEmSJEmSJEkqhSPSJUmSJEmSJEkqhYl0SZIkSZIkSZJKYSJdkiRJkiRJkqRSmEiXJEmSJEmSJKkUJtIlSZIkSZIkSSqFiXRJkiRJkiRJkkphIl2SJEmSJEmSpFKYSJckSZIkSZIkqRQm0iVJkiRJkiRJKoWJdEmSJEmSJEmSSmEiXZIkSZIkSZKkUphIlyRJkiRJkiSpFCbSJUmSJEmSJEkqhYl0SZIkSZIkSZJKYSJdkiRJkiRJkqRSmEiXJEmSJEmSJKkUJtIlSZIkSZIkSSqFiXRJkiRJkiRJkkphIl2SJEmSJEmSpFKYSJckSZIkSZIkqRQm0iVJkiRJkiRJKoWJdEmSJEmSJEmSSmEiXZIkSZIkSZKkUphIlyRJkiRJkiSpFCbSJUmSJEmSJEkqhYl0SZIkSZIkSZJKYSJdkiRJkiRJkqRSmEiXJEmSJEmSJKkUJtIlSZKkKLj55pvp0aNHtMOIqrZt2zJ9+vRohyFJkiQdkol0SZIkKULp6emMGzeO9u3bk5CQQKtWrTj77LOZP39+tEM76gWDQc444wwCgQAvvvhitMORJElSDREX7QAkSZKkI8mGDRsYMGAADRo0YNq0aXTr1o3c3Fxee+01rrjiCtasWRPtEI9q06dPJxAIRDsMSZIk1TCOSJckSZIi8Pvf/55AIMB7773HueeeS6dOnTjhhBNIS0vj3XffDffbuHEj55xzDvXq1SMpKYnzzjuPjIyMEs87ePBgxo8fX6RtxIgRXHTRReH3bdu25fbbb2f06NHUq1ePNm3a8PLLL7N169bwtU488USWLVsWPmbOnDk0aNCA1157jS5dulCvXj1OP/10Nm/efNhfi+3bt/Ob3/yGlJQUEhMT6dq1K/PmzQvvf/755znhhBNISEigbdu23HPPPYd1vZUrV3LPPffwf//3f4cbuiRJkhQRE+mSJElSGX377be8+uqrXHHFFdStW/eg/Q0aNAAgPz+fc845h2+//ZY333yT119/nS+++IKRI0cedgx//vOfGTBgAB988AFnnXUWF154IaNHj+ZXv/oVK1asoEOHDowePZpgMBg+ZteuXfzpT3/iiSee4K233mLjxo1ce+21hxVHfn4+Z5xxBosXL+bJJ5/k008/5c477yQ2NhaA5cuXc95553H++efz8ccfc/PNNzNp0iTmzJlTruvt2rWLX/7yl8ycOZPmzZsfVuySJElSpJzaRZIkSSqj//73vwSDQTp37lxqv/nz5/Pxxx+zfv16WrVqBcDjjz/OCSecwPvvv0+fPn3KHcOZZ57Jb37zGwAmT57MrFmz6NOnD7/4xS8AuOGGG+jfvz8ZGRnhhHNubi6zZ8+mQ4cOAIwdO5Zbb7213DEA/Oc//+G9995j9erVdOrUCYD27duH9997772cdtppTJo0CYBOnTrx6aefMm3atCKj7Mvq6quv5uSTT+acc845rLglSZKk8nBEuiRJklRGhUd5l2b16tW0atUqnEQHOP7442nQoAGrV68+rBhOPPHE8HZKSgoA3bp1O6hty5Yt4bY6deqEk+gALVq0KLL/QCeccAL16tWjXr16nHHGGcX2WblyJcccc0w4iX6g1atXM2DAgCJtAwYMYN26deTl5ZV47eK8/PLLvPHGG0yfPj2i4yRJkqSK4oh0SZIkqYw6duxIIBColAVFY2JiDkrU5+bmHtSvVq1a4e19i24W15afn1/sMfv6lPahwL/+9a/wtWvXrl1sn5LaK8Mbb7zB559/Hp46Z59zzz2XU089lYULF1ZZLJIkSaqZHJEuSZIklVGjRo0YPnw4M2fOJDs7+6D927dvB6BLly589dVXfPXVV+F9n376Kdu3b+f4448v9txNmzYtsgBoXl4eq1atqtgbKKM2bdpw7LHHcuyxx9KyZcti+5x44ol8/fXXfPbZZ8Xu79KlC4sXLy7StnjxYjp16hSeR72sJkyYwEcffcTKlSvDFQrmi3/sscciOpckSZJUHibSJUmSpAjMnDmTvLw8+vbty/PPP8+6detYvXo19913H/379wdg2LBhdOvWjQsuuIAVK1bw3nvvMXr0aAYNGkTv3r2LPe/QoUP55z//yT//+U/WrFnD7373u3BivjoaNGgQAwcO5Nxzz+X1119n/fr1vPLKK7z66qsAXHPNNcyfP5/bbruNzz77jL/+9a/MmDGjXIucNm/enK5duxapAK1bt6Zdu3YVel+SJElScUykS5IkSRFo3749K1asYMiQIVxzzTV07dqVH/7wh8yfP59Zs2YBBVOnvPTSSzRs2JCBAwcybNgw2rdvzzPPPFPieS+55BLGjBkTTri3b9+eIUOGVNVtlcvzzz9Pnz59GDVqFMcffzzXX399eP7znj178uyzz/L000/TtWtXJk+ezK233lquhUYlSZKkaAsEy7pikiRJkiRJkiRJNZAj0iVJkiRJkiRJKoWJdEmSJElR9dRTT1GvXr1i6wknnBDt8CRJkiSndpEkSZIUXTt27CAjI6PYfbVq1aJNmzZVHJEkSZJUlIl0SZIkSZIkSZJK4dQukiRJkiRJkiSVIi7aAVS1/Px8vvnmG+rXr08gEIh2OJIkSZIkSZKkKAgGg+zYsYPU1FRiYkofc17jEunffPMNrVq1inYYkiRJkiRJkqRq4KuvvuKYY44ptU+NS6TXr18fKPjiJCUlRTkaSZIkSZIkSVI0ZGVl0apVq3DOuDQ1LpG+bzqXpKQkE+mSJEmSJEmSVMOVZQpwFxuVJEmSJEmSJKkU1SKRPnPmTNq2bUtiYiL9+vXjvffeK9NxTz/9NIFAgBEjRlRugJIkSZIkSZKkGivqifRnnnmGtLQ0brrpJlasWEH37t0ZPnw4W7ZsKfW4DRs2cO2113LqqadWUaRHh73s5SzO4jEeI4ecaIcjSZIkSZIkSdVeIBgMBqMZQL9+/ejTpw8zZswAID8/n1atWjFu3DgmTJhQ7DF5eXkMHDiQSy65hLfffpvt27fz4osvFts3JyeHnJz9CeN9E8hnZmbWyDnSn+VZRjISgGY04wqu4Lf8lmY0i3JkkiRJkiRJqkj5+fns3r072mFIURMfH09cXMnLhGZlZZGcnFymXHFUFxvds2cPy5cvZ+LEieG2mJgYhg0bxpIlS0o87tZbb6VZs2ZceumlvP3226VeY+rUqdxyyy0VFvORbgELwttb2MJN3MRNu2+CJ4HpwCclHxvlz1wkSZIkSZJURjk5OXz66afk5+dHOxQpqpo0aULr1q3LtKBoaaKaSN+2bRt5eXmkpKQUaU9JSWHNmjXFHrNo0SIeffRRVq5cWaZrTJw4kbS0tPD7fSPSa6pZzGIMY+j/TH84l4K/AYnAZaH6b+DPwGuAeXNJkiRJkqQjTjAYZMOGDcTFxdGuXTtiYqI+u7NU5fLz89m5cyebNm0CoE2bNod1vqgm0iO1Y8cOLrzwQh5++GGaNGlSpmMSEhJISEio5MiOLD/gB3A+0AoYB1wONAjt/FGofgr8BXgC+D4KQUqSJEmSJKlccnNz2blzJ+3ataNevXrRDkeKmn1//zdt2sS6des49dRTy50rjmoivUmTJsTGxpKRkVGkPSMjg+bNmx/U//PPP2fDhg2cffbZ4bZ9v54SFxfH2rVr6dChQ+UGfTT5CrgeuBW4GLgK2PflOx54ELgDmA3MjEaAkiRJkiRJitTevXsBHFwqsT+Z/umnn7J7925++MMfluvZiOrvdcTHx9OrVy/mz58fbsvPz2f+/Pn079//oP6dO3fm448/ZuXKleH6k5/8hCFDhrBy5coaPWXLYdkJ3A90AkYAbxba1wS4EfgSRjOaFayo+vgkSZIkSZIUscOdE1o6Guyb2qhp06Z88sknfPXVV+U6T9SndklLS2PMmDH07t2bvn37Mn36dLKzs7n44osBGD16NC1btmTq1KkkJibStWvXIsc3aNAA4KB2lUM+8FKo9gTGUzAFTC0gHp4IlZM5mbGM5VzOJZ746MUrSZIkSZIkSWUQHx9PMBgkOzu7XMdHPZE+cuRItm7dyuTJk0lPT6dHjx68+uqr4QVIN27c6III0bACGA1MAK4AfgM0Ltj1Tqg0pzm/5bf8ht/QnIOn4pEkSZIkSZKk6iQYDJbruGqRoR47dixffvklOTk5LF26lH79+oX3LVy4kDlz5pR47Jw5c3jxxRcrP8ia6hvgj0AreJAH6cr+kf/ppHMzN9Oa1vySX7KEJQQp319ESZIkSZIk6UDBYJDJkyfTokULateuzbBhw1i3bl2px7z11lucffbZpKamEggEDpk7/O1vf0sgEGD69OkVF7iOOtUika4jwPfwa37NR3zEAhbwM35GTOivTy65/I2/cTIn04c+/JW/spvdUQ5YkiRJkiRJR7q7776b++67j9mzZ7N06VLq1q3L8OHD2b275NxTdnY23bt3Z+bMmYc8/wsvvMC7775LampqRYato5CJdEUkQIDBDOZ5nmc965nIRJrQJLx/Ocu5iItoRSv+wB/4ivJN3i9JkiRJkqSaLRgMMn36dG688UbOOeccTjzxRB5//HG++eabUkeZn3HGGdx+++389Kc/LfX8mzZtYty4cTz11FPUqlWrgqPX0cZEusqtNa2ZwhS+4ivmMIde9Arv28Y2pjKVdrTj5/ychSx02hdJkiRJkiSV2fr160lPT2fYsGHhtuTkZPr168eSJUsO69z5+flceOGFXHfddZxwwgmHG6pqABPpOmyJJDKGMbzP+7zDO4xiFHGhdWzzyON5nmcIQ+hKV+7nfrazPboBS5IkSZIkqdpLT08HICUlpUh7SkpKeF953XXXXcTFxXHllVce1nlUc5hIV4UJEKA//ZnLXDaykZu5meY0D+//lE+5kitpSUsu4zKWsSyK0UqSJEmSJKk6eeqpp6hXr1645ubmVsp1li9fzl/+8hfmzJlDIBColGvo6GMiXZWiBS24iZv4ki+Zy1xO5dTwvl3s4lEepQ996E1vHuVRssmOYrRlEwgEIq6SJEmSJEkqm5/85CesXLkyXJs0KViXLyMjo0i/jIwMmjdvXtwpyuTtt99my5YttG7dmri4OOLi4vjyyy+55ppraNu27eHcgo5iJtJVqeKJZxSjeIu3WMUqxjKWJJLC+5eznMu4jFRSGcc4PuGTKEYrSZIkSZKkaKlfvz7HHntsuB5//PE0b96c+fPnh/tkZWWxdOlS+vfvX+7rXHjhhXz00UdFkvapqalcd911vPbaaxVxKzoKmUhXlTmBE7if+/mGb3iER4osTppFFjOYQVe6MpCBzGUuOeREMVpJkiRJkiRFUyAQYPz48dx+++28/PLLfPzxx4wePZrU1FRGjBgR7nfaaacxY8aM8PudO3eGE+RQsGjpypUr2bhxIwCNGzema9euRWqtWrVo3rw5xx13XFXeoo4gJtJV5epSl0u5lGUs433e51IupTa1w/vf5m0u4AKO4Rhu4AY+5/MoRlv1nEJGkiRJkiSpwPXXX8+4ceP49a9/TZ8+fdi5cyevvvoqiYmJ4T6ff/4527ZtC79ftmwZJ510EieddBIAaWlpnHTSSUyePLnK49fRIxAMBoPRDqIqZWVlkZycTGZmJklJSYc+4ChVnuRrZf5V2c52nuAJZjObT/n0oP1DGcrlXM4IRpBIYjFnqHxV9TWrbn82kiRJkiTpyLJr1y5Wr15Nly5dqFOnTrTDkaJq3/OwYcMG1q1bx+mnn06PHj2AyHLFjkhXtdCABoxjHKtYxVu8xShGUYta4f1v8AajGEVLWjKe8XzMx1GMVpIkSZIkSVJNYiJd1UqAAKdyKnOZy9d8zV3cRUc6hvd/y7f8hb9wIifyA37AIzzCDnZEMWJJkiRJkiRJRzsT6aq2mtGM67metazlTd7kV/yqyLQuS1nK5VxOC1pwGZfxLu8SxClOJEmSJEmSJFUsE+kqs2gtghkgwEAG8gRP8A3fMIMZdKd7eH822TzKo/SnP93oxp/5M9vYVsoZJUmSJEmSJKnsTKTriNKQhlzBFXzAByxjGb/ltySxfyGAT/iENNJoSUtGMpJ/82/yyItixJIkSZIkSZKOdCbSdUQKEKAXvZjFLDazmTnM4RROCe/fwx6e5VmGM5y2tOWP/JHP+CyKEUuSJEmSJEk6UplI1xGvbqAuFwUuYlFgEXQGpgFb9u//mq+ZwhSO4zgC7wQI/DpAoEF0pqmRJEmSJElS6WbOnEnbtm1JTEykX79+vPfee9EOSTKRrqPMWuB64BjgXOBlYG+h/ScDDwGbgaeAH+JTIEmSJEmSVE0888wzpKWlcdNNN7FixQq6d+/O8OHD2bJly6EPlipRmVKIDRs2pFGjRmWqUrWQC/wdOAdoCaQBHxXaXxv4JfBv4EtgCnBcFccoSZIkSZKkIu69914uv/xyLr74Yo4//nhmz55NnTp1+L//+79oh6YaLq4snaZPn17JYUiVaAvw51DtAVwEXAA0Ce0/BpgYqkuAOcAzQGbVhilJkiRJklST7dmzh+XLlzNx4sRwW0xMDMOGDWPJkiVRjEwqYyJ9zJgxlR2HVDVWAuOB64CzKEiqnwnUCu3vH6p/AV4CngReo2CEuyRJkiRJkirNtm3byMvLIyUlpUh7SkoKa9asiVJUUoFyzQ79+eefc+ONNzJq1Kjw/ESvvPIKn3zySYUGJ1WaXOBFYAQFU7+MBz4stD8RGAn8g4L51GdSkGCPUKQLmrqoqSRJkiRJklT9RJxIf/PNN+nWrRtLly7l73//Ozt37gTgww8/5KabbipXEJGsxPv3v/+d3r1706BBA+rWrUuPHj144oknynVdCYCtFIxA7xGq00Nt+zQGfg+8A/wXuAXoVJUBSpIkSZIkHf2aNGlCbGwsGRkZRdozMjJo3rx5lKKSCkScSJ8wYQK33347r7/+OvHx8eH2oUOH8u6770YcQKQr8TZq1Ig//vGPLFmyhI8++oiLL76Yiy++mNdeey3ia0sH+RC4GkilYMqXucCuQvs7AJOBtcBS4EqgWRXHKEmSJEmSdBSKj4+nV69ezJ8/P9yWn5/P/Pnz6d+/HFMFSBUo4kT6xx9/zE9/+tOD2ps1a8a2bdsiDiDSlXgHDx7MT3/6U7p06UKHDh246qqrOPHEE1m0aFHE15ZKtBd4hYJFSVOA0RTMlZ5XqE9fCkaybwL+BfwSqFO1YUqSJEmSJB1N0tLSePjhh/nrX//K6tWr+d3vfkd2djYXX3xxtENTDRdxIr1BgwZs3rz5oPYPPviAli1bRnSufSvxDhs2bH9AEazEGwwGmT9/PmvXrmXgwIHF9snJySErK6tIlSKyE3gCOB04hoIR68sL7Y8DzgCeAraE+hZewFSSJEmSJEllMnLkSP70pz8xefJkevTowcqVK3n11VcPWoBUqmoRJ9LPP/98brjhBtLT0wkEAuTn57N48WKuvfZaRo8eHdG5SluJNz09vcTjMjMzqVevHvHx8Zx11lncf//9/PCHPyy279SpU0lOTg7XVq1aRRSjVEQ6BXOo9waOB+4ANhTaXxf4FfBPChYpfRAYQjmX9ZUkSZIkSap5xo4dy5dffklOTg5Lly6lX79+0Q5Jijy9N2XKFDp37kyrVq3YuXMnxx9/PAMHDuTkk0/mxhtvrIwYD1K/fn1WrlzJ+++/zx133EFaWhoLFy4stu/EiRPJzMwM16+++qpKYlQNsBq4EWgPnALMBr4ttL8x8GvgDQqmf7kPOBkIVG2YkiRJkiRJkg5PXKQHxMfH8/DDDzNp0iRWrVrFzp07Oemkk+jYsWPEFy/vSrwxMTEce+yxAPTo0YPVq1czdepUBg8efFDfhIQEEhISIo5NKrMgsDhUrwJ+BJwPnAPUC/VpDowL1Y3AM8DTwIqqDlaSJEmSJNVEvelNOiXPAFFZmtOcZSyr8utKFS3iRPqiRYs45ZRTaN26Na1btz6sixdeiXfEiBHA/pV4x44dW+bz5Ofnk5OTc1ixSBViDzAvVGsDZ1GQVD8LSAz1aQ1cF6rrKEioPw18WtXBSpIkSZKkmiKddDaxKdphSEesiBPpQ4cOpWXLlowaNYpf/epXHH/88YcVQFpaGmPGjKF379707duX6dOnF1mJd/To0bRs2ZKpU6cCBXOe9+7dmw4dOpCTk8O//vUvnnjiCWbNmnVYcahyBAKRzWMSDAYrKZIo+B74f6Fan4IR6udTMGJ930KkHYFJofoxBSPVnwM+q+pgJUmSJEnS0aw5Jc/+cDReV6poESfSv/nmG55++mn+9re/ceedd3LiiSdywQUXMGrUKI455piIAxg5ciRbt25l8uTJpKen06NHjyIr8W7cuJGYmP1TuWdnZ/P73/+er7/+mtq1a9O5c2eefPJJRo4cGfG1pSqzA3gyVBsBP6MgqV54IdJuoXo7BUn1fUl4R6pLkiRJkqTD5PQq0uEJBA9jCPD69euZO3cuf/vb31izZg0DBw7kjTfeqMj4KlxWVhbJyclkZmaSlJQU7XCiJtKR4qokzYGfU5BUH1BCn0/Zn1T/uPguVTWSvzx/b46q3zKQJEmSJOkIsGvXLlavXk2XLl2oU6dOtMMps6lTp/L3v/+dNWvWULt2bU4++WTuuusujjvuuDId//TTTzNq1CjOOeccXnzxxXB7RkYGN9xwA//+97/Zvn07AwcO5P777y/Xmo868ux7HjZs2MC6des4/fTT6dGjBxBZrjim1L2H0K5dOyZMmMCdd95Jt27dePPNNw/ndFLNkw7MAE4B2gBpwDsH9DkemAx8BKwF7gBOqsIYJUmSJEmSqsCbb77JFVdcwbvvvsvrr79Obm4uP/rRj8jOzj7ksRs2bODaa6/l1FNPLdIeDAYZMWIEX3zxBS+99BIffPABbdq0YdiwYWU6r7RPuRPpixcv5ve//z0tWrTgl7/8JV27duWf//xnRcYm1SwbgT9TMDL9GOBK4C0gv1CfTsAfgBXA58BdQB8I4qhvSZIkSZJ0ZHv11Ve56KKLOOGEE+jevTtz5sxh48aNLF++vNTj8vLyuOCCC7jlllto3759kX3r1q3j3XffZdasWfTp04fjjjuOWbNm8f333/O3v/2tMm9HR5mIE+kTJ06kXbt2DB06lI0bN/KXv/yF9PR0nnjiCU4//fTKiFGqeTYB9wODgJbA74E3gLxCfdoD1wPvQRvakEYai1lMXpFOkiRJkiRJR6bMzEwAGjVqVGq/W2+9lWbNmnHppZcetC8nJweAxMTEcFtMTAwJCQksWrSoAqPV0S7iRPpbb73Fddddx6ZNm5g3bx6jRo06ouZako446cAs4DQgFfgN8Dqwd3+Xr/iKP/NnTuEUWtKSX/Nr/sW/2M3uaEQsSZIkSZJ0WPLz8xk/fjwDBgyga9euJfZbtGgRjz76KA8//HCx+zt37kzr1q2ZOHEi3333HXv27OGuu+7i66+/ZvPmzZUVvo5CcZEesHjx4sqIQ1JZbAEeCtXGwDnAzyHujDj2hjLrGWTwcKjUox5ncAYjGMFZnEUyydGLXZIkSZIkqYyuuOIKVq1aVeqo8R07dnDhhRfy8MMP06RJk2L71KpVi7///e9ceumlNGrUiNjYWIYNG8YZZ5xBMOhUuSq7cs2R/sQTTzBgwABSU1P58ssvAZg+fTovvfRShQYnqRT/A/4POBO2sIU5zGEEI6hN7XCXnezkOZ7jAi6gKU0ZznBmMYtNbIpa2JIkSZIkSaUZO3Ys8+bNY8GCBRxzzDEl9vv888/ZsGEDZ599NnFxccTFxfH444/z8ssvExcXx+effw5Ar169WLlyJdu3b2fz5s28+uqr/O9//ztoPnWpNBEn0mfNmkVaWhpnnnkm27dvJy+vYD7mBg0aMH369IqOT1IZNKQhYxjDC7zANrbxAi8whjE0Yv8cYrnk8m/+ze/5PcdwDP3ox53cyRrWRDFySZIkSZKkAsFgkLFjx/LCCy/wxhtv0K5du1L7d+7cmY8//piVK1eG609+8hOGDBnCypUradWqVZH+ycnJNG3alHXr1rFs2TLOOeecyrwdHWUintrl/vvv5+GHH2bEiBHceeed4fbevXtz7bXXVmhwkiJXhzqMCJW97GURi3gxVL7ky3C/90JlIhM5juMYwQjO4Rz60pdYYqN4B5IkSZIkqSa64oormDt3Li+99BL169cnPT0dKEiA165d8Bv4o0ePpmXLlkydOpXExMSD5k9v0KABQJH25557jqZNm9K6dWs+/vhjrrrqKkaMGMGPfvSjqrkxHRUiHpG+fv16TjrppIPaExISyM7OrpCgJFWMOOIYzGCmM531rOcDPmAykzmRE4v0W8ta7uIuTuZkWtCCi7iI53meLLKiFLkkSZIkSappZs2aRWZmJoMHD6ZFixbh+swzz4T7bNy4MeJFQjdv3syFF15I586dufLKK7nwwgv529/+VtHh6ygX8Yj0du3asXLlStq0aVOk/dVXX6VLly4VFpikihUgQI9QuYVb+IIveImXeJEXWcQi8skHYCtb+Wuo1KIWgxjE2ZzNj/lxlO9AkiRJkiQdzcqy+OfChQtL3T9nzpyD2q688kquvPLKckYlFYg4kZ6WlsYVV1zB7t27CQaDvPfee/ztb39j6tSpPPLII5URo6RK0J72XB0qW9nKPObxD/7Bv/k32RT8dkkuufwnVK7iKlgFzAP+AbwL5B36OoFAIKK4XDFbkiRJkiRJ1U3EifTLLruM2rVrc+ONN7Jr1y5++ctfkpqayl/+8hfOP//8yohRUiVrSlMuDpUccljIwnBivfC86pwQqjcA/wP+RUFi/VVwFhhJkiRJkiQdrSKeIx3gggsuYN26dezcuZP09HS+/vprRo0axTvvvFPR8UmqYgkkMJzh3M/9rGc9H/MxU5jCyZxMaPaXAo2BC4FngG3AfCANcIYnSZIkSZIkHWXKlUjfp06dOjRr1gyAdevWceqpp1ZIUJKqhwAButKViUxkMYshBRgNPEfREei1gKHAPcCnwAZgNnAOUC/CawYCEVdJkiRJkiSpMh1WIl1SDbMNeAI4D2gCDAOmA58f0K8N8BvgRQqmgJkPXEvBtDCSJEmSJEnSEcZEuqTyyaUgQX41cCzQObT9byCnUL94CkarT6NgsdKNwEPAT4H6VRivJEmSJEmSVE4m0iVVjLUUjE4fDjQCfgzMBL44oF8r4HLg7xSMVl9IweKlJ1ZRnJIkSZIkSVKE4sra8eWXXy51//r16w87GElHiV3AP0MVoCNwRqgOBhJD7bWAQaF6J7AZeD1U/wOkV1nEkiRJkiRJUonKnEgfMWLEIfu46J8UHeV59oLBYCVEUoJ1oXofUJuCZPq+xPqxhfq1oGAx09Gh9x9TMFXM68BbwPdVE64kSZIkSZJUWJkT6fn5+ZUZh6Sa4nvglVAF6EBBQv10ChLsdQv17Raq11Aw7/oi9o9Y/wCows8CJEmSJEmSVHM5R7qk6PocmEHBnOoNKZjm5Q7gPaDw53cJwGkUTAGzHNgC/A24BDaysSojliRJkiRJUg1jIl1S9ZFLwRQuNwL9gCbAz4EHgQOXYWgCnA88Cm1ow3EcxzjG8RIv8R3fHfJSgUAg4ipJkiRJkqSaqcxTu0hSlfsOeD5UoWAamB+G6lCgwf6un4XKDGYQIEBPejKEIQxlKKdwCvWpX7WxS5IkSZIk6ahRLUakz5w5k7Zt25KYmEi/fv147733Suz78MMPc+qpp9KwYUMaNmzIsGHDSu0v6SjyOTAbOJeCEen9gclwCqcQS2y4W5Agy1nOn/gTZ3ImjWjEyZzMjdzIG7zB965aKkmSJEmSpAhElEjPy8vjrbfeYvv27RUWwDPPPENaWho33XQTK1asoHv37gwfPpwtW7YU23/hwoWMGjWKBQsWsGTJElq1asWPfvQjNm3aVGExSToC5AHvArfB27zNt3zLy7zM1VxNd7oX6bqXvSxhCXdwB6dxGg1pCG9QMIXMAKBW1YcvSZIkSZKkI0cgGAwGIzkgMTGR1atX065duwoJoF+/fvTp04cZM2YAkJ+fT6tWrRg3bhwTJkw45PF5eXk0bNiQGTNmMHr06EP2z8rKIjk5mczMTJKSkg47/iOV8z0rwkcfqL5/b4q7l21sYyELWcAC3uAN1rCm5BNkA28DCyhIsH9AQaK+DNeRJEmSJKm62bVrF6tXr6ZLly7UqVMn2uFIUbXvediwYQPr1q3j9NNPp0ePHkBkueKI50jv2rUrX3zxRYUk0vfs2cPy5cuZOHFiuC0mJoZhw4axZMmSMp1j165d5Obm0qhRo2L35+TkkJOTE36flZV1eEFLR4nqmhSvKE1ows9DBeAbvmEhC3kjVNYXXr20LnB6qAJkAYspWPj0TWAZBQuhqlwi/bvmBxaSJEmSJKm6iXiO9Ntvv51rr72WefPmsXnzZrKysorUSGzbto28vDxSUlKKtKekpJCenl6mc9xwww2kpqYybNiwYvdPnTqV5OTkcG3VqlVEMUo6OqSSyi/5JY/wCF/wBbQFLgaeAA6cGSoJOAOYCrwDbAfmwy3cwgIWsItdVRi5JEmSJEmSoi3iEelnnnkmAD/5yU+KjDIMBoMEAgHy8oqZD6GS3HnnnTz99NMsXLiQxMTEYvtMnDiRtLS08PusrCyT6ZLgS2BOqAJ0BIYCQ4BBQPNCfesU7LuZmwGoRS360IdBDGIgAzmZk0mi5k4VJUmSJEmSdLSLOJG+YMGCCrt4kyZNiI2NJSMjo0h7RkYGzZs3L+GoAn/605+48847+c9//sOJJ55YYr+EhAQSEhIqJF5J1VOFTFOzLlQfDL3vCAwsVNvu75pLLu+EylSmEkMMPenJwFA5lVNpRPHTTR3pjvYpgSRJkiRJkooTcSJ90KBBFXbx+Ph4evXqxfz58xkxYgRQsNjo/PnzGTt2bInH3X333dxxxx289tpr9O7du8LikaSwfYn1R0PvW8PjXz7OW6HyGZ+Fu+aTz7JQuZd7ATiBExhQqLSnPQFMQkuSJEmSJB2JIk6kA7z99ts8+OCDfPHFFzz33HO0bNmSJ554gnbt2nHKKadEdK60tDTGjBlD79696du3L9OnTyc7O5uLL74YgNGjR9OyZUumTp0KwF133cXkyZOZO3cubdu2Dc+lXq9ePerVq1ee25GkQ9sIF4YKwGY28zZv8xZv8SZvsopVRbp/EioP8RAAKaRwMieHE+s96Uk88VV+G5IkSZIkSYpcxIn0559/ngsvvJALLriAFStWkJOTA0BmZiZTpkzhX//6V0TnGzlyJFu3bmXy5Mmkp6fTo0cPXn311fACpBs3biQmZv+aqLNmzWLPnj38/Oc/L3Kem266iZtvvjnS25GkcmlBC84LFYD/8T8WsSg8Yv0DPiCP/WtGZJDBC6ECkEgifegTTqyfzMnh6WDKM31KMBisgLuSJEmSJElScQLBCLMvJ510EldffTWjR4+mfv36fPjhh7Rv354PPviAM844IzxCvLrKysoiOTmZzMxMkpJq7uKAznMsRS6Sfy6zyeY93mNxqCxhCZlklnpMF7pwMifz6MWPwmIKppaphNgOR1X82+GHApIkSZJ0eHbt2sXq1avp0qULderUiXY4UlTtex42bNjAunXrOP300+nRowcQWa444hHpa9euZeDAgQe1Jycns3379khPJ0lHjMMZKZ5PPp/wSTixvpjFrGd9kb6rQ4XHQg1bgCXAu8BS4H1g52HcgCRJkiRJksol4kR68+bN+e9//0vbtm2LtC9atIj27dtXVFySdFSJIYZuofJbfgsUzLP+Du+EE+srWMFe9u4/qBlwTqgC5AOfsD+x/i6wOtQuSZIkSdIhVPUMBf7GceW7+eabefHFF1m5cmW0QznqxRy6S1GXX345V111FUuXLiUQCPDNN9/w1FNPce211/K73/2uMmKUpKNSC1pwLudyL/eylKVkkslCFsIfgH8C3x1wQAzQDbgceARYFerzH/gjf+RlXiaDjKq8BUmSJEmSKsyOHTsYP348bdq0oXbt2px88sm8//77RfpkZGRw0UUXkZqaSp06dTj99NNZt674uVGDwSBnnHEGgUCAF198sdRrDx48mEAgcFD97W9/W1G3pwqye/durrjiCho3bky9evU499xzycio/HxIxCPSJ0yYQH5+Pqeddhq7du1i4MCBJCQkcO211zJu3LjKiFGSaoQ61GEQg2BqqCEAdAR+APQLvZ5I0X+5k4DTYApT9rd9wf4R6+8CK4E9B1/PkQGSJEmSpOrksssuY9WqVTzxxBOkpqby5JNPMmzYMD799FNatmxJMBhkxIgR1KpVi5deeomkpCTuvffecJ+6desWOd/06dMjGoV/+eWXc+uttxZpc475yrd161bq169PYmJimfpfffXV/POf/+S5554jOTmZsWPH8rOf/YzFixdXapwRj0gPBAL88Y9/5Ntvv2XVqlW8++67bN26ldtuu60y4pOkmisIfAY8DlwB9KIgcX4qcB3w/4CvizmuPTAK+AsFCfUsChLqM4AxwAmU419/SZIkSZIqz/fff8/zzz/P3XffzcCBAzn22GO5+eabOfbYY5k1axYA69at491332XWrFn06dOH4447jlmzZvH999/zt7/9rcj5Vq5cyT333MP//d//lTmGOnXq0Lx58yJ13wKUjz/+OPXq1Ssy+v33v/89nTt3ZteuXQB8/fXXjBo1ikaNGlG3bl169+7N0qVLw/1feuklevbsSWJiIu3bt+eWW25h7979U7xu376dyy67jKZNm5KUlMTQoUP58MMPi8R45513kpKSQv369bn00kvZvXt3kf3vv/8+P/zhD2nSpAnJyckMGjSIFStWFOkTCAR45JFH+OlPf0qdOnXo2LEjL7/8cpE+n3zyCT/+8Y9JSkqifv36nHrqqXz++efh/Y888ghdunQhMTGRzp0788ADD4T37dmzh7Fjx9KiRQsSExNp06YNU6dOpST/+te/aNGiBb/97W9ZsmRJif0AMjMzefTRR7n33nsZOnQovXr14rHHHuOdd97h3XffLfXYwxVxKuWSSy5hx44dxMfHc/zxx9O3b1/q1atHdnY2l1xySWXEKEna53tgEfAn4BdAK+AY4FxgGvAWsOuAYxIoGNF+BTCHgilhsuBUTuVqruYpnuIzPiPfydYlSZIkSVGyd+9e8vLyDhqVXLt2bRYtWgRATk4OQJE+MTExJCQkhPsA7Nq1i1/+8pfMnDmT5s2bV0h8o0eP5swzz+SCCy5g7969/POf/+SRRx7hqaeeok6dOuzcuZNBgwaxadMmXn75ZT788EOuv/568vMLftZ+++23GT16NFdddRWffvopDz74IHPmzOGOO+4IX+MXv/gFW7Zs4ZVXXmH58uX07NmT0047jW+//RaAZ599lptvvpkpU6awbNkyWrRoUSSBDQXT44wZM4ZFixbx7rvv0rFjR84880x27NhRpN8tt9zCeeedx0cffRS+r33X2bRpU3gWkjfeeIPly5dzySWXhJP+Tz31FJMnT+aOO+5g9erVTJkyhUmTJvHXv/4VgPvuu4+XX36ZZ599lrVr1/LUU08dtN5mYRdccAFPPvkk3333HUOHDuW4445jypQpfPXVVwf1Xb58Obm5uQwbNizc1rlzZ1q3bn3IJPxhC0YoJiYmmJGRcVD71q1bg7GxsZGersplZmYGgWBmZma0Q4kqCsa6Wq3WSq5ReT7jCNKDIL8lyByCrCZYlpIcTA4ODQ4NXh+8Pvhs8Nng+uD6YH4wv8r/7aiqr5kkSZIkHa2ys7ODy5YtC2ZnZxdpr+4/E/fv3z84aNCg4KZNm4J79+4NPvHEE8GYmJhgp06dgsFgMLhnz55g69atg7/4xS+C3377bTAnJyd45513BoHgj370o/B5fv3rXwcvvfTSIvf9wgsvlHrtQYMGBWvVqhWsW7dukfrkk0+G+3z77bfBY445Jvi73/0umJKSErzjjjvC+x588MFg/fr1g//73/+KPf9pp50WnDJlSpG2J554ItiiRYtgMBgMvv3228GkpKTg7t27i/Tp0KFD8MEHHwx/fX7/+98X2d+vX79g9+7dS7yvvLy8YP369YP/+Mc/wm1A8MYbbwy/37lzZxAIvvLKK8FgMBicOHFisF27dsE9e/YUe84OHToE586dW6TttttuC/bv3z8YDAaD48aNCw4dOjSYn59f3OGl2r59e/Chhx4KnnrqqcHY2NjgaaedFnz88ceDu3btCgaDweBTTz0VjI+PP+i4Pn36BK+//vpiz7nvefh//+//BadOnRr84IMPwvsiyRWXeY70rKwsgsEgwWCQHTt2FPnkJy8vj3/96180a9asrKeTJFWWvRTMi74SmB1qS6JgapjeodoHaFf0sEwyeSNU9mlCE3oXKqQC31Ry/JIkSZKkGumJJ57gkksuoWXLlsTGxtKzZ09GjRrF8uXLAahVqxZ///vfufTSS2nUqBGxsbEMGzaMM844I7wO2Msvv8wbb7zBBx98EPH1L7jgAv74xz8WaUtJSQlvN2zYkEcffZThw4dz8sknM2HChPC+lStXctJJJ9GoUaNiz/3hhx+yePHiIiPQ8/Ly2L17N7t27eLDDz9k586dNG7cuMhx33//fXhKldWrVx+0+Gn//v1ZsGBB+H1GRgY33ngjCxcuZMuWLeTl5bFr1y42btxY5LgTTzwxvF23bl2SkpLYsmVL+F5OPfVUatWqddB9ZGdn8/nnn3PppZdy+eWXh9v37t1LcnIyABdddBE//OEPOe644zj99NP58Y9/zI9+9KNivy4HSk5O5vLLL+fyyy/nvffeY9SoUYwePZr69eszYsSIMp2jspQ5kd6gQYPwarWdOnU6aH8gEOCWW26p0OAkSRUkC1gQqvs0Zn9ifV9yvWXRw7axjVdDBYBNQAbwQaG6goIFToOVGL8kSZIk6ajXoUMH3nzzTbKzs8nKyqJFixaMHDmS9u3bh/v06tWLlStXkpmZyZ49e2jatCn9+vWjd+/eALzxxht8/vnnNGjQoMi5zz33XE499VQWLlxY4vWTk5M59thjS43xrbfeIjY2ls2bN5OdnU39+vWBgiloSrNz505uueUWfvaznx20LzExkZ07d9KiRYti4zvwXkozZswY/ve///GXv/yFNm3akJCQQP/+/dmzZ0+RfgcmyQOBQHgamtLuZefOnQA8/PDD9OvXr8i+2NhYAHr27Mn69et55ZVX+M9//sN5553HsGHD+H//7/8dMv7du3fzj3/8g8cff5zXXnuNk046iWuvvZbTTjsNgObNm7Nnzx62b99e5OuSkZFRYdP4lKTMifQFCxYQDAYZOnQozz//fJFPV+Lj42nTpg2pqamVEqQkqRL8D3gtVPdpQdHEem+g6QHHpQCnh+o+WRSMgF/B/gT7agpGx0uSJEmSFIG6detSt25dvvvuO1577TXuvvvug/rsG/28bt06li1bxm233QbAhAkTuOyyy4r07datG3/+8585++yzDyuud955h7vuuot//OMf3HDDDYwdOzY8L/iJJ57II488wrffflvsqPSePXuydu3aEhP1PXv2JD09nbi4uBLnE+/SpQtLly5l9OjR4bYDF9hcvHgxDzzwAGeeeSYAX331Fdu2bYvoPk888UT++te/kpube1DCPSUlhdTUVL744gsuuOCCEs+RlJTEyJEjGTlyJD//+c85/fTTS/zaBINBFi1axOOPP85zzz1H/fr1+dWvfsW0adPo3Llzkb69evWiVq1azJ8/n3PPPReAtWvXsnHjRvr37x/RfUaqzIn0QYMGAbB+/XpatWpFTEzE65RKkqq7zcA/QnWf1hQk1fsAPYGTgCYHHJcEDAzVfXYDH7N/1PoHofffV0bgkiRJkqQj3WuvvUYwGOS4447jv//9L9dddx2dO3fm4osvDvd57rnnaNq0Ka1bt+bjjz/mqquuYsSIEeGpQ5o3b17syOTWrVvTrl27g9oL27VrF+np6UXaEhISaNiwITt27ODCCy/kyiuv5IwzzuCYY46hT58+nH322fz85z9n1KhRTJkyhREjRjB16lRatGjBBx98QGpqKv3792fy5Mn8+Mc/pnXr1vz85z8nJiaGDz/8kFWrVnH77bczbNgw+vfvz4gRI7j77rvp1KkT33zzDf/85z/56U9/Su/evbnqqqu46KKL6N27NwMGDOCpp57ik08+KTJiv2PHjjzxxBP07t2brKwsrrvuukOOlj/Q2LFjuf/++zn//POZOHEiycnJvPvuu/Tt25fjjjuOW265hSuvvJLk5GROP/10cnJyWLZsGd999x1paWnce++9tGjRgpNOOomYmBiee+45mjdvXuLI+ieffJLf/OY3/PSnP+XZZ59l2LBhJeaek5OTufTSS0lLS6NRo0YkJSUxbtw4+vfvzw9+8IOI7jNSZU6k79OmTRuA8Nw6B/5aQOH5dSRJR4GNofp8obZj2J9U31dbH3BcIvsT8PvkAWvYn1j/EPgIiOzDcUmSJElSOeybR7y6yszMZOLEiXz99dc0atSIc889lzvuuKPIqOjNmzeTlpZGRkYGLVq0YPTo0UyaNKlCrv/www/z8MMPF2kbPnw4r776KldddRV169ZlypQpQMEo9ylTpvCb3/yG/v3707JlS/79739zzTXXcOaZZ7J3716OP/54Zs6cGT7PvHnzuPXWW7nrrruoVasWnTt3Do+eDwQC/Otf/+KPf/wjF198MVu3bqV58+YMHDgwPE/7yJEj+fzzz7n++uvZvXs35557Lr/73e947bX9v2r+6KOP8utf/5qePXvSqlUrpkyZwrXXXhvR16Fx48a88cYbXHfddQwaNIjY2Fh69OjBgAEDALjsssuoU6cO06ZN47rrrqNu3bp069aN8ePHA1C/fn3uvvtu1q1bR2xsLH369OFf//pXicnx0047jfT0dJKSksoU35///GdiYmI499xzycnJYfjw4TzwwAMR3WN5BIIRPkFbt27l4osv5pVXXil2f15eXoUEVlmysrJITk4mMzOzzH84R6NAIBDtEKQaoTzfpByxz2dj9ifV9yXZOwJl+QWmzYST6k9c/wQnciKd6Uw88WW6dHm+ZtX9G0hJkiRJKq9du3axevVqunTpQp06daIdjhRV+56HDRs2sG7dOk4//XR69OgBRJYrjnhE+vjx49m+fTtLly5l8ODBvPDCC2RkZHD77bdzzz33lOtmJElHgf8B/wnVfeoBJ1J09PoJcFB+vEWong4XciEAtahFF7pwYqh0pzsnciIppBDgCP2wQZIkSZIkHZEiTqS/8cYbvPTSS/Tu3ZuYmBjatGnDD3/4Q5KSkpg6dSpnnXVWZcQpSToS7QTeCdV94ilIpvegIMl+ItCdghHtheSSy0ehUlhTmh6UXCcByKmsm5AkSZIkSTVdxIn07OxsmjVrBkDDhg3ZunUrnTp1olu3bqxYsaLCA5QkHWX2UDA/+gcHtKcCJ8Kdr9wZTqCvYQ172Vuk21a2Mj9UwnYCnwGfFKqrgP/CAYdLkiRJkiRFLOJE+nHHHcfatWtp27Yt3bt358EHH6Rt27bMnj2bFi1aVEaMkqSa4JuCegM3hJtyyGE1q8OJ9Y/4iA/5kC1sKXpsHHB8qP6iUPseYC0FSfXCSfbPK/NGJEmSJEnS0SbiRPpVV13F5s2bAbjppps4/fTTeeqpp4iPj2fOnDkVHZ8kqQZLIIEeoVJYBhlFkuuPr3wcOgOJB5wgHugWqoV9DydxEieESle6cgIn0Ja2xJRpdVRVNy44K0mSJB3M73klyM/Pr5DzlDmRvn79etq1a8evfvWrcFuvXr348ssvWbNmDa1bt6ZJkyYVEpQkSaVJIYUfhgrA4yc9DrFAe6ArBXOwnxDaPg6odcAJasPKUCmsDnU4PlS60IXOdKYLXWhPe2oddBJJkiRJqp7i4gpSfjk5OdStWzfK0UjRtXPnTgByc3MP6zxlTqR36NCBNm3aMGTIEIYOHcrgwYM55phjqFOnDj179jysICRJOmx5wLpQfaFQexzQkYMS7LGdY8kjr8gpdrGLZaFSWC1qcSzHsvrvq2E1sIaC17UUzM9eCkeASJIkSapqtWrVol69enz99dfEx8cTE+Nv3qrmyc/PZ+fOnWzatInt27eTn59PMBgs1280QwSJ9DfeeIOFCxeycOFC/va3v7Fnzx7at2/P0KFDGTJkCEOGDCElJaVcQUiSVGn2UpD0Xg08t785O5jNWtayilV8Uqh8zucEKZr8ziWX1ayGnxVz/q8oSKzvS67ve02vlLuRJEmSpEMKBAK0bduWTz75hLVr10Y7HCmqtm/fTkZGBjk5OcTExFCnTp1ynScQLMdQud27d/POO++EE+vvvfceubm5dO7cmU8++aRcgVSVrKwskpOTyczMJCkpKdrhRE15P3mRFJnyjEau6c9nVX3NSrrOLnbxGZ+xhjWsZnX49TM+I4ecsl9gO7AGxvxgDF3oQqdQ6UAHEg+azF2HyznSJUmSpIPl5uby9ttv8+mnn5KYmEhcXFyN/5lTNUcwGGTPnj3k5eWxd+9eduzYQefOnTnjjDOoXbs2EFmuuFyJ9H327NnD4sWLeeWVV3jwwQfZuXMneXl5hz4wikykF/AfTUnVVbQT6SXJI4+4DnEFi5p2Yf9rF6BR2c8TIEBrWocT6x3pGN5uQxviIl8HXJhIlyRJkkqyd+9e3n77bb744gtyciIYHCQdRWrVqkVqaipDhgwpMiK90hLpe/bs4d1332XBggUsXLiQpUuX0qpVKwYOHMjAgQMZNGgQrVu3jugmZs6cybRp00hPT6d79+7cf//99O3bt9i+n3zyCZMnT2b58uV8+eWX/PnPf2b8+PERXc9EegET6ZKqq+qaSC/1Ok0pmmDft902svPXohbtaV9skj2VVAL4b3dJTKRLkiRJpQsGg+zduzfaYUhRERsbW+xaAZHkiss87G3o0KEsXbqUdu3aMWjQIH7zm98wd+5cWrRoEXnkIc888wxpaWnMnj2bfv36MX36dIYPH87atWtp1qzZQf137dpF+/bt+cUvfsHVV19d7utKklShtobq2we014EV2StYwxrWsY7PCpVMMg86TS65rA2VA9WhTpHE+rEcS4dQaUELk+ySJEmSShUIBKhVq1a0w5COWGUekV6rVi1atGjBiBEjGDx4MIMGDaJx48aHdfF+/frRp08fZsyYARSspNqqVSvGjRvHhAkTSj22bdu2jB8//pAj0nNycor82kpWVhatWrVyRLoj0iVVU0fbvPLF3U+QINvYxmd8dlCC/b/8l+/5PqJr1KY27WkfTqwXLm1pSy2K/2b5aBrFfTTdiyRJkiSpalTKiPTt27fz9ttvs3DhQu666y5GjRpFp06dGDRoUDix3rRp0zIHuWfPHpYvX87EiRPDbTExMQwbNowlS5aU+TyHMnXqVG655ZYKO58kSYcrQICmoTKAAUX25ZPPJjaFE+uFE+3rWc9eDv5VzO/5nk9C5UAxxNCGNsUm2akLZFfWXUqSJEmSdPQo92KjO3bsYNGiReH50j/88EM6duzIqlWrynT8N998Q8uWLXnnnXfo379/uP3666/nzTffZOnSpaUe74j0w1OdR29Kqtlqwoj08sollw1sCI9c/7xQWc969rAn8pNmAJ8XquuBDaHXTUD+4cVcVaO+HZEuSZIkSYpUpYxIP1DdunVp1KgRjRo1omHDhsTFxbF69erynq7SJCQkkJCQEO0wJEk6bLWoRcdQOVAeeWxiU5HkeuFS3JzsAKSE6snF7MsFNrI/sb7hgO3NgLloSZIkSVINUOZEen5+PsuWLWPhwoUsWLCAxYsXk52dTcuWLRkyZAgzZ85kyJAhZb5wkyZNiI2NJSMjo0h7RkYGzZs3L/sdSJIkYomldagMoej/x0GCfMu3ByXX57w9BzoAqSWctBYF+zuUsD8H+JKio9gLv245vHuSJEmSJKm6KHMivUGDBmRnZ9O8eXOGDBnCn//8ZwYPHkyHDiX9dF26+Ph4evXqxfz58xkxYgRQkKyfP38+Y8eOLdc5JUlHvuo8TUt5VNX9lDZNSYAAjUOlL33D7XMGzinYqA20D9W2QLtCr+2A5BJOnAB0CtXi7ILjOZ42odL6gNKSliUuhCpJkiRJUnVS5kT6tGnTGDJkCJ06lfTTcuTS0tIYM2YMvXv3pm/fvkyfPp3s7GwuvvhiAEaPHk3Lli2ZOnUqULBA6aeffhre3rRpEytXrqRevXoce+yxFRaXJEk1yvfAJ6FanGSKJtcPfK1XwnF1YHWoFCdAgBa0OCjBXrg0ohEBjq4PVyRJkiRJR55yLzZaUWbMmMG0adNIT0+nR48e3HffffTr1w+AwYMH07ZtW+bMmQPAhg0baNeu3UHnGDRoEAsXLizT9SKZQP5odrSN+JSkmi6qi7Q2Zn9ivS1FkuyJXRLZze5yn7oOdUpNtLekJYkkutioJEmSJClikeSKo55Ir2om0guYSJeko0tUE+mlyA/ms5WtbAyVr/gqvL2vpJN+WNdoQhO2rdwGXwObKP4163DvpEBVfdvkBwOSJEmSVPkiyRWXeWoXSZKkSAUI0CxUetO72D455PA1Xx+UYC9cdrGrxGtsYxv0oKCWZCelJ9o3UbA4qrloSZIkSVIxTKRLkqRKU2Gj3hsBrYupLYFjgFQgvpTj6wGdQ7Uke4DNFE2wby5av+M7GtDAedslSZIkqYYxkS5Jkqq/b0N1ZQn7A0BT9ifWD3zdV0taGBUKEvFtQrUEjWhEIom0KENpQhNiiInoNiVJkiRJ1ZOJdEmSdOQLUjA1yxbgg1L6JVFysn3fa9PSL7Wb3awPldLEEUdzmh8y4d6MZtSiVtnuU5IkSZIUFSbSJUk6CriIdBllherqUvokUDBVTEugxQE1tdB249IvtZe9fB0qh9KIRqQUKvwFyDigbgm97j7k6SRJkiRJFcxEuiRJUmE5wPpQLU080JzSk+0tINA8QPAQq5h+Gyqr92X4ryylcxYHJ9czYBazSCGFZjQLJ+TrU9/53CVJkiSpAphIlyRJKo89wMZQLa1bcA9b2MLmQuUbvmEzm0knnYxCZRe7Dn3dpFDtWLT59/z+oK6JJNKMZjQtVJrQpMTtBjRwXndJkiRJKoaJdEmSpEoURxypoXIoO9nJFrbQoX8HSKFobXbA+waHvvZudrMxVMpkL7AtVLeG6gHb/3n6P+HEexOaEE982c4dgfJMVRQMlj7qP5qOtvuRJEmSaiIT6ZIkSdVEvVDh3TJ0TqAguX5ggv3ApHszCuZzjy3DOeMomK6mecldhjGsyPtkksMj2xvTmEY0onGoFLfdiEbUo55TzkiSJEk6ophIlyRJOhLlAF+F6qHEAA2BJkDTUG1ywOuB27XLFkZmqHzO52UOvRa1Sk26cxnwP+Db0Ou+7ZwyX0KSJEmSKpSJdEmSpEpUnmk9Klw++xPSa8t4TB2KTbBPuGcCW9nKNraxNVS2sY3v+K7M4eSSS3qoFOvhEg7MZn9S/btCdTvczu00oAENQ2Xf9r7XRBLLHJ8kSZIkHSgQrGETMGZlZZGcnExmZiZJSUnRDidqqsUP9ZIk6YhT0reOe9nLd3zH/0LlW74t8lrSdpkWWK0AiSSWmmgvra0+9Q9rEVbnSJckSZKqp0hyxY5IlyRJ0mGLI46moRKJ3ew+KOl+7mXnFszr3hhoRPHbEa5xupvdpY+CL0UMMSSTTBJJfPnhl5BJQc3i0NuZFEyrkwXkRXxpSZIkSdWEiXRJkiRFTSKJpIZK2KNlOLA2BQnqBgWvLy96me1s5zu+C78W3i7ctpOdEcWYT374WLpHdGhROylz8v15nic5VOoXKvWod1ij4yVJkiSVj1O71FBO7SJJksqjKr51rOypUPayl+2hUlrCvfD2vkVVt3y/pcwLsVaWOtQpklw/sNSjXpn316WuiXlJkiTVWE7tIkmSpBqlquYhD9QJFEwrkwQkF3o9cLss+8ppV6hkkFH+k+yTT8EirjsK1Z0HvM8O1Z0Fr/834/+oe0CpR70i7xNIIEDVDtxwLnpJkiRVJhPpkiRJUiT2ANtCtbwCQH1KTLrf9eBd4VHwO0JlJzvD24XLXvaWP46YUBz1y37IJVxShtPGlJpoL8++OtShdqg4il6SJElVzUS6JEmSVNWCFMyLngV8dfDu6x+8voynCZJDTqmJ9tIS8fOXzi9Iotdjf0K9An5CyCc/fI3KkEBCOLG+75UlwPfArrK//oN/HHSewq+JJJq0lyRJEmAiXZIkSRFwnZWqEdWvcyL7k+r1gbpF6+wnZ5MdKjvZGd4urhTen0NOhYWYEyrf8d3+xh9Efp6f8JND9kkksUiC/b8f/rcgEf89sLtsdfZfZpMYYYknvsqnx5EkSVLJXGy0hvKHYEmSVNOVa450v4cq97zie9nLLnaVKQl/zaRrCkbJF07i1wbqlPJapwJurpqJNPmeSCIJoRJPfJHXsraVtK8WtUzsS5Kko46LjUqSJEmqFqr0w4dEiibWD5F8v/3e29nFLr7n+2Jfi2v77vvvCo6vArtDpbrYl1TfsXVHwVoBOaG6p4TX0PalF156UIK+VqiUtD3qZ6Mgl/11T4Tb+ZX3dahhY9GOei5ULEkqK0ek11COppIkSTWdI9LLJ9KvW3X+mpX770AASKAgcX849XDOodLlcXiJ+OL27S2oE66bQC1qEVdCKW1fRe137v6KYyJdkmq2I25E+syZM5k2bRrp6el0796d+++/n759+5bY/7nnnmPSpEls2LCBjh07ctddd3HmmWdWYcSSJEmSaqwg++dAj4YAEM9ByfUP1nzAbnaTQw572FPk9XDaDty3+vPVBddPCNV929UptxsbqpXwocOd3FnxJ41QgEC5E/GxxZSS2ksr1fmYmGJKce1OVyRJikTUE+nPPPMMaWlpzJ49m379+jF9+nSGDx/O2rVradas2UH933nnHUaNGsXUqVP58Y9/zNy5cxkxYgQrVqyga9euUbgDSZIkHYmq80hpVY0j9u9AkP1Tp2Tub+5Bj4hPVaFfg1iKJtYLbx/YVitUy7Jd1n7lPf4IFCRIbqjoMO2bCujAmldye1vaHjJJf2D7kkVLynTuwu9HnjeyxPOX9MHA9HumF/wbkU/Ba+Ht4trKsX/GjBnh6+17LWm7PPur8pzFFaDU/RV5bAwxxB+p/xCp2vI3bSpP1Kd26devH3369GHGjBkA5Ofn06pVK8aNG8eECRMO6j9y5Eiys7OZN29euO0HP/gBPXr0YPbs2Ye8nlO7FDhif2iQJElSVB1NU7scbZyuqJziKFvyPa6gvvH2G+wtpuSSW2z7XvZyzfXXFJwnroRazL5zzz+3TOeOZL+k6qUNbdjAhmiHoaOMifTIHDFTu+zZs4fly5czceLEcFtMTAzDhg1jyZIlxR6zZMkS0tLSirQNHz6cF198sdj+OTk55OTkhN9nZhYM2cjKyjrM6CVJkqSax++jqy//bMopNPc535ete6+sXhFf4ppp10R8zP+d+X8RH1OaIEHyySevjKWkvkOGDimYxieO/VPoxFLQFlt8nfXwLPLIYy97D3n+fe1/uudPBcfHHeL8B7bHHFADJbTvOy5QTNuBxx/Q3iy1GfmHKPvuJUjNTU7p0IIEycJ/uxV9Nfl7iH33XpYPE6KaSN+2bRt5eXmkpKQUaU9JSWHNmjXFHpOenl5s//T09GL7T506lVtuueWg9latWpUzakmSJKnmSk5OjnYIKoF/NlWjqr7OR9Of5++e/V20Q6hQW9gS7RB0lNjIRpI5ep51HbmOpv9zymvHjh2H/DpEfY70yjZx4sQiI9jz8/P59ttvady4cY39NcasrCxatWrFV199VaOnt5Ei4XMjRc7nRoqcz40UOZ8bKXI+N1LkfG6OTsFgkB07dpCamnrIvlFNpDdp0oTY2FgyMjKKtGdkZNC8efNij2nevHlE/RMSEkhISCjS1qBBg/IHfRRJSkrywZci5HMjRc7nRoqcz40UOZ8bKXI+N1LkfG6OPmUdkR9TyXGUKj4+nl69ejF//vxwW35+PvPnz6d///7FHtO/f/8i/QFef/31EvtLkiRJkiRJknQ4oj61S1paGmPGjKF379707duX6dOnk52dzcUXXwzA6NGjadmyJVOnTgXgqquuYtCgQdxzzz2cddZZPP300yxbtoyHHnoomrchSZIkSZIkSTpKRT2RPnLkSLZu3crkyZNJT0+nR48evPrqq+EFRTdu3EhMzP6B8yeffDJz587lxhtv5A9/+AMdO3bkxRdfpGvXrtG6hSNOQkICN91000FT3kgqmc+NFDmfGylyPjdS5HxupMj53EiR87lRIBgMBqMdhCRJkiRJkiRJ1VVU50iXJEmSJEmSJKm6M5EuSZIkSZIkSVIpTKRLkiRJkiRJklQKE+mSJEmSJEmSJJXCRHoNM3PmTNq2bUtiYiL9+vXjvffei3ZIUrU1depU+vTpQ/369WnWrBkjRoxg7dq10Q5LOqLceeedBAIBxo8fH+1QpGpt06ZN/OpXv6Jx48bUrl2bbt26sWzZsmiHJVVbeXl5TJo0iXbt2lG7dm06dOjAbbfdRjAYjHZoUrXx1ltvcfbZZ5OamkogEODFF18ssj8YDDJ58mRatGhB7dq1GTZsGOvWrYtOsFI1Udpzk5ubyw033EC3bt2oW7cuqampjB49mm+++SZ6AatKmUivQZ555hnS0tK46aabWLFiBd27d2f48OFs2bIl2qFJ1dKbb77JFVdcwbvvvsvrr79Obm4uP/rRj8jOzo52aNIR4f333+fBBx/kxBNPjHYoUrX23XffMWDAAGrVqsUrr7zCp59+yj333EPDhg2jHZpUbd11113MmjWLGTNmsHr1au666y7uvvtu7r///miHJlUb2dnZdO/enZkzZxa7/+677+a+++5j9uzZLF26lLp16zJ8+HB2795dxZFK1Udpz82uXbtYsWIFkyZNYsWKFfz9739n7dq1/OQnP4lCpIqGQNCP7GuMfv360adPH2bMmAFAfn4+rVq1Yty4cUyYMCHK0UnV39atW2nWrBlvvvkmAwcOjHY4UrW2c+dOevbsyQMPPMDtt99Ojx49mD59erTDkqqlCRMmsHjxYt5+++1ohyIdMX784x+TkpLCo48+Gm4799xzqV27Nk8++WQUI5Oqp0AgwAsvvMCIESOAgtHoqampXHPNNVx77bUAZGZmkpKSwpw5czj//POjGK1UPRz43BTn/fffp2/fvnz55Ze0bt266oJTVDgivYbYs2cPy5cvZ9iwYeG2mJgYhg0bxpIlS6IYmXTkyMzMBKBRo0ZRjkSq/q644grOOuusIv/vSCreyy+/TO/evfnFL35Bs2bNOOmkk3j44YejHZZUrZ188snMnz+fzz77DIAPP/yQRYsWccYZZ0Q5MunIsH79etLT04t8r5acnEy/fv3MEUgRyMzMJBAI0KBBg2iHoioQF+0AVDW2bdtGXl4eKSkpRdpTUlJYs2ZNlKKSjhz5+fmMHz+eAQMG0LVr12iHI1VrTz/9NCtWrOD999+PdijSEeGLL75g1qxZpKWl8Yc//IH333+fK6+8kvj4eMaMGRPt8KRqacKECWRlZdG5c2diY2PJy8vjjjvu4IILLoh2aNIRIT09HaDYHMG+fZJKt3v3bm644QZGjRpFUlJStMNRFTCRLkllcMUVV7Bq1SoWLVoU7VCkau2rr77iqquu4vXXXycxMTHa4UhHhPz8fHr37s2UKVMAOOmkk1i1ahWzZ882kS6V4Nlnn+Wpp55i7ty5nHDCCaxcuZLx48eTmprqcyNJqnS5ubmcd955BINBZs2aFe1wVEWc2qWGaNKkCbGxsWRkZBRpz8jIoHnz5lGKSjoyjB07lnnz5rFgwQKOOeaYaIcjVWvLly9ny5Yt9OzZk7i4OOLi4njzzTe57777iIuLIy8vL9ohStVOixYtOP7444u0denShY0bN0YpIqn6u+6665gwYQLnn38+3bp148ILL+Tqq69m6tSp0Q5NOiLsywOYI5Aity+J/uWXX/L66687Gr0GMZFeQ8THx9OrVy/mz58fbsvPz2f+/Pn0798/ipFJ1VcwGGTs2LG88MILvPHGG7Rr1y7aIUnV3mmnncbHH3/MypUrw7V3795ccMEFrFy5ktjY2GiHKFU7AwYMYO3atUXaPvvsM9q0aROliKTqb9euXcTEFP1xNjY2lvz8/ChFJB1Z2rVrR/PmzYvkCLKysli6dKk5AqkU+5Lo69at4z//+Q+NGzeOdkiqQk7tUoOkpaUxZswYevfuTd++fZk+fTrZ2dlcfPHF0Q5NqpauuOIK5s6dy0svvUT9+vXDcwUmJydTu3btKEcnVU/169c/aB2BunXr0rhxY9cXkEpw9dVXc/LJJzNlyhTOO+883nvvPR566CEeeuihaIcmVVtnn302d9xxB61bt+aEE07ggw8+4N577+WSSy6JdmhStbFz507++9//ht+vX7+elStX0qhRI1q3bs348eO5/fbb6dixI+3atWPSpEmkpqYyYsSI6AUtRVlpz02LFi34+c9/zooVK5g3bx55eXnhPEGjRo2Ij4+PVtiqIoFgMBiMdhCqOjNmzGDatGmkp6fTo0cP7rvvPvr16xftsKRqKRAIFNv+2GOPcdFFF1VtMNIRbPDgwfTo0YPp06dHOxSp2po3bx4TJ05k3bp1tGvXjrS0NC6//PJohyVVWzt27GDSpEm88MILbNmyhdTUVEaNGsXkyZNNZEghCxcuZMiQIQe1jxkzhjlz5hAMBrnpppt46KGH2L59O6eccgoPPPAAnTp1ikK0UvVQ2nNz8803l/ib6gsWLGDw4MGVHJ2izUS6JEmSJEmSJEmlcI50SZIkSZIkSZJKYSJdkiRJkiRJkqRSmEiXJEmSJEmSJKkUJtIlSZIkSZIkSSqFiXRJkiRJkiRJkkphIl2SJEmSJEmSpFKYSJckSZIkSZIkqRQm0iVJkiRJkiRJKoWJdEmSJEmlmjNnDg0aNIh2GJIkSVLUmEiXJEmSqrmLLrqIESNGHNS+cOFCAoEA27dvr/KYJEmSpJrERLokSZKkEuXm5kY7BEmSJCnqTKRLkiRJR4nnn3+eE044gYSEBNq2bcs999xTZH8gEODFF18s0tagQQPmzJkDwIYNGwgEAjzzzDMMGjSIxMREnnrqqSL9N2zYQExMDMuWLSvSPn36dNq0aUN+fn6F35ckSZIUbSbSJUmSpKPA8uXLOe+88zj//PP5+OOPufnmm5k0aVI4SR6JCRMmcNVVV7F69WqGDx9eZF/btm0ZNmwYjz32WJH2xx57jIsuuoiYGH/EkCRJ0tEnLtoBSJIkSTq0efPmUa9evSJteXl54e17772X0047jUmTJgHQqVMnPv30U6ZNm8ZFF10U0bXGjx/Pz372sxL3X3bZZfz2t7/l3nvvJSEhgRUrVvDxxx/z0ksvRXQdSZIk6UjhcBFJkiTpCDBkyBBWrlxZpD7yyCPh/atXr2bAgAFFjhkwYADr1q0rknAvi969e5e6f8SIEcTGxvLCCy8AMGfOHIYMGULbtm0juo4kSZJ0pHBEuiRJknQEqFu3Lscee2yRtq+//jqicwQCAYLBYJG24hYTrVu3bqnniY+PZ/To0Tz22GP87Gc/Y+7cufzlL3+JKBZJkiTpSGIiXZIkSToKdOnShcWLFxdpW7x4MZ06dSI2NhaApk2bsnnz5vD+devWsWvXrnJd77LLLqNr16488MAD7N27t9SpYCRJkqQjnYl0SZIk6ShwzTXX0KdPH2677TZGjhzJkiVLmDFjBg888EC4z9ChQ5kxYwb9+/cnLy+PG264gVq1apXrel26dOEHP/gBN9xwA5dccgm1a9euqFuRJEmSqh3nSJckSZKOAj179uTZZ5/l6aefpmvXrkyePJlbb721yEKj99xzD61ateLUU0/ll7/8Jddeey116tQp9zUvvfRS9uzZwyWXXFIBdyBJkiRVX4HggZMkSpIkSVIZ3HbbbTz33HN89NFH0Q5FkiRJqlSOSJckSZIUkZ07d7Jq1SpmzJjBuHHjoh2OJEmSVOlMpEuSJEmKyNixY+nVqxeDBw92WhdJkiTVCE7tIkmSJEmSJElSKRyRLkmSJEmSJElSKUykS5IkSZIkSZJUChPpkiRJkiRJkiSVwkS6JEmSJEmSJEmlMJEuSZIkSZIkSVIpTKRLkiRJkiRJklQKE+mSJEmSJEmSJJXCRLokSZIkSZIkSaX4/8FFSS+xqtiUAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "detector.plot(ptype=\"hist-gpd-df\", title=f\"Peaks Over Threshold\", xlabel=\"Hourly\", ylabel=\"Water Level\", alpha=1.0, bins=100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{0: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 1: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 2: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 3: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 4: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 5: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 6: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 7: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 8: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 9: {'col_1': {'c': -0.15782819424049116,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5931081564918452,\n",
+ " 'p_value': 0.850608533595198,\n",
+ " 'anomaly_score': 1.1756289297655895},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1756289297655895},\n",
+ " 10: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 11: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 12: {'col_1': {'c': -0.15686741265892334,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.587809276204891,\n",
+ " 'p_value': 0.1265926447714052,\n",
+ " 'anomaly_score': 7.899353092794223},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1658840803754493,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7826746703018017,\n",
+ " 'p_value': 0.7710826836280311,\n",
+ " 'anomaly_score': 1.296877781374738},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 9.196230874168961},\n",
+ " 13: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 14: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 15: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 16: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 17: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08797241401593113,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6792209248705294,\n",
+ " 'p_value': 0.06447147472819398,\n",
+ " 'anomaly_score': 15.510735627126746},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19625287051917328,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6813167452095854,\n",
+ " 'p_value': 0.24982664638794794,\n",
+ " 'anomaly_score': 4.002775582421786},\n",
+ " 'total_anomaly_score': 19.513511209548533},\n",
+ " 18: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 19: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 20: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08922348125831255,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.68911901153005,\n",
+ " 'p_value': 0.9067236327877032,\n",
+ " 'anomaly_score': 1.1028718827207806},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1028718827207806},\n",
+ " 21: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 22: {'col_1': {'c': -0.15828204295654197,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.595046389393498,\n",
+ " 'p_value': 0.12062021986510861,\n",
+ " 'anomaly_score': 8.290483976221523},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.16528156118475001,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7783443565141672,\n",
+ " 'p_value': 0.2833419119151414,\n",
+ " 'anomaly_score': 3.529304906714584},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 11.819788882936107},\n",
+ " 23: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 24: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.0881263706966312,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.682742355803081,\n",
+ " 'p_value': 0.8030320739334513,\n",
+ " 'anomaly_score': 1.2452802726817007},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19714663290843687,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6849628315358105,\n",
+ " 'p_value': 0.696776527306076,\n",
+ " 'anomaly_score': 1.4351803782286796},\n",
+ " 'total_anomaly_score': 2.6804606509103803},\n",
+ " 25: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 26: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 27: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 28: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 29: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 30: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 31: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1658920423751889,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7809952136007876,\n",
+ " 'p_value': 0.536605384651054,\n",
+ " 'anomaly_score': 1.8635668381342916},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.8635668381342916},\n",
+ " 32: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 33: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 34: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 35: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 36: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08730966623125422,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.677627869382355,\n",
+ " 'p_value': 0.8542801829807677,\n",
+ " 'anomaly_score': 1.1705761410861533},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19659424232048406,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.681415724335698,\n",
+ " 'p_value': 0.6228604914557478,\n",
+ " 'anomaly_score': 1.6054959557039856},\n",
+ " 'total_anomaly_score': 2.7760720967901387},\n",
+ " 37: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.16578855104755844,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7793653546710586,\n",
+ " 'p_value': 0.4071123636174827,\n",
+ " 'anomaly_score': 2.456324320672281},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.456324320672281},\n",
+ " 38: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 39: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 40: {'col_1': {'c': -0.1597151594946007,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6025462834649793,\n",
+ " 'p_value': 0.32737073479372736,\n",
+ " 'anomaly_score': 3.054640790142982},\n",
+ " 'col_2': {'c': -0.0863528482271175,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.67196993222127,\n",
+ " 'p_value': 0.08854005444271443,\n",
+ " 'anomaly_score': 11.294323301404809},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 14.348964091547792},\n",
+ " 41: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 42: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.16604272827672506,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7796768282186095,\n",
+ " 'p_value': 0.12177380890435249,\n",
+ " 'anomaly_score': 8.211946468599436},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 8.211946468599436},\n",
+ " 43: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08775416903442443,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6809983691006463,\n",
+ " 'p_value': 0.8555698185742401,\n",
+ " 'anomaly_score': 1.1688116835005293},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1688116835005293},\n",
+ " 44: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 45: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 46: {'col_1': {'c': -0.16036093296711998,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6045916189024902,\n",
+ " 'p_value': 0.056554415390113195,\n",
+ " 'anomaly_score': 17.682085352699435},\n",
+ " 'col_2': {'c': -0.08677367179013115,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6752857747969716,\n",
+ " 'p_value': 0.8117783201215689,\n",
+ " 'anomaly_score': 1.231863398187628},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19621414298465933,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6786707333606197,\n",
+ " 'p_value': 0.5255755611263353,\n",
+ " 'anomaly_score': 1.9026759879339687},\n",
+ " 'total_anomaly_score': 20.81662473882103},\n",
+ " 47: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 48: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 49: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 50: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 51: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 52: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19613325679079208,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.677267046223996,\n",
+ " 'p_value': 0.298678632130985,\n",
+ " 'anomaly_score': 3.3480801517848513},\n",
+ " 'total_anomaly_score': 3.3480801517848513},\n",
+ " 53: {'col_1': {'c': -0.1616977376211461,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6143530001177164,\n",
+ " 'p_value': 0.06881165737484446,\n",
+ " 'anomaly_score': 14.532421367975521},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 14.532421367975521},\n",
+ " 54: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 55: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 56: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 57: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 58: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 59: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 60: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 61: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 62: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 63: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 64: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19684369790856304,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.679836946706927,\n",
+ " 'p_value': 0.39094701546237176,\n",
+ " 'anomaly_score': 2.557891377728778},\n",
+ " 'total_anomaly_score': 2.557891377728778},\n",
+ " 65: {'col_1': {'c': -0.16314765320605795,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.623732203983125,\n",
+ " 'p_value': 0.5538977703761203,\n",
+ " 'anomaly_score': 1.805387299755616},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.805387299755616},\n",
+ " 66: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 67: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 68: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 69: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.16717091174682225,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7867303427767363,\n",
+ " 'p_value': 0.14449295207787904,\n",
+ " 'anomaly_score': 6.920752781499117},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 6.920752781499117},\n",
+ " 70: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.16821342330113714,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7929539978854727,\n",
+ " 'p_value': 0.3524174697443044,\n",
+ " 'anomaly_score': 2.8375437821670633},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.8375437821670633},\n",
+ " 71: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.16860476862271495,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7942066631325027,\n",
+ " 'p_value': 0.06557765858810909,\n",
+ " 'anomaly_score': 15.249095828214362},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 15.249095828214362},\n",
+ " 72: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 73: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 74: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08594287552076393,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6700238893005253,\n",
+ " 'p_value': 0.23759867279841926,\n",
+ " 'anomaly_score': 4.2087777184193635},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 4.2087777184193635},\n",
+ " 75: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08702601824801218,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.674581009463826,\n",
+ " 'p_value': 0.03126336069252619,\n",
+ " 'anomaly_score': 31.986324497706978},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 31.986324497706978},\n",
+ " 76: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1697765810289167,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.803556631041864,\n",
+ " 'p_value': 0.8298973395806035,\n",
+ " 'anomaly_score': 1.2049683163285707},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2049683163285707},\n",
+ " 77: {'col_1': {'c': -0.16300570365383435,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6220021840075978,\n",
+ " 'p_value': 0.35789710346059855,\n",
+ " 'anomaly_score': 2.79409917076932},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.79409917076932},\n",
+ " 78: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08745339781066164,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6848799952017277,\n",
+ " 'p_value': 0.5667747498155318,\n",
+ " 'anomaly_score': 1.764369355419362},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.764369355419362},\n",
+ " 79: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 80: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 81: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.16907645575789754,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7987252241601763,\n",
+ " 'p_value': 0.30008657251589316,\n",
+ " 'anomaly_score': 3.332371693995199},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.332371693995199},\n",
+ " 82: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 83: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 84: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 85: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 86: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 87: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08733137188016823,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.68290255455718,\n",
+ " 'p_value': 0.03421937598890253,\n",
+ " 'anomaly_score': 29.22320969044858},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 29.22320969044858},\n",
+ " 88: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 89: {'col_1': {'c': -0.1635156817641123,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6234611059702404,\n",
+ " 'p_value': 0.6846623819554268,\n",
+ " 'anomaly_score': 1.4605738921188494},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.4605738921188494},\n",
+ " 90: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19718981065173236,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.680549281047541,\n",
+ " 'p_value': 0.3750068946093057,\n",
+ " 'anomaly_score': 2.666617639235226},\n",
+ " 'total_anomaly_score': 2.666617639235226},\n",
+ " 91: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 92: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 93: {'col_1': {'c': -0.16299430000989304,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6199566191138226,\n",
+ " 'p_value': 0.2533859314626636,\n",
+ " 'anomaly_score': 3.9465490219899997},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1976027962445469,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.681585999041541,\n",
+ " 'p_value': 0.6910584089307671,\n",
+ " 'anomaly_score': 1.4470556859980035},\n",
+ " 'total_anomaly_score': 5.393604707988003},\n",
+ " 94: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08790933931798633,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6932570427817004,\n",
+ " 'p_value': 0.6859402163515109,\n",
+ " 'anomaly_score': 1.4578529967508842},\n",
+ " 'col_3': {'c': -0.1696235752932232,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.800993661538624,\n",
+ " 'p_value': 0.1272364202974459,\n",
+ " 'anomaly_score': 7.859384896732069},\n",
+ " 'col_4': {'c': -0.19704061079046406,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.678042968011327,\n",
+ " 'p_value': 0.14280137120942576,\n",
+ " 'anomaly_score': 7.002733878048321},\n",
+ " 'total_anomaly_score': 16.319971771531275},\n",
+ " 95: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08741059099055289,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6896475721900917,\n",
+ " 'p_value': 0.18115840464962205,\n",
+ " 'anomaly_score': 5.5200309471376565},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 5.5200309471376565},\n",
+ " 96: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08868602345682584,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.695682706461695,\n",
+ " 'p_value': 0.44613759482765963,\n",
+ " 'anomaly_score': 2.241460956425997},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.241460956425997},\n",
+ " 97: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 98: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 99: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 100: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 101: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 102: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1983773591555239,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6847379177277193,\n",
+ " 'p_value': 0.8108247616801717,\n",
+ " 'anomaly_score': 1.2333121128760596},\n",
+ " 'total_anomaly_score': 1.2333121128760596},\n",
+ " 103: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08898891815664504,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.695758501588333,\n",
+ " 'p_value': 0.1265422338163213,\n",
+ " 'anomaly_score': 7.902499978398682},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19754178715682946,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6798709288575453,\n",
+ " 'p_value': 0.9604633864309386,\n",
+ " 'anomaly_score': 1.0411641027941507},\n",
+ " 'total_anomaly_score': 8.943664081192832},\n",
+ " 104: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 105: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 106: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 107: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1963990684416586,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.673707364218211,\n",
+ " 'p_value': 0.7207791355085609,\n",
+ " 'anomaly_score': 1.3873875515201046},\n",
+ " 'total_anomaly_score': 1.3873875515201046},\n",
+ " 108: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17070377218611232,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8077763701641034,\n",
+ " 'p_value': 0.8913276775870486,\n",
+ " 'anomaly_score': 1.121921853371751},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.121921853371751},\n",
+ " 109: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 110: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 111: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 112: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 113: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 114: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 115: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 116: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 117: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 118: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1699016825695484,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8024503143993016,\n",
+ " 'p_value': 0.428995776622121,\n",
+ " 'anomaly_score': 2.3310252792554773},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.3310252792554773},\n",
+ " 119: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19577907504506864,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.66983757180804,\n",
+ " 'p_value': 0.12901438680770588,\n",
+ " 'anomaly_score': 7.751073541050006},\n",
+ " 'total_anomaly_score': 7.751073541050006},\n",
+ " 120: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17007208119387135,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8023654914879375,\n",
+ " 'p_value': 0.3615644700349823,\n",
+ " 'anomaly_score': 2.7657584825833337},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.7657584825833337},\n",
+ " 121: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 122: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 123: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 124: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09039015906595323,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7034994683260027,\n",
+ " 'p_value': 0.758108521676923,\n",
+ " 'anomaly_score': 1.3190723641887274},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19714480219958963,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.676897695777768,\n",
+ " 'p_value': 0.12896835454601033,\n",
+ " 'anomaly_score': 7.753840106901909},\n",
+ " 'total_anomaly_score': 9.072912471090635},\n",
+ " 125: {'col_1': {'c': -0.16390480617051595,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.623616467660864,\n",
+ " 'p_value': 0.4362627742938345,\n",
+ " 'anomaly_score': 2.292196490105465},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.292196490105465},\n",
+ " 126: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 127: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.0897086387063558,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6989949604954857,\n",
+ " 'p_value': 0.4809186016701392,\n",
+ " 'anomaly_score': 2.0793539624526676},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.0793539624526676},\n",
+ " 128: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 129: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 130: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 131: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08985486428223634,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6983901242639714,\n",
+ " 'p_value': 0.6134122761917904,\n",
+ " 'anomaly_score': 1.6302249544274503},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.6302249544274503},\n",
+ " 132: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 133: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.170419995033752,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8033456234853626,\n",
+ " 'p_value': 0.07686530078801951,\n",
+ " 'anomaly_score': 13.009771506102835},\n",
+ " 'col_4': {'c': -0.1985343185850827,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6840011345475294,\n",
+ " 'p_value': 0.3607968171598998,\n",
+ " 'anomaly_score': 2.7716430756561103},\n",
+ " 'total_anomaly_score': 15.781414581758945},\n",
+ " 134: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 135: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17158774699559537,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.812157732247659,\n",
+ " 'p_value': 0.7679227007197373,\n",
+ " 'anomaly_score': 1.3022144013489219},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.3022144013489219},\n",
+ " 136: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08962745486297771,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.695879085291149,\n",
+ " 'p_value': 0.6393176137280208,\n",
+ " 'anomaly_score': 1.564167760322995},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.564167760322995},\n",
+ " 137: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 138: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08926037499424339,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6928650285203006,\n",
+ " 'p_value': 0.36057161303445384,\n",
+ " 'anomaly_score': 2.773374175477443},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.198980635886887,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6852880448798233,\n",
+ " 'p_value': 0.5002049533140006,\n",
+ " 'anomaly_score': 1.9991805226531936},\n",
+ " 'total_anomaly_score': 4.772554698130636},\n",
+ " 139: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 140: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19896733240880166,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.684261714676075,\n",
+ " 'p_value': 0.9740907345239612,\n",
+ " 'anomaly_score': 1.0265984107617045},\n",
+ " 'total_anomaly_score': 1.0265984107617045},\n",
+ " 141: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 142: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19778616219187944,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6779804598102834,\n",
+ " 'p_value': 0.7677900604164373,\n",
+ " 'anomaly_score': 1.3024393666383434},\n",
+ " 'total_anomaly_score': 1.3024393666383434},\n",
+ " 143: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 144: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08985097297082931,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.694534922167328,\n",
+ " 'p_value': 0.5084845302047916,\n",
+ " 'anomaly_score': 1.9666281678171234},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19707768934022996,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6736986661061026,\n",
+ " 'p_value': 0.5946131763038435,\n",
+ " 'anomaly_score': 1.6817656248656798},\n",
+ " 'total_anomaly_score': 3.6483937926828034},\n",
+ " 145: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 146: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 147: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08991140175853066,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.693551182696436,\n",
+ " 'p_value': 0.4934908646475719,\n",
+ " 'anomaly_score': 2.0263799629080332},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.0263799629080332},\n",
+ " 148: {'col_1': {'c': -0.16412772365596406,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6236526649988896,\n",
+ " 'p_value': 0.6112733853468868,\n",
+ " 'anomaly_score': 1.6359292322738994},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17101574045412682,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8079494713051236,\n",
+ " 'p_value': 0.8930558798131402,\n",
+ " 'anomaly_score': 1.1197507598396155},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.7556799921135147},\n",
+ " 149: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 150: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09005548076687593,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6928233909635844,\n",
+ " 'p_value': 0.39304130333841863,\n",
+ " 'anomaly_score': 2.544261866389585},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.544261866389585},\n",
+ " 151: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17020216662395532,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.802588615151178,\n",
+ " 'p_value': 0.5655982743122312,\n",
+ " 'anomaly_score': 1.7680393406716142},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.7680393406716142},\n",
+ " 152: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 153: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17004958410480886,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8006505818581884,\n",
+ " 'p_value': 0.5157967677629796,\n",
+ " 'anomaly_score': 1.9387480932403263},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.9387480932403263},\n",
+ " 154: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 155: {'col_1': {'c': -0.16381747763619414,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6211088323768035,\n",
+ " 'p_value': 0.33194742854313647,\n",
+ " 'anomaly_score': 3.0125252193964513},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.0125252193964513},\n",
+ " 156: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09050691547381845,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6938059190916643,\n",
+ " 'p_value': 0.4139999647748997,\n",
+ " 'anomaly_score': 2.4154591427168857},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.4154591427168857},\n",
+ " 157: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 158: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 159: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 160: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 161: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17000322566254675,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.79939175251178,\n",
+ " 'p_value': 0.7353408426074435,\n",
+ " 'anomaly_score': 1.3599135830047222},\n",
+ " 'col_4': {'c': -0.19678704873418346,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.671389479346188,\n",
+ " 'p_value': 0.09850454907805214,\n",
+ " 'anomaly_score': 10.151815417251736},\n",
+ " 'total_anomaly_score': 11.511729000256459},\n",
+ " 162: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 163: {'col_1': {'c': -0.16440535075431006,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.623001349050342,\n",
+ " 'p_value': 0.3531391185427933,\n",
+ " 'anomaly_score': 2.8317451890530796},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19824510936688794,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6795192717494105,\n",
+ " 'p_value': 0.8066759165384042,\n",
+ " 'anomaly_score': 1.2396552066301734},\n",
+ " 'total_anomaly_score': 4.071400395683253},\n",
+ " 164: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 165: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 166: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 167: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 168: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.16948393533128395,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7954536013831843,\n",
+ " 'p_value': 0.5454571322529203,\n",
+ " 'anomaly_score': 1.8333246388578068},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.8333246388578068},\n",
+ " 169: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 170: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 171: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 172: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 173: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 174: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 175: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 176: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 177: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 178: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.16937687831714016,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.79383880592664,\n",
+ " 'p_value': 0.1148458983366393,\n",
+ " 'anomaly_score': 8.707320108801568},\n",
+ " 'col_4': {'c': -0.19741669302881346,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.674759942351269,\n",
+ " 'p_value': 0.9954061577874873,\n",
+ " 'anomaly_score': 1.004615042991821},\n",
+ " 'total_anomaly_score': 9.711935151793389},\n",
+ " 179: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 180: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 181: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 182: {'col_1': {'c': -0.16492502305181667,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6245260661231553,\n",
+ " 'p_value': 0.02982426027997945,\n",
+ " 'anomaly_score': 33.52975029765563},\n",
+ " 'col_2': {'c': -0.09090409422511969,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.694482083743674,\n",
+ " 'p_value': 0.8183355344107424,\n",
+ " 'anomaly_score': 1.2219926398773193},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 34.75174293753295},\n",
+ " 183: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 184: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 185: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 186: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 187: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 188: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 189: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 190: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 191: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09007343800475771,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6892834264658614,\n",
+ " 'p_value': 0.02995881222488544,\n",
+ " 'anomaly_score': 33.37916044513089},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 33.37916044513089},\n",
+ " 192: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 193: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 194: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 195: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19620141709595748,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.668334076767426,\n",
+ " 'p_value': 0.4396321502851262,\n",
+ " 'anomaly_score': 2.274628912720427},\n",
+ " 'total_anomaly_score': 2.274628912720427},\n",
+ " 196: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 197: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 198: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 199: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 200: {'col_1': {'c': -0.16572620883392847,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.634859168950225,\n",
+ " 'p_value': 0.9591833833076431,\n",
+ " 'anomaly_score': 1.0425535068712357},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0425535068712357},\n",
+ " 201: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 202: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 203: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 204: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 205: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 206: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 207: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 208: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09043246931392801,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.699355043392954,\n",
+ " 'p_value': 0.99165928510674,\n",
+ " 'anomaly_score': 1.008410867541428},\n",
+ " 'col_3': {'c': -0.17047596316654468,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8009193287558753,\n",
+ " 'p_value': 0.31163261436722245,\n",
+ " 'anomaly_score': 3.2089067507601032},\n",
+ " 'col_4': {'c': -0.1963981392602199,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.668271236882654,\n",
+ " 'p_value': 0.6695091961664009,\n",
+ " 'anomaly_score': 1.4936314627580685},\n",
+ " 'total_anomaly_score': 5.710949081059599},\n",
+ " 209: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17096919873259958,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8028556237167064,\n",
+ " 'p_value': 0.6054637954311552,\n",
+ " 'anomaly_score': 1.651626418534064},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.651626418534064},\n",
+ " 210: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 211: {'col_1': {'c': -0.16456254059128536,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6286850417259804,\n",
+ " 'p_value': 0.9997763844223276,\n",
+ " 'anomaly_score': 1.0002236655927832},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17071118457189383,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8003896167664926,\n",
+ " 'p_value': 0.3589910126696801,\n",
+ " 'anomaly_score': 2.785585055635179},\n",
+ " 'col_4': {'c': -0.19591548226962635,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6651229001822134,\n",
+ " 'p_value': 0.6541272791786761,\n",
+ " 'anomaly_score': 1.528754466952674},\n",
+ " 'total_anomaly_score': 5.314563188180636},\n",
+ " 212: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08916928276650328,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.692405603069587,\n",
+ " 'p_value': 0.7941983062743565,\n",
+ " 'anomaly_score': 1.2591313681982963},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2591313681982963},\n",
+ " 213: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 214: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08838127671009696,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.68746453710395,\n",
+ " 'p_value': 0.28609115799114293,\n",
+ " 'anomaly_score': 3.4953893962390787},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.4953893962390787},\n",
+ " 215: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17107071855923994,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8014756469044264,\n",
+ " 'p_value': 0.577817956395797,\n",
+ " 'anomaly_score': 1.7306488815917211},\n",
+ " 'col_4': {'c': -0.19548162785896164,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6621409698438585,\n",
+ " 'p_value': 0.8151176429450061,\n",
+ " 'anomaly_score': 1.2268167774985426},\n",
+ " 'total_anomaly_score': 2.9574656590902637},\n",
+ " 216: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 217: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1708818508527165,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7994546409556165,\n",
+ " 'p_value': 0.07745170921849959,\n",
+ " 'anomaly_score': 12.911270907900724},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 12.911270907900724},\n",
+ " 218: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 219: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1720184672916115,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8079413323345315,\n",
+ " 'p_value': 0.5143676653646789,\n",
+ " 'anomaly_score': 1.944134647909905},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.944134647909905},\n",
+ " 220: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 221: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19466345895140774,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6574191059369108,\n",
+ " 'p_value': 0.9232039872040129,\n",
+ " 'anomaly_score': 1.083184229986451},\n",
+ " 'total_anomaly_score': 1.083184229986451},\n",
+ " 222: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17197548578871868,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.806699609813209,\n",
+ " 'p_value': 0.5617206972743743,\n",
+ " 'anomaly_score': 1.780244176246806},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.780244176246806},\n",
+ " 223: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 224: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 225: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08925709757684014,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.690743201173008,\n",
+ " 'p_value': 0.79123312073115,\n",
+ " 'anomaly_score': 1.2638500257369611},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2638500257369611},\n",
+ " 226: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 227: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 228: {'col_1': {'c': -0.16332297052988826,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6221506873549303,\n",
+ " 'p_value': 0.29973554628504695,\n",
+ " 'anomaly_score': 3.3362743004428483},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.3362743004428483},\n",
+ " 229: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 230: {'col_1': {'c': -0.1640551178816245,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6247459587518187,\n",
+ " 'p_value': 0.3856978747838277,\n",
+ " 'anomaly_score': 2.592702903951624},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17182846953247322,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8048203594127123,\n",
+ " 'p_value': 0.04386865539470461,\n",
+ " 'anomaly_score': 22.795319140798423},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 25.388022044750045},\n",
+ " 231: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 232: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.19358092545587702,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6516577165432165,\n",
+ " 'p_value': 3.078297727730848e-06,\n",
+ " 'anomaly_score': 324854.8673481122},\n",
+ " 'total_anomaly_score': 324854.8673481122},\n",
+ " 233: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08847895065199794,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6858604620517355,\n",
+ " 'p_value': 0.17882951528043195,\n",
+ " 'anomaly_score': 5.591918081485864},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15504988645489898,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.580051814988819,\n",
+ " 'p_value': 0.7195921745611991,\n",
+ " 'anomaly_score': 1.3896760350538708},\n",
+ " 'total_anomaly_score': 6.981594116539735},\n",
+ " 234: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 235: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15456597166975417,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5766979258709712,\n",
+ " 'p_value': 0.6436405248572334,\n",
+ " 'anomaly_score': 1.5536622716877733},\n",
+ " 'total_anomaly_score': 1.5536622716877733},\n",
+ " 236: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15424676134415394,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.574070920324905,\n",
+ " 'p_value': 0.1347479616427451,\n",
+ " 'anomaly_score': 7.4212625394013925},\n",
+ " 'total_anomaly_score': 7.4212625394013925},\n",
+ " 237: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 238: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08973089371449955,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6918740235442837,\n",
+ " 'p_value': 0.7666838867748009,\n",
+ " 'anomaly_score': 1.3043185297746205},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15530469325907453,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5799783810015233,\n",
+ " 'p_value': 0.2377489628088207,\n",
+ " 'anomaly_score': 4.206117192629448},\n",
+ " 'total_anomaly_score': 5.510435722404068},\n",
+ " 239: {'col_1': {'c': -0.16446608060556558,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.625646469810494,\n",
+ " 'p_value': 0.006580487877633626,\n",
+ " 'anomaly_score': 151.96441640731427},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 151.96441640731427},\n",
+ " 240: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 241: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 242: {'col_1': {'c': -0.16191089673565906,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.63203396636864,\n",
+ " 'p_value': 0.7457038885152829,\n",
+ " 'anomaly_score': 1.3410148658216436},\n",
+ " 'col_2': {'c': -0.08902082848128298,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.68730704207785,\n",
+ " 'p_value': 0.09382143102041782,\n",
+ " 'anomaly_score': 10.658545591597038},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15603710777574203,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5833334722444734,\n",
+ " 'p_value': 0.23774486870398787,\n",
+ " 'anomaly_score': 4.206189624412391},\n",
+ " 'total_anomaly_score': 16.205750081831074},\n",
+ " 243: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 244: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 245: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 246: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 247: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 248: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 249: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 250: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17281976077613154,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8148849194683727,\n",
+ " 'p_value': 0.7295533609488112,\n",
+ " 'anomaly_score': 1.3707016560097303},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.3707016560097303},\n",
+ " 251: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 252: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09039433848768803,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6958665738417507,\n",
+ " 'p_value': 0.9404733530411866,\n",
+ " 'anomaly_score': 1.0632943472202838},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0632943472202838},\n",
+ " 253: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 254: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 255: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 256: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17232844678248008,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8112081257647197,\n",
+ " 'p_value': 0.17024367262498508,\n",
+ " 'anomaly_score': 5.87393343071735},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 5.87393343071735},\n",
+ " 257: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 258: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17324281868285113,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8163369659378237,\n",
+ " 'p_value': 0.14746853791141845,\n",
+ " 'anomaly_score': 6.7811074427325035},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 6.7811074427325035},\n",
+ " 259: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08925416863799927,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.689468653002794,\n",
+ " 'p_value': 0.22032901237877253,\n",
+ " 'anomaly_score': 4.538666920000884},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 4.538666920000884},\n",
+ " 260: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15676263368299298,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.586550017212658,\n",
+ " 'p_value': 0.347100846262054,\n",
+ " 'anomaly_score': 2.8810070928061653},\n",
+ " 'total_anomaly_score': 2.8810070928061653},\n",
+ " 261: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 262: {'col_1': {'c': -0.16122201585899926,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6279124023244966,\n",
+ " 'p_value': 0.5001560957792679,\n",
+ " 'anomaly_score': 1.9993758117492313},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.9993758117492313},\n",
+ " 263: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17423482970008647,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.822258239202779,\n",
+ " 'p_value': 0.1929803188896493,\n",
+ " 'anomaly_score': 5.181875570284571},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 5.181875570284571},\n",
+ " 264: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 265: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 266: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 267: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17504362075000002,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8267002673930683,\n",
+ " 'p_value': 0.14626730765866844,\n",
+ " 'anomaly_score': 6.836797750688177},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 6.836797750688177},\n",
+ " 268: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15717582006951103,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.587816003291837,\n",
+ " 'p_value': 0.08168899512562403,\n",
+ " 'anomaly_score': 12.241551000378534},\n",
+ " 'total_anomaly_score': 12.241551000378534},\n",
+ " 269: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 270: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09036228459135542,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6942682009850976,\n",
+ " 'p_value': 0.5662609952240316,\n",
+ " 'anomaly_score': 1.7659701240845078},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.7659701240845078},\n",
+ " 271: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 272: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 273: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 274: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 275: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 276: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 277: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 278: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 279: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 280: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 281: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15828455576800865,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5954759048869542,\n",
+ " 'p_value': 0.7118995358705681,\n",
+ " 'anomaly_score': 1.404692585980014},\n",
+ " 'total_anomaly_score': 1.404692585980014},\n",
+ " 282: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 283: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1760167123355846,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8326437819808747,\n",
+ " 'p_value': 0.05937699684488808,\n",
+ " 'anomaly_score': 16.841538864155144},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 16.841538864155144},\n",
+ " 284: {'col_1': {'c': -0.16127438711597247,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6270394750524275,\n",
+ " 'p_value': 0.8988210994227538,\n",
+ " 'anomaly_score': 1.1125684528792503},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1125684528792503},\n",
+ " 285: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 286: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 287: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 288: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 289: {'col_1': {'c': -0.16023055316227092,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.621382768471172,\n",
+ " 'p_value': 0.3292207146249184,\n",
+ " 'anomaly_score': 3.0374759411457486},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1771132819002855,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8419815732147296,\n",
+ " 'p_value': 0.04050592699773086,\n",
+ " 'anomaly_score': 24.687745081257365},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 27.72522102240311},\n",
+ " 290: {'col_1': {'c': -0.160829671023834,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.623289274981529,\n",
+ " 'p_value': 0.8857465891621324,\n",
+ " 'anomaly_score': 1.1289910819142357},\n",
+ " 'col_2': {'c': -0.090234002535992,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6923823604727177,\n",
+ " 'p_value': 0.1813245071341191,\n",
+ " 'anomaly_score': 5.514974317621261},\n",
+ " 'col_3': {'c': -0.17808853691485033,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8522568378192803,\n",
+ " 'p_value': 0.6243736022496293,\n",
+ " 'anomaly_score': 1.6016051870178079},\n",
+ " 'col_4': {'c': -0.15781945634186495,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5921740949904644,\n",
+ " 'p_value': 0.5227397213789331,\n",
+ " 'anomaly_score': 1.9129979205752796},\n",
+ " 'total_anomaly_score': 10.158568507128583},\n",
+ " 291: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 292: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 293: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 294: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 295: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 296: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 297: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 298: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 299: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 300: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 301: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.0914509787902202,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.698171907667178,\n",
+ " 'p_value': 0.25826846096845907,\n",
+ " 'anomaly_score': 3.8719400589997885},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.8719400589997885},\n",
+ " 302: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 303: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09240248207861906,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7020201786464373,\n",
+ " 'p_value': 0.6775025034361566,\n",
+ " 'anomaly_score': 1.4760093061327462},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.4760093061327462},\n",
+ " 304: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 305: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 306: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 307: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 308: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15776917898598647,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.590909978684762,\n",
+ " 'p_value': 0.9400258355744319,\n",
+ " 'anomaly_score': 1.0638005490443985},\n",
+ " 'total_anomaly_score': 1.0638005490443985},\n",
+ " 309: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 310: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 311: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.156932963798119,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.585766397535959,\n",
+ " 'p_value': 0.14407743346130636,\n",
+ " 'anomaly_score': 6.940712198823013},\n",
+ " 'total_anomaly_score': 6.940712198823013},\n",
+ " 312: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 313: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 314: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 315: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 316: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17779454003014156,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8496078698962495,\n",
+ " 'p_value': 0.4565225807759702,\n",
+ " 'anomaly_score': 2.19047215211186},\n",
+ " 'col_4': {'c': -0.15792503406795763,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5913421315249616,\n",
+ " 'p_value': 0.858104849661437,\n",
+ " 'anomaly_score': 1.1653587558612999},\n",
+ " 'total_anomaly_score': 3.35583090797316},\n",
+ " 317: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15721529535773796,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5867842456053047,\n",
+ " 'p_value': 0.8690768963640677,\n",
+ " 'anomaly_score': 1.150646167426233},\n",
+ " 'total_anomaly_score': 1.150646167426233},\n",
+ " 318: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 319: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 320: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1564659375107329,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5821544564781322,\n",
+ " 'p_value': 0.9721090864657791,\n",
+ " 'anomaly_score': 1.0286911355140416},\n",
+ " 'total_anomaly_score': 1.0286911355140416},\n",
+ " 321: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 322: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17788975731528744,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.849153560452651,\n",
+ " 'p_value': 0.7720178254716961,\n",
+ " 'anomaly_score': 1.2953068789428648},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2953068789428648},\n",
+ " 323: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 324: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 325: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 326: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 327: {'col_1': {'c': -0.15982532962989807,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6178236575654688,\n",
+ " 'p_value': 0.8583089608997073,\n",
+ " 'anomaly_score': 1.1650816262616757},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1650816262616757},\n",
+ " 328: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.0919598260657053,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.698654574272927,\n",
+ " 'p_value': 0.01962658892277619,\n",
+ " 'anomaly_score': 50.95128878149192},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 50.95128878149192},\n",
+ " 329: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 330: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 331: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09157302099860741,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7080096645338996,\n",
+ " 'p_value': 0.81136446761157,\n",
+ " 'anomaly_score': 1.232491734502153},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.232491734502153},\n",
+ " 332: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.0907628596468775,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7029998174623655,\n",
+ " 'p_value': 0.33008643327290094,\n",
+ " 'anomaly_score': 3.0295095441661},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.0295095441661},\n",
+ " 333: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09144391486541709,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.705186581918054,\n",
+ " 'p_value': 0.856797587640258,\n",
+ " 'anomaly_score': 1.1671368062019662},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1671368062019662},\n",
+ " 334: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 335: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 336: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 337: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15556895362019768,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5768198799953472,\n",
+ " 'p_value': 0.7617943113930911,\n",
+ " 'anomaly_score': 1.3126902958507303},\n",
+ " 'total_anomaly_score': 1.3126902958507303},\n",
+ " 338: {'col_1': {'c': -0.15889902543461595,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6126301321995173,\n",
+ " 'p_value': 0.38753656848607304,\n",
+ " 'anomaly_score': 2.58040164804715},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.58040164804715},\n",
+ " 339: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 340: {'col_1': {'c': -0.1592910305122447,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.613493330268997,\n",
+ " 'p_value': 0.07389297334360907,\n",
+ " 'anomaly_score': 13.533086499983005},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 13.533086499983005},\n",
+ " 341: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 342: {'col_1': {'c': -0.16071833916294703,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.622435472882762,\n",
+ " 'p_value': 0.47498528178292215,\n",
+ " 'anomaly_score': 2.1053283930111757},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.1053283930111757},\n",
+ " 343: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 344: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17732916820804476,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.845002796301391,\n",
+ " 'p_value': 0.6611224223709657,\n",
+ " 'anomaly_score': 1.5125791625909868},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.5125791625909868},\n",
+ " 345: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09052664009376604,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.699741616147541,\n",
+ " 'p_value': 0.8324095399227437,\n",
+ " 'anomaly_score': 1.2013317388130973},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2013317388130973},\n",
+ " 346: {'col_1': {'c': -0.16083986921229299,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6218828327482884,\n",
+ " 'p_value': 0.5407894268065682,\n",
+ " 'anomaly_score': 1.8491485787825586},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.8491485787825586},\n",
+ " 347: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1769856710332438,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8420598631496823,\n",
+ " 'p_value': 0.9097790961824669,\n",
+ " 'anomaly_score': 1.0991679235059477},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0991679235059477},\n",
+ " 348: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 349: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 350: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 351: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 352: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 353: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 354: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 355: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 356: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 357: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08965304923742687,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.694521340533764,\n",
+ " 'p_value': 0.18755200895530977,\n",
+ " 'anomaly_score': 5.331854377727736},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 5.331854377727736},\n",
+ " 358: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 359: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 360: {'col_1': {'c': -0.16072759531516811,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.620352016144707,\n",
+ " 'p_value': 0.4372988364594199,\n",
+ " 'anomaly_score': 2.2867657460433173},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.2867657460433173},\n",
+ " 361: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1761984265909025,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8367520650152422,\n",
+ " 'p_value': 0.6235103047938482,\n",
+ " 'anomaly_score': 1.6038227312548283},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.6038227312548283},\n",
+ " 362: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 363: {'col_1': {'c': -0.16096171522887487,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6204231389633748,\n",
+ " 'p_value': 0.018263360184204304,\n",
+ " 'anomaly_score': 54.754436747345345},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 54.754436747345345},\n",
+ " 364: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09084826946880079,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7000769798892605,\n",
+ " 'p_value': 0.40563890710085837,\n",
+ " 'anomaly_score': 2.465246756399921},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.465246756399921},\n",
+ " 365: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 366: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 367: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09124902425462988,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7008561468098797,\n",
+ " 'p_value': 0.051887718713570424,\n",
+ " 'anomaly_score': 19.27238323041683},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 19.27238323041683},\n",
+ " 368: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1759217028747131,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8342021232793,\n",
+ " 'p_value': 0.1337738726650375,\n",
+ " 'anomaly_score': 7.475301268312277},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 7.475301268312277},\n",
+ " 369: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 370: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 371: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 372: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 373: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 374: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1550187875281607,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5730463588260606,\n",
+ " 'p_value': 0.9832968090415135,\n",
+ " 'anomaly_score': 1.0169869268413148},\n",
+ " 'total_anomaly_score': 1.0169869268413148},\n",
+ " 375: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 376: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 377: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 378: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 379: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 380: {'col_1': {'c': -0.16094721745862067,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6301073710782914,\n",
+ " 'p_value': 0.22195372241131733,\n",
+ " 'anomaly_score': 4.505443698514923},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 4.505443698514923},\n",
+ " 381: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 382: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 383: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 384: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17691000768772822,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8404264547256237,\n",
+ " 'p_value': 0.659290901019196,\n",
+ " 'anomaly_score': 1.5167811332662149},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.5167811332662149},\n",
+ " 385: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 386: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 387: {'col_1': {'c': -0.1619999480789203,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.634481718373003,\n",
+ " 'p_value': 0.3032210110570143,\n",
+ " 'anomaly_score': 3.297924495779651},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.297924495779651},\n",
+ " 388: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 389: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1540736625131589,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5675465006084424,\n",
+ " 'p_value': 0.1769723946749861,\n",
+ " 'anomaly_score': 5.650598794442055},\n",
+ " 'total_anomaly_score': 5.650598794442055},\n",
+ " 390: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1549845892561559,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5721898964146197,\n",
+ " 'p_value': 0.7227177053819943,\n",
+ " 'anomaly_score': 1.383666115487578},\n",
+ " 'total_anomaly_score': 1.383666115487578},\n",
+ " 391: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 392: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09231758371276781,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.71063322004113,\n",
+ " 'p_value': 0.7685673123846687,\n",
+ " 'anomaly_score': 1.3011222099691628},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.3011222099691628},\n",
+ " 393: {'col_1': {'c': -0.16273979309556483,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6370364504265633,\n",
+ " 'p_value': 0.8228428556014123,\n",
+ " 'anomaly_score': 1.2152988789932486},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17657805426057172,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.83751442026202,\n",
+ " 'p_value': 0.18657322963293277,\n",
+ " 'anomaly_score': 5.359825747602785},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 6.5751246265960335},\n",
+ " 394: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 395: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09162265087056716,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.706127834433223,\n",
+ " 'p_value': 0.5878166293228431,\n",
+ " 'anomaly_score': 1.7012108030220014},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.7012108030220014},\n",
+ " 396: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09142683621488051,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7039553320118297,\n",
+ " 'p_value': 0.07538680195776404,\n",
+ " 'anomaly_score': 13.26492136594754},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 13.26492136594754},\n",
+ " 397: {'col_1': {'c': -0.16187612345771515,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6321283887571725,\n",
+ " 'p_value': 0.5414915731809141,\n",
+ " 'anomaly_score': 1.8467508074514332},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.8467508074514332},\n",
+ " 398: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 399: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 400: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15453813907410371,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5689577931422303,\n",
+ " 'p_value': 0.5696937031484367,\n",
+ " 'anomaly_score': 1.7553292137045873},\n",
+ " 'total_anomaly_score': 1.7553292137045873},\n",
+ " 401: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 402: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17739523844276214,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.842076123389506,\n",
+ " 'p_value': 0.27245337809538067,\n",
+ " 'anomaly_score': 3.6703527296692915},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.6703527296692915},\n",
+ " 403: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 404: {'col_1': {'c': -0.1617727090396774,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.630606000759027,\n",
+ " 'p_value': 0.045294121089497354,\n",
+ " 'anomaly_score': 22.07792039995841},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 22.07792039995841},\n",
+ " 405: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 406: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 407: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 408: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 409: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1779701822813644,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.844734342129856,\n",
+ " 'p_value': 0.8333701633260298,\n",
+ " 'anomaly_score': 1.1999469671543563},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1999469671543563},\n",
+ " 410: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 411: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 412: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 413: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 414: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 415: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17731724842155788,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8401632395555203,\n",
+ " 'p_value': 0.617498617900691,\n",
+ " 'anomaly_score': 1.6194368230324114},\n",
+ " 'col_4': {'c': -0.1543772356945548,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.567159236896734,\n",
+ " 'p_value': 0.9477004032206885,\n",
+ " 'anomaly_score': 1.0551857914184433},\n",
+ " 'total_anomaly_score': 2.674622614450855},\n",
+ " 416: {'col_1': {'c': -0.16297288026571122,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6405481442617686,\n",
+ " 'p_value': 0.5979341233302043,\n",
+ " 'anomaly_score': 1.672425039786127},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.672425039786127},\n",
+ " 417: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 418: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09271789014294264,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.71302578150011,\n",
+ " 'p_value': 0.7878663624791903,\n",
+ " 'anomaly_score': 1.269250786203495},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.269250786203495},\n",
+ " 419: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 420: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 421: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 422: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 423: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 424: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 425: {'col_1': {'c': -0.162689465519877,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6382009641458577,\n",
+ " 'p_value': 0.6456491935808075,\n",
+ " 'anomaly_score': 1.5488286982191406},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.5488286982191406},\n",
+ " 426: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09197261571739716,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.708300704654325,\n",
+ " 'p_value': 0.6880624921169244,\n",
+ " 'anomaly_score': 1.4533563614597773},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.4533563614597773},\n",
+ " 427: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 428: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 429: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 430: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09149417925315309,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.70485223674738,\n",
+ " 'p_value': 0.7979006505877816,\n",
+ " 'anomaly_score': 1.2532888640501043},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2532888640501043},\n",
+ " 431: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15350072565177136,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5619825952041717,\n",
+ " 'p_value': 0.41449467587594807,\n",
+ " 'anomaly_score': 2.4125762240171325},\n",
+ " 'total_anomaly_score': 2.4125762240171325},\n",
+ " 432: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09072114014875066,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.700018916684262,\n",
+ " 'p_value': 0.26152467583838035,\n",
+ " 'anomaly_score': 3.8237309607372962},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.8237309607372962},\n",
+ " 433: {'col_1': {'c': -0.16229546536174466,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6353925089377306,\n",
+ " 'p_value': 0.5549757349995352,\n",
+ " 'anomaly_score': 1.8018805813209788},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.8018805813209788},\n",
+ " 434: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 435: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15372519068319562,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5621491099093774,\n",
+ " 'p_value': 0.006544885634720067,\n",
+ " 'anomaly_score': 152.7910579055934},\n",
+ " 'total_anomaly_score': 152.7910579055934},\n",
+ " 436: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 437: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 438: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 439: {'col_1': {'c': -0.1621506810360477,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6336545377278915,\n",
+ " 'p_value': 0.5337013438471475,\n",
+ " 'anomaly_score': 1.8737071051602987},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.8737071051602987},\n",
+ " 440: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17704916647870805,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8376742632230236,\n",
+ " 'p_value': 0.9279313748623962,\n",
+ " 'anomaly_score': 1.077665899752868},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.077665899752868},\n",
+ " 441: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09165160866410363,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.703750480131782,\n",
+ " 'p_value': 0.2876908684667413,\n",
+ " 'anomaly_score': 3.4759532178742254},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15190408471532568,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5699165799940333,\n",
+ " 'p_value': 0.12783657423412534,\n",
+ " 'anomaly_score': 7.822487468794005},\n",
+ " 'total_anomaly_score': 11.298440686668231},\n",
+ " 442: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 443: {'col_1': {'c': -0.16206988197393823,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6322835016196837,\n",
+ " 'p_value': 0.6686141456754576,\n",
+ " 'anomaly_score': 1.4956309352231318},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.4956309352231318},\n",
+ " 444: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 445: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 446: {'col_1': {'c': -0.16162498850795315,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6292091625872063,\n",
+ " 'p_value': 0.12944175082885442,\n",
+ " 'anomaly_score': 7.725482648347226},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 7.725482648347226},\n",
+ " 447: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 448: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09249547367846683,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7069009409242133,\n",
+ " 'p_value': 0.6105671258855913,\n",
+ " 'anomaly_score': 1.6378215557373148},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.6378215557373148},\n",
+ " 449: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 450: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 451: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 452: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 453: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 454: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 455: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09224612353972272,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7044726084098425,\n",
+ " 'p_value': 0.9264551461511852,\n",
+ " 'anomaly_score': 1.0793830701403577},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0793830701403577},\n",
+ " 456: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 457: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 458: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15300508851878836,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.576034055801437,\n",
+ " 'p_value': 0.07533098339575195,\n",
+ " 'anomaly_score': 13.274750373913104},\n",
+ " 'total_anomaly_score': 13.274750373913104},\n",
+ " 459: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 460: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 461: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17626311745869044,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.832391921264043,\n",
+ " 'p_value': 0.0812791199814977,\n",
+ " 'anomaly_score': 12.303282813933505},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 12.303282813933505},\n",
+ " 462: {'col_1': {'c': -0.16299445110242514,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.636146038313421,\n",
+ " 'p_value': 0.08538353615026284,\n",
+ " 'anomaly_score': 11.71185974588992},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 11.71185974588992},\n",
+ " 463: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09116679735303736,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6983062474447688,\n",
+ " 'p_value': 0.5441471125303007,\n",
+ " 'anomaly_score': 1.8377383192386512},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.8377383192386512},\n",
+ " 464: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 465: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 466: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 467: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 468: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 469: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 470: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 471: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 472: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17734410063615041,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8404051546727422,\n",
+ " 'p_value': 0.4329085587149655,\n",
+ " 'anomaly_score': 2.309956640654955},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.309956640654955},\n",
+ " 473: {'col_1': {'c': -0.16438425781309007,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6444837450399463,\n",
+ " 'p_value': 0.8906203214058004,\n",
+ " 'anomaly_score': 1.1228129158579598},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1228129158579598},\n",
+ " 474: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09111227839218444,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.696816104669524,\n",
+ " 'p_value': 0.7971782815142456,\n",
+ " 'anomaly_score': 1.2544245411459192},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2544245411459192},\n",
+ " 475: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 476: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09038477566829989,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.69218693654161,\n",
+ " 'p_value': 0.7868151425951081,\n",
+ " 'anomaly_score': 1.2709465614779047},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2709465614779047},\n",
+ " 477: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 478: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 479: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15414651109629274,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5839016176740204,\n",
+ " 'p_value': 0.3719169345441576,\n",
+ " 'anomaly_score': 2.68877243039674},\n",
+ " 'total_anomaly_score': 2.68877243039674},\n",
+ " 480: {'col_1': {'c': -0.16341091070698627,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.639058687743355,\n",
+ " 'p_value': 0.05712176956966354,\n",
+ " 'anomaly_score': 17.506460453408014},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 17.506460453408014},\n",
+ " 481: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 482: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 483: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08962801080636706,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.687533565233993,\n",
+ " 'p_value': 0.0900218696477732,\n",
+ " 'anomaly_score': 11.108411810515381},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 11.108411810515381},\n",
+ " 484: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 485: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 486: {'col_1': {'c': -0.16471541653282873,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.64843171239647,\n",
+ " 'p_value': 0.5967985441216878,\n",
+ " 'anomaly_score': 1.675607304759274},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.675607304759274},\n",
+ " 487: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1774830072889304,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.840263741803251,\n",
+ " 'p_value': 0.8714335802060283,\n",
+ " 'anomaly_score': 1.1475343878343263},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1475343878343263},\n",
+ " 488: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 489: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 490: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 491: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 492: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 493: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 494: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 495: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 496: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 497: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1544895047874919,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5847592501803023,\n",
+ " 'p_value': 0.7649710842497268,\n",
+ " 'anomaly_score': 1.307238953980576},\n",
+ " 'total_anomaly_score': 1.307238953980576},\n",
+ " 498: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 499: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17676869403747308,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.835416826473546,\n",
+ " 'p_value': 0.12081487520065837,\n",
+ " 'anomaly_score': 8.277126457641291},\n",
+ " 'col_4': {'c': -0.1539083678215863,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5810066898242114,\n",
+ " 'p_value': 0.7144466134007437,\n",
+ " 'anomaly_score': 1.3996847087566573},\n",
+ " 'total_anomaly_score': 9.676811166397949},\n",
+ " 500: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09096277937947853,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6959820660899108,\n",
+ " 'p_value': 0.08626223242364278,\n",
+ " 'anomaly_score': 11.592558781563827},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 11.592558781563827},\n",
+ " 501: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 502: {'col_1': {'c': -0.16445699048343926,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.646191836996893,\n",
+ " 'p_value': 0.40781408419663756,\n",
+ " 'anomaly_score': 2.452097754225245},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.452097754225245},\n",
+ " 503: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 504: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 505: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 506: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 507: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 508: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 509: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 510: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 511: {'col_1': {'c': -0.16478468629542972,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.646707132735847,\n",
+ " 'p_value': 0.09956517882461337,\n",
+ " 'anomaly_score': 10.04367201269759},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 10.04367201269759},\n",
+ " 512: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 513: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.0922525278053618,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.704414599875311,\n",
+ " 'p_value': 0.9759206629081203,\n",
+ " 'anomaly_score': 1.0246734575945204},\n",
+ " 'col_3': {'c': -0.1777822893099611,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.841935048389042,\n",
+ " 'p_value': 0.7073188655182632,\n",
+ " 'anomaly_score': 1.413789520893501},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.4384629784880216},\n",
+ " 514: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15345250612548667,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.57777633767953,\n",
+ " 'p_value': 0.015658580946562455,\n",
+ " 'anomaly_score': 63.862747423452255},\n",
+ " 'total_anomaly_score': 63.862747423452255},\n",
+ " 515: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 516: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15333105676853176,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5872213132158723,\n",
+ " 'p_value': 0.43939607857570917,\n",
+ " 'anomaly_score': 2.275850989024467},\n",
+ " 'total_anomaly_score': 2.275850989024467},\n",
+ " 517: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 518: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15350648656646845,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5871061741142505,\n",
+ " 'p_value': 0.5582410976716639,\n",
+ " 'anomaly_score': 1.7913407023790318},\n",
+ " 'total_anomaly_score': 1.7913407023790318},\n",
+ " 519: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15336853319441704,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5854403201685843,\n",
+ " 'p_value': 0.8712084285149421,\n",
+ " 'anomaly_score': 1.147830952123128},\n",
+ " 'total_anomaly_score': 1.147830952123128},\n",
+ " 520: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 521: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 522: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1773528484579746,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8386005900259663,\n",
+ " 'p_value': 0.13387994448927049,\n",
+ " 'anomaly_score': 7.469378657235272},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 7.469378657235272},\n",
+ " 523: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09105669304029251,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.697858283008437,\n",
+ " 'p_value': 0.17210816345229618,\n",
+ " 'anomaly_score': 5.810299639140438},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 5.810299639140438},\n",
+ " 524: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 525: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 526: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 527: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 528: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 529: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 530: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17833312122251604,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8447178380242972,\n",
+ " 'p_value': 0.059002656817333604,\n",
+ " 'anomaly_score': 16.948389342803683},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 16.948389342803683},\n",
+ " 531: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 532: {'col_1': {'c': -0.16620793403671538,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6546301745768326,\n",
+ " 'p_value': 0.8349672440691704,\n",
+ " 'anomaly_score': 1.1976517726929632},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1976517726929632},\n",
+ " 533: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 534: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 535: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 536: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 537: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 538: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15258960331839486,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5807928383365026,\n",
+ " 'p_value': 0.27340087054817613,\n",
+ " 'anomaly_score': 3.65763283048431},\n",
+ " 'total_anomaly_score': 3.65763283048431},\n",
+ " 539: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 540: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 541: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1793933097851415,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.853753648548009,\n",
+ " 'p_value': 0.43603950678962883,\n",
+ " 'anomaly_score': 2.293370175015951},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.293370175015951},\n",
+ " 542: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 543: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 544: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 545: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 546: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17952384194772342,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.853589307154066,\n",
+ " 'p_value': 0.6610153723416797,\n",
+ " 'anomaly_score': 1.5128241215593072},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.5128241215593072},\n",
+ " 547: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 548: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 549: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 550: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 551: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1791765864678147,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.850628803436985,\n",
+ " 'p_value': 0.6055879092094621,\n",
+ " 'anomaly_score': 1.6512879216915106},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.6512879216915106},\n",
+ " 552: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 553: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09228860004484316,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.703764484189356,\n",
+ " 'p_value': 0.14912871500336755,\n",
+ " 'anomaly_score': 6.705616688090006},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 6.705616688090006},\n",
+ " 554: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 555: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15325037555790688,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5834196511588416,\n",
+ " 'p_value': 0.1692017078830979,\n",
+ " 'anomaly_score': 5.910105828783382},\n",
+ " 'total_anomaly_score': 5.910105828783382},\n",
+ " 556: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 557: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 558: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 559: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 560: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09358005281969078,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.71035255529799,\n",
+ " 'p_value': 0.9419424684406411,\n",
+ " 'anomaly_score': 1.061635963452706},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.061635963452706},\n",
+ " 561: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1542141552607953,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5882888210531583,\n",
+ " 'p_value': 0.015886539969976084,\n",
+ " 'anomaly_score': 62.94636855412799},\n",
+ " 'total_anomaly_score': 62.94636855412799},\n",
+ " 562: {'col_1': {'c': -0.16533908802006064,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.649719003012632,\n",
+ " 'p_value': 0.727947754781748,\n",
+ " 'anomaly_score': 1.3737249595608936},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.3737249595608936},\n",
+ " 563: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 564: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 565: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 566: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 567: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15410224409504103,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5976359290093596,\n",
+ " 'p_value': 0.7297380942490365,\n",
+ " 'anomaly_score': 1.370354662694547},\n",
+ " 'total_anomaly_score': 1.370354662694547},\n",
+ " 568: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 569: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 570: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 571: {'col_1': {'c': -0.16472230231116802,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6459464987770174,\n",
+ " 'p_value': 0.567513842401256,\n",
+ " 'anomaly_score': 1.7620715571779098},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.7620715571779098},\n",
+ " 572: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17894487270253123,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.848362640296751,\n",
+ " 'p_value': 0.4986138060059146,\n",
+ " 'anomaly_score': 2.0055601909830347},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.0055601909830347},\n",
+ " 573: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15360263752316777,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5942518359830453,\n",
+ " 'p_value': 0.2733370674220392,\n",
+ " 'anomaly_score': 3.6584866056822625},\n",
+ " 'total_anomaly_score': 3.6584866056822625},\n",
+ " 574: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 575: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 576: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 577: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 578: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09248090336534862,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.704150930886239,\n",
+ " 'p_value': 0.8186261896503939,\n",
+ " 'anomaly_score': 1.221558768388615},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.221558768388615},\n",
+ " 579: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09166003280497928,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.699201567541498,\n",
+ " 'p_value': 0.8152097591938828,\n",
+ " 'anomaly_score': 1.2266781508956006},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2266781508956006},\n",
+ " 580: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17892413879336758,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8473060257874456,\n",
+ " 'p_value': 0.021915401542295203,\n",
+ " 'anomaly_score': 45.6300103865343},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 45.6300103865343},\n",
+ " 581: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09084519374237289,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6943370669575555,\n",
+ " 'p_value': 0.24332800096839519,\n",
+ " 'anomaly_score': 4.109679099898929},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 4.109679099898929},\n",
+ " 582: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 583: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 584: {'col_1': {'c': -0.16456070190521102,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6441682431222535,\n",
+ " 'p_value': 0.3964562172588508,\n",
+ " 'anomaly_score': 2.5223466210572467},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15426012957072832,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5968253565732953,\n",
+ " 'p_value': 0.34083810452513624,\n",
+ " 'anomaly_score': 2.9339442589414224},\n",
+ " 'total_anomaly_score': 5.456290879998669},\n",
+ " 585: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 586: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 587: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 588: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 589: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15470105805822082,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5982356212115487,\n",
+ " 'p_value': 0.3291289309364845,\n",
+ " 'anomaly_score': 3.038322997479005},\n",
+ " 'total_anomaly_score': 3.038322997479005},\n",
+ " 590: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1551546681491294,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.59975475236494,\n",
+ " 'p_value': 0.4232228041076003,\n",
+ " 'anomaly_score': 2.362821639794626},\n",
+ " 'total_anomaly_score': 2.362821639794626},\n",
+ " 591: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 592: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15537031322649486,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5998841060508027,\n",
+ " 'p_value': 0.48878420055435495,\n",
+ " 'anomaly_score': 2.0458926431456854},\n",
+ " 'total_anomaly_score': 2.0458926431456854},\n",
+ " 593: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 594: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 595: {'col_1': {'c': -0.16490351571605044,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.644816394151066,\n",
+ " 'p_value': 0.584865169719556,\n",
+ " 'anomaly_score': 1.7097957816149352},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.7097957816149352},\n",
+ " 596: {'col_1': {'c': -0.16468985523743584,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6428436427281605,\n",
+ " 'p_value': 0.32770851700500897,\n",
+ " 'anomaly_score': 3.0514922503058264},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.0514922503058264},\n",
+ " 597: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 598: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 599: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1554097264515808,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5991330696901023,\n",
+ " 'p_value': 0.7112049742507435,\n",
+ " 'anomaly_score': 1.4060644064722732},\n",
+ " 'total_anomaly_score': 1.4060644064722732},\n",
+ " 600: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 601: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 602: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.179460187902486,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8580755965496394,\n",
+ " 'p_value': 0.8888125291390394,\n",
+ " 'anomaly_score': 1.1250966511111897},\n",
+ " 'col_4': {'c': -0.15494026930990867,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.595910537380573,\n",
+ " 'p_value': 0.740026810511142,\n",
+ " 'anomaly_score': 1.351302393097478},\n",
+ " 'total_anomaly_score': 2.4763990442086676},\n",
+ " 603: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 604: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17872490041298317,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8531081904307256,\n",
+ " 'p_value': 0.7445972763885261,\n",
+ " 'anomaly_score': 1.343007867085195},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.343007867085195},\n",
+ " 605: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 606: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 607: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 608: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 609: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 610: {'col_1': {'c': -0.1652725455282787,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6447374668472596,\n",
+ " 'p_value': 0.23815182326079481,\n",
+ " 'anomaly_score': 4.199002074844172},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 4.199002074844172},\n",
+ " 611: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09183570530901018,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.698369510350906,\n",
+ " 'p_value': 0.05299418082501083,\n",
+ " 'anomaly_score': 18.8699963737914},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 18.8699963737914},\n",
+ " 612: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17822961582565977,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8493320284366876,\n",
+ " 'p_value': 0.024388864661319485,\n",
+ " 'anomaly_score': 41.00231863543819},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 41.00231863543819},\n",
+ " 613: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15442494711273663,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.592424981885415,\n",
+ " 'p_value': 0.6414632336053083,\n",
+ " 'anomaly_score': 1.558935801167521},\n",
+ " 'total_anomaly_score': 1.558935801167521},\n",
+ " 614: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 615: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 616: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 617: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 618: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 619: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 620: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 621: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15414328318698195,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.589986858600992,\n",
+ " 'p_value': 0.26351961137125696,\n",
+ " 'anomaly_score': 3.7947839813377686},\n",
+ " 'total_anomaly_score': 3.7947839813377686},\n",
+ " 622: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 623: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 624: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 625: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 626: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 627: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 628: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15478055166346438,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5927000919715897,\n",
+ " 'p_value': 0.23761253580359248,\n",
+ " 'anomaly_score': 4.208532166108388},\n",
+ " 'total_anomaly_score': 4.208532166108388},\n",
+ " 629: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.178843568396054,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.86001857059926,\n",
+ " 'p_value': 0.5138876039451633,\n",
+ " 'anomaly_score': 1.9459508116617452},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.9459508116617452},\n",
+ " 630: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09287205912022999,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7078117406345332,\n",
+ " 'p_value': 0.8082703784945462,\n",
+ " 'anomaly_score': 1.237209758772259},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.237209758772259},\n",
+ " 631: {'col_1': {'c': -0.166210846368278,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6485322140545176,\n",
+ " 'p_value': 0.0666651088006429,\n",
+ " 'anomaly_score': 15.000350528046484},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 15.000350528046484},\n",
+ " 632: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 633: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09210354988412481,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.703032785698822,\n",
+ " 'p_value': 0.26915006786639484,\n",
+ " 'anomaly_score': 3.715399397545003},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.715399397545003},\n",
+ " 634: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17879844219816202,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.858769202792699,\n",
+ " 'p_value': 0.2702048074561248,\n",
+ " 'anomaly_score': 3.7008964030455958},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.7008964030455958},\n",
+ " 635: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 636: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 637: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 638: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 639: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 640: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 641: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 642: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 643: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.179357819397983,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.861380002374664,\n",
+ " 'p_value': 0.6335692988902173,\n",
+ " 'anomaly_score': 1.5783593077373475},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.5783593077373475},\n",
+ " 644: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 645: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 646: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 647: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 648: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 649: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 650: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 651: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 652: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 653: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 654: {'col_1': {'c': -0.1675714146507228,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6574843998108144,\n",
+ " 'p_value': 0.760969769825856,\n",
+ " 'anomaly_score': 1.3141126489543007},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.3141126489543007},\n",
+ " 655: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 656: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 657: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 658: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 659: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 660: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 661: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 662: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 663: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1555093028093425,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5958902306966447,\n",
+ " 'p_value': 0.1888221308554436,\n",
+ " 'anomaly_score': 5.295989381486057},\n",
+ " 'total_anomaly_score': 5.295989381486057},\n",
+ " 664: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 665: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 666: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1563945795936554,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6002181721834425,\n",
+ " 'p_value': 0.13969556806824018,\n",
+ " 'anomaly_score': 7.158423232951155},\n",
+ " 'total_anomaly_score': 7.158423232951155},\n",
+ " 667: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 668: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15739696633687505,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.605747472991701,\n",
+ " 'p_value': 0.7971029030809531,\n",
+ " 'anomaly_score': 1.2545431664278368},\n",
+ " 'total_anomaly_score': 1.2545431664278368},\n",
+ " 669: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 670: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09297249153892981,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7064535795344575,\n",
+ " 'p_value': 0.004648693786444485,\n",
+ " 'anomaly_score': 215.11419033793615},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 215.11419033793615},\n",
+ " 671: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 672: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 673: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 674: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 675: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17906964273078146,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8588028153512095,\n",
+ " 'p_value': 0.6963346378980894,\n",
+ " 'anomaly_score': 1.436091134312283},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.436091134312283},\n",
+ " 676: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 677: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 678: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 679: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 680: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 681: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 682: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 683: {'col_1': {'c': -0.16688028408820788,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6534098018323307,\n",
+ " 'p_value': 0.3183339448218399,\n",
+ " 'anomaly_score': 3.141355222295455},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.141355222295455},\n",
+ " 684: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 685: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 686: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 687: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17866418788652905,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.855508166709568,\n",
+ " 'p_value': 0.8265952746274625,\n",
+ " 'anomaly_score': 1.2097818977379093},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2097818977379093},\n",
+ " 688: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 689: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08824520952071925,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7083952306494177,\n",
+ " 'p_value': 0.6306369647880384,\n",
+ " 'anomaly_score': 1.5856983587000917},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.5856983587000917},\n",
+ " 690: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 691: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 692: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 693: {'col_1': {'c': -0.1674917303096913,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.655474106632036,\n",
+ " 'p_value': 0.9452883444796742,\n",
+ " 'anomaly_score': 1.0578782715769561},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17801819975827576,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.851016882952698,\n",
+ " 'p_value': 0.6353666362935274,\n",
+ " 'anomaly_score': 1.573894414465318},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.6317726860422743},\n",
+ " 694: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 695: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 696: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 697: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15679011699325401,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6018492852069754,\n",
+ " 'p_value': 0.2912664561524604,\n",
+ " 'anomaly_score': 3.433282408175971},\n",
+ " 'total_anomaly_score': 3.433282408175971},\n",
+ " 698: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 699: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 700: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17773825230628754,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8484358201887696,\n",
+ " 'p_value': 0.3549381458029025,\n",
+ " 'anomaly_score': 2.8173923029262147},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.8173923029262147},\n",
+ " 701: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1780727897923351,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.849534391206839,\n",
+ " 'p_value': 0.9170836591248539,\n",
+ " 'anomaly_score': 1.0904130610660654},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0904130610660654},\n",
+ " 702: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 703: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 704: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 705: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 706: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08793468955960863,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7057237841798587,\n",
+ " 'p_value': 0.9723371508440044,\n",
+ " 'anomaly_score': 1.0284498531522568},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0284498531522568},\n",
+ " 707: {'col_1': {'c': -0.1664307441147796,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6497462608540747,\n",
+ " 'p_value': 0.7181700519542158,\n",
+ " 'anomaly_score': 1.3924278759311886},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.3924278759311886},\n",
+ " 708: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 709: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 710: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 711: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 712: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08672941742642434,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.699153295852387,\n",
+ " 'p_value': 0.7831067391597237,\n",
+ " 'anomaly_score': 1.276965131308924},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.276965131308924},\n",
+ " 713: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1573660223895586,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6040313195303737,\n",
+ " 'p_value': 0.5738384196302149,\n",
+ " 'anomaly_score': 1.742650833041828},\n",
+ " 'total_anomaly_score': 1.742650833041828},\n",
+ " 714: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 715: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 716: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 717: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 718: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 719: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 720: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 721: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17729242135358497,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8443349873277812,\n",
+ " 'p_value': 0.8595457433334834,\n",
+ " 'anomaly_score': 1.1634052146216303},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1634052146216303},\n",
+ " 722: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 723: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 724: {'col_1': {'c': -0.16585063482685533,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.646084717760014,\n",
+ " 'p_value': 0.831310843246669,\n",
+ " 'anomaly_score': 1.2029194712467826},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2029194712467826},\n",
+ " 725: {'col_1': {'c': -0.16502346024581074,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6413891970911445,\n",
+ " 'p_value': 0.8221639132088664,\n",
+ " 'anomaly_score': 1.216302471969425},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.216302471969425},\n",
+ " 726: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1572008471541215,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6022422216095835,\n",
+ " 'p_value': 0.2753248469343421,\n",
+ " 'anomaly_score': 3.632073207829565},\n",
+ " 'total_anomaly_score': 3.632073207829565},\n",
+ " 727: {'col_1': {'c': -0.16420769818203207,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6367709099905134,\n",
+ " 'p_value': 0.8640913031816642,\n",
+ " 'anomaly_score': 1.1572851113278277},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1572851113278277},\n",
+ " 728: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 729: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 730: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08599608420715192,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6945852064325075,\n",
+ " 'p_value': 0.07224462726014912,\n",
+ " 'anomaly_score': 13.84185977455531},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 13.84185977455531},\n",
+ " 731: {'col_1': {'c': -0.16328418348532217,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.63171071517481,\n",
+ " 'p_value': 0.10542086264362356,\n",
+ " 'anomaly_score': 9.485788438105573},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 9.485788438105573},\n",
+ " 732: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 733: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 734: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 735: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 736: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 737: {'col_1': {'c': -0.16466362814994714,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.63913424065672,\n",
+ " 'p_value': 0.301616491519957,\n",
+ " 'anomaly_score': 3.3154685772009027},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.3154685772009027},\n",
+ " 738: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 739: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15777516973708736,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.604648186726343,\n",
+ " 'p_value': 0.617839215500337,\n",
+ " 'anomaly_score': 1.6185440724900935},\n",
+ " 'total_anomaly_score': 1.6185440724900935},\n",
+ " 740: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 741: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 742: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 743: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08724164722079943,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.703460280138395,\n",
+ " 'p_value': 0.18290023338540487,\n",
+ " 'anomaly_score': 5.467461585425173},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 5.467461585425173},\n",
+ " 744: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 745: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 746: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 747: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 748: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 749: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.0884646798238562,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.709172529415004,\n",
+ " 'p_value': 0.3106839623114912,\n",
+ " 'anomaly_score': 3.21870492625365},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.21870492625365},\n",
+ " 750: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08921378423974047,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7117354016625055,\n",
+ " 'p_value': 0.27196592894866495,\n",
+ " 'anomaly_score': 3.676931165112066},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.157551345320616,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.602508015425436,\n",
+ " 'p_value': 0.8703458696324455,\n",
+ " 'anomaly_score': 1.1489685134282404},\n",
+ " 'total_anomaly_score': 4.825899678540306},\n",
+ " 751: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 752: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09011999601583594,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.715227700892288,\n",
+ " 'p_value': 0.9942570591778669,\n",
+ " 'anomaly_score': 1.0057761126955256},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0057761126955256},\n",
+ " 753: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 754: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 755: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17661563010511666,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8396802450752467,\n",
+ " 'p_value': 0.2531213240717694,\n",
+ " 'anomaly_score': 3.950674656381232},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.950674656381232},\n",
+ " 756: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 757: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 758: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 759: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1568119261832129,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5979992829956666,\n",
+ " 'p_value': 0.40441201825834,\n",
+ " 'anomaly_score': 2.4727257224121266},\n",
+ " 'total_anomaly_score': 2.4727257224121266},\n",
+ " 760: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 761: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 762: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 763: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 764: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 765: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 766: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08887129869856672,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7085111630525707,\n",
+ " 'p_value': 0.9276994642604658,\n",
+ " 'anomaly_score': 1.0779352996578153},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0779352996578153},\n",
+ " 767: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08776978997374599,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.702408911195554,\n",
+ " 'p_value': 0.4245175768789575,\n",
+ " 'anomaly_score': 2.3556150662876547},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.3556150662876547},\n",
+ " 768: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 769: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 770: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 771: {'col_1': {'c': -0.16534575788713615,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.641530614500489,\n",
+ " 'p_value': 0.08866129259472137,\n",
+ " 'anomaly_score': 11.2788790997114},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 11.2788790997114},\n",
+ " 772: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 773: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17721995638200813,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.842637772038888,\n",
+ " 'p_value': 0.242561426417165,\n",
+ " 'anomaly_score': 4.122667048800116},\n",
+ " 'col_4': {'c': -0.1570633173106636,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.598355891320666,\n",
+ " 'p_value': 0.8948675888218184,\n",
+ " 'anomaly_score': 1.1174837623928238},\n",
+ " 'total_anomaly_score': 5.240150811192939},\n",
+ " 774: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08812500002824278,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.702844862943685,\n",
+ " 'p_value': 0.8551830392446852,\n",
+ " 'anomaly_score': 1.1693403097461101},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1693403097461101},\n",
+ " 775: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08723470421548268,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6976432420611958,\n",
+ " 'p_value': 0.0675472719953344,\n",
+ " 'anomaly_score': 14.804446877870532},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 14.804446877870532},\n",
+ " 776: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08842203101306903,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7065478011015793,\n",
+ " 'p_value': 0.2539142738098213,\n",
+ " 'anomaly_score': 3.9383370812347},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.9383370812347},\n",
+ " 777: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15630133903025856,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.593678928401049,\n",
+ " 'p_value': 0.27702290769567595,\n",
+ " 'anomaly_score': 3.6098097746434457},\n",
+ " 'total_anomaly_score': 3.6098097746434457},\n",
+ " 778: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 779: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 780: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 781: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 782: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 783: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 784: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1778664039857159,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.845764252457848,\n",
+ " 'p_value': 0.33794428440677204,\n",
+ " 'anomaly_score': 2.9590676515077083},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.9590676515077083},\n",
+ " 785: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 786: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 787: {'col_1': {'c': -0.16671855843657044,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.649617220361118,\n",
+ " 'p_value': 0.47804392144442065,\n",
+ " 'anomaly_score': 2.091857997019347},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.091857997019347},\n",
+ " 788: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 789: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15686769271491668,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5960017439218457,\n",
+ " 'p_value': 0.7157412976156678,\n",
+ " 'anomaly_score': 1.397152858625423},\n",
+ " 'total_anomaly_score': 1.397152858625423},\n",
+ " 790: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 791: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 792: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 793: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 794: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 795: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 796: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08938407501449447,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7103775994052084,\n",
+ " 'p_value': 0.8860855011294884,\n",
+ " 'anomaly_score': 1.1285592628762184},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1285592628762184},\n",
+ " 797: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1782592504021713,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8471535094412976,\n",
+ " 'p_value': 0.9485334636688336,\n",
+ " 'anomaly_score': 1.0542590623340782},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0542590623340782},\n",
+ " 798: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 799: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.0884023031737741,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.704753548373702,\n",
+ " 'p_value': 0.09391215123981256,\n",
+ " 'anomaly_score': 10.648249313833904},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 10.648249313833904},\n",
+ " 800: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 801: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 802: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15643209200435826,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5929146454696146,\n",
+ " 'p_value': 0.519260826977257,\n",
+ " 'anomaly_score': 1.925814442466693},\n",
+ " 'total_anomaly_score': 1.925814442466693},\n",
+ " 803: {'col_1': {'c': -0.16679649359718024,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6489876311120693,\n",
+ " 'p_value': 0.15384223936958866,\n",
+ " 'anomaly_score': 6.5001653908431},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17743554732419314,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.84178306848258,\n",
+ " 'p_value': 0.14969750050973268,\n",
+ " 'anomaly_score': 6.680138256115935},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 13.180303646959036},\n",
+ " 804: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 805: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 806: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 807: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 808: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 809: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 810: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 811: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08972580392091252,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7128818597769504,\n",
+ " 'p_value': 0.27606553163986397,\n",
+ " 'anomaly_score': 3.62232834378082},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.62232834378082},\n",
+ " 812: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09059892352858587,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7162572527311095,\n",
+ " 'p_value': 0.40621813685540215,\n",
+ " 'anomaly_score': 2.4617315409428926},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.4617315409428926},\n",
+ " 813: {'col_1': {'c': -0.1680352856028184,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6549159449818998,\n",
+ " 'p_value': 0.3303150915014275,\n",
+ " 'anomaly_score': 3.027412388136914},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.027412388136914},\n",
+ " 814: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 815: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 816: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1783634448236912,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8472974626841503,\n",
+ " 'p_value': 0.7852793754438481,\n",
+ " 'anomaly_score': 1.2734321456421667},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2734321456421667},\n",
+ " 817: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 818: {'col_1': {'c': -0.16857553593331107,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.656708241125134,\n",
+ " 'p_value': 0.3552649000765011,\n",
+ " 'anomaly_score': 2.8148010112585418},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.8148010112585418},\n",
+ " 819: {'col_1': {'c': -0.16906551063590008,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.658158176639537,\n",
+ " 'p_value': 0.3563293142312135,\n",
+ " 'anomaly_score': 2.806392738575317},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.806392738575317},\n",
+ " 820: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15639903788231072,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5918225616125916,\n",
+ " 'p_value': 0.10471517230331422,\n",
+ " 'anomaly_score': 9.549714506541953},\n",
+ " 'total_anomaly_score': 9.549714506541953},\n",
+ " 821: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 822: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 823: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 824: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 825: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 826: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 827: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15745482738952832,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5982916506882643,\n",
+ " 'p_value': 0.808317368198975,\n",
+ " 'anomaly_score': 1.2371378363774568},\n",
+ " 'total_anomaly_score': 1.2371378363774568},\n",
+ " 828: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17780031565256532,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8433054267954474,\n",
+ " 'p_value': 0.4875829445793419,\n",
+ " 'anomaly_score': 2.0509330999318314},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.0509330999318314},\n",
+ " 829: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 830: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 831: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 832: {'col_1': {'c': -0.1695312412179692,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.659448413608284,\n",
+ " 'p_value': 0.3193155162865116,\n",
+ " 'anomaly_score': 3.1316987399470184},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.1316987399470184},\n",
+ " 833: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17781367789250152,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.842390847954043,\n",
+ " 'p_value': 0.8674090840070613,\n",
+ " 'anomaly_score': 1.1528585743884823},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1528585743884823},\n",
+ " 834: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 835: {'col_1': {'c': -0.17013586907608702,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.661478543399256,\n",
+ " 'p_value': 0.14903421068603212,\n",
+ " 'anomaly_score': 6.709868797216521},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 6.709868797216521},\n",
+ " 836: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 837: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 838: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09098870129831685,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7169595416520718,\n",
+ " 'p_value': 0.7860571155766461,\n",
+ " 'anomaly_score': 1.272172187216201},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.272172187216201},\n",
+ " 839: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 840: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 841: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 842: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 843: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15686002215711048,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.594424145566371,\n",
+ " 'p_value': 0.7105482744195749,\n",
+ " 'anomaly_score': 1.4073639131934692},\n",
+ " 'total_anomaly_score': 1.4073639131934692},\n",
+ " 844: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 845: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 846: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 847: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 848: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 849: {'col_1': {'c': -0.17133476362947792,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6674573015186867,\n",
+ " 'p_value': 0.9934109618996749,\n",
+ " 'anomaly_score': 1.0066327414866905},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15641973865882486,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.591323704263669,\n",
+ " 'p_value': 0.5897239826433822,\n",
+ " 'anomaly_score': 1.6957085508335512},\n",
+ " 'total_anomaly_score': 2.7023412923202415},\n",
+ " 850: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1771191052509591,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.837712482819181,\n",
+ " 'p_value': 0.28789050935111865,\n",
+ " 'anomaly_score': 3.473542779350098},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.473542779350098},\n",
+ " 851: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 852: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15623010805056167,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.589390408779338,\n",
+ " 'p_value': 0.4798575877506469,\n",
+ " 'anomaly_score': 2.0839516254969377},\n",
+ " 'total_anomaly_score': 2.0839516254969377},\n",
+ " 853: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 854: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15627753284552562,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5887297024961864,\n",
+ " 'p_value': 0.7245853089938231,\n",
+ " 'anomaly_score': 1.380099744761075},\n",
+ " 'total_anomaly_score': 1.380099744761075},\n",
+ " 855: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 856: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 857: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 858: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 859: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 860: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 861: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09029150174214101,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7125635966520614,\n",
+ " 'p_value': 0.5092316234760225,\n",
+ " 'anomaly_score': 1.963742929345168},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.963742929345168},\n",
+ " 862: {'col_1': {'c': -0.17020107682059732,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6613728398805856,\n",
+ " 'p_value': 0.15358115718637422,\n",
+ " 'anomaly_score': 6.511215427205548},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17763091421330873,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.839965621546029,\n",
+ " 'p_value': 0.7161598634089266,\n",
+ " 'anomaly_score': 1.3963362806175594},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 7.9075517078231075},\n",
+ " 863: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17720967511250196,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8366153024436147,\n",
+ " 'p_value': 0.870680978607384,\n",
+ " 'anomaly_score': 1.1485262967378203},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1485262967378203},\n",
+ " 864: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 865: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 866: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 867: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 868: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17651212828024948,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.831929642009484,\n",
+ " 'p_value': 0.8879152272329807,\n",
+ " 'anomaly_score': 1.1262336418267207},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1262336418267207},\n",
+ " 869: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 870: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 871: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 872: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 873: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1757893520498283,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8270837429908715,\n",
+ " 'p_value': 0.7821312786319147,\n",
+ " 'anomaly_score': 1.278557740011595},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.278557740011595},\n",
+ " 874: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 875: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 876: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 877: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 878: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 879: {'col_1': {'c': -0.17138214134447044,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6671786518541327,\n",
+ " 'p_value': 0.39081362319574103,\n",
+ " 'anomaly_score': 2.558764435647999},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.558764435647999},\n",
+ " 880: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 881: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15581772198020333,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5855743720468407,\n",
+ " 'p_value': 0.7328222525916291,\n",
+ " 'anomaly_score': 1.3645873831798851},\n",
+ " 'total_anomaly_score': 1.3645873831798851},\n",
+ " 882: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09036269944140037,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.711655507278097,\n",
+ " 'p_value': 0.2659929067540596,\n",
+ " 'anomaly_score': 3.759498748305392},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.759498748305392},\n",
+ " 883: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 884: {'col_1': {'c': -0.17173573345622628,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6679901470500234,\n",
+ " 'p_value': 0.21981984612730285,\n",
+ " 'anomaly_score': 4.54917978343446},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 4.54917978343446},\n",
+ " 885: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 886: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 887: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 888: {'col_1': {'c': -0.17265560784570158,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.671909783290678,\n",
+ " 'p_value': 0.6267451817312453,\n",
+ " 'anomaly_score': 1.595544775051514},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.595544775051514},\n",
+ " 889: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 890: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15534679375564137,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5823481482119766,\n",
+ " 'p_value': 0.6893197842470482,\n",
+ " 'anomaly_score': 1.4507054967126924},\n",
+ " 'total_anomaly_score': 1.4507054967126924},\n",
+ " 891: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 892: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 893: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 894: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 895: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15497905472171747,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5794944021112434,\n",
+ " 'p_value': 0.5937032084190047,\n",
+ " 'anomaly_score': 1.684343264141925},\n",
+ " 'total_anomaly_score': 1.684343264141925},\n",
+ " 896: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 897: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 898: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1547671702343968,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.577566791909514,\n",
+ " 'p_value': 0.9542309732727613,\n",
+ " 'anomaly_score': 1.0479643063463586},\n",
+ " 'total_anomaly_score': 1.0479643063463586},\n",
+ " 899: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17523213618217684,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8231049280674414,\n",
+ " 'p_value': 0.6379596465459008,\n",
+ " 'anomaly_score': 1.567497263211382},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.567497263211382},\n",
+ " 900: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 901: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 902: {'col_1': {'c': -0.1723481075296968,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.669550984246539,\n",
+ " 'p_value': 0.029853567204270917,\n",
+ " 'anomaly_score': 33.49683450415057},\n",
+ " 'col_2': {'c': -0.09123289213967076,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7150820503861928,\n",
+ " 'p_value': 0.021568390385863705,\n",
+ " 'anomaly_score': 46.364145961277536},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15390988644099932,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5725827319517185,\n",
+ " 'p_value': 0.7391562717707489,\n",
+ " 'anomaly_score': 1.3528938848132406},\n",
+ " 'total_anomaly_score': 81.21387435024134},\n",
+ " 903: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 904: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15343462745175507,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5693613639266926,\n",
+ " 'p_value': 0.3352167389681806,\n",
+ " 'anomaly_score': 2.9831445860313135},\n",
+ " 'total_anomaly_score': 2.9831445860313135},\n",
+ " 905: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 906: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.1538676558497221,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.570728423952671,\n",
+ " 'p_value': 0.6025837255684015,\n",
+ " 'anomaly_score': 1.659520424413597},\n",
+ " 'total_anomaly_score': 1.659520424413597},\n",
+ " 907: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 908: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 909: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 910: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 911: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 912: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 913: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1749614658176682,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.820613776911814,\n",
+ " 'p_value': 0.377426169812625,\n",
+ " 'anomaly_score': 2.6495248077165785},\n",
+ " 'col_4': {'c': -0.15363988091810085,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5686852625243266,\n",
+ " 'p_value': 0.03865760654138319,\n",
+ " 'anomaly_score': 25.868130219844165},\n",
+ " 'total_anomaly_score': 28.517655027560743},\n",
+ " 914: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 915: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 916: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 917: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 918: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 919: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 920: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 921: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09103169735012633,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7239477912329644,\n",
+ " 'p_value': 0.02728069599260133,\n",
+ " 'anomaly_score': 36.65595629492756},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 36.65595629492756},\n",
+ " 922: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 923: {'col_1': {'c': -0.17310978821172296,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6791818486879446,\n",
+ " 'p_value': 0.991557536839898,\n",
+ " 'anomaly_score': 1.0085143452058347},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0085143452058347},\n",
+ " 924: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.0912196753686635,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.733081495329251,\n",
+ " 'p_value': 0.9945588633382334,\n",
+ " 'anomaly_score': 1.0054709046013661},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.0054709046013661},\n",
+ " 925: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17522556427577998,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8212734413558316,\n",
+ " 'p_value': 0.36308213164649744,\n",
+ " 'anomaly_score': 2.7541977774153206},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.7541977774153206},\n",
+ " 926: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 927: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 928: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 929: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 930: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 931: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 932: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 933: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 934: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 935: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 936: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17554067212207838,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.822196047633133,\n",
+ " 'p_value': 0.28687025192503113,\n",
+ " 'anomaly_score': 3.485896475112148},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 3.485896475112148},\n",
+ " 937: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 938: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 939: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 940: {'col_1': {'c': -0.1720076878784542,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.673212307959229,\n",
+ " 'p_value': 0.8255823222273275,\n",
+ " 'anomaly_score': 1.2112662457477448},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.2112662457477448},\n",
+ " 941: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 942: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 943: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 944: {'col_1': {'c': -0.1712095356173677,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6686756856984957,\n",
+ " 'p_value': 0.8896120647620042,\n",
+ " 'anomaly_score': 1.1240854745686566},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.1240854745686566},\n",
+ " 945: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 946: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 947: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 948: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 949: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 950: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 951: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 952: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 953: {'col_1': {'c': -0.1702822321966878,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.663533543103891,\n",
+ " 'p_value': 0.34247756404511026,\n",
+ " 'anomaly_score': 2.9198993013985657},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.9198993013985657},\n",
+ " 954: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 955: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 956: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 957: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 958: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 959: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 960: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 961: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 962: {'col_1': {'c': -0.17079344244231642,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.66509403747324,\n",
+ " 'p_value': 0.5253007382909025,\n",
+ " 'anomaly_score': 1.9036714154515755},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.9036714154515755},\n",
+ " 963: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15446680975136967,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.577405395672435,\n",
+ " 'p_value': 0.16967582141888,\n",
+ " 'anomaly_score': 5.893591624532599},\n",
+ " 'total_anomaly_score': 5.893591624532599},\n",
+ " 964: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 965: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 966: {'col_1': {'c': -0.17072644807151174,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6638259006411174,\n",
+ " 'p_value': 0.49668267482255235,\n",
+ " 'anomaly_score': 2.0133579258774543},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.0133579258774543},\n",
+ " 967: {'col_1': {'c': -0.17074247161138134,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6629815583830454,\n",
+ " 'p_value': 0.8391742084222144,\n",
+ " 'anomaly_score': 1.191647681689556},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15536126839958253,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.581955970833358,\n",
+ " 'p_value': 0.6154168364327525,\n",
+ " 'anomaly_score': 1.6249149207494449},\n",
+ " 'total_anomaly_score': 2.816562602439001},\n",
+ " 968: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 969: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1760503491026757,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8244326985455794,\n",
+ " 'p_value': 0.736252382616699,\n",
+ " 'anomaly_score': 1.3582298999779412},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.3582298999779412},\n",
+ " 970: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 971: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 972: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 973: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 974: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': -0.15511978261650466,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.5798326888737924,\n",
+ " 'p_value': 0.23091083266563836,\n",
+ " 'anomaly_score': 4.330675994954347},\n",
+ " 'total_anomaly_score': 4.330675994954347},\n",
+ " 975: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 976: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 977: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 978: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 979: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 980: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 981: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 982: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.08997435221003064,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.7264484087615695,\n",
+ " 'p_value': 0.3792499205549959,\n",
+ " 'anomaly_score': 2.6367836769394595},\n",
+ " 'col_3': {'c': -0.17558425303673583,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8208935539022812,\n",
+ " 'p_value': 0.4509208323219196,\n",
+ " 'anomaly_score': 2.217684188265855},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 4.854467865205315},\n",
+ " 983: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17567559217439802,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.820585468807532,\n",
+ " 'p_value': 0.5682876142249257,\n",
+ " 'anomaly_score': 1.7596723471861635},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.7596723471861635},\n",
+ " 984: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 985: {'col_1': {'c': -0.16993370230253368,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6583910921143605,\n",
+ " 'p_value': 0.07697160021661607,\n",
+ " 'anomaly_score': 12.991804732989392},\n",
+ " 'col_2': {'c': -0.09048996169411955,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.727694612672594,\n",
+ " 'p_value': 0.30229829827656307,\n",
+ " 'anomaly_score': 3.3079908345535305},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 16.299795567542922},\n",
+ " 986: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17551669615027576,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.818755055187992,\n",
+ " 'p_value': 0.6713916968984901,\n",
+ " 'anomaly_score': 1.4894435016392424},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.4894435016392424},\n",
+ " 987: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.1751862237352627,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.81592492584773,\n",
+ " 'p_value': 0.4375320054151487,\n",
+ " 'anomaly_score': 2.285547085980963},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.285547085980963},\n",
+ " 988: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 989: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.0912604536533555,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.730464962707556,\n",
+ " 'p_value': 0.6607790281559992,\n",
+ " 'anomaly_score': 1.5133652210340978},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.5133652210340978},\n",
+ " 990: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17530751881787102,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.8157351790277447,\n",
+ " 'p_value': 0.46038009846182715,\n",
+ " 'anomaly_score': 2.172118220012319},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 2.172118220012319},\n",
+ " 991: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 992: {'col_1': {'c': -0.17127418485887624,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6666161413799983,\n",
+ " 'p_value': 0.066260918550898,\n",
+ " 'anomaly_score': 15.091852359877187},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 15.091852359877187},\n",
+ " 993: {'col_1': {'c': -0.17255026839995496,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.6751522188672814,\n",
+ " 'p_value': 0.23850030665612867,\n",
+ " 'anomaly_score': 4.192866726338456},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': -0.17536312017187955,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.815199481807995,\n",
+ " 'p_value': 0.770467131654942,\n",
+ " 'anomaly_score': 1.2979139004308047},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 5.4907806267692605},\n",
+ " 994: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 995: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': -0.09086822624027535,\n",
+ " 'loc': 0,\n",
+ " 'scale': 2.727444201725153,\n",
+ " 'p_value': 0.6119332038589004,\n",
+ " 'anomaly_score': 1.63416528747569},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 1.63416528747569},\n",
+ " 996: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 997: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 998: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " 999: {'col_1': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_2': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_3': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'col_4': {'c': 0.0,\n",
+ " 'loc': 0.0,\n",
+ " 'scale': 0.0,\n",
+ " 'p_value': 0.0,\n",
+ " 'anomaly_score': 0.0},\n",
+ " 'total_anomaly_score': 0.0},\n",
+ " ...}"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "detector.params"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "detector.detect(0.90)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2500 True\n",
+ "2501 False\n",
+ "2502 False\n",
+ "2503 False\n",
+ "2504 False\n",
+ " ... \n",
+ "3495 False\n",
+ "3496 False\n",
+ "3497 False\n",
+ "3498 False\n",
+ "3499 False\n",
+ "Name: detected data, Length: 1000, dtype: bool"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "detector.detection_result"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPZCAYAAAD+1mNdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gUV9sG8HsX2KUsTUGaVAXsvRFjR7HE/sUaS4wmMeobNRo1iS0x0WhMNIkx9VWTaCxRY+8FGzYURUWiCGKhKb3D7vn+gJ2XFVYW26Lev+uai92ZMzPPzB5mZ549c0YmhBAgIiIiIiIiIiIiIqJS5MYOgIiIiIiIiIiIiIiosmISnYiIiIiIiIiIiIhIDybRiYiIiIiIiIiIiIj0YBKdiIiIiIiIiIiIiEgPJtGJiIiIiIiIiIiIiPRgEp2IiIiIiIiIiIiISA8m0YmIiIiIiIiIiIiI9GASnYiIiIiIiIiIiIhIDybRiYiIiIiIiIiIiIj0YBKdiIiIiCq9kSNHQqVSGTuM59LKlSshk8lw9uxZY4cC4OnEM3LkSHh5eZVbLiYmBjKZDCtXrnxi6yYiIiKiFx+T6ERERERkMG0CVDuYm5vDz88P48ePR0JCgrHDeyxCCPzxxx9o27Yt7OzsYGlpifr16+PTTz9FVlaWscOTaBPBhgwxMTHGDpeIiIiI6LlnauwAiIiIiOj58+mnn8Lb2xu5ubk4duwYli9fjp07d+LSpUuwtLQ0dngVplarMWTIEKxfvx5t2rTBnDlzYGlpiaNHj2Lu3LnYsGED9u/fDycnJ2OHCkdHR/zxxx864xYvXozbt2/jm2++KVWWiIiIiIgeD5PoRERERFRh3bp1Q7NmzQAAo0ePRtWqVfH1119jy5YtGDx4sJGjq7iFCxdi/fr1mDJlChYtWiSNf/vttzFgwAD06dMHI0eOxK5du55pXNnZ2aV+lLCyssIbb7yhM27t2rVISUkpNf5xCSGQm5sLCwuLJ7pcIiIiIqLnCbtzISIiIqLH1rFjRwBAdHS0NO7PP/9E06ZNYWFhgSpVqmDQoEG4deuWznxHjx7F66+/Dg8PDyiVSri7u2PSpEnIyckpd51hYWFwdHRE+/btkZmZCQA4e/YsgoKC4ODgAAsLC3h7e2PUqFEPXU5OTg4WLVoEPz8/zJ8/v9T0nj17YsSIEdi9ezdOnjwJAHjttdfg4+NT5vICAgKkHxgqsi/at2+PevXqITQ0FG3btoWlpSU++uijcveDofLy8jB58mQ4OjrCysoKffv2RVJSkk4ZLy8vvPbaa9izZw+aNWsGCwsL/PTTTwCA1NRUTJw4Ee7u7lAqlahZsya+/PJLaDQanWWsXbsWTZs2hbW1NWxsbFC/fn0sXbr0keIBgB9++AF169aFUqmEq6srxo0bh9TU1HK3NzU1FSNHjoStrS3s7OwwYsQIg+YjIiIiInoQk+hERERE9NiioqIAAFWrVgUAfP755xg+fDh8fX3x9ddfY+LEiThw4ADatm2rk8jcsGEDsrOzMXbsWHz33XcICgrCd999h+HDhz90fWfOnEHHjh3RuHFj7Nq1CyqVComJiejSpQtiYmIwffp0fPfddxg6dKiU+Nbn2LFjSElJwZAhQ2BqWvaNmtp4tm/fDgAYOHAgoqOjcebMGZ1yN2/exMmTJzFo0CBpnKH7AgDu37+Pbt26oVGjRliyZAk6dOjw0NgrYsKECbhw4QJmz56NsWPHYtu2bRg/fnypcpGRkRg8eDA6d+6MpUuXolGjRsjOzka7du3w559/Yvjw4fj222/RunVrzJgxA5MnT5bm3bdvHwYPHgx7e3t8+eWXWLBgAdq3b4/jx48/Ujxz5szBuHHj4OrqisWLF6N///746aef0KVLFxQUFOjdViEEevfujT/++ANvvPEG5s2bh9u3b2PEiBGPsQeJiIiI6KUliIiIiIgMtGLFCgFA7N+/XyQlJYlbt26JtWvXiqpVqwoLCwtx+/ZtERMTI0xMTMTnn3+uM294eLgwNTXVGZ+dnV1qHfPnzxcymUzcvHlTGjdixAhhZWUlhBDi2LFjwsbGRvTo0UPk5uZKZTZv3iwAiDNnzlRom5YsWSIAiM2bN+stk5ycLACIfv36CSGESEtLE0qlUnzwwQc65RYuXKgTe0X2Rbt27QQA8eOPP1YofiGE6NGjh/D09CxzmvYzCwwMFBqNRho/adIkYWJiIlJTU6Vxnp6eAoDYvXu3zjI+++wzYWVlJf7991+d8dOnTxcmJiYiNjZWCCHE+++/L2xsbERhYaHeWA2NJzExUSgUCtGlSxehVqulct9//70AIP773/9K40aMGKGz/f/8848AIBYuXCiNKywsFG3atBEAxIoVK/TGR0RERET0ILZEJyIiIqIKCwwMhKOjI9zd3TFo0CCoVCps3rwZbm5u2LRpEzQaDQYMGIB79+5Jg7OzM3x9fXHo0CFpOSX72s7KysK9e/fwyiuvQAiB8+fPl1rvoUOHEBQUhE6dOmHTpk1QKpXSNDs7OwBFrcUf1kr5QRkZGQAAa2trvWW009LT0wEANjY26NatG9avXw8hhFRu3bp1aNWqFTw8PACgQvsCAJRKJd58802DY6+It99+GzKZTHrfpk0bqNVq3Lx5U6ect7c3goKCdMZt2LABbdq0gb29vc52BAYGQq1W48iRIwCKPoOsrCzs27fvsePZv38/8vPzMXHiRMjl/7tsGTNmDGxsbLBjxw69y965cydMTU0xduxYaZyJiQkmTJhQblxERERERA/ig0WJiIiIqMKWLVsGPz8/mJqawsnJCf7+/lKi89q1axBCwNfXt8x5zczMpNexsbGYNWsWtm7dipSUFJ1yaWlpOu9zc3PRo0cPNG3aFOvXry/V9Uq7du3Qv39/zJ07F9988w3at2+PPn36YMiQITrJ9gdpE+TaZHpZykq0Dxw4EP/88w9CQkLwyiuvICoqCqGhoViyZIlUpiL7AgDc3NygUCj0xvE4tIl9LXt7ewAotd+9vb1LzXvt2jVcvHgRjo6OZS47MTERAPDee+9h/fr16NatG9zc3NClSxcMGDAAXbt2rXA82mS6v7+/TjmFQgEfH59Syf+Sbt68CRcXF6hUKp3xDy6LiIiIiMgQTKITERERUYW1aNGi1MMztTQaDWQyGXbt2gUTE5NS07WJTbVajc6dOyM5ORnTpk1DrVq1YGVlhTt37mDkyJGlHlipVCrRvXt3bNmyBbt378Zrr72mM10mk+Hvv//GyZMnsW3bNuzZswejRo3C4sWLcfLkyVIJVa3atWsDAC5evIg+ffqUWebixYsAgDp16kjjevbsCUtLS6xfvx6vvPIK1q9fD7lcjtdff73C+0KrZMv8J62s9QPQaUmvLwaNRoPOnTvjww8/LHMZfn5+AIBq1aohLCwMe/bswa5du7Br1y6sWLECw4cPx6pVqx4pHiIiIiIiY2MSnYiIiIieqBo1akAIAW9vbym5Wpbw8HD8+++/WLVqlc6DRPV1BSKTybB69Wr07t0br7/+Onbt2oX27duXKteqVSu0atUKn3/+OdasWYOhQ4di7dq1GD16dJnLffXVV2FnZ4c1a9bg448/LjO5+/vvvwOATuLeysoKr732GjZs2ICvv/4a69atQ5s2beDq6lrhfVHZ1ahRA5mZmQgMDCy3rEKhQM+ePdGzZ09oNBq89957+OmnnzBz5kzUrFnT4HV6enoCKHrQqY+PjzQ+Pz8f0dHRD43F09MTBw4cQGZmps4PFZGRkQavn4iIiIhIi32iExEREdET1a9fP5iYmGDu3LmlWhULIXD//n0A/2uJXLKMEAJLly7Vu2yFQoFNmzahefPm6NmzJ06fPi1NS0lJKbW+Ro0aAQDy8vL0LtPS0hJTpkxBZGQkPv7441LTd+zYgZUrVyIoKAitWrXSmTZw4EDcvXsXv/76Ky5cuICBAwfqTDd0X1R2AwYMQEhICPbs2VNqWmpqKgoLCwGg1PbI5XI0aNAAwMM/g7IEBgZCoVDg22+/1dl3v/32G9LS0tCjRw+983bv3h2FhYVYvny5NE6tVuO7776rUAxERERERABbohMRERHRE1ajRg3MmzcPM2bMQExMDPr06QNra2tER0dj8+bNePvttzFlyhTUqlULNWrUwJQpU3Dnzh3Y2Nhg48aNpfrofpCFhQW2b9+Ojh07olu3bggODka9evWwatUq/PDDD+jbty9q1KiBjIwM/PLLL7CxsUH37t0fuszp06fj/Pnz+PLLLxESEoL+/fvDwsICx44dw59//onatWuX6o4EKErWWltbY8qUKTAxMUH//v0faV9UdlOnTsXWrVvx2muvYeTIkWjatCmysrIQHh6Ov//+GzExMXBwcMDo0aORnJyMjh07onr16rh58ya+++47NGrUSOo2x1COjo6YMWMG5s6di65du6JXr16IjIzEDz/8gObNm+ONN97QO2/Pnj3RunVrTJ8+HTExMahTpw42bdpUqp99IiIiIiJDMIlORERERE/c9OnT4efnh2+++QZz584FALi7u6NLly7o1asXgKKHam7btg3/+c9/MH/+fJibm6Nv374YP348GjZs+NDl29jYYM+ePWjbti06d+6Mo0ePol27djh9+jTWrl2LhIQE2NraokWLFli9enWZD8ssycTEBOvXr8fvv/+OX3/9FTNnzkR+fj5q1KiB2bNn44MPPoCVlVWp+czNzdGrVy+sXr0agYGBqFat2iPti8rO0tISwcHB+OKLL7Bhwwb8/vvvsLGxgZ+fH+bOnQtbW1sAwBtvvIGff/4ZP/zwA1JTU+Hs7IyBAwdizpw50oNnK2LOnDlwdHTE999/j0mTJqFKlSp4++238cUXX5R6KGtJcrkcW7duxcSJE/Hnn39CJpOhV69eWLx4MRo3bvzI+4GIiIiIXk4ywSf3EBERERERERERERGViX2iExERERERERERERHpwSQ6EREREREREREREZEeTKITEREREREREREREenBJDoRERERERERERERkR5MohMRERERERERERER6cEkOhERERERERERERGRHkyiExERERERERERERHpwSQ6EREREREREREREZEeTKITEREREREREREREenBJDoRERERERERERERkR5MohMRERERERERERER6cEkOhERERERERERERGRHkyiExERERERERERERHpwSQ6EREREREREREREZEeTKITEREREREREREREenBJDoRERERERERERERkR5MohMRERERERERERER6cEkOhERERERERERERGRHkyiExERERERERERERHpwSQ6EREREREREREREZEeTKITEREREREREREREenBJDoRERERERERERERkR5MohMRERERERERERER6cEkOhERERERERERERGRHkyiExERERERERERERHpwSQ6EREREREREREREZEeTKITEREREREREREREenBJDoRERERERERERERkR5MohMRERERERERERER6cEkOhERERERERERERGRHkyiExERERERERERERHpwSQ6EREREREREREREZEeTKITEREREREREREREenBJDoRERERERERERERkR5MohMRERERERERERER6cEkOhERERERERERERGRHkyiExERERERERERERHpwSQ6EREREREREREREZEeTKITEREREREREREREenBJDoRERERERERERERkR5MohMRERERERERERER6cEkOhERERERERERERGRHkyiExERERERERERERHpwSQ6EREREREREREREZEeTKITEREREREREREREenBJDoRERERERERERERkR5MohMRERHRC2nOnDlo1KiRscMwKi8vLyxZssTYYVR6MTExkMlkCAsLM3YoRERERFQJMYlORERERJVOfHw8JkyYAB8fHyiVSri7u6Nnz544cOCAsUN7Yf38889o3749bGxsIJPJkJqaauyQiIiIiIgqBSbRiYiIiKhSiYmJQdOmTXHw4EEsWrQI4eHh2L17Nzp06IBx48YZO7wXVnZ2Nrp27YqPPvrI2KFQBeTn5xs7BCIiIqIXHpPoRERERFSpvPfee5DJZDh9+jT69+8PPz8/1K1bF5MnT8bJkyelcrGxsejduzdUKhVsbGwwYMAAJCQk6F1u+/btMXHiRJ1xffr0wciRI6X3Xl5emDdvHoYPHw6VSgVPT09s3boVSUlJ0roaNGiAs2fPSvOsXLkSdnZ22LNnD2rXrg2VSoWuXbsiLi7usfdFamoq3nnnHTg5OcHc3Bz16tXD9u3bpekbN25E3bp1oVQq4eXlhcWLFz/yuiZOnIjp06ejVatWjzT/tGnT4OfnB0tLS/j4+GDmzJkoKCiQpmu71/njjz/g5eUFW1tbDBo0CBkZGVKZvLw8/Oc//0G1atVgbm6OV199FWfOnJGmHz58GDKZDHv27EHjxo1hYWGBjh07IjExEbt27ULt2rVhY2ODIUOGIDs7W5pv9+7dePXVV2FnZ4eqVavitddeQ1RUVJnbIYRAzZo18dVXX+mMDwsLg0wmw/Xr1x+6H4QQmDNnDjw8PKBUKuHq6or//Oc/Ots4bdo0uLu7Q6lUombNmvjtt9+k6cHBwWjRogWUSiVcXFwwffp0FBYWStPbt2+P8ePHY+LEiXBwcEBQUBAA4NKlS+jWrRtUKhWcnJwwbNgw3Lt376GxEhEREZFhmEQnIiIiokojOTkZu3fvxrhx42BlZVVqup2dHQBAo9Ggd+/eSE5ORnBwMPbt24cbN25g4MCBjx3DN998g9atW+P8+fPo0aMHhg0bhuHDh+ONN97AuXPnUKNGDQwfPhxCCGme7OxsfPXVV/jjjz9w5MgRxMbGYsqUKY8Vh0ajQbdu3XD8+HH8+eefuHLlChYsWAATExMAQGhoKAYMGIBBgwYhPDwcc+bMwcyZM7Fy5crHWu+jsra2xsqVK3HlyhUsXboUv/zyC7755hudMlFRUfjnn3+wfft2bN++HcHBwViwYIE0/cMPP8TGjRuxatUqnDt3DjVr1kRQUBCSk5N1ljNnzhx8//33OHHiBG7duoUBAwZgyZIlWLNmDXbs2IG9e/fiu+++k8pnZWVh8uTJOHv2LA4cOAC5XI6+fftCo9GU2g6ZTIZRo0ZhxYoVOuNXrFiBtm3bombNmg/dDxs3bsQ333yDn376CdeuXcM///yD+vXrS9OHDx+Ov/76C99++y0iIiLw008/QaVSAQDu3LmD7t27o3nz5rhw4QKWL1+O3377DfPmzdNZx6pVq6BQKHD8+HH8+OOPSE1NRceOHdG4cWOcPXsWu3fvRkJCAgYMGPDQWImIiIjIQIKIiIiIqJI4deqUACA2bdr00HJ79+4VJiYmIjY2Vhp3+fJlAUCcPn1aCCHE7NmzRcOGDaXp7dq1E++//77Ocnr37i1GjBghvff09BRvvPGG9D4uLk4AEDNnzpTGhYSECAAiLi5OCCHEihUrBABx/fp1qcyyZcuEk5OTwdtdlj179gi5XC4iIyPLnD5kyBDRuXNnnXFTp04VderU0dmeb775pkLrPXTokAAgUlJSKhqyjkWLFommTZtK72fPni0sLS1Fenq6TrwtW7YUQgiRmZkpzMzMxOrVq6Xp+fn5wtXVVSxcuFAntv3790tl5s+fLwCIqKgoadw777wjgoKC9MaWlJQkAIjw8HAhhBDR0dECgDh//rwQQog7d+4IExMTcerUKSkOBwcHsXLlynK3e/HixcLPz0/k5+eXmhYZGSkAiH379pU570cffST8/f2FRqORxi1btkyoVCqhVquFEEX1uHHjxjrzffbZZ6JLly46427duiUA6K0/RERERGQ4tkQnIiIiokpDlGjd/TARERFwd3eHu7u7NK5OnTqws7NDRETEY8XQoEED6bWTkxMA6LQk1o5LTEyUxllaWqJGjRrSexcXF53pD6pbty5UKhVUKhW6detWZpmwsDBUr14dfn5+ZU6PiIhA69atdca1bt0a165dg1qt1rvup2XdunVo3bo1nJ2doVKp8MknnyA2NlanjJeXF6ytraX3JfdTVFQUCgoKdLbJzMwMLVq0KPWZPvgZabuQKTmu5P6/du0aBg8eDB8fH9jY2MDLywsASsWn5erqih49euC///0vAGDbtm3Iy8vD66+/Xu5+eP3115GTkwMfHx+MGTMGmzdvlrpjCQsLg4mJCdq1a1fmvBEREQgICIBMJpPGtW7dGpmZmbh9+7Y0rmnTpjrzXbhwAYcOHZLqlEqlQq1atQBAb7c1RERERGQ4U2MHQERERESk5evrC5lMhqtXrz7xZcvl8lJJ+pJ9dmuZmZlJr7XJzLLGlewKpOR0bZmH/SCwc+dOad0WFhZlltE3vjIKCQnB0KFDMXfuXAQFBcHW1hZr164t1Ud7WfuprC5VyvPg51Hecnv27AlPT0/88ssvcHV1hUajQb169R76UM7Ro0dj2LBh+Oabb7BixQoMHDgQlpaW5cbm7u6OyMhI7N+/H/v27cN7772HRYsWITg4+Il9pg92dZSZmYmePXviyy+/LFXWxcXliayTiIiI6GXGluhEREREVGlUqVIFQUFBWLZsGbKyskpNT01NBQDUrl0bt27dwq1bt6RpV65cQWpqKurUqVPmsh0dHXUe9qlWq3Hp0qUnuwEG8vT0RM2aNVGzZk24ubmVWaZBgwa4ffs2/v333zKn165dG8ePH9cZd/z4cfj5+Un9pj8rJ06cgKenJz7++GM0a9YMvr6+uHnzZoWWUaNGDamfb62CggKcOXNG72dqiPv37yMyMhKffPIJOnXqhNq1ayMlJaXc+bp37w4rKyssX74cu3fvxqhRowxep4WFBXr27Ilvv/0Whw8fRkhICMLDw1G/fn1oNBoEBweXOV/t2rUREhKi8wPM8ePHYW1tjerVq+tdX5MmTXD58mV4eXlJ9Uo7lPVsASIiIiKqGCbRiYiIiKhSWbZsGdRqNVq0aIGNGzfi2rVriIiIwLfffouAgAAAQGBgIOrXr4+hQ4fi3LlzOH36NIYPH4527dqhWbNmZS63Y8eO2LFjB3bs2IGrV69i7NixUlK+MmrXrh3atm2L/v37Y9++fYiOjsauXbuwe/duAMAHH3yAAwcO4LPPPsO///6LVatW4fvvv3/kB5rGx8cjLCwM169fBwCEh4cjLCys1EM9y+Lr64vY2FisXbsWUVFR+Pbbb7F58+YKrd/Kygpjx47F1KlTsXv3bly5cgVjxoxBdnY23nrrrUfaJgCwt7dH1apV8fPPP+P69es4ePAgJk+eXO58JiYmGDlyJGbMmAFfX1+p7pVn5cqV+O2333Dp0iXcuHEDf/75JywsLODp6QkvLy+MGDECo0aNwj///IPo6GgcPnwY69evBwC89957uHXrFiZMmICrV69iy5YtmD17NiZPngy5XP+l27hx45CcnIzBgwfjzJkziIqKwp49e/Dmm28apWsfIiIiohcNk+hEREREVKn4+Pjg3Llz6NChAz744APUq1cPnTt3xoEDB7B8+XIARd11bNmyBfb29mjbti0CAwPh4+ODdevW6V3uqFGjMGLECCnZ7uPjgw4dOjyrzXokGzduRPPmzTF48GDUqVMHH374oZQUbdKkCdavX4+1a9eiXr16mDVrFj799FOMHDnykdb1448/onHjxhgzZgwAoG3btmjcuDG2bt1a7ry9evXCpEmTMH78eDRq1AgnTpzAzJkzKxzDggUL0L9/fwwbNgxNmjTB9evXsWfPHtjb21d4WVpyuRxr165FaGgo6tWrh0mTJmHRokUGzfvWW28hPz8fb775psHrs7Ozwy+//ILWrVujQYMG2L9/P7Zt24aqVasCAJYvX47/+7//w3vvvYdatWphzJgx0l0Xbm5u2LlzJ06fPo2GDRvi3XffxVtvvYVPPvnkoet0dXXF8ePHoVar0aVLF9SvXx8TJ06EnZ3dQ5PvRERERGQYmTD06U1EREREREQvkaNHj6JTp064deuW9EBZIiIiInr5MIlORERERERUQl5eHpKSkjBixAg4Oztj9erVxg6JiIiIiIyI9/YREREREb3gVq9eDZVKVeZQt27dcuf/4osv9M7frVu3Z7AFz9Zff/0FT09PpKamYuHChTrTHndfEhEREdHzhy3RiYiIiIhecBkZGUhISChzmpmZGTw9PR86f3Jyst4HjFpYWMDNze2xY3xePO6+JCIiIqLnD5PoRERERERERERERER6sDsXIiIiIiIiIiIiIiI9mEQnIiIiIiIiIiIiItLD1NgBvEw0Gg3u3r0La2tryGQyY4dDRERERERERERE9NISQiAjIwOurq6Qy/W3N2cS/Rm6e/cu3N3djR0GERERERERERERERW7desWqlevrnc6k+jPkLW1NYCiD8XGxsbI0RARERERERERERG9vNLT0+Hu7i7lbfVhEv0Z0nbhYmNjwyQ6ERERERERERERUSVQXtfbfLAoERERET0XQkNDMWzYMNy6dcvYoRARERER0UuESXQiIiIiei589913+PPPP7FmzRpjh0JERERERC8RJtGJiIiI6LmQkpICAEhOTjZyJERERERE9DJhn+iVUGFhIfLz840dBr1kFAoFTE15SCAiosorPT0dAJCWlmbkSIiIiIiI6GXCjFklIoRAbGws7t27Z+xQ6CXl4OAADw+Pch+mQEREZAxMohMRERERkTFUqiS6vb29wcm7F/E2Xm0C3c3NDSqVCnI5e9uhZ0Oj0SAzMxN37twBAHh6eho5IiIiotKYRCciIiIiImOoVEn0JUuWGDsEoyksLJQS6M7OzsYOh15CKpUKAHDnzh1cu3YNr776KszNzY0cFRER0f8wiU5ERERERMZQqZLoI0aMMHYIRqPtA12byCQyBm39i4iIQHZ2Nrp06cJEOhERVRpMohMRERERkTFU6v5CoqKi8Mknn2Dw4MFITEwEAOzatQuXL182cmRPD7twIWPS1j8HBwdcuXIFMTExxg2IiIioWH5+PnJzcwEwiU5ERERERM9Wpc3YBgcHo379+jh16hQ2bdqEzMxMAMCFCxcwe/ZsI0dH9GJTKBQAgKysLCNHQkREVCQjI0N6zSQ6ERERERE9S5U2iT59+nTMmzcP+/btkxJ6ANCxY0ecPHnSiJERERER0bOm7coFKEqoq9VqI0ZDREREREQvk0qbRA8PD0ffvn1Lja9WrRru3btnhIioLMuXL0eDBg1gY2MDGxsbBAQEYNeuXTpl3nnnHdSoUQMWFhZwdHRE7969cfXqVZ0yZ86cQadOnWBnZwd7e3sEBQXhwoULD123l5cXZDIZZDIZLCws4OXlhQEDBuDgwYMV3o6RI0eiT58+FZ6PiIiIno0HW5+XbJlORERERET0NFXaJLqdnR3i4uJKjT9//jzc3NyMEBGVpXr16liwYAFCQ0Nx9uxZdOzYEb1799bpt75p06ZYsWIFIiIisGfPHggh0KVLF6kFWWZmJrp27QoPDw+cOnUKx44dg7W1NYKCglBQUPDQ9X/66aeIi4tDZGQkfv/9d9jZ2SEwMBCff/75U91uIiIierZKtkQHgNTUVOMEQkREREREL51Km0QfNGgQpk2bhvj4eMhkMmg0Ghw/fhxTpkzB8OHDjR0eFevZsye6d+8OX19f+Pn54fPPP4dKpdLpcuftt99G27Zt4eXlhSZNmmDevHm4deuW9NDKq1evIjk5GZ9++in8/f1Rt25dzJ49GwkJCbh58+ZD129tbQ1nZ2d4eHigbdu2+PnnnzFz5kzMmjULkZGRAAC1Wo233noL3t7esLCwgL+/P5YuXSotY86cOVi1ahW2bNkitWw/fPgwAGDatGnw8/ODpaUlfHx8MHPmzHIT+0RERPTkPZhEZ7/oRERERET0rJgaOwB9vvjiC4wbNw7u7u5Qq9WoU6cO1Go1hgwZgk8++cTY4T11QghkZ2cbZd2WlpaQyWQVnk+tVmPDhg3IyspCQEBAmWWysrKwYsUKeHt7w93dHQDg7++PqlWr4rfffsNHH30EtVqN3377DbVr14aXl1eF43j//ffx2WefYcuWLfjwww+h0WhQvXp1bNiwAVWrVsWJEyfw9ttvw8XFBQMGDMCUKVMQERGB9PR0rFixAgBQpUoVAEVJ+pUrV8LV1RXh4eEYM2YMrK2t8eGHH1Y4LiIiInp0TKITEREREZGxVNqW6AqFAr/88guioqKwfft2/Pnnn7h69Sr++OMPmJiYPPJyFyxYAJlMhokTJ0rjcnNzMW7cOFStWhUqlQr9+/dHQkKCznyxsbHo0aMHLC0tUa1aNUydOhWFhYWPHEd5srOzoVKpjDJUNHkfHh4OlUoFpVKJd999F5s3b0adOnV0yvzwww/S8nft2qXzwFhra2scPnwYf/75JywsLKBSqbB7927s2rULpqYV/52nSpUqqFatmtTS3czMDHPnzkWzZs3g7e2NoUOH4s0338T69esBACqVChYWFlAqlXB2doazs7MU2yeffIJXXnkFXl5e6NmzJ6ZMmSLNR0RERM8Ok+hERERERGQslTaJfuzYMQCAh4cHunfvjgEDBsDX1/exlnnmzBn89NNPaNCggc74SZMmYdu2bdiwYQOCg4Nx9+5d9OvXT5quVqvRo0cP5Ofn48SJE1i1ahVWrlyJWbNmPVY8Lwp/f3+EhYXh1KlTGDt2LEaMGIErV67olBk6dCjOnz+P4OBg+Pn5YcCAAcjNzQUA5OTk4K233kLr1q1x8uRJHD9+HPXq1UOPHj2Qk5PzSDEJIXRa0y9btgxNmzaFo6MjVCoVfv75Z8TGxpa7nHXr1qF169ZwdnaGSqXCJ598YtB8RERE9GQxiU5ERERERMZSabtz6dixI9zc3DB48GC88cYbpVo2V1RmZiaGDh2KX375BfPmzZPGp6Wl4bfffsOaNWvQsWNHAMCKFStQu3ZtnDx5Eq1atcLevXtx5coV7N+/H05OTmjUqBE+++wzTJs2DXPmzJFaLT9JlpaWyMzMfOLLNXTdFaFQKFCzZk0ARQ8RPXPmDJYuXYqffvpJKmNrawtbW1v4+vqiVatWsLe3x+bNmzF48GCsWbMGMTExCAkJgVxe9LvOmjVrYG9vjy1btmDQoEEViuf+/ftISkqCt7c3AGDt2rWYMmUKFi9ejICAAFhbW2PRokU4derUQ5cTEhKCoUOHYu7cuQgKCoKtrS3Wrl2LxYsXVygeIiIienxMohMRERERkbFU2iT63bt3sXbtWvz1119YsGABGjRogKFDh2Lw4MGoXr16hZc3btw49OjRA4GBgTpJ9NDQUBQUFCAwMFAaV6tWLXh4eCAkJAStWrVCSEgI6tevDycnJ6lMUFAQxo4di8uXL6Nx48aPt7FlkMlksLKyeuLLfRY0Gg3y8vL0ThdCQAghlcnOzoZcLtdpOa59r9FoKrz+pUuXQi6Xo0+fPgCA48eP45VXXsF7770nlYmKitKZR6FQQK1W64w7ceIEPD098fHHH0vjynvQKRERET0dTKITEREREZGxVNruXBwcHDB+/HgcP34cUVFReP3117Fq1Sp4eXlJLcYNtXbtWpw7dw7z588vNS0+Ph4KhQJ2dnY6452cnBAfHy+VKZlA107XTtMnLy8P6enpOsOLZsaMGThy5AhiYmIQHh6OGTNm4PDhwxg6dCgA4MaNG5g/fz5CQ0MRGxuLEydO4PXXX4eFhQW6d+8OAOjcuTNSUlIwbtw4RERE4PLly3jzzTdhamqKDh06PHT9GRkZiI+Px61bt3DkyBG8/fbbmDdvHj7//HOpdbyvry/Onj2LPXv24N9//8XMmTNx5swZneV4eXnh4sWLiIyMxL1791BQUABfX1/ExsZi7dq1iIqKwrfffovNmzc/hb1IRERE5WESnYiIiIiIjKXSJtFL8vb2xvTp07FgwQLUr18fwcHBBs9769YtvP/++1i9ejXMzc2fYpSlzZ8/X+rGxNbWFu7u7s90/c9CYmIihg8fDn9/f3Tq1AlnzpzBnj170LlzZwCAubk5jh49iu7du6NmzZoYOHAgrK2tceLECVSrVg1AUcv/bdu24eLFiwgICECbNm1w9+5d7N69Gy4uLg9d/6xZs+Di4oKaNWti2LBhSEtLw4EDBzBt2jSpzDvvvIN+/fph4MCBaNmyJe7fv6/TKh0AxowZA39/fzRr1gyOjo44fvw4evXqhUmTJmH8+PFo1KgRTpw4gZkzZz7hPUhERESG0CbRtQ0ZmEQnIiIiIqJnRSaEEMYO4mGOHz+O1atX4++//0Zubi569+6NoUOHomvXrgbN/88//6Bv374wMTGRxqnVashkMsjlcuzZsweBgYFISUnRaY3u6emJiRMnYtKkSZg1axa2bt2KsLAwaXp0dDR8fHxw7tw5vd255OXl6XRrkp6eDnd3d6SlpcHGxkanbHZ2NiIiIlC7du0K90lO9KRo62FMTAyuXbuGzp07o2nTpsYOi4iICIGBgThw4ACaNWuGs2fPYtCgQfjrr7+MHRYRERERET3H0tPTYWtrW2a+tqRK2xJ9xowZ8Pb2RseOHREbG4ulS5ciPj4ef/zxh8EJdADo1KkTwsPDERYWJg3NmjXD0KFDpddmZmY4cOCANE9kZCRiY2MREBAAAAgICEB4eDgSExOlMvv27YONjc1DH3iqVCphY2OjMxARERFRxWlbomvv7GNLdCIiIiIielYq7YNFjxw5gqlTp2LAgAFwcHB45OVYW1ujXr16OuOsrKxQtWpVafxbb72FyZMno0qVKrCxscGECRMQEBCAVq1aAQC6dOmCOnXqYNiwYVi4cCHi4+PxySefYNy4cVAqlY++kURERERkEG0S3cPDAwCT6ERERERE9OxU2iT68ePHn9m6vvnmG8jlcvTv3x95eXkICgrCDz/8IE03MTHB9u3bMXbsWAQEBMDKygojRozAp59++sxiJCIiInqZsSU6EREREREZS6VNogPAH3/8gR9//BHR0dEICQmBp6cnlixZAm9vb/Tu3fuRl3v48GGd9+bm5li2bBmWLVumdx5PT0/s3LnzkddJRERERI+OSXQiIiIiIjKWStsn+vLlyzF58mR0794dqampUKvVAAA7OzssWbLEuMERERER0TOjVquRlZUFgEl0IiIiIiJ69iptEv27777DL7/8go8//hgmJibS+GbNmiE8PNyIkRERERHRs5SRkSG91ibRMzIypEYWRERERERET1OlTaJHR0ejcePGpcYrlUqpJRIRERERvfi0XbkolUo4OjqWGk9ERERERPQ0Vdokure3N8LCwkqN3717N2rXrv3sAyIiIiIio9Amy21sbKBUKqFUKgGwSxciIiIiIno2Km0SffLkyRg3bhzWrVsHIQROnz6Nzz//HDNmzMCHH35o7PDoBXX48GHIZDKkpqY+0/WuXLkSdnZ2j7WMmJgYyGSyMn980jLW9hERET2Okkl0ALC1tQXAJDoRERERET0blTaJPnr0aHz55Zf45JNPkJ2djSFDhmD58uVYunQpBg0aZOzwqNiRI0fQs2dPuLq6QiaT4Z9//tGZXlBQgGnTpqF+/fqwsrKCq6srhg8fjrt37z50ucuXL0eDBg1gY2MDGxsbBAQEYNeuXTploqKi0LdvXzg6OsLGxgYDBgxAQkKC3mXKZLKHDnPmzHnU3UBERERPkTZZziQ6EREREREZQ6VNogPA0KFDce3aNWRmZiI+Ph63b9/G4MGDceLECWOHRsWysrLQsGFDLFu2rMzp2dnZOHfuHGbOnIlz585h06ZNiIyMRK9evR663OrVq2PBggUIDQ3F2bNn0bFjR/Tu3RuXL1+W1tulSxfIZDIcPHgQx48fR35+Pnr27AmNRlPmMuPi4qRhyZIlsLGx0Rk3ZcqUR9oH+fn5jzQfERERGYYt0YmIiIiIyJgqdRJdy9LSEtWqVQMAXLt2DW3atDFyRKTVrVs3zJs3D3379i1zuq2tLfbt24cBAwbA398frVq1wvfff4/Q0FDExsbqXW7Pnj3RvXt3+Pr6ws/PD59//jlUKhVOnjwJADh+/DhiYmKwcuVK1K9fH/Xr18eqVatw9uxZHDx4sMxlOjs7S4OtrS1kMpnOOJVKJZUNDQ1Fs2bNYGlpiVdeeQWRkZHStDlz5qBRo0b49ddf4e3tDXNzcwBAamoqRo8eLbWM79ixIy5cuCDNd+HCBXTo0AHW1tawsbFB06ZNcfbsWZ0Y9+zZg9q1a0OlUqFr166Ii4uTpmk0Gnz66aeoXr06lEolGjVqhN27d+vdhwCwc+dO+Pn5wcLCAh06dEBMTMxDyxMREVVGDybRtV2gMYlORERERETPwnORRKcXS1paGmQymcF9gKvVaqxduxZZWVkICAgAAOTl5UEmk0kPFgMAc3NzyOVyHDt27LFj/Pjjj7F48WKcPXsWpqamGDVqlM7069evY+PGjdi0aZPUB/nrr7+OxMRE7Nq1C6GhoWjSpAk6deqE5ORkAEV3VlSvXh1nzpxBaGgopk+fDjMzM2mZ2dnZ+Oqrr/DHH3/gyJEjiI2N1Wkdv3TpUixevBhfffUVLl68iKCgIPTq1QvXrl0rcxtu3bqFfv36oWfPnggLC8Po0aMxffr0x943REREzxpbohMRERERkTGZGjsAernk5uZi2rRpGDx4sHQhrE94eDgCAgKQm5sLlUqFzZs3o06dOgCAVq1awcrKCtOmTcMXX3wBIQSmT58OtVqt03r7UX3++edo164dAGD69Ono0aMHcnNzpVbn+fn5+P333+Ho6AgAOHbsGE6fPo3ExEQpsf/VV1/hn3/+wd9//423334bsbGxmDp1KmrVqgUA8PX11VlnQUEBfvzxR9SoUQMAMH78eHz66afS9K+++grTpk2Tngnw5Zdf4tChQ1iyZEmZ3eksX74cNWrUwOLFiwEA/v7+CA8Px5dffvnY+4eIiOhZYhKdiIiIiIiMiS3RK7uvvwaqVy9/KKuP8V69DJv366+fyaYUFBRgwIABEEJg+fLl5Zb39/dHWFgYTp06hbFjx2LEiBG4cuUKAMDR0REbNmzAtm3boFKpYGtri9TUVDRp0gRy+eNX6wYNGkivXVxcAACJiYnSOE9PTymBDhR11ZKZmYmqVatCpVJJQ3R0NKKiogAAkydPxujRoxEYGIgFCxZI47UsLS2lBLp2vdp1pqen4+7du2jdurXOPK1bt0ZERESZ2xAREYGWLVvqjNO25CciInqeMIlORERERETGVOlaom/duvWh06Ojo59RJJVEejpw50755dzdS49LSjJs3uIL06dJm0C/efMmDh48WG4rdABQKBSoWbMmAKBp06Y4c+YMli5dip9++gkA0KVLF0RFReHevXswNTWFnZ0dnJ2d4ePj89jxluxmRSaTAYDOA0utrKx0ymdmZsLFxQWHDx8utSxttzVz5szBkCFDsGPHDuzatQuzZ8/G2rVrpf7kS65Tu14hxGNvCxER0fOOSXQiIiIiIjKmSpdE79OnT7lltEnNl4KNDeDmVn65Eq2idcYZMq8BCe3HoU2gX7t2DYcOHULVqlUfaTkajQZ5eXmlxjs4OAAADh48iMTERPQqq1X+U9akSRPEx8fD1NQUXl5eesv5+fnBz88PkyZNwuDBg7FixQq9D2UtycbGBq6urjh+/LjUzQxQ9IDVFi1alDlP7dq1S/0opX0wKxER0fOESXQiIiIiIjKmSpdEL9nalwBMnlw0PIpyWvU/CZmZmbh+/br0Pjo6GmFhYahSpQo8PDxQUFCA//u//8O5c+ewfft2qNVqxMfHAwCqVKkChUIBAOjUqRP69u2L8ePHAwBmzJiBbt26wcPDAxkZGVizZg0OHz6MPXv2SOtasWIFateuDUdHR4SEhOD999/HpEmT4O/v/9S3+0GBgYEICAhAnz59sHDhQvj5+eHu3bvYsWMH+vbti7p162Lq1Kn4v//7P3h7e+P27ds4c+YM+vfvb/A6pk6ditmzZ6NGjRpo1KgRVqxYgbCwMKxevbrM8u+++y4WL16MqVOnYvTo0QgNDcXKlSuf0BYTERE9O0yiExERERGRMVW6JDo9X86ePYsOHTpI7ycXJ/xHjBiBlStX4s6dO1Jr6EaNGunMe+jQIbRv3x4ApG5ZtBITEzF8+HDExcXB1tYWDRo0wJ49e9C5c2epTGRkJGbMmIHk5GR4eXnh448/xqRJk57Slj6cTCbDzp078fHHH+PNN99EUlISnJ2d0bZtWzg5OcHExAT379/H8OHDkZCQAAcHB/Tr1w9z5841eB3/+c9/kJaWhg8++ACJiYmoU6cOtm7dWuoBpVoeHh7YuHEjJk2ahO+++w4tWrTAF198gVGjRj2pzSYiInommEQnIiIiIiJjkgl2uvzMpKenw9bWFmlpaaX6BM/OzkZERARq164NS0tLI0VILzttPYyJicG1a9fQuXNnNG3a1NhhERHRS65u3bq4cuUKDhw4gI4dO+LAgQMIDAxE3bp1cenSJWOHR0REREREz6mH5WtLkj/DmIiIiIiIKkxfS/TU1FRjhURERERERC8RJtGJiIiIqFJjdy5ERERERGRMlTKJrlarceTIEbYuIiIiInrJaTQaZGRkAPhf8lz7NzMzE2q12mixERERERHRy6FSJtFNTEzQpUsXpKSkGDsUIiIiIjKirKwsaB/h82BLdOB/rdSJiIiIiIielkqZRAeAevXq4caNG8YOg4iIiIiMSJskNzU1hbm5OQBAqVRCqVQCYJcuRERERET09FXaJPq8efMwZcoUbN++HXFxcUhPT9cZXlQajcbYIdBLjPWPiIgqm5L9octkMmk8+0UnIiIiIqJnxdTYAejTvXt3AECvXr10LpiEEJDJZC9c/5cKhQJAUd+eKpXKyNHQyyozMxMAUFBQYORIiIieT2q1GhqNBmZmZsYO5YXx4ENFtWxtbZGYmMgkOhERERERPXWVNol+6NChJ7as+fPnY9OmTbh69SosLCzwyiuv4Msvv4S/v79UJjc3Fx988AHWrl2LvLw8BAUF4YcffoCTk5NUJjY2FmPHjsWhQ4egUqkwYsQIzJ8/H6amj78bTU1N4eDggDt37gAAVCoV5PJKe6MAvWA0Gg0yMzNx584dpKamQqPRSP3PEhGR4Xr27InQ0FBcvHhR5xyCHt3DkugAW6ITEREREdHTV2mT6O3atXtiywoODsa4cePQvHlzFBYW4qOPPkKXLl1w5coVWFlZAQAmTZqEHTt2YMOGDbC1tcX48ePRr18/HD9+HEBRy7IePXrA2dkZJ06cQFxcHIYPHw4zMzN88cUXTyRODw8PFBQUSIl0omctNTUVCQkJUgKdLSmJiAx369Yt7Nq1CwCwYcMGjB8/3sgRvRj0JdHt7OwAMIlORERERERPX6VNogPA0aNH8dNPP+HGjRvYsGED3Nzc8Mcff8Db2xuvvvqqwcvZvXu3zvuVK1eiWrVqCA0NRdu2bZGWlobffvsNa9asQceOHQEAK1asQO3atXHy5Em0atUKe/fuxZUrV7B//344OTmhUaNG+OyzzzBt2jTMmTNH6o7lcchkMvj4+GDjxo2Ii4uDk5PTE2nlTmSIgoICqQV6XFwcrK2t4eDgYOywiIieGzt37pReb9q0iUn0J0SbJGdLdCIiIiIiMpZKm6HduHEjhg0bhqFDh+LcuXPIy8sDUHSh9MUXX+hcqFaU9mKrSpUqAIDQ0FAUFBQgMDBQKlOrVi14eHggJCQErVq1QkhICOrXr69za3ZQUBDGjh2Ly5cvo3Hjxo8cT0lyuRxdu3bFjh07EB0dLfUBT/SsCCFgY2ODLl26wNXV1djhEBE9N0qemxw5cgT37t3jj5FPALtzISIiIiIiY6u0SfR58+bhxx9/xPDhw7F27VppfOvWrTFv3rxHXq5Go8HEiRPRunVr1KtXDwAQHx8PhUIh3Ras5eTkhPj4eKnMg32bat9ryzwoLy9PSv4D/7sILI+1tTV69eqFhIQE5OTksG9qeqbMzMxgb28PR0dHY4dCRPTcyMvLw/79+wEU/UifnJyMbdu24c033zRyZM8/JtGJiIiIiMjYKm0SPTIyEm3bti013tbWFqmpqY+83HHjxuHSpUs4duzYY0RnmPnz52Pu3LmPNK+lpSW8vb2fcERERET0NBw5cgTZ2dlwcXHBO++8gzlz5mDTpk1Moj8BTKITEREREZGxyY0dgD7Ozs64fv16qfHHjh2Dj4/PIy1z/Pjx2L59Ow4dOoTq1avrrCs/P79Ucj4hIQHOzs5SmYSEhFLTtdPKMmPGDKSlpUnDrVu3HiluIiIiqtx27NgBAOjevTv69+8PANi7dy8yMjKMGdYLgUl0IiIiIiIytkqbRB8zZgzef/99nDp1CjKZDHfv3sXq1asxZcoUjB07tkLLEkJg/Pjx2Lx5Mw4ePFiqhXfTpk1hZmaGAwcOSOMiIyMRGxuLgIAAAEBAQADCw8ORmJgoldm3bx9sbGxQp06dMterVCphY2OjMxAREdGLR9sfevfu3VG3bl34+voiPz8fu3btMnJkzz8m0YmIiIiIyNgqbXcu06dPh0ajQadOnZCdnY22bdtCqVRiypQpmDBhQoWWNW7cOKxZswZbtmyBtbW11Ie5ra0tLCwsYGtri7feeguTJ09GlSpVYGNjgwkTJiAgIACtWrUCAHTp0gV16tTBsGHDsHDhQsTHx+OTTz7BuHHjoFQqn/j2ExER0fPh2rVruHbtGszMzBAYGAiZTIZ+/frhyy+/xKZNmzBgwABjh/hcKy+J/jjd/BERERERERmi0rZEl8lk+Pjjj5GcnIxLly7h5MmTSEpKwmeffVbhZS1fvhxpaWlo3749XFxcpGHdunVSmW+++QavvfYa+vfvj7Zt28LZ2RmbNm2SppuYmGD79u0wMTFBQEAA3njjDQwfPhyffvrpE9leIiIiej5pW5u3adNGSvT27dsXQFE3L7m5uUaL7UXAluhERERERGRslbYl+qhRo7B06VJYW1vrdJeSlZWFCRMm4L///a/ByxJClFvG3Nwcy5Ytw7Jly/SW8fT0lG7XJiIiIgJ0u3LRat68Odzc3HDnzh3s378fr732mrHCe+4xiU5ERERERMZWaVuir1q1Cjk5OaXG5+Tk4PfffzdCRESVQ2FhIbKzs40dBhERoejH/cOHDwPQTaLL5XKpNfrmzZuNEdoLg0l0IiIiIiIytkqXRE9PT0daWhqEEMjIyEB6ero0pKSkYOfOnahWrZqxwyQymldffRU+Pj5MpBMRVQIHDx5EXl4evLy8UKtWLZ1p/fr1AwBs2bIFhYWFxgjvhVBeEj0zMxNqtfqZx0VERERERC+PStedi52dHWQyGWQyGfz8/EpNl8lkmDt3rhEiIzK+zMxMnDp1CgBw69Yt+Pv7GzkiIqKXm7Yrlx49ekAmk+lMa9OmDapWrYr79+/j6NGj6NChgzFCfK4JIcpNogNFiXZ7e/tnGhsREREREb08Kl0S/dChQxBCoGPHjti4cSOqVKkiTVMoFPD09ISrq6sRIyQynujoaOl1VlaWESMhIiIhRJn9oWuZmpqiV69eWLFiBTZv3swk+iPIycmRWpk/mERXKpVQKpXIy8tDWloak+hERERERPTUVLokert27QAUJQvd3d0hl1e6HmeIjIZJdCKiyuPy5cuIjY2Fubk52rdvX2aZfv36YcWKFdi0aROWLFnC85oK0rZCl8lkUKlUpabb2toiMTGR/aITEREREdFTVemS6Fqenp4AgOzsbMTGxiI/P19neoMGDYwRFpFRMYlORFR5aFuhd+jQAZaWlmWWCQwMhEqlwp07d3D27Fm0aNHiWYb43CvZlcuD3eUATKITEREREdGzUWmT6ElJSXjzzTexa9euMqfzAVL0MmISnYio8ijZH7o+5ubm6N69O9avX49NmzYxiV5B+vpD17KzswMAJtGJiIiIiOipqrT3FE+cOBGpqak4deoULCwssHv3bqxatQq+vr7YunWrscMjMgom0YmIKoe0tDQcO3YMANCtW7eHlu3Xrx8AYNOmTRBCPPXYXiTlJdG1DxdlEp2IiIiIiJ6mStsS/eDBg9iyZQuaNWsGuVwOT09PdO7cGTY2Npg/f/5DW30RvahKJtGzs7ONGAkR0ctt7969UKvVqFWrFnx8fB5atnv37lAoFLh27RquXLmCunXrPqMon39MohMRERERUWVQaVuiZ2VloVq1agAAe3t7JCUlAQDq16+Pc+fOGTM0IqMQQrAlOhFRJaHtyqV79+7llrW2tkbnzp0BFLVGJ8MxiU5EREREL5oVK1bg4MGDxg6DKqjSJtH9/f0RGRkJAGjYsCF++ukn3LlzBz/++CNcXFyMHB3Rs3f//n1kZmZK75lEJyIyDo1GIz2zxZAkOvC/Ll02b9781OJ6ETGJTkREREQvkoiICIwaNQp9+/ZFQUGBscOhCqi0SfT3338fcXFxAIDZs2dj165d8PDwwLfffosvvvjCyNERPXslW6EDTKITERnL+fPnkZCQAJVKhTZt2hg0T69evSCXy3H+/PlSx3PST5scZxKdiIiIiF4E2gbD6enpOHv2rJGjoYqodEl07YXlG2+8gZEjRwIAmjZtips3b+LMmTO4desWBg4caMQIiYyDSXQiosphx44dAIDOnTtDoVAYNI+DgwPatWsHgK3RK8LQluipqanPKiQiIiIiokdWMrfDLl2eL5UuiV6jRg14e3tj1KhR+PPPP3H79m0AgKWlJZo0aQIHBwcjR0hkHEyiExFVDhXpD72kvn37AmC/6BXB7lyIiIiI6EUSExMjvT5w4IDxAqEKq3RJ9IMHD2LEiBG4ceMGxowZA09PT/j6+uKdd97B2rVrkZCQYOwQiYxCm0S3s7MDwCQ6EZExJCUl4fTp0wCAbt26VWjePn36AABOnDiB+Pj4Jx3aC4lJdCIiIiJ6kZRsIHnixAnk5OQYMRqqiEqXRG/fvj3mzJmDw4cPIyUlBfv27cPgwYMRERGBkSNHwtXVFXXr1jV2mETPnPZAW69ePQBMohMRGcOePXsghECjRo3g5uZWoXnd3d3RokULCCGwZcuWpxThi4VJdCIiIiJ6kZRMoufl5SEkJMSI0VBFVLokeknm5ubo2LEjPvnkE8ydOxf/+c9/oFKpcPXqVWOHRvTMMYlORGR82v7QK9qVi1a/fv0AsEsXQzGJTkREREQvCiGElNtp3rw5APaL/jyplEn0/Px8HDlyBHPnzkWHDh1gZ2eHd999FykpKfj+++9L9Q1N9KLTaDS4efMmgOczib5gwQJ8++23xg6DiOixFBYWYs+ePQAePYmu7Rf94MGDfBimAZhEJyIiIqIXxf3796VczptvvgmASfTnSaVLonfs2BH29vZ47733kJiYiHfeeQdRUVGIjIzEL7/8gmHDhsHDw8PYYRI9U3fv3kV+fj5MTEzg7+8P4PlJosfGxmLGjBl4//338ddffxk7HCKiR3bq1CmkpKTA3t4eLVu2fKRl+Pn5oW7duigsLMT27dufcIQvHkOT6JmZmVCr1c8sLiIievLOnz+Pd955h88NIaIXlrZRsKurq9Qo5/Tp08jIyDBmWGSgSpdEP3r0KKpWrYqOHTuiU6dO6Ny5M1xcXIwdFpFRaQ+0Hh4eUiLheUmi37hxQ3r97rvv6rwnInqe7Ny5EwAQFBQEU1PTR14Ou3QxnKFJ9JJlybhycnLw66+/IioqytihEFEldvjwYRw7dkxnXJMmTfDzzz/jgw8+MFJURERPlza34+3tDU9PT/j4+ECtVuPo0aNGjowMUemS6Kmpqfj5559haWmJL7/8Eq6urqhfvz7Gjx+Pv//+G0lJScYOkahCsrOzH3sZ2gOtj48PrKysnthynwVtNzRAUYJjyJAhKCgoMGJERMaTn58PjUZj7DDoEWn7Q+/Ro8djLUfbpcvu3bufm2O5sZSXRFcqlVAqlQDYpUtlEBMTg9atW2PMmDFo3bo1bt26ZeyQiKgSyszMRLdu3dC+fXuEhYWVmn7t2rVnHxQR0TOgze14eXkBKOqNA2CXLs+LSpdEt7KyQteuXbFgwQKcOnUK9+7dw8KFC2FpaYmFCxeievXqUp/QRJVZRkYGhg4dCmtra0yePPmxbjPXtt729vaWkujPS0v0mJgYAECXLl1ga2uLU6dOYc6cOUaNicgYIiIi4OPjA29vbwQHBxs7HKqgO3fu4MKFC5DJZAgKCnqsZTVq1AheXl7IycmR+lin0vLy8pCfnw9AfxIdYL/olcWBAwfQrFkznD9/HgCQkJCAPn368IciIiolKSkJubm5UKvVGDNmDNRqNYQQ0nQnJycjRkf0/NJoNJg4cSK+//57Y4dCemjzI97e3gCATp06ASg6j9JHCIHt27fzB8ZKoNIl0R9kZWWFKlWqoEqVKrC3t4epqSkiIiKMHRbRQ128eBHNmjXDmjVroNFo8M0336B3796P3M9VyVt+tEn0nJyc56JFq7Yleps2bfDLL78AAObPn49Dhw4ZNH9ycjL7uaXnXkxMDDp37ow7d+4gNjYWHTt2xKxZs1BYWGjs0MhAu3btAgC0aNECjo6Oj7UsmUzGLl0MULJ7Fmtra73lmEQ3LiEEvvrqK3Tp0gX3799H06ZNERwcDAcHB5w7dw4jR47USY4RPUuFhYU4fPgwf8ypZEoer8+ePYvvvvsO9+/fl8Y97vcs0csqNDQUS5cuxYQJE3iOWUmVzO0AQIcOHQAAYWFhOsdBraysLAwaNAg9e/aUrh/IeCpdEl2j0eD06dNYuHAhunXrBjs7O7zyyiv44Ycf4OzsjGXLlhm1T+Vly5bBy8sL5ubmaNmyJU6fPm20WF50UVFRWLFiBUJDQ6WWaJWdEAK//vorWrZsiX///RfVq1fHF198AXNzc+zYsQOtW7fW6d7EUCUPtJaWltL45+GCQLu9np6eeP311/HWW29BCIFhw4aV+SVR0sGDB+Hm5oZ69erh6tWrTz3WhIQE7N+/nxf79ETFxcUhMDAQd+7cQZ06dTB8+HBoNBp89tlnaNeundQagSo3bX/o2gcAPS7tSfC2bduQk5ODvLy8J7JcrdTUVISEhOC///0vPvzwQ0ydOhW///47Lly48Nx8p2qT6FZWVjAxMdFbzs7ODkDlSaIfPnwYM2fORE5OjrFDeeqysrIwePBgTJ06FRqNBiNHjsTRo0fRtm1bbNq0CWZmZtiwYQM+++wzY4dKL6G7d++iQ4cO6NChAz7++GMARefqK1euxLp163i+Z0Ta47VMJgMAfPLJJzoNbJ5UA5obN248N995LwohBHbt2oX169cjMzPT2OEYJD4+Hm3btkXnzp3xxx9/PBfX2PpERkZKr996661Hyj3Q0/VgEt3JyQl169YFUHQOWZK2m7z169cDAC5dulRpzndfWqKSsba2FnK5XLi6uoqhQ4eKX3/9VVy/ft3YYQkhhFi7dq1QKBTiv//9r7h8+bIYM2aMsLOzEwkJCQbNn5aWJgCItLS0pxzp8+/GjRuiWrVqAoAAIJRKpfi///s/ERYWZuzQ9MrMzBTDhg2TYu7WrZtISkoSQghx+vRp4ezsLACIatWqiZCQkAotu3r16gKACAkJEWq1WlpHfHz809iUComPjxfDhw8XJ06cKHN6jRo1BAARHBwshCjaT/7+/gKA6N27t9BoNHqX6+TkJG2rtbW1+Oeffx45zrS0NBEeHi527twpfv31V3Hu3Dmd6dHR0cLV1VUAELNmzSp3eRqNRsTHx4vCwsJHjulpKiwsFKGhoWLJkiWif//+wsXFRfj6+opx48aJrVu3ioyMDKPGp9Fo9H72ZcnJyRFRUVEiODhYbNy4sdJ8L5Tn/v37ol69egKA8Pb2Fnfu3BFCCPHXX38JGxsbAUDY2tqKdevWPZX1FxYWiiNHjoipU6eKzp07Cx8fH2Fvby+2bdsmlcnKyhKHDh0S8+bNE927dxfDhw8X+fn5TyWe51Vubq5QqVQCgDh79uwTWaZarZaOcXK5XJiZmYl3331X3Lx50+BlaDQacfv2bbFv3z7x7bffirFjx4oOHTpI3zf6BjMzM9GgQQPxxhtviEWLFom9e/cafC7zLJ07d04AEK6urg8tFxgYKACIP/744xlFVjaNRiO++uorIZfLBQDx119/GTWep+369euifv36AoAwNTUVy5YtK3Vc/+WXX6R69/fffxsp0icjOztbdOjQQTRp0kT88ssvIjs729gh0UPs379f51qiUaNGQgghfvjhB2lc9+7dRVxcnEHLy8nJERcuXBBr164Vs2fPFmPHjtV77vs4rl27Jnr27Cm++uqrCp0nPW+2bNkiAIjmzZuLNm3aCADC3t5e+mz69ev32Ov47LPPBABRpUoV8c4774hDhw6JO3fuPPY5zqVLl8SXX34ptm7dKm7fvv1Cf04VdeLECdGyZUvpc7S0tBRDhgwRO3bsqLTnlllZWaJZs2Y650nW1tZi9OjR4vjx48/d5ztr1iydbWndurUoKCio0DKys7MrPM/LJCEhQaSnpz/SvGq1WigUCgFAREdHS+MnTJggAIj33ntPGnfo0CFRtWpVAUA4OTmJKlWqCADi8OHDj7sJVAZD87UyISrXT/A//fQTOnToAD8/P2OHUkrLli3RvHlzqX8pjUYDd3d3TJgwAdOnTy93/vT0dNja2iLNxQU28nJuAmjSBNi6VXdcr17AuXPlBzp5ctGglZEB1K5d/nwAsGUL0LTp/95v3w68+27586lUwIMthadOBf76C0DRL9KpaWlSSwBttTMxMUGEtzdOvvkmatSoAR8fH1SpUgUZ/v6wy8uDXC6HEEKnpYi5uTlsbGygMDMDFi4Ehgz53zojI4HiPqWAom8OjVoNyGSQAbp/z5wBXFz+N+/PPwOfflr+tvr5AQ889CH1tdeQu2eP1DWDjY0NrK2ti9ZVrFCtxi9C4L2EBCiVSqxcuRKDBg0Cqld/6OoEivrifQPAuvh4ODk5wcrKCs2zs7Hf2RmmD2mdJ7l9W/f93LlAcdcqD9WuHbB6te64jh2Bf/+V3t5PTpZa21V3c/tfuVmzoBk9Gubm5igoKMCt06dRvfhhevkFBUhMTARQdBu+paUl5HK5tL80+/ah6/vvY9++fahbty4GqtV4s7h+WVtbw8bGRmffSpydgbNnART1pTt9+nS88vvveCUlpczWRkqFAipraygUCqzIycGY1FRp2saNG9Hvo4+AB1pQqDUaZGdnIysrC4WFhZDJZFhaqxZyAwPRpEkTNG3aFLWzs2Hav385O7dYRARQspuCr78uGsrTpAnUmzcjJycH2dnZyM7OhvUbb8AsPBz5eXnIy8/X28LqawDfm5nh1VdfRVBQELq9+irqDxxY9j590BM4RiQmJqJHjx4YefkyhpmZwcrKChqNBmq1usxhj4kJRuTm6izuDAA3ExOYm5tLDxY0kcuL/uc1GhQWFkKtVmNvYCAu1q2LWrVqoU6dOvATAopu3coMUa1WIys7GzKZDGZmZsgJDoZ9nTr/m758OTRz5iC/oACFhYWQy+UwMTHRGWQACnx8cO3HH+Hm5oYuXbrg9OnT2Ghujl52djr/r4VqNZKTk6XjoqWlJVQTJ0Lx+ee6gZVzjJD8+SfQvj0yMzOxd+9e/Pvzzxi+b1+Z3T4pFAooFArk5eWhoKAA7g9MjxwyBH6G9NtuwDFCr1mzkDpgAKKiohAVFYW4c+cwavlymFtYFO1L7fG6LAcOAP7+/3u/Zg3w4YeligkAEAICRa3dZCWOEZJ33gGKHxiqT25eHr67dw+LnZxw9+5dyLXf4bVqlTpGlOnHH4HXXvvf+9BQoHdvpKSmlvl8CysrK1hbWxfVl4gIFFpY4MaNG4iIiIDq55/R+PBhFBTXQ33/5+cAvOfmhtq1a6NWrVoAgEFr1sBLz/EQAORyOczMzHAyIADpo0ejQYMGqFWrFsxycx/rPKJwzBhoNBqYmZnp/0zLOI+4NWgQZOvWwdTUFM4P6R93r0KBoOhofP/99xg3blzRyGbNgPh4qYy2LmhbPWqlfvQRcvr2ha2tLSwsLCD791+d84iHKnEekZubi786dkTnkBBpsvZcQK1Wo6CgAAUFBUXHlzp1YH7ihO6yhg4FHvifK1SrkZWVhby8PJgrlbBSqWDyzjvA7Nm685ZzjNAIgcLCQhx/911cdXaGq6sr3N3dUePWLdhq91d5HjiPuDZsGCxXr4YQAnK5HFWrVoVSoSg9X7t2eN/BAd9++y0sLS1x/PhxNJo82eBjBN5++3/v4+KA5s0Ni7eMY0TB5MnIzc2FEAIWFhYwNTWV6qNaowGEgNzVFbLQUN1lvfMOxI4dSE9P1+mWTy6Xw8rKCirtnRKDBwOLFunO+5jHCIM8xnnE07rW0BQfY8o8jj/ieYSwssLVf/5BtWrVULVq1aKRxdcaao0GuTk5yC8ogImJCYRGg4zi/W5qaoothYUYb2qKAwcOIDAwEAUFBTgDwBlFn6O9nR0sLCyK1gNI/68FBQX41dcXP6anIzo6GhqNBn4ASvZaa2drCyuVquxjW/ExIj8/Hzdv3kT1nTth8WAdKaGgsBD3kpIQodGgE4BBgwbht99+K7oLdehQiOBgCO35UvFf7XWNiYkJFAoFZGPGQDNzJuLj43Hjxg0kJyfjtbFjoVarkZeXB1NTU5iZmcGkrGvR4vMIyeHDwBtvlP/ZANDcvKl7x1A51xpZ2dlISUnBv87OcD10CA0bNpTOhw4AqG1iUnS+L5NBJpMVXSdoX8tkkMnlwMyZkJesOyWOETm5uQ+947WfjQ3SXVxQrVo1VKtWDd1TU/F/p09DbmIind/J5fKi7/via1EhBPKqVEG9nByd1r2rLCzQXQiYmZlBoVDAzMwMcpms6Hqz+DtHBlToGCFQ1BWRdtjWvTtSWrdGtWrV4OjoCI+kJHi+/77O9ZM+msuXkZSbi7t37+Lu3btoduQInB48dytLBY4RhWo10tLSpGvC7xUKbPTwwPXr1wEAKgCRcjksLSxgaWkJM4Xif9d9QkCtVhftd7n8occIAeh8pxYU/8/b2tpCVk4+oiwCQPL9+/g7NxcfV62Kd999F2vWrEF0dLR0jDA1NYWlpSWsLC1L3RUnhEDEm29io1KJI0eOICsrC33r1MGELVugUCiK6kGJdT14h0Xi9u1QV6uG3Nxc5OTkQLVmDdz++1/IUHz8LFHv8/LypP2b4uiInR98AGdnZ2nw+vhjmJ44geTia3MrKytkZ2dDCAFra2vYap8tM2ZMqfMIjZsbCgoKkJubi7zcXOQXFADF225magpTMzMoFQqY//23zjFCfeAA5CNGGHYN+QTzEflt2kBz9SrUajXMzMz0n18+5nlEhqsrFixYgFq1amGoTIaCSZOQkZmJ3OLrUqVSCXNzc5ibm8PM1LRovjKuNcTbb0NWfEerWq1GXPH5qZubmxR3Tm4uvr9/H/+tVQtXrlzB999/j0mTJuGSWg17MzNUrVoVqampyM3NhUqlKtrm4mOjXC7Hvc8+g7J/f9jZ2RXVUwPPIwSA2N27cfXOHaknhT43bkD2zTfl76MXLGeZrtHANi4OaWlpD30WU6VLoldW+fn5sLS0xN9//40+ffpI40eMGIHU1FRs2bKl3GVISXQA+j+SYq1aASUuxAAAAQHAyZPlBzt7NlDywY3p6UBxf6HlOnGiaD1aGzYAAwaUP5+1ddF6Sho9Gvjtt3Jn3QDgwTXcAmBI2uhTd3essbSUboVvaGqKPXfuGDAn4A4gsfhEx8zMDBMKCvCpAQ/rjLa0RJCbGxITE6FWq2FiYoL16enoYsC/Uv64cXj91i1sLT7Y9O/fH39v3GhQvL2VSvyTkwOZTIZq1aqhcVISDH0cXY/u3WFmZiadOA8+cwa9oqLKne+iiwsWFj8tWmvB9u2obsAtRN9Ur47/2tnh0qVLMDExQe716zAtvmWpPMMaN8af58/DwsICZ8+ehd/RozA14MB4T6nEiOLkx+3bt3Hx4kWsB/C6Aev8FcBnHh7o1KkTVqxYAUtLSyTm5cHKgNtJXwfwd4n37RQKHDbw1tH+gYHIMjGBRqOBRqPBsKgojDCge49TMhlaPVDnTgAIKLu4jqV2dphY4gcDawDpekvrCrS0xHGNBra2tnBxccHrAD4KCyt3vhxTU7z1+usQQmDfvn24f/8+fgEw2oB1ao8RFhYWqF69OmxsbPBPaKhBx4jRAEoeherJZAg38GuvOgATDw80aNAASUlJaBcaii8N6MP8MoB6KEpU5+fno2rVqojx94fqwaRZGVbY2eFo3746Px6uXLXKoHhntWiBk7a2OHLkCPLy8tAFMPgYUd3NDa1bt0ZSUhIOHTqExQAmlzsXEGJtjQ8bNpS6mbp//z7+Cg+HrwH1/xMLC3xeorsLNwC39RfXMf211xBXpYp0YdHwzBlMvHy53PnuyuXoXr8+HB0doVQqoVAoMPXMGQQ8eGJfhl8BHB85EitWrPjfSBubopO+8qxfD7xe4kgUEgK88kr58wFo4e+PsBs3UFB8QTMbwBwD5its3hymD3Y5Z+B5xBwAc4tfKxQKNPf3x7HwcIPifat2bZySy5GTkwNLS0u0TUjAsqSkcufLMjFBr3btUFhYCI1GAwsLCww/cgRvGNDNzVkvLzQvPm727NkTGRkZWHv8OJyK99nDlDxGmJmZoZOzM3bdulXufADQpXZtxJuawt7eHvfu3UPQlSswIHWJywDGtWsHJycnZGdnF3XvdOYMmhiwn9a5uWFVgwawtLSEUqlEZmYmtjx4AaNHEIC9JeOH4ceIQQMHIj09HampqUhLS8PoK1cwyZAZu3RB4Y4d6N69O/bt2wdLS0ucLyiAnwGfzWf29viz+H9VqVSiOoDND/4Ipsf/1aqFGCsr6QIz8OZNfJ6QUO58twG0dHWFq6srHB0dcf/+fcy8eBGvPfBDbln+srLCTGdn6bzSzMwMR8LCYGXA82verVIFF/39UaNGDWRmZsIrLg7fnDplyKbitTZtkCYE8vPzUVBQgNG3b+M9A+rSFVtbTG7VSroAl8vlWHjsGGqlpJQ771p/f/zs6gpTU1NUq1YNptnZWLl5s0HxDvb0RFhxwhoAgtLTseTu3XLnSwdgi6IGOG3atIGzszPeCglBoAFdFWxRKNAnPx8qlQqZmZno168f1h47BrPiBh0PU/IYYWdnh+6enlh94UK58wHAG+3aIeTWLcTExECj0eBDU1ODziP+NTND3eIfvzw9PeHh4YF5Z8+irQFdRK2ws8PYB7oIM/Rif3bLlggr8YNl48REzDHk2hNFSWI7Ozu4ubmhSpUqGH/jBgYYcE12wckJDePj8emnn2J2cWLvEoC6BqxzMoDl5uZQqVRQqVSooVRif4muLB6mLoArJd6/haLv+fLcRtE1ZNWqVeHi4oIrV65grUZj0LXGShMTTCpuvKMdLsTEQGXAMeLBa41WAEL0lH1QFRMTpJS4njH0POK6gwM+695d58fnT3buRE0Dji+ZH3wAq0WLcPbsWfz555/Ytno1bpTTjafW5FatEO3sDKAoSR1w5w6mGXDszzY1xYCgIOkcWqPR4P1Ll9DNgHq4USaD89GjaN26NTQaDY4cOYIGPXqgigHdujx4rVEHRd/zhqgOoGR0kwCDzyPqPTBuN4q+58uzTKnEoddeg1wux82bNxETE4MEA46FAPCGgwPCXV2RmpqKlJQUBGRkGHweEdipk3TeLpPJ8HZkJPobcPw+7+iIucXnzDk5OQgPD8e+uDiDjhGL3dzwX1tb5OfnIy8vD1WysxFmYD0c26YNTmZkIKz4OneChQW+NeAYnGBmhqDiRlg5OTmIi4vDbxkZBh0jfkNRfWrSpAnOFSeis83MYGHAOVPJY4SNjQ06WlhgswHnPUBRbrLk1cxqX18MMeQBpi9YzlJ7nlFeEt3UsCjp3r17UKvVpZ4U7uTkpLev5ry8PJ0TGOkBWS4uQHkt0ct6mIqjI1Cypa8+D37gMplh8wHAg62ILCwMm1elKj3O3h5wc0N2Tg6Sk5OLTq7s7XV+wVWr1fDy9saQWrWk1oj37t3DPRMTOFWtCjMzM51FFhQWIiM9HdnFB7Crt26h5KlSDAxPwhSi6McRbauHeAPnjc7OLvVU5CQASUolqlSpUnbLjmIKR0dsWroU06dPx1dffYWNGzcaHK9/gwbSSYy7uzvykpIMnlfbl6+WH4AmBswXHheH1Q/88jvKwHVG3L6NS8WJqSZNmsBUqdSpSwJAWmoqsst4QOrp8+cBFD2DoE6dOkBYGODmhqzsbKSmpOi9GIjPy9PZVgsLCzRs1QoFV64UtSgpcRJYqFYjMzMTWVlZEEIg18ICe/fuRY0aNRAbG4sDBw7gFopaTjzIrLj1tKWFBdQaDca98QbcNRqcO3cO586dQ0ZGhsGfzd79+1Gy/UkDGFYPEx5IBFtYWCBDo8F9uRxKhQIKpVLvr/L/mTQJ3Xv1wp49e7Bnzx6cOXgQtw3s+y8lOxu5KGp1mZCQYHDiM7OwEH+VaAlSvXp1NPX3R3xwsNSi/8FW3dqhY/v2uP/zz7C3t5f+B9RNmiAnNhZ5eXnIzc0t9YBO7bxNW7SAxtcXV69exZUrV5CflvbQeBUKBUzkcuQXFECtVuNObCxiY2MBFH02d4pbqZuZmZVqPa+VgKI7ZnJzc2FtbY3du3dD9c03wENOFPPy8pCcnIyY1FTdJC2AeQbsXwA4cvo0tO1YfXx80KtJE+QdPgyFUinVAyEE7t2/D41GA4VCIdWVW7duQSaT4fjx43j11VeRBsM+1xsZGTh27JjOuFsALMouriOx+Dju5OSEGjVqoJGTExK2b39o62qtzdu3o2Q71sEGxhuv0eDCA8mPIKBUS/yypADoW3w3jcTV1bBWphYP7BGFAnBzg0BRn/kajQZOTk4wMzVFXn4+0tPTpfOHiMhIFKDoTgV/f3/UBJAeFSX9KFqyNW1JpsUXoDoech6hEQKFBQXILyhAg7p18apMhosXLyI9PR0XwsMNPqaFRUToXDx6ouizkclkD/1cM9VqHHzgLq/OxfOqVCrYPeTEWla1KlCcRN+2bRuAonpY/iUHkF0itoKCAty4dcvgbQ2PiEB8ifddLC2Ra2kJjUaD5ORknbLa44ZarUZCXh6CH2h1PgRAtTLWoW3llJOTg/z8fFy5cwe7HkgIGBKvXC6HX506sKhRA3fv3kVsbCzyEhIM3tZ169bpvE8FkGJlBTs7u4e3QHNwgKmpKdatW4d27dohvLguWT5snmK3UlLwb4mE7m0Yfo4XfvWqzjGiRvG8SqUSMplMakX2oHhAaq2pdafEeq2KtxkAcnNykJGZKZ1H3s7KQtQDDRT0nUc86HZyMkJCQhBSfDHaBIZva/DRozrnEdcNnPd6Whr27NFNf4yGYfGejozEoRLJShUM/6769+ZNlLxy0n425clE0XEwOztb6jO2CYBaxdPNzMxgrlRKLbS1LUcBwMLMDIiJQWZmJvz8/LBixQqYdewIYWZW6g4DLaVSCTNTUwwaMABvDB+OWrVqwcnJSbpbRQDIzMx8aN+0B4KDpWOEQqFASn5+udtqZmYGrxYtcOCLL/B///d/uHnzJm7evIlbJfaTvPicSV58TSWKE+4ajQYxqanIQ9H/vIeHBwoKCnC7+JihVCigLr5bryzBp06h5JHJ0HMBrdTUVKQWN9LoYOC8djVrAgCmTZuGtWvXIiIiAgkoSmQoilsra7QtwTUa6TVQVCdyc3ORm5uLe/fuIfeBdSqVSjg4OOgco7R3LG799VfctrJCYmIiEhMT4XTgAFL27oWmuJW/9hxPlLyrQiZDsqkp6vn5YdGiRejatSuys7ORMWQIMoODpR+yCvQkvJLUamn/aN2G/v85mUwGU1NTmJqaol3bttAUx5uUlASLuDjcfjAZpEeBWg2ZTAYnJyc4Ojoi49Il3DagQcmVe/fw+++/64zrB8BcT3mlUglbW1sozMygcnUFZDI0b94czZs3x1ezZyPXzw/Z2dnIKb4j6MFt1Y4LPnkSJduxFgIY+sC6SrY+ziq+hsksLMSOB+4s7ASgfrlbCjTs2BE1W7cGUPS/0759e6B2bWji4pCTk4OsrCy9fesr7ewwMCgIbdq0gbW1Na5s3oy4bdsM6tdfbmoKM5kM5ubmsLS0hHlhIeLT0qQfAko2qpEXt+SXm5jAzNoa/xcQgPj4eGm4l5mpU/+di+9YT3vgGJeYl4eNDzTiu128fO05h1KpBFB8N0RBATIyM6FWq3H73j1cvHdPmi8Phh8jDhw4oPO+FYCWBsx3JSmpVIPVBABVi6/1CgoKpLufHhR55w6ulDhnKqhAvAePHtU5j7iXk4M7ACytrKAqzn1pjz8lc37xBQWlrjWSy1ivubk5HLR3VRWzksmA27dx7ty5oh+2Fy6E+S+/SNcaBYWFSChOjGtbomuPizAzA4rPbdLT0xGbnm7wtpqZmaGOry8cHBxw4sQJpGo0ECVayev1AuUsAQAaTdHdCuVgS3QD3b17F25ubjhx4gQCSvzq8eGHHyI4OBinymgtMmfOHMydO7fU+PJ+2XjRCCEwf/58NG7cGN30dKNQUnp6OkxMTGBlZaW3zPXr13Hx4kVYWlpKg0KhQFZWFjIyMpCRkYHMzEz4+PggICAAJiYmKCws1Ln161EHU1NTODk5oVq1alIizczMDF5eXqVuE3+YvXv34vz589IXo/b2Yjs7O9jb2+v8LSgogLu7OxTFB4wbN25g3759MDExkU6uSg5yufyh22tiYgI3NzfcuXNH74keAL3bY25uDjs7O9ja2sLW1hY1a9ZEWFgYsrKydE74tPE1a9bsoXVeo9Hg3r17+PfffxEREQG5XI4GDRqgeRm3W0VHR+PEiRNlnlw8+L5du3aoUaPGQz+H9PR0bNmyBQEBAahZfCKfn5+PPXv2IDc3V2opor1Fs1q1alLXCPq2JSoqCqGhoUhISJBuPy3Z0qvk+7Jem5iYSC3vtINGo0FOTg5ycnKQm5sLX19fuLu7F51wmZv/r3uJR5CXl4cTJ04gMjJSWp/2BEp7i1rJcQqFAsnJyYiLi0NcXJyULJJuWS3xt6xxZmZm6NevH5ydnSGEQHZ2NiwtLSv0//Ogu3fvIjIyEtWrV4eHh4d08leSEAIJCQnIzMyUulUomaxXKpVFF8jFcaSmpuLChQsIDw+Hg4MDmjRpgpo1a5a5rzUaDZKSkhAfHw8PDw9YWVkhODgYXl5e8PX1NWgb7t+/j7/++kvq3uPB/ScrPsnW3rZpZ2eHrKwspKWlSUN+fj7atm2LOnXqPPL+3Lx5MxISEop+KLK0hEXxrbfavwCkboRKdiek0Wjg4OCAzMzMch9i5ObmhgYNGsDLywvWJbshKJabm4vk5GRpuH//PpKTk5GRkaHTwkgU3wJcpUoV1KlTBw4ODtKFlaLEnUZmZmbIzs6WkmP37t2TfkTNz8+HhYUFXF1ddX4U0XYJpB2qVq2K11577bHqaVlu3LiBjIwMNGzYUGf8yZMnERoaiho1aqB27dpwd3d/rP/zRyGEwM2bN3HhwgWpMUFZAwA4OjpK38cWFhZFP+xlZMDU1BQtWrSAqakpdu7ciaioKCn5X3IoOU4mk0ndZvn6+qJjx44P3e8ZGRlYv349MjIypK5wbGxspO5UtK9v3ryJI0eOSOtTKBQICAiAv78/MjMzkZqaimPHjiE+Pl7n/EKpVOpsr3Z+7QVMSkoKMjIy0LVrV1SvXh1qtRqrV6+Gubk56tWrB19fX51GATdv3sT27dulFvcmxXcjqdVq6a4kuVyOwMBA6XsJAC5evIiIiAjp/057S6+NjQ0KCwulxhv5+flQq9Xw8PCAr68vatSoUeb/2Z07d7B9+3aoVCq4u7vDxsYGYWFhyCn+cbvk/xkA6Ttf29q0ol0vFhYW4vLly8jKytIZtD9oOzs7o0WLFjrbor041Q5KpRJVq1bVOQ6UjFXfaxMTE7Rq1Qr29vYAih7Mrm28kZqais6dO8PZ2RmJiYm4e/cu7ty5g6SkJFStWhXVq1eHm5sbqlWrVuYDbmNjY5GSkoKCggKdJFrJoeR4IYTOMdXS0hIFBQW4cuWK9Jmam/8vTVXWeY5WyfOTsv6WfA0UnT9nZWVJ++dhQ8n6WHIAIP1P3bt3D4WFhTrrtba2RqtWrVClShVkZmbqDPqSt/ouR7Ozs3H9+nW4u7ujYcOG8PLyQnR0NPbu3Yu8vDwoFAqYm5ujXbt28PHx0Vv3kpKSsGfPHpibm6Nr165SAkTr2rVruHr1qnSO9eqrrz50eSVdvHix1I/JWubm5qhZsyZ8fX3h7OyMU6dOISYmptT3mPa1g4MDgoKCpM8rLS0NW7duhVKphKurK9zc3ODi4qJTP0ruw8jISNy9exdeXl5wd3cv6pouJwfbt29Hs2bNpIfYZWZm4sKFC/j33391GrLo+xy054IWFhZ6X5uamiIpKQl37txBWnESsOT2lTU4OTkhKOh/bWcTEhJw+PBhmJubw8fHB/Xrl53+FMV3XjxYvzIzM6VulqytrVGrVq3H/s7WHo8rSq1W65xnlBy0xwR901xcXFCzZk2dc9KyFBQU4P79+1JiXZvI0+5f7d3Lrq6ucHJygmlxdxM3btzA8ePHkVSiRXnJz/5RXjdu3BhdunQxaH9nZmbi6NGjsLS0hKurK1xcXKBSqZCVlYWwsDBcuXKlqKuiB86BLS0tUa9ePdSuXVu6JhZCYMeOHYiLiyuz6x/toP2hvOT1sRAC/v7+aNasWamGkmX5999/sWvXLgBFjZdsbGzQvHlz+Pj4lNpuIQSuXbuG4OBgyOVy1KxZEzVr1oSLi0uF65MQAjk5OeVe72VmZiIhIQEJCQlwdHTUuf44f/48Tp06BT8/P6Snp+Pq1aswNzeHl5eXNGh/IC5LdnY2/vnnH5iZmcHOzk5nEEIgLS0N6enpOtcjD7tGr+g07WtTU1PUrl0b9evXl47jQggkJSUVNcS8dw9JSUlISUmRzgEfvKbWDnK5XEqCl7zGfvB1gwYNUL9+fZw8eRJNmjSBYxmJ44yMDJw9e7ZUXkWpVMLZ2Rm2trZITk5GYmIiEhISkJaWhu7du6P6A93xpaSk4NixY8jNzUXdunWLGhM+4MiRI5DL5Xj11VdLTSsoKJB+zExJSUFKSor0OjMzU+e618zMDB4eHvDz84Onp6d0fnPx4kVUqVKlVGwvA6nnEHbn8mQ8SncuZbVEd3d3f+mS6ERERERERERERESVjaFJ9GfbpOk5plAo0LRpU53bUDQaDQ4cOKDTMr0kpVIptdTQDkRERERERERERET0/GCf6BUwefJkjBgxAs2aNUOLFi2wZMkSZGVl4c033zRofm2j/3QD+y8jIiIiIiIiIiIioqdDm6ctr7MWJtErYODAgUhKSsKsWbMQHx+PRo0aYffu3Qb1oQVAeqCDu7shjzAjIiIiIiIiIiIioqctIyMDtra2eqezT/RnSKPR4O7du7C2tn7iDyarjLR9wN+6dYtd2dALgXWaXiSsz/SiYZ2mFw3rNL1oWKfpRcM6TS+al7VOCyGQkZEBV1fXhz7Ely3RnyG5XP5SPuWW/cHTi4Z1ml4krM/0omGdphcN6zS9aFin6UXDOk0vmpexTj+sBboWHyxKRERERERERERERKQHk+hERERERERERERERHowiU5PjVKpxOzZs6FUKo0dCtETwTpNLxLWZ3rRsE7Ti4Z1ml40rNP0omGdphcN6/TD8cGiRERERERERERERER6sCU6EREREREREREREZEeTKITEREREREREREREenBJDoRERERERERERERkR5MotNTsWzZMnh5ecHc3BwtW7bE6dOnjR0SUSlz5syBTCbTGWrVqiVNz83Nxbhx41C1alWoVCr0798fCQkJOsuIjY1Fjx49YGlpiWrVqmHq1KkoLCx81ptCL6kjR46gZ8+ecHV1hUwmwz///KMzXQiBWbNmwcXFBRYWFggMDMS1a9d0yiQnJ2Po0KGwsbGBnZ0d3nrrLWRmZuqUuXjxItq0aQNzc3O4u7tj4cKFT3vT6CVVXp0eOXJkqeN2165ddcqwTlNlMn/+fDRv3hzW1taoVq0a+vTpg8jISJ0yT+p84/Dhw2jSpAmUSiVq1qyJlStXPu3No5eQIXW6ffv2pY7V7777rk4Z1mmqLJYvX44GDRrAxsYGNjY2CAgIwK5du6TpPEbT86S8+szj8+NhEp2euHXr1mHy5MmYPXs2zp07h4YNGyIoKAiJiYnGDo2olLp16yIuLk4ajh07Jk2bNGkStm3bhg0bNiA4OBh3795Fv379pOlqtRo9evRAfn4+Tpw4gVWrVmHlypWYNWuWMTaFXkJZWVlo2LAhli1bVub0hQsX4ttvv8WPP/6IU6dOwcrKCkFBQcjNzZXKDB06FJcvX8a+ffuwfft2HDlyBG+//bY0PT09HV26dIGnpydCQ0OxaNEizJkzBz///PNT3z56+ZRXpwGga9euOsftv/76S2c66zRVJsHBwRg3bhxOnjyJffv2oaCgAF26dEFWVpZU5kmcb0RHR6NHjx7o0KEDwsLCMHHiRIwePRp79ux5pttLLz5D6jQAjBkzRudYXfLHStZpqkyqV6+OBQsWIDQ0FGfPnkXHjh3Ru3dvXL58GQCP0fR8Ka8+Azw+PxZB9IS1aNFCjBs3TnqvVquFq6urmD9/vhGjIipt9uzZomHDhmVOS01NFWZmZmLDhg3SuIiICAFAhISECCGE2Llzp5DL5SI+Pl4qs3z5cmFjYyPy8vKeauxEDwIgNm/eLL3XaDTC2dlZLFq0SBqXmpoqlEql+Ouvv4QQQly5ckUAEGfOnJHK7Nq1S8hkMnHnzh0hhBA//PCDsLe316nT06ZNE/7+/k95i+hl92CdFkKIESNGiN69e+udh3WaKrvExEQBQAQHBwshntz5xocffijq1q2rs66BAweKoKCgp71J9JJ7sE4LIUS7du3E+++/r3ce1mmq7Ozt7cWvv/7KYzS9ELT1WQgenx8XW6LTE5Wfn4/Q0FAEBgZK4+RyOQIDAxESEmLEyIjKdu3aNbi6usLHxwdDhw5FbGwsACA0NBQFBQU6dblWrVrw8PCQ6nJISAjq168PJycnqUxQUBDS09N1fuklMobo6GjEx8fr1GFbW1u0bNlSpw7b2dmhWbNmUpnAwEDI5XKcOnVKKtO2bVsoFAqpTFBQECIjI5GSkvKMtobofw4fPoxq1arB398fY8eOxf3796VprNNU2aWlpQEAqlSpAuDJnW+EhIToLENbhuff9LQ9WKe1Vq9eDQcHB9SrVw8zZsxAdna2NI11miortVqNtWvXIisrCwEBATxG03PtwfqsxePzozM1dgD0Yrl37x7UarXOPxwAODk54erVq0aKiqhsLVu2xMqVK+Hv74+4uDjMnTsXbdq0waVLlxAfHw+FQgE7OzudeZycnBAfHw8AiI+PL7Oua6cRGZO2DpZVR0vW4WrVqulMNzU1RZUqVXTKeHt7l1qGdpq9vf1TiZ+oLF27dkW/fv3g7e2NqKgofPTRR+jWrRtCQkJgYmLCOk2VmkajwcSJE9G6dWvUq1cPAJ7Y+Ya+Munp6cjJyYGFhcXT2CR6yZVVpwFgyJAh8PT0hKurKy5evIhp06YhMjISmzZtAsA6TZVPeHg4AgICkJubC5VKhc2bN6NOnToICwvjMZqeO/rqM8Dj8+NiEp2IXlrdunWTXjdo0AAtW7aEp6cn1q9f/0If+ImInleDBg2SXtevXx8NGjRAjRo1cPjwYXTq1MmIkRGVb9y4cbh06ZLO81eInmf66nTJ51DUr18fLi4u6NSpE6KiolCjRo1nHSZRufz9/REWFoa0tDT8/fffGDFiBIKDg40dFtEj0Vef69Spw+PzY2J3LvREOTg4wMTEpNTTqhMSEuDs7GykqIgMY2dnBz8/P1y/fh3Ozs7Iz89HamqqTpmSddnZ2bnMuq6dRmRM2jr4sOOxs7NzqYc+FxYWIjk5mfWcngs+Pj5wcHDA9evXAbBOU+U1fvx4bN++HYcOHUL16tWl8U/qfENfGRsbGzYMoKdCX50uS8uWLQFA51jNOk2ViUKhQM2aNdG0aVPMnz8fDRs2xNKlS3mMpueSvvpcFh6fK4ZJdHqiFAoFmjZtigMHDkjjNBoNDhw4oNMHE1FllJmZiaioKLi4uKBp06YwMzPTqcuRkZGIjY2V6nJAQADCw8N1Ejb79u2DjY2NdLsUkbF4e3vD2dlZpw6np6fj1KlTOnU4NTUVoaGhUpmDBw9Co9FIJ1QBAQE4cuQICgoKpDL79u2Dv78/u70go7t9+zbu378PFxcXAKzTVPkIITB+/Hhs3rwZBw8eLNWV0JM63wgICNBZhrYMz7/pSSuvTpclLCwMAHSO1azTVJlpNBrk5eXxGE0vBG19LguPzxVk7Ceb0otn7dq1QqlUipUrV4orV66It99+W9jZ2ek83ZeoMvjggw/E4cOHRXR0tDh+/LgIDAwUDg4OIjExUQghxLvvvis8PDzEwYMHxdmzZ0VAQIAICAiQ5i8sLBT16tUTXbp0EWFhYWL37t3C0dFRzJgxw1ibRC+ZjIwMcf78eXH+/HkBQHz99dfi/Pnz4ubNm0IIIRYsWCDs7OzEli1bxMWLF0Xv3r2Ft7e3yMnJkZbRtWtX0bhxY3Hq1Clx7Ngx4evrKwYPHixNT01NFU5OTmLYsGHi0qVLYu3atcLS0lL89NNPz3x76cX3sDqdkZEhpkyZIkJCQkR0dLTYv3+/aNKkifD19RW5ubnSMlinqTIZO3assLW1FYcPHxZxcXHSkJ2dLZV5EucbN27cEJaWlmLq1KkiIiJCLFu2TJiYmIjdu3c/0+2lF195dfr69evi008/FWfPnhXR0dFiy5YtwsfHR7Rt21ZaBus0VSbTp08XwcHBIjo6Wly8eFFMnz5dyGQysXfvXiEEj9H0fHlYfebx+fExiU5PxXfffSc8PDyEQqEQLVq0ECdPnjR2SESlDBw4ULi4uAiFQiHc3NzEwIEDxfXr16XpOTk54r333hP29vbC0tJS9O3bV8TFxeksIyYmRnTr1k1YWFgIBwcH8cEHH4iCgoJnvSn0kjp06JAAUGoYMWKEEEIIjUYjZs6cKZycnIRSqRSdOnUSkZGROsu4f/++GDx4sFCpVMLGxka8+eabIiMjQ6fMhQsXxKuvviqUSqVwc3MTCxYseFabSC+Zh9Xp7Oxs0aVLF+Ho6CjMzMyEp6enGDNmTKkf6VmnqTIpqz4DECtWrJDKPKnzjUOHDolGjRoJhUIhfHx8dNZB9KSUV6djY2NF27ZtRZUqVYRSqRQ1a9YUU6dOFWlpaTrLYZ2mymLUqFHC09NTKBQK4ejoKDp16iQl0IXgMZqeLw+rzzw+Pz6ZEEI8u3bvRERERERERERERETPD/aJTkRERERERERERESkB5PoRERERERERERERER6MIlORERERERERERERKQHk+hERERERERERERERHowiU5EREREREREREREpAeT6EREREREREREREREejCJTkRERERERERERESkB5PoRERERERERERERER6MIlORERERERPzcqVK2FnZ2fsMIiIiIiIHhmT6EREREREL7CRI0eiT58+pcYfPnwYMpkMqampzzwmIiIiIqLnCZPoRERERET0VBQUFBg7BCIiIiKix8YkOhERERERYePGjahbty6USiW8vLywePFinekymQz//POPzjg7OzusXLkSABATEwOZTIZ169ahXbt2MDc3x+rVq3XKx8TEQC6X4+zZszrjlyxZAk9PT2g0mie+XUREREREj4tJdCIiIiKil1xoaCgGDBiAQYMGITw8HHPmzMHMmTOlBHlFTJ8+He+//z4iIiIQFBSkM83LywuBgYFYsWKFzvgVK1Zg5MiRkMt5eUJERERElY+psQMgIiIiIqKna/v27VCpVDrj1Gq19Prrr79Gp06dMHPmTACAn58frly5gkWLFmHkyJEVWtfEiRPRr18/vdNHjx6Nd999F19//TWUSiXOnTuH8PBwbNmypULrISIiIiJ6VtjUg4iIiIjoBdehQweEhYXpDL/++qs0PSIiAq1bt9aZp3Xr1rh27ZpOst0QzZo1e+j0Pn36wMTEBJs3bwYArFy5Eh06dICXl1eF1kNERERE9KywJToRERER0QvOysoKNWvW1Bl3+/btCi1DJpNBCKEzrqwHh1pZWT10OQqFAsOHD8eKFSvQr18/rFmzBkuXLq1QLEREREREzxKT6EREREREL7natWvj+PHjOuOOHz8OPz8/mJiYAAAcHR0RFxcnTb927Rqys7MfaX2jR49GvXr18MMPP6CwsPCh3b8QERERERkbk+hERERERC+5Dz74AM2bN8dnn32GgQMHIiQkBN9//z1++OEHqUzHjh3x/fffIyAgAGq1GtOmTYOZmdkjra927dpo1aoVpk2bhlGjRsHCwuJJbQoRERER0RPHPtGJiIiIiF5yTZo0wfr167F27VrUq1cPs2bNwqeffqrzUNHFixfD3d0dbdq0wZAhQzBlyhRYWlo+8jrfeust5OfnY9SoUU9gC4iIiIiInh6ZeLBjQyIiIiIioqfss88+w4YNG3Dx4kVjh0JERERE9FBsiU5ERERERM9MZmYmLl26hO+//x4TJkwwdjhEREREROViEp2IiIiIiJ6Z8ePHo2nTpmjfvj27ciEiIiKi5wK7cyEiIiIiIiIiIiIi0oMt0YmIiIiIiIiIiIiI9GASnYiIiIiIiIiIiIhIDybRiYiIiIiIiIiIiIj0YBKdiIiIiIiIiIiIiEgPJtGJiIiIiIiIiIiIiPRgEp2IiIiIiIiIiIiISA8m0YmIiIiIiIiIiIiI9GASnYiIiIiIiIiIiIhIDybRiYiIiIiIiIiIiIj0YBKdiIiIiIiIiIiIiEgPJtGJiIiIiIiIiIiIiPRgEp2IiIiIiIiIiIiISA8m0YmIiIiIiIiIiIiI9GASnYiIiIiIiIiIiIhIDybRiYiIiIiIiIiIiIj0YBKdiIiIiIiIiIiIiEgPJtGJiIiIiIiIiIiIiPRgEp2IiIiIiIiIiIiISA8m0YmIiIiIiIiIiIiI9GASnYiIiIiIiIiIiIhIDybRiYiIiIiIiIiIiIj0YBKdiIiIiIiIiIiIiEgPJtGJiIiIiIiIiIiIiPRgEp2IiIiIiIiIiIiISA8m0YmIiIiIiIiIiIiI9GASnYiIiIiIiIiIiIhIDybRiYiIiIiIiIiIiIj0YBKdiIiIiIiIiIiIiEgPJtGJiIiIiIiIiIiIiPRgEp2IiIiIXkhz5sxBo0aNjB2GUXl5eWHJkiXGDqPSO3z4MGQyGVJTU40dChERERFVQkyiExEREVGlEx8fjwkTJsDHxwdKpRLu7u7o2bMnDhw4YOzQXkjJycmYMGEC/P39YWFhAQ8PD/znP/9BWlqasUMjIiIiIjI6U2MHQERERERUUkxMDFq3bg07OzssWrQI9evXR0FBAfbs2YNx48bh6tWrxg7xhXP37l3cvXsXX331FerUqYObN2/i3Xffxd27d/H3338bOzx6iPz8fCgUCmOHQURERPRCY0t0IiIiIqpU3nvvPchkMpw+fRr9+/eHn58f6tati8mTJ+PkyZNSudjYWPTu3RsqlQo2NjYYMGAAEhIS9C63ffv2mDhxos64Pn36YOTIkdJ7Ly8vzJs3D8OHD4dKpYKnpye2bt2KpKQkaV0N/p+9+46v6f7/AP66N8nNulkieyMiNkGaqj2CVilqVVHU7qCUDqOTGq1R3b+vWK29iiI2oQhiRsyIkUH2Hvd+fn8k9zQ384ZwQ17Px+M8knvm55z7ueee876f8/40bozQ0FBpmaCgIFhbW2PPnj3w9fWFUqlEt27dEB0d/cTHIikpCWPGjIGDgwNMTEzQsGFD7NixQ5q+adMmNGjQAMbGxvD09MTChQsfazsNGzbEpk2b0LNnT9SuXRsdO3bEN998g7///ht5eXnlLq9SqTBy5Eh4eXnB1NQUPj4+WLx4sdY8w4cPR+/evbFgwQI4OTnB1tYWEyZMQG5urjRPYmIihg4dChsbG5iZmaF79+64fv26NF1zrHfs2AEfHx+YmZmhX79+yMjIwIoVK+Dp6QkbGxu8//77UKlU0nKrVq1CixYtYGFhAUdHRwwePBhxcXEl7kt6ejosLS2L/XiwdetWmJubIzU1tcxjkZOTg4kTJ8LJyQkmJibw8PDAnDlzpOlP+p56enriq6++wtChQ2FpaYnRo0cDAI4dO4Y2bdrA1NQUbm5ueP/995Genl5mWYmIiIhINwyiExEREVGVkZCQgN27d2PChAkwNzcvNt3a2hoAoFar0atXLyQkJODw4cMIDg7GrVu3MGDAgCcuww8//IDWrVvj3LlzePXVV/H2229j6NChGDJkCM6ePYvatWtj6NChEEJIy2RkZGDBggVYtWoVjhw5gqioKEyZMuWJyqFWq9G9e3eEhIRg9erVuHLlCubOnQsDAwMAwJkzZ9C/f38MHDgQFy9exOzZszFjxgwEBQU90XY1kpOTYWlpCUPD8h9eVavVcHV1xYYNG3DlyhXMnDkTn376KdavX68138GDB3Hz5k0cPHgQK1asQFBQkFZ5hw8fjtDQUGzfvh0nTpyAEAI9evTQCrRnZGRgyZIlWLt2LXbv3o1Dhw7hjTfewK5du7Br1y6sWrUKv/76q1YQPDc3F1999RXOnz+PrVu3IjIyUuvHk8LMzc0xcOBALF++XGv88uXL0a9fP1hYWJR5LJYsWYLt27dj/fr1iIiIwJo1a+Dp6Skdp8p4TxcsWIAmTZrg3LlzmDFjBm7evIlu3bqhb9++uHDhAtatW4djx45h4sSJZZaViIiIiHQkiIiIiIiqiJMnTwoAYvPmzWXOt3fvXmFgYCCioqKkcZcvXxYAxKlTp4QQQsyaNUs0adJEmt6uXTvxwQcfaK2nV69eYtiwYdJrDw8PMWTIEOl1dHS0ACBmzJghjTtx4oQAIKKjo4UQQixfvlwAEDdu3JDmWbZsmXBwcNB5v0uyZ88eIZfLRURERInTBw8eLLp06aI1burUqaJ+/fpa+/PDDz9UeNsPHz4U7u7u4tNPP63wshoTJkwQffv2lV4PGzZMeHh4iLy8PGncm2++KQYMGCCEEOLatWsCgAgJCZGmP3r0SJiamor169cLIUo+1mPGjBFmZmYiNTVVGhcYGCjGjBlTatlOnz4tAEjLHDx4UAAQiYmJQoj8emhgYCAePHgghBAiNjZWGBoaikOHDpW73++9957o2LGjUKvVxaZV1nvau3dvrXlGjhwpRo8erTXu6NGjQi6Xi8zMzHLLTERERERlY0t0IiIiIqoyRKHW3WUJDw+Hm5sb3NzcpHH169eHtbU1wsPDn6gMjRs3lv53cHAAADRq1KjYuMLpQMzMzFC7dm3ptZOTU6npQgCgQYMGUCqVUCqV6N69e4nzhIWFwdXVFXXr1i1xenh4OFq3bq01rnXr1rh+/bpWKpOKSklJwauvvor69etj9uzZOi+3bNky+Pn5wc7ODkqlEr/99huioqK05mnQoIHU6hrQPk7h4eEwNDSEv7+/NN3W1hY+Pj5a72nRY+3g4ABPT08olUqtcYWP/5kzZ9CzZ0+4u7vDwsIC7dq1A4Bi5dNo1aoVGjRogBUrVgAAVq9eDQ8PD7Rt27bc4zB8+HCEhYXBx8cH77//Pvbu3StNq6z3tEWLFlrznD9/HkFBQVKdUiqVCAwMhFqtxu3bt8stMxERERGVjR2LEhEREVGV4e3tDZlM9lQ6D5XL5cWC9IXThGgYGRlJ/8tkslLHqdXqEpfRzFPWDwK7du2Stm1qalriPKWNf5pSU1PRrVs3WFhYYMuWLcX2qzRr167FlClTsHDhQgQEBMDCwgLz58/HyZMnteYr6TgVPo66KGkdZa03PT0dgYGBCAwMxJo1a2BnZ4eoqCgEBgYiJyen1O2MGjUKy5Ytw/Tp07F8+XK888470ntflubNm+P27dv4559/sG/fPvTv3x+dO3fGxo0bK+09LZrqKC0tDWPGjMH7779fbF53d/dK2SYRERFRdcaW6ERERERUZdSoUQOBgYFYtmxZiZ0iJiUlAQB8fX1x9+5d3L17V5p25coVJCUloX79+iWu287OTquzT5VKhUuXLlXuDujIw8MDderUQZ06deDi4lLiPI0bN8a9e/dw7dq1Eqf7+voiJCREa1xISAjq1q2r1dpbVykpKejatSsUCgW2b98OExMTnZcNCQnByy+/jPHjx6NZs2aoU6cObt68WaHt+/r6Ii8vTyvwHh8fj4iIiFLfU11cvXoV8fHxmDt3Ltq0aYN69eqV+ZSAxpAhQ3Dnzh0sWbIEV65cwbBhw3TepqWlJQYMGIDff/8d69atw6ZNm5CQkPDU3tPmzZvjypUrUp0qPCgUCp3LTUREREQlYxCdiIiIiKqUZcuWQaVSoVWrVti0aROuX7+O8PBwLFmyBAEBAQCAzp07o1GjRnjrrbdw9uxZnDp1CkOHDkW7du2KpbrQ6NixI3bu3ImdO3fi6tWrGDdunBSUr4ratWuHtm3bom/fvggODpZaN+/evRsA8NFHH2H//v346quvcO3aNaxYsQI//vjjY3Voqgmgp6en4//+7/+QkpKCmJgYxMTE6JQaxtvbG6GhodizZw+uXbuGGTNm4PTp0xUqg7e3N3r16oV3330Xx44dw/nz5zFkyBC4uLigV69eFd4nDXd3dygUCixduhS3bt3C9u3b8dVXX5W7nI2NDfr06YOpU6eia9eucHV11Wl733//Pf766y9cvXoV165dw4YNG+Do6Ahra+un9p5OmzYNx48fx8SJExEWFobr169j27Zt7FiUiIiIqJIwiE5EREREVUqtWrVw9uxZdOjQAR999BEaNmyILl26YP/+/fj5558B5Kfr2LZtG2xsbNC2bVt07twZtWrVwrp160pd74gRIzBs2DAp2F6rVi106NDhWe3WY9m0aRNatmyJQYMGoX79+vj444+loHbz5s2xfv16rF27Fg0bNsTMmTPx5ZdfYvjw4RXeztmzZ3Hy5ElcvHgRderUgZOTkzQUbu1fmjFjxqBPnz4YMGAA/P39ER8fj/Hjx1e4HMuXL4efnx9ee+01BAQEQAiBXbt26ZxWpiR2dnYICgrChg0bUL9+fcydOxcLFizQadmRI0ciJycHI0aM0Hl7FhYWmDdvHlq0aIGWLVsiMjISu3btglyef+v1NN7Txo0b4/Dhw7h27RratGmDZs2aYebMmXB2dta53ERERERUOpnQtfcmIiIiIiKiamTVqlWYNGkSHjx4wLQoRERERNUYOxYlIiIiIiIqJCMjA9HR0Zg7dy7GjBnDADoRERFRNcd0LkREREREL7g1a9ZAqVSWODRo0KDc5ceOHVvq8mPHjn0Ge/BszZs3D/Xq1YOjoyM++eQTrWnffvttqceie/fueioxERERET1NTOdCRERERPSCS01NRWxsbInTjIyM4OHhUebycXFxSElJKXGapaUl7O3tn7iMz4uEhAQkJCSUOM3U1BQuLi7PuERERERE9LQxiE5EREREREREREREVAqmcyEiIiIiIiIiIiIiKgWD6EREREREREREREREpTDUdwGqE7VajQcPHsDCwgIymUzfxSEiIiIiIiIiIiKqtoQQSE1NhbOzM+Ty0tubM4j+DD148ABubm76LgYRERERERERERERFbh79y5cXV1Lnc4g+jNkYWEBIP9NsbS01HNpiIiIiIiIiIiIiKqvlJQUuLm5SXHb0jCI/gxpUrhYWloyiE5ERERERERERERUBZSXepsdixIRUTF///03nJ2dERwcrO+iEBERERERERHpFYPoRERUzNq1axEdHY2dO3fquyhERERERERERHrFIDoRERUTHh4OAHj06JGeS0JEREREREREpF/VIif6nDlzsHnzZly9ehWmpqZ4+eWX8d1338HHx0eaJysrCx999BHWrl2L7OxsBAYG4qeffoKDg4M0T1RUFMaNG4eDBw9CqVRi2LBhmDNnDgwNK+8wCiGQm5uLvLy8SlsnkS4MDQ1hZGRUbg4oevGp1WpcvXoVAPDw4UM9l4aIiIiIiIiISL+qRRD98OHDmDBhAlq2bIm8vDx8+umn6Nq1K65cuQJzc3MAwKRJk7Bz505s2LABVlZWmDhxIvr06YOQkBAAgEqlwquvvgpHR0ccP34c0dHRGDp0KIyMjPDtt99WSjmzs7MRGRmJtLS0SlkfUUUplUp4enrC2NhY30UhPbp79y4yMzMBMIhORERERERERCQTQgh9F0LDxsZG51awCQkJj72dhw8fwt7eHocPH0bbtm2RnJwMOzs7/Pnnn+jXrx8A4OrVq/D19cWJEyfw0ksv4Z9//sFrr72GBw8eSK3Tf/nlF0ybNg0PHz6EQqEod7spKSmwsrJCcnIyLC0ttaap1WqcP38ehoaGcHFxgbGxMVsE0zMjhEB2djbu37+P3NxcNGzYUKc6TS+m3bt3o3v37gAANzc3REVF6blERERERERERESVr6x4bWFVqiX6okWLnsl2kpOTAQA1atQAAJw5cwa5ubno3LmzNE+9evXg7u4uBdFPnDiBRo0aaaV3CQwMxLhx43D58mU0a9as2Hays7ORnZ0tvU5JSSm1TFlZWVCr1fDy8oJSqXzifSSqKHNzcygUCkRERGDLli3o1KkTatasqe9ikR5oUrkA+T86CiH4ox4RERERERERVVtVKog+bNiwp74NtVqNDz/8EK1bt0bDhg0BADExMVAoFLC2ttaa18HBATExMdI8hQPomumaaSWZM2cOvvjiiwqVTy5nX6+kP5r69/DhQ+zYsQO9evWCjY2NnktFz5qmU1Eg/we+jIwMKfUVEREREREREVF1U6Ujtjdv3sTnn3+OQYMGIS4uDgDwzz//4PLly4+9zgkTJuDSpUtYu3ZtZRWzVJ988gmSk5Ol4e7du099m0SVwcHBAdHR0YiOjtZ3UUgPCrdEB5gXnYiIiIiIiIiqtyobRD98+DAaNWqEkydPYvPmzVJnm+fPn8esWbMea50TJ07Ejh07cPDgQbi6ukrjHR0dkZOTg6SkJK35Y2Nj4ejoKM0TGxtbbLpmWkmMjY1haWmpNRA9D+RyOWQymdS5JFUvhVuiAwyiExEREREREVH1VmWD6NOnT8fXX3+N4OBgrQ4OO3bsiH///bdC6xJCYOLEidiyZQsOHDgALy8vrel+fn4wMjLC/v37pXERERGIiopCQEAAACAgIAAXL16UWsQDQHBwMCwtLVG/fv3H2cUXws8//4zGjRtLPxIEBATgn3/+0Zqnffv2kMlkWsPYsWOl6fHx8ejWrRucnZ1hbGwMNzc3TJw4scwc8gC01mdubg5vb28MHz4cZ86cqfB+tG/fHh9++GGFlyN60cTHx0tBc29vbwDAo0eP9FkkIiIiIiIiIiK9qrJB9IsXL+KNN94oNt7e3r7CAZ0JEyZg9erV+PPPP2FhYYGYmBjExMRIrWytrKwwcuRITJ48GQcPHsSZM2fwzjvvICAgAC+99BIAoGvXrqhfvz7efvttnD9/Hnv27MHnn3+OCRMmwNjY+Ml3+Dnl6uqKuXPn4syZMwgNDUXHjh3Rq1evYil33n33XSk9SHR0NObNmydNk8vl6NWrF7Zv345r164hKCgI+/bt0wq0l2b58uWIjo7G5cuXsWzZMqSlpcHf3x8rV66s9H0lqg40qVzc3Nzg6ekJgC3RiYiIiIiIiKh6q7JBdGtr6xLzMZ87dw4uLi4VWtfPP/+M5ORktG/fHk5OTtKwbt06aZ4ffvgBr732Gvr27Yu2bdvC0dERmzdvlqYbGBhgx44dMDAwQEBAAIYMGYKhQ4fiyy+/fPydfAH07NkTPXr0gLe3N+rWrYtvvvkGSqWy2NMCZmZmcHR0lIbCqW1sbGwwbtw4tGjRAh4eHujUqRPGjx+Po0ePlrt9a2trODo6wtPTE127dsXGjRvx1ltvYeLEiUhMTASQ37J20KBBcHFxgZmZGRo1aoS//vpLWsfw4cNx+PBhLF68WGrZHhkZCZVKhZEjR8LLywumpqbw8fHB4sWLK+nIEVVNmiC6r68v7OzsALAlOhERERERERFVb4b6LkBpBg4ciGnTpmHDhg2QyWRQq9UICQnBlClTMHTo0AqtSwhR7jwmJiZYtmwZli1bVuo8Hh4e2LVrV4W2/biEEMjIyHgm2yrKzMwMMpmswsupVCps2LAB6enpUhocjTVr1mD16tVwdHREz549MWPGDJiZmZW4ngcPHmDz5s1o167dY5V/0qRJWLlyJYKDg9G/f39kZWXBz88P06ZNg6WlJXbu3Im3334btWvXRqtWrbB48WJcu3YNDRs2lH4UsbOzg1qthqurKzZs2ABbW1scP34co0ePhpOTE/r37/9YZSOq6jT50OvVqyedB9gSnYiIiIiIiIiqsyobRP/2228xYcIEuLm5QaVSoX79+lCpVBg8eDA+//xzfRfvqcvIyIBSqdTLttPS0mBubq7z/BcvXkRAQACysrKgVCqxZcsWrTzxgwcPhoeHB5ydnXHhwgVMmzYNERERWi39AWDQoEHYtm0bMjMz0bNnT/zxxx+PVf569eoBACIjIwEALi4umDJlijT9vffew549e7B+/Xq0atUKVlZWUCgUUmt5DQMDA3zxxRfSay8vL5w4cQLr169nEJ1eWIVbomtaoDOITkRERERERETVWZUNoisUCvz++++YMWMGLl26hLS0NDRr1kzq6I6qDh8fH4SFhSE5ORkbN27EsGHDcPjwYSmQPnr0aGneRo0awcnJCZ06dcLNmzdRu3ZtadoPP/yAWbNm4dq1a/jkk08wefJk/PTTTxUuj+bJA00rWpVKhW+//Rbr16/H/fv3kZOTg+zs7FJbwhe2bNky/O9//0NUVBQyMzORk5ODpk2bVrhMRM8LTUt0X19fKaDOdC5EREREREREVJ1V2SD6sWPH8Morr8Dd3R3u7u76Ls4zZ2ZmhrS0NL1tuyIUCgXq1KkDAPDz88Pp06exePFi/PrrryXO7+/vDwC4ceOGVhBdky+9Xr16qFGjBtq0aYMZM2bAycmpQuXRBAG9vLwAAPPnz8fixYuxaNEiNGrUCObm5vjwww+Rk5NT5nrWrl2LKVOmYOHChQgICICFhQXmz5+PkydPVqg8RM+LrKws3L59G0D+Ex1siU5EREREREREVIWD6B07doSLiwsGDRqEIUOGaKUHqQ5kMlmFUqpUJWq1GtnZ2aVODwsLA4Ayg+NqtRoAylxPaRYtWgRLS0t07twZABASEoJevXphyJAh0rqvXbumVacUCgVUKpXWekJCQvDyyy9j/Pjx0ribN29WuDxEz4tr165BCAEbGxvY29uzY1EiIiIiIiIiIlThIPqDBw+wdu1a/PXXX5g7dy4aN26Mt956C4MGDYKrq6u+i0cFPvnkE3Tv3h3u7u5ITU3Fn3/+iUOHDmHPnj0A8oPOf/75J3r06AFbW1tcuHABkyZNQtu2bdG4cWMAwK5duxAbG4uWLVtCqVTi8uXLmDp1Klq3bg1PT88yt5+UlISYmBhkZ2fj2rVr+PXXX7F161asXLkS1tbWAABvb29s3LgRx48fh42NDb7//nvExsZqBdE9PT1x8uRJREZGQqlUokaNGvD29sbKlSuxZ88eeHl5YdWqVTh9+rTUwp3oRVO0U1FNEJ0t0YmIiIiIiIioOpPruwClqVmzJiZOnIiQkBDcvHkTb775JlasWAFPT0907NhR38WjAnFxcRg6dCh8fHzQqVMnnD59Gnv27EGXLl0A5Lfw3rdvH7p27Yp69erho48+Qt++ffH3339L6zA1NcXvv/+OV155Bb6+vpg0aRJef/117Nixo9ztv/POO3ByckK9evUwbtw4KJVKnDp1CoMHD5bm+fzzz9G8eXMEBgaiffv2cHR0RO/evbXWM2XKFBgYGKB+/fqws7NDVFQUxowZgz59+mDAgAHw9/dHfHy8Vqt0ohdN4U5FgfzzMAAkJiYiNzdXb+UiIiIiIiIiItInmdD0wljFqVQq/PPPP5gxYwYuXLhQLPXG8yAlJQVWVlZITk6GpaWl1rSMjAyEh4fD19e3wjnJiSqLph5GRkbi+vXr6NKlC/z8/PRdLHpGBg4ciHXr1mHevHmYOnUqVCoVjIyMIIRATEwMHBwc9F1EIiIiIiIiIqJKU1a8trAq2xJdIyQkBOPHj4eTkxMGDx6Mhg0bYufOnfouFhHRC6doS3QDAwPUqFEDAFO6EBEREREREVH1VWVzon/yySdYu3YtHjx4gC5dumDx4sXo1asXW2kTET0FKpUKERERAPJzomvY2dkhPj6eQXQiIiIiIiIiqraqbBD9yJEjmDp1Kvr37y/l5SUioqcjKioKWVlZUCgUWp3n2tnZ4erVq3j06JEeS0dEREREREREpD9VNogeEhKi7yIQEVUb4eHhAIC6devCwMBAGq/5EZMt0YmIiIiIiIiouqrSOdFXrVqF1q1bw9nZGXfu3AEALFq0CNu2bdNzyYiIXixF86Fr2NnZAQBbohMRERERERFRtVVlg+g///wzJk+ejB49eiApKQkqlQoAYG1tjUWLFum3cERELxhNS/TC+dABtkQnIiIiIiIiIqqyQfSlS5fi999/x2effaaVWqBFixa4ePGiHktGRPTiKa8lOoPoRERERERERFRdVdkg+u3bt9GsWbNi442NjZGenq6HEhERvbhKa4nOdC5EREREREREVN1V2SC6l5cXwsLCio3fvXt3sZaSRET0+B49eoT4+HjIZDL4+PhoTWM6FyIiIiIiIiKq7qpsEH3y5MmYMGEC1q1bByEETp06hW+++QaffPIJPv74Y30Xj15Qhw4dgkwmQ1JS0jPdblBQEKytrZ9oHZGRkZDJZCX++KShr/2jqk3TCt3DwwNmZmZa09gSnYiIiIiIiIiquyobRB81ahS+++47fP7558jIyMDgwYPx888/Y/HixRg4cKC+i0cFjhw5gp49e8LZ2RkymQxbt27Vmp6bm4tp06ahUaNGMDc3h7OzM4YOHYoHDx6Uud6ff/4ZjRs3hqWlJSwtLREQEIB//vlHa56bN2/ijTfegJ2dHSwtLdG/f3/ExsaWuk6ZTFbmMHv27Mc9DETPNU0+9KKpXADtluhCiGdaLiIiIiIiIiKiqqDKBtEB4K233sL169eRlpaGmJgY3Lt3D4MGDcLx48f1XTQqkJ6ejiZNmmDZsmUlTs/IyMDZs2cxY8YMnD17Fps3b0ZERARef/31Mtfr6uqKuXPn4syZMwgNDUXHjh3Rq1cvXL58Wdpu165dIZPJcODAAYSEhCAnJwc9e/aEWq0ucZ3R0dHSsGjRIlhaWmqNmzJlymMdg5ycnMdajqiq0LRELylVlqYlem5uLlJSUp5puYiIiIiIiIiIqoIqHUTXMDMzg729PQDg+vXraNOmjZ5LRBrdu3fH119/jTfeeKPE6VZWVggODkb//v3h4+ODl156CT/++CPOnDmDqKioUtfbs2dP9OjRA97e3qhbty6++eYbKJVK/PvvvwCAkJAQREZGIigoCI0aNUKjRo2wYsUKhIaG4sCBAyWu09HRURqsrKwgk8m0ximVSmneM2fOoEWLFjAzM8PLL7+MiIgIadrs2bPRtGlT/PHHH/Dy8oKJiQkAICkpCaNGjZJaxnfs2BHnz5+Xljt//jw6dOgACwsLWFpaws/PD6GhoVpl3LNnD3x9faFUKtGtWzdER0dL09RqNb788ku4urrC2NgYTZs2xe7du0s9hgCwa9cu1K1bF6ampujQoQMiIyPLnJ+qp9I6FQUAU1NTmJubA2BKFyIiIiIiIiKqnp6LIDq9WJKTkyGTyXTOAa5SqbB27Vqkp6cjICAAAJCdnQ2ZTAZjY2NpPhMTE8jlchw7duyJy/jZZ59h4cKFCA0NhaGhIUaMGKE1/caNG9i0aRM2b94s5SB/8803ERcXh3/++QdnzpxB8+bN0alTJyQkJADIf7LC1dUVp0+fxpkzZzB9+nQYGRlJ68zIyMCCBQuwatUqHDlyBFFRUVqt4xcvXoyFCxdiwYIFuHDhAgIDA/H666/j+vXrJe7D3bt30adPH/Ts2RNhYWEYNWoUpk+f/sTHhl48mnQupXXazM5FiYiIiIiIiKg6M9R3Aagc33+fP5SneXNg+3btca+/Dpw9W/6ykyfnD89AVlYWpk2bhkGDBsHS0rLMeS9evIiAgABkZWVBqVRiy5YtqF+/PgDgpZdegrm5OaZNm4Zvv/0WQghMnz4dKpVKq/X24/rmm2/Qrl07AMD06dPx6quvIisrS2p1npOTg5UrV0qpLo4dO4ZTp04hLi5OCuwvWLAAW7duxcaNGzF69GhERUVh6tSpUmtfb29vrW3m5ubil19+Qe3atQEAEydOxJdffilNX7BgAaZNmyb1CfDdd9/h4MGDWLRoUYnpdH7++WfUrl0bCxcuBAD4+Pjg4sWL+O677574+NCLIyMjA3fu3AFQckt0ID+ly507d9gSnYiIiIiIiIiqJQbRq7qUFOD+/fLnc3MrPu7hQ92WfUZ5jnNzc9G/f38IIfDzzz+XO7+Pjw/CwsKQnJyMjRs3YtiwYTh8+DDq168POzs7bNiwAePGjcOSJUsgl8sxaNAgNG/eHHL5kz9g0bhxY+l/JycnAEBcXBzc3d0BAB4eHlIAHchP1ZKWlgZbW1ut9WRmZuLmzZsAgMmTJ2PUqFFYtWoVOnfujDfffFMKmAP5aYsKv3ZyckJcXBwAICUlBQ8ePEDr1q211t+6dWutlDGFhYeHw9/fX2ucpiU/kca1a9cghICtra1WnS6MLdGJiIiIiIiIqDqrckH07UVbUxdx+/btZ1SSKsLSEnBxKX++koJfdna6LVtOi/DKoAmg37lzBwcOHCi3FToAKBQK1KlTBwDg5+eH06dPY/Hixfj1118BAF27dsXNmzfx6NEjGBoawtraGo6OjqhVq9YTl7dwmhWZTAYAWh2WanJEa6SlpcHJyQmHDh0qti5N2prZs2dj8ODB2LlzJ/755x/MmjULa9eulfLJF96mZrtCiCfeF6KylJUPXUMTXGcQnYiIiIiIiIiqoyoXRO/du3e582iCmtXCk6RaKecHiWdFE0C/fv06Dh48WKy1tq7UajWys7OLjde0kj1w4ADi4uLw+uuvP1F5H0fz5s0RExMDQ0NDeHp6ljpf3bp1UbduXUyaNAmDBg3C8uXLS+2UtTBLS0s4OzsjJCRESjMD5Hew2qpVqxKX8fX1LfajlKZjViKN8vKhA/8F0ZnOhYiIiIiIiIiqoyoXRC/c2peqvrS0NNy4cUN6ffv2bYSFhaFGjRpwd3dHbm4u+vXrh7Nnz2LHjh1QqVSIiYkBANSoUQMKhQIA0KlTJ7zxxhuYOHEiAOCTTz5B9+7d4e7ujtTUVPz55584dOgQ9uzZI21r+fLl8PX1hZ2dHU6cOIEPPvgAkyZNgo+PzzM8Avk6d+6MgIAA9O7dG/PmzUPdunXx4MED7Ny5E2+88QYaNGiAqVOnol+/fvDy8sK9e/dw+vRp9O3bV+dtTJ06FbNmzULt2rXRtGlTLF++HGFhYVizZk2J848dOxYLFy7E1KlTMWrUKJw5cwZBQUGVtMf0otClJTrTuRARERERERFRdVblguj0fAkNDUWHDh2k15MLWs0PGzYMQUFBuH//vtQaumnTplrLHjx4EO3btwcAKS2LRlxcHIYOHYro6GhYWVmhcePG2LNnD7p06SLNExERgU8++QQJCQnw9PTEZ599hkmTJj2lPS2bTCbDrl278Nlnn+Gdd97Bw4cP4ejoiLZt28LBwQEGBgaIj4/H0KFDERsbi5o1a6JPnz744osvdN7G+++/j+TkZHz00UeIi4tD/fr1sX379mIdlGq4u7tj06ZNmDRpEpYuXYpWrVrh22+/xYgRIyprt+kFwJboRERERERERERlkwkmXX5mUlJSYGVlheTk5GI5wTMyMhAeHg5fX1+YmZnpqYRU3WnqYWRkJK5fv44uXbrAz89P38Wip0SlUsHc3BzZ2dm4efNmqf0JbN26FW+88Qb8/f2ZEoiIiIiIiIiIXhhlxWsLkz/DMhERURUSGRmJ7OxsmJiYwMPDo9T52LEoEREREREREVVn1SKIfuTIEfTs2RPOzs6QyWTYunWr1nQhBGbOnAknJyeYmpqic+fOuH79utY8CQkJeOutt2BpaQlra2uMHDkSaWlpz3AviIgqlyYfuo+PDwwMDEqdj+lciIiIiIiIiKg6q5JBdJVKhSNHjiApKalS1peeno4mTZpg2bJlJU6fN28elixZgl9++QUnT56Eubk5AgMDkZWVJc3z1ltv4fLlywgODsaOHTtw5MgRjB49ulLKR0SkD5p86GV1Kgr817FoSkoKsrOzn3q5iIiIiIiIiIiqkirZsaiBgQG6du2K8PBwWFtbP/H6unfvju7du5c4TQiBRYsW4fPPP0evXr0AACtXroSDgwO2bt2KgQMHIjw8HLt378bp06fRokULAMDSpUvRo0cPLFiwAM7Ozk9cRiKiZ03TEr2sTkUBwNraGgYGBlCpVHj06BFcXFyeRfGIiIiIiIiIiKqEKtkSHQAaNmyIW7duPfXt3L59GzExMejcubM0zsrKCv7+/jhx4gQA4MSJE7C2tpYC6ADQuXNnyOVynDx5stR1Z2dnIyUlRWsgIqoqdG2JLpfLYWtrC4ApXYiIiIiIiIio+qmyQfSvv/4aU6ZMwY4dOxAdHf3UgtExMTEAAAcHB63xDg4O0rSYmBjY29trTTc0NESNGjWkeUoyZ84cWFlZSYObm1u55VGr1RXdBaJKw/pXfQghdG6JDrBzUSIiIiIiIiKqvqpkOhcA6NGjBwDg9ddfh0wmk8YLISCTyaBSqfRVNJ198sknmDx5svQ6JSWl1EC6QqEAAKSlpUGpVD6T8hEVpeksNzc3V88loactLi4OiYmJkMlk8Pb2Lnd+di5KRERERERERNVVlQ2iHzx48Jlsx9HREQAQGxsLJycnaXxsbCyaNm0qzRMXF6e1XF5eHhISEqTlS2JsbAxjY2OdymFoaIiaNWvi/v37AAClUgm5vMo+KEAvGLVajbS0NNy/fx9JSUlskV4NaFK5eHl5wdTUtNz5NZ2LsiU6EREREREREVU3VTaI3q5du2eyHS8vLzg6OmL//v1S0DwlJQUnT57EuHHjAAABAQFISkrCmTNn4OfnBwA4cOAA1Go1/P39K60s7u7uyMvLkwLpRM9aUlISYmNjoVKpIITQKbhKzydNKpfy8qFrMJ0LEREREREREVVXVTaIDgBHjx7Fr7/+ilu3bmHDhg1wcXHBqlWr4OXlhVdeeUXn9aSlpeHGjRvS69u3byMsLAw1atSAu7s7PvzwQ3z99dfw9vaGl5cXZsyYAWdnZ/Tu3RtAfr7gbt264d1338Uvv/yC3NxcTJw4EQMHDoSzs3Ol7a9MJkOtWrWwf/9+hIeHw8LCQueW7ERPQgiBnJwcqNVqqFQqPHz4EC4uLpVav6lq0bRE1yUfOvBfS3SmcyEiIiIiIiKi6qbKBtE3bdqEt99+G2+99RbOnj2L7OxsAEBycjK+/fZb7Nq1S+d1hYaGokOHDtJrTZ7yYcOGISgoCB9//DHS09MxevRoJCUl4ZVXXsHu3bthYmIiLbNmzRpMnDgRnTp1glwuR9++fbFkyZJK2tv/yGQytG/fHkIIREREIDExsdK3QVQWuVwONzc39OjRA9bW1vouDj0lbIlORERERERERKQbmRBC6LsQJWnWrBkmTZqEoUOHwsLCAufPn0etWrVw7tw5dO/eHTExMfouYoWlpKTAysoKycnJsLS0LHNeIQQyMjKQmZn5jEpHlM/Q0BBKpRKGhlX2NzaqBB4eHoiKisKxY8fQunXrcudfu3YtBg0ahPbt2z+zPiuIiIiIiIiIiJ4mXeO1VTZKFhERgbZt2xYbb2VlhaSkpGdfoGdMJpPB3Nwc5ubm+i4KEb1g0tLSEBUVBUD3lujsWJSIiJ6WmzdvYunSpfjoo4/g5uam7+IQERERERUj13cBSuPo6KiVx1zj2LFjqFWrlh5KRET0Yrh27RqA/BQttra2Oi3DdC5ERPS0LFu2DIsXL8Zvv/2m76IQEREREZWoygbR3333XXzwwQc4efIkZDIZHjx4gDVr1mDKlCkYN26cvotHRPTcqmg+dOC/lujx8fFQq9VPpVxERFQ9aX6gvX//vp5LQkRERERUsiqbzmX69OlQq9Xo1KkTMjIy0LZtWxgbG2PKlCl477339F08IqLn1tWrVwEAvr6+Oi+jCaKrVCokJSWhRo0aT6VsRERU/SQnJwMAYmNj9VwSIiIiIqKSVdkgukwmw2effYapU6fixo0bSEtLQ/369aFUKvVdNCKi55qmJXpFgujGxsawtLRESkoKHj16xCA6ERFVGk1/R3FxcfotCBERERFRKapsOpcRI0YgNTUVCoUC9evXR6tWraBUKpGeno4RI0bou3hERM8tTUv0iqRzAdi5KBERPR1siU5EREREVV2VDaKvWLECmZmZxcZnZmZi5cqVeigREdHzLy8vT+pYtCIt0QF2LkpERE+HJogeFxcHIYSeS0NEREREVFyVS+eSkpICIQSEEEhNTYWJiYk0TaVSYdeuXbC3t9djCYmInl+3b99Gbm4uzMzM4ObmVqFlNS3RHz169DSKRkRE1ZQmnUt2djZSUlJgZWWl3wIRERERERVR5YLo1tbWkMlkkMlkqFu3brHpMpkMX3zxhR5KRkT0/NPkQ/fx8YFcXrGHkdgSnYiIKptarUZKSor0Oi4ujkF0IiIiIqpyqlwQ/eDBgxBCoGPHjti0aZNW53UKhQIeHh5wdnbWYwmJiJ5fmiB6RfOhA/8F0dkSnYiIKktaWppWCpfY2Fh4e3vrsUREREQvntDQUCgUCjRu3FjfRSF6blW5IHq7du0A5KcccHNzq3BLSSIiKp2mU9GK5kMH2LEoERGVb8uWLZg7dy5Wr16tUzBckw9dg52LEhERVa7k5GS0adMGZmZmePjwIeNsRI+pygXRNTw8PAAAGRkZiIqKQk5OjtZ0/npGRFRxldESnUF0IiIqTVBQEE6dOoUdO3Zg0qRJ5c6vyYeuERcX95RKRkREVD2Fh4cjKysLWVlZyMjIgFKp1HeRiJ5LVTaI/vDhQ7zzzjv4559/SpyuUqmecYmIqi+1Wo2BAwciJycHW7ZsgUwm03eR6DEIISqlJTrTuRARUWkSEhIAAImJiTrNz5boRERET9f169el/1NTUxlEJ3pMVfYZjg8//BBJSUk4efIkTE1NsXv3bqxYsQLe3t7Yvn27votHVK3s3LkTGzZswLZt2/DgwQN9F4ceU0xMDJKTkyGXyx8r3yxboj+Z3Nxcrby/REQvIk3w/HGD6GyJTkREVLmuXbsm/Z+WlqbHkhA936psEP3AgQP4/vvv0aJFC8jlcnh4eGDIkCGYN28e5syZo+/iEVUr8+fPl/5PTU3VY0noSWhaodeqVQvGxsYVXp5B9Mf36NEj1KpVC+7u7li1ahXUarW+i0RE9FRUtCV60XQubIlORERUuRhEJ6ocVTaInp6eDnt7ewCAjY2NFLRp1KgRzp49q8+iEVUrJ0+exNGjR6XXKSkpeiwNPYknyYcO/JfOJSMjAxkZGZVWrurgt99+w71793Dv3j0MHToU/v7+Wp8rIqIXxeO2RDcwMADw7Fqi88kgIiKqLgoH0dkojujxVdkguo+PDyIiIgAATZo0wa+//or79+/jl19+gZOTk55LR1R9FG6FDjCI/jx7knzoAGBpaQkjIyMAzIteEXl5efj5558BAH369IGFhQVCQ0PRtm1b9OvXD7du3dJzCYmIKoem0zKg4kF0Ly8vAM+mJfrw4cPRoEED/iBMREQvPCGEVk50tkQnenxVNoj+wQcfIDo6GgAwa9Ys/PPPP3B3d8eSJUvw7bff6rl0RNXDjRs3sHnzZgCAo6MjAAbRn2dP2hJdJpOxc9HHsHXrVty7dw92dnb4888/cf36dYwZMwZyuRybNm2Cr68vpk6dWiwvMBEBR44cwc2bN/VdDNJR4cB5RdO51K1bF8DTD6JnZWVh9erVCA8Px4ULF57qtoiqq+joaKxZswY5OTn6LgpRtRcdHY309HTpdeGW6EePHkW3bt2kBqxEVLYqF0S/ffs2AGDIkCEYPnw4AMDPzw937tzB6dOncffuXQwYMECPJSSqPr7//nsIIdCjRw80bdoUAIPoz7MnbYkOMC/64/jxxx8BAKNHj4axsTEcHBzwyy+/ICwsDF26dEFOTg4WLFiAvn376rmkRFXLrVu30K5dO/To0UPfRSEdafKhAxVvia4JoqekpEit2Z+GK1euQKVSAWD+daKnZerUqRgyZIjUGIeI9KdwKhdAuyX6smXLsGfPHnz88cfPulhEz6UqF0SvXbs2vLy8MGLECKxevRr37t0DAJiZmaF58+ZSK0ii69evSz+6VGVz585FYGCgzjeTVcXDhw+xfPlyAPkXwpaWlgAYRH9epaamSufTx22JDjCIXlEXLlzA4cOHYWBggLFjx2pNa9SoEfbs2YOgoCAAwKVLl/RQQqKqS9MC/dq1a7h7966eS0O6KHytU7TD0NJoguju7u5QKBQAnm5e9PPnz0v/6xJEF0JoteAjovJprmnu37+v55IQUeFULoB2S3TNZ/Tvv/8uNh8RFVflgugHDhzAsGHDcOvWLbz77rvw8PCAt7c3xowZg7Vr17LFCAHI79iwbt26qFWrFvLy8gAAubm5ePDggZ5Lpi0nJwdfffUV9u7di0WLFum7OBXy448/IisrCy1atEC7du0YRH/OaR7Rc3BwgI2NzWOvh+lcKkbTCr1Pnz5wdXUtNl0mk6FTp04AgPj4eHZ0R1RI4UDqiRMn9FgS0lXhIHp2djYyMzPLXUYTbLexsYG9vT2AZxdEj4mJKXf++fPnQ6lU4sCBA0+tTEQvEiGE1NCJHRgS6V9ZLdE1QXQhBBYvXvxMy0X0PKpyQfT27dtj9uzZOHToEBITExEcHIxBgwYhPDwcw4cPh7OzMxo0aKDvYpKeFb5J0wTzpkyZAhcXFxw6dEhPpSru1KlTUqdVS5YseW4uJDMyMrBs2TIA+a3QZTIZg+jPOU0+9CdJ5QKwJXpFJCYmYvXq1QCAiRMnljqfra0tgPwOSPn5IvpP4fPM8ePH9VgS0lXRp+50eQpP0xLdyspKCqLfuXOn8gtXoHAe9PIa56jVaimo8O+//z61Mj0twcHB6Nevn04/FhBVlsTEROl65nm59yF6kWmC6KampgD++1wKIbQaIS5fvlwrLRsRFVflguiFmZiYoGPHjvj888/xxRdf4P3334dSqZTy+lL1lZubK/0fGxuLvLw8rFy5EgCwZcsWfRWrmMIB/aSkJPz666/6K0wFLF++HPHx8ahVqxb69OkDAAyiP+c0580nSeUCsCV6Rfzvf/9DZmYmGjdujDZt2pQ6n6mpKczMzADwuBIVVrg1ckhIiB5LQrp60iC6v78/AOCzzz7TqRW7xokTJ9CyZUucOnWqzPmEEBVK53LixAkpwPA8pnSZN28eNm3ahE2bNum7KFSNFE63ySA6kf5pguiaPs40LdHj4+ORnZ0NAGjQoAEyMjLw22+/6aWMRM+LKhlEz8nJwZEjR/DFF1+gQ4cOsLa2xtixY5GYmIgff/zxuciDTU9X4Q6nYmNjcfz4celx4KrUWu3gwYMAgJdeegkAsHDhwqfaWVZlUKlU+P777wEAkydPhqGhIQAG0Z93bIn+bKlUKulpjvfeew8ymazM+TU/TsTHxz/1shE9LwqfZ86dO/dcBjGrm6It2HQJomuu36ytrfH111/D2dkZERERmD59us7bXblyJUJDQzFnzpwy53vw4IFWGcsLoq9fv176/3msfzdu3ACAKpfukF5st27dkv4vnDaCiJ49lUol9THTvHlzAP/9uKVJ5WJnZ4epU6cCAJYuXYqcnBw9lJTo+VDlgugdO3aEjY0Nxo8fj7i4OIwZMwY3b95EREQEfv/9d7z99ttwd3fXdzFJzwq3ToqNjcWOHTuk11XlRjs7O1sK6P/6669wc3NDTEwMVqxYoeeSlW3z5s24desWbG1t8c4770jjHzeInp2dzU6FnjIhBNRqdZnzaILoT9oSnUF03ezatQu3b9+GjY0NBg8eXO78mpQubIlO9J/CLdFVKhVCQ0P1WBrSxZO2RK9Rowb+97//AchPg7d//36dtqs5dwYHB5fZWEHTCl3zw2ZZaU7UajU2bNggva4K15YVkZubi6ioKAAMor/okpKSMHny5CrTQTlbohNVHXfu3EFubi6MjY1Rv359AP/9uKW5R3dxccHAgQPh6OiIBw8eaH330eP53//+h5dffhnR0dH6LgpVsioXRD969ChsbW3RsWNHdOrUCV26dIGTk5O+i0VVTNGW6IWD6CqVCqdPn9ZHsbT8+++/yMrKgoODAxo1aiT9uvvdd99JnaFWNUIIzJ8/HwAwYcIEKcUE8PhB9P79+8PV1RVffvlluYFeqhiVSoXly5fD09MT9evXLzWHbG5urtQa7UlbojOdi240HYqOHDlS63NUGrZEp/IcOHAA/fv3r1YdrGt+rDM3NwdQtZ40o5JVNIiel5cnBaetra0BAIGBgRg3bhwAYPjw4VJL9bJovpPS09PL7BtHkw9d0xqvrM9TSEiI1s3v8xZEj4qKkq67GER/sX333Xf44YcfMHr0aH0XBcDzH0RXqVTs6J1eGJpULnXq1JHu54u2RHdxcYGxsbHUh9P333/Pz8ATGjlyJE6cOIHvvvtO30WhSlblguhJSUn47bffYGZmhu+++w7Ozs5o1KgRJk6ciI0bN7L143MoPDwcgwYNwltvvVVp6ywcRP/3338RHh4OAwMDdO3aFUDVuNHW3MS1b98eMpkMI0eOhJ2dHW7fvo1169bpt3ClOHLkCE6fPg0TE5NiHSFaWVkBqNjFsBBCOg6zZs3CG2+8IbU4o8cnhMCuXbvQtGlTjBgxAlFRUYiIiEDHjh1LbPV/8+ZN5OXlwdzcHK6urk+07cpoif4kF2UqlQrbtm2r0p2kRUREYO/evZDJZBg/frxOyzzPLdF/+OEHjBgxgkGap+yjjz7Chg0bpHRb1YGmJXq3bt0AVI3vdipbRYPoha8JNDf3ADB//nzUrl0b9+7dwwcffFDudgufOws3rChK0xJdc72Ymppaau51TUs8ExMTAM9fEF3z+D5QdhD97t27GDlyJL788kudfrCgqkUIIaUdOnHiRJXoO+x5DqKnpKTAx8cHr7zySpUMIqanp+Ptt9/GqFGjnrtjS/qhCaLXrVsXFhYWAEpuiQ4AY8aMgampKc6ePYsjR47oobQvhsLXFc+io1aVSvXUt0H/qXJBdHNzc3Tr1g1z587FyZMn8ejRI8ybNw9mZmaYN28eXF1d0bBhQ30Xkypo7dq12LZtW6V9wAufmLZv3w4AaNOmDXr06AGganRApsmH3qFDBwCAmZkZPvzwQwDA3Llzq2SrbE0r9OHDh0vBUo3HaYkeHR2NlJQUyOVyGBsbY/v27WjVqhWuXLlSbN709HT069cPn332md7zJwohkJWVhaSkJMTExFSpgO3p06fRsWNHvPrqq7h06RJsbGzw9ddfo1atWrh16xY6duxYrLyFOxUtLzd3eTQtphMSEir8eU5OTsbAgQNhY2ODpUuXPtbNSVBQEHr37o1WrVpVeNlnRdMKvWfPnvDy8tJpmee1JfqFCxcwefJkLF++HE2bNkVwcPBT2U5SUhIiIyOfyrqfB1FRUQgLCwOQ/31aFW/snwZNEL13794A8oPo1WXfn1eam0UHBwcAugfRzczMYGRkJI03NzfHypUrIZfLsXLlSmzevLnM9RQOov/999+l1hNNS/Q2bdrA2NgYQMmt0VUqFTZu3AgAeOONNwA8f0H0wnmpSwqiCyGwatUqNGrUCP/73/8wa9YseHp6Yvbs2QymP0fOnTun9V4vX75cj6XJ9zwH0Tdt2oSbN2/i+PHjuHv3rr6LoyUnJwd9+/bF6tWr8X//939o3bp1qU+hEmlcv34dQH4QXalUAvjvc6n5bnB2dgaQfz8ydOhQAPmNZOjxFE6tlZGR8VS3tW7dOhgZGVXZRpovIpmo4ncjarUap0+fxsGDB3Hw4EEcO3YMWVlZz+WvLSkpKbCyskKykxMs5eX8ftG8OVAQHJa8/jpw9mz5G5o8OX/QSE0FdE3hsG0b4Of33+sdO4CxY8tfTqkEirZ8mDoV+OsvCAAP7t+HQP5NlVFBR5WSV1/Fp7a22LBhAw4dOpT/S2iLFkAZgcvMzEzEJyTgYwB/FYxbsGABunp4wObNNyGXyeDk7Iwyw4WnTwOFUwX99hvw5Zfl72vdusCBA9rj3noLOHxYeimEwP2CL6XC+5z59ttw/OknpKSkYNu2bXj99dcBHVsGp//6K8auXYuuXbvi7bffBg4dAoYM0WlZ3Lun/fqLL4Dff9calZuXJ91ISmVu1w5YswYAcOXKFTRo0ABHjIzQxt6+/G3OnIn9tWujc+fO8Pb2xoYlS2D/2mtQqVSQyWSoYWMDU1NTafasrCw8KgggDra3x8SlS/Hmm2/mB33//BP4+OPyt+noCBTNmTtmDLBzZ7mLXmnSBO1Pn0Zqaqr0pEM4AGXBdFNTU9SwsSk5CP3LL8Brr/33+swZoFev8ssLAOHhQEGrAADA99/nD0Xk5eUhOSVF+gEpTC7HkY8+wieffAIbGxvcuXMH13x94ZuZCUNDQ9jZ2cGg4DyTkpqKlJQUmJmaokaNGk90jsjdtAmKgo5y4+LiYHfypE7niCwjIzQyNJTSygDARi8v9M7KkspZqldfBX79FQDw2muvYefOnTgNoEVBq4micnJzkZaWBjMzM5gsXgwUzkkeEQF06lRueQE81jlCLQSOxsaivUqFvXv3okuXLvkTipwjikpJSUFKairO+fmhZ9E6rOvTA6tXA+3b//e6ks8RJTlqYIC2UVEwMjJCbm4uZDIZbnp4wDM3t+zzLwDMnAkUfvQ8Ohpo2VJrlpzcXKSnpSEjIwMCgG2NGvnnjf37AR+f/2Z8BucIDBoEFPzQKKlXD9DlR78nPEf8uGIF3nvvPQDAJABz7OxgrFCUuogAkFy7NmY0bowtW7bAyckJ48aNw7BNm2BQ0BK3TFXgOiIrKwtLTU0xCICTkxNioqPLvI7QnCMk5VxHSObNe6bnCAA6XUeU6t13gVmztMdVoXNETGws8vLyoFAokJOTgxgfH7Qoen3YsSNQ0DIuJzcXcXFxMJDLi6dvnDkTn0ZGYs6cOahZsyYu79sH+1dfLbZNARR7Cit92zb4vP76fyP+/BNi6lTp2szJ0RFxDx9CpVLBrvDnqeAcceTIEbRr1w7W1tYI9fOD8f79UCgUsC/SwEDLE5wjVMuW4UqtWqhRowacnZ0hO3v2ia8jkpKTtRoluDg7S9cwKrUaZ4VAq4LPSIsWLZCVlYVvLl1Cc+TnjFcqlbBQKiEv6Tu6CpwjAEj3GuV6gc8RySkpSE1NhVwuh1qtxl/m5vgwMVHrR6lneY5Qq9UwNTXF9JwcvAtALpfDuazUrIXuNSSFzhFl0uE6olSlXEc8fPQI2dnZAIAaNWrArNC9CgC9XUeoli3DW3/9hXXr1sHMzAytTUzwv4QEyOVy2NralnlNoOu9RjEvUDyiXAXniJ07d+Kvv/7CnDlz4PbGGy/EOUJTp21sbGBkaIhvHj7ECg8PREZG4tVXX8WuXbuQZm0tpc4rMSagoYd7jap2jiiXoyN+HzNGSq/VtGlTnGvV6qmdIx7FxyMrKwsLatfGokL32U8jHlHMC3aOSFGrYRUdjeTkZK2nI4syLHWKnqjVaoSGhuLQoUM4ePAgQkJCkJ6eDhcXF3To0AHLli2TWvbqw7JlyzB//nzExMSgSZMmWLp0acVbROrSuYCbW/FxDx8CunTQWLSlsBC6LQcARXtizszUbdnCHzqNxETg/n3IAEihrhJa++TExmJhUBBycnKwbt06TJ48Of8Lq4ztmgJwBVA40/Brr72GWpmZMAJ02+eiP8Skpem2rwVpTbQ8eqS1rKygfAC09tk0Oxvjx4/H3Llz8e2336Jnz56Q6fje7NqyBatXr8bq1auRl5eHd5yddX9fi0pOLrasUUllLtSyS3Misc3L0227aWlSi/P69eujScOG/x1zIYAijzaZFNp+fFwcBgwYgN9//x1Lly5FvYyMx9/XhASdlj0dF4eHubla45wBSKfPzMz8oSRFx+fk6F7eor9jpqSUuKwhANtCr+2aNMFr8+ZJrz08PODg4wOTsDAgL0/rPGOp2Q/N5/kJzhFGajVsbGyQmJiIhw8fwk7Hc0QOgBsA3N3dMWzYMMybNw+Jt2/DQJeNFqorhgUXco5AqdtVAKgBABkZWPnLL3i9Rw8p1y50rb/AY50j5ABqIr/Vf+fOnf+bUOQcUZTmPQor6UkPXctbcNOn9boSzxEl0bStCAkJwe+//47ff/8dGZGR5QfQgeIXhCpVsW0qCgYbzQhNXSjar8QzOEegpBa1Dx7kX/SV5wnPEZonrkxNTWGZmQnjctIpyQCE37+PHwsexb1//z5GjhyJRgYGaKlLI4QqcB3x8OFD2KDgeyE6uszriKLfJwDKvY6QFG0h9JjniIyMDBxavx49Kuk6olQlpUR7BueIadOmoWfPnnjllVf+K0cJyzpq/imoB4klndNiY6VlFSh4j9Xq4utLS8Ps2bOxa9cunD9/HtOmTMHyErapdc1V4Lf9+7WD6BkZkD148N98MTGQwhYlfJ406TF69+4Ni1u3YK/Zp7KO1xOcI6Z/8AEWFLQotbS0xIf+/vjiCa8jrAFYFy1LAQMAecj/Tp09ezamTZsGuVyOxHr1YHv9ev46U1NLL3sVOEcAkO41ylUFzhEAKvVeQ5q1YEDBE64G6enYvXs3evbs+d9Mz/A64sGDB8jJyYEVyvhsF1ZSGrtC54gy6XAdUapSriO0fibTNQ3DM7iO+N9PP2Hd3r0wMjLC5s2b0SQjA459+uQf3/JSLOp4r1HMCxSPKFfBe/3pp5/iwoULOH78OK5lZsJQlyB6FT9HSHW6oP5ZoXhOdPOkJKDgCaQSYwIaerjXqGrnCF1onh4F8lOriTp1dIv5PMY5ombB3/s3byIiIgI+msD/U4hHFFOdzhGFVLkgurW1NdLT0+Ho6IgOHTrghx9+QPv27VG7dm19F00K8P7yyy/w9/fHokWLEBgYiIiICNjr0jJXw8kJKK/lZUktXezsgFJaXmop+quJTKbbcgBQ9FdsU1PdllUqi4+zsZGWTUxKQnp6OiwsLGBVpHw3ExORU/BBCA4Ozg+iOzoWW11haenpSEpKkgI4derUQd26dSG7dg0PFQpk5+RALpfD3MwMqYVOngZyOUzNzPIfG5bLtQM9SqVu+1rwiLKWmjW1ltW0CpFa/mpYWeHDsWOxaNEinDx5EocOHUKHUrYpkN8SLzMzE0qlEn/v3StNGzVqFLxmzED7gmXz8vIgkH8zVFLwSgiBGzdu4PTp0zh9+jTaHDiAzpaWMDI0hKGREWQymZQCRKtFVs2a0jo0QfQYIeDr4lLydgBkZ2cjOzsbkTdv4krBBb2vry9gYAC4uOS3kCzUOsrY2Bi2NWogPSMDycnJMDUxwbhRozDl99+xb98+NG7cGCu7dUN/Z2fIy0tFUlK9qVGjzPdVID+FRlxWFgICAvDXX3/B1NQUJiYmsGjZEiI9HTk5OXj06BGEEDA0NETNmjVhaJAf/s3Ny8OiH3/Eqq++QmZmJrKyslA3NRUrZbJSHyc3MDBAzZo183/ZL7pPlpaAiwvUQiAtLQ2pqanSekyMjWFpZQWFkRGMS2hVZOLmhtzoaDx8+BBqtRpGRkawq1kTDx89Qm5u7n8tap7wHFGzZk0kJibmPz5fxjlCCIGk5GSkp6cjDfmdxa1evRo1a9ZE//79EdqhA+4VXBiZmZnBwsKieAtTIP89LKAJoscgP39f0RqhFkLrsfXdR4/ikwYN8PPPP+c/+WFoqPu+GhQJ8ZdzjhDITwsQm5eHiRMnaj+1UOQcUVRGZiYSEhKK/ZADQPfyFqQm0Hqt67LIz484Y8YMWFpaYnBMDOo4OZX5lEB8QgIeZWaib9++aNmyJVq2bIm2bdvi0bBhuKdW57eOqlFDSplQTJHvjZiHD2FmYYG09HStdFempqZQmpsjJTUV2dnZMDAwgElq6n+BdQAwM9NtX0s4R6htbABdzi82NsXHOTvr1hK9aEs2hUIqb25eHiBE/rm4hEWTU1KkviW++eYb3J08GQ8KWhwC+edmIyMjpKena/UXEi+XY2D//hgyZAiuXLmCn376CdGRkdC0AzIxMYFSqYSxsXHx7T6l64jsnBxkZGTkn2OL1osi9SEqKgqJAB4UtGJMTk5GaloazM3MYFP0vSj8PatRxnWEQP75SS6TIezaNQzw8UH//v0xa9as/HNMBc8RR48exYgRI9Dhxg00LjKLoYEBDAwMYGBomP/XwABZBga4FxYGV1dX2Nra5p8ryjlHSEq6cS7nvCSEgBACMiMj7TyOZZwj1EIgIyMD6enpyM3Nxbx58/DHH38gIiIiP/2UlVWxZQu3CLewsEBqairiS/pcOThIPwZkZmUhPj6+5FbeSiUUCgVWrVqFFi1aYPe+fUi3sYF5kc6a81QqxMTEQCaTwcrKCklJSThw5Ai0ulg0M0N6wQ/AxsbGsKtZU2q9ZW1tDWVBCzw4OkKlUmHTpk0A8jtHV/71l/S5cS7rXKHDOULzfqjVaqhUKunpt/A7d2BiYoLc3FykpKRgR3Aw3kV+i3ATExOYFVyXlPg0XCnXEbFxccgt9J1S09YWGZmZ0qPlWRYWOHX4MJo1aybNY1uvHkRGBjIzM5GakpJ/fkIJLdOLnCNUajWEoyOEWg11wf7JZDIoFIrix0uhQF5eHg4dOgSZTIY2BgZQlFGH09LTkZ2dDZWREdYtXQoPDw+4u7vD3d0dNtbWkOnyuSlyjkhPTwcsLGBYsyaMjIyQUfBDp1wuh0wmg1wmg6zg//ScHBilp8PMzCz/+D/F6wiJDvcawH9PcsgAODk7IyUlBclpafi///s/KYielJQEhY0NMrOykJ2VBchkkMvlMDAwgFwu1/r/3KlTkCuVsLe3h729PSwVCt2ObyGaVC6ZCgXuFdzflXS9prVfJe2/Ln0oFb3/LLjX0EnR600zM6RYWhZLW2ljYwOFQvHfPVYJ3y1xeXmwsLWFQqEo++lKGxuo1Wpcv34dZmZmcHNz0+k6IjklBdsK+tpZtWoVAgMDgTNnoHZ2RkJCgvTdb2FhAUtLy+LHupRzRLmeYTxCpVYDQsDAwECneIQAkJubC5VKBWNj4/zzTDnxiDLVqIGMjAwpDcft27dxRaFAfUdH6bxQah0u8p1Ulc4RmqeRgfyn+oQQSI6JKZYTPcfeHopCT69kZWdLadIcHRyk+68nvdfQUsJ1RImq0DlCl2Vza9bE3kJxm9TUVGSZmsJUl+1W8F6j8FMDmQDWrFmDLzVPMhS61yhNnkqF7OxsrPn9d3Tt2xeenp75E6rgOULLU4pZQq3WqcFzlUvn8uuvv6JDhw6oW7euvotSjL+/P1q2bCnlu1Wr1XBzc8N7772H6dOnl7u8lM6lnMcDXkS//PILxo0bh27duuGff/7RmtahQwcpQGBmZob4+HgkJSUhKiqq1KFop4YffvihlLfrs88+w7fffqs1vWvXrvj333+1Lozq1KmDgQMHYsCAAdJNoouLC4QQ2LlzJx49eoS6devC3t4eMTExiCpIWWBsbJx/I2FhUerQpUsXHDt2DH/88QdGjhxZ7HhMnDgRy5YtQ5cuXfD555/jgw8+gIeHBwICAvDyyy/DxsYGU6dOxe7duwHkBzuysrJgZmaGfv36YeXKlTAyMsIvv/yC4OBgrF27FkD+RWrXrl3RrVs3GBkZSUHz0NBQnfJbvvLKKzh69GiJ09Rqdf6FDYCTJ09qPYFx69YtBAUFISgoqMT8gStWrJDyq2n8+eefGDVqFDIzM1GrVi14eXlh//79eP/997F48WLcunUL77//PnYWPPrk5uaGRYsW4Y033kBeXh5yc3ORmJiI9u3bIzIyEubm5jA3N4ezszMCAwPRo0cPNGjQIP9iUiZDRkYGHjx4gNTUVOn9UyqV+PvvvzF48GAoFAqcO3cO9evXL3H/L126hG7duuH+/ftwcXHB//3f/2Ht2rVYuXKlzvntjY2NIYRATk4OrK2tsX37drRp06bYfNnZ2fD395c6QPPz88O8efPQsWNHnbZz5coVtG/fHg8fPkTLli0RHh6OtLQ0XL58udT9q4jWrVvj+PHjWLVqFd58800oFIpiN/aRkZHo168fzpw5A5lMhlmzZuHzzz+X6hCQ/yPRp59+qpVzT6lUYunSpRg+fLg0TvOZBPKfBtJ8LurVq6c1+Pj44Pbt2xg8eDA8PDywcuVKjBo1SsoF2KVLF/Tv37/Mz66JiQnUajWysrKkQfPjiOZvQkICYmJiEB0dLeXMj4mJwYMHD3D37l1YWFjg/v37Uuc9uggODkbXrl3RqFEjKWcvkP8DWXZ2tlZ5KjpcuXIFRkZGmDhxImrXro3c3FzpR4vC6//9998xe/ZsrXI5OzujRYsWWoOdnR3Cw8PRoEEDCCEQFhaGJk2aSMtcuXIFb775Jq5cuQK5XI6vvvoK06dP10oJIIRAdHQ0wsPDER4ejiNHjmDLli3IKwjYODo6YuzYsRg9erSU4iE+Ph4tW7bE7du30aZNG3h5eSE3NxeNGjWS3r/Cn23NX83nztLSEhYWFhBCIDc3F5mZmYiOjsabb76JO3fuYMeOHfD390d6enqxITc3F3Xq1IG9vb1WGipNXd+7dy/279+P5ORkODo6wtHREfb29rC2toaVlZX019TUFAqFAsbGxlCpVJgxYwbWFDyiamVlJX0HtG7dGv7+/pDL5Zg9ezbmzZuHevXq4fz583B0dCwzz3SrVq3wzjvvYODAgf89gYH8HM+7du3Cjz/+qHVx7+3tjVq1aknvVWJiIm7cuIHr169Lg6mpKbZu3Qp3d3cA+Z/dW7du4caNG7hx44b0dF5ycjKUSiVsbW1Ro0YNaTA2NsbMmTOxZMkS6UfBLl264Msvv4SXlxeys7Px8OFDuLm54e+//8a6detw4MABqFQqNG/eHGfOnMH27dvRq1cv+Pr6Yu/evbh37x7u3r0r/c3MzIS/vz+aNGmCJUuW4N69e2jQoAEaNmyIhg0bIjs7GxMmTMCNGzeQnZ0NmUyGnj17Yu/evVIAokOHDvj0009hZGRULLikCYAbGhrCsCAgLpfLsXTpUmm/TExMYGdnh9zcXMTGxuqUv93U1BSurq7S4ODgADs7O9jb22v9tbOzw7Vr13D27Fmpnj569Ajx8fHl/tUEUhUKBTw8PODl5aU1WFlZSWXNzc3F9u3b8ddff0k5wI2NjWFlZYW4uDgMHDgQ48aNK3FfcnJypBRW//vf/zBixAi8/PLL2Lx5M/Ly8qRjqBmSkpIwevRo7N27t8Trw8Lmz5+Pjz/+GEqlEidPnkRGRgbOnz+PCxcu4Pfff5dSnd29exdubm6QyWQIDQ2Fvb09TExMYGJigk8//RRLly6Vrhnfffdd/PHHH5gxYwY6deqE9evXw97eHnK5HDNnzoS1tTViY2OhUCjg6uqK+/fvY+XKlZDJZDh37hwMDQ2lz3vhwdraGjKZDGlpafjiiy9w6tQpJCQkICEhAfHx8VKqCA1DQ0OMGzcOM2fOhKWlJUJDQ7Fx40Zs3LhR65rK3Nwcr732Gt5880107NgRERERuHjxIqKionD37l3cvXsXsbGxqFevHtq2bSt1yFqjRg0kJCTA2NhYqvtTpkzBl19+KXWaWhK1Wo0tW7bgiy++wMWLFwEUtJL/8EO89957iIyMxKFDh3D48GEcOXKkxD5zjIyMEBAQgC5duqBz586wsbHBihUrEBQUhOiCG1VTU1O0a9cOXbt2RdeuXZGbm4tt27YhLCwMjRo1wtdff13qZ0mpVMLd3R1eXl7o0qUL+vTpkx+YRP73Z1paGh4+fIiLFy/i4sWLuHDhAi5cuJDfMrCCt8ByuVzr+l/znVKRwdDQsNi5pSJD0WU+++wzzJkzB3369MGmTZtw+fJlNGzYEAYGBpg7dy727NmDQ4cOSd+tFWVsbAxnZ2e4uLjA2dm51EFzvSOEwNdff42ZM2ciICAAJ06cAAAcOHAA5ubmMDMzg4eHBywsLJCYmIiYmBg4OTlBUUIqkpJ+MKrscQkJCcgpaHgll8vRuXNnXLlyBRMnTpTu9zU8PT3RpUsXdOzYES4uLrC0tISVlRVu3bqFToVSd3h5eSEgIAAvvfQSAgIC4ObmhqNHj2rdk2laAfv4+MDb21u6hzE3N4dSqdR6fePGDcwrePL0559/xtgiKQtUKhU++eQTqV+rAQMG4Ndff4WBgQFUKhXy8vKgUqm0/ler1bC1tYWhoSFyc3Ol+6qig4GBAZRKJZQFP2gaGRlJ348luXv3Lvbt2wdDQ0PpM6L5nBgYGODu3bt4+PAhWrRoAXt7e6ks3377LRYsWAAA+PLLL+Hr61vsui42Nhbnzp3D2bNnce7cOVy8eFFqhOfi4oJly5ahZ8+ekMvlEEKUuN/l/X/hwgUMGTIENWvWhI2NjXT/oKk/Dg4OcHFxgYuLC2rUqKF1PaD5v/CgUCjg7OwMd3d32NnZYc+ePdixY4eU8sjExASmpqZag4uLi3Td4ujoiNTUVCQnJ+f/QFbob2pqKnJycrSG3Nxc5OTkwNHREd7e3ti6dSv++OMPAMD333+PSZMmITExUWrgd/jwYbRr1w5Afr8itrb/PfMshEBgYKDU11FwcDCaNGkCtVqN1NTUUoeUgoaE6enpqFOnDrp37w5fX1/k5OQgKytL655G0/DOwMAACoVCa9DUtZycHGkZtVotXUMbGxsjOTkZX331FRwdHdG6dWsEBATA1tZWev+zs7Ol5Qv/X3idV69exd6CH6gcHBykwdHRUfrujI+Ph7GxsfR+FX3frK2tYVOQpjYiIgKvvvoqbt68CWtra2RkZCAnJwdHjhxBgwYN8tN3Fhyjwv/n5ORI5+mAgAA0b94cd+/exa1bt6RB8wNl4euN8PBwfPfdd1Jazdq1a+P69eta5zvNfU9ubi7S09MREhKCffv2Yd++fVKnsxotW7bEm2++iTfffPO/gHo1onO8VpBOsrOzhYGBgdiyZYvW+KFDh4rXX39dp3UkJycLACI5OfkplLBqO3HihAAgZDKZMDU1FWZmZsLc3FxYWFgIFDTMsbKykv7XZTA3N5f+37dvn7St9evXa83322+/CSGEyMzMFFu2bBH9+/cXpqamFdrW4w43btwo8XhERkYKQ0NDAUAYGRmVuryRkZGoV6+e9Hr48OEiLy9PDBgwQGs+mUwmTExMyiyLsbGxeOmll8R7770nvv32WzFs2DDRokULYWZmJs2zbdu2Mt/HwuuztLQUFhYWWu8hAGFtbS369esnLC0tpXFnz54tcX1hYWHCy8tLa/kvvvhCmq5Wq8W2bduEh4eH1r5W5D0wNjbWqW4V3m5p7ty5I3x9fYst26dPH7Fr1y5x7NgxERoaKi5duiRu3rwp7t+/LxISEkRGRoZQqVRCCCEePXokAgICBABhaGgoHB0dhZ2dnbC1tRXW1tbCwsJCqp81a9YUf/75p7RsRVy4cEHY2tpKZfTw8BA5OTkVXk9JXn/99WL1z8zMTNja2goXFxdha2srDAwMBABRo0YNsXv37jLXd/jwYdGzZ09pfYaGhsLd3V24ubkJFxcX6bNSkWHs2LFCCCEyMjLEtGnTdK43Fa1fJQ2ff/55hY/p2bNnBQAhl8uFra2tMDc3f6z9royhRYsWomHDhkIul5c43cLCQjpv9O7du8T9SUtLE8OGDdNaxt7eXlhbW5e5b6+88opYu3atyM7OLnG9Fy5c0Dr3V3QwNzcvdb90HRQKhbCyshIODg7C0dHxiY+3XC4vcZ8MDAy0zs9z5swRQggxatSoYvM6OjqKqVOnisuXL+tU3yIiIsQHH3ygdZ7WtZw2NjZP9Dnp0KFDmd97hQc/Pz/p/BEbG/vU6vxLL730RPUKgBgxYoRITEyUjnF2dra4ffu2OHLkiPjzzz/Fd999JyZOnCh69+4t/Pz8hL29/VPbn8oa6tWrJ3744Qfx6NEjERISovNyhoaGYt++fTrPb2RkJLZv315mnc3LyxOvvPJKmesJCAgQQgjRrFmzMudbvny5EEKIzz77rMz53nnnHWn7Rb/3yho054jCn9+SjpGdnZ3o16+fiIiIKHGf1Wq1+Pfff8VHH32kdR1U0eG1116T/q9Vq5Y4cuSITucJDZVKJTZu3CgaNWpU5nYMDAxEzZo1RZ06dUSLFi2Ep6dnmfPXrFlTODs767QPnTt3FpMmTRJ9+vQRLVq0EHZ2dmWut7xrYiD/vFn4+tDa2lp06NBBtGjRQvj4+AhnZ2dhYWFRKdcFT3v466+/pPfL39+/2HRfX18xffp0cfz4cXHx4kWxf/9+8ddff4nFixeLzz77TLz77ruiV69eIiAgQNSuXbvYtX15g6mpqTA2NtYa9+6775Y6v1Kp1PsxK20wNjYWDx8+FA4ODsLAwED4+/vr/J2la10xNTWVrpN1Hb7++usyP6f/93//98yuG+VyuTA2NhZKpVLY2NgIe3t74eLi8sw/K1ZWVlrXYWZmZpVyj9+zZ09x//59UbduXb3UwcoevvzyS6me5OTkFJvetGlToVari9WpiIgIvd2LPO5gbGyst3O2iYmJUCgUAoDw9PQUly9fFu3atXusdVX0uI8dO1a65lAqlcLCwkKYmJiUe56Ry+XipZdeEu3atdO6P7K2tq60uMHzRNd4bZVriV5VPXjwAC4uLjh+/DgCAgKk8R9//DEOHz6MkydPFltG86uXRkpKCtzc3KplS/TMzEzUrl1banVS1Ouvv45atWph0aJFAAo6oSn45ba0wdraGlOmTMHdu3exZs0aqQOdtLQ01K1bF9HR0di9e3f+I29FpKWlSS2t9uzZAwsLC1hbW+PBgwfIy8uDg4MDXnnlFURHRyMxMRE2NjaoXbu21EJVk2aj6FC49+VWrVrh33//LfnRWwBjx47FrwWdHHl4eGDUqFE4d+4cjh8/jpiYGAQGBmLJkiVwdXXFgAEDEBwcjBMnTqBZs2bIzc1Fv379sH37dnTt2hXfffcdfHx8cPToUezZswf79u2DTCaTUiy0bNkSDRs21O5kqEBcXBw6dOgAR0dHBAcHl9q6AAAaNmyIy5cvFxsvk8nQpUsXvPPOO+jduzdMTEyQkpKClStXQi6XY/z48aWuMyEhAUOHDsXOnTvh6OiIHTt2wK9wRxHIzzU7Z84czJs3T2p1oGFlZYWdO3eiZs2aSE9Px+XLl7Fz507s27cP8QUdlWqYmZnB0tIyP71IWprUCsnPzw/Hjx8vsSVMSeV9/fXXERISgk6dOuHbb7+tcL8ImZmZGDx4MLZu3VrqPDKZDJs2bcIbb7xRoXUXdu7cOXTr1k06Rt7e3o+9rsJWrVqFMWPGSC3/SvPSSy9h3bp1UuvV8ty5cwf+/v7SY2klMTAwkFrHaX7xv3r1Kq5evYqIiAjcv38fMpkMR44c+S93L4CdO3dizZo1pbac0LS4LMrQ0FBqaaBpeWBlZQUnJyetlgCa187OzlIruIpISUmBq6ur1DqpJEZGRlKLSs2gaRlR1uDi4oIbN25g9erVyMnJkVp2FD2umnmDg4Ph7u6OtLQ0hIWFITQ0VBoiIiKkZRQKBU6ePImmTZuWWubly5fj/fff1+rcrvA2a9euDV9fX9SvXx8DBgzQatFemp07d+KTTz5B27ZtYW9vj9u3b0vn5LS0tGL/Z2dnS+kTSuLj4yO12C28b4VbggkhcOvWrRJb8xkYGOCll15C165d4ebmhtjYWMTExODhw4dITk5GUlISkpKSkJycjKysLKnFUHZ2Nho3boxff/0Vfn5+uHDhAkJCQhASEoLjx49LLVDd3d0xc+ZMDB8+HAYGBrh37x7mzJmD8ePH4/Tp07Czs0NgYOB/j9pWQFpaGrZs2YLg4GCsWrUKCoUCtWrVQp06deDt7Q1vb28YGhpi1qxZxb6/LSws4O3tjTp16sDMzAzr169HRkYG2rVrh/T0dMTHxyMhIQHJBY/buru747fffkNgYCBu3bqFmTNnYvPmzcjMzIRMJoOpqSkyMjLQpEkT9O/fH/3790edOnW0ttm+fXscPnwYBgYGcHFxgaurK9zc3ODq6gq5XI6jR48iNDQUjRs3xujRo3Ht2jVcunQJly5dQnR0NN544w3Mnz8fVlZWOHr0KIYMGQJ/f3/8/fffuHPnDiZNmoR79+5BrVZL6TY0fwsPeXl5Ugs2V1dXLFq0CN26davw8c/Ozsb9+/e1WtU/fPgQcXFxxf4Wvp60sLBAjRo1YGtri5o1a+r0V6FQ4N69e7h9+zZu376NyMhI6f+MIvlcGzRogHfffRdt2rTRuob55ptvsHr16nL3680338S4ceOkpwxkMpnUKrLobYe/vz9+//13NGrUqNz13rp1C35+fkhKSkLNmjXRpEkTNGnSBD4+PoiKikLfvn3RrFkzKf1iakEKqMLnO0tLS1y6dAlubm4IDg5G9+7doVKpYG5uDh8fHzRo0ACRkZFIS0vDqlWr0KBBAwD5LetHjhwJExMTNGvWDC1atICBgYHW00gxMTHFnvpzdXXFV199BTc3N62nM5RKZanXhyURQiA0NBQbNmzAhg0bEBkZCTs7O/j5+cHDwwNubm5wc3NDzZo1ERYWhn379uHQoUNo3bo1hgwZgvHjx2PUqFFYuHAhlCU9zqyDoi3TLS0t0bZtW7Rv3x7t27dH06ZNtZ4205w3g4ODsW/fPulpncDAQIwaNQo9e/aEkZERLl++jL1792LPnj04cuQIZDIZunbtinr16uHHH3+EhYUFwsLC4FAkfUFmZibu3r2LO3fu4OLFi9i6dSuOHTtWrI6Zmpqifv36aNy4MRo1aiT9tbe3R0JCAhYuXIicnBzMnTtXq/yF9zs9Pb3M1pcltcQsOqSlpWmdUzTnmaJDRW/NPTw8cOnSJel93blzJwYPHoxGjRqhd+/e6NWr12Nd/2VmZkpP2RUd7t+/L/1f9LpFJpNJ/ZiNGDECJ06ckJ7iSklJ0XqSSpP2SV80KYc07wkAfPTRR5g3bx5iYmKQm5sLNzc3pKWl4ciRI9K9WGJiIpKTk5GcnAwDAwN4e3tj4cKF8PPzw6lTp/Dvv//ixIkT+Pfff5GYmIgGDRrglVdeQatWrdCyZUv4+voiLS0NR48eRWxsbIlPwGmGjIwMvP7668XTBJbg8OHDGDRoUIn325onGTTXCkWv4eVyudT618jICIaGhlCpVEhLSyt2zViWgIAAKJVKrc9CSkoKcnNz4erqCktLS5w7d0463kV1795d6z5b87+FhQWaNWuG5s2bS3+9vLyQlZWF2bNn46effirxWrOs41D4CTPNX3NzcyxZsgTdunVDdHQ03n77bdjZ2WH+/PmIjY3F/fv3cf/+faSkpGhdD5Q0ZGZm4v79+4iKisKDBw/QsGFDDBkyBPb29sjMzJQGzdOuGRkZuH37Ni5duoTr169Lx0ihUMDKykp6+kHTut/Y2LhYC25DQ0Ncu3YN169fR+vWrTFgwAAEBgZq1R1/f3+cOnUKpqam6NmzJ5YtW5afpq0Ev/32G+bMmQO1Wo2oqCgAKPWJ/MJP55iYmOD06dM4ePCg1vWLJkWZ5v5FoVBApVIVa1Ff+HpboVDAxMQEcrlcun4uXH9atmyJ1NRUXC3aYWSh91xzrAr/BfI7Tu3ZsyesrKyk6/fY2FjExsYiPj5euo7SPMFa0nuWlJSkdY/x0ksvYdu2bbC3t8ecOXPw6aefStNMTEyk41T4SQ1jY2MYGhoiIyMDwcHByMrKgkKhgJeXF2rVqiU9tV/4ukPzRLRarcZff/2F3377DUuXLi33M6Dpt6tz585SB+pAfkrSzZs3Y8OGDfDy8sL//d//lbuuF42uLdEZRNfR4wTRZ8+ejS+++KLY+OoYRAfyb9bv3r0rPQqvuVgE8h99k8vluHPnDgwMDODo6FhiwPdpyMnJkb5En5TmYiM1NRWOjo5lBjVyc3MRHh4Oc3Nz1KpVS/pyEwV5SDU9ZGvG5eTkaOUWFkLg3r17jxWwe1xCCMTFxSE5OVkqr0wmg7W1dalfvrrS5Mkt6wJRE/zWXChkZmbC1NRU61gVXWdcXBwyMzPh7OwspXYB8utfZmYm0tLSULNmzQq9/yqVClFRUfDy8qrYThYihMC1a9eQnZ1dLGWAXC6HpaXlEx9TID/tgpGRUaXU78JEoZQYmiEjIwNZWVkwNTWFhYUFXF1dKxQkAPKDShcvXszP31uQt1OTi9Xb21sKQpZ2Dk1JSUF2djbsSsrRVga1Wo20tDSkp6drBasfJzD5uB49eoSoqKgSA+HGxsZP/B5qjinw32PumhRVuu5nSkoKYmNjpRz7juX0XwHk36hFRUUhNzcXRkZG0mOadnZ2pedLfwo0ZSj8CKaxsTFkBf0XxMbGwsTEBObm5iV+/wghkJqaiqSkJK1HUevWrQurkvJUl6Pw+1GSe/fuITExEfXq1Xsm34cZGRml1rPc3Fw8fPhQ2mdbW1vY2dlplT8jIwNqtbpYgC4vLw9JSUmwsbEptQ6LgpzdiYmJWo8TF6VSqfI7NLazK3VdKpWqxGk5OTnFfijNzMwsPc90FaKpe/Hx8XBxcdHpB9+q4OHDh0hNTYWbm5tUh4UQ0o8RmkfaKyIxMRFZWVlwdHTU+X1Tq9XSo9uaH0Q1oqOjkZ2dDXd39zIbEWiuf2rUqFHm5zErKwuxsbHSTX7t2rUr/f0SQkg392Udg8TERJiZmcHY2BhZWVllpm6pCLVajQcPHsDJyanC105ZWVmlXrMBkIJ1mmOmCTzreo59+PAhYmJitFJBPMvvmcqgOR+WFmQvOtjY2Dyze6aSpKamIi4uTrp2UiqVMCvIEZ2Xl4eEhAStvsOSk5MRHR0NFxcXWFhYIDMzUysAVVJooui48l7rOo+5uflTPZ9qvtdqlNRvx1OSl5eHjIwMrSCxgYFBsXNFRkYGhBBSwLys858msFnaoEkHY29vD9cS+mwqSnN+LHzvk17Q78DjXuvm5eXh5s2bUCgUMDMzy89PXyRYXtJxqKqysrKQkpICS0vLSjt3a6jVaiQkJJT7HVJUdnZ2mel8SqLZD801t1FBX2y6lDEvL6/UuqkqyOWtSZsD5H/npaamFguYP+17Oc01WkJCAjIyMlCvXj2tMsfGxsLIyCi/7y8dztWa6z03N7cKfR5EQb9gWVlZ0mdb8/nW/K+JoZRHXdC3VXXDIHoly8nJgZmZGTZu3IjevXtL44cNG4akpCRs27at2DJsiU5ERERERERERERUNekaRH92TeyecwqFAn5+fti/f78URFer1di/fz8mTpxY4jKaTg80NL9XlNTxDhERERERERERERE9O5o4bXntzBlEr4DJkydj2LBhaNGiBVq1aoVFixYhPT0d77zzjk7La3K+Pcv0G0RERERERERERERUutTU1DLTyDGIXgEDBgzAw4cPMXPmTMTExKBp06bYvXt3sY5uSuPs7Iy7d+/CwsLiucnHVVGalDV3795lyhp6YbBe04uI9ZpeNKzT9CJivaYXEes1vYhYr+lFVF3qtSa/vbOzc5nzMSc6VSpd8wgRPU9Yr+lFxHpNLxrWaXoRsV7Ti4j1ml5ErNf0ImK91lb9ulwlIiIiIiIiIiIiItIRg+hERERERERERERERKVgEJ0qlbGxMWbNmgVjY2N9F4Wo0rBe04uI9ZpeNKzT9CJivaYXEes1vYhYr+lFxHqtjTnRiYiIiIiIiIiIiIhKwZboRERERERERERERESlYBCdiIiIiIiIiIiIiKgUDKITEREREREREREREZWCQXQiIiIiIiIiIiIiolIwiE6VZtmyZfD09ISJiQn8/f1x6tQpfReJqFSzZ8+GTCbTGurVqydNz8rKwoQJE2BrawulUom+ffsiNjZWax1RUVF49dVXYWZmBnt7e0ydOhV5eXnPeleoGjty5Ah69uwJZ2dnyGQybN26VWu6EAIzZ86Ek5MTTE1N0blzZ1y/fl1rnoSEBLz11luwtLSEtbU1Ro4cibS0NK15Lly4gDZt2sDExARubm6YN2/e0941qqbKq9PDhw8vdu7u1q2b1jys01TVzJkzBy1btoSFhQXs7e3Ru3dvREREaM1TWdcdhw4dQvPmzWFsbIw6deogKCjoae8eVVO61Ov27dsXO2ePHTtWax7Wa6pKfv75ZzRu3BiWlpawtLREQEAA/vnnH2k6z9X0PCqvXvNcrTsG0alSrFu3DpMnT8asWbNw9uxZNGnSBIGBgYiLi9N30YhK1aBBA0RHR0vDsWPHpGmTJk3C33//jQ0bNuDw4cN48OAB+vTpI01XqVR49dVXkZOTg+PHj2PFihUICgrCzJkz9bErVE2lp6ejSZMmWLZsWYnT582bhyVLluCXX37ByZMnYW5ujsDAQGRlZUnzvPXWW7h8+TKCg4OxY8cOHDlyBKNHj5amp6SkoGvXrvDw8MCZM2cwf/58zJ49G7/99ttT3z+qfsqr0wDQrVs3rXP3X3/9pTWddZqqmsOHD2PChAn4999/ERwcjNzcXHTt2hXp6enSPJVx3XH79m28+uqr6NChA8LCwvDhhx9i1KhR2LNnzzPdX6oedKnXAPDuu+9qnbML/2jJek1VjaurK+bOnYszZ84gNDQUHTt2RK9evXD58mUAPFfT86m8eg3wXK0zQVQJWrVqJSZMmCC9VqlUwtnZWcyZM0ePpSIq3axZs0STJk1KnJaUlCSMjIzEhg0bpHHh4eECgDhx4oQQQohdu3YJuVwuYmJipHl+/vlnYWlpKbKzs59q2YlKAkBs2bJFeq1Wq4Wjo6OYP3++NC4pKUkYGxuLv/76SwghxJUrVwQAcfr0aWmef/75R8hkMnH//n0hhBA//fSTsLGx0arX06ZNEz4+Pk95j6i6K1qnhRBi2LBholevXqUuwzpNz4O4uDgBQBw+fFgIUXnXHR9//LFo0KCB1rYGDBggAgMDn/YuERWr10II0a5dO/HBBx+UugzrNT0PbGxsxB9//MFzNb1QNPVaCJ6rK4It0emJ5eTk4MyZM+jcubM0Ti6Xo3Pnzjhx4oQeS0ZUtuvXr8PZ2Rm1atXCW2+9haioKADAmTNnkJubq1Wn69WrB3d3d6lOnzhxAo0aNYKDg4M0T2BgIFJSUrR+0SXSl9u3byMmJkarHltZWcHf31+rHltbW6NFixbSPJ07d4ZcLsfJkyeledq2bQuFQiHNExgYiIiICCQmJj6jvSH6z6FDh2Bvbw8fHx+MGzcO8fHx0jTWaXoeJCcnAwBq1KgBoPKuO06cOKG1Ds08vB6nZ6FovdZYs2YNatasiYYNG+KTTz5BRkaGNI31mqoylUqFtWvXIj09HQEBATxX0wuhaL3W4LlaN4b6LgA9/x49egSVSqX1gQIABwcHXL16VU+lIiqbv78/goKC4OPjg+joaHzxxRdo06YNLl26hJiYGCgUClhbW2st4+DggJiYGABATExMiXVeM41I3zT1sKR6Wrge29vba003NDREjRo1tObx8vIqtg7NNBsbm6dSfqKSdOvWDX369IGXlxdu3ryJTz/9FN27d8eJEydgYGDAOk1VnlqtxocffojWrVujYcOGAFBp1x2lzZOSkoLMzEyYmpo+jV0iKrFeA8DgwYPh4eEBZ2dnXLhwAdOmTUNERAQ2b94MgPWaqqaLFy8iICAAWVlZUCqV2LJlC+rXr4+wsDCeq+m5VVq9BniurggG0YmoWurevbv0f+PGjeHv7w8PDw+sX7/+hTnBExG9aAYOHCj936hRIzRu3Bi1a9fGoUOH0KlTJz2WjEg3EyZMwKVLl7T6YSF63pVWrwv3R9GoUSM4OTmhU6dOuHnzJmrXrv2si0mkEx8fH4SFhSE5ORkbN27EsGHDcPjwYX0Xi+iJlFav69evz3N1BTCdCz2xmjVrwsDAoFiv1LGxsXB0dNRTqYgqxtraGnXr1sWNGzfg6OiInJwcJCUlac1TuE47OjqWWOc104j0TVMPyzo3Ozo6FusAOi8vDwkJCazr9FyoVasWatasiRs3bgBgnaaqbeLEidixYwcOHjwIV1dXaXxlXXeUNo+lpSUbCNBTU1q9Lom/vz8AaJ2zWa+pqlEoFKhTpw78/PwwZ84cNGnSBIsXL+a5mp5rpdXrkvBcXToG0emJKRQK+Pn5Yf/+/dI4tVqN/fv3a+VYIqrK0tLScPPmTTg5OcHPzw9GRkZadToiIgJRUVFSnQ4ICMDFixe1gjXBwcGwtLSUHosi0icvLy84Ojpq1eOUlBScPHlSqx4nJSXhzJkz0jwHDhyAWq2WLp4CAgJw5MgR5ObmSvMEBwfDx8eHaS9I7+7du4f4+Hg4OTkBYJ2mqkkIgYkTJ2LLli04cOBAsXRClXXdERAQoLUOzTy8Hqenobx6XZKwsDAA0Dpns15TVadWq5Gdnc1zNb1QNPW6JDxXl0HfPZvSi2Ht2rXC2NhYBAUFiStXrojRo0cLa2trrd57iaqSjz76SBw6dEjcvn1bhISEiM6dO4uaNWuKuLg4IYQQY8eOFe7u7uLAgQMiNDRUBAQEiICAAGn5vLw80bBhQ9G1a1cRFhYmdu/eLezs7MQnn3yir12iaig1NVWcO3dOnDt3TgAQ33//vTh37py4c+eOEEKIuXPnCmtra7Ft2zZx4cIF0atXL+Hl5SUyMzOldXTr1k00a9ZMnDx5Uhw7dkx4e3uLQYMGSdOTkpKEg4ODePvtt8WlS5fE2rVrhZmZmfj111+f+f7Si6+sOp2amiqmTJkiTpw4IW7fvi327dsnmjdvLry9vUVWVpa0DtZpqmrGjRsnrKysxKFDh0R0dLQ0ZGRkSPNUxnXHrVu3hJmZmZg6daoIDw8Xy5YtEwYGBmL37t3PdH+peiivXt+4cUN8+eWXIjQ0VNy+fVts27ZN1KpVS7Rt21ZaB+s1VTXTp08Xhw8fFrdv3xYXLlwQ06dPFzKZTOzdu1cIwXM1PZ/Kqtc8V1cMg+hUaZYuXSrc3d2FQqEQrVq1Ev/++6++i0RUqgEDBggnJyehUCiEi4uLGDBggLhx44Y0PTMzU4wfP17Y2NgIMzMz8cYbb4jo6GitdURGRoru3bsLU1NTUbNmTfHRRx+J3NzcZ70rVI0dPHhQACg2DBs2TAghhFqtFjNmzBAODg7C2NhYdOrUSURERGitIz4+XgwaNEgolUphaWkp3nnnHZGamqo1z/nz58Urr7wijI2NhYuLi5g7d+6z2kWqZsqq0xkZGaJr167Czs5OGBkZCQ8PD/Huu+8W+8GedZqqmpLqNACxfPlyaZ7Kuu44ePCgaNq0qVAoFKJWrVpa2yCqTOXV66ioKNG2bVtRo0YNYWxsLOrUqSOmTp0qkpOTtdbDek1VyYgRI4SHh4dQKBTCzs5OdOrUSQqgC8FzNT2fyqrXPFdXjEwIIZ5du3ciIiIiIiIiIiIioucHc6ITEREREREREREREZWCQXQiIiIiIiIiIiIiolIwiE5EREREREREREREVAoG0YmIiIiIiIiIiIiISsEgOhERERERERERERFRKRhEJyIiIiIiIiIiIiIqBYPoRERERERERERERESlYBCdiIiIiIiIiIiIiKgUDKITEREREdFTExQUBGtra30Xg4iIiIjosTGITkRERET0Ahs+fDh69+5dbPyhQ4cgk8mQlJT0zMtERERERPQ8YRCdiIiIiIieitzcXH0XgYiIiIjoiTGITkRERERE2LRpExo0aABjY2N4enpi4cKFWtNlMhm2bt2qNc7a2hpBQUEAgMjISMhkMqxbtw7t2rWDiYkJ1qxZozV/ZGQk5HI5QkNDtcYvWrQIHh4eUKvVlb5fRERERERPikF0IiIiIqJq7syZM+jfvz8GDhyIixcvYvbs2ZgxY4YUIK+I6dOn44MPPkB4eDgCAwO1pnl6eqJz585Yvny51vjly5dj+PDhkMt5e0JEREREVY+hvgtARERERERP144dO6BUKrXGqVQq6f/vv/8enTp1wowZMwAAdevWxZUrVzB//nwMHz68Qtv68MMP0adPn1Knjxo1CmPHjsX3338PY2NjnD17FhcvXsS2bdsqtB0iIiIiomeFTT2IiIiIiF5wHTp0QFhYmNbwxx9/SNPDw8PRunVrrWVat26N69evawXbddGiRYsyp/fu3RsGBgbYsmULACAoKAgdOnSAp6dnhbZDRERERPSssCU6EREREdELztzcHHXq1NEad+/evQqtQyaTQQihNa6kjkPNzc3LXI9CocDQoUOxfPly9OnTB3/++ScWL15cobIQERERET1LDKITEREREVVzvr6+CAkJ0RoXEhKCunXrwsDAAABgZ2eH6Ohoafr169eRkZHxWNsbNWoUGjZsiJ9++gl5eXllpn8hIiIiItI3BtGJiIiIiKq5jz76CC1btsRXX32FAQMG4MSJE/jxxx/x008/SfN07NgRP/74IwICAqBSqTBt2jQYGRk91vZ8fX3x0ksvYdq0aRgxYgRMTU0ra1eIiIiIiCodc6ITEREREVVzzZs3x/r167F27Vo0bNgQM2fOxJdffqnVqejChQvh5uaGNm3aYPDgwZgyZQrMzMwee5sjR45ETk4ORowYUQl7QERERET09MhE0cSGRERERERET9lXX32FDRs24MKFC/ouChERERFRmdgSnYiIiIiInpm0tDRcunQJP/74I9577z19F4eIiIiIqFwMohMRERER0TMzceJE+Pn5oX379kzlQkRERETPBaZzISIiIiIiIiIiIiIqBVuiExERERERERERERGVgkF0IiIiIiIiIiIiIqJSMIhORERERERERERERFQKBtGJiIiIiIiIiIiIiErBIDoRERERERERERERUSkYRCciIiIiIiIiIiIiKgWD6EREREREREREREREpWAQnYiIiIiIiIiIiIioFAyiExERERERERERERGVgkF0IiIiIiIiIiIiIqJSMIhORERERERERERERFQKBtGJiIiIiIiIiIiIiErBIDoRERERERERERERUSkYRCciIiIiIiIiIiIiKgWD6EREREREREREREREpWAQnYiIiIiIiIiIiIioFAyiExERERERERERERGVgkF0IiIiIiIiIiIiIqJSMIhORERERERERERERFQKBtGJiIiIiIiIiIiIiErBIDoRERERERERERERUSkYRCciIiIiIiIiIiIiKgWD6EREREREREREREREpWAQnYiIiIiIiIiIiIioFAyiExERERERERERERGVgkF0IiIiIiIiIiIiIqJSMIhORERERERERERERFQKBtGJiIiIiIiIiIiIiErBIDoRERERvZBmz56Npk2b6rsYeuXp6YlFixbpuxhV3qFDhyCTyZCUlKTvohARERFRFcQgOhERERFVOTExMXjvvfdQq1YtGBsbw83NDT179sT+/fv1XbQX1pgxY1C7dm2YmprCzs4OvXr1wtWrV/VdLCIiIiIivWMQnYiIiIiqlMjISPj5+eHAgQOYP38+Ll68iN27d6NDhw6YMGGCvov3wvLz88Py5csRHh6OPXv2QAiBrl27QqVS6btoVIacnBx9F4GIiIjohccgOhERERFVKePHj4dMJsOpU6fQt29f1K1bFw0aNMDkyZPx77//SvNFRUWhV69eUCqVsLS0RP/+/REbG1vqetu3b48PP/xQa1zv3r0xfPhw6bWnpye+/vprDB06FEqlEh4eHti+fTsePnwobatx48YIDQ2VlgkKCoK1tTX27NkDX19fKJVKdOvWDdHR0U98LJKSkjBmzBg4ODjAxMQEDRs2xI4dO6TpmzZtQoMGDWBsbAxPT08sXLjwsbc1evRotG3bFp6enmjevDm+/vpr3L17F5GRkeUuq1KpMHLkSHh5ecHU1BQ+Pj5YvHix1jzDhw9H7969sWDBAjg5OcHW1hYTJkxAbm6uNE9iYiKGDh0KGxsbmJmZoXv37rh+/bo0XXOsd+zYAR8fH5iZmaFfv37IyMjAihUr4OnpCRsbG7z//vtawf9Vq1ahRYsWsLCwgKOjIwYPHoy4uLgS9yU9PR2WlpbYuHGj1vitW7fC3NwcqampZR6LnJwcTJw4EU5OTjAxMYGHhwfmzJkjTX/S99TT0xNfffUVhg4dCktLS4wePRoAcOzYMbRp0wampqZwc3PD+++/j/T09DLLSkRERES6YRCdiIiIiKqMhIQE7N69GxMmTIC5uXmx6dbW1gAAtVqNXr16ISEhAYcPH0ZwcDBu3bqFAQMGPHEZfvjhB7Ru3Rrnzp3Dq6++irfffhtDhw7FkCFDcPbsWdSuXRtDhw6FEEJaJiMjAwsWLMCqVatw5MgRREVFYcqUKU9UDrVaje7duyMkJASrV6/GlStXMHfuXBgYGAAAzpw5g/79+2PgwIG4ePEiZs+ejRkzZiAoKOiJtgvkB5KXL18OLy8vuLm56VRWV1dXbNiwAVeuXMHMmTPx6aefYv369VrzHTx4EDdv3sTBgwexYsUKBAUFaZV3+PDhCA0Nxfbt23HixAkIIdCjRw+tQHtGRgaWLFmCtWvXYvfu3Th06BDeeOMN7Nq1C7t27cKqVavw66+/agXBc3Nz8dVXX+H8+fPYunUrIiMjtX48Kczc3BwDBw7E8uXLtcYvX74c/fr1g4WFRZnHYsmSJdi+fTvWr1+PiIgIrFmzBp6entJxqoz3dMGCBWjSpAnOnTuHGTNm4ObNm+jWrRv69u2LCxcuYN26dTh27BgmTpxYZlmJiIiISEeCiIiIiKiKOHnypAAgNm/eXOZ8e/fuFQYGBiIqKkoad/nyZQFAnDp1SgghxKxZs0STJk2k6e3atRMffPCB1np69eolhg0bJr328PAQQ4YMkV5HR0cLAGLGjBnSuBMnTggAIjo6WgghxPLlywUAcePGDWmeZcuWCQcHB533uyR79uwRcrlcRERElDh98ODBokuXLlrjpk6dKurXr6+1Pz/88IPO21y2bJkwNzcXAISPj4/WPlXUhAkTRN++faXXw4YNEx4eHiIvL08a9+abb4oBAwYIIYS4du2aACBCQkKk6Y8ePRKmpqZi/fr1QoiSj/WYMWOEmZmZSE1NlcYFBgaKMWPGlFq206dPCwDSMgcPHhQARGJiohAivx4aGBiIBw8eCCGEiI2NFYaGhuLQoUPl7vd7770nOnbsKNRqdbFp/+osigAA29RJREFUlfWe9u7dW2uekSNHitGjR2uNO3r0qJDL5SIzM7PcMhMRERFR2dgSnYiIiIiqDFGodXdZwsPD4ebmptVKun79+rC2tkZ4ePgTlaFx48bS/w4ODgCARo0aFRtXOB2ImZkZateuLb12cnIqNV0IADRo0ABKpRJKpRLdu3cvcZ6wsDC4urqibt26JU4PDw9H69attca1bt0a169ff+w85m+99RbOnTuHw4cPo27duujfvz+ysrJ0WnbZsmXw8/ODnZ0dlEolfvvtN0RFRWnN06BBA6nVNaB9nMLDw2FoaAh/f39puq2tLXx8fLTe06LH2sHBAZ6enlAqlVrjCh//M2fOoGfPnnB3d4eFhQXatWsHAMXKp9GqVSs0aNAAK1asAACsXr0aHh4eaNu2bbnHYfjw4QgLC4OPjw/ef/997N27V5pWWe9pixYttOY5f/48goKCpDqlVCoRGBgItVqN27dvl1tmIiIiIiqbob4LQERERESk4e3tDZlMhqtXr1b6uuVyebEgfeE0IRpGRkbS/zKZrNRxarW6xGU085T1g8CuXbukbZuampY4T2njnyYrKytYWVnB29sbL730EmxsbLBlyxYMGjSozOXWrl2LKVOmYOHChQgICICFhQXmz5+PkydPas1X0nEqfBx1UdI6ylpveno6AgMDERgYiDVr1sDOzg5RUVEIDAwss1POUaNGYdmyZZg+fTqWL1+Od955R3rvy9K8eXPcvn0b//zzD/bt24f+/fujc+fO2LhxY6W9p0VTHaWlpWHMmDF4//33i83r7u5eKdskIiIiqs7YEp2IiIiIqowaNWogMDAQy5YtK7FTxKSkJACAr68v7t69i7t370rTrly5gqSkJNSvX7/EddvZ2Wl19qlSqXDp0qXK3QEdeXh4oE6dOqhTpw5cXFxKnKdx48a4d+8erl27VuJ0X19fhISEaI0LCQlB3bp1tVp7Py4hBIQQyM7OLnfekJAQvPzyyxg/fjyaNWuGOnXq4ObNmxXanq+vL/Ly8rQC7/Hx8YiIiCj1PdXF1atXER8fj7lz56JNmzaoV69emU8JaAwZMgR37tzBkiVLcOXKFQwbNkznbVpaWmLAgAH4/fffsW7dOmzatAkJCQlP7T1t3rw5rly5ItWpwoNCodC53ERERERUMgbRiYiIiKhKWbZsGVQqFVq1aoVNmzbh+vXrCA8Px5IlSxAQEAAA6Ny5Mxo1aoS33noLZ8+exalTpzB06FC0a9euWKoLjY4dO2Lnzp3YuXMnrl69inHjxklB+aqoXbt2aNu2Lfr27Yvg4GCpdfPu3bsBAB999BH279+Pr776CteuXcOKFSvw448/PlaHprdu3cKcOXNw5swZREVF4fjx43jzzTdhamqKHj16lLu8t7c3QkNDsWfPHly7dg0zZszA6dOnK1QGb29v9OrVC++++y6OHTuG8+fPY8iQIXBxcUGvXr0qvE8a7u7uUCgUWLp0KW7duoXt27fjq6++Knc5Gxsb9OnTB1OnTkXXrl3h6uqq0/a+//57/PXXX7h69SquXbuGDRs2wNHREdbW1k/tPZ02bRqOHz+OiRMnIiwsDNevX8e2bdvYsSgRERFRJWEQnYiIiIiqlFq1auHs2bPo0KEDPvroIzRs2BBdunTB/v378fPPPwPIT9exbds22NjYoG3btujcuTNq1aqFdevWlbreESNGYNiwYVKwvVatWujQocOz2q3HsmnTJrRs2RKDBg1C/fr18fHHH0u5sZs3b47169dj7dq1aNiwIWbOnIkvv/wSw4cPr/B2TExMcPToUfTo0QN16tTBgAEDYGFhgePHj8Pe3r7c5ceMGYM+ffpgwIAB8Pf3R3x8PMaPH1/hcixfvhx+fn547bXXEBAQACEEdu3aVSxdS0XY2dkhKCgIGzZsQP369TF37lwsWLBAp2VHjhyJnJwcjBgxQuftWVhYYN68eWjRogVatmyJyMhI7Nq1C3J5/q3X03hPGzdujMOHD+PatWto06YNmjVrhpkzZ8LZ2VnnchMRERFR6WRC196biIjo/9m77/Aoqr7/459N7wkQIAmBJLTQQUAwopTQ5UGw3CDgTVdUsIAgcCtFRUUUBZUbLI+AWFBQgR9S5KFKkRIMIiJNECQJoaWTtju/P0LWbApJFLKBvF/XtRfszDkz35k9e3by3bNnAABABbJkyRKNHTtWMTExTIsCAABQgXFjUQAAAADIIy0tTbGxsZo5c6ZGjRpFAh0AAKCCYzoXAAAA4Bb32WefycvLq9BH48aNi63/2GOPFVn/scceK4MjKFuzZs1SgwYNFBAQoMmTJ9use/XVV4s8Fz179rRTxAAAALiRmM4FAAAAuMUlJyfr3Llzha5zdnZWSEjINevHx8crKSmp0HU+Pj4lmjf9VnHp0iVdunSp0HXu7u6qUaNGGUcEAACAG40kOgAAAAAAAAAARWA6FwAAAAAAAAAAikASHQAAAAAAAACAIjjZO4CKxGKxKCYmRt7e3jKZTPYOBwAAAAAAAAAqLMMwlJycrKCgIDk4FD3enCR6GYqJiVHNmjXtHQYAAAAAAAAA4KozZ84oODi4yPUk0cuQt7e3pJwXxcfHx87RAAAAAAAAAEDFlZSUpJo1a1rztkUhiV6Gcqdw8fHxIYkOAAAAAAAAAOVAcVNvc2NRAAAAAAAAAJJy5og+fvy4DMOwdyhAuUESHQAAAAAAAIAk6d1331W9evX08ccf2zsUoNwgiQ4AAAAAAABAknT06FGbfwEwJ3q5lJ2drczMTHuHgQrGxcVFTk50CQAAAAAAVGTZ2dmSpKysLDtHApQfZMzKEcMwdPr0aV24cMHeoaCC8vf3V61atYq9mQIAAAAAALg15SbRGeAJ/IUkejmSm0CvUaOGvLy85ODAbDsoGxaLRSkpKTp79qwkKSQkxM4RAQAAAAAAe8gdgc5IdOAvZZZEr1SpUolHt166dOkGR1P+ZGdnWxPoAQEB9g4HFZCXl5ck6ezZs3J1daUdAgAAAABQATGdC1BQmSXR58yZU1a7uinl/kQmN5EJ2ENu+1u7dq3uuusu1atXz84RAQAAAACAssR0LkBBZZZEHzJkSFnt6qbGFC6wp9z2l5mZqfXr18vT01NBQUF2jgoAAAAAAJQVpnMBCrJbxvbEiRN64YUXNGDAAMXHx0vKGf166NAhe4UE4KoqVaooOTmZm9wCAAAAAFDBMBIdKMguSfStW7eqadOm2r17t7755hulpKRIkg4cOKBp06bZIyQAeeTev4BvnQEAAAAAqFiYEx0oyC5J9EmTJmnGjBnasGGDXFxcrMsjIyP1448/2iMk/E3z589Xs2bN5OPjIx8fH0VERGjt2rUFyu3atUuRkZHy9PSUj4+P2rdvrytXrljXX7p0SYMGDZKPj4/8/Pw0YsQI65crRQkNDZXJZJLJZJK7u7tCQ0PVr18/bdq0qdTHMXToUPXt27fU9W5lJb0RMAAAAAAAuHUwnQtQkF2S6AcPHtR9991XYHm1atWYPuImExwcrJkzZyoqKkr79u1TZGSk+vTpYzMtz65du9SjRw9169ZNe/bs0d69ezVmzBib+d8HDRqkQ4cOacOGDVq9erW2bdumRx99tNj9v/TSS4qNjdWRI0f0ySefyM/PT126dNErr7xyQ44XAAAAAADgVsZ0LkBBdkmi+/n5KTY2tsDyn376STVq1LBDRPi7evfurXvuuUf16tVT/fr19corr8jLy8vmFwVjx47VU089pUmTJqlx48YKDw9Xv3795OrqKkk6fPiw1q1bp48++kht27bVXXfdpXfffVdLly5VTEzMNffv7e2tgIAA1apVS+3bt9cHH3ygKVOmaOrUqTpy5IgkyWw2a8SIEQoLC5O7u7vCw8M1d+5c6zamT5+uxYsXa+XKldaR7Vu2bJEkTZw4UfXr15eHh4dq166tKVOm8E0sAAAAAAC4ZTGdC1CQXZLoDz30kCZOnKi4uDiZTCZZLBbt2LFD48eP1+DBg+0RUrljGIZSU1Pt8jAM42/FbDabtXTpUqWmpioiIkKSFB8fr927d6tatWq68847Vb16dXXo0EHbt2+31tu1a5f8/PzUunVr67IuXbrIwcFBu3fvLnUcTz/9tAzD0MqVKyVJFotFwcHBWrZsmX799VdNnTpV//nPf/TVV19JksaPH69+/fqpR48eio2NVWxsrO68805JOUn6RYsW6ddff9XcuXP14Ycf6u233/5b5wcAAAAAAKC8y02eMxId+IuTPXb66quvavTo0apZs6bMZrMaNWoks9msgQMH6oUXXrBHSOVOWlqavLy87LLvlJQUeXp6lrj8wYMHFRERofT0dHl5eenbb79Vo0aNJEm///67pJzR3m+++aZatGihTz75RJ07d9Yvv/yievXqKS4uTtWqVbPZppOTkypXrqy4uLhSx1+5cmVVq1ZNp06dkiQ5OzvrxRdftK4PCwvTrl279NVXX6lfv37y8vKSu7u7MjIyFBAQYLOtvO0xNDRU48eP19KlS/Xcc8+VOi4AAAAAAIDyjpHoQEF2SaK7uLjoww8/1JQpU/TLL78oJSVFt912m+rVq2ePcPAPhYeHKzo6WomJiVq+fLmGDBmirVu3qlGjRrJYLJKkUaNGadiwYZKk2267TRs3btTHH3+s11577YbEZBiGzY0x582bp48//linT5/WlStXlJmZqRYtWhS7nS+//FLvvPOOTpw4oZSUFGVnZ8vHx+eGxAwAAAAAAGBvJNGBguySRN++fbvuuusu1apVS7Vq1bJHCOWeh4eHUlJS7Lbv0nBxcVHdunUlSa1atdLevXs1d+5cvf/++woMDJQk68j0XA0bNtTp06clSQEBAYqPj7dZn52drUuXLhUYGV4SFy9e1Pnz5xUWFiZJWrp0qcaPH6/Zs2crIiJC3t7eeuONN4qdKmbXrl0aNGiQXnzxRXXv3l2+vr5aunSpZs+eXeqYAAAAAAAAbgZM5wIUZJckemRkpGrUqKEBAwbo4YcfLpBghWQymUo1pUp5YrFYlJGRISlnCpSgoCDrTT5zHT16VD179pQkRUREKCEhQVFRUWrVqpUkadOmTbJYLGrbtm2p9z937lw5ODiob9++kqQdO3bozjvv1BNPPGEtc+LECZs6Li4uMpvNNst27typkJAQPf/889Zlf/zxR6njAQAAAAAAuFkwEh0oyC5J9JiYGC1dulRffPGFZs6cqWbNmmnQoEEaMGCAgoOD7RES/qbJkyerZ8+eqlWrlpKTk/X5559ry5YtWr9+vaScLwMmTJigadOmqXnz5mrRooUWL16s3377TcuXL5eUMyq9R48eeuSRR7RgwQJlZWVpzJgxeuihhxQUFHTN/ScnJysuLk5ZWVk6efKkPv30U3300Ud67bXXrKPj69Wrp08++UTr169XWFiYlixZor1791pHqks5yf7169fryJEjqlKlinx9fVWvXj2dPn1aS5cu1e23367vvvtO33777Q06kwAAAAAAAPaXm0RnJDrwFwd77NTf319jxozRjh07dOLECf3rX//S4sWLFRoaqsjISHuEhL8pPj5egwcPVnh4uDp37qy9e/dq/fr16tq1q7XMM888o8mTJ2vs2LFq3ry5Nm7cqA0bNqhOnTrWMp999pkaNGigzp0765577tFdd92lDz74oNj9T506VYGBgapbt67+/e9/KzExURs3btTEiROtZUaNGqX7779f/fv3V9u2bXXx4kWbUemS9Mgjjyg8PFytW7dW1apVtWPHDt17770aO3asxowZoxYtWmjnzp2aMmXKdThrAAAAAAAA5VPuCHRGogN/MRmGYdg7CLPZrLVr12rKlCn6+eefC0yrcatISkqSr6+vEhMTC9ycMi0tTYcPH1bDhg1LPSc5cL3ktsNTp07p2LFj6tq1q3WKHQAAAAAAcOsLCgpSbGys/Pz8dPnyZXuHA9xQ18rX5mWXkei5duzYoSeeeEKBgYEaOHCgmjRpou+++86eIQEAAAAAAAAVFtO5AAXZZU70yZMna+nSpYqJiVHXrl01d+5c9enThxHYAAAAAAAAgB0xnQtQkF1Gom/btk0TJkzQ2bNntXr1ag0YMOBvJ9C3bdum3r17KygoSCaTSStWrLBZbxiGdd5sd3d3denSRceOHbMpc+nSJQ0aNEg+Pj7y8/PTiBEjlJKSYlPm559/1t133y03NzfVrFlTs2bN+lvxAgAAAAAAAOVV7kj0rKwslYNZoIFywS5J9NxpXPz9/f/xtlJTU9W8eXPNmzev0PWzZs3SO++8owULFmj37t3y9PRU9+7dlZ6ebi0zaNAgHTp0SBs2bNDq1au1bds2Pfroo9b1SUlJ6tatm0JCQhQVFaU33nhD06dPL9GNLwEAAAAAAICbRW4SPf//gYrMbnOiL1myRO3atVNQUJD++OMPSdKcOXO0cuXKUm2nZ8+emjFjhu67774C6wzD0Jw5c/TCCy+oT58+atasmT755BPFxMRYR6wfPnxY69at00cffaS2bdvqrrvu0rvvvmudbkaSPvvsM2VmZurjjz9W48aN9dBDD+mpp57SW2+99c9OAgAAAAAAAFCO5J3GhSldgBx2SaLPnz9f48aN0z333KOEhASZzWZJkp+fn+bMmXPd9nPy5EnFxcWpS5cu1mW+vr5q27atdu3aJUnatWuX/Pz81Lp1a2uZLl26yMHBQbt377aWad++vVxcXKxlunfvriNHjnCXYgAAAAAAANwSDMOw5ukkbi4K5LJLEv3dd9/Vhx9+qOeff16Ojo7W5a1bt9bBgwev237i4uIkSdWrV7dZXr16deu6uLg4VatWzWa9k5OTKleubFOmsG3k3UdhMjIylJSUZPMAAAAAAAAAyqO8CXSJkehALrsk0U+ePKnbbrutwHJXV1elpqbaIaIb47XXXpOvr6/1UbNmTXuHBAAAAAAAABQqf9KckehADrsk0cPCwhQdHV1g+bp169SwYcPrtp+AgABJ0rlz52yWnzt3zrouICBA8fHxNuuzs7N16dIlmzKFbSPvPgozefJkJSYmWh9nzpz5ZwcEAAAAAAAA3CD5byTKSHQgh12S6OPGjdPo0aP15ZdfyjAM7dmzR6+88oomT56s55577rrtJywsTAEBAdq4caN1WVJSknbv3q2IiAhJUkREhBISEhQVFWUts2nTJlksFrVt29ZaZtu2bTYdx4YNGxQeHq5KlSoVuX9XV1f5+PjYPFC+bdmyRSaTSQkJCWW630WLFsnPz+8fbePUqVMymUyFfkGVy17HBwAAAAAAyr/8SXRGogM57JJEHzlypF5//XW98MILSktL08CBAzV//nzNnTtXDz30UKm2lZKSoujoaGvi8OTJk4qOjtbp06dlMpn0zDPPaMaMGVq1apUOHjyowYMHKygoSH379pUkNWzYUD169NAjjzyiPXv2aMeOHRozZoweeughBQUFSZIGDhwoFxcXjRgxQocOHdKXX36puXPnaty4cdfztNyUtm3bpt69eysoKEgmk0krVqywWZ+VlaWJEyeqadOm8vT0VFBQkAYPHqyYmJhrbnf+/Plq1qyZ9cuHiIgIrV271qbMiRMndN9996lq1ary8fFRv379CvxiIC+TyXTNx/Tp0//uaQAAAAAAALjp5R95zkh0IIddkuiSNGjQIB07dkwpKSmKi4vTn3/+qQEDBmjnzp2l2s6+fft02223WedYHzdunG677TZNnTpVkvTcc8/pySef1KOPPqrbb79dKSkpWrdundzc3Kzb+Oyzz9SgQQN17txZ99xzj+666y598MEH1vW+vr76/vvvdfLkSbVq1UrPPvuspk6dqkcfffQ6nImbW2pqqpo3b6558+YVuj4tLU379+/XlClTtH//fn3zzTc6cuSI7r333mtuNzg4WDNnzlRUVJT27dunyMhI9enTR4cOHbLut1u3bjKZTNq0aZN27NihzMxM9e7dWxaLpdBtxsbGWh9z5syRj4+PzbLx48f/rXPAt7IAAAAAAOBWwHQuQOHslkTP5eHhoWrVqkmSjh07prvvvrtU9Tt27CjDMAo8Fi1aJCln9PFLL72kuLg4paen6//+7/9Uv359m21UrlxZn3/+uZKTk5WYmKiPP/5YXl5eNmWaNWumH374Qenp6frzzz81ceLEv3/Qt5CePXtqxowZuu+++wpd7+vrqw0bNqhfv34KDw/XHXfcoffee09RUVE6ffp0kdvt3bu37rnnHtWrV0/169fXK6+8Ii8vL/3444+SpB07dujUqVNatGiRmjZtqqZNm2rx4sXat2+fNm3aVOg2AwICrA9fX1+ZTCabZXlf86ioKLVu3VoeHh668847deTIEeu66dOnq0WLFvroo48UFhZm/UImISFBI0eOtI6Mj4yM1IEDB6z1Dhw4oE6dOsnb21s+Pj5q1aqV9u3bZxPj+vXr1bBhQ3l5ealHjx6KjY21rrNYLHrppZcUHBwsV1dXtWjRQuvWrSvyHErSmjVrVL9+fbm7u6tTp046derUNcsDAAAAAICKi+lcgMLZPYmOiicxMVEmk6nEc4CbzWYtXbpUqamp1rnsMzIyZDKZ5Orqai3n5uYmBwcHbd++/R/H+Pzzz2v27Nnat2+fnJycNHz4cJv1x48f19dff61vvvnGOpXQv/71L8XHx2vt2rWKiopSy5Yt1blzZ126dElSzq8vgoODtXfvXkVFRWnSpElydna2bjMtLU1vvvmmlixZom3btun06dM2o+Pnzp2r2bNn680339TPP/+s7t27695779WxY8cKPYYzZ87o/vvvV+/evRUdHa2RI0dq0qRJ//jcAAAAAACAWxMj0YHCOdk7ABTjrbdyHsVp2VJatcp22b33Svv3F1933LicRxlIT0/XxIkTNWDAgGJvtHrw4EFFREQoPT1dXl5e+vbbb9WoUSNJ0h133CFPT09NnDhRr776qgzD0KRJk2Q2m21Gb/9dr7zyijp06CBJmjRpknr16qX09HTrqPPMzEx98sknqlq1qiRp+/bt2rNnj+Lj462J/TfffFMrVqzQ8uXL9eijj+r06dOaMGGCGjRoIEmqV6+ezT6zsrK0YMEC1alTR5I0ZswYvfTSS9b1b775piZOnGi9b8Drr7+uzZs3a86cOYVOpzN//nzVqVNHs2fPliSFh4fr4MGDev311//x+QEAAAAAALee/ElzRqIDOUiil3dJSdLZs8WXq1mz4LLz50tWNymp9HH9DVlZWerXr58Mw9D8+fOLLR8eHq7o6GglJiZq+fLlGjJkiLZu3apGjRqpatWqWrZsmR5//HG98847cnBw0IABA9SyZUs5OPzzH1g0a9bM+v/AwEBJUnx8vGrVqiVJCgkJsSbQpZypWlJSUlSlShWb7Vy5ckUnTpyQlDNf/8iRI7VkyRJ16dJF//rXv6wJcylnaqO8zwMDAxUfHy9JSkpKUkxMjNq1a2ez/Xbt2tlMGZPX4cOH1bZtW5tluSP5AQAAAAAA8mMkOlC4Mk2ir8o/UjqfkydPllEkNxEfH6lGjeLL5Uno2iwrSd1iRoRfD7kJ9D/++EObNm0qdhS6JLm4uKhu3bqSpFatWmnv3r2aO3eu3n//fUlSt27ddOLECV24cEFOTk7y8/NTQECAateu/Y/jzTvNislkkiSbG5Z6enralE9JSVFgYKC2bNlSYFu509ZMnz5dAwcO1Hfffae1a9dq2rRpWrp0qXU++bz7zN2vYRj/+FgAAAAAAABKgiQ6ULgyTaL37du32DK5CUtc9U+mWinmS4uykptAP3bsmDZv3lxgtHZJWSwWZWRkFFju7+8vSdq0aZPi4+N17733/qN4/46WLVsqLi5OTk5OCg0NLbJc/fr1Vb9+fY0dO1YDBgzQwoULi7wpa14+Pj4KCgrSjh07rNPMSDk3WG3Tpk2hdRo2bFjgi6vcG7MCAAAAAADkx3QuQOHKNImedyQvbg0pKSk6fvy49fnJkycVHR2typUrq1atWsrKytKDDz6o/fv3a/Xq1TKbzYqLi5MkVa5cWS4uLpKkzp0767777tOYMWMkSZMnT1bPnj1Vq1YtJScn6/PPP9eWLVu0fv16674WLlyohg0bqmrVqtq1a5eefvppjR07VuHh4WV4BnJ06dJFERER6tu3r2bNmqX69esrJiZG3333ne677z41btxYEyZM0IMPPqiwsDD9+eef2rt3rx544IES72PChAmaNm2a6tSpoxYtWmjhwoWKjo7WZ599Vmj5xx57TLNnz9aECRM0cuRIRUVFadGiRdfpiAEAAAAAwK2GkehA4ZgTHf/Ivn371KlTJ+vzcVdHzQ8ZMkSLFi3S2bNnraOhW7RoYVN38+bN6tixoyRZp2XJFR8fr8GDBys2Nla+vr5q1qyZ1q9fr65du1rLHDlyRJMnT9alS5cUGhqq559/XmPHjr1BR3ptJpNJa9as0fPPP69hw4bp/PnzCggIUPv27VW9enU5Ojrq4sWLGjx4sM6dOyd/f3/df//9evHFF0u8j6eeekqJiYl69tlnFR8fr0aNGmnVqlUFblCaq1atWvr66681duxYvfvuu2rTpo1effVVDR8+/HodNgAAAAAAuIXkT6IzEh3IYTKYdLnMJCUlydfXV4mJiQXmBE9LS9Phw4fVsGFDeXh42ClCVHS57fDUqVM6duyYunbtqlatWtk7LAAAAAAAUAY2b96syMhI6/OPP/5Yw4YNs2NEwI11rXxtXg5lGBMAAAAAAACAcorpXIDCkUQHAAAAAAAAwHQuQBHKPIluNpu1bds2JSQklPWuAQAAAAAAABQh/8hzRqIDOco8ie7o6Khu3brp8uXLZb1rAAAAAAAAAEVgJDpQOLtM59KkSRP9/vvv9tg1AAAAAAAAgEIwJzpQOLsk0WfMmKHx48dr9erVio2NVVJSks2jIrNYLPYOARVYbvszDMPOkQAAAAAAgLLGdC5A4ZzssdN77rlHknTvvffKZDJZlxuGIZPJJLPZbI+w7MrNzU0ODg46efKkatSoIVdXV5tzA9xIhmEoIyNDZ86ckcVi4UMSAAAAAIAKiOlcgMLZJYm+efNme+y2XHNwcFCjRo10/PhxnTx50t7hoIK6cuWKYmNjGYkOAAAAAEAFxHQuQOHskkTv0KGDPXZb7rm6uqpu3br69NNPZTabVaVKFXuHhAokOzvb+iuQ9PR0SZKnp6c9QwIAAAAAAGUof9KckehADrsk0SXphx9+0Pvvv6/ff/9dy5YtU40aNbRkyRKFhYXprrvusldYdufq6qrWrVtr48aNSkxMZFoXlDmz2ay0tDQ1adJEYWFh9g4HAAAAAACUEUaiA4WzSxL966+/1r///W8NGjRI+/fvV0ZGhiQpMTFRr776qtasWWOPsMqNZs2aydHRUYcPH1ZSUhJTa6BMubm5KTAwUHfddZdcXV3tHQ4AAAAAACgjJNGBwtkliT5jxgwtWLBAgwcP1tKlS63L27VrpxkzZtgjpHLFZDKpSZMmatKkib1DAQAAAAAAQAXBdC5A4RzssdMjR46offv2BZb7+voqISGh7AMCAAAAAAAAKjhGogOFs0sSPSAgQMePHy+wfPv27apdu7YdIgIAAAAAAAAqtvxJdEaiAznskkR/5JFH9PTTT2v37t0ymUyKiYnRZ599pvHjx+vxxx+3R0gAAAAAAABAhZY78jz3HmmMRAdy2GVO9EmTJslisahz585KS0tT+/bt5erqqvHjx+vJJ5+0R0gAAAAAAABAhZY7Et3Dw0MZGRkk0YGr7JJEN5lMev755zVhwgQdP35cKSkpatSokby8vOwRDgAAAAAAAFDh5U2iX758melcgKvsMp3L8OHDlZycLBcXFzVq1Eht2rSRl5eXUlNTNXz4cHuEBAAAAAAAAFRouSPP3d3dbZ4DFZ1dkuiLFy/WlStXCiy/cuWKPvnkEztEBAAAAAAAAFRseUeiS9xYFMhVptO5JCUlyTAMGYah5ORkubm5WdeZzWatWbNG1apVK8uQAAAAAAAAAKhgEp2R6ECOMk2i+/n5yWQyyWQyqX79+gXWm0wmvfjii2UZEgAAAAAAAAAVnM6FkehAjjJNom/evFmGYSgyMlJff/21KleubF3n4uKikJAQBQUFlWVIAAAAAAAAAMRIdKAoZZpE79ChgyTp5MmTqlmzphwc7DIlOwAAAICb3I8//qj169frP//5j5ydne0dDgAAtwSS6EDhyjSJniskJESSlJaWptOnTxf4aUizZs3sERYAAACAm8S4ceO0a9cuNW7cWA8++KC9wwEA4JbAdC5A4eySRD9//ryGDRumtWvXFrrebDaXcUQAAAAAbiZ//PGHJGn//v0k0QEAuE4YiQ4Uzi7zqTzzzDNKSEjQ7t275e7urnXr1mnx4sWqV6+eVq1aZY+QAAAAANwkzGaz4uLiJEkHDhywczQAANw68ifRGYkO5LDLSPRNmzZp5cqVat26tRwcHBQSEqKuXbvKx8dHr732mnr16mWPsAAAAADcBOLj42WxWCRJ0dHR9g0GAIBbSO7Ic0aiA7bsMhI9NTVV1apVkyRVqlRJ58+flyQ1bdpU+/fvt0dIAAAAAG4SMTExNv/P/XsCAAD8M7kj0XPnRCeJDuSwSxI9PDxcR44ckSQ1b95c77//vs6ePasFCxYoMDDQHiEBAAAAuEnkTaJLTOkCAMD1wnQuQOHskkR/+umnFRsbK0maNm2a1q5dq1q1aumdd97Rq6++ao+QAAAAANwk8ifRmdIFAIDrI/90LoZhyGw22zMkoFwo0znRT548qbCwMD388MPWZa1atdIff/yh3377TbVq1ZK/v39ZhgQAAADgJpObRDeZTDIMgyQ6AADXSf7pXKSc0eh5nwMVUZmORK9Tp47CwsI0fPhwffrpp/rzzz8l5Xy71bJlSxLoAAAAAIp19uxZSdLtt98uielcAAC4XvJP5yIxLzoglXESfdOmTRoyZIh+//13PfLIIwoJCVG9evU0atQoLV26VOfOnSvLcAAAAADchHJHot9zzz2SpMOHDys9Pd2eIQEAcEsgiQ4Urkync+nYsaM6duwoSUpPT9fOnTu1ZcsWbdmyRYsXL1ZWVpYaNGigQ4cOlWVYAAAAAG4iuUn022+/XVWqVNHFixd16NAhtWrVys6RAQBwc8tNmLu6ulqnTePmooCdbiwqSW5uboqMjNQLL7ygF198UU899ZS8vLz022+/2SskAAAAlHNr1qzR559/bu8wYGe5SfQaNWqoefPmkpjSBQCA6yF3JLqTk5NcXFwkMRIdkOyQRM/MzNS2bdv04osvqlOnTvLz89Njjz2my5cv67333tPJkyfLOiQAAADcBCwWi3r16qVBgwZZ762DiiczM1Pnz5+XJAUFBalFixaSxM1FAQC4DnKT6M7OznJ2dpYkRqIDKuPpXCIjI7V7926FhYWpQ4cOGjVqlD7//HMFBgaWZRgAAAC4CSUmJlr/n5SUZMdIYE9xcXGScv64r1KlCkl0AACuo9xR54xEB2yV6Uj0H374QVWqVFFkZKQ6d+6srl27kkAHAABAiVy4cMH6f/6Yq7hyp3IJDAyUg4ODNYl+4MABGYZhx8iAkjtz5oxSUlLsHQYAFJB3OpfckehcdwFlnERPSEjQBx98IA8PD73++usKCgpS06ZNNWbMGC1fvtz6s0wAAAAgv7xJ9LS0NDtGAnvKTaIHBQVJkho0aCAXFxclJSXp1KlTdowMKJljx46pbt266tSpk8xms73DAQAbTOcCFK5Mk+ienp7q0aOHZs6cqd27d+vChQuaNWuWPDw8NGvWLAUHB6tJkyZlGRIAAABuEhcvXrT+PzU11Y6RwJ7yJ9GdnZ3VuHFjSdd/SpfTp0/r7Nmz13WbwNq1a5WZmal9+/bp008/tXc4AGCD6VyAwpX5jUXz8vT0VOXKlVW5cmVVqlRJTk5OOnz4sD1DKta8efMUGhoqNzc3tW3bVnv27LF3SAAAABXCjR6J/r//+79q3bo1Ny0t53KT6DVq1LAuyzuly/Vy5swZNWnSRK1atVJ6evp12y7www8/WP8/ZcoU2heAcqWw6VwYiQ6UcRLdYrFoz549mjVrlnr27Ck/Pz/deeed+u9//6uAgADNmzdPv//+e1mGVCpffvmlxo0bp2nTpmn//v1q3ry5unfvrvj4eHuHBuAW9Omnn6pPnz567733rAmDohiGoW+//VbLli3TlStXyihCAChbeZPo13skenp6up577jlFRUXpyy+/LLa8xWLR3r17SX7ZQf6R6JLUvHlzSdd3JPqUKVOUnJysc+fOadeuXddtu6jYDMOwJtHd3Nx05swZvffee3aOCsDN4NSpU3r22Wev6xfGhck7nQsj0YG/lGkS3c/PTxEREZo7d66qVKmit99+W0ePHtXp06e1ePFiDR06VCEhIWUZUqm89dZbeuSRRzRs2DA1atRICxYskIeHhz7++GN7h4ZblGEY2rlzp5YuXaoDBw4oIyPjH2/vzz//1DfffKPZs2fzBdANYrFY/tFFhmEYmj59uv79739r1apVevLJJxUcHKy77rpLc+bM0ZkzZ2zKp6ena+TIkbr//vvVr18/BQYGatSoUdq1axc3WANuIhcvXtQrr7yiTZs23XLv3Z07d2rRokWyWCz/aDs3Mom+YsUKXbp0SZK0f//+Ysv/7//+r9q0aaNWrVrpl19+ua6xlBeGYWjLli0aOHCg6tevrx9//NHeIemnn37S4sWLJdkm0YsbiZ6enq7XX39dy5cvL9F+Dhw4oE8++cT6fOPGjX8z4hvHMAxdvHhRe/bs0RdffKEZM2Zo+PDhevjhh2+JKWhutX4w1/Hjx3Xu3Dm5uLjo7bffliS9+uqrunz5sp0jKzsZGRmaNGmSHnzwQR09etTe4ZRYUlKSkpOT7R0GKqjjx4/r7rvv1ltvvaUuXbrc0HuA5J3OhRuLAn8xGWV4dfL++++rU6dOql+/flnt8rrJzMyUh4eHli9frr59+1qXDxkyRAkJCVq5cmWx20hKSpKvr68SAwPl41DM9xctW0qrVtkuu/deqQR/1GncuJxHruRkqWHD4utJ0sqVUqtWfz1fvVp67LHi63l5Sb/9ZrtswgTpiy9kSDKbzTIMw+YhSSZJlyIidHLSJDk6OurMmTM6ePCgHnn/fXmnpkomk3Vz1v9dXZaakqKJJpNqTJig/v37Kz09XVm//KJWEyfKYrHIsFhkMQw5mExycHSUg4OD9SFJvy9dqit+fsrMzNTFixfl/umnarFqlcxms8xms1xcXOTp6VngUDNDQ3Vm0SKb4wh67jl57N0ry9W62WazDItFMplkyvM43K6dfnngAbm5ucnNzU2urq7qPHSodX1GRobS09Pl6ekpw2JRSmqq9cPqYUnbHR1Vv359NW3aVL08PfWvVavk6Ogoi8Uis9ksi8Ui09XzY7FYcuKxWHTvbbcpJiZGMTExyszM1FRJj0hyd3eXj49PkS9r2u23K/aNN2yW1Rw6VC4l+MC+8MQTSuzXT2azWX/++afifvpJ9732mkwm01+vhckk09XXw2Kx5LxuhqHNzz+vzLAwubq6ytXVVcHbtqn2ggXW85lf7pLsqlUVs3KlzGazLly4oPj4eNWfPVs1DhywnovcBI6Tk5P14ejoqIQePXT+uefk6OgoR0dHGYah4K5dpZQU6/mVJEcHB5v2JMPQvpEjtS8gQMeOHdNPP/0kRUVpaXq69Zt7FxcX68WHSbJp18dXrZLF09Panvw/+USu//2vdZoCDw8PZWdnF/j53MlKlbTn+efVsmVLTZo0SXv27NEqSa0dHW1uUOXk5CQPDw+5ubrKcrW9xg0YoMQRI+Tq6prT9lJSFNarV7GvqSTFzp+vjCZNrK+Dx6ZNqjZ1auGF8xynxcNDf27YYH2dzWazqs6aJd81a2TzIWQYBZ5faNtWvz79tLWNWywW3fXMM3JLSMhpE1f3lRuT6eoyi2Fof//++rF2bfn4+KhSpUoKSk7WbRMm2LajfPvMfV//9P77Sq9UybrPmmvXKnTJEus+JNvXM3eLmWFhOpsn8SJJ1ceNk/vevUWf2KsSHnxQF0aPtomlXmRk4YXzfXyfee01pd5+u/W5x549qvmf/xS7T0k6tG6dzT4DPvhA/t9+W2y95Ntu0+8vv2x9bjKZFP7443I7fdp6XgyLxfres1gskmHI5OCgn/v2VUyvXvL09JSnp6f8rlxRwyFDrDFYLBZlZ2fLyO3XTKacPsNk0t6ZM2WpV0/u7u45XwZ+/rnarVoli8VifW/avFdNJlkMQ9n+/jq7YoV15LCzs7NqvPyyPLdssfb91j776vGYTCYZkv68+279+dRT8vPzs76f6/zP/8ihBFOKxE6dqpSOHa3PHaOjFfrMMzIMw7oPi8Wiy5cvW9+/Li4u8vb21pn162X28LCevyqLF8v/ajuUJIer5ybv5ZxhGEpr0EA7nntOXl5eql69ulJTUxX61FPyPHrU+vmY93PMbDZbz9upBx5Q+uOPy8/Pz9pH1Oze3brtvJ83ec+XTCadeOstpTdqJAcHB5lMJvls2yb/KVOUkJAgSfJwd5d3IZ87hoeHTn//vXV758+fl+f06aq5fbuysrOVnZ0tk8lk8wdcbv96smFD7R05Uv7+/nJ3d5fJZFLEU0/JtZCEVP5riVOPP64L3brJZDJp4sSJit++XRuV03dWqVKl8Bf0ap/RJzBQ664mbN3c3LT2/vvVLm+i9eq5zX+hnVGrlo4uWGA9n4ZhKGzKFPns31+gbH6xvXrp1JAhNtdT7R56qNAY/zronHN6+pVXZL77brm4uMgwDLns3KmACRNsjilv/YzMTKWmpio7O1s1ry6+//779Z///EeBH3wg/xUriolWSm3dWn/OnHk1jJxzHjpihFz/+KPYupdGj1bS1WMzmUwyxcUpqG9fm3nx/f395ebqKimnz88doZ6wfLlcmja1ft64ffONvF9+WZlX20/lypXl7Oz81/vm6vFnVq6sQ4sWydPTU8OHD9e+ffu0yM1Nna9+pleqVKnA9axhGHJydFRanz46N368srOzc64Fs7PV+IEH5JDv12H5rwMkKf7FF5UWGWntC5wPHlTw6NE2r0tun2jOzlb21e1nZ2ergWEoJc+2xkoap5w2XLlyZRW8aspxpVEjnXnvPWt/a7FYFPr00/L47bdC20Pe56fuu08n77vPWs8hNVWRo0fnlLlaNm+f5OzsLEcHh5y+9L33lBIebj1HXlu2KGzWrL/2cbXtpaenKysrSx7u7vLy8pLF01O/ffut9VrRMAz5z5qlSuvWycHBQS7Ozsq+2oc7OjoqKyvLemw/BwdrTsOGOn/+vC5fvqzQ0FDN37dPlTMz5eTkJIer/bxhsSgzK0sZVz8jHBwdtal7d8V36aJq1arJz89PVS9dUsMnnyz0ejS/2JUrZa5Wzfrc7ZNP5DN3rtLS0pSeni4XFxdVrVpV586dU3Z2tjw9PeXl5aWMkBDtmjFDK1asUL169dS1a1cFT5woj337it1nUv/+SnjqKUl/vedq3Xnnta+1ri47Pn26Em+7zXrevKOi1GDGjML7pXzbWP/RRzIMQ25ubvL29ladzz6T/7ffKjsrS5lZWdbXxdHBQSYHByUkJCgrK0tbJY10c9NLL72kHj16KCkpSQ1Gj5b7mTN/fVbl+dfQX0m9P4cNU/rgwXJ0dFRGRobcExJU56GHio/XMPROnz56b8MGZWdnq1q1aupvNuvREydsrh8cr15P5LaNrOxsHUlMVBuTSQ0bNlTbtm3Vpk0bPfD99/LbudNmX1Z52klSr1469+yz1vNrGIbq9OolU1qanJycrtmm4l98UamdOlmfu/7yi4KeeKLI8nm39Me6dTK8vCTlfJloevtt1b6au8h77Wytd/X/6Y0aKXbBAjk6Olr/Fgl58km55/7NX1g7urqtpBEjdHnYMOuxmlJSVPt//qfIOnm399vMmUoJD7eeo0o7dqjeW28VKCvZfr6a3dz0w4cfyvHqtZ+jo6Pqvv++qm3aVODYcmVnZysrK0snwsP1+8SJqlu3rjw8PGQ2mxV0771yucYXW7nXK6dHj1Zy797WaxKnEydU4+r1bGZmpjLS02VI8vb2lpOTk802YlassOkjvL/4Qn7vvptzbBaL0tPT5Xi1vVssFl26eFFmi0VHJXWWVLNmTQ0bNkydOnVSwxkz5HvggPXaMn+suc736aPYRx/963rZ0VENu3YtkHeJO3dOkhQYGKiLFy4oMytLUc88owaPPWbtg91371aNiRMLvBZ5WcxmJSYlqUPt2rrjjjt0++23y8/PT7etWqWwjRttriWtr1Meqa1b68zMmTbHEDpihFzz5iOKeO+cf+wxJfTrZ33udP68wvr3t8mT5OYGbGIwmbTpP/9RekiI9XWt+cMPqvfRRzbnM7dNZWdnW/92T/H01IejRqlKlSry9/eXv7+/Wn34oSrt2PFXnIZhs28ZhmQy6VynTjr7zDPy8vKSs7Ozjh49qi5PPimXjAyZrv49k/v5ahhGznvm6vtm7/DhOtm4sTWf5HfihPouWmT793G+v5Vzrw9//PhjpTo4KC0tTS4uLup15Iic3nmniFc0j1soZylJSRaLfGNjlZiYeM0cmQyUyNmzZw1Jxs6dO22WT5gwwWjTpk2hddLT043ExETr48yZM4YkIzHnbXLtxx13FNzgHXcUX08yjGnTbOslJpasnmQY+Y7P+OqrktXz9i4Y74gRJar7VU6fa/M4U8J4R+Sr16ikxykZNfLVHVvCer8UEu+6EtadXUjdksZ7n4eHTb1upaibt56Dg4Mxu4T11hUS7y8lrDs2X70apYi3Ub66I0pY70wh8X5VwrofFlK3RO9VyXgwX707SnGs3vnqTithvZ356lWqVMm43LBhiepOy1fXuxTx3pGv7oMlrJdYyPn9sIR16SNK9uiWr97f7SN0NY6S1KOPKFnd8tBH6OqyktSdlq8efUThjxqSYTKZjM6dOxu3eh8RGRlpU7ei9BHOzs7GufbtS1TXnn1EUFCQcffddxtDhw41tnTsWKJ69BElq8t1RMkef/c6Yk+lSgXq3kx9BNcRhT+m5atHH1H44+/2EWm1axvBwcE2dW/VPuJmv464GfuId6tUKVndWyxnmduHJCYmFiyXh+1XYbiuXnvtNb344osFVwQGSsWNRK9atfBleW6gVKT835qYTCWrJ0lX57uycncvWd2r327bqFRJqlFDWdnZij937q9vGR0cZFJOC5Uks4eHavv754xMrVpVzZs3l7F6tRJyf6ZtFP6NdXZ2tjy8vXV3w4Y6dOiQfHx8VNfVVedPnsz5pu7qKDjDMKzfNlqujoiUJL9KlWS4uVlH+9UxmZTw++9yvDqS98qVK4X+7Pyio6MqXz3HuceUnJysmKwsOTo4yPHqyGYHBwcZRp6RfoahGqGh6lW7ttLT063fEp6Ljs4pI1m/cc/9ZtjT01OeHh5ycHDQ10uW6Gy9evrll1908OBBZf/f/+nc5s0ym805+726z9zRxrnfLDs6OGj5//6vgoKCFBQUpICAADnOmKHzs2YV+5OsJGdnVco3Gv9icrJi8ox0Lorh7q5KV0eHBQYGqnWNGrq8Y4csV1+P3FEluefYIc9r1rpFC1VyclJGRoYyMjLkEx+v2AsXrOexsPYgSfEmkzzc3OTg4CB/f39Vq1ZN3nFxunThgs2oBMMwrCO4srOzZTGblenmJv+rIw9y54A7n56u9KsjZ3J/wZD/m2uTyaSQunX1r2bNFBISohYtWijCxUXZTz2lzMxM68OcnV1o3JX9/OTm6GhtT0ZamuLS0+Xr6yt3N7dCj9NsNivA318dqlTR/v371axZMy1evFh+Y8dKSUnWchbD0JUrV5SWlmYdxWmS5OzjowAXF+v0QF6GoZjExCLPa14unp42v6QxZWXpbAnmA06V5OnhYT2XDg4OSr9yRTFXY8g/OsRmBIW3t5rVrGl9/RwcHJR86JDOZWVZ24Nxtd3nbSMmk0nBdeqo3223KSUlRZcvX5ZvXJxi/vjDWj7vfvKPKg+pVUverq5ydHSUyWSS94UListthzk7yzln+drkBQcHeXt42Gw78coVnb3arvLLO3Yi09VVlT08bM5DTAl/3u3h46NqV/twk8kkz8xMxSQmXrNO7r6DAgKs9STJSEpSbAlGWF9xdVVIns8ri8WihHPnFJOdbT0veX8F5OjgYB01HVq7tu6uXFmpqalKSUmRZ1KSzp47lzMC/Gpf4OTkVKAvNQxD9evUsbZvX19fNffwUNKvv+b0gXlGved9v5okXXZ0lK+7u9zd3SXl/Cw1JSlJZ7Ozrb9CkVRgfyZJLlWqKLxSJSUkJFhHi5+7fFkpRvHvHGcvL/nn+Xz1MQzFJSRYR7nn9v1ubm7Wka7JyclKS0uTn4+PnPOcQyMtTTFpadbPUSPf/nNfw2RnZzVv0EAJCQlKTEyUp6en0hISdC4z02bUT3ZWlmQyydXV1fp56evvryCLRYlX24+HYehsntG0uZ8tufu3fs5J8qtcWUFXR0wZhiHX9HTFJCfL09NTLi4uSkxMtP4iQfrrWiDVZJL31c8bwzDk7e0tb2dnXb54Uc7OznJycpJhGEpLS1NGRoY8PT3lYDLJbLGoalCQeoeH68KFC0pPT5dhGEo8ckTOV9th3v3k51Oliup6e1s/i0Z06aKLS5bYzHOef/R6Ln9/fw0cMkQzZ87U22+/rfgZM3Lec8WMUE1wclKNqlVtXocrFy4oNt+UbYXt19nPTw3z1T2XO6qmiP3mvj7efn6qZLEoMzNTDg4OcrZYFJOWVvBXf1efOzo6ytPDQ+4eHlq1apV69+6t48eP52wvKUmxKSm2+ylk3ynOzqrm62vTR19KTPzrOiJf+837zOzmJp88o8XdzGbFZWbatNUqVarY9KHJKSlKSkqSq7u7fK5ejzk6Oso5M1PnMzLk5+enhMuXrSNj8x6zSTmvTWhgoFJSUuTj46OpU6eq2s6dunh17vvcc577C5Dcf7Ozs5Xq4KBKXl42v3KLj4tT6tXRs0W8ODmfV25u8r7axh0dHeVmsSgm33RFDg4O1u3m/TXduZ9/lnuekYx66y1lHT6sS5cuyZydXWS7SHRyUhVvb5s+OvnyZcXmuTYs8Nl89bl3tWpqFRBgredlGIq/Ohd9/tFuuSN4c99jHj4+qubqaj0W38xMxV248Nfnr8kkJ0dHubm7y8nRUUnJycrKylKayaSg6tVt2r6RlKRzaWnW9mBSzuhxs9ls3b6Dg4PCwsM1b8QIVa1aVT4+Pjp+/LjM06crPikp5xdPea6dpZxfljg7O8tsNuuO22/XBW9vxcfHKykpSdUuX1ZMXFzOL06L4eLmJvc85y8zO1uxZrMcHB1lWCyq4u8vZycnGZIuX75s7XcuOTqqfliY0tLSlJWVJbPZrOSkJOtnq7X5FLLPdGdneV99j0g577mzVz/Pi3o9c1WuWlW1r/7dYTKZVD09XXGxsX+VzVc+73buaNVKJpNJ6enpSklJkSU2VmdTU+Xo6GidTzn3V0xms9n6y47WkZH6uEsXvfjii7py5Yq8vb2Vdu6czmdmWkde5v1X+mv0sGelSqpqGMrKypK7u7v8MjIUc/VXT0XFm/vs7rvv1oynnlJISIjOnTsnz5Urlbx0qU2MljzX+rmPdA8Pbf72WyUlJWnPnj3as2ePrvzwQ871bGHvtTzXiFdcXFTFy0u5v8o1mUy6cOmS0q/2IdfqDx09POSXpz90MZt1toRTmnl5elpjc3JykreHh+Lj463bL+q6NtHJSX5XfxGb++va5IQExea7ns1/ri1mszJcXOTj6vrXr9JMJutrY1OvkHNWLTBQ9a7+qszBwUH+KSmKi4srsnzukjRHR7Vs1Mj2F9qxsYpLSipwrZ57zE6OjnJ2cVHVGjXUtlIlnTx5UhkZGTKbzUo0m+WSe6z59pv3/eVVubKCXVxyRp1nZMg1O1txV0efOzs5ydXNTdlZWUor5J5Vrm5u8sjXR5zN7YNzPx/017Wds4uLKleuLPeQEB1asUIrVqzQ119/rUOHDinr/Hmdy7+P/H83G4YcvL0V4utr08Zjcqd4zVfe1cVFVfz9lZqaqqTERDm5u8vX2dn62rhlZysm37VA/tdFV/+Wnvf224qNjdWBAweUlpYm32PHdC421uZvufzXtNJf1xF5Xbp8uUT5CLm7q0qev6d9LRbFJCTIlOdvytx+X/liaHPbbfJ3drb+LV8lPl5xcXG2f3NePWcymeTh7i4nZ2c5uLtrzAMP6MKFC7p48aIuXLigzKNHFZPvtcmb+8jdnoufn+r6+CglJUVXrlxRnTp1dOnXX5V29TPUMIwCo8hzH3Xr11f3GjWssx00SE3Vpc2b/4q1kL+Zc/8fXru2DC8vubu76+DBg6oUEiIVkYewcQvlLCVJFot09TPvWsp0Opeb2d+ZziU3AZgrKSlJNWvWLP7nAQAAAAAAAABQBi5fvizDMFS5cmV7h1LmrNNvF5OvLdMbi97MXFxc1KpVK5ubClksFm3cuFERERGF1nF1dZWPj4/NAwAAAAAAAADKi0qVKlXIBHppMJ1LKYwbN05DhgxR69at1aZNG82ZM0epqakaNmxYiernDvpPyjPdAgAAAAAAAACg7OXmaYubrIUkein0799f58+f19SpUxUXF6cWLVpo3bp1ql69eonqJycnS8q5izIAAAAAAAAAwP6Sk5Plm28e/ryYE70MWSwWxcTEyNvb2/amebeg3Pnfz5w5wzQ2uCXQpnErol3jVkS7xq2GNo1bEe0atyLaNW5FFaFdG4ah5ORkBQUF2dxwNj9GopchBwcHBQcH2zuMMsVc8LjV0KZxK6Jd41ZEu8athjaNWxHtGrci2jVuRbd6u77WCPRc3FgUAAAAAAAAAIAikEQHAAAAAAAAAKAIJNFxQ7i6umratGlydXW1dyjAdUGbxq2Ido1bEe0atxraNG5FtGvcimjXuBXRrv/CjUUBAAAAAAAAACgCI9EBAAAAAAAAACgCSXQAAAAAAAAAAIpAEh0AAAAAAAAAgCKQRAcAAAAAAAAAoAgk0XHdzZs3T6GhoXJzc1Pbtm21Z88ee4cEFGr69OkymUw2jwYNGljXp6ena/To0apSpYq8vLz0wAMP6Ny5czbbOH36tHr16iUPDw9Vq1ZNEyZMUHZ2dlkfCiqwbdu2qXfv3goKCpLJZNKKFSts1huGoalTpyowMFDu7u7q0qWLjh07ZlPm0qVLGjRokHx8fOTn56cRI0YoJSXFpszPP/+su+++W25ubqpZs6ZmzZp1ow8NFVhx7Xro0KEF+u8ePXrYlKFdozx57bXXdPvtt8vb21vVqlVT3759deTIEZsy1+u6Y8uWLWrZsqVcXV1Vt25dLVq06EYfHiqokrTrjh07FuivH3vsMZsytGuUF/Pnz1ezZs3k4+MjHx8fRUREaO3atdb19NO4GRXXrumnS44kOq6rL7/8UuPGjdO0adO0f/9+NW/eXN27d1d8fLy9QwMK1bhxY8XGxlof27dvt64bO3as/t//+39atmyZtm7dqpiYGN1///3W9WazWb169VJmZqZ27typxYsXa9GiRZo6dao9DgUVVGpqqpo3b6558+YVun7WrFl65513tGDBAu3evVuenp7q3r270tPTrWUGDRqkQ4cOacOGDVq9erW2bdumRx991Lo+KSlJ3bp1U0hIiKKiovTGG29o+vTp+uCDD2748aFiKq5dS1KPHj1s+u8vvvjCZj3tGuXJ1q1bNXr0aP3444/asGGDsrKy1K1bN6WmplrLXI/rjpMnT6pXr17q1KmToqOj9cwzz2jkyJFav359mR4vKoaStGtJeuSRR2z667xfWNKuUZ4EBwdr5syZioqK0r59+xQZGak+ffro0KFDkuincXMqrl1L9NMlZgDXUZs2bYzRo0dbn5vNZiMoKMh47bXX7BgVULhp06YZzZs3L3RdQkKC4ezsbCxbtsy67PDhw4YkY9euXYZhGMaaNWsMBwcHIy4uzlpm/vz5ho+Pj5GRkXFDYwcKI8n49ttvrc8tFosREBBgvPHGG9ZlCQkJhqurq/HFF18YhmEYv/76qyHJ2Lt3r7XM2rVrDZPJZJw9e9YwDMP473//a1SqVMmmXU+cONEIDw+/wUcEFGzXhmEYQ4YMMfr06VNkHdo1yrv4+HhDkrF161bDMK7fdcdzzz1nNG7c2GZf/fv3N7p3736jDwko0K4NwzA6dOhgPP3000XWoV2jvKtUqZLx0Ucf0U/jlpLbrg2Dfro0GImO6yYzM1NRUVHq0qWLdZmDg4O6dOmiXbt22TEyoGjHjh1TUFCQateurUGDBun06dOSpKioKGVlZdm05wYNGqhWrVrW9rxr1y41bdpU1atXt5bp3r27kpKSbL7VBezl5MmTiouLs2nHvr6+atu2rU079vPzU+vWra1lunTpIgcHB+3evdtapn379nJxcbGW6d69u44cOaLLly+X0dEAtrZs2aJq1aopPDxcjz/+uC5evGhdR7tGeZeYmChJqly5sqTrd92xa9cum23kluFaHGUhf7vO9dlnn8nf319NmjTR5MmTlZaWZl1Hu0Z5ZTabtXTpUqWmpioiIoJ+GreE/O06F/10yTjZOwDcOi5cuCCz2WzzxpKk6tWr67fffrNTVEDR2rZtq0WLFik8PFyxsbF68cUXdffdd+uXX35RXFycXFxc5OfnZ1OnevXqiouLkyTFxcUV2t5z1wH2ltsOC2unedtxtWrVbNY7OTmpcuXKNmXCwsIKbCN3XaVKlW5I/EBRevToofvvv19hYWE6ceKE/vOf/6hnz57atWuXHB0dadco1ywWi5555hm1a9dOTZo0kaTrdt1RVJmkpCRduXJF7u7uN+KQgELbtSQNHDhQISEhCgoK0s8//6yJEyfqyJEj+uabbyTRrlH+HDx4UBEREUpPT5eXl5e+/fZbNWrUSNHR0fTTuGkV1a4l+unSIIkOoMLq2bOn9f/NmjVT27ZtFRISoq+++uqW6eQB4Fb00EMPWf/ftGlTNWvWTHXq1NGWLVvUuXNnO0YGFG/06NH65ZdfbO7DAtzsimrXee9F0bRpUwUGBqpz5846ceKE6tSpU9ZhAsUKDw9XdHS0EhMTtXz5cg0ZMkRbt261d1jAP1JUu27UqBH9dCkwnQuuG39/fzk6Oha4O/W5c+cUEBBgp6iAkvPz81P9+vV1/PhxBQQEKDMzUwkJCTZl8rbngICAQtt77jrA3nLb4bX65YCAgAI3f87OztalS5do67hp1K5dW/7+/jp+/Lgk2jXKrzFjxmj16tXavHmzgoODrcuv13VHUWV8fHwYIIAbpqh2XZi2bdtKkk1/TbtGeeLi4qK6deuqVatWeu2119S8eXPNnTuXfho3taLadWHop4tGEh3XjYuLi1q1aqWNGzdal1ksFm3cuNFmriWgvEpJSdGJEycUGBioVq1aydnZ2aY9HzlyRKdPn7a254iICB08eNAmUbNhwwb5+PhYfxoF2FNYWJgCAgJs2nFSUpJ2795t044TEhIUFRVlLbNp0yZZLBbrBVRERIS2bdumrKwsa5kNGzYoPDycKS9QLvz555+6ePGiAgMDJdGuUf4YhqExY8bo22+/1aZNmwpMJXS9rjsiIiJstpFbhmtx3AjFtevCREdHS5JNf027RnlmsViUkZFBP41bSm67Lgz99DXY+86muLUsXbrUcHV1NRYtWmT8+uuvxqOPPmr4+fnZ3MUXKC+effZZY8uWLcbJkyeNHTt2GF26dDH8/f2N+Ph4wzAM47HHHjNq1aplbNq0ydi3b58RERFhREREWOtnZ2cbTZo0Mbp162ZER0cb69atM6pWrWpMnjzZXoeECig5Odn46aefjJ9++smQZLz11lvGTz/9ZPzxxx+GYRjGzJkzDT8/P2PlypXGzz//bPTp08cICwszrly5Yt1Gjx49jNtuu83YvXu3sX37dqNevXrGgAEDrOsTEhKM6tWrG//+97+NX375xVi6dKnh4eFhvP/++2V+vKgYrtWuk5OTjfHjxxu7du0yTp48afzf//2f0bJlS6NevXpGenq6dRu0a5Qnjz/+uOHr62ts2bLFiI2NtT7S0tKsZa7Hdcfvv/9ueHh4GBMmTDAOHz5szJs3z3B0dDTWrVtXpseLiqG4dn38+HHjpZdeMvbt22ecPHnSWLlypVG7dm2jffv21m3QrlGeTJo0ydi6datx8uRJ4+effzYmTZpkmEwm4/vvvzcMg34aN6drtWv66dIhiY7r7t133zVq1apluLi4GG3atDF+/PFHe4cEFKp///5GYGCg4eLiYtSoUcPo37+/cfz4cev6K1euGE888YRRqVIlw8PDw7jvvvuM2NhYm22cOnXK6Nmzp+Hu7m74+/sbzz77rJGVlVXWh4IKbPPmzYakAo8hQ4YYhmEYFovFmDJlilG9enXD1dXV6Ny5s3HkyBGbbVy8eNEYMGCA4eXlZfj4+BjDhg0zkpOTbcocOHDAuOuuuwxXV1ejRo0axsyZM8vqEFEBXatdp6WlGd26dTOqVq1qODs7GyEhIcYjjzxS4At72jXKk8LasyRj4cKF1jLX67pj8+bNRosWLQwXFxejdu3aNvsArqfi2vXp06eN9u3bG5UrVzZcXV2NunXrGhMmTDASExNttkO7RnkxfPhwIyQkxHBxcTGqVq1qdO7c2ZpANwz6adycrtWu6adLx2QYhlF2494BAAAAAAAAALh5MCc6AAAAAAAAAABFIIkOAAAAAAAAAEARSKIDAAAAAAAAAFAEkugAAAAAAAAAABSBJDoAAAAAAAAAAEUgiQ4AAAAAAAAAQBFIogMAAAAAAAAAUASS6AAAAAAAAAAAFIEkOgAAAIAbZtGiRfLz87N3GAAAAMDfRhIdAAAAuIUNHTpUffv2LbB8y5YtMplMSkhIKPOYAAAAgJsJSXQAAAAAN0RWVpa9QwAAAAD+MZLoAAAAAPT111+rcePGcnV1VWhoqGbPnm2z3mQyacWKFTbL/Pz8tGjRIknSqVOnZDKZ9OWXX6pDhw5yc3PTZ599ZlP+1KlTcnBw0L59+2yWz5kzRyEhIbJYLNf9uAAAAIB/iiQ6AAAAUMFFRUWpX79+euihh3Tw4EFNnz5dU6ZMsSbIS2PSpEl6+umndfjwYXXv3t1mXWhoqLp06aKFCxfaLF+4cKGGDh0qBwf+PAEAAED542TvAAAAAADcWKtXr5aXl5fNMrPZbP3/W2+9pc6dO2vKlCmSpPr16+vXX3/VG2+8oaFDh5ZqX88884zuv//+ItePHDlSjz32mN566y25urpq//79OnjwoFauXFmq/QAAAABlhaEeAAAAwC2uU6dOio6Otnl89NFH1vWHDx9Wu3btbOq0a9dOx44ds0m2l0Tr1q2vub5v375ydHTUt99+K0latGiROnXqpNDQ0FLtBwAAACgrjEQHAAAAbnGenp6qW7euzbI///yzVNswmUwyDMNmWWE3DvX09LzmdlxcXDR48GAtXLhQ999/vz7//HPNnTu3VLEAAAAAZYkkOgAAAFDBNWzYUDt27LBZtmPHDtWvX1+Ojo6SpKpVqyo2Nta6/tixY0pLS/tb+xs5cqSaNGmi//73v8rOzr7m9C8AAACAvZFEBwAAACq4Z599Vrfffrtefvll9e/fX7t27dJ7772n//73v9YykZGReu+99xQRESGz2ayJEyfK2dn5b+2vYcOGuuOOOzRx4kQNHz5c7u7u1+tQAAAAgOuOOdEBAACACq5ly5b66quvtHTpUjVp0kRTp07VSy+9ZHNT0dmzZ6tmzZq6++67NXDgQI0fP14eHh5/e58jRoxQZmamhg8ffh2OAAAAALhxTEb+iQ0BAAAA4AZ7+eWXtWzZMv3888/2DgUAAAC4JkaiAwAAACgzKSkp+uWXX/Tee+/pySeftHc4AAAAQLFIogMAAAAoM2PGjFGrVq3UsWNHpnIBAADATYHpXAAAAAAAAAAAKAIj0QEAAAAAAAAAKAJJdAAAAAAAAAAAikASHQAAAAAAAACAIpBEBwAAAAAAAACgCCTRAQAAAAAAAAAoAkl0AAAAAAAAAACKQBIdAAAAAAAAAIAikEQHAAAAAAAAAKAIJNEBAAAAAAAAACgCSXQAAAAAAAAAAIpAEh0AAAAAAAAAgCKQRAcAAAAAAAAAoAgk0QEAAAAAAAAAKAJJdAAAAAAAAAAAikASHQAAAAAAAACAIpBEBwAAAAAAAACgCCTRAQAAAAAAAAAoAkl0AAAAAAAAAACKQBIdAAAAAAAAAIAikEQHAAAAAAAAAKAIJNEBAAAAAAAAACgCSXQAAAAAAAAAAIpAEh0AAAAAAAAAgCKQRAcAAAAAAAAAoAgk0QEAAAAAAAAAKAJJdAAAAAAAAAAAikASHQAAAAAAAACAIpBEBwAAAAAAAACgCCTRAQAAcEuaPn26WrRoYe8w7Co0NFRz5syxdxjl3pYtW2QymZSQkGDvUAAAAFAOkUQHAABAuRMXF6cnn3xStWvXlqurq2rWrKnevXtr48aN9g7tlmcYhnr27CmTyaQVK1bYOxwAAADA7pzsHQAAAACQ16lTp9SuXTv5+fnpjTfeUNOmTZWVlaX169dr9OjR+u233+wd4i1tzpw5MplM9g4DJZSZmSkXFxd7hwEAAHBLYyQ6AAAAypUnnnhCJpNJe/bs0QMPPKD69eurcePGGjdunH788UdrudOnT6tPnz7y8vKSj4+P+vXrp3PnzhW53Y4dO+qZZ56xWda3b18NHTrU+jw0NFQzZszQ4MGD5eXlpZCQEK1atUrnz5+37qtZs2bat2+ftc6iRYvk5+en9evXq2HDhvLy8lKPHj0UGxv7j89FQkKCRo0aperVq8vNzU1NmjTR6tWrreu//vprNW7cWK6urgoNDdXs2bP/0f6io6M1e/Zsffzxx6WqZzabNWLECIWFhcnd3V3h4eGaO3euTZmhQ4eqb9++evPNNxUYGKgqVapo9OjRysrKspa5fPmyBg8erEqVKsnDw0M9e/bUsWPHrOtzz/Xq1asVHh4uDw8PPfjgg0pLS9PixYsVGhqqSpUq6amnnpLZbLbWW7JkiVq3bi1vb28FBARo4MCBio+PL/RYUlNT5ePjo+XLl9ssX7FihTw9PZWcnHzNc5GZmakxY8YoMDBQbm5uCgkJ0WuvvWZd/09f09DQUL388ssaPHiwfHx89Oijj0qStm/frrvvvlvu7u6qWbOmnnrqKaWmpl4zVgAAAJQMSXQAAACUG5cuXdK6des0evRoeXp6Fljv5+cnSbJYLOrTp48uXbqkrVu3asOGDfr999/Vv3//fxzD22+/rXbt2umnn35Sr1699O9//1uDBw/Www8/rP3796tOnToaPHiwDMOw1klLS9Obb76pJUuWaNu2bTp9+rTGjx//j+KwWCzq2bOnduzYoU8//VS//vqrZs6cKUdHR0lSVFSU+vXrp4ceekgHDx7U9OnTNWXKFC1atOhv7S8tLU0DBw7UvHnzFBAQUOpYg4ODtWzZMv3666+aOnWq/vOf/+irr76yKbd582adOHFCmzdv1uLFi7Vo0SKbeIcOHap9+/Zp1apV2rVrlwzD0D333GOTaE9LS9M777yjpUuXat26ddqyZYvuu+8+rVmzRmvWrNGSJUv0/vvv2yTBs7Ky9PLLL+vAgQNasWKFTp06ZfPlSV6enp566KGHtHDhQpvlCxcu1IMPPihvb+9rnot33nlHq1at0ldffaUjR47os88+U2hoqPU8XY/X9M0331Tz5s31008/acqUKTpx4oR69OihBx54QD///LO+/PJLbd++XWPGjLlmrAAAACghAwAAACgndu/ebUgyvvnmm2uW+/777w1HR0fj9OnT1mWHDh0yJBl79uwxDMMwpk2bZjRv3ty6vkOHDsbTTz9ts50+ffoYQ4YMsT4PCQkxHn74Yevz2NhYQ5IxZcoU67Jdu3YZkozY2FjDMAxj4cKFhiTj+PHj1jLz5s0zqlevXuLjLsz69esNBwcH48iRI4WuHzhwoNG1a1ebZRMmTDAaNWpkczxvv/12ifb36KOPGiNGjLA+l2R8++23pY471+jRo40HHnjA+nzIkCFGSEiIkZ2dbV32r3/9y+jfv79hGIZx9OhRQ5KxY8cO6/oLFy4Y7u7uxldffWUYRuHnetSoUYaHh4eRnJxsXda9e3dj1KhRRca2d+9eQ5K1zubNmw1JxuXLlw3DyGmHjo6ORkxMjGEYhnHu3DnDycnJ2LJlS7HH/eSTTxqRkZGGxWIpsO56vaZ9+/a1KTNixAjj0UcftVn2ww8/GA4ODsaVK1eKjRkAAADXxkh0AAAAlBtGntHd13L48GHVrFlTNWvWtC5r1KiR/Pz8dPjw4X8UQ7Nmzaz/r169uiSpadOmBZblnQ7Ew8NDderUsT4PDAwscroQSWrcuLG8vLzk5eWlnj17FlomOjpawcHBql+/fqHrDx8+rHbt2tksa9eunY4dO2YzlUlJrFq1Sps2bdKcOXNKVS+vefPmqVWrVqpataq8vLz0wQcf6PTp0zZlGjdubB11Ldmep8OHD8vJyUlt27a1rq9SpYrCw8NtXtP857p69eoKDQ2Vl5eXzbK85z8qKkq9e/dWrVq15O3trQ4dOkhSgfhytWnTRo0bN9bixYslSZ9++qlCQkLUvn37Ys/D0KFDFR0drfDwcD311FP6/vvvreuu12vaunVrmzIHDhzQokWLrG3Ky8tL3bt3l8Vi0cmTJ4uNGQAAANdGEh0AAADlRr169WQymW7IzUMdHBwKJOnzThOSy9nZ2fr/3BtsFrbMYrEUWie3zLW+EFizZo2io6MVHR2tjz76qNAy7u7uRda/3jZt2qQTJ07Iz89PTk5OcnJykiQ98MAD6tixY7H1ly5dqvHjx2vEiBH6/vvvFR0drWHDhikzM9OmXGHnKe95LInCtnGt7aampqp79+7y8fHRZ599pr179+rbb7+VpALx5TVy5EjrNCoLFy7UsGHDSnTD1ZYtW+rkyZN6+eWXdeXKFfXr108PPvigpOv3muaf6iglJUWjRo2ytqno6GgdOHBAx44ds/nCAQAAAH+Pk70DAAAAAHJVrlxZ3bt317x58/TUU08VSBYmJCTIz89PDRs21JkzZ3TmzBnraPRff/1VCQkJatSoUaHbrlq1qs3NPs1ms3755Rd16tTpxh1QEUJCQoot06xZM/355586evRooSOXGzZsqB07dtgs27Fjh+rXr28z2rskJk2apJEjR9osa9q0qd5++2317t272Po7duzQnXfeqSeeeMK67MSJE6WKoWHDhsrOztbu3bt15513SpIuXryoI0eOFPmalsRvv/2mixcvaubMmda2kvfGsEV5+OGH9dxzz+mdd97Rr7/+qiFDhpR4nz4+Purfv7/69++vBx98UD169NClS5du2GvasmVL/frrr6pbt26JYwQAAEDJMRIdAAAA5cq8efNkNpvVpk0bff311zp27JgOHz6sd955RxEREZKkLl26qGnTpho0aJD279+vPXv2aPDgwerQoUOBqS5yRUZG6rvvvtN3332n3377TY8//rgSEhLK8MhKp0OHDmrfvr0eeOABbdiwQSdPntTatWu1bt06SdKzzz6rjRs36uWXX9bRo0e1ePFivffee3/rhqYBAQFq0qSJzUOSatWqpbCwsGLr16tXT/v27dP69et19OhRTZkyRXv37i1VDPXq1VOfPn30yCOPaPv27Tpw4IAefvhh1ahRQ3369Cn1MeWqVauWXFxc9O677+r333/XqlWr9PLLLxdbr1KlSrr//vs1YcIEdevWTcHBwSXa31tvvaUvvvhCv/32m44ePaply5YpICBAfn5+N+w1nThxonbu3KkxY8YoOjpax44d08qVK7mxKAAAwHVCEh0AAADlSu3atbV//3516tRJzz77rJo0aaKuXbtq48aNmj9/vqSc6TpWrlypSpUqqX379urSpYtq166tL7/8ssjtDh8+XEOGDLEm22vXrm2XUeil8fXXX+v222/XgAED1KhRIz333HPWubFbtmypr776SkuXLlWTJk00depUvfTSSxo6dGiZxzlq1Cjdf//96t+/v9q2bauLFy/ajEovqYULF6pVq1b6n//5H0VERMgwDK1Zs6bAdC2lUbVqVS1atEjLli1To0aNNHPmTL355pslqjtixAhlZmZq+PDhJd6ft7e3Zs2apdatW+v222/XqVOntGbNGjk45PzpdSNe02bNmmnr1q06evSo7r77bt12222aOnWqgoKCShw3AAAAimYySnr3JgAAAACoQJYsWaKxY8cqJiZGLi4u9g4HAAAAdsKc6AAAAACQR1pammJjYzVz5kyNGjWKBDoAAEAFx3QuAAAAwC3us88+k5eXV6GPxo0bF1v/scceK7L+Y489VgZHULZmzZqlBg0aKCAgQJMnT7ZZ9+qrrxZ5Lnr27GmniAEAAHAjMZ0LAAAAcItLTk7WuXPnCl3n7OyskJCQa9aPj49XUlJSoet8fHxUrVq1fxzjzeLSpUu6dOlSoevc3d1Vo0aNMo4IAAAANxpJdAAAAAAAAAAAisB0LgAAAAAAAAAAFIEkOgAAAAAAAAAARXCydwAVicViUUxMjLy9vWUymewdDgAAAAAAAABUWIZhKDk5WUFBQXJwKHq8OUn0MhQTE6OaNWvaOwwAAAAAAAAAwFVnzpxRcHBwketJopchb29vSTkvio+Pj52jAQAAAAAAAICKKykpSTVr1rTmbYtCEr0M5U7h4uPjQxIdAAAAAAAAAMqB4qbe5saiQDm2fv16bdmyxd5hAAAAAAAAABUWI9GBciolJUW9e/eWq6urEhMTr3lzAwAAAAAAAAA3Bkl0oJy6dOmSsrKylJWVJYvFQhIdAAAAAAAAsAOS6OVQdna2MjMz7R0G7CwpKUnh4eGSpNTUVDk7O9/Q/bm4uMjJiS4BAAAAAAAAyMtkGIZh7yAqiqSkJPn6+ioxMbHQG4sahqHTp0/rwoULdogOkPz9/VWrVq1ib6YAAAAAAAAA3OyKy9fmYthpOZKbQK9Ro4a8vLyYvgNlxmKxKCUlRWfPnpUkhYSE2DkiAAAAAAAAoHwoURK9UqVKJR6ZeunSpX8UUEWVnZ1tTaAHBATYOxxUQF5eXpKks2fPKikpSY0bN+aLHAAAAAAAAFR4JUqiz5kz5waHgdw50HMTmYA95La/7du3KzExUXfeeSeJdAAAAAAAAFRoJUqiDxky5EbHgatIWMKectufh4eHdu/ercDAQNWpU8fOUQEAAAAAAAD287cytidOnNALL7ygAQMGKD4+XpK0du1aHTp06LoGB8A+vLy8lJWVpaSkJHuHAgAAAAAAANhVqZPoW7duVdOmTbV792598803SklJkSQdOHBA06ZNu+4BArAfi8Vi7xAAAAAAAAAAuyp1En3SpEmaMWOGNmzYIBcXF+vyyMhI/fjjj9c1OJR/8+fPV7NmzeTj4yMfHx9FRERo7dq1hZY1DEM9e/aUyWTSihUrCi1z8eJFBQcHy2QyKSEh4Zr7NplM1oenp6fq1aunoUOHKioqqtTH0bFjRz3zzDOlrgcAAAAAAADg1lbqJPrBgwd13333FVherVo1Xbhw4boEhZtHcHCwZs6cqaioKO3bt0+RkZHq06dPoVP7zJkzRyaT6ZrbGzFihJo1a1bi/S9cuFCxsbE6dOiQ5s2bp5SUFLVt21affPJJqY8FAAAAAAAAAPIrdRLdz89PsbGxBZb/9NNPqlGjxnUJCjeP3r1765577lG9evVUv359vfLKK/Ly8irwq4To6GjNnj1bH3/8cZHbmj9/vhISEjR+/PgS79/Pz08BAQEKDQ1Vt27dtHz5cg0aNEhjxozR5cuXJeWMbh8wYIBq1KghDw8PNW3aVF988YV1G0OHDtXWrVs1d+5c68j2U6dOyWw2a8SIEQoLC5O7u7vCw8M1d+7cUp4hAAAAAAAAADczp9JWeOihhzRx4kQtW7ZMJpNJFotFO3bs0Pjx4zV48OAbEWOFZBiG0tLS7LJvDw+PYkeMF8ZsNmvZsmVKTU1VRESEdXlaWpoGDhyoefPmKSAgoNC6v/76q1566SXt3r1bv//++9+OXZLGjh2rTz75RBs2bFC/fv2Unp6uVq1aaeLEifLx8dF3332nf//736pTp47atGmjuXPn6ujRo2rSpIleeuklSVLVqlVlsVgUHBysZcuWqUqVKtq5c6ceffRRBQYGql+/fv8oRgAAAAAAAAA3h1In0V999VWNHj1aNWvWlNlsVqNGjWQ2mzVw4EC98MILNyLGCiktLU1eXl522XdKSoo8PT1LXP7gwYOKiIhQenq6vLy89O2336pRo0bW9WPHjtWdd96pPn36FFo/IyNDAwYM0BtvvKFatWr94yR6gwYNJEmnTp2SJNWoUcNmdPuTTz6p9evX66uvvlKbNm3k6+srFxcXeXh42CT5HR0d9eKLL1qfh4WFadeuXfrqq69IogMAAAAAAAAVRKmT6C4uLvrwww81ZcoU/fLLL0pJSdFtt92mevXq3Yj4cBMIDw9XdHS0EhMTtXz5cg0ZMkRbt25Vo0aNtGrVKm3atEk//fRTkfUnT56shg0b6uGHH74u8RiGIUnW0fRms1mvvvqqvvrqK509e1aZmZnKyMiQh4dHsduaN2+ePv74Y50+fVpXrlxRZmamWrRocV3iBAAAAAAAAFD+lTqJvn37dt11112qVauWatWqdSNignKmVElJSbHbvkvDxcVFdevWlSS1atVKe/fu1dy5c/X+++9r06ZNOnHihPz8/GzqPPDAA7r77ru1ZcsWbdq0SQcPHtTy5csl/ZUE9/f31/PPP28zGrwkDh8+LCln5LgkvfHGG5o7d67mzJmjpk2bytPTU88884wyMzOvuZ2lS5dq/Pjxmj17tiIiIuTt7a033nhDu3fvLlU8AAAAAAAAAG5epU6iR0ZGqkaNGhowYIAefvhhm2k7cP2YTKZSTalSnlgsFmVkZEiSJk2apJEjR9qsb9q0qd5++2317t1bkvT111/rypUr1vV79+7V8OHD9cMPP6hOnTql3v+cOXPk4+OjLl26SJJ27NihPn36WEe6WywWHT161Kbturi4yGw222xnx44duvPOO/XEE09Yl504caLU8QAAAAAAAAC4eZU6iR4TE6OlS5fqiy++0MyZM9WsWTMNGjRIAwYMUHBw8I2IEeXY5MmT1bNnT9WqVUvJycn6/PPPtWXLFq1fv16SFBAQUOjNRGvVqmUdKZ4/UX7hwgVJUsOGDQuMYM8vISFBcXFxysjI0NGjR/X+++9rxYoV+uSTT6x169Wrp+XLl2vnzp2qVKmS3nrrLZ07d84miR4aGqrdu3fr1KlT8vLyUuXKlVWvXj198sknWr9+vcLCwrRkyRLt3bvXGjcAAAAAAACAW59DaSv4+/trzJgx2rFjh06cOKF//etfWrx4sUJDQxUZGXkjYkQ5Fh8fr8GDBys8PFydO3fW3r17tX79enXt2rVM9j9s2DAFBgaqQYMGevzxx+Xl5aU9e/Zo4MCB1jIvvPCCWrZsqe7du6tjx44KCAhQ3759bbYzfvx4OTo6qlGjRqpatapOnz6tUaNG6f7771f//v3Vtm1bXbx40WZUOgAAAAAAAIBbn8nInYD6bzKbzVq7dq2mTJmin3/+ucCUGPhLUlKSfH19lZiYKB8fH5t1aWlpOnz4sBo2bFjqOcmB6yW3HZ46dUrHjh1T165d1apVK3uHBQAAAAAAAFx318rX5lXqkei5duzYoSeeeEKBgYEaOHCgmjRpou++++7vbg4AAAAAAAAAgHKn1HOiT548WUuXLlVMTIy6du2quXPnqk+fPoyeBgAAAAAAAADcckqdRN+2bZsmTJigfv36yd/f/0bEBAAAAAAAAABAuVDqJPqOHTtuRBwAAAAAAAAAAJQ7f2tO9CVLlqhdu3YKCgrSH3/8IUmaM2eOVq5ceV2DAwAAAAAAAADAnkqdRJ8/f77GjRune+65RwkJCTKbzZIkPz8/zZkz53rHBwAAAAAAAACA3ZQ6if7uu+/qww8/1PPPPy9HR0fr8tatW+vgwYPXNTgAAAAAAAAAAOyp1En0kydP6rbbbiuw3NXVVampqdclKAAAAAAAAAAAyoNSJ9HDwsIUHR1dYPm6devUsGHDUm3rtdde0+233y5vb29Vq1ZNffv21ZEjR2zKpKena/To0apSpYq8vLz0wAMP6Ny5czZlTp8+rV69esnDw0PVqlXThAkTlJ2dbVNmy5YtatmypVxdXVW3bl0tWrSoQDzz5s1TaGio3Nzc1LZtW+3Zs6fUsQAAAAAAAAAAbh2lTqKPGzdOo0eP1pdffinDMLRnzx698sormjx5sp577rlSbWvr1q0aPXq0fvzxR23YsEFZWVnq1q2bzYj2sWPH6v/9v/+nZcuWaevWrYqJidH9999vXW82m9WrVy9lZmZq586dWrx4sRYtWqSpU6day5w8eVK9evVSp06dFB0drWeeeUYjR47U+vXrrWW+/PJLjRs3TtOmTdP+/fvVvHlzde/eXfHx8SWOBTe/LVu2yGQyKSEhoUz3u2jRIvn5+f2jbZw6dUomk6nQL7ly2ev4AAAAAAAAgJtVqZPoI0eO1Ouvv64XXnhBaWlpGjhwoObPn6+5c+fqoYceKtW21q1bp6FDh6px48Zq3ry5Fi1apNOnTysqKkqSlJiYqP/93//VW2+9pcjISLVq1UoLFy7Uzp079eOPP0qSvv/+e/3666/69NNP1aJFC/Xs2VMvv/yy5s2bp8zMTEnSggULFBYWptmzZ6thw4YaM2aMHnzwQb399tvWWN566y098sgjGjZsmBo1aqQFCxbIw8NDH3/8cYljqYi2bdum3r17KygoSCaTSStWrLBZn5WVpYkTJ6pp06by9PRUUFCQBg8erJiYmGtud/78+WrWrJl8fHzk4+OjiIgIrV271qbMiRMndN9996lq1ary8fFRv379rvnLAJPJdM3H9OnT/+5pAAAAAAAAAHCLKnUSXZIGDRqkY8eOKSUlRXFxcfrzzz81YMAA7dy58x8Fk5iYKEmqXLmyJCkqKkpZWVnq0qWLtUyDBg1Uq1Yt7dq1S5K0a9cuNW3aVNWrV7eW6d69u5KSknTo0CFrmbzbyC2Tu43MzExFRUXZlHFwcFCXLl2sZUoSS0WUmpqq5s2ba968eYWuT0tL0/79+zVlyhTt379f33zzjY4cOaJ77733mtsNDg7WzJkzFRUVpX379ikyMlJ9+vSxvqapqanq1q2bTCaTNm3apB07digzM1O9e/eWxWIpdJuxsbHWx5w5c+Tj42OzbPz48X/rHOR+WQMAAAAAAADg1vO3kui5cucgl6Rjx47p7rvv/tvbslgseuaZZ9SuXTs1adJEkhQXFycXF5cC01xUr15dcXFx1jJ5E+i563PXXatMUlKSrly5ogsXLshsNhdaJu82ioslv4yMDCUlJdk8bjU9e/bUjBkzdN999xW63tfXVxs2bFC/fv0UHh6uO+64Q++9956ioqJ0+vTpIrfbu3dv3XPPPapXr57q16+vV155RV5eXtZR/zt27NCpU6e0aNEiNW3aVE2bNtXixYu1b98+bdq0qdBtBgQEWB++vr4ymUw2y7y8vKxlo6Ki1Lp1a3l4eOjOO++0mat/+vTpatGihT766COFhYXJzc1NkpSQkKCRI0daR8ZHRkbqwIED1noHDhxQp06d5O3tLR8fH7Vq1Ur79u2ziXH9+vVq2LChvLy81KNHD8XGxlrXWSwWvfTSSwoODparq6tatGihdevWFXkOJWnNmjWqX7++3N3d1alTJ506deqa5QEAAAAAAADY+kdJ9Otp9OjR+uWXX7R06VJ7h3LdvPbaa/L19bU+atasae+QyoXExESZTKYSzwFuNpu1dOlSpaamKiIiQlLOFxQmk0murq7Wcm5ubnJwcND27dv/cYzPP/+8Zs+erX379snJyUnDhw+3WX/8+HF9/fXX+uabb6xzkP/rX/9SfHy81q5dq6ioKLVs2VKdO3fWpUuXJOX8giM4OFh79+5VVFSUJk2aJGdnZ+s209LS9Oabb2rJkiXatm2bTp8+bTM6fu7cuZo9e7befPNN/fzzz+revbvuvfdeHTt2rNBjOHPmjO6//3717t1b0dHRGjlypCZNmvSPzw0AAAAAAABQkTjZOwBJGjNmjFavXq1t27YpODjYujwgIECZmZlKSEiwSbieO3dOAQEB1jJ79uyx2V7uvNh5y+SfK/vcuXPy8fGRu7u7HB0d5ejoWGiZvNsoLpb8Jk+erHHjxlmfJyUllT6R/tZbOY/itGwprVplu+zee6X9+4uvO25czqMMpKena+LEiRowYIB8fHyuWfbgwYOKiIhQenq6vLy89O2336pRo0aSpDvuuEOenp6aOHGiXn31VRmGoUmTJslsNtuM3v67XnnlFXXo0EGSNGnSJPXq1Uvp6enWUeeZmZn65JNPVLVqVUnS9u3btWfPHsXHx1sT+2+++aZWrFih5cuX69FHH9Xp06c1YcIENWjQQJJUr149m31mZWVpwYIFqlOnjqSc98VLL71kXf/mm29q4sSJ1nsPvP7669q8ebPmzJlT6HQ68+fPV506dTR79mxJUnh4uA4ePKjXX3/9H58fAAAAAAAAoKKw60h0wzA0ZswYffvtt9q0aZPCwsJs1rdq1UrOzs7auHGjddmRI0d0+vRp64jkiIgIHTx4UPHx8dYyGzZskI+PjzXhGhERYbON3DK523BxcVGrVq1sylgsFm3cuNFapiSx5Ofq6mq9MWbuo9SSkqSzZ4t/nD9fsO758yWrW0bTzGRlZalfv34yDEPz588vtnx4eLiio6O1e/duPf744xoyZIh+/fVXSVLVqlW1bNky/b//9//k5eUlX19fJSQkqGXLlnJw+OfNulmzZtb/BwYGSpJNGwsJCbEm0KWcqVpSUlJUpUoVeXl5WR8nT57UiRMnJEnjxo3TyJEj1aVLF82cOdO6PJeHh4c1gZ6739x9JiUlKSYmRu3atbOp065dOx0+fLjQYzh8+LDatm1rs6yotgoAAAAAAACgcCUeib4q/yjnfE6ePFnqnY8ePVqff/65Vq5cKW9vb+vc4r6+vnJ3d5evr69GjBihcePGqXLlyvLx8dGTTz6piIgI3XHHHZKkbt26qVGjRvr3v/+tWbNmKS4uTi+88IJGjx5tHRH82GOP6b333tNzzz2n4cOHa9OmTfrqq6/03XffWWMZN26chgwZotatW6tNmzaaM2eOUlNTNWzYMGtMxcVyQ/j4SDVqFF8uT0LXZllJ6v6d5H4p5SbQ//jjD23atKlEXyi4uLiobt26knK+xNi7d6/mzp2r999/X1LOa3/ixAlduHBBTk5O8vPzU0BAgGrXrv2P4807zYrJZJIkmxuWenp62pRPSUlRYGCgtmzZUmBbub9cmD59ugYOHKjvvvtOa9eu1bRp07R06VLrfPJ595m7X8Mw/vGxAAAAAAAAAPj7SpxE79u3b7FlcpONJZU7Grljx442yxcuXKihQ4dKkt5++205ODjogQceUEZGhrp3767//ve/1rKOjo5avXq1Hn/8cUVERMjT01NDhgyxmQYjLCxM3333ncaOHau5c+cqODhYH330kbp3724t079/f50/f15Tp05VXFyc9aaNeW82WlwsN8Q/mWqlmC8+ykpuAv3YsWPavHmzqlSp8re2Y7FYlJGRUWC5v7+/JGnTpk2Kj4/Xvffe+4/i/TtatmypuLg4OTk5KTQ0tMhy9evXV/369TV27FgNGDBACxcuLPKmrHn5+PgoKChIO3bssE4zI+XcYLVNmzaF1mnYsGGBL79yb8wKAAAAAAAAoGRKnETPOwr3einJKFs3NzfNmzev0Dmfc4WEhGjNmjXX3E7Hjh31008/XbPMmDFjNGbMmH8US0WTkpKi48ePW5+fPHlS0dHRqly5smrVqqWsrCw9+OCD2r9/v1avXi2z2Wz9xUHlypXl4uIiSercubPuu+8+6/mfPHmyevbsqVq1aik5OVmff/65tmzZovXr11v3tXDhQjVs2FBVq1bVrl279PTTT2vs2LEKDw8vwzOQo0uXLoqIiFDfvn01a9Ys1a9fXzExMfruu+903333qXHjxpowYYIefPBBhYWF6c8//9TevXv1wAMPlHgfEyZM0LRp01SnTh21aNFCCxcuVHR0tD777LNCyz/22GOaPXu2JkyYoJEjRyoqKkqLFi26TkcMAAAAAAAAVAzl4saiuHnt27dPnTp1sj7PvZHqkCFDtGjRIp09e9Y6GrpFixY2dTdv3mz9FULutCy54uPjNXjwYMXGxsrX11fNmjXT+vXr1bVrV2uZI0eOaPLkybp06ZJCQ0P1/PPPa+zYsTfoSK/NZDJpzZo1ev755zVs2DCdP39eAQEBat++vapXry5HR0ddvHhRgwcP1rlz5+Tv76/7779fL774Yon38dRTTykxMVHPPvus4uPj1ahRI61atarADUpz1apVS19//bXGjh2rd999V23atNGrr76q4cOHX6/DBgAAAAAAAG55JoNJl8tMUlKSfH19lZiYWGBO8LS0NB0+fFgNGzaUh4eHnSJERZfbDk+dOqVjx46pa9euatWqlb3DAgAAAAAAAK67a+Vr83Iow5gAAAAAAAAAALipkEQHAAAAAAAAAKAIpUqim81mbdu2TQkJCTcoHAAAAAAAAAAAyo9SJdEdHR3VrVs3Xb58+UbFAwAAAAAAAABAuVHq6VyaNGmi33///UbEAkkWi8XeIaACo/0BAAAAAAAAtkqdRJ8xY4bGjx+v1atXKzY2VklJSTYP/D0uLi6SpJSUFDtHgoost/1lZWXZORIAAAAAAACgfHAqbYV77rlHknTvvffKZDJZlxuGIZPJJLPZfP2iq0CcnJzk7++vs2fPSpK8vLzk4MB9X1E2LBaLUlJSdPbsWSUkJDAiHQAAAAAAALiq1En0zZs334g4IKlWrVrKzMy0JtKBspaQkKBz585JyvlijC9yAAAAAAAAUNGVOoneoUOHGxEHJJlMJtWuXVtLlixRSkqKAgICbEb7o2L47bfftG3bNoWEhOjy5ctKSkpS3759Va1atRu636ysLOsI9ISEBLm4uMjX1/eG7hMAAAAAAAAo70qdRJekH374Qe+//75+//13LVu2TDVq1NCSJUsUFhamu+6663rHWKE4Ojqqa9eu+u6773TkyBE5ODiQSK9gfv/9d128eFEeHh66fPmyUlJSdOLECSUmJpbJ/g3DkJOTk9q1a6fQ0NAy2ScAAAAAAABQXpU6if7111/r3//+twYNGqT9+/crIyNDkpSYmKhXX31Va9asue5BVjQ1atTQvffeqz/++ENpaWkyDMPeIaEMxcXFKS4uTg0aNNDp06d17tw51atXT/Xq1SuT/bu4uKhy5cpq0KAB07kAAAAAAACgwit1En3GjBlasGCBBg8erKVLl1qXt2vXTjNmzLiuwVVkAQEBCggIsHcYsIPvv/9eZ8+eVbVq1bRnzx6dPXtWjRs35lceAAAAAAAAgB2UepjpkSNH1L59+wLLfX19lZCQcD1iAiq0lJQUSZKXl5d1Kh9+jQAAAAAAAADYR6mT6AEBATp+/HiB5du3b1ft2rWvS1BARUYSHQAAAAAAACg/Sp1Ef+SRR/T0009r9+7dMplMiomJ0Weffabx48fr8ccfvxExAhUKSXQAAAAAAACg/Cj1nOiTJk2SxWJR586dlZaWpvbt28vV1VXjx4/Xk08+eSNiBCqUwpLoFovFniEBAAAAAAAAFVapk+gmk0nPP/+8JkyYoOPHjyslJUWNGjWSl5fXjYgPqHBSU1MlSZ6enoxEBwAAAAAAAOys1NO5DB8+XMnJyXJxcVGjRo3Upk0beXl5KTU1VcOHD78RMQIVCtO5AAAAAAAAAOVHqZPoixcv1pUrVwosv3Llij755JPrEhRQkeVNojs45LxFSaIDAAAAAAAA9lHi6VySkpJkGIYMw1BycrLc3Nys68xms9asWaNq1ardkCCBioSR6AAAAAAAAED5UeIkup+fn0wmk0wmk+rXr19gvclk0osvvnhdgwMqIpLoAAAAAAAAQPlR4iT65s2bZRiGIiMj9fXXX6ty5crWdS4uLgoJCVFQUNANCRKoKCwWi/XGoiTRAQAAAAAAAPsrcRK9Q4cOkqSTJ0+qZs2a1rmaAVw/V65csSbMSaIDAAAAAAAA9lfiJHqukJAQSVJaWppOnz6tzMxMm/XNmjW7PpEBFVDuVC4mk0nu7u4k0QEAAAAAAAA7K3US/fz58xo2bJjWrl1b6Hqz2fyPgwIqqtypXDw8POTg4EASHQAAAAAAALCzUs/J8swzzyghIUG7d++Wu7u71q1bp8WLF6tevXpatWrVjYgRqDDy3lRUEkl0AAAAAAAAwM5KPRJ906ZNWrlypVq3bi0HBweFhISoa9eu8vHx0WuvvaZevXrdiDiBCoEkOgAAAAAAAFC+lHokempqqqpVqyZJqlSpks6fPy9Jatq0qfbv3399owMqmKKS6BaLxW4xAQAAAAAAABVZqZPo4eHhOnLkiCSpefPmev/993X27FktWLBAgYGB1z1AoCJhJDoAAAAAAABQvpR6Openn35asbGxkqRp06apR48e+uyzz+Ti4qJFixZd7/iACiV/Et3BIed7LpLoAAAAAAAAgH2UOIl+8uRJhYWF6eGHH7Yua9Wqlf744w/99ttvqlWrlvz9/W9IkEBFwUh0AAAAAAAAoHwpcRK9Tp06CgkJUadOnRQZGamOHTsqODhYHh4eatmy5Y2MEagwSKIDAAAAAAAA5UuJk+ibNm3Sli1btGXLFn3xxRfKzMxU7dq1FRkZqU6dOqlTp06qXr36jYwVuOWlpqZKkjw9PSWRRAcAAAAAAADsrcRJ9I4dO6pjx46SpPT0dO3cudOaVF+8eLGysrLUoEEDHTp06EbFCtzyGIkOAAAAAAAAlC+lvrGoJLm5uSkyMlJ33XWXOnXqpLVr1+r999/Xb7/9dr3jAyoUkugAAAAAAABA+VKqJHpmZqZ+/PFHbd68WVu2bNHu3btVs2ZNtW/fXu+99546dOhwo+IEKgSS6AAAAAAAAED5UuIkemRkpHbv3q2wsDB16NBBo0aN0ueff67AwMAbGR9QoZBEBwAAAAAAAMqXEifRf/jhBwUGBioyMlIdO3ZUhw4dVKVKlRsZG1DhkEQHAAAAAAAAyheHkhZMSEjQBx98IA8PD73++usKCgpS06ZNNWbMGC1fvlznz5+/kXECFQJJdAAAAAAAAKB8KfFIdE9PT/Xo0UM9evSQJCUnJ2v79u3avHmzZs2apUGDBqlevXr65ZdfbliwwK0uN4nu6ekpiSQ6AAAAAAAAYG8lHomen6enpypXrqzKlSurUqVKcnJy0uHDh69nbOXSvHnzFBoaKjc3N7Vt21Z79uyxd0i4haSmpkoqOBLdYrHYLSYAAAAAAACgIitxEt1isWjPnj2aNWuWevbsKT8/P915553673//q4CAAM2bN0+///77jYzV7r788kuNGzdO06ZN0/79+9W8eXN1795d8fHx9g4Nt4j807k4OOS8RRmJDgAAAAAAANhHiadz8fPzU2pqqgICAtSpUye9/fbb6tixo+rUqXMj4ytX3nrrLT3yyCMaNmyYJGnBggX67rvv9PHHH2vSpEl2jg63AuZEBwAAAAAAAMqXEifR33jjDXXq1En169e/kfGUW5mZmYqKitLkyZOtyxwcHNSlSxft2rXLjpGVf5cvX9bKlSvtHUa5ZxiGMjIyJBVMov/www9M6QIAAAAAAIAbolKlSurTp4+9wyi3SpxEHzVq1I2Mo9y7cOGCzGazqlevbrO8evXq+u233wqtk5GRYU2KSlJSUlLOfxo0kByKmUmnZUtp1SrbZffeK+3fX3yw48blPHIlJ0sNGxZfT5JWrpRatfrr+erV0mOPFV/Py0vKfx4mTJC++EJe2dnqcu5ckVW/k5R/D3slBZQg3OckfZHneX1JG0tQT5JulxSX5/kjkqaWoN5RSZ3zLftUUocS1P1Q0kv5lp0p5P+VmjWTJC25eFHpkvTRR3r4o4+0NU/ZDlf3WxI18z2fqpzjLc5WSQ/nW7ZROee5OC8p53hzBSjndS2Jzso5z7kGSJpVgnpxynld81ogqVcJ6n6hnPaU12FJXiWo+5hy2nGulpJK+rVRQ0kpeZ6PlTSuiLJ57ZeU/6Nt5dV9F+ctSW/nee6lnGMtiT5X952rl3LOcXFSlHOsec1SzmtbHPqIknlYoo8oBn0EfUR+9BElQx9RPPqIkqGPKB59BH1EfvQRxaOPoI/Ijz6iZPL3EbMCAqTRo4uveAvlLCVJJRy0WuIkOkrvtdde04svvlhwRWxs8ZVr5u9mJJ0/L509W3zd3GR9LsMoWT1Jysy0fX7lSsnqensXXHb5snT2rJwlBV+jaqOAAPW87TabZaGbNsk/zxcQRWnbpIkS8pyrWsnJCt6+vfh4JXXp2FEX3d2tz28/eVLBRXwhkpfZy0s9777bZlmDvXsVfOFCsXVbhIaqZ77OIXjt2oIFr55z/zyL7mrdWh5Vq1qftzx/XsH79hW7T0nq2bOnbRyHDyv41Kli6zXw91fP220/Bur88IOCU1KKqPGX2xs00J9hYdbnVa5cUfCWLSWKt9Ndd6lOnjbV9swZBf/yS7H13Fxd1TMy0mZZo59+UnBcXBE1/tIsOFg9mza1WVbr++/lYTYXW/fOFi1kCQy0Pm9w+bKCf/yx2HqS1K1LF11xdrY+b3XsmIKPHy+2XrKfn3pGRNgsq7drl4ITEoqt26puXfWsV8/63D0rS8H/938lirfDHXeoeqVK1ud3xsYqODq62Hppjo7q2a2bzbJmBw8q+M8/i61LH1FIH1EI+gj6iLzoI+gj8qOPoI/Iiz6CPiI/+gj6iLzoI+gj8qOPqBh9RKPz56WSvK63UM6yNEwGky2XSGZmpjw8PLR8+XL17dvXunzIkCFKSEgodLqSwkai16xZU4mBgfKpQCPRi9Wrl/T++7bLWreWStDRaNYsaeDAv54fOSJ1zv+9bBH27pXydDT64APppfzfyxaifn1p0ybbZYMGSVu3Fl4+r0cekaZNs10WfK2vGPL49FOpY8e/nm/ZIj2c/3vZIuS/eHjxRenDDwsvm1eHDtJnn9kui4yUjh4tvHxeU6dKjz761/PYWCnfB2CRNm6UwsP/ev7559Jz+b+XLURAQMEOf9Qo6bvvCi+f14AB0htv2C5r0EAqwQe0FiyQ/ud//noeFSWV9CdQhw/bduhvvZXzKA59xP9v787jqizz/4+/DyooIqChIC64Iypi7oy5IYnm11xqNHUSM2sqLffUmVymTbN0tDSrab7SNJZlaTZamqloIm4orsSoYZaClsYmKsi5fn/05fw8CnJQNuH1fDzO48G5lvv+3PTxmjOfc3PdrBE3Yo3Ifx5rBGvEjVgjHJvLGpH/XNYIx+Jljch/HmsEa8SNWCPyn8cawRpxI9aI/OdJrBH/t0akWq3ySExUSkqK3N3d8zwMRfQC6NSpkzp27Ki33npLkmS1WlW/fn2NGzfOoQeLpqamysPDI9//KAAAAAAAAACAouVovZbtXApg0qRJCg8PV/v27dWxY0ctWrRIly5d0mOPPebQ/JzvK1Jv/NMFAAAAAAAAAECxyqnT5nefOUX0Ahg6dKh++eUXzZo1S0lJSWrTpo02bNhw08NG85KWliZJqpfb3kEAAAAAAAAAgGKXlpYmDw+PPPvZzqUYWa1WnT17VtWqVZPFYinpcIpEzr7vP/30E1vWoEwgp1EWkdcoi8hrlDXkNMoi8hplDTmNsqi85bUxRmlpafL19ZXTLZ5hyZ3oxcjJyUl1HX1ow13O3d29XPxDQ/lBTqMsIq9RFpHXKGvIaZRF5DXKGnIaZVF5yutb3YGeI+/yOgAAAAAAAAAA5RxFdAAAAAAAAAAA8kARHYXKxcVFs2fPlouLS0mHAhQKchplEXmNsoi8RllDTqMsIq9R1pDTKIvI69zxYFEAAAAAAAAAAPLAnegAAAAAAAAAAOSBIjoAAAAAAAAAAHmgiA4AAAAAAAAAQB4oogMAAAAAAAAAkAeK6Cg0S5cuVYMGDVS5cmV16tRJe/bsKemQgFzNmTNHFovF7tW8eXNb/5UrVzR27Fjdc889cnNz00MPPaRz587ZHeP06dPq16+fXF1dVatWLU2dOlXXrl0r7ktBObZ9+3b1799fvr6+slgs+uKLL+z6jTGaNWuWateurSpVqig0NFTHjx+3G3Px4kWNGDFC7u7u8vT01OOPP6709HS7MYcOHVLXrl1VuXJl1atXT/Pnzy/qS0M5ll9ejxo16qb1u0+fPnZjyGuUJnPnzlWHDh1UrVo11apVSwMHDlR8fLzdmML63BEZGam2bdvKxcVFTZo0UURERFFfHsohR3K6R48eN63VTz31lN0YchqlybJly9S6dWu5u7vL3d1dwcHB+vrrr239rNO4G+WX16zVBUcRHYXik08+0aRJkzR79mzt379fQUFBCgsL0/nz50s6NCBXLVu2VGJiou21Y8cOW9/EiRP1n//8R6tWrdK2bdt09uxZDR482NafnZ2tfv36KTMzUzt37tQHH3ygiIgIzZo1qyQuBeXUpUuXFBQUpKVLl+baP3/+fL355pt65513tHv3blWtWlVhYWG6cuWKbcyIESN09OhRbdq0SevWrdP27dv15JNP2vpTU1PVu3dv+fn5KSYmRq+//rrmzJmj9957r8ivD+VTfnktSX369LFbvz/++GO7fvIapcm2bds0duxY7dq1S5s2bVJWVpZ69+6tS5cu2cYUxueOhIQE9evXTz179lRsbKwmTJigMWPGaOPGjcV6vSj7HMlpSXriiSfs1urrv6wkp1Ha1K1bV/PmzVNMTIz27dunkJAQDRgwQEePHpXEOo27U355LbFWF5gBCkHHjh3N2LFjbe+zs7ONr6+vmTt3bglGBeRu9uzZJigoKNe+5ORkU6lSJbNq1SpbW1xcnJFkoqOjjTHGfPXVV8bJyckkJSXZxixbtsy4u7ubq1evFmnsQG4kmTVr1tjeW61W4+PjY15//XVbW3JysnFxcTEff/yxMcaYY8eOGUlm7969tjFff/21sVgs5syZM8YYY95++21TvXp1u7yeNm2a8ff3L+IrAm7Oa2OMCQ8PNwMGDMhzDnmN0u78+fNGktm2bZsxpvA+dzz//POmZcuWducaOnSoCQsLK+pLQjl3Y04bY0z37t3N+PHj85xDTuNuUL16dfP++++zTqNMyclrY1irbwd3ouOOZWZmKiYmRqGhobY2JycnhYaGKjo6ugQjA/J2/Phx+fr6qlGjRhoxYoROnz4tSYqJiVFWVpZdPjdv3lz169e35XN0dLQCAwPl7e1tGxMWFqbU1FS7b3WBkpKQkKCkpCS7PPbw8FCnTp3s8tjT01Pt27e3jQkNDZWTk5N2795tG9OtWzc5OzvbxoSFhSk+Pl6//fZbMV0NYC8yMlK1atWSv7+/nn76aV24cMHWR16jtEtJSZEk1ahRQ1Lhfe6Ijo62O0bOGD6Lo6jdmNM5VqxYIS8vL7Vq1UozZsxQRkaGrY+cRmmWnZ2tlStX6tKlSwoODmadRplwY17nYK0umIolHQDufr/++quys7Pt/mFJkre3t77//vsSigrIW6dOnRQRESF/f38lJibqb3/7m7p27aojR44oKSlJzs7O8vT0tJvj7e2tpKQkSVJSUlKu+Z7TB5S0nDzMLU+vz+NatWrZ9VesWFE1atSwG9OwYcObjpHTV7169SKJH8hLnz59NHjwYDVs2FAnT57UX/7yF/Xt21fR0dGqUKECeY1SzWq1asKECerSpYtatWolSYX2uSOvMampqbp8+bKqVKlSFJeEci63nJak4cOHy8/PT76+vjp06JCmTZum+Ph4rV69WhI5jdLp8OHDCg4O1pUrV+Tm5qY1a9aoRYsWio2NZZ3GXSuvvJZYq28HRXQA5U7fvn1tP7du3VqdOnWSn5+fPv300zK3yANAWfLII4/Yfg4MDFTr1q3VuHFjRUZGqlevXiUYGZC/sWPH6siRI3bPYQHuZnnl9PXPoQgMDFTt2rXVq1cvnTx5Uo0bNy7uMAGH+Pv7KzY2VikpKfrss88UHh6ubdu2lXRYwB3JK69btGjBWn0b2M4Fd8zLy0sVKlS46enU586dk4+PTwlFBTjO09NTzZo104kTJ+Tj46PMzEwlJyfbjbk+n318fHLN95w+oKTl5OGt1mUfH5+bHv587do1Xbx4kVzHXaNRo0by8vLSiRMnJJHXKL3GjRundevWaevWrapbt66tvbA+d+Q1xt3dnRsEUCTyyuncdOrUSZLs1mpyGqWNs7OzmjRponbt2mnu3LkKCgrS4sWLWadxV8srr3PDWp0/iui4Y87OzmrXrp02b95sa7Nardq8ebPdXktAaZWenq6TJ0+qdu3aateunSpVqmSXz/Hx8Tp9+rQtn4ODg3X48GG7Qs2mTZvk7u5u+9MooCQ1bNhQPj4+dnmcmpqq3bt32+VxcnKyYmJibGO2bNkiq9Vq+wAVHBys7du3KysryzZm06ZN8vf3Z8sLlAo///yzLly4oNq1a0sir1H6GGM0btw4rVmzRlu2bLlpK6HC+twRHBxsd4ycMXwWR2HLL6dzExsbK0l2azU5jdLOarXq6tWrrNMoU3LyOjes1Q4o6SebomxYuXKlcXFxMREREebYsWPmySefNJ6ennZP8QVKi8mTJ5vIyEiTkJBgoqKiTGhoqPHy8jLnz583xhjz1FNPmfr165stW7aYffv2meDgYBMcHGybf+3aNdOqVSvTu3dvExsbazZs2GBq1qxpZsyYUVKXhHIoLS3NHDhwwBw4cMBIMgsXLjQHDhwwP/74ozHGmHnz5hlPT0+zdu1ac+jQITNgwADTsGFDc/nyZdsx+vTpY+69916ze/dus2PHDtO0aVMzbNgwW39ycrLx9vY2jz76qDly5IhZuXKlcXV1Ne+++26xXy/Kh1vldVpampkyZYqJjo42CQkJ5ttvvzVt27Y1TZs2NVeuXLEdg7xGafL0008bDw8PExkZaRITE22vjIwM25jC+Nzxww8/GFdXVzN16lQTFxdnli5daipUqGA2bNhQrNeLsi+/nD5x4oR58cUXzb59+0xCQoJZu3atadSokenWrZvtGOQ0Spvp06ebbdu2mYSEBHPo0CEzffp0Y7FYzDfffGOMYZ3G3elWec1afXsooqPQvPXWW6Z+/frG2dnZdOzY0ezataukQwJyNXToUFO7dm3j7Oxs6tSpY4YOHWpOnDhh6798+bJ55plnTPXq1Y2rq6sZNGiQSUxMtDvGqVOnTN++fU2VKlWMl5eXmTx5ssnKyiruS0E5tnXrViPppld4eLgxxhir1WpmzpxpvL29jYuLi+nVq5eJj4+3O8aFCxfMsGHDjJubm3F3dzePPfaYSUtLsxtz8OBBc9999xkXFxdTp04dM2/evOK6RJRDt8rrjIwM07t3b1OzZk1TqVIl4+fnZ5544ombvrAnr1Ga5JbPkszy5cttYwrrc8fWrVtNmzZtjLOzs2nUqJHdOYDCkl9Onz592nTr1s3UqFHDuLi4mCZNmpipU6ealJQUu+OQ0yhNRo8ebfz8/Iyzs7OpWbOm6dWrl62AbgzrNO5Ot8pr1urbYzHGmOK77x0AAAAAAAAAgLsHe6IDAAAAAAAAAJAHiugAAAAAAAAAAOSBIjoAAAAAAAAAAHmgiA4AAAAAAAAAQB4oogMAAAAAAAAAkAeK6AAAAAAAAAAA5IEiOgAAAAAAAAAAeaCIDgAAAKDIREREyNPTs6TDAAAAAG4bRXQAAACgDBs1apQGDhx4U3tkZKQsFouSk5OLPSYAAADgbkIRHQAAAECRyMrKKukQAAAAgDtGER0AAACAPv/8c7Vs2VIuLi5q0KCBFixYYNdvsVj0xRdf2LV5enoqIiJCknTq1ClZLBZ98skn6t69uypXrqwVK1bYjT916pScnJy0b98+u/ZFixbJz89PVqu10K8LAAAAuFMU0QEAAIByLiYmRkOGDNEjjzyiw4cPa86cOZo5c6atQF4Q06dP1/jx4xUXF6ewsDC7vgYNGig0NFTLly+3a1++fLlGjRolJyf+7wkAAABKn4olHQAAAACAorVu3Tq5ubnZtWVnZ9t+XrhwoXr16qWZM2dKkpo1a6Zjx47p9ddf16hRowp0rgkTJmjw4MF59o8ZM0ZPPfWUFi5cKBcXF+3fv1+HDx/W2rVrC3QeAAAAoLhwqwcAAABQxvXs2VOxsbF2r/fff9/WHxcXpy5dutjN6dKli44fP25XbHdE+/btb9k/cOBAVahQQWvWrJEkRUREqGfPnmrQoEGBzgMAAAAUF+5EBwAAAMq4qlWrqkmTJnZtP//8c4GOYbFYZIyxa8vtwaFVq1a95XGcnZ01cuRILV++XIMHD9ZHH32kxYsXFygWAAAAoDhRRAcAAADKuYCAAEVFRdm1RUVFqVmzZqpQoYIkqWbNmkpMTLT1Hz9+XBkZGbd1vjFjxqhVq1Z6++23de3atVtu/wIAAACUNIroAAAAQDk3efJkdejQQS+99JKGDh2q6OhoLVmyRG+//bZtTEhIiJYsWaLg4GBlZ2dr2rRpqlSp0m2dLyAgQJ07d9a0adM0evRoValSpbAuBQAAACh07IkOAAAAlHNt27bVp59+qpUrV6pVq1aaNWuWXnzxRbuHii5YsED16tVT165dNXz4cE2ZMkWurq63fc7HH39cmZmZGj16dCFcAQAAAFB0LObGjQ0BAAAAoIi99NJLWrVqlQ4dOlTSoQAAAAC3xJ3oAAAAAIpNenq6jhw5oiVLlujZZ58t6XAAAACAfFFEBwAAAFBsxo0bp3bt2qlHjx5s5QIAAIC7Atu5AAAAAAAAAACQB+5EBwAAAAAAAAAgDxTRAQAAAAAAAADIA0V0AAAAAAAAAADyQBEdAAAAAAAAAIA8UEQHAAAAAAAAACAPFNEBAAAAAAAAAMgDRXQAAAAAAAAAAPJAER0AAAAAAAAAgDxQRAcAAAAAAAAAIA8U0QEAAAAAAAAAyANFdAAAAAAAAAAA8kARHQAAAAAAAACAPFBEBwAAAAAAAAAgDxTRAQAAAAAAAADIA0V0AAAAAAAAAADyQBEdAAAAAAAAAIA8UEQHAAAAAAAAACAPFNEBAAAAAAAAAMgDRXQAAAAAAAAAAPJAER0AAAAAAAAAgDxQRAcAAAAAAAAAIA8U0QEAAAAAAAAAyANFdAAAAAAAAAAA8kARHQAAAAAAAACAPFBEBwAAAAAAAAAgDxTRAQAAAAAAAADIA0V0AAAAAAAAAADyQBEdAAAAAAAAAIA8UEQHAAAAAAAAACAPFNEBAABQps2ZM0dt2rQp6TDuKg0aNNCiRYtKOoxiYbFY9MUXX5R0GAAAACjFKKIDAACg1EpKStKzzz6rRo0aycXFRfXq1VP//v21efPmkg6tWN1uoZcCMQAAAHDnKpZ0AAAAAEBuTp06pS5dusjT01Ovv/66AgMDlZWVpY0bN2rs2LH6/vvvSzpEoMRkZmbK2dm5pMMAAAAoF7gTHQAAAKXSM888I4vFoj179uihhx5Ss2bN1LJlS02aNEm7du2yjTt9+rQGDBggNzc3ubu7a8iQITp37lyex+3Ro4cmTJhg1zZw4ECNGjXK9r5BgwZ6+eWXNXLkSLm5ucnPz09ffvmlfvnlF9u5WrdurX379tnmREREyNPTUxs3blRAQIDc3NzUp08fJSYm3tHvoUGDBpKkQYMGyWKx2N5L0rJly9S4cWM5OzvL399fH374Yb7zTp48qQEDBsjb21tubm7q0KGDvv3229uOb+HChQoMDFTVqlVVr149PfPMM0pPT7f1O/J7sVqtevHFF1W3bl25uLioTZs22rBhg63/1KlTslgs+vTTT9W1a1dVqVJFHTp00H//+1/t3btX7du3l5ubm/r27atffvnFNm/v3r26//775eXlJQ8PD3Xv3l379+/P81pCQkI0btw4u7ZffvlFzs7ODv31w9tvv62mTZuqcuXK8vb21sMPP2x3jfPnz1eTJk3k4uKi+vXr65VXXrH1Hz58WCEhIapSpYruuecePfnkk3a/x1GjRmngwIF65ZVX5OvrK39/f0nSTz/9pCFDhsjT01M1atTQgAEDdOrUqXxjBQAAgOMoogMAAKDUuXjxojZs2KCxY8eqatWqN/V7enpK+r0wOWDAAF28eFHbtm3Tpk2b9MMPP2jo0KF3HMPf//53denSRQcOHFC/fv306KOPauTIkfrTn/6k/fv3q3Hjxho5cqSMMbY5GRkZeuONN/Thhx9q+/btOn36tKZMmXJHcezdu1eStHz5ciUmJtrer1mzRuPHj9fkyZN15MgR/fnPf9Zjjz2mrVu33nJeenq6HnjgAW3evFkHDhxQnz591L9/f50+ffq24nNyctKbb76po0eP6oMPPtCWLVv0/PPP243J7/eyePFiLViwQG+88YYOHTqksLAwPfjggzp+/LjdcWbPnq0XXnhB+/fvV8WKFTV8+HA9//zzWrx4sb777judOHFCs2bNso1PS0tTeHi4duzYoV27dqlp06Z64IEHlJaWluu1jBkzRh999JGuXr1qa/v3v/+tOnXqKCQk5Ja/h3379um5557Tiy++qPj4eG3YsEHdunWz9c+YMUPz5s3TzJkzdezYMX300Ufy9vaWJF26dElhYWGqXr269u7dq1WrVunbb7+9qaC/efNmxcfHa9OmTVq3bp2ysrIUFhamatWq6bvvvlNUVJTtS4rMzMxbxgsAAIACMAAAAEAps3v3biPJrF69+pbjvvnmG1OhQgVz+vRpW9vRo0eNJLNnzx5jjDGzZ882QUFBtv7u3bub8ePH2x1nwIABJjw83Pbez8/P/OlPf7K9T0xMNJLMzJkzbW3R0dFGkklMTDTGGLN8+XIjyZw4ccI2ZunSpcbb29vh686LJLNmzRq7tj/84Q/miSeesGv74x//aB544IFbzstNy5YtzVtvvWV77+fnZ/7+97/fVqyrVq0y99xzj+29I78XX19f88orr9gdp0OHDuaZZ54xxhiTkJBgJJn333/f1v/xxx8bSWbz5s22trlz5xp/f/88Y8vOzjbVqlUz//nPf2xt1/+OLl++bKpXr24++eQTW3/r1q3NnDlz8r3uzz//3Li7u5vU1NSb+lJTU42Li4v5xz/+kevc9957z1SvXt2kp6fb2tavX2+cnJxMUlKSMcaY8PBw4+3tba5evWob8+GHHxp/f39jtVptbVevXjVVqlQxGzduzDdmAAAAOIY70QEAAFDqmOvu7r6VuLg41atXT/Xq1bO1tWjRQp6enoqLi7ujGFq3bm37OeeO4cDAwJvazp8/b2tzdXVV48aNbe9r165t13+jli1bys3NzbYVSUHExcWpS5cudm1dunTJ97rT09M1ZcoUBQQEyNPTU25uboqLi7vtO9G//fZb9erVS3Xq1FG1atX06KOP6sKFC8rIyLCNudXvJTU1VWfPnnXoWhz5b3L97/vcuXN64okn1LRpU3l4eMjd3V3p6el5XmvlypX16KOP6n//938lSfv379eRI0fstvrJy/333y8/Pz81atRIjz76qFasWGH7HcTFxenq1avq1atXrnPj4uIUFBRk91cXXbp0kdVqVXx8vK0tMDDQbh/0gwcP6sSJE6pWrZotj2rUqKErV67o5MmT+cYMAAAAx/BgUQAAAJQ6TZs2lcViKZKHhzo5Od1UpM/KyrppXKVKlWw/WyyWPNusVmuuc3LG3OoLga+++sp27ipVqjh6CXdkypQp2rRpk9544w01adJEVapU0cMPP3xb23+cOnVK//M//6Onn35ar7zyimrUqKEdO3bo8ccfV2ZmplxdXSUV/PeSF0f+m1z/3yM8PFwXLlzQ4sWL5efnJxcXFwUHB9/yWseMGaM2bdro559/1vLlyxUSEiI/P798Y6tWrZr279+vyMhIffPNN5o1a5bmzJmjvXv3Ftp/2xu3NkpPT1e7du20YsWKm8bWrFmzUM4JAAAA9kQHAABAKVSjRg2FhYVp6dKlunTp0k39ycnJkqSAgAD99NNP+umnn2x9x44dU3Jyslq0aJHrsWvWrGn3UMvs7GwdOXKkcC/AQX5+fmrSpImaNGmiOnXq5DmuUqVKys7OtmsLCAhQVFSUXVtUVJTddec2LyoqSqNGjdKgQYMUGBgoHx+f234QZUxMjKxWqxYsWKDOnTurWbNmOnv2bIGO4e7uLl9f33yv5XZERUXpueee0wMPPKCWLVvKxcVFv/766y3nBAYGqn379vrHP/6hjz76SKNHj3b4fBUrVlRoaKjmz5+vQ4cO6dSpU9qyZYuaNm2qKlWq5Plw0oCAAB08eNAu16OiouTk5GR7gGhu2rZtq+PHj6tWrVq2PMp5eXh4OBw3AAAAbo0iOgAAAEqlpUuXKjs7Wx07dtTnn3+u48ePKy4uTm+++aaCg4MlSaGhoQoMDNSIESO0f/9+7dmzRyNHjlT37t3Vvn37XI8bEhKi9evXa/369fr+++/19NNP24rypVWDBg20efNmJSUl6bfffpMkTZ06VREREVq2bJmOHz+uhQsXavXq1XYP7MxtXtOmTbV69WrFxsbq4MGDGj58uN3d2wXRpEkTZWVl6a233tIPP/ygDz/8UO+8806BjzN16lS99tpr+uSTTxQfH6/p06crNjZW48ePv624cjRt2lQffvih4uLitHv3bo0YMcKhu8LHjBmjefPmyRijQYMGOXSudevW6c0331RsbKx+/PFH/etf/5LVapW/v78qV66sadOm6fnnn9e//vUvnTx5Urt27dI///lPSdKIESNUuXJlhYeH68iRI9q6daueffZZPfroo7Zta3IzYsQIeXl5acCAAfruu++UkJCgyMhIPffcc/r5558d+yUBAAAgXxTRAQAAUCo1atRI+/fvV8+ePTV58mS1atVK999/vzZv3qxly5ZJ+n37jrVr16p69erq1q2bQkND1ahRI33yySd5Hnf06NEKDw+3FdsbNWqknj17Ftdl3ZYFCxZo06ZNqlevnu69915J0sCBA7V48WK98cYbatmypd59910tX75cPXr0uOW8hQsXqnr16vrDH/6g/v37KywsTG3btr2tuIKCgrRw4UK99tpratWqlVasWKG5c+cW+DjPPfecJk2apMmTJyswMFAbNmzQl19+qaZNm95WXDn++c9/6rffflPbtm316KOP6rnnnlOtWrXynTds2DBVrFhRw4YNU+XKlR06l6enp1avXq2QkBAFBATonXfe0ccff6yWLVtKkmbOnKnJkydr1qxZCggI0NChQ237t7u6umrjxo26ePGiOnTooIcffli9evXSkiVLbnlOV1dXbd++XfXr19fgwYMVEBCgxx9/XFeuXJG7u7tDcQMAACB/FnM7mxECAAAAQBl16tQpNW7cWHv37r3tLxgAAABQdlBEBwAAAAD9/oDZCxcuaMqUKUpISLhpn3YAAACUT2znAgAAACBXK1askJubW66vnG1KypKoqCjVrl1be/fuvWlv9++++y7P34Wbm1sJRQwAAIDiwJ3oAAAAAHKVlpamc+fO5dpXqVIl+fn5FXNEJefy5cs6c+ZMnv1NmjQpxmgAAABQnCiiAwAAAAAAAACQB7ZzAQAAAAAAAAAgDxTRAQAAAAAAAADIQ8WSDqA8sVqtOnv2rKpVqyaLxVLS4QAAAAAAAABAuWWMUVpamnx9feXklPf95hTRi9HZs2dVr169kg4DAAAAAAAAAPB/fvrpJ9WtWzfPforoxahatWqSfv+P4u7uXsLRAAAAAAAAAED5lZqaqnr16tnqtnmhiF6McrZwcXd3p4gOAAAAAAAAAKVAfltv82BR4C7www8/aPjw4YqNjS3pUAAAAAAAAIByxWKMMSUdRHmRmpoqDw8PpaSkcCc6CiQwMFBHjhyRxWKR1Wot6XAAAAAAAACAu56j9VruRAfuAkeOHJH0+xODAQAAAAAAABQf9kQvha5du6bMzMySDgOliL+/v+3njIyMIjmHs7OzKlZkSQAAAAAAAACux3YuxSi/Pw8wxuj06dP69ddfSyA6QPLy8lL9+vXzfZgCAAAAAAAAcLdzdDsXh247rV69usNFtYsXLzoWIW6SU0CvU6eO3Nzc5OTEbjsoHlarVenp6Tpz5owkyc/Pr4QjAgAAAAAAAEoHh4roixYtKuIwcO3aNVsB3cfHp6TDQTnk5uYmSTpz5oz++9//qmvXrqpcuXIJRwUAAAAAAACULIeK6OHh4UUdR7mXswd6TiETKAk5+ff999/r0qVL6tOnD4V0AAAAAAAAlGu3tV/IyZMn9cILL2jYsGE6f/68JOnrr7/W0aNHCzW48ogtXFCScvKvZs2a+v7773Xq1KmSDQgAAAAAAAAoYQWu2G7btk2BgYHavXu3Vq9erfT0dEnSwYMHNXv27EIPEEDxq1SpkiTp0qVLJRwJAAAAAAAAULIKXESfPn26Xn75ZW3atEnOzs629pCQEO3atatQg0Ppt337dvXv31++vr6yWCz64osv7PqzsrI0bdo0BQYGqmrVqvL19dXIkSN19uxZu3EXL17UiBEj5O7uLk9PTz3++OO2L2hudOLECVWrVk2enp63jO3UqVOyWCy2V7Vq1dSyZUuNHTtWx48fL/C1NmjQgOcDAAAAAAAAAOVMgYvohw8f1qBBg25qr1Wrln799ddCCQp3j0uXLikoKEhLly7NtT8jI0P79+/XzJkztX//fq1evVrx8fF68MEH7caNGDFCR48e1aZNm7Ru3Tpt375dTz755E3Hy8rK0rBhw9S1a1eHY/z222+VmJiogwcP6tVXX1VcXJyCgoK0efPmgl0sAAAAAAAAgHKnwEV0T09PJSYm3tR+4MAB1alTp1CCwt2jb9++evnll3P9YkWSPDw8tGnTJg0ZMkT+/v7q3LmzlixZopiYGJ0+fVqSFBcXpw0bNuj9999Xp06ddN999+mtt97SypUrb7pj/YUXXlDz5s01ZMgQh2O855575OPjo0aNGmnAgAH69ttv1alTJz3++OPKzs6W9Ps+/wMGDJC3t7fc3NzUoUMHffvtt7Zj9OjRQz/++KMmTpxou7Ndki5cuKBhw4apTp06cnV1VWBgoD7++OMC/Q4BAAAAAAAAlF4FLqI/8sgjmjZtmpKSkmSxWGS1WhUVFaUpU6Zo5MiRRREjypiUlBRZLBbbdizR0dHy9PRU+/btbWNCQ0Pl5OSk3bt329q2bNmiVatW5XnXu6OcnJw0fvx4/fjjj4qJiZEkpaen64EHHtDmzZt14MAB9enTR/3797cV+levXq26devqxRdfVGJiou2LpCtXrqhdu3Zav369jhw5oieffFKPPvqo9uzZc0cxAgAAAAAAACgdKhZ0wquvvqqxY8eqXr16ys7OVosWLZSdna3hw4frhRdeKIoYyyVjjDIyMkrk3K6urrY7rQvblStXNG3aNA0bNkzu7u6SpKSkJNWqVctuXMWKFVWjRg0lJSVJ+v2O71GjRunf//63bd6daN68uaTf903v2LGjgoKCFBQUZOt/6aWXtGbNGn355ZcaN26catSooQoVKqhatWry8fGxjatTp46mTJlie//ss89q48aN+vTTT9WxY8c7jhMAAAAAAABAySpwEd3Z2Vn/+Mc/NHPmTB05ckTp6em699571bRp06KIr9zKyMiQm5tbiZw7PT1dVatWLfTjZmVlaciQITLGaNmyZQWa+8QTT2j48OHq1q1bocRijJEk25cF6enpmjNnjtavX6/ExERdu3ZNly9ftt2Jnpfs7Gy9+uqr+vTTT3XmzBllZmbq6tWrcnV1LZQ4AQAAAAAAAJSsAhfRd+zYofvuu0/169dX/fr1iyImlEE5BfQff/xRW7Zssbub3MfHR+fPn7cbf+3aNV28eNF21/eWLVv05Zdf6o033pD0exHcarWqYsWKeu+99zR69OgCxRMXFydJatiwoSRpypQp2rRpk9544w01adJEVapU0cMPP6zMzMxbHuf111/X4sWLtWjRIgUGBqpq1aqaMGFCvvMAAAAAAAAA3B0KXEQPCQlRnTp1NGzYMP3pT39SixYtiiKucs/V1VXp6ekldu7ClFNAP378uLZu3ap77rnHrj84OFjJycmKiYlRu3btJP1eNLdarerUqZOk3/dNz3kIqCStXbtWr732mnbu3FngB9parVa9+eabatiwoe69915JUlRUlEaNGmV7QGp6erpOnTplN8/Z2dkuhpx5AwYM0J/+9Cfbsf/73//y7wIAAAAAAAAoIwpcRD979qxWrlypjz/+WPPmzVPr1q01YsQIDRs2THXr1i2KGMsli8VSJFuqFLb09HSdOHHC9j4hIUGxsbGqUaOG6tevr6ysLD388MPav3+/1q1bp+zsbNs+5zVq1JCzs7MCAgLUp08fPfHEE3rnnXeUlZWlcePG6ZFHHpGvr68kKSAgwO68+/btk5OTk1q1apVvjBcuXFBSUpIyMjJ05MgRLVq0SHv27NH69etVoUIFSVLTpk21evVq9e/fXxaLRTNnzpTVarU7ToMGDbR9+3Y98sgjcnFxkZeXl5o2barPPvtMO3fuVPXq1bVw4UKdO3eOIjoAAAAAAABQRjgVdIKXl5fGjRunqKgonTx5Un/84x/1wQcfqEGDBgoJCSmKGFGK7du3T/fee6/tju5Jkybp3nvv1axZsyRJZ86c0Zdffqmff/5Zbdq0Ue3atW2vnTt32o6zYsUKNW/eXL169dIDDzyg++67T++9916hxBgaGqratWsrMDBQ06dPV0BAgA4dOqSePXvaxixcuFDVq1fXH/7wB/Xv319hYWFq27at3XFefPFFnTp1So0bN1bNmjUlSS+88ILatm2rsLAw9ejRQz4+Pho4cGChxA0AAAAAAACg5FlMzhMWb1N2dra+/vprzZw5U4cOHbppuwv8f6mpqfLw8FBKSordnuDS7w8SjYuLU0BAAA+lRInJycNTp07p+PHjuv/++21b7AAAAAAAAABlya3qtdcr8J3oOaKiovTMM8+odu3aGj58uFq1aqX169ff7uEAAAAAAAAAACh1Crwn+owZM7Ry5UqdPXtW999/vxYvXqwBAwZw9zQAAAAAAAAAoMwpcBF9+/btmjp1qoYMGSIvL6+iiAkAAAAAAAAAgFKhwEX0qKiooogDAAAAAAAAAIBS57b2RP/www/VpUsX+fr66scff5QkLVq0SGvXri3U4AAAAAAAAAAAKEkFLqIvW7ZMkyZN0gMPPKDk5GRlZ2dLkjw9PbVo0aLCjg8AAAAAAAAAgBJT4CL6W2+9pX/84x/661//qgoVKtja27dvr8OHDxdqcAAAAAAAAAAAlKQCF9ETEhJ077333tTu4uKiS5cuFUpQAAAAAAAAAACUBgUuojds2FCxsbE3tW/YsEEBAQGFERMAAAAAAAAAAKVCgYvokyZN0tixY/XJJ5/IGKM9e/bolVde0YwZM/T8888X6Fhz585Vhw4dVK1aNdWqVUsDBw5UfHy83ZgrV65o7Nixuueee+Tm5qaHHnpI586dsxtz+vRp9evXT66urqpVq5amTp2qa9eu2Y2JjIxU27Zt5eLioiZNmigiIuKmeJYuXaoGDRqocuXK6tSpk/bs2VPgWHB3i4yMlMViUXJycrGeNyIiQp6ennd0jFOnTsliseT6JVeOkro+AAAAAAAA4G5V4CL6mDFj9Nprr+mFF15QRkaGhg8frmXLlmnx4sV65JFHCnSsbdu2aezYsdq1a5c2bdqkrKws9e7d225bmIkTJ+o///mPVq1apW3btuns2bMaPHiwrT87O1v9+vVTZmamdu7cqQ8++EARERGaNWuWbUxCQoL69eunnj17KjY2VhMmTNCYMWO0ceNG25hPPvlEkyZN0uzZs7V//34FBQUpLCxM58+fdziW8mj79u3q37+/fH19ZbFY9MUXX9j1Z2Vladq0aQoMDFTVqlXl6+urkSNH6uzZs7c87rJly9S6dWu5u7vL3d1dwcHB+vrrr+3GnDx5UoMGDVLNmjXl7u6uIUOG3PJLDYvFcsvXnDlzbvfXAAAAAAAAAKCMKnARXZJGjBih48ePKz09XUlJSfr55581bNgw7dy5s0DH2bBhg0aNGqWWLVsqKChIEREROn36tGJiYiRJKSkp+uc//6mFCxcqJCRE7dq10/Lly7Vz507t2rVLkvTNN9/o2LFj+ve//602bdqob9++eumll7R06VJlZmZKkt555x01bNhQCxYsUEBAgMaNG6eHH35Yf//7322xLFy4UE888YQee+wxtWjRQu+8845cXV31v//7vw7HUh5dunRJQUFBWrp0aa79GRkZ2r9/v2bOnKn9+/dr9erVio+P14MPPnjL49atW1fz5s1TTEyM9u3bp5CQEA0YMEBHjx61nbd3796yWCzasmWLoqKilJmZqf79+8tqteZ6zMTERNtr0aJFcnd3t2ubMmXKbf0OcvIMAAAAAAAAQNlzW0X0HDnbp0jS8ePH1bVr1zsKJiUlRZJUo0YNSVJMTIyysrIUGhpqG9O8eXPVr19f0dHRkqTo6GgFBgbK29vbNiYsLEypqam2gmt0dLTdMXLG5BwjMzNTMTExdmOcnJwUGhpqG+NILDe6evWqUlNT7V5lTd++ffXyyy9r0KBBufZ7eHho06ZNGjJkiPz9/dW5c2ctWbJEMTExOn36dJ7H7d+/vx544AE1bdpUzZo10yuvvCI3NzfbFxZRUVE6deqUIiIiFBgYqMDAQH3wwQfat2+ftmzZkusxfXx8bC8PDw9ZLBa7Njc3N9vYmJgYtW/fXq6urvrDH/5gt83QnDlz1KZNG73//vtq2LChKleuLElKTk7WmDFjbHfGh4SE6ODBg7Z5Bw8eVM+ePVWtWjW5u7urXbt22rdvn12MGzduVEBAgNzc3NSnTx8lJiba+qxWq1588UXVrVtXLi4uatOmjTZs2JDn71CSvvrqKzVr1kxVqlRRz549derUqVuOBwAAAAAAAGDvjorohclqtWrChAnq0qWLWrVqJUlKSkqSs7PzTXtFe3t7KykpyTbm+gJ6Tn9O363GpKam6vLly/r111+VnZ2d65jrj5FfLDeaO3euPDw8bK969eo5+Nso21JSUmSxWBzeAzw7O1srV67UpUuXFBwcLOn3LygsFotcXFxs4ypXriwnJyft2LHjjmP861//qgULFmjfvn2qWLGiRo8ebdd/4sQJff7551q9erVtD/I//vGPOn/+vL7++mvFxMSobdu26tWrly5evCjp97/gqFu3rvbu3auYmBhNnz5dlSpVsh0zIyNDb7zxhj788ENt375dp0+ftrs7fvHixVqwYIHeeOMNHTp0SGFhYXrwwQd1/PjxXK/hp59+0uDBg9W/f3/FxsZqzJgxmj59+h3/bgAAAAAAAIDypNQU0ceOHasjR45o5cqVJR1KoZkxY4ZSUlJsr59++qmkQypxV65c0bRp0zRs2DC5u7vfcuzhw4fl5uYmFxcXPfXUU1qzZo1atGghSercubOqVq2qadOmKSMjQ5cuXdKUKVOUnZ1td/f27XrllVfUvXt3tWjRQtOnT9fOnTt15coVW39mZqb+9a9/6d5771Xr1q21Y8cO7dmzR6tWrVL79u3VtGlTvfHGG/L09NRnn30m6fcH4IaGhqp58+Zq2rSp/vjHPyooKMh2zKysLL3zzjtq37692rZtq3Hjxmnz5s22/jfeeEPTpk3TI488In9/f7322mtq06aNFi1alOs1LFu2TI0bN9aCBQvk7++vESNGaNSoUXf8uwEAAAAAAADKk1JRRB83bpzWrVunrVu3qm7durZ2Hx8fZWZmKjk52W78uXPn5OPjYxtz48Mkc97nN8bd3V1VqlSRl5eXKlSokOuY64+RXyw3cnFxsT0YM+dVYAsXSnXr5v/KbY/xBx90bO7ChQWP6zZkZWVpyJAhMsZo2bJl+Y739/dXbGysdu/eraefflrh4eE6duyYJKlmzZpatWqV/vOf/8jNzU0eHh5KTk5W27Zt5eR052ndunVr28+1a9eWJLuHzPr5+almzZq29wcPHlR6erruueceubm52V4JCQk6efKkJGnSpEkaM2aMQkNDNW/ePFt7DldXVzVu3NjuvDnnTE1N1dmzZ9WlSxe7OV26dFFcXFyu1xAXF6dOnTrZteXcyQ8AAAAAAADAMRUdHfjll1/esj8hIaHAJzfG6Nlnn9WaNWsUGRmphg0b2vW3a9dOlSpV0ubNm/XQQw9JkuLj43X69GlbMTA4OFivvPKKzp8/b9uffdOmTXJ3d7fdtRwcHKyvvvrK7tibNm2yHcPZ2Vnt2rXT5s2bNXDgQEm/by+zefNmjRs3zuFYikRqqnTmTP7jctsq5pdfHJtbDHu15xTQf/zxR23ZssWhLxScnZ3VpEkTSb///vfu3avFixfr3XfflST17t1bJ0+e1K+//qqKFSvK09NTPj4+atSo0R3He/02KxaLRZLsHlhatWpVu/Hp6emqXbu2IiMjbzpWzrY1c+bM0fDhw7V+/Xp9/fXXmj17tlauXGnbT/76c+ac1xhzx9cCAAAAAAAA4PY5XETPKS7fSk6x0VFjx47VRx99pLVr16patWq2vcU9PDxUpUoVeXh46PHHH9ekSZNUo0YNubu769lnn1VwcLA6d+4s6fdCaosWLfToo49q/vz5SkpK0gsvvKCxY8fa9st+6qmntGTJEj3//PMaPXq0tmzZok8//VTr16+3xTJp0iSFh4erffv26tixoxYtWqRLly7pscces8WUXyxFwt1dqlMn/3HX3RVt1+bI3Nu5Q74Acgrox48f19atW3XPPffc1nGsVquuXr16U7uXl5ckacuWLTp//rwezO2u/CLWtm1bJSUlqWLFimrQoEGe45o1a6ZmzZpp4sSJGjZsmJYvX57nQ1mv5+7uLl9fX0VFRal79+629qioKHXs2DHXOQEBATd9+ZXzYFYAAAAAAAAAjnG4iH79XbiFJWdLjx49eti1L1++3LZ389///nc5OTnpoYce0tWrVxUWFqa3337bNrZChQpat26dnn76aQUHB6tq1aoKDw/Xiy++aBvTsGFDrV+/XhMnTtTixYtVt25dvf/++woLC7ONGTp0qH755RfNmjVLSUlJatOmjTZs2GD3sNH8YikSkyb9/rod+fz1QGFIT0/XiRMnbO8TEhIUGxurGjVqqH79+srKytLDDz+s/fv3a926dcrOzrZ9WVKjRg05OztLknr16qVBgwbZ7vyfMWOG+vbtq/r16ystLU0fffSRIiMjtXHjRtu5li9froCAANWsWVPR0dEaP368Jk6cKH9//yK/7huFhoYqODhYAwcO1Pz589WsWTOdPXtW69ev16BBg9SyZUtNnTpVDz/8sBo2bKiff/5Ze/futf1VgyOmTp2q2bNnq3HjxmrTpo2WL1+u2NhYrVixItfxTz31lBYsWKCpU6dqzJgxiomJUURERCFdMQAAAAAAAFA+OFxELwqObFVRuXJlLV26VEuXLs1zjJ+f303btdyoR48eOnDgwC3HjBs3zlbEvd1Yypt9+/apZ8+etveT/q/gHx4eroiICJ05c8Z2N3SbNm3s5m7dutX2BUrOtiw5zp8/r5EjRyoxMVEeHh5q3bq1Nm7cqPvvv982Jj4+XjNmzNDFixfVoEED/fWvf9XEiROL6EpvzWKx6KuvvtJf//pXPfbYY/rll1/k4+Ojbt26ydvbWxUqVNCFCxc0cuRInTt3Tl5eXho8eLD+9re/OXyO5557TikpKZo8ebLOnz+vFi1a6Msvv1TTpk1zHV+/fn19/vnnmjhxot566y117NhRr776qkaPHl1Ylw0AAAAAAACUeRbDpsvFJjU1VR4eHkpJSblpT/CMjAzFxcUpICBArq6uJRQhyrucPDx16pSOHz+u+++/X+3atSvpsAAAAAAAAIBCd6t67fWcijEmAAAAAAAAAADuKhTRAQAAAAAAAADIQ4GK6NnZ2dq+fbuSk5OLKBwAAAAAAAAAAEqPAhXRK1SooN69e+u3334rqngAAAAAAAAAACg1CrydS6tWrfTDDz8URSwAAAAAAAAAAJQqBS6iv/zyy5oyZYrWrVunxMREpaam2r1wZ6xWa0mHgHKM/AMAAAAAAADsVSzohAceeECS9OCDD8pisdjajTGyWCzKzs4uvOjKEWdnZ0lSenq63NzcSjgalFfp6emSpKysrBKOBAAAAAAAACgdClxE37p1a1HEUe5VrFhRXl5eOnPmjCTJzc1NTk4F/kMB4LZYrValp6frzJkzSk5OltVqlTGmpMMCAAAAAAAASlyBi+jdu3cvijggqX79+srKyrIV0oHilpycrHPnztkK6JUqVSrhiAAAAAAAAICSVeAiuiR99913evfdd/XDDz9o1apVqlOnjj788EM1bNhQ9913X2HHWG5YLBY1atRIq1evVmJiomrWrEkRE5Kk9957T5Lk5OSkMWPGFMk5srKybHegJyUlyd3dXTVr1iyScwEAAAAAAAB3iwIX0T///HM9+uijGjFihPbv36+rV69KklJSUvTqq6/qq6++KvQgyxMnJyf16dNHX331lRISEthSA5KkCxcuSPo9P44fP17k53N3d1dYWJhq165d5OcCAAAAAAAASjOLKWCV9t5779XEiRM1cuRIVatWTQcPHlSjRo104MAB9e3bV0lJSUUV610vNTVVHh4eSklJkbu7+y3HZmRk6Pz587p8+TKFdNj+wsPZ2Vlbtmwp0nNVqlRJ1atXl5eXV5GeBwAAAAAAAChJjtZrC3wnenx8vLp163ZTu4eHh5KTkwt6OOTB1dVVDRo0KOkwUEr89ttvkqQqVaqoRYsWJRwNAAAAAAAAUH44FXSCj4+PTpw4cVP7jh071KhRo0IJCkDuLBZLSYcAAAAAAAAAlCsFLqI/8cQTGj9+vHbv3i2LxaKzZ89qxYoVmjJlip5++umiiBHA/6GIDgAAAAAAABSvAm/nMn36dFmtVvXq1UsZGRnq1q2bXFxcNGXKFD377LNFESOA/0MRHQAAAAAAACheBX6waI7MzEydOHFC6enpatGihdzc3Ao7tjKnIA8WBa6XUzyvVq2aUlNTSzgaAAAAAAAA4O7naL22wNu5jB49WmlpaXJ2dlaLFi3UsWNHubm56dKlSxo9evQdBQ3g1pycCvxPFgAAAAAAAMAdKHBF7oMPPtDly5dvar98+bL+9a9/FUpQAHLHdi4AAAAAAABA8XJ4T/TU1FQZY2SMUVpamipXrmzry87O1ldffaVatWoVSZBAeXb9jksU0QEAAAAAAIDi5XAR3dPTUxaLRRaLRc2aNbup32Kx6G9/+1uhBgeAIjoAAAAAAABQkhwuom/dulXGGIWEhOjzzz9XjRo1bH3Ozs7y8/OTr69vkQQJlGdWq7WkQwAAAAAAAADKLYeL6N27d5ckJSQkqF69ejzgECgm2dnZtp+5Ex0AAAAAAAAoXg4X0XP4+flJkjIyMnT69GllZmba9bdu3bpwIgMgyf5OdIroAAAAAAAAQPEqcBH9l19+0WOPPaavv/461/7r75oFcOeuL6LzFyAAAAAAAABA8SpwRW7ChAlKTk7W7t27VaVKFW3YsEEffPCBmjZtqi+//LIoYgTKNe5EBwAAAAAAAEpOge9E37Jli9auXav27dvLyclJfn5+uv/+++Xu7q65c+eqX79+RREnUG5RRAcAAAAAAABKToHvRL906ZJq1aolSapevbp++eUXSVJgYKD2799fuNEBoIgOAAAAAAAAlKACF9H9/f0VHx8vSQoKCtK7776rM2fO6J133lHt2rULPUCgvKOIDgAAAAAAAJScAm/nMn78eCUmJkqSZs+erT59+mjFihVydnZWREREYccHlHvXP6yXIjoAAAAAAABQvBwuoickJKhhw4b605/+ZGtr166dfvzxR33//feqX7++vLy8iiRIoDy7/k50AAAAAAAAAMXL4SJ648aN5efnp549eyokJEQ9evRQ3bp15erqqrZt2xZljEC5dn0R3RhTgpEAAAAAAAAA5Y/DRfQtW7YoMjJSkZGR+vjjj5WZmalGjRopJCREPXv2VM+ePeXt7V2UsQLlEkV0AAAAAAAAoOQ4XETv0aOHevToIUm6cuWKdu7caSuqf/DBB8rKylLz5s119OjRoooVKJcoogMAAAAAAAAlp8APFpWkypUrKyQkRPfdd5969uypr7/+Wu+++66+//77wo4PKPcoogMAAAAAAAAlp0BF9MzMTO3atUtbt25VZGSkdu/erXr16qlbt25asmSJunfvXlRxAuVWdna27WeK6AAAAAAAAEDxcriIHhISot27d6thw4bq3r27/vznP+ujjz5S7dq1izI+oNy7/k70638GAAAAAAAAUPQcLqJ/9913ql27tkJCQtSjRw91795d99xzT1HGBkBs5wIAAAAAAACUJCdHByYnJ+u9996Tq6urXnvtNfn6+iowMFDjxo3TZ599pl9++aUo4wTKLYroAAAAAAAAQMmxmNusyqWlpWnHjh22/dEPHjyopk2b6siRI4UdY5mRmpoqDw8PpaSkyN3dvaTDwV3i6NGjatWqlSSpevXqunjxYglHBAAAAAAAANz9HK3XOnwn+o2qVq2qGjVqqEaNGqpevboqVqyouLi42z0cgDxwJzoAAAAAAABQchwuolutVu3Zs0fz589X37595enpqT/84Q96++235ePjo6VLl+qHH34oylhLhaVLl6pBgwaqXLmyOnXqpD179pR0SCjjKKIDAAAAAAAAJcfhB4t6enrq0qVL8vHxUc+ePfX3v/9dPXr0UOPGjYsyvlLlk08+0aRJk/TOO++oU6dOWrRokcLCwhQfH69atWqVdHgoo7Kzs20/U0QHAAAAAAAAipfDe6K/++676tmzp5o1a1bUMZVanTp1UocOHbRkyRJJv98hXK9ePT377LOaPn16vvPZEx23Y9++ferQoYMkqVq1akpNTS3hiAAAAAAAAIC7n6P1WofvRP/zn/9cKIHdrTIzMxUTE6MZM2bY2pycnBQaGqro6Ohc51y9elVXr161vbcVP5s3l5zy2UmnbVvpyy/t2x58UNq/P/9gJ036/ZUjLU0KCMh/niStXSu1a/f/369bJz31VP7z3Nyk77+3b5s6Vfr4Y2VnZyvlFoXfg3Xr6oPgYLu22evWyePy5XxP+2m7dtrVqJHtvU9Kip7/5pv845X0t379lOLqanvf/b//1YCDB/Odl+TurvlhYXZtT27frubnzuU7d1vTpvoiKMjujvJFn39+yzkNsrP1k6Q/SYq6fFnh4eGSpOZJSfrzjh35nlOSJj78sN37gQcPqvvx4/nO+97bW+927WrXNu2bb+TjQCF/bevWirzuSzePjAzN+eorh+Kd37u3kjw8bO87//CDhsTE5DsvpUoV/e1//seuLTw6WkE//5zv3N0NG+qT9u3t2uauWSOXa9fynftB5846WK+e7b3fhQsav2VLvvMk6S8DB+pKpUq292FHjyrs2LF85/1Yo4YW9+pl1zZ+82b5OfDg2Y0tWmhjy5a295WzsvTqF184FO/ikBD9eM89tvdBP/2k8F278p13tWJFzRg0yK5t6L596pSQkO/csrBG/Hn7dvk7uEasbdPGrm3hqlUOxfte16763sfH9r55UpKe/O47h+ZO+uMf7d4PiI11aI2I9/bWu9262bU9v3GjY2tEUJC23bBGzF6/3qF4WSPK7xphtVplrFZZnJzkZLFIFosO1qmjiBvWiDnr1zu0RnzStu1Na8S0TZvynSdJcx54wG6N6PHf/2rAoUP5zktyd9drvXvbtf35u+8K9Dnien//7DOH4n33vvtuWiPuys8RxshqjIwxslgsskiSxSKLxWIb+9r999+0Rgx14DN0SpUqmtOvn13bqOhoBZ05k+/cXQ0a3LxGfPGFKjuwRkR07qyDdeva3je4cEHjt27Nd54kzRgwwH6NOHZMfRxcIxaFhNi1TdiyxaE1YkOLFtrYooXtfeWsLM1du9aheBf37KlT168RP/+sUQ6sEVcqVtSMgQPt2obu26fOp07lO5c1opytEQ5gjWCNuB5rxO9rxLWsLGVduyYXFxc55VKv4v9rlI//rzHkzBk94MjzLstQzVKSdN02yrdk4JAzZ84YSWbnzp127VOnTjUdO3bMdc7s2bONpJteKZIx+b06d775gJ075z9PMmb2bPt5KSmOzZOMueH6zKefOjavWrWb4338cYfmfprL7+gnB+N9/IZ5LRy9TsnUuWHuRAfnHckl3g0Ozl2Qy1xH4+19w7zeBZh74zkXODhvQy5zjzg4d+IN8+oUIN4WN8x93MF5P+US76cOzv1HLnMd+rcqmYdvmNe5ANda7Ya5sx2ctzOXeHc6OHf2DfOqFSDezjfMfdjBeSm5xPsPB+eyRjj2Yo3I/8Ua4djc2TfMY43I/cUakf+LNcKxuawR+b9YIxybyxrh2Is1Iv8Xa4Rjc1kjHHuxRuT/Ki1rxNu1ajk2t4zVLHPWkJSUlJvHXcfhO9FRcDNmzNCk675dSU1NVb169aTatfO/E71mzdzb6tTJ/8Q3/umBxeLYPElydrZ/X6WKY3Pd3G5uq15dqlNH2VarMjIy8pzarHlzzX/oIbu2iosXKy09Pd/TDnzgAfnfe+//P+X580r7xz/yj1fSX559Vpeu+1213rVLaZs35zvPzctL82/4y4x6H32kNAfuqO3UsaNev+Fb47SXX3Yo3qfCwxV63R0I9U6eVNrKlQ7Nnf/Xv9rHsWmT0hx4KG69hg01f/hwuza3d99V2q+/5js3rFcv1e7c2fa+amqq0t56y6F4Jz7xhH677jkDAQcOKM2BO0squrlp/vjxdm3NPv9caTd+45iL1kFBmn/Dt8ZZr7+utMzMfOc+MmiQOl53t4X3zz8r7YMP8p0nSS9OnqysypVt79tv3640B77Rr+nrq/mPPWbftny50s6ezXdu965dNf+6b/QrXbmitAULHIr36fBwDb4uDxsdO6a0NWvynZfl7Kz5U6fatbVet05pDtzZXd7WiPn332/XlvbKKw7F+9gjjyj0uueUsEbcjDXi7l8jLBaLnJycZKxWWY2RxBpRHtcIy3V3npv/+78/5rq5rBHld43IDWtE+Vsj8sMawRpxPdaI39cIi8Xy+/+m5oE1onysEe3275cc+QuDMlSzlPT7neiJifkexuE90cu7zMxMubq66rPPPtPA6/5MKDw8XMnJyVrrwJ8nsSc6AAAAAAAAAJQOjtZr87kdGjmcnZ3Vrl07bb7um0Gr1arNmzcr+Ib9swAAAAAAAAAAZQPbuRTApEmTFB4ervbt26tjx45atGiRLl26pMdu+DOnvOTc9J/qwEMQAAAAAAAAAABFJ6dOm99mLRTRC2Do0KH65ZdfNGvWLCUlJalNmzbasGGDvL29HZqflpYmSb/viw4AAAAAAAAAKHFpaWny8PDIs5890YuR1WrV2bNnVa1aNdvDkMqynAep/vTTT+wBjzKBnEZZQj6jrCGnUdaQ0yhryGmUNeQ0yprymtPGGKWlpcnX11dOTnnvfM6d6MXIyclJda970nR54e7uXq7+8aHsI6dRlpDPKGvIaZQ15DTKGnIaZQ05jbKmPOb0re5Az8GDRQEAAAAAAAAAyANFdAAAAAAAAAAA8kARHUXGxcVFs2fPlouLS0mHAhQKchplCfmMsoacRllDTqOsIadR1pDTKGvI6VvjwaIAAAAAAAAAAOSBO9EBAAAAAAAAAMgDRXQAAAAAAAAAAPJAER0AAAAAAAAAgDxQREeRWLp0qRo0aKDKlSurU6dO2rNnT0mHBNxkzpw5slgsdq/mzZvb+q9cuaKxY8fqnnvukZubmx566CGdO3fO7hinT59Wv3795Orqqlq1amnq1Km6du1acV8Kyqnt27erf//+8vX1lcVi0RdffGHXb4zRrFmzVLt2bVWpUkWhoaE6fvy43ZiLFy9qxIgRcnd3l6enpx5//HGlp6fbjTl06JC6du2qypUrq169epo/f35RXxrKqfxyetSoUTet23369LEbQ06jNJk7d646dOigatWqqVatWho4cKDi4+PtxhTW543IyEi1bdtWLi4uatKkiSIiIor68lAOOZLTPXr0uGmtfuqpp+zGkNMoLZYtW6bWrVvL3d1d7u7uCg4O1tdff23rZ43G3SS/fGZ9vjMU0VHoPvnkE02aNEmzZ8/W/v37FRQUpLCwMJ0/f76kQwNu0rJlSyUmJtpeO3bssPVNnDhR//nPf7Rq1Spt27ZNZ8+e1eDBg2392dnZ6tevnzIzM7Vz50598MEHioiI0KxZs0riUlAOXbp0SUFBQVq6dGmu/fPnz9ebb76pd955R7t371bVqlUVFhamK1eu2MaMGDFCR48e1aZNm7Ru3Tpt375dTz75pK0/NTVVvXv3lp+fn2JiYvT6669rzpw5eu+994r8+lD+5JfTktSnTx+7dfvjjz+26yenUZps27ZNY8eO1a5du7Rp0yZlZWWpd+/eunTpkm1MYXzeSEhIUL9+/dSzZ0/FxsZqwoQJGjNmjDZu3Fis14uyz5GclqQnnnjCbq2+/stKchqlSd26dTVv3jzFxMRo3759CgkJ0YABA3T06FFJrNG4u+SXzxLr8x0xQCHr2LGjGTt2rO19dna28fX1NXPnzi3BqICbzZ492wQFBeXal5ycbCpVqmRWrVpla4uLizOSTHR0tDHGmK+++so4OTmZpKQk25hly5YZd3d3c/Xq1SKNHbiRJLNmzRrbe6vVanx8fMzrr79ua0tOTjYuLi7m448/NsYYc+zYMSPJ7N271zbm66+/NhaLxZw5c8YYY8zbb79tqlevbpfT06ZNM/7+/kV8RSjvbsxpY4wJDw83AwYMyHMOOY3S7vz580aS2bZtmzGm8D5vPP/886Zly5Z25xo6dKgJCwsr6ktCOXdjThtjTPfu3c348ePznENOo7SrXr26ef/991mjUSbk5LMxrM93ijvRUagyMzMVExOj0NBQW5uTk5NCQ0MVHR1dgpEBuTt+/Lh8fX3VqFEjjRgxQqdPn5YkxcTEKCsryy6Xmzdvrvr169tyOTo6WoGBgfL29raNCQsLU2pqqt03vUBJSEhIUFJSkl0Oe3h4qFOnTnY57Onpqfbt29vGhIaGysnJSbt377aN6datm5ydnW1jwsLCFB8fr99++62Yrgb4/yIjI1WrVi35+/vr6aef1oULF2x95DRKu5SUFElSjRo1JBXe543o6Gi7Y+SM4fM3itqNOZ1jxYoV8vLyUqtWrTRjxgxlZGTY+shplFbZ2dlauXKlLl26pODgYNZo3NVuzOccrM+3r2JJB4Cy5ddff1V2drbdPzhJ8vb21vfff19CUQG569SpkyIiIuTv76/ExET97W9/U9euXXXkyBElJSXJ2dlZnp6ednO8vb2VlJQkSUpKSso113P6gJKUk4O55ej1OVyrVi27/ooVK6pGjRp2Yxo2bHjTMXL6qlevXiTxA7np06ePBg8erIYNG+rkyZP6y1/+or59+yo6OloVKlQgp1GqWa1WTZgwQV26dFGrVq0kqdA+b+Q1JjU1VZcvX1aVKlWK4pJQzuWW05I0fPhw+fn5ydfXV4cOHdK0adMUHx+v1atXSyKnUfocPnxYwcHBunLlitzc3LRmzRq1aNFCsbGxrNG46+SVzxLr852iiA6g3Orbt6/t59atW6tTp07y8/PTp59+WqYXfgC4Wz3yyCO2nwMDA9W6dWs1btxYkZGR6tWrVwlGBuRv7NixOnLkiN3zV4C7WV45ff1zKAIDA1W7dm316tVLJ0+eVOPGjYs7TCBf/v7+io2NVUpKij777DOFh4dr27ZtJR0WcFvyyucWLVqwPt8htnNBofLy8lKFChVuelr1uXPn5OPjU0JRAY7x9PRUs2bNdOLECfn4+CgzM1PJycl2Y67PZR8fn1xzPacPKEk5OXir9djHx+emhz5fu3ZNFy9eJM9xV2jUqJG8vLx04sQJSeQ0Sq9x48Zp3bp12rp1q+rWrWtrL6zPG3mNcXd358YAFIm8cjo3nTp1kiS7tZqcRmni7OysJk2aqF27dpo7d66CgoK0ePFi1mjclfLK59ywPhcMRXQUKmdnZ7Vr106bN2+2tVmtVm3evNluDyagNEpPT9fJkydVu3ZttWvXTpUqVbLL5fj4eJ0+fdqWy8HBwTp8+LBdwWbTpk1yd3e3/bkUUFIaNmwoHx8fuxxOTU3V7t277XI4OTlZMTExtjFbtmyR1Wq1faAKDg7W9u3blZWVZRuzadMm+fv7s+0FStzPP/+sCxcuqHbt2pLIaZQ+xhiNGzdOa9as0ZYtW27aSqiwPm8EBwfbHSNnDJ+/Udjyy+ncxMbGSpLdWk1OozSzWq26evUqazTKhJx8zg3rcwGV9JNNUfasXLnSuLi4mIiICHPs2DHz5JNPGk9PT7un+wKlweTJk01kZKRJSEgwUVFRJjQ01Hh5eZnz588bY4x56qmnTP369c2WLVvMvn37THBwsAkODrbNv3btmmnVqpXp3bu3iY2NNRs2bDA1a9Y0M2bMKKlLQjmTlpZmDhw4YA4cOGAkmYULF5oDBw6YH3/80RhjzLx584ynp6dZu3atOXTokBkwYIBp2LChuXz5su0Yffr0Mffee6/ZvXu32bFjh2natKkZNmyYrT85Odl4e3ubRx991Bw5csSsXLnSuLq6mnfffbfYrxdl361yOi0tzUyZMsVER0ebhIQE8+2335q2bduapk2bmitXrtiOQU6jNHn66aeNh4eHiYyMNImJibZXRkaGbUxhfN744YcfjKurq5k6daqJi4szS5cuNRUqVDAbNmwo1utF2ZdfTp84ccK8+OKLZt++fSYhIcGsXbvWNGrUyHTr1s12DHIapcn06dPNtm3bTEJCgjl06JCZPn26sVgs5ptvvjHGsEbj7nKrfGZ9vnMU0VEk3nrrLVO/fn3j7OxsOnbsaHbt2lXSIQE3GTp0qKldu7ZxdnY2derUMUOHDjUnTpyw9V++fNk888wzpnr16sbV1dUMGjTIJCYm2h3j1KlTpm/fvqZKlSrGy8vLTJ482WRlZRX3paCc2rp1q5F00ys8PNwYY4zVajUzZ8403t7exsXFxfTq1cvEx8fbHePChQtm2LBhxs3Nzbi7u5vHHnvMpKWl2Y05ePCgue+++4yLi4upU6eOmTdvXnFdIsqZW+V0RkaG6d27t6lZs6apVKmS8fPzM0888cRNX9KT0yhNcstnSWb58uW2MYX1eWPr1q2mTZs2xtnZ2TRq1MjuHEBhyS+nT58+bbp162Zq1KhhXFxcTJMmTczUqVNNSkqK3XHIaZQWo0ePNn5+fsbZ2dnUrFnT9OrVy1ZAN4Y1GneXW+Uz6/OdsxhjTPHd9w4AAAAAAAAAwN2DPdEBAAAAAAAAAMgDRXQAAAAAAAAAAPJAER0AAAAAAAAAgDxQRAcAAAAAAAAAIA8U0QEAAAAAAAAAyANFdAAAAAAAAAAA8kARHQAAAAAAAACAPFBEBwAAAAAAAAAgDxTRAQAAABSZiIgIeXp6lnQYAAAAwG2jiA4AAACUYaNGjdLAgQNvao+MjJTFYlFycnKxxwQAAADcTSiiAwAAACgSWVlZJR0CAAAAcMcoogMAAADQ559/rpYtW8rFxUUNGjTQggUL7PotFou++OILuzZPT09FRERIkk6dOiWLxaJPPvlE3bt3V+XKlbVixQq78adOnZKTk5P27dtn175o0SL5+fnJarUW+nUBAAAAd4oiOgAAAFDOxcTEaMiQIXrkkUd0+PBhzZkzRzNnzrQVyAti+vTpGj9+vOLi4hQWFmbX16BBA4WGhmr58uV27cuXL9eoUaPk5MT/PQEAAEDpU7GkAwAAAABQtNatWyc3Nze7tuzsbNvPCxcuVK9evTRz5kxJUrNmzXTs2DG9/vrrGjVqVIHONWHCBA0ePDjP/jFjxuipp57SwoUL5eLiov379+vw4cNau3Ztgc4DAAAAFBdu9QAAAADKuJ49eyo2Ntbu9f7779v64+Li1KVLF7s5Xbp00fHjx+2K7Y5o3779LfsHDhyoChUqaM2aNZKkiIgI9ezZUw0aNCjQeQAAAIDiwp3oAAAAQBlXtWpVNWnSxK7t559/LtAxLBaLjDF2bbk9OLRq1aq3PI6zs7NGjhyp5cuXa/Dgwfroo4+0ePHiAsUCAAAAFCeK6AAAAEA5FxAQoKioKLu2qKgoNWvWTBUqVJAk1axZU4mJibb+48ePKyMj47bON2bMGLVq1Upvv/22rl27dsvtXwAAAICSRhEdAAAAKOcmT56sDh066KWXXtLQoUMVHR2tJUuW6O2337aNCQkJ0ZIlSxQcHKzs7GxNmzZNlSpVuq3zBQQEqHPnzpo2bZpGjx6tKlWqFNalAAAAAIWOPdEBAACAcq5t27b69NNPtXLlSrVq1UqzZs3Siy++aPdQ0QULFqhevXrq2rWrhg8frilTpsjV1fW2z/n4448rMzNTo0ePLoQrAAAAAIqOxdy4sSEAAAAAFLGXXnpJq1at0qFDh0o6FAAAAOCWuBMdAAAAQLFJT0/XkSNHtGTJEj377LMlHQ4AAACQL4roAAAAAIrNuHHj1K5dO/Xo0YOtXAAAAHBXYDsXAAAAAAAAAADywJ3oAAAAAAAAAADkgSI6AAAAAAAAAAB5oIgOAAAAAAAAAEAeKKIDAAAAAAAAAJAHiugAAAAAAAAAAOSBIjoAAAAAAAAAAHmgiA4AAAAAAAAAQB4oogMAAAAAAAAAkAeK6AAAAAAAAAAA5OH/ActJpTea8+JyAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "detector.plot(ptype=\"line-anomaly-score-df\", title=f\"Peaks Over Threshold\", xlabel=\"Hourly\", ylabel=\"Water Level\", alpha=1.0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " row | \n",
+ " col_1 | \n",
+ " col_2 | \n",
+ " col_3 | \n",
+ " col_4 | \n",
+ " col_1_anomaly_score | \n",
+ " col_2_anomaly_score | \n",
+ " col_3_anomaly_score | \n",
+ " col_4_anomaly_score | \n",
+ " total_anomaly_score | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2500 | \n",
+ " 9000 | \n",
+ " 50.485701 | \n",
+ " 42.136751 | \n",
+ " 36.201514 | \n",
+ " 52.720832 | \n",
+ " 0.000000 | \n",
+ " 1.798759 | \n",
+ " 29.48481 | \n",
+ " 0.0 | \n",
+ " 31.283568 | \n",
+ "
\n",
+ " \n",
+ " 2501 | \n",
+ " 9001 | \n",
+ " 44.126577 | \n",
+ " 49.009782 | \n",
+ " 56.352008 | \n",
+ " 52.626932 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 2502 | \n",
+ " 9002 | \n",
+ " 52.395921 | \n",
+ " 53.782459 | \n",
+ " 45.997485 | \n",
+ " 55.071438 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 2503 | \n",
+ " 9003 | \n",
+ " 54.504698 | \n",
+ " 42.736339 | \n",
+ " 48.462349 | \n",
+ " 56.003870 | \n",
+ " 0.000000 | \n",
+ " 1.430956 | \n",
+ " 0.00000 | \n",
+ " 0.0 | \n",
+ " 1.430956 | \n",
+ "
\n",
+ " \n",
+ " 2504 | \n",
+ " 9004 | \n",
+ " 57.197677 | \n",
+ " 52.374513 | \n",
+ " 55.564181 | \n",
+ " 51.042661 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 3495 | \n",
+ " 9995 | \n",
+ " 39.334074 | \n",
+ " 44.498379 | \n",
+ " 43.662099 | \n",
+ " 48.442551 | \n",
+ " 6.228472 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 0.0 | \n",
+ " 6.228472 | \n",
+ "
\n",
+ " \n",
+ " 3496 | \n",
+ " 9996 | \n",
+ " 47.550082 | \n",
+ " 47.416388 | \n",
+ " 49.467041 | \n",
+ " 56.740142 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 3497 | \n",
+ " 9997 | \n",
+ " 40.726516 | \n",
+ " 52.267419 | \n",
+ " 48.696089 | \n",
+ " 52.322333 | \n",
+ " 3.158853 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 0.0 | \n",
+ " 3.158853 | \n",
+ "
\n",
+ " \n",
+ " 3498 | \n",
+ " 9998 | \n",
+ " 51.396076 | \n",
+ " 51.020556 | \n",
+ " 50.291857 | \n",
+ " 47.025342 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 3499 | \n",
+ " 9999 | \n",
+ " 49.831436 | \n",
+ " 50.845085 | \n",
+ " 53.723037 | \n",
+ " 51.065511 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1000 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " row col_1 col_2 col_3 col_4 col_1_anomaly_score \\\n",
+ "2500 9000 50.485701 42.136751 36.201514 52.720832 0.000000 \n",
+ "2501 9001 44.126577 49.009782 56.352008 52.626932 0.000000 \n",
+ "2502 9002 52.395921 53.782459 45.997485 55.071438 0.000000 \n",
+ "2503 9003 54.504698 42.736339 48.462349 56.003870 0.000000 \n",
+ "2504 9004 57.197677 52.374513 55.564181 51.042661 0.000000 \n",
+ "... ... ... ... ... ... ... \n",
+ "3495 9995 39.334074 44.498379 43.662099 48.442551 6.228472 \n",
+ "3496 9996 47.550082 47.416388 49.467041 56.740142 0.000000 \n",
+ "3497 9997 40.726516 52.267419 48.696089 52.322333 3.158853 \n",
+ "3498 9998 51.396076 51.020556 50.291857 47.025342 0.000000 \n",
+ "3499 9999 49.831436 50.845085 53.723037 51.065511 0.000000 \n",
+ "\n",
+ " col_2_anomaly_score col_3_anomaly_score col_4_anomaly_score \\\n",
+ "2500 1.798759 29.48481 0.0 \n",
+ "2501 0.000000 0.00000 0.0 \n",
+ "2502 0.000000 0.00000 0.0 \n",
+ "2503 1.430956 0.00000 0.0 \n",
+ "2504 0.000000 0.00000 0.0 \n",
+ "... ... ... ... \n",
+ "3495 0.000000 0.00000 0.0 \n",
+ "3496 0.000000 0.00000 0.0 \n",
+ "3497 0.000000 0.00000 0.0 \n",
+ "3498 0.000000 0.00000 0.0 \n",
+ "3499 0.000000 0.00000 0.0 \n",
+ "\n",
+ " total_anomaly_score \n",
+ "2500 31.283568 \n",
+ "2501 0.000000 \n",
+ "2502 0.000000 \n",
+ "2503 1.430956 \n",
+ "2504 0.000000 \n",
+ "... ... \n",
+ "3495 6.228472 \n",
+ "3496 0.000000 \n",
+ "3497 3.158853 \n",
+ "3498 0.000000 \n",
+ "3499 0.000000 \n",
+ "\n",
+ "[1000 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "detector.detected_anomalies"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " row | \n",
+ " col_1 | \n",
+ " col_2 | \n",
+ " col_3 | \n",
+ " col_4 | \n",
+ " col_1_anomaly_score | \n",
+ " col_2_anomaly_score | \n",
+ " col_3_anomaly_score | \n",
+ " col_4_anomaly_score | \n",
+ " total_anomaly_score | \n",
+ " anomaly_threshold | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2021-03-19 | \n",
+ " 9000 | \n",
+ " 50.485701 | \n",
+ " 42.136751 | \n",
+ " 36.201514 | \n",
+ " 52.720832 | \n",
+ " 0.000000 | \n",
+ " 1.798759 | \n",
+ " 29.484810 | \n",
+ " 0.000000 | \n",
+ " 31.283568 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-03-27 | \n",
+ " 9008 | \n",
+ " 36.189019 | \n",
+ " 46.304886 | \n",
+ " 44.091847 | \n",
+ " 53.142777 | \n",
+ " 41.618935 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 41.618935 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-04-11 | \n",
+ " 9023 | \n",
+ " 35.947531 | \n",
+ " 52.311779 | \n",
+ " 44.204940 | \n",
+ " 49.288283 | \n",
+ " 48.792581 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 48.792581 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-05-26 | \n",
+ " 9068 | \n",
+ " 53.109913 | \n",
+ " 49.565184 | \n",
+ " 55.632568 | \n",
+ " 35.937119 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 62.615963 | \n",
+ " 62.615963 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-06-03 | \n",
+ " 9076 | \n",
+ " 37.601045 | \n",
+ " 52.867301 | \n",
+ " 51.761135 | \n",
+ " 54.877675 | \n",
+ " 16.360948 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 16.360948 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-06-12 | \n",
+ " 9085 | \n",
+ " 53.009766 | \n",
+ " 44.683658 | \n",
+ " 55.681195 | \n",
+ " 36.941787 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 30.153938 | \n",
+ " 30.153938 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-06-14 | \n",
+ " 9087 | \n",
+ " 44.472114 | \n",
+ " 42.890532 | \n",
+ " 37.299104 | \n",
+ " 40.765994 | \n",
+ " 0.000000 | \n",
+ " 1.368861 | \n",
+ " 15.139470 | \n",
+ " 3.474993 | \n",
+ " 19.983324 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-07-03 | \n",
+ " 9106 | \n",
+ " 44.301882 | \n",
+ " 37.032485 | \n",
+ " 53.737561 | \n",
+ " 44.200728 | \n",
+ " 0.000000 | \n",
+ " 16.517972 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 16.517972 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-07-20 | \n",
+ " 9123 | \n",
+ " 48.443203 | \n",
+ " 46.880545 | \n",
+ " 36.940074 | \n",
+ " 42.929360 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 18.544658 | \n",
+ " 1.330027 | \n",
+ " 19.874685 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-08-02 | \n",
+ " 9136 | \n",
+ " 38.076730 | \n",
+ " 53.909886 | \n",
+ " 42.260769 | \n",
+ " 47.833041 | \n",
+ " 12.273369 | \n",
+ " 0.000000 | \n",
+ " 1.538614 | \n",
+ " 0.000000 | \n",
+ " 13.811983 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-08-15 | \n",
+ " 9149 | \n",
+ " 48.561501 | \n",
+ " 48.846413 | \n",
+ " 52.492359 | \n",
+ " 37.784619 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 17.533815 | \n",
+ " 17.533815 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2021-10-21 | \n",
+ " 9216 | \n",
+ " 48.523592 | \n",
+ " 37.116575 | \n",
+ " 47.765270 | \n",
+ " 41.507844 | \n",
+ " 0.000000 | \n",
+ " 15.857365 | \n",
+ " 0.000000 | \n",
+ " 2.460562 | \n",
+ " 18.317927 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-02-03 | \n",
+ " 9321 | \n",
+ " 50.279388 | \n",
+ " 52.839734 | \n",
+ " 50.660802 | \n",
+ " 37.807074 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 17.398910 | \n",
+ " 17.398910 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-02-19 | \n",
+ " 9337 | \n",
+ " 37.471688 | \n",
+ " 51.581530 | \n",
+ " 53.938483 | \n",
+ " 51.325107 | \n",
+ " 17.932518 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 17.932518 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-04-04 | \n",
+ " 9381 | \n",
+ " 46.361517 | \n",
+ " 42.484503 | \n",
+ " 54.260257 | \n",
+ " 35.787575 | \n",
+ " 0.000000 | \n",
+ " 1.587013 | \n",
+ " 0.000000 | \n",
+ " 69.663041 | \n",
+ " 71.250053 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-06-23 | \n",
+ " 9461 | \n",
+ " 37.261450 | \n",
+ " 54.934772 | \n",
+ " 50.346440 | \n",
+ " 33.902046 | \n",
+ " 20.487129 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 345.057428 | \n",
+ " 365.544558 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-08-13 | \n",
+ " 9512 | \n",
+ " 54.883235 | \n",
+ " 52.648489 | \n",
+ " 37.520121 | \n",
+ " 45.989600 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 13.644967 | \n",
+ " 0.000000 | \n",
+ " 13.644967 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-10-08 | \n",
+ " 9568 | \n",
+ " 59.973610 | \n",
+ " 52.889244 | \n",
+ " 35.642092 | \n",
+ " 46.658635 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 44.031243 | \n",
+ " 0.000000 | \n",
+ " 44.031243 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-10-12 | \n",
+ " 9572 | \n",
+ " 49.075990 | \n",
+ " 48.633845 | \n",
+ " 37.382743 | \n",
+ " 50.167602 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 14.570945 | \n",
+ " 0.000000 | \n",
+ " 14.570945 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-11-11 | \n",
+ " 9602 | \n",
+ " 36.610580 | \n",
+ " 48.923112 | \n",
+ " 49.177502 | \n",
+ " 45.770545 | \n",
+ " 31.366936 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 31.366936 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-11-18 | \n",
+ " 9609 | \n",
+ " 58.306952 | \n",
+ " 34.714112 | \n",
+ " 54.017259 | \n",
+ " 45.164473 | \n",
+ " 0.000000 | \n",
+ " 57.020183 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 57.020183 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-11-20 | \n",
+ " 9611 | \n",
+ " 39.738216 | \n",
+ " 53.529496 | \n",
+ " 44.638605 | \n",
+ " 39.294196 | \n",
+ " 5.096278 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 7.333607 | \n",
+ " 12.429885 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-12-03 | \n",
+ " 9624 | \n",
+ " 55.388639 | \n",
+ " 35.404579 | \n",
+ " 56.524291 | \n",
+ " 46.295707 | \n",
+ " 0.000000 | \n",
+ " 38.207671 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 38.207671 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2022-12-21 | \n",
+ " 9642 | \n",
+ " 53.736672 | \n",
+ " 49.292342 | \n",
+ " 31.930707 | \n",
+ " 48.120198 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 1459.959959 | \n",
+ " 0.000000 | \n",
+ " 1459.959959 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2023-02-07 | \n",
+ " 9690 | \n",
+ " 59.312384 | \n",
+ " 46.741510 | \n",
+ " 37.296114 | \n",
+ " 43.118642 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 15.016411 | \n",
+ " 1.232045 | \n",
+ " 16.248456 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2023-02-23 | \n",
+ " 9706 | \n",
+ " 61.907574 | \n",
+ " 52.136719 | \n",
+ " 48.380048 | \n",
+ " 38.186830 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 13.829500 | \n",
+ " 13.829500 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2023-06-20 | \n",
+ " 9823 | \n",
+ " 41.664063 | \n",
+ " 48.770618 | \n",
+ " 42.991565 | \n",
+ " 35.218846 | \n",
+ " 2.105773 | \n",
+ " 0.000000 | \n",
+ " 1.187704 | \n",
+ " 105.515732 | \n",
+ " 108.809210 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2023-07-27 | \n",
+ " 9860 | \n",
+ " 48.672749 | \n",
+ " 36.589189 | \n",
+ " 49.980351 | \n",
+ " 51.580053 | \n",
+ " 0.000000 | \n",
+ " 20.927689 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 20.927689 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2023-08-03 | \n",
+ " 9867 | \n",
+ " 49.862179 | \n",
+ " 52.668383 | \n",
+ " 55.123506 | \n",
+ " 34.197824 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 243.711071 | \n",
+ " 243.711071 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2023-08-31 | \n",
+ " 9895 | \n",
+ " 35.072257 | \n",
+ " 48.448018 | \n",
+ " 45.882976 | \n",
+ " 53.763282 | \n",
+ " 101.422733 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 101.422733 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2023-10-03 | \n",
+ " 9928 | \n",
+ " 36.696925 | \n",
+ " 52.874642 | \n",
+ " 40.557726 | \n",
+ " 57.116570 | \n",
+ " 29.471977 | \n",
+ " 0.000000 | \n",
+ " 3.053701 | \n",
+ " 0.000000 | \n",
+ " 32.525678 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2023-10-05 | \n",
+ " 9930 | \n",
+ " 38.947219 | \n",
+ " 52.399481 | \n",
+ " 39.529573 | \n",
+ " 48.657242 | \n",
+ " 7.612060 | \n",
+ " 0.000000 | \n",
+ " 4.808815 | \n",
+ " 0.000000 | \n",
+ " 12.420875 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ " 2023-10-07 | \n",
+ " 9932 | \n",
+ " 57.119951 | \n",
+ " 37.406246 | \n",
+ " 53.510749 | \n",
+ " 54.536653 | \n",
+ " 0.000000 | \n",
+ " 14.013080 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 14.013080 | \n",
+ " 12.385597 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " row col_1 col_2 col_3 col_4 \\\n",
+ "2021-03-19 9000 50.485701 42.136751 36.201514 52.720832 \n",
+ "2021-03-27 9008 36.189019 46.304886 44.091847 53.142777 \n",
+ "2021-04-11 9023 35.947531 52.311779 44.204940 49.288283 \n",
+ "2021-05-26 9068 53.109913 49.565184 55.632568 35.937119 \n",
+ "2021-06-03 9076 37.601045 52.867301 51.761135 54.877675 \n",
+ "2021-06-12 9085 53.009766 44.683658 55.681195 36.941787 \n",
+ "2021-06-14 9087 44.472114 42.890532 37.299104 40.765994 \n",
+ "2021-07-03 9106 44.301882 37.032485 53.737561 44.200728 \n",
+ "2021-07-20 9123 48.443203 46.880545 36.940074 42.929360 \n",
+ "2021-08-02 9136 38.076730 53.909886 42.260769 47.833041 \n",
+ "2021-08-15 9149 48.561501 48.846413 52.492359 37.784619 \n",
+ "2021-10-21 9216 48.523592 37.116575 47.765270 41.507844 \n",
+ "2022-02-03 9321 50.279388 52.839734 50.660802 37.807074 \n",
+ "2022-02-19 9337 37.471688 51.581530 53.938483 51.325107 \n",
+ "2022-04-04 9381 46.361517 42.484503 54.260257 35.787575 \n",
+ "2022-06-23 9461 37.261450 54.934772 50.346440 33.902046 \n",
+ "2022-08-13 9512 54.883235 52.648489 37.520121 45.989600 \n",
+ "2022-10-08 9568 59.973610 52.889244 35.642092 46.658635 \n",
+ "2022-10-12 9572 49.075990 48.633845 37.382743 50.167602 \n",
+ "2022-11-11 9602 36.610580 48.923112 49.177502 45.770545 \n",
+ "2022-11-18 9609 58.306952 34.714112 54.017259 45.164473 \n",
+ "2022-11-20 9611 39.738216 53.529496 44.638605 39.294196 \n",
+ "2022-12-03 9624 55.388639 35.404579 56.524291 46.295707 \n",
+ "2022-12-21 9642 53.736672 49.292342 31.930707 48.120198 \n",
+ "2023-02-07 9690 59.312384 46.741510 37.296114 43.118642 \n",
+ "2023-02-23 9706 61.907574 52.136719 48.380048 38.186830 \n",
+ "2023-06-20 9823 41.664063 48.770618 42.991565 35.218846 \n",
+ "2023-07-27 9860 48.672749 36.589189 49.980351 51.580053 \n",
+ "2023-08-03 9867 49.862179 52.668383 55.123506 34.197824 \n",
+ "2023-08-31 9895 35.072257 48.448018 45.882976 53.763282 \n",
+ "2023-10-03 9928 36.696925 52.874642 40.557726 57.116570 \n",
+ "2023-10-05 9930 38.947219 52.399481 39.529573 48.657242 \n",
+ "2023-10-07 9932 57.119951 37.406246 53.510749 54.536653 \n",
+ "\n",
+ " col_1_anomaly_score col_2_anomaly_score col_3_anomaly_score \\\n",
+ "2021-03-19 0.000000 1.798759 29.484810 \n",
+ "2021-03-27 41.618935 0.000000 0.000000 \n",
+ "2021-04-11 48.792581 0.000000 0.000000 \n",
+ "2021-05-26 0.000000 0.000000 0.000000 \n",
+ "2021-06-03 16.360948 0.000000 0.000000 \n",
+ "2021-06-12 0.000000 0.000000 0.000000 \n",
+ "2021-06-14 0.000000 1.368861 15.139470 \n",
+ "2021-07-03 0.000000 16.517972 0.000000 \n",
+ "2021-07-20 0.000000 0.000000 18.544658 \n",
+ "2021-08-02 12.273369 0.000000 1.538614 \n",
+ "2021-08-15 0.000000 0.000000 0.000000 \n",
+ "2021-10-21 0.000000 15.857365 0.000000 \n",
+ "2022-02-03 0.000000 0.000000 0.000000 \n",
+ "2022-02-19 17.932518 0.000000 0.000000 \n",
+ "2022-04-04 0.000000 1.587013 0.000000 \n",
+ "2022-06-23 20.487129 0.000000 0.000000 \n",
+ "2022-08-13 0.000000 0.000000 13.644967 \n",
+ "2022-10-08 0.000000 0.000000 44.031243 \n",
+ "2022-10-12 0.000000 0.000000 14.570945 \n",
+ "2022-11-11 31.366936 0.000000 0.000000 \n",
+ "2022-11-18 0.000000 57.020183 0.000000 \n",
+ "2022-11-20 5.096278 0.000000 0.000000 \n",
+ "2022-12-03 0.000000 38.207671 0.000000 \n",
+ "2022-12-21 0.000000 0.000000 1459.959959 \n",
+ "2023-02-07 0.000000 0.000000 15.016411 \n",
+ "2023-02-23 0.000000 0.000000 0.000000 \n",
+ "2023-06-20 2.105773 0.000000 1.187704 \n",
+ "2023-07-27 0.000000 20.927689 0.000000 \n",
+ "2023-08-03 0.000000 0.000000 0.000000 \n",
+ "2023-08-31 101.422733 0.000000 0.000000 \n",
+ "2023-10-03 29.471977 0.000000 3.053701 \n",
+ "2023-10-05 7.612060 0.000000 4.808815 \n",
+ "2023-10-07 0.000000 14.013080 0.000000 \n",
+ "\n",
+ " col_4_anomaly_score total_anomaly_score anomaly_threshold \n",
+ "2021-03-19 0.000000 31.283568 12.385597 \n",
+ "2021-03-27 0.000000 41.618935 12.385597 \n",
+ "2021-04-11 0.000000 48.792581 12.385597 \n",
+ "2021-05-26 62.615963 62.615963 12.385597 \n",
+ "2021-06-03 0.000000 16.360948 12.385597 \n",
+ "2021-06-12 30.153938 30.153938 12.385597 \n",
+ "2021-06-14 3.474993 19.983324 12.385597 \n",
+ "2021-07-03 0.000000 16.517972 12.385597 \n",
+ "2021-07-20 1.330027 19.874685 12.385597 \n",
+ "2021-08-02 0.000000 13.811983 12.385597 \n",
+ "2021-08-15 17.533815 17.533815 12.385597 \n",
+ "2021-10-21 2.460562 18.317927 12.385597 \n",
+ "2022-02-03 17.398910 17.398910 12.385597 \n",
+ "2022-02-19 0.000000 17.932518 12.385597 \n",
+ "2022-04-04 69.663041 71.250053 12.385597 \n",
+ "2022-06-23 345.057428 365.544558 12.385597 \n",
+ "2022-08-13 0.000000 13.644967 12.385597 \n",
+ "2022-10-08 0.000000 44.031243 12.385597 \n",
+ "2022-10-12 0.000000 14.570945 12.385597 \n",
+ "2022-11-11 0.000000 31.366936 12.385597 \n",
+ "2022-11-18 0.000000 57.020183 12.385597 \n",
+ "2022-11-20 7.333607 12.429885 12.385597 \n",
+ "2022-12-03 0.000000 38.207671 12.385597 \n",
+ "2022-12-21 0.000000 1459.959959 12.385597 \n",
+ "2023-02-07 1.232045 16.248456 12.385597 \n",
+ "2023-02-23 13.829500 13.829500 12.385597 \n",
+ "2023-06-20 105.515732 108.809210 12.385597 \n",
+ "2023-07-27 0.000000 20.927689 12.385597 \n",
+ "2023-08-03 243.711071 243.711071 12.385597 \n",
+ "2023-08-31 0.000000 101.422733 12.385597 \n",
+ "2023-10-03 0.000000 32.525678 12.385597 \n",
+ "2023-10-05 0.000000 12.420875 12.385597 \n",
+ "2023-10-07 0.000000 14.013080 12.385597 "
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "detector.detection_summary"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " column | \n",
+ " total_nonzero_exceedances | \n",
+ " stats_distance | \n",
+ " p_value | \n",
+ " c | \n",
+ " loc | \n",
+ " scale | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " col_1 | \n",
+ " 988 | \n",
+ " 0.021588 | \n",
+ " 0.738027 | \n",
+ " -0.172814 | \n",
+ " 0 | \n",
+ " 2.659320 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " col_2 | \n",
+ " 1003 | \n",
+ " 0.022812 | \n",
+ " 0.664868 | \n",
+ " -0.105621 | \n",
+ " 0 | \n",
+ " 2.733277 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " col_3 | \n",
+ " 1010 | \n",
+ " 0.029441 | \n",
+ " 0.338839 | \n",
+ " -0.181854 | \n",
+ " 0 | \n",
+ " 2.883126 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " col_4 | \n",
+ " 994 | \n",
+ " 0.025911 | \n",
+ " 0.508587 | \n",
+ " -0.142753 | \n",
+ " 0 | \n",
+ " 2.491076 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " column total_nonzero_exceedances stats_distance p_value c loc \\\n",
+ "0 col_1 988 0.021588 0.738027 -0.172814 0 \n",
+ "1 col_2 1003 0.022812 0.664868 -0.105621 0 \n",
+ "2 col_3 1010 0.029441 0.338839 -0.181854 0 \n",
+ "3 col_4 994 0.025911 0.508587 -0.142753 0 \n",
+ "\n",
+ " scale \n",
+ "0 2.659320 \n",
+ "1 2.733277 \n",
+ "2 2.883126 \n",
+ "3 2.491076 "
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "detector.evaluate(\"ks\")\n",
+ "detector.evaluation_result"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8UAAAXDCAYAAABJYu/JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3zO9f/H8ee1sSMbY+ezY5LjV0VaJnKo5NBS0tep5FtkEt9yjIhfSFPfiPp+HRKKVnRSEkXSkVSEZgdmcxg2Mza7ruv3x9rFZbtmu1yzmcfdbbdr1+fz/rw/r8/k+y3P6/V+G8xms1kAAAAAAAAAAAAAAFRBThVdAAAAAAAAAAAAAAAA5YVQHAAAAAAAAAAAAABQZRGKAwAAAAAAAAAAAACqLEJxAAAAAAAAAAAAAECVRSgOAAAAAAAAAAAAAKiyCMUBAAAAAAAAAAAAAFUWoTgAAAAAAAAAAAAAoMoiFAcAAAAAAAAAAAAAVFmE4gAAAAAAAAAAAACAKotQHAAAAACASs5gMGjKlCkVXQYAAAAAANckQnEAAAAAwHXvjz/+0COPPKLg4GC5uroqKChIjzzyiHbv3u3Qay6WlJQkg8Fg+XJ2dlZYWJh69+6tnTt3OuS5du/erSlTpigpKckh8wEAAAAAcC0iFAcAAAAAXNfi4+PVunVrbdy4UYMHD9b8+fP16KOP6quvvlLr1q21du1ah1xjS79+/fT222/rf//7nx5++GF99dVXatu2rUOC8d27d2vq1KmE4gAAAACA61q1ii4AAAAAAICKkpCQoH/+85+qV6+evvnmG/n6+lrOxcbGKioqSo888oh27dqlyMhIu68pSevWrfXII49Y3rdv31733XefFixYoIULFzrwaQEAAAAAuD7RKQ4AAAAAuG7Nnj1bOTk5WrRokVW4LUl169bVwoULlZ2drdmzZ1/RNWVx5513SpISExNLHLdjxw51795dXl5eqlGjhjp16qTt27dbzi9ZskQPPPCAJKljx46WZdo3b95sV10AAAAAAFyrCMUBAAAAANetjz76SBEREYqKiir2/B133KGIiAh99NFHV3RNWSQkJEiS6tSpY3PMH3/8oaioKP3666/697//rUmTJikxMVHR0dH6/vvvLXWMHDlSkjR+/Hi9/fbbevvtt9WkSRO76gIAAAAA4FpFKA4AAAAAuC5lZmbq8OHDatGiRYnjmjdvrkOHDun06dN2XXM5OTk5On78uI4cOaKvv/5agwYNkiRLl3dxJk6cqPPnz2vr1q2aOHGinn32WX377bdycXHRv//9b0lSvXr1LMH9XXfdpUceeUSPPPKI/P39L1sTAAAAAABVCaE4AAAAAOC6VBhY16xZs8RxhedPnz5t1zWX8/zzz8vX11cBAQGKjo5WQkKCXnrpJfXp06fY8UajUV988YV69eqlevXqWY4HBgbq4Ycf1tatW5WVlXXZ+wIAAAAAcL2oVtEFAAAAAABQEUobXJ8+fVoGg0F169bV2bNny3zN5Tz++ON64IEH5OTkpFq1aqlp06ZydXW1Of7YsWPKyclR48aNi5xr0qSJTCaTDh48qKZNm1723gAAAAAAXA8IxQEAAAAA1yVvb28FBQVp165dJY7btWuXQkJC5OLiIhcXlzJfczkNGzZU586dy1Q7AAAAAAAoPZZPBwAAAABct3r06KHExERt3bq12PNbtmxRUlKS1f7e9lzjSL6+vvLw8NDevXuLnPvzzz/l5OSk0NBQSZLBYCiXGgAAAAAAuJYQigMAAAAArltjxoyRh4eHhg0bpoyMDKtzJ06c0L/+9S95eXlpxIgRV3SNIzk7O6tLly5au3atkpKSLMePHDmiFStW6Pbbb5eXl5ckydPTU5J06tSpcqkFAAAAAIBrAcunAwAAAACuWw0aNNCyZcvUr18/NWvWTI8++qgiIyOVlJSk//73vzp58qRWrVqlyMjIK7rG0aZPn64NGzbo9ttv15NPPqlq1app4cKFys3N1axZsyzjWrZsKWdnZ7300kvKzMyUq6ur7rzzTvn5+ZVbbQAAAAAAVDaE4gAAAACA69r999+vX375RTNnztRbb72lo0ePymQyyc3NTT///LNuvPFGh1zjSE2bNtWWLVs0btw4zZw5UyaTSbfeequWL1+uW2+91TIuICBAb7zxhmbOnKlHH31URqNRmzZtIhQHAAAAAFxXDGaz2VzRRQAAAAAAUJksW7ZMgwYN0iOPPKJly5aV2zUAAAAAAKD80SkOAAAAAMAlBgwYoLS0ND333HMKCQnRjBkzyuUaAAAAAABQ/ugUBwAAAAAAAAAAAABUWU4VXQAAAAAAAAAAAAAAAOWFUBwAAAAAAAAAAAAAUGURigMAAAAAAAAAAAAAqixCcQAAAAAAAAAAAABAlUUoDgAAAAAAAAAAAACosgjFAQAAAAAAAAAAAABVFqE4AAAAAAAAAAAAAKDKIhQHAAAAAAAAAAAAAFRZhOIAAAAAAAAAAAAAgCqLUBwAAAAAAAAAAAAAUGURigMAAAAAAAAAAAAAqixCcQAAAAAAAAAAAABAlUUoDgAAAAAAAAAAAACosgjFAQAAAAAAAAAAAABVFqE4AAAAAAAAAAAAAKDKIhQHAAAAAAAAAAAAAFRZhOIAAAAAAAAAAAAAgCqLUBwAAAAAAAAAAAAAUGURigMAAAAAAAAAAAAAqixCcQAAAAAAAAAAAABAlUUoDgAAAAAAAAAAAACosgjFAQAAAAAAAAAAAABVFqE4AAAAAAAAAAAAAKDKIhQHAAAAAAAAAAAAAFRZhOIAAAAAAAAAAAAAgCqLUBwAAAAAAAAAAAAAUGURigMAAAAAAAAAAAAAqixCcQAAAAAAAAAAAABAlUUoDgAAAAAAAAAAAACosgjFAQAAAAAAAAAAAABVFqE4AAAAAAAAAAAAAKDKIhQHAAAAAAAAAAAAAFRZhOIAAAAAAAAAAAAAgCqLUBwAAAAAAAAAAAAAUGURigMAAAAAAAAAAAAAqixCcQAAAAAAAAAAAABAlUUoDgAAAAAAAAAAAACosgjFAQAAAAAAAAAAAABVFqE4AAAAAAAAAAAAAKDKIhQHAAAAAAAAAAAAAFRZhOIAAAAAAAAAAAAAgCqLUBwAAAAAAAAAAAAAUGURigMAAAAAAAAAAAAAqixCcQAAAAAAAAAAAABAlUUoDgAAAAAAAAAAAACosgjFAQAAAAAAAAAAAABVFqE4AAAAAAAAAAAAAKDKIhQHAAAAAAAAAAAAAFRZhOIAAAAAAAAAAAAAgCqLUBwAAAAAAAAAAAAAUGURigMAAAAAAAAAAAAAqixCcQAAAAAAAAAAAABAlUUoDgAAAAAAAAAAAACosgjFAQAAAAAAAAAAAABVFqE4AAAAAAAAAAAAAKDKIhQHAAAAAAAAAAAAAFRZhOIAAAAAAAAAAAAAgCqLUBwAAAAAAAAAAAAAUGURigMAAAAAAAAAAAAAqixCcQAAAAAAAAAAAABAlUUoDgAAAAAAAAAAAACosgjFAQAAAAAAAAAAAABVFqE4AAAAAAAAAAAAAKDKIhQHAAAAAAAAAAAAAFRZhOIAAAAAAAAAAAAAgCqLUBwAAAAAAAAAAAAAUGURigMAAAAAAAAAAAAAqixCcQAAAAAAAAAAAABAlUUoDgAAAAAAAAAAAACosgjFAQAAAAAAAAAAAABVFqE4AAAAAAAAAAAAAKDKIhQHAAAAAAAAAAAAAFRZhOIAAAAAAAAAAAAAgCqLUBwAAAAAAAAAAAAAUGURigMAAAAAAAAAAAAAqixCcQAAAAAAAAAAAABAlUUoDgAAAAAAAAAAAACosgjFAQAAAAAAAAAAAABVFqE4AAAAAAAAAAAAAKDKIhQHAAAAAAAAAAAAAFRZhOIAAAAAAAAAAAAAgCqLUBwAAAAAgOvckiVLZDAYlJSUVNGlAAAAAADgcITiAAAAAIBKpzCkLfxyc3NTUFCQunbtqldffVWnT5+2e+5t27ZpypQpOnXqlOMKvgLz58/XkiVLynTNuXPn9Morr+jWW2+Vt7e33Nzc1KhRI40YMUL79u0rn0KrkP/+979q0qSJ3Nzc1LBhQ7322msVXRIAAAAAoBwRigMAAAAAKq0XXnhBb7/9thYsWKCnnnpKkjRq1Cg1a9ZMu3btsmvObdu2aerUqddsKH78+HHdfvvtGj16tPz8/PTCCy/o9ddfV69evbRu3TrddNNN5VdsFbBw4UI99thjatq0qV577TW1a9dOI0eO1EsvvVTRpQEAAAAAykm1ii4AAAAAAABbunfvrjZt2ljejxs3Tl999ZXuvfde3XfffdqzZ4/c3d0rsMKrb9CgQdqxY4fWrFmj+++/3+rctGnTNGHChAqqrPI7e/asJkyYoHvuuUdr1qyRJA0dOlQmk0nTpk3T448/rtq1a1dwlQAAAAAAR6NTHAAAAABwTbnzzjs1adIkJScna/ny5Zbju3bt0qBBg1SvXj25ubkpICBAQ4YMUUZGhmXMlClTNHbsWElSZGSkZXn2wr20Fy9erDvvvFN+fn5ydXXVjTfeqAULFhSp4aefflLXrl1Vt25dubu7KzIyUkOGDLEaYzKZFBcXp6ZNm8rNzU3+/v4aNmyYTp48aRkTERGhP/74Q19//bWllujoaJvP/v333+uTTz7Ro48+WiQQlyRXV1fNmTPH6thXX32lqKgoeXp6qlatWurZs6f27Nlj+wf8N4PBoClTphQ5HhERoUGDBlneFy51v3XrVo0cOVK+vr6qVauWhg0bpry8PJ06dUoDBgxQ7dq1Vbt2bf373/+W2Wy2XJ+UlCSDwaA5c+Zo0aJFql+/vlxdXXXzzTfrxx9/vGydZbFp0yZlZGToySeftDo+fPhwnTlzRp988olD7wcAAAAAqBzoFAcAAAAAXHP++c9/avz48friiy80dOhQSdKGDRt04MABDR48WAEBAfrjjz+0aNEi/fHHH9q+fbsMBoP69Omjffv2aeXKlXrllVdUt25dSZKvr68kacGCBWratKnuu+8+VatWTR999JGefPJJmUwmDR8+XJJ09OhRdenSRb6+vnruuedUq1YtJSUlKT4+3qrGYcOGacmSJRo8eLBGjhypxMRE/ec//9GOHTv07bffqnr16oqLi9NTTz2lGjVqWDq8/f39bT73unXrLM9fGl9++aW6d++uevXqacqUKTp79qxee+01tW/fXr/88osiIiJK/0O/jKeeekoBAQGaOnWqtm/frkWLFqlWrVratm2bwsLCNGPGDH366aeaPXu2brrpJg0YMMDq+hUrVuj06dMaNmyYDAaDZs2apT59+ujAgQOqXr26Q2rcsWOHJFmtPiBJ//jHP+Tk5KQdO3bokUcecci9AAAAAACVB6E4AAAAAOCaExISIm9vbyUkJFiOPfnkk3rmmWesxrVt21b9+vXT1q1bFRUVpebNm6t169ZauXKlevXqVSQU/vrrr62WYx8xYoS6deumuXPnWkLxbdu26eTJk/riiy+swtXp06dbvt+6daveeustvfPOO3r44Yctxzt27Khu3bpp9erVevjhh9WrVy9NnDhRdevWLVUYW9jh3axZs1L8lKSxY8fKx8dH3333nXx8fCRJvXr1UqtWrfT8889r6dKlpZqnNPz9/fXpp5/KYDDoySef1F9//aXZs2dr2LBhlm77xx9/XBEREfrf//5XJBRPSUnR/v37LcuXN27cWD179tTnn3+ue++91yE1pqWlydnZWX5+flbHXVxcVKdOHR0+fNgh9wEAAAAAVC4snw4AAAAAuCbVqFFDp0+ftry/OMw+d+6cjh8/rrZt20qSfvnll1LNefEcmZmZOn78uDp06KADBw4oMzNTklSrVi1J0scff6zz588XO8/q1avl7e2tu+66S8ePH7d8/eMf/1CNGjW0adOmMj1roaysLElSzZo1Lzs2LS1NO3fu1KBBgyyBuCQ1b95cd911lz799FO7arDl0UcflcFgsLy/9dZbZTab9eijj1qOOTs7q02bNjpw4ECR6x988EGr/byjoqIkqdix9jp79qxcXFyKPefm5qazZ8867F4AAAAAgMqDUBwAAAAAcE3Kzs62CodPnDih2NhY+fv7y93dXb6+voqMjJQkS6B9Od9++606d+5s2X/b19dX48ePt5qjQ4cOuv/++zV16lTVrVtXPXv21OLFi5Wbm2uZZ//+/crMzJSfn598fX2tvrKzs3X06FG7ntnLy0uSrD4MYEtycrKkgo7rSzVp0kTHjx/XmTNn7KqjOGFhYVbvvb29JUmhoaFFjl+8r7qt6wsD8uLGFjIajUpPT7f6ysvLszne3d3d5vlz585ZfSgCAAAAAFB1sHw6AAAAAOCac+jQIWVmZqpBgwaWY3379tW2bds0duxYtWzZUjVq1JDJZFK3bt1kMpkuO2dCQoI6deqkG264QXPnzlVoaKhcXFz06aef6pVXXrHMYTAYtGbNGm3fvl0fffSRPv/8cw0ZMkQvv/yytm/fbrmvn5+f3nnnnWLvVbiHeVndcMMNkqTffvvN0kl9tRmNxmKPOzs7l/q42Wwu9fXFjS108OBBywcfCm3atEnR0dHFjg8MDJTRaNTRo0etllDPy8tTRkaGgoKCbN4LAAAAAHDtIhQHAAAAAFxz3n77bUlS165dJRV0E2/cuFFTp07V5MmTLeP2799f5NqLl/i+2EcffaTc3FytW7fOqmvZ1lLnbdu2Vdu2bfXiiy9qxYoV6t+/v1atWqXHHntM9evX15dffqn27dtftvvYVj3F6dGjh2bOnKnly5dfNhQPDw+XJO3du7fIuT///FN169aVp6enzetr166tU6dOWR3Ly8tTWlpaqestbwEBAdqwYYPVsRYtWtgc37JlS0nSTz/9pLvvvtty/KeffpLJZLKcBwAAAABULSyfDgAAAAC4pnz11VeaNm2aIiMj1b9/f0kXuowv7SqOi4srcn1hEHxp4FvcHJmZmVq8eLHVuJMnTxa5T2GYWriEet++fWU0GjVt2rQi98/Pz7e6t6enZ5FabGnXrp26deumt956Sx9++GGR83l5eRozZoykgq7oli1baunSpVbz//777/riiy+sQuHi1K9fX998843VsUWLFtnsFK8Ibm5u6ty5s9XXxfuSX+rOO++Uj4+PFixYYHV8wYIF8vDw0D333FPeJQMAAAAAKgCd4gAAAACASuuzzz7Tn3/+qfz8fB05ckRfffWVNmzYoPDwcK1bt05ubm6SCvbavuOOOzRr1iydP39ewcHB+uKLL5SYmFhkzn/84x+SpAkTJuihhx5S9erV1aNHD3Xp0kUuLi7q0aOHhg0bpuzsbL355pvy8/Oz6o5eunSp5s+fr969e6t+/fo6ffq03nzzTXl5eVmC5g4dOmjYsGGaOXOmdu7cqS5duqh69erav3+/Vq9erXnz5ikmJsZSz4IFCzR9+nQ1aNBAfn5+uvPOO23+TJYtW6YuXbqoT58+6tGjhzp16iRPT0/t379fq1atUlpamubMmSNJmj17trp376527drp0Ucf1dmzZ/Xaa6/J29tbU6ZMKfFn/9hjj+lf//qX7r//ft1111369ddf9fnnn6tu3bql/w2sZNzd3TVt2jQNHz5cDzzwgLp27aotW7Zo+fLlevHFF+Xj41PRJQIAAAAAygGhOAAAAACg0ipcCt3FxUU+Pj5q1qyZ4uLiNHjwYNWsWdNq7IoVK/TUU0/p9ddfl9lsVpcuXfTZZ58V2Sf65ptv1rRp0/TGG29o/fr1MplMSkxMVOPGjbVmzRpNnDhRY8aMUUBAgJ544gn5+vpqyJAhlus7dOigH374QatWrdKRI0fk7e2tW265Re+8847V/tZvvPGG/vGPf2jhwoUaP368qlWrpoiICD3yyCNq37691TMmJydr1qxZOn36tDp06FBiKO7r66tt27Zp/vz5evfddzVhwgTl5eUpPDxc9913n2JjYy1jO3furPXr1+v555/X5MmTVb16dXXo0EEvvfRSkb24LzV06FAlJibqv//9r9avX6+oqCht2LBBnTp1KvG6yu7JJ59U9erV9fLLL2vdunUKDQ3VK6+8YvVzAwAAAABULQbzpWu+AQAAAAAAAAAAAABQRbCnOAAAAAAAAAAAAACgyiIUBwAAAAAAAAAAAABUWYTiAAAAAAAAAAAAAIAqi1AcAAAAAAAAAAAAAFBlEYoDAAAAAAAAAAAAAKosQnEAAAAAAAAAAAAAQJVVraILKG8mk0mHDx9WzZo1ZTAYKrocAAAAAAAAAAAAAMAVMpvNOn36tIKCguTkVHIveJUPxQ8fPqzQ0NCKLgMAAAAAAAAAAAAA4GAHDx5USEhIiWOqfChes2ZNSQU/DC8vrwquBgAAAAAAAAAAAABwpbKyshQaGmrJg0tS5UPxwiXTvby8CMUBAAAAAAAAAAAAoAopzRbaJS+uDgAAAAAAAAAAAADANYxQHAAAAAAAAAAAAABQZRGKAwAAAAAAAAAAAACqrCq/p3hp5efnKy8vr6LLACoNFxcXVavG/0QAAAAAAAAAAADYw2g0asuWLUpLS1NgYKCioqLk7Oxc0WVdl677xMtsNislJUXHjx+v6FKASqdu3boKCwuTwWCo6FIAAAAAAAAAAACuGfHx8YqNjdWhQ4csx0JCQjRv3jz16dOnAiu7Pl33oXhhIB4cHKwaNWrIyYkV5QGTyaTs7GylpqZKksLDwyu4IgAAAAAAAAAAgGtDfHy8YmJiZDabrY6npqYqJiZGa9asIRi/ygzmS383qpisrCx5e3srMzNTXl5eVufy8/P166+/Kjg4WAEBARVUIVB5paenKzU1VUajUW3atOFDIwAAAAAAAAAAACUwGo2KiIiw6hC/mMFgUEhIiBITE1lK/QqVlANf6rpOuAr3EK9Ro0YFVwJUToV/Nn766Sd99913MplMFVwRAAAAAAAAAAAoDaPRqM2bN2vlypXavHmzjEZjRZd0XdiyZYvNQFwq2Nr54MGD2rJly1WsCtd1KF6I7legeIV/Ntzd3fXzzz8rMzOzgisCAAAAAAAAAACXEx8fr4iICHXs2FEPP/ywOnbsqIiICMXHx1d0aVVeWlqaQ8fBMUiDAVyWh4eHcnNzdebMmYouBQAAAAAAAAAAlKBwP+tLu5UL97MmGC9fgYGBDh0HxyAUx3VhyZIlqlWrVkWXcc0yGAwym80ym80VXQoAAAAAAAAAALDBaDQqNja22L/PLzw2atQollIvR1FRUQoJCZHBYCj2vMFgUGhoqKKioq5yZdc3QvFr0OnTpzVq1CiFh4fL3d1dt912m3788UerMdnZ2RoxYoRCQkLk7u6uG2+8UW+88YbVmPT0dP3zn/9UQECAPD091bp1a73//vsl3nvQoEEyGAxFvrp16+bw54TjrV69WjfccIPc3NzUrFkzffrppxVdEgAAAAAAAAAAcBD2s654zs7OmjdvniQVCcYL38fFxcnZ2fmq13Y9IxR3AKPRqM2bN2vlypXavHlzuX+65rHHHtOGDRv09ttv67ffflOXLl3UuXNnpaamWsaMHj1a69ev1/Lly7Vnzx6NGjVKI0aM0Lp16yxjBgwYoL1792rdunX67bff1KdPH/Xt21c7duwo8f7dunVTWlqa1dfKlSvL7XlR4NixYzp37pzd12/btk39+vXTo48+qh07dqhXr17q1auXfv/9dwdWCQAAAAAAAAAAKgr7WVcOffr00Zo1axQcHGx1PCQkRGvWrFGfPn0qqLLrF6H4FYqPj1dERIQ6duyohx9+WB07dlRERES57cdw9uxZvf/++5o1a5buuOMONWjQQFOmTFGDBg20YMECy7ht27Zp4MCBio6OVkREhB5//HG1aNFCP/zwg9WYp556Srfccovq1auniRMnqlatWvr5559LrMHV1VUBAQFWX7Vr15Ykbd68WS4uLlafMJo1a5b8/Px05MgRSdKpU6c0bNgw+fv7y83NTTfddJM+/vhjy/itW7cqKipK7u7uCg0N1ciRI632ss7NzdWYMWMUHBwsT09P3Xrrrdq8ebNVjUuWLFFYWJg8PDzUu3dvZWRkFHmOtWvXqnXr1nJzc1O9evU0depU5efnW84bDAa99dZb6t27tzw8PNSwYUOrDxVI0h9//KF7771XXl5eqlmzpqKiopSQkGA5/9Zbb6lJkyZyc3PTDTfcoPnz51vO5eXlacSIEQoMDJSbm5vCw8M1c+ZMmz/3Tz/9VIGBgfrXv/6l7777zuY4W+bNm6du3bpp7NixatKkiaZNm6bWrVvrP//5T5nnAgAAAAAAAAAAlQ/7WVceffr0UVJSkjZt2qQVK1Zo06ZNSkxMJBCvIITiVyA+Pl4xMTFFlqFITU1VTExMuQTj+fn5MhqNcnNzszru7u6urVu3Wt7fdtttWrdunVJTU2U2m7Vp0ybt27dPXbp0sRrz7rvv6sSJEzKZTFq1apXOnTun6Ohou+uLjo7WqFGj9M9//lOZmZnasWOHJk2apLfeekv+/v4ymUzq3r27vv32Wy1fvly7d+/W//3f/1mWiEhISFC3bt10//33a9euXXr33Xe1detWjRgxwnKPESNG6LvvvtOqVau0a9cuPfDAA+rWrZv2798vSfr+++/16KOPasSIEdq5c6c6duyo6dOnW9W5ZcsWDRgwQLGxsdq9e7cWLlyoJUuW6MUXX7QaN3XqVPXt21e7du3S3Xffrf79++vEiROSCn6f77jjDrm6uuqrr77Szz//rCFDhliC9XfeeUeTJ0/Wiy++qD179mjGjBmaNGmSli5dKkl69dVXtW7dOr333nvau3ev3nnnHUVERNj82fbv31/Lly/XyZMndeedd6px48aaMWOGDh48WKrfm++++06dO3e2Ota1a1e7AnYAAAAAAAAAAFD5sJ91xTLLrCM6ou/1vVZplWY7z9bK6JVa0m+JvKK9WDK9AhnMZrO5oosoT1lZWfL29lZmZqa8vLyszuXk5GjPnj1q0qSJPDw8yjSv0WhURESEzX0ZDAaDQkJClJiY6PB/wG+77Ta5uLhoxYoV8vf318qVKzVw4EA1aNBAe/fulVTQTf34449r2bJlqlatmpycnPTmm29qwIABlnlOnTqlBx98UF988YWqVasmDw8PrV692io4v9SgQYO0fPnyIqH8+PHjNX78eEkFHdC33nqrGjVqpN9//13t27fXokWLJElffPGFunfvrj179qhRo0ZF5n/sscfk7OyshQsXWo5t3bpVHTp00JkzZ3T06FHVq1dPKSkpCgoKsozp3LmzbrnlFs2YMUMPP/ywMjMz9cknn1jOP/TQQ1q/fr1OnTplGd+pUyeNGzfOMmb58uX697//rcOHD0sq+D2cOHGipk2bJkk6c+aMatSooc8++0zdunXT+PHjtWrVKu3du1fVq1cv8iwNGjTQtGnT1K9fP8ux6dOn69NPP9W2bds0cuRI/fHHH/ryyy9t/p+TLZmZmXrvvff09ttva9u2bYqOjtbAgQMVExMjd3f3Yq9xcXHR0qVLreqZP3++pk6dauniv1Thn5GEhAQlJSWpX79+Cg0NLVOtAAAAAAAAAADg6ils6pQK9hAvVJhFsHy3/cwy64ROKFGJSlJSkdckJemszhZ77XItV3/1v8oVV20l5cCXqnaVaqpytmzZYjMQlwr+R+bgwYPasmXLFXVeF+ftt9/WkCFDFBwcLGdnZ7Vu3Vr9+vWzWvb8tdde0/bt27Vu3TqFh4frm2++0fDhwxUUFGTpFp40aZJOnTqlL7/8UnXr1tWHH36ovn37asuWLWrWrJnN+3fs2NFqqXZJ8vHxsXzv4uKid955R82bN1d4eLheeeUVy7mdO3cqJCSk2EBckn799Vft2rVL77zzjuWY2WyWyWRSYmKiDhw4IKPRWOT63Nxc1alTR5K0Z88e9e7d2+p8u3bttH79eqv7fPvtt1ad4UajUefOnVNOTo7lQxLNmze3nPf09JSXl5eOHj1qeZaoqKhiA/EzZ84oISFBjz76qIYOHWo5np+fL29vb0kFHzC466671LhxY3Xr1k333ntviR9IuJi3t7eGDh2qoUOH6ocfflC/fv00YMAA1axZU7169SrVHAAAAAAAAAAAoOop3M86NjbWKssKCQlRXFwcgfhlZCqzxND7tE7bNW+KUhxcKcqCUNxOaWlpDh1XFvXr19fXX3+tM2fOKCsrS4GBgXrwwQdVr149SQX7jo8fP14ffPCB7rnnHkkF4e7OnTs1Z84cde7cWQkJCfrPf/6j33//XU2bNpUktWjRQlu2bNHrr7+uN954w+b9PT091aBBgxJr3LZtmyTpxIkTOnHihDw9PSXJZhdzoezsbA0bNkwjR44sci4sLEy7du2Ss7Ozfv755yId+DVq1Chx7kvvM3Xq1GL/h//iLvhLA2+DwSCTyXTZZ8nOzpYkvfnmm7r11lutzhXW3bp1ayUmJuqzzz7Tl19+qb59+6pz585as2bNZes/d+6cPvroIy1btkyff/65WrVqpTFjxqhTp042rwkICCjSEX7kyBEFBARc9n4AAAAAAAAAAODa0adPH/Xs2VNbtmxRWlqaAgMDFRUVxfLdkrKVXSTovjj8PqVTds3rJjdF/P0rUpFFXuuojmMfBGVCKG6nwMBAh46zh6enpzw9PXXy5El9/vnnmjVrliTp/PnzOn/+vJycrLeMd3Z2tgS6OTk5klTiGHslJCTo6aef1ptvvql3331XAwcO1JdffiknJyc1b95chw4d0r59+4rtFm/durV2795tM3Rv1aqVjEajjh49anO/iyZNmuj777+3OrZ9+/Yi99m7d+9lw/2SNG/eXEuXLtX58+eLhOf+/v4KCgrSgQMH1L+/7aUwvLy89OCDD+rBBx9UTEyMunXrphMnTlh13hcym83aunWrli1bptWrV6tmzZp65JFHNHv2bN1www2Xrbddu3bauHGjRo0aZTm2YcMGtWvXrvQPDQAAAAAAAAAArgnOzs4OX834WnBWZ5WsZJvd3sd13K55q6u6whVuM/T2k5+c5HT5iVAhCMXtFBUVpZCQEKWmpqq4bdkL9xS3Fdxeic8//1xms1mNGzfWX3/9pbFjx+qGG27Q4MGDJRUErR06dNDYsWPl7u6u8PBwff3111q2bJnmzp0rSbrhhhvUoEEDDRs2THPmzFGdOnX04YcfasOGDfr4449LvH9ubq7S09OtjlWrVk1169aV0WjUI488oq5du2rw4MHq1q2bmjVrppdfflljx45Vhw4ddMcdd+j+++/X3Llz1aBBA/35558yGAzq1q2bnn32WbVt21YjRozQY489Jk9PT+3evVsbNmzQf/7zHzVq1Ej9+/fXgAED9PLLL6tVq1Y6duyYNm7cqObNm+uee+7RyJEj1b59e82ZM0c9e/bU559/brV0uiRNnjxZ9957r8LCwhQTEyMnJyf9+uuv+v333zV9+vRS/T6MGDFCr732mh566CGNGzdO3t7e2r59u2655RY1btxYU6dO1ciRI+Xt7a1u3bopNzdXP/30k06ePKnRo0dr7ty5CgwMVKtWreTk5KTVq1crICBAtWrVKvZ+y5cv17Bhw9S7d2+999576ty5c5EPNZQkNjZWHTp00Msvv6x77rlHq1at0k8//WTZ7x0AAAAAAAAAAKCyy1WuUpRSbJd3kpKUrvTLT1IMZzkrVKFFAu/C7wMVKGfRaX+tIhS3k7Ozs+bNm6eYmBgZDAarYNxgMEiS4uLiymUZiszMTI0bN06HDh2Sj4+P7r//fr344otW3cqrVq3SuHHj1L9/f504cULh4eF68cUX9a9//UtSwbLgn376qZ577jn16NFD2dnZatCggZYuXaq77767xPuvX7++SAd848aN9eeff+rFF19UcnKyJVgPDAzUokWL1K9fP3Xp0kUtWrTQ+++/rzFjxqhfv346c+aMGjRooP/7v/+TVNB9/fXXX2vChAmKioqS2WxW/fr19eCDD1rutXjxYk2fPl3PPPOMUlNTVbduXbVt21b33nuvJKlt27Z688039fzzz2vy5Mnq3LmzJk6cqGnTplnm6Nq1qz7++GO98MILeumll1S9enXdcMMNeuyxx0r9+1CnTh199dVXlrDf2dlZLVu2VPv27SVJjz32mDw8PDR79myNHTtWnp6eatasmaVTu2bNmpo1a5b2798vZ2dn3Xzzzfr0009tBt2dOnVSenq6vLy8Sl3jxW677TatWLFCEydO1Pjx49WwYUN9+OGHuummm+yaDwAAAAAAAACAa4HRaGQZ8WtIvvJ1UAeLDbwTlajDOiyzijasXo5BBgUruNgu7whFKEQhqkZ0WmUZzMW1OVchWVlZ8vb2VmZmZpEwMScnR3v27FGTJk3k4eFh1/zx8fGKjY3VoUOHLMdCQ0MVFxdX7H7VwLWk8M9IQkKCkpKS1K9fP4WGhlZ0WQAAAAAAAAAAlEpxOU5ISIjmzZtHjlNBjDLqsA7bDL0P6ZCMMto1d6ACi+3yjlCEwhQmF7k4+GlQkUrKgS/Fxx2uUJ8+fdSzZ08+YQQAAAAAAAAAAFCJxMfHKyYmpsg2uKmpqYqJidGaNWsIxsuBSSYd0ZEigXfh9ylK0Xmdt2tuX/na3NM7TGFyl7uDnwZVBaG4Azg7Oys6OrqiywAAAAAAAAAAAIAKlkyPjY0tEohLktlslsFg0KhRo9SzZ08aHcvILLOO63ixXd5JSlKyknVO5+yau7Zq2wy9wxWuGqrh4KfB9YJQHAAAAAAAAAAAAFXKli1brJZMv5TZbNbBgwe1ZcsWGh8vYZZZp3TKZuidpCSd0Rm75q6pmjb39I5QhLzl7eCnAQoQigMAAAAAAAAAAKBKSUtLc+i4qiZLWTb39E5SkrKUZde87nK3GXpHKlK1VVsGGRz8NMDlVWgo/s0332j27Nn6+eeflZaWpg8++EC9evWynDebzXr++ef15ptv6tSpU2rfvr0WLFighg0bVlzRAAAAAAAAAAAAqNQCAwMdOu5ac0ZnlKxkm6H3CZ2wa14Xudjs8o5UpHzlS+iNSqlCQ/EzZ86oRYsWGjJkiPr06VPk/KxZs/Tqq69q6dKlioyM1KRJk9S1a1ft3r1bbm5uFVAxAAAAAAAAAAAAKruoqCiFhIQoNTW12H3FDQaDQkJCFBUVVQHVXblzOqdkJVuWM7809D6qo3bNW03VFKYwm93eAQqQk5wc/DRA+avQULx79+7q3r17sefMZrPi4uI0ceJE9ezZU5K0bNky+fv768MPP9RDDz10NUsFAAAAAAAAAADANcLZ2Vnz5s1TTEyMDAaDVTBuMBR0MsfFxcnZ2bmiSizReZ1XilJsLnGeJvuWfXeSk0IUYjP0DlawnFU5fybAlai0e4onJiYqPT1dnTt3thzz9vbWrbfequ+++45QHAAAAAAAAAAAADb16dNHa9asUWxsrA4dOmQ5HhISori4uGJXMb5a8pWvVKVagu5LQ+9UpcokU5nnNcigIAXZ3NM7RCGqrurl8ERA5VZpQ/H09HRJkr+/v9Vxf39/y7ni5ObmKjc31/I+KyurfAoEAAAAAAAAAABApdanTx/17NlTW7ZsUVpamgIDAxUVFVXuHeImmZSmNJt7eh/UQeUr3665/eVvM/QOU5hc5ergpwGufZU2FLfXzJkzNXXq1IouAwAAAAAAAAAAAJWAs7OzoqOjHTqnWWYd1VGboXeykpWnPLvmrqM6Npc3D1e4POTh0GcBrgeVNhQPCAiQJB05ckSBgYGW40eOHFHLli1tXjdu3DiNHj3a8j4rK0uhoaHlVicAAAAAAAAAAACqFrPMylBGsYF34a+zOmvX3N7ythl6RyhCNVXTwU8DoNKG4pGRkQoICNDGjRstIXhWVpa+//57PfHEEzavc3V1lasry0IAAAAAAAAAAADAtlM6VWzoXfiarWy75vWUpyL//lUYdF8cftdSLcc+CIDLqtBQPDs7W3/99ZflfWJionbu3CkfHx+FhYVp1KhRmj59uho2bKjIyEhNmjRJQUFB6tWrV8UVDQAAAAAAAAAAgEovW9lW3d2Xht6ndMqued3kZnNP7whFqI7qyCCDYx8GwBWp0FD8p59+UseOHS3vC5c9HzhwoJYsWaJ///vfOnPmjB5//HGdOnVKt99+u9avXy83N7eKKhkAAAAAAAAAAACVwFmdtRl4JypRGcqwa97qqq5whdsMvf3lT+gNXGMqNBSPjo6W2Wy2ed5gMOiFF17QCy+8cBWrAgAAAAAAAAAAQEXLVa5SlGIz9D6iI3bN6yxnhSnM5p7eQQqSk5wc/DQAKlKl3VMcAAAAAAAAAADgemM0GrVlyxalpaUpMDBQUVFRcnZ2ruiyyqWu8zqvQzpUJPAu/P6wDsss282VthhkUIhCbC5xHqxgVSMiA64r/IkHAAAAAAAAAACoBOLj4xUbG6tDhw5ZjoWEhGjevHnq06fPNVeXUUYd1uFiu7yTlKRDOiSjjHbVFKhAm8ubhypULnKxa14AVROhOAAAAAAAAAAAgCq2Szs+Pl4xMTFFtp1NTU1VTEyM1qxZUyHBeEl13f/A/Xrro7fU5O4mxYbeKUrReZ23676+8rUZeocrXG5yc8TjAbhOEIoDAAAAAAAAAIDrXkV2aRuNRsXGxhYJniXJbDbLYDBo1KhR6tmz51VdSj3fmK8RL4yQuY1ZipQUIcurOdIshUuPuT1m19w+8rHs4V3cvt6e8nTcgwC47hGKAwAAAAAAAACA61pFd2lv2bLFKoy/lNls1sGDB7VlyxZFR0c77L5mmXVSJ4vt8k5Uog7ogM7tPGfX3DVVU5F//7o0+A5XuLzl7bDnAIDLIRQHAAAAAAAAAACV0tVYzrwydGmnpaU5dNzFspRlc0/vJCUpS1m2Ly7pcc9ISpKUKN3V6C51bdTVKvyurdoyyFDmegGgPBCKAwAAAAAAAACASudqLWdeUV3aFwsMDLR73BmdsQTcxYXfJ3XSrppc5Sq/HD8d/OaglKiCADxJF74/dmHs+E3jFd0o2q77AMDVQCgOAAAAAAAAAADKrDy7uK/mcubl2aVdWlFRUQoJCVFqamrRjnVXSRFS3Zvravcdu7Ve661C72MXp9NlUE3VFK7wYvf0jlSk/OUvs6tZEUMjiq9LksFgUEhIiKKiouyqAQCuFkJxAAAAAAAAAABQJuXZxX21lzO/ki5tR8hTng46H9SQFUP0wrIXpEhJ4Sp4jZAUVDDuuI5ruIaXel4nOSlUoZag+9LQO0hBci5xfXRJztK8efMUExMjg8Fg9XtiMBQsjR4XF1duy8oDgKMQigMAAAAAAAAAgFIr7y7uq72ceYld2rrybuh85StVqTb39U5VqkwySVEq+ColgwwKUlCxXd4RilCIQlRd1e2q+WJ9+vTRmjVriv0QRFxcnEOXsgeA8kIoXsVER0erZcuWiouLuyr3W7JkiUaNGqVTp05dlfsBAAAAAAAAQFVWHkuSO3LOq9HFfbWXM3d2dr6ibmiTTDqsw8UG3klKUopSZJTRrtpq59VWo+qNFGmILBJ6hylMrnK1a96y6tOnj3r27Fluy+UDQHkjFL8GDRo0SEuXLi1yfP/+/YqPj1f16hc++RUREaFRo0Zp1KhRlmMVEWRv2rRJL7/8sr7//nudPn1awcHBatOmjYYPH6477rhDkrR582Z17NjRco2fn59uv/12zZ49W/Xq1bM8T3JysiTJzc1N/v7+uuWWW/Svf/1Ld955Z4k1REdH6+uvv5Ykubq6ql69ehoxYoSefPLJ8nhkAAAAAAAAACiT8liS3NFzXo0u7opYzrykbuhX4l7RbX1u03ZtL7bbO0UpylOeXfetq7o29/QOU5g8XDwc9YhXzNnZ2SGd+QBQEQjFr1HdunXT4sWLrY75+vpWyk9lzZ8/XyNGjNA///lPvfvuu6pfv74yMzO1adMmPf300/r555+txu/du1c1a9bU/v379fjjj6tHjx7atWuX5dleeOEFDR06VHl5eUpKStLy5cvVuXNnTZs2TRMmTCixlqFDh+qFF15QTk6Oli1bpuHDh6t27drq169fmZ8rLy9PLi4uZb4OAAAAAAAAAC5VHkuSl8ecV6OLu7yXM7+UWWZlKENhfcI0p+ccbUrapARTgk77nFamT6YeMTyiczpn19y1VMtm6B2ucNVUTYc8AwCgZE4VXQDs4+rqqoCAAKuvwk9pFXaFR0dHKzk5WU8//bQMBoMMBoM2b96swYMHKzMz03JsypQpkqTc3FyNGTNGwcHB8vT01K233qrNmzdb3XfJkiUKCwuTh4eHevfurYyMjBLrTElJsXSqL126VHfeeafCw8PVvHlzxcbG6qeffipyjZ+fnwIDA3XHHXdo8uTJ2r17t/766y/L+Zo1ayogIEBhYWG64447tGjRIk2aNEmTJ0/W3r17S6zHw8NDAQEBqlevnqZMmaKGDRtq3bp1kqRnn31WjRo1koeHh+rVq6dJkybp/PnzlmunTJmili1b6q233lJkZKTc3NwkSevXr9ftt9+uWrVqqU6dOrr33nuVkJBguS4pKUkGg0HvvfeeoqKi5O7urptvvln79u3Tjz/+qDZt2qhGjRrq3r27jh07Zrlu8+bNuuWWW+Tp6alatWqpffv2li55AAAAAAAAAFXH5ZYkl6RRo0bJaCz9EtzlMad0dbq4C5czly4sX16oNMuZF+eUTmmHdugDfaC5mquRGqke6qFmaiYveclXvrpZN+sh54e0sP5CfdnwS31f53v9afizxEC8hmqomZqph3popEZqruYqXvHaoR06+fevHdqheMVrrubqKT2lHuqhm3QTgTgAXEV0ildh8fHxatGihR5//HENHTpUkuTj46O4uDirALlGjRqSpBEjRmj37t1atWqVgoKC9MEHH6hbt2767bff1LBhQ33//fd69NFHNXPmTPXq1Uvr16/X888/X2IN77//vs6fP69///vfxZ6/9F9oLuXu7i6poCu7JLGxsZo2bZrWrl1r81625i+cu2bNmlqyZImCgoL022+/aejQoapZs6bVfH/99Zfef/99xcfHW/6F68yZMxo9erSaN2+u7OxsTZ48Wb1799bOnTvl5HThcyfPP/+84uLiFBYWpiFDhujhhx9WzZo1NW/ePHl4eKhv376aPHmyFixYoPz8fPXq1UtDhw7VypUrlZeXpx9++MHy80pKSlJkZKQ2bdrEcjUAAAAAAABAJXAl+3aXx5Lk5bXM+dXq4i5pOfO4uLgiHe6nddqyh3dxS5xnKtOuOtzlroi/fxXX7e0jHxlU8t9zAwAqHqH4Nerjjz+2hNmS1L17d61evdpqjI+Pj5ydnS2d1YW8vb1lMBisjqWkpGjx4sVKSUlRUFCQJGnMmDFav369Fi9erBkzZmjevHnq1q2bJSRu1KiRtm3bpvXr19usc9++ffLy8rK61/vvv6+BAwda3n/33Xdq1qxZkWvT0tI0Z84cBQcHq3HjxiX+PHx8fOTn56ekpKQSxxUyGo1auXKldu3apccff1ySNHHiRMv5iIgIjRkzRqtWrbIKxfPy8rRs2TL5+vpajt1///1Wc//vf/+Tr6+vdu/erZtuuslyfMyYMerataukghC/X79+2rhxo9q3by9JevTRR7VkyRJJUlZWljIzM3Xvvfeqfv36kqQmTZpY5qpevboaN24sD4/Ks58MAAAAAAAAcL260n27y2NJ8vJa5rywizsmJkYGg8EqGLe3i9uWPn36qGfPntqyZYuSjibJEGGQzz98dND5oMZqrFUInqGSVzW1xUUuCle4zdDbT36E3gBQBRCKX6M6duyoBQsWWN57enpe0Xy//fabjEajGjVqZHU8NzdXderUkSTt2bNHvXv3tjrfrl27EkNxqWg3eNeuXbVz506lpqYqOjq6yPI8ISEhMpvNysnJUYsWLfT++++Xau9us9l82c7z+fPn66233lJeXp6cnZ319NNP64knnpAkvfvuu3r11VeVkJCg7Oxs5efny8vLy+r68PBwq0Bckvbv36/Jkyfr+++/1/Hjx2UymSQVfNDg4lC8efPmlu/9/f0lyerDAP7+/jp69KikgpB/0KBB6tq1q+666y517txZffv2tSw5FBwcrD///POyPxMAAAAAAAAA5csR+3aXx5Lk5bnMeVm7uEsjV7lKUUrRLm/nRCVFJ+mIjpR5TklylrPCFFZs4B2hCAUqUE7sNAsAVR6h+DXK09NTDRo0cNh82dnZcnZ21s8//1zkE3wXd6SXVcOGDZWZman09HRLt3iNGjXUoEEDVatW/D9+W7ZskZeXl/z8/FSzZun2VMnIyNCxY8cUGRlZ4rj+/ftrwoQJcnd3V2BgoGV58++++079+/fX1KlT1bVrV3l7e2vVqlV6+eWXra4v7sMHPXr0UHh4uN58800FBQXJZDLppptuKrLke/Xq1S3fF4b3lx4rDNQlafHixRo5cqTWr1+vd999VxMnTtSGDRvUtm3bUv1MAAAAAAAAAJSvy+3bbTAYNGrUKPXs2bPEzunyWJK8vJc5v7iLuzRLxp/XeR3UQavA++LvD+uwzCpa5+U4yUnBCrYZegcrWNWIQgDgusf/E1RxLi4uRTqxizvWqlUrGY1GHT161Oa/BDVp0kTff/+91bHt27eXeP+YmBg999xzeumll/TKK6+UqubIyEjVqlWrVGMLzZs3T05OTurVq1eJ47y9vYv9MMG2bdsUHh6uCRMmWI4lJydf9r4ZGRnau3ev3nzzTcvPbevWrWWqvSStWrVSq1atNG7cOLVr104rVqwgFAcAAAAAAAAqCUft210eS5JfjWXOnZ2dLc9llFGpSrW5p/chHZJJppIntCFIQTaXNw9RiFx0+ZVGAQDXN0LxKi4iIkLffPONHnroIbm6uqpu3bqKiIhQdna2Nm7cqBYtWsjDw0ONGjVS//79NWDAAL388stq1aqVjh07po0bN6p58+a65557NHLkSLVv315z5sxRz5499fnnn1926fSwsDC9/PLLio2N1YkTJzRo0CBFRkbqxIkTWr58uSSV+V+6Tp8+rfT0dJ0/f16JiYlavny53nrrLc2cOdPu7vmGDRsqJSVFq1at0s0336xPPvlEH3zwwWWvq127turUqaNFixYpMDBQKSkpeu655+yq4WKJiYlatGiR7rvvPgUFBWnv3r3av3+/BgwYIKlg6aVOnTpp2bJluuWWW674fgAAAAAAAADKzpH7dpfHkuSOnNMkk9KVbjP0TlGK8pVf5holyU9+NkPvMIXJTW52zQsAQCFC8SruhRde0LBhw1S/fn3l5ubKbDbrtttu07/+9S89+OCDysjI0PPPP68pU6Zo8eLFmj59up555hmlpqaqbt26atu2re69915JUtu2bfXmm2/q+eef1+TJk9W5c2dNnDhR06ZNK7GGp556Sk2aNNHcuXMVExOjrKws1alTx7If+cX7apfG5MmTNXnyZLm4uCggIEBt27bVxo0b1bFjR7t/Tvfdd5+efvppjRgxQrm5ubrnnns0adIkTZkypcTrnJyctGrVKo0cOVI33XSTGjdurFdffbXET32WhoeHh/78808tXbpUGRkZCgwM1PDhwzVs2DBJ0vnz57V3717l5ORc0X0AAAAAAAAA2M/R+3aXdUlyR85pllnHdKzYwDtJSUpWsnKVa1cNPvKxBN2Xht7hCpenim5bCQCAIxnMxW0mUoVkZWXJ29tbmZmZ8vLysjqXk5OjPXv2qEmTJvLw8KigCoHKq/DPSEJCgpKSktSvXz+FhoZWdFkAAAAAAACAwxiNRrtDaKPRqIiIiMvu252YmHhFwbYjmGXWSZ20GXonKUk5sq8Jx0teNvf0jlCEvOR1+UkAACijknLgS9EpDgAAAAAAAAC4LsXHxxe7tPi8efNKtbT41di3uywylVkk6L44/D6t03bN6yEPm6F3pCJVS7VkkMHBTwMAgOMQigMAAAAAAAAArjvx8fGKiYkp0uGdmpqqmJgYrVmzplTBeHnsBW7LGZ2xuad3kpJ0UiftmtdVrja7vCMVqbqqS+gNALimEYoDAAAAAAAAAK4rRqNRsbGxxS55bjabZTAYNGrUKPXs2bNUXd6O2gv8nM4pWck2Q+9jOlam+QpVV3WFKcxmt7e//OUkJ7vmBgDgWkAoDgAAAAAAAAC4rmzZssWqq/tSZrNZBw8e1JYtWxQdHV2qOZ2dnS87Nk95SlGKzT2905RWhqe46N5yVqhCi+3yjlCEghQkZ1XsnuYAAFSkMofiv/zyi6pXr65mzZpJktauXavFixfrxhtv1JQpU+Ti4uLwIgEAAAAAAAAAcJS0tNKFz6UdVyhf+TqkQzaXOE9Vqswq2p1+OQYZFKxgm3t6BytY1VW9zPMCAHC9KHMoPmzYMD333HNq1qyZDhw4oIceeki9e/fW6tWrlZOTo7i4uHIoE9eS119/XbNnz1Z6erpatGih1157TbfccovN8X/88YcmT56sn3/+WcnJyXrllVc0atQoqzERERFKTk4ucu2TTz6p119/3dGPAAAAAAAAAOAaYTQay7xseWBgYKnmvnScUUalKc3m8uYHdVBGGe16jgAF2Ay9QxUqV7naNS8AALAjFN+3b59atmwpSVq9erXuuOMOrVixQt9++60eeughQvHr3LvvvqvRo0frjTfe0K233qq4uDh17dpVe/fulZ+fX7HX5OTkqF69enrggQf09NNPFzvmxx9/lNF44V8mf//9d91111164IEHyuU5AAAAAAAAAFw99gTbkhQfH6/Y2FirpdBDQkI0b9489enTx+Z1UVFRCgkJUWpqatF9xf0l1ZN8Wvto6x1btUIrLKF3spJ1Xuftesa6qmtzT+9whctd7nbNCwAALq/MobjZbJbJZJIkffnll7r33nslSaGhoTp+/Lhjq0O5+uOPP/Tss8/qm2++kdlsVsuWLbVkyRLVr1/f7jnnzp2roUOHavDgwZKkN954Q5988on+97//6bnnniv2mptvvlk333yzJNkc4+vra/X+//7v/1S/fn116NDB7loBAAAAAAAAOM7VDrbj4+MVExNTJNROTU1VTEyM1qxZU+R6s8w6ruNKck7Sg2se1MvxL0sRsv76O5s+oROapEmlePICtVTLZugdoQjVUI1SzwUAAByrzKF4mzZtNH36dHXu3Flff/21FixYIElKTEyUv7+/Q4szGo2aMmWKli9frvT0dAUFBWnQoEGaOHGiDAaDQ+91vUlNTdUdd9yh6OhoffXVV/Ly8tK3336r/Px8SdLmzZvVsWNHJSYmKiIiolRz5uXl6eeff9a4ceMsx5ycnNS5c2d99913Dqs9Ly9Py5cv1+jRo/nnAAAAAAAAAHAwe8LtqxlsF9YYGxtbtMtbktnbLEVKj69/XAd6HVCyU7LVEudndKZg4K1/f5VSDdVQ5N+/CoPui7+vpVqlnwwAAFxVZQ7F4+Li1L9/f3344YeaMGGCGjRoIElas2aNbrvtNocW99JLL2nBggVaunSpmjZtqp9++kmDBw+Wt7e3Ro4c6dB7XW9ef/11eXt7a9WqVapevbokqVGjRpbzHh4eaty4seVcaRw/flxGo7HIhyP8/f31559/OqZwSR9++KFOnTqlQYMGOWxOAAAAAAAAAPaF2+USbJvNMhgMGjVqlHr27GkVyp/Waa3+ZbUOtTok9ZYUqYIO78LXWgXjMpShsRpb6md3yXdRYG6gbvS4UZGGyCLd3j7ykUE06QAAcC0qcyjevHlz/fbbb0WOz549u1RL4ZTFtm3b1LNnT91zzz2SpIiICK1cuVI//PCDQ+9zqTZqo3Sll+s9LhWgAP2kn67a/Xbu3KmoqCibofctt9xSYpC9ZcsWde/e3fJ+4cKF6tixo8PrLM5///tfde/eXUFBQVflfgAAAAAAAEBlUdYu7rKMtyfctjfYlgr+jvHi8N3CXVKEZI4w62DkQfVP7S9jmNHS6Z2hDOlmSetsPnaxXOSicIXbXOLcr5qfDNUIvQEAqIrKHIpL0qlTp7RmzRolJCRo7Nix8vHx0e7du+Xv76/g4GCHFXfbbbdp0aJF2rdvnxo1aqRff/1VW7du1dy5cx12j+KkK12pSi3Xe1Q0d3f3K7q+TZs22rlzp+W9v7+/XF1d5ezsrCNHjliNPXLkiAICAq7ofoWSk5P15ZdfKj4+3iHzAQAAAAAAANeKsnZxl2W8veG2zWD7omsPHjyoLVu2KDo6WpKUq1wlK1mfmz+XHpd1l3ekpEt26XxX79qc38p5SSmSkiQlFryOf3i87r7xbkUqUgEKkJOcSjcXAACoUsociu/atUudOnVSrVq1lJSUpKFDh8rHx0fx8fFKSUnRsmXLHFbcc889p6ysLN1www1ydnaW0WjUiy++qP79+9u8Jjc3V7m5uZb3WVlZZb5vgBwT4FbmezZv3lxLly7V+fPny7REeiF3d3fL0vkX+8c//qGNGzeqV69ekiSTyaSNGzdqxIgRV1qyJGnx4sXy8/OzrB4AAAAAAAAAXA/K2sVd1vH2hNuSlJaWVnRwNUmhsgq7J0ZMlCQlKlGHdbhgXMe/v0rJSU4KUUjBDt6mCH0Q94FO7zpdEIAnSjosyVgw1mAwKCQkRC9MfUHOcuwKpwAA4NpT5lB89OjRGjx4sGbNmqWaNWtajt999916+OGHHVrce++9p3feeUcrVqxQ06ZNtXPnTo0aNUpBQUEaOHBgsdfMnDlTU6dOvaL7Xs1lzCvKiBEj9Nprr+mhhx7SuHHj5O3tre3bt+uWW25R48aN9cMPP2jAgAHauHFjmbr/R48erYEDB6pNmza65ZZbFBcXpzNnzmjw4MGWMQMGDFBwcLBmzpwpScrLy9Pu3bst36empmrnzp2qUaOGVfBuMpm0ePFiDRw4UNWq2bXIAQAAAAAAAFCplGZ587J2cdvT9V1suF2MtLQ0GWVUqlKVqET92vJX6XlZd3uHSJfm0N/q21LNr1RZuryVJNXOrK13/+9d1Xeur1CFqrr+bvBxknpG9FTMmBjLcxUyGAqWQI+Li3P4lp8AAODaVOZk8ccff9TChQuLHA8ODlZ6umP34R47dqyee+45PfTQQ5KkZs2aKTk5WTNnzrQZio8bN06jR4+2vM/KylJoaKhD66oK6tSpo6+++kpjx45Vhw4d5OzsrJYtW6p9+/aSpJycHO3du1fnz58v07wPPvigjh07psmTJys9PV0tW7bU+vXr5e9/Yc2jlJQUOTldWKbo8OHDatWqleX9nDlzNGfOHHXo0EGbN2+2HP/yyy+VkpKiIUOG2PnUAAAAAAAAQOVR2uXNy9rFbU/Xd2Bg4IUBBkkBsl7S/O/XMbeN0QANUL7yC8Y2kTSl9M/sJz+rvbxP7jiphc8tLAjBkyX9vQhoYbD91pq3dJfzXcXO1adPH61Zs6bYn2FcXFyxS8oDAIDrU5lDcVdX12KXJN+3b598fX0dUlShnJwcq/BUkpydnWUymUqsz9XV1aF1VFXNmzfX559/Xuy56OjoYj9JWhojRowocbn0i4NuSYqIiCjVvbp06WJ3TQAAAAAAAEBlUpblzcvSxV3q8X7SlrwtSle6kpSkxDsS5brZVbkBuVK4JLfiL7MsfW7LcVm6vAu/xvcbr/7t+ytCEfKQh/X4VlKXYV0Kgu3csgfbffr0Uc+ePS/bbQ8AAK5vZQ7F77vvPr3wwgt67733JBV8Yi8lJUXPPvus7r//focW16NHD7344osKCwtT06ZNtWPHDs2dO5dOYQAAAAAAAADXrLIub27VxV2CwnEBgQGSj4p0eVu9ekiTNfnCxU6SOlz+Hl7yUuTfvwq7vSMUoYQvEzTnqTk6/OeF0Dw0NLQg2G5fvsG2s7Oz1T7nAAAAlzKYy9h6m5mZqZiYGP300086ffq0goKClJ6ernbt2unTTz+Vp6enw4o7ffq0Jk2apA8++EBHjx5VUFCQ+vXrp8mTJ8vFxaVUc2RlZcnb21uZmZny8vKyOpeTk6M9e/aoSZMm8vDwsDEDcP0q/DOSkJCgpKQk9evXj+0IAAAAAAAArtDmzZvVsWPHy47btGmToqOjZTQaFRERodTU1AtBupesgu4azWqo4+COSjIkKcmcpNOG03bV5pbvpvyEfOXvyy/o9E6U6mTX0XMPPqdHOz2q2qpt89rS7I8OAADgKCXlwJcqc6e4t7e3NmzYoK1bt2rXrl3Kzs5W69at1blzZ7sLtqVmzZqKi4tTXFycw+cGAAAAAAAAgPJwuXC4VMube0o/5PygbGUr0TlRrb5qpUO/HbrQ7X1JNp2tbH2kjwreGEqY96ykJKlV7VZqG9DWqts7QhGqW62uTA1M2pK2RWl10xTYrPThNh3bAACgsipzKF7o9ttv1+233+7IWgAAAAAAAADgmhYfH1+wP/Yh6/2x582bZ9kfOzAwsGDP7nDZXuLcV3pWz16YuOHfX5dRXdUVrnBFKEJKlH547wdl7cyydH2HuIZo3ivzStyrm3AbAABUNaUKxV999dVSTzhy5Ei7i8HVU7hE08mTJ1WrVq2KLgcAAAAAAACo1EqzNHh8fLxiYmIKljivLilMUqR0KPKQ7t97v24/eLvyQ/OV1CGpoGPbDs5mZ/me85VPlo/CTGFq699W9ZzqWTq+AxUoZ/1dV6RkHMOS5gAAAKUKxV955ZVSTWYwGAjFUaKUlBQ98cQT2rRpk2rUqKGBAwdq5syZqlbN7kULAAAAAAAAALuVNuy+tPs7ODxYE9+YqMbdGitJSUowJegV0ysyf20u6PYOluRkfa+t2lrwTUnLm5skpUpN3JuoTd02lqXNC19DDCGq5l5Nci/d89H1DQAAUMpQPDExsbzrwHXAaDTqnnvuUUBAgLZt26a0tDQNGDBA1atX14wZMyq6PAAAAAAAAFSw0gTUpRlT2nElLXXes09PHdZhLf16qSZ9OEkaLKslzlNDU/VEtScuTOYkKaZ0zxmoQEUoQs4HnfXrh7/q9K7TUqKkJCnEHKJ5s0te3hwAAABlQ3suLN5//31NnjxZf/31lwIDA/XUU0/pmWeesZzPzc3V5MmTtWLFCh09elShoaEaN26cHn300VLN/8UXX2j37t368ssv5e/vr5YtW2ratGl69tlnNWXKFLm4uJTXowEAAAAAAKCCXS6kLs1e3KUZU9px78e/r5gRMQX7ekfJEngfijik+yPvVzVTNeU75UsdVPBVFkdl2cP70tcl05ZoYN+BBeNCJeOTLG8OAABQ3koVio8ePVrTpk2Tp6enRo8eXeLYuXPnOqQwXF0///yz+vbtqylTpujBBx/Utm3b9OSTT6pOnToaNGiQJGnAgAH67rvv9Oqrr6pFixZKTEzU8ePHLXNERERo0KBBmjJlSrH3+O6779SsWTP5+/tbjnXt2lVPPPGE/vjjD7Vq1ao8HxEAAAAAAADl5EoDb6u9uC+SmpqqmJgYrVmzRpIuO6bIXHV1IeyOPKT7j96vVumtlOOfo71375UO236mfOXbPnlCVmH3yPtGKuBcgMY/NF5KlnTG9qXhfuFW71neHAAAoPyVKhTfsWOHzp8/b/keVc/cuXPVqVMnTZo0SZLUqFEj7d69W7Nnz9agQYO0b98+vffee9qwYYM6d+4sSapXr57VHPXr11fdunVt3iM9Pd0qEJdkeZ+enu7IxwEAAAAAAICDlHfg/e6772r06NFFzkuS2WyWwWBQbGys5b2VWpI50ixFSkP+GKIve36pxTUXy7zr7329axR9nh36++833Up46CxJiVIjl0ba9/m+ggA8SRc6vrOsh7cNaqu+fftqftZ8peakyqyiz2IwGBQSEqKoqKgSbgwAAIDyUKpQfNOmTcV+j6pjz5496tmzp9Wx9u3bKy4uTkajUTt37pSzs7M6dLC9VtTGjRvLu0wAAAAAAABcRVcj8B4+fLiOHTtWfAE1CkLvQxGHLHt5W716XxiaqUwt0ALprss/V7W8asrfn29ziXOdLBjXd2JfTZ8+/bLzBQYGytnZWfPmzVNMTIwMBoPVMxsMBklSXFwcS6MDAABUAKeyXjBkyBCdPn26yPEzZ85oyJAhDikKlY+7u/sVzxEQEKAjR45YHSt8HxAQcMXzAwAAAAAAwHEKA++LA3HpQuC9evVqxcbG2gy8JWn48OFFrrca52bWsbrHpO6SnpQ0S9JqST9KOi7ptKRdktZJmifpaUm9JLWUVSBeRK6kvZI+l/SGpOckPSjpVkl+0rPTnpVuknSvpKckvSwpXtIvsgTikhQdHa2QkBBLqH0pg8Gg0NBQS/d3nz59tGbNGgUHB1uNCwkJsSzvDgAAgKuvzKH40qVLdfbs2SLHz549q2XLljmkKFx9TZo00bfffmt17Ntvv1WjRo3k7OysZs2ayWQy6euvv7b7Hu3atdNvv/2mo0ePWo5t2LBBXl5euvHGG+2eFwAAAAAAAPYzGo3avHmzVq5cqc2bN8toNMpoNF554G0261jWMamhpC6SHpc0U9JKSdslpUvKkbRb0qeSXpc0VlKMpDaS6pRQ9HlJCZK+lPSWpAmS+ksj3x0pBUlyl3SDpG6SnpD0kqT3JP0g6ZjUMbpjqcLu6OhozZs3z3Ls0jFS0e7vPn36KCkpSZs2bdKKFSu0adMmJSYmEogDAABUoFItny5JWVlZMpvNMpvNOn36tNzcLmy6YzQa9emnn8rPz69cikT5e+aZZ3TzzTdr2rRpevDBB/Xdd9/pP//5j+bPny9JioiI0MCBAzVkyBC9+uqratGihZKTk3X06FH17dtXktSpUyf17t1bI0aMKPYeXbp00Y033qh//vOfmjVrltLT0zVx4kQNHz5crq6uV+1ZAQAAAAAAricl7Qlua3n0oUOHXj7wPnas4G8XQ1X80uYRkoJtTHDZoiUdkmVJc68MLzkfctbJX04WHEuVZLowvHC/7tmLZyt+TLxSVfK+3oVhd2mWOi/s/i7u5xQXF1ds2O3s7Kzo6Gg7Hx4AAACOVupQvFatWjIYDDIYDGrUqFGR8waDQVOnTnVocbh6Wrdurffee0+TJ0/WtGnTFBgYqBdeeEGDBg2yjFmwYIHGjx+vJ598UhkZGQoLC9P48eMt5xMSEnT8+HGb93B2dtbHH3+sJ554Qu3atZOnp6cGDhyoF154oTwfDQAAAAAA4JpXUrBtT+hd2P1saz/w559/vuCNk6QQFR94R6og9LZni2yTpMOSkiSPox7q3qS73p/zfsGe3gdUEIjnXwioF69ZLEVKMfNiJMlmiO3i4lIuYXefPn3Us2dPmz9nAAAAVG4Gc3FrIBXj66+/ltls1p133qn3339fPj4+lnMuLi4KDw9XUFBQuRVqr6ysLHl7eyszM1NeXl5W53JycrRnzx41adJEHh4eFVQhUHkV/hlJSEhQUlKS+vXrp9DQ0IouCwAAAACAKudKgu2yht6FYXGdOnWUcSJDCpTt0DtUUnU7Hypdcjnsopvr3qxvV3xb0OFd+JUiGc4XhNSFe20X95yhoaFWAXVpxpRlnFTyzx4AAACVV0k58KVKHYoXSk5OVmhoqJycyrwdeYUgFAfsRygOAAAAAED5s6eb+9Iu6OLO1alTRxkZGZKfLgTdEbIOvcMl2bmrndMJJ0UqUgkbE6RkFXR4J+lC6H3WUKbAWypdQF3aEJuwGwAAoGor11Bckk6dOqUffvhBR48elclksjo3YMCAsk5XrgjFAfsRigMAAAAA4DjFhbRr1669fDd3RkbJE/vI9p7eEZLs/WuvU7Ls6W31mlzw/ftL3nd44A0AAACUVllC8VLvKV7oo48+Uv/+/ZWdnS0vLy/LXjxSwb+sV7ZQHAAAAAAAAKhoxQXHwcHBOnfuXLEd34XHMjIyJC/ZDr0jJdW0s6hsFR96F75mSlOnTtWbb75ZNPBeciHwLu1+287OzoqOjrazWAAAAMB+ZQ7Fn3nmGQ0ZMkQzZsyguxoAAAAAAAC4jPj4+GK7wVNTUwu+8ZTtwDtCUm07b3xWxQfehd+X0IBuMBgUEhqiCRMmaMKECQTeAAAAuKaVORRPTU3VyJEjCcRRooiICI0aNUqjRo2q6FIAAAAAAAAqjNFo1MhnR8rcyGw79Pa1c/I8FSxlbqvb+4jtSw0Gg3zq+OjEiROSZBXYF64MGRcXZwm/CbwBAABwLXMq6wVdu3bVTz/9VB61ACWKj4/XXXfdJV9fX3l5ealdu3b6/PPPL3ud2WzWnDlz1KhRI7m6uio4OFgvvvii1Zjc3FxNmDBB4eHhcnV1VUREhP73v/+V16MAAAAAAIAqJFe52q/92qANWmhaqP7J/dU+qb2aZjaVX76fUvenSn9K+kzSAkn/ltRX0s0qORDPl3RA0leS/itpkqRHJN0uKUSSm6RGkrpKGibp/yStkvS9ZDhqUJ06dWQwGKy2P5QuhN6LFi3SmjVrFBwcbHU+JCREa9assdoPHAAAALiWlblT/J577tHYsWO1e/duNWvWTNWrV7c6f9999zmsOOBi33zzje666y7NmDFDtWrV0uLFi9WjRw99//33atWqlc3rYmNj9cUXX2jOnDlq1qyZTpw4YfkUdKG+ffvqyJEj+u9//6sGDRooLS1NJpOpvB8JAAAAAABUYkajUVu2bNGh9ENyjnCW782+SnFO0QHTAf1w9AelOKUowztDGS4ZMhv+7rR2khReyhuYJB2S7T29D0t1vOvY7OYufH/x94XvpYLQW1KRvcxDQkIUF3dhT/DS7AcOAAAAXMvKHIoPHTpUkvTCCy8UOWcwGGQ0Gq+8KpS7kydPasSIEfriiy+UnZ2tkJAQjR8/XoMHD5YkHTp0SGPHjtXnn3+u3NxcNWnSRK+//rpuvfVWJSQkaPTo0dq+fbvOnDmjJk2aaObMmercubPN+506dUpjxozR2rVrlZubqzZt2uiVV15RixYtSl1zXFyc1fsZM2Zo7dq1+uijj2yG4nv27NGCBQv0+++/q3HjxpKkyMhIqzHr16/X119/rQMHDsjHx0dSwfLvAAAAAADg+mCUUYd1WElKUqISlaQkbU7erG2p25QbkVvQmX3x36I5SQoo5eSHZTv0PijpfPGXlTbYLulcaUNv9gMHAABAVVfmUJzu2aph0qRJ2r17tz777DPVrVtXf/31l86ePStJys7OVocOHRQcHKx169YpICBAv/zyi+X3Pjs7W3fffbdefPFFubq6atmyZerRo4f27t2rsLCwYu/3wAMPyN3dXZ999pm8vb21cOFCderUSfv27ZOPj4+SkpIUGRmpTZs2lfo/wkwmk06fPm0Jsovz0UcfqV69evr444/VrVs3mc1mde7cWbNmzbJct27dOrVp00azZs3S22+/LU9PT913332aNm2a3N3dy/BTBQAAAAAAlZFJJh3REUvgfelrilJ0/tJ0Olyl6/g+Ktt7eidLyi35coPBIB8fH7m7u9sdbBN6AwAAACUrcyiOqiElJUWtWrVSmzZtJFl3Rq9YsULHjh3Tjz/+aAmOGzRoYDnfokULqw7vadOm6YMPPtC6des0YsSIIvfaunWrfvjhBx09elSurq6SpDlz5ujDDz/UmjVr9Pjjj6t69epq3LixPDw8Sv0Mc+bMUXZ2tvr27WtzzIEDB5ScnKzVq1dr2bJlMhqNevrppxUTE6OvvvrKMmbr1q1yc3PTBx98oOPHj+vJJ59URkaGFi9eXOp6AAAAAADA1VG4rHlhCHx71O066XxSfxn/0vo/12vf+X3K8c3RuaBzSjYkK0lJyr1cOm3LCdkOvZMk5dj/HBd3g19JsE3oDQAAAJTMrlD8zJkz+vrrr5WSkqK8vDyrcyNHjnRIYShfTzzxhO6//3798ssv6tKli3r16qXbbrtNkrRz5061atXKZgd2dna2pkyZok8++URpaWnKz8/X2bNnlZKSUuz4X3/9VdnZ2apTp47V8bNnzyohIUGSFBwcrD///LPU9a9YsUJTp07V2rVr5efnZ3OcyWRSbm6uli1bpkaNGkmS/vvf/+of//iH9u7dq8aNG8tkMslgMOidd96Rt7e3JGnu3LmKiYnR/Pnz6RYHAAAAAKCCmWXWSZ1UkpK0cvtKvbnhTWXWzpQiJNWVDOcMMnuaJWdJTcs2t+G0QeYDZkvQ7XncU2d+O3Mh9M5y3HP4+PhY9geXinaDE2wDAAAA5aPMofiOHTt09913KycnR2fOnJGPj4+OHz8uDw8P+fn5EYpfI7p3767k5GR9+umn2rBhgzp16qThw4drzpw5lw2Bx4wZow0bNmjOnDlq0KCB3N3dFRMTU+QDEoWys7MVGBiozZs3FzlXq1atMte+atUqPfbYY1q9enWJ+5hLUmBgoKpVq2YJxCWpSZMmkgq65Rs3bqzAwEAFBwdbAvHCMWazWYcOHVLDhg3LXCMAAAAAACg9o9Go9dvW6/fs33U+5Lw8m3oq2SlZieZE/X7md6W5pOmsS8G2b2r799dFzDLbnvyMbO/pnSSZT5ovGX7GAU9UvPfee0/Ozs42u8EBAAAAlI8yh+JPP/20evTooTfeeEPe3t7avn27qlevrkceeUSxsbHlUSPKia+vrwYOHKiBAwcqKipKY8eO1Zw5c9S8eXO99dZbOnHiRLHd4t9++60GDRqk3r17SyoIvZOSkmzep3Xr1kpPT1e1atWslmm3x8qVKzVkyBCtWrVK99xzz2XHt2/fXvn5+UpISFD9+vUlSfv27ZMkhYeHW8asXr1a2dnZqlGjhmWMk5OTQkJCrqheAAAAAABQ4IzO6IDxgD7+42Pty9unHP8c5Yfka+epnUpSkkxRpqIXGSTVuMzE53ShqztJRcPvYw56gCtgMBgUEhKi6OhoQnAAAACgApQ5FN+5c6cWLlwoJycnOTs7Kzc3V/Xq1dOsWbM0cOBAy3JPqNwmT56sf/zjH2ratKlyc3P18ccfWzqo+/XrpxkzZqhXr16aOXOmAgMDtWPHDgUFBaldu3Zq2LCh4uPj1aNHDxkMBk2aNEkmUzH/4fq3zp07q127durVq5dmzZqlRo0a6fDhw/rkk0/Uu3dvtWnTRqmpqerUqZOWLVumW265pdh5VqxYoYEDB2revHm69dZblZ6eLklyd3e3dHn/5z//0QcffKCNGzda7t26dWsNGTJEcXFxMplMGj58uO666y5L9/jDDz+sadOmafDgwZo6daqOHz+usWPHasiQISydDgAAAABAKZ3TOSWrYP/uRCXqgOmAfjz+ow46HVSGV4ZOuZwqWN68+SUX1r7MxOclJct2t/cRqaRG8avNYDDIbDZbvZekuLg4AnEAAACggpQ5FK9evbqcnJwkSX5+fkpJSVGTJk3k7e2tgwcPOrxAlA8XFxeNGzdOSUlJcnd3V1RUlFatWmU598UXX+iZZ57R3Xffrfz8fN144416/fXXJRXstz1kyBDddtttqlu3rp599lllZdneYMtgMOjTTz/VhAkTNHjwYB07dkwBAQG644475O/vL0k6f/689u7dq5ycHJvzLFq0SPn5+Ro+fLiGDx9uOT5w4EAtWbJEknT8+HHLPuWS5OTkpI8++khPPfWU7rjjDnl6eqp79+56+eWXLWNq1KihDRs26KmnnlKbNm1Up04d9e3bV9OnTy/7DxYAAAAAgCrAaDRqy5YtVst8n9d5vf/j+9qds1t5wXmq3rC6ZYnzfXn7lOGaYT2JkyS/0txM0kHZDr0PS7L9WfxKoTD4HjNmjFauXKlDhw5Zzl26bzgAAACAq89gvvijq6XQpUsXDRo0SA8//LCGDh2qXbt2aeTIkXr77bd18uRJff/99+VVq12ysrLk7e2tzMxMeXl5WZ3LycnRnj171KRJE3l4eFRQhUDlVfhnJCEhQUlJSerXr59CQ0MruiwAAAAAQDnIV75Slaql3yxV3IdxOul1UoqUFCE51XeSKdBU0OldViYVBNs29vTWIUn5DniAcuDr66tjxy6svx4aGqqHHnqoSPAdGhpqCb6L+0ABHeIAAACA45WUA1+qzJ3iM2bM0OnTpyVJL774ogYMGKAnnnhCDRs21P/+9z/7KgYAAAAAAEC5MsmkQ8ZDWrtrrf4896fOBpyVwqVEQ6L2nturo65HZXQySneo4OuSa0uULtuhd4qkPMc+S3kr3AP8r7/+0rZt24oE3DNnzrQZfDs7Oys6OrpiHwAAAACAlTKH4m3atLF87+fnp/Xr1zu0IAAAAAAAABS/hLkkm8cOpx2WW5ib/Nv6K9mQrE1Jm3TAdEBZPlnKrJ2pRFOi8p3zpVbF3Mz9MsUck3XQffH3yZLOXvnzloeL9/e+dK/vkq6RCvYAd3FxKTbgJvgGAAAAri1lDsWvttTUVD377LP67LPPlJOTowYNGmjx4sVW4TwAAAAAAMC15HKB9/79+/Xmm29aLdHtU8dHZh+z1bLmrgdcZQo16XzweekWSRfvDlfvkpuWtIL3Sdne0ztZUvYVPGw5cHZ2ltFotLy3tax54X7ekhQbG1tkyfOSrmEPcAAAAKDqKHMoHhkZafnEbHEOHDhwRQVd7OTJk2rfvr06duyozz77TL6+vtq/f79q167tsHsAAAAAAABcTfHx8UUC2jp16kiSMvIzpAgVhN4xsoTfipRORJyQalrPlavc0t00WwUBt60lzjPte5arrfDvpFauXClfX98yLWves2fPYs+VdA0AAACAqqHMofioUaOs3p8/f147duzQ+vXrNXbsWEfVJUl66aWXFBoaqsWLF1uORUZGOvQeAAAAAAAAjnRpF/htt91m2Zf696TfNWPlDKmlpN6yBN4ZEX+H4fb2AeSo6LLmFy91nmH345SrwiXN69Spo4yMC0Xa28Vd0rLmts6xFDoAAABQ9ZU5FI+NjS32+Ouvv66ffvrpigu62Lp169S1a1c98MAD+vrrrxUcHKwnn3xSQ4cOtXlNbm6ucnMvfEo6KyvrsvcxmUwOqReoagr/bJRmzzUAAAAAuB6UFHgHBgYq9USqnnntGR1xO3Khy/u4pHBJd0mqK2mcHTfOVcEy5kkqvtv76BU+WAUpDLnp4gYAAABQngxmB6VdBw4cUMuWLUsVQpeWm5ubJGn06NF64IEH9OOPPyo2NlZvvPGGBg4cWOw1U6ZM0dSpU4scz8zMlJeXl9Wx/Px8/frrrwoODlZAQIDD6gaqivT0dKWmpmrPnj06fPiw+vXrp9DQ0IouCwAAAADKxeUC7+PHj2vUs6OU6pRq6fA21DPIHG6+sOS5vX+9kC8pRbaXN0+TdI18Xrmk7u+XX3652GXPAQAAAKCssrKy5O3tXWwOfKkyd4rbsmbNGvn4+DhqOkkFXapt2rTRjBkzJEmtWrXS77//XmIoPm7cOI0ePdryPisry2aIV61aNdWtW1epqamSpBo1asjJycmhzwBci0wmk7Kzs5WamqpTp06xmgIAAACAa15pAu+nn35ah9IPSSEqGnhXk9RW0n5JF/3Vgbm0SbVJ0iHZDr1TJRkd8aTlw7LneRmWOLfV/Q0AAAAAV1uZQ/FWrVrJYDBY3pvNZqWnp+vYsWOaP3++Q4sLDAzUjTfeaHWsSZMmev/9921e4+rqKldX11LfIywsTJIswTiAC06dOqUjR44oNzdX1atXt6zeAAAAAACVTUmh9/79+/Xmm28WBLdOkoIkpwZOMoWaCrq7z6ngdYsKAvG//7ak1IF3oVTZ3tf7oKTzV/qUV0dhp/fUqVPVsGFDS6AtqcxLnLNXNwAAAIDKoMyheK9evazeOzk5ydfXV9HR0brhhhscVZckqX379tq7d6/VsX379ik8PNxh9zAYDAoPD1dGRoa+//57ubi4yNPT02HzA9eqvLw8mUwm5eXl6fjx47rhhhtUq1atii4LAAAAwHWq1KG3QVKA5FTfSaYw04VlzRer4PswSS6SSXasiHVEtvf0TlHBvt+VlK0lzYvrAC/s9O7Tp0+ReYoLuZ2dnQm/AQAAAFRqDttTvDz8+OOPuu222zR16lT17dtXP/zwg4YOHapFixapf//+pZqjtGvJm81m/fTTT/rhhx907tw5VeIfC3BVVatWTWFhYerWrZs8PDwquhwAAAAAVVSpQ29J8i0m9C58DZdk7yJXGbIdeidLyrFzXgcpLsAu7bHQ0FCbS5pLxXeAAwAAAEBlVpY9xcsciqempur999/Xvn375OLiosaNG6tv376qXbv2FRVty8cff6xx48Zp//79ioyM1OjRozV06NBSX1+WH4bZbNaZM2eUnZ1NKA78zc3NTTVr1lS1amVeWAIAAADAdexye3iXGHrXLiH0jpBk7wJvmSoaeF/8/Wk753UAWx3bQ4cOvewS5qU9RtANAAAAoCopt1B8/vz5Gj16tPLy8iwTZ2Vlyd3dXW+99Zb69esns9msnTt3qlWrVlf2FA5Slh8GAAAAAACwraSg28/PT5J09OjRoiG3CpbYNhqNBW9qXrKnd4QuvEZI8razwDMqvsu78PWUnfM6WFn37AYAAAAAFFWWHLjUrZ+ffPKJRo4cqVGjRumZZ55RYGCgJCktLU2zZ8/WwIEDFRoaqvnz5+uGG26oNKE4AAAAAAAovYuD7zIF3RfzUEG4fbcsYbcx0ngh/Paxc0/vc7Ld5Z0o6XjZp7waLv05lXXPbgAAAADAlSl1p3h0dLRuv/12TZ8+vdjzEydO1Msvv6yAgABt3rxZ4eHhDi3UXnSKAwAAAACuR7bC7bJ2eBfLVQV7d1/c3X1xx7efnUXnSUqR7W7vI5Iq2W5nlwbeoaGhevnll+Xr62tz6Xg6wAEAAADgypXL8uleXl768ccf1bhx42LP7927V02aNFFSUpLCwsLKXnU5IRQHAAAAAFRVZenqvpjNDu9C1SWFqujS5oWvQfYWLOmgbIfehyV7GsjLC4E3AAAAAFRe5bJ8utFoVPXq1W2er169utzd3StVIA4AAAAAQFVTGISvXbtW77zzjo4dO1b2OWQs6PSOUPHd3sGS7Ml1TZJSZXtP71RJ+XbMWw4cGXiz5DkAAAAAVG6lDsWbNm2qtWvX6umnny72/IcffqimTZs6rDAAAAAAAGDdDV7q5c0NKujmjlDx3d6hKsPfCFwiTbZD74MqWAK9EihuH++hQ4eqYcOGBN4AAAAAcJ0p9X8CDx8+XE888YRcXV31+OOPq1q1gkvz8/O1cOFCTZw4UfPnzy+3QgEAAAAAuF6UqhvcX7ZD7zAV7Pttj2O6EHQnyTr0TpZ0zs55HcwRoTeBNwAAAABcH0q9p7gkjRkzRnPnzlXNmjVVv359mc1mHThwQNnZ2Ro5cqReeeWV8qzVLuwpDgAAAACorIrbE/zjjz/W8neW67jpuO09vSMkudt505Oyvad3kqQzds7rYI7q9AYAAAAAVE1lyYHLFIpL0vbt27Vy5Urt379fktSwYUP169dPbdu2tb/ickQoDgAAAAC4GooLuI8ePWrz+10pu/S/Tf/TUfejxYfeNe0s5LRKDr0z7Zz3Cl0achN6AwAAAACuRLmG4tcaQnEAAAAAQHkpcZnzGroQcBfX8V3LzpvmyPae3kmSTtg5rx0uDbYvdrmQm9AbAAAAAHAlCMUvQigOAAAAAHCkwiB8zadrtOLbFTrpfbL44LuunTfIVcHe3bZC76P2136lSgq6L+6CJ+QGAAAAAJS3suTA1a5STQAAAAAAXFNyjDmK/ylef+T8oXMB55Tunq5fTvyiA6YDyr8hX4q2c+LzklJke3nzNEnl/PH10nZ4lybojo6OLt9iAQAAAAC4QoTiAAAAAIDrjtFo1Katm/R75u/KD8lXulu6EkwJyq6TrTT3NCUrWdle2dKtl1wYUZrJJR2S7SXOD/89ppyVFG7T4Q0AAAAAuJ4QigMAAAAArlmFS5mnpqbq2LFj8vX1VUBAgCQp/Vi6DCEGHXE/on3n9ynHL0fpbun6I+cPpbmmyXS7SbI3+02VdXf3xaH3IRV0g18lvr6+6t+/v+69915JpQ+36fAGAAAAAFwv7ArF8/PztXnzZiUkJOjhhx9WzZo1dfjwYXl5ealGjRqOrhEAAAAAcB0qDLwv7WYu/P6jTz7S2xve1gmvEwUd3BGSaqhg6fFISXdIqm7nzY/I9p7eKSrY97uCXLqvN53dAAAAAACUrMyheHJysrp166aUlBTl5ubqrrvuUs2aNfXSSy8pNzdXb7zxRnnUCQAAAAC4DhQG4WvXrtXyd5bruI4XBNwRuvDq8/frDElz7bxRhmyH3kmSzto5bzkp7Abv2bMnITgAAAAAAGVU5lA8NjZWbdq00a+//qo6depYjvfu3VtDhw51aHEAAAAAgKrl4u5vXz9fna52WrvP7lZeUJ6+S/9O36R8o9zAXOkxSdMledp5o0wVhNzFBd5Jkk5f4YNcBQThAAAAAAA4RplD8S1btmjbtm1ycXGxOh4REaHU1FSHFQYAAAAAuDZdvM93SmaKzOFm5Yfka1vaNm1O3qzcgFypqQq6vb0uurB5GW6SreK7vAtfT13pU1wdFy+FfvES8SyLDgAAAACA45Q5FDeZTDIajUWOHzp0SDVr1nRIUQAAAACAys9oNOqLb7/Q76d/V15wntLd07Xt8Db9fuZ35QXlFYTcPhdd0KIMk5/Vha7u4rq9j195/eWhsLv73nvvlWS9B/ql3xN8AwAAAABwdZQ5FO/SpYvi4uK0aNEiSZLBYFB2draef/553X333Q4vEAAAAABwdVzc4X3s2DH5+vrKJ8hH6W7p2nN2jxKVqHP+53S67mntz9+vNJc0me8wW0/SuJQ3y5OULNvd3kclmYu/tLJhmXMAAAAAACo3g9lsLtNfMxw6dEhdu3aV2WzW/v371aZNG+3fv19169bVN998Y/nUe2WRlZUlb29vZWZmysvL6/IXAAAAAMB1oDAAT05L1r5z+7Tn7B5t+GuDsutkS5EqWNo8UlKgnTfIl3RQtkPvNEmmK3qECkUQDgAAAABAxSpLDlzmUFyS8vPztWrVKu3atUvZ2dlq3bq1+vfvL3d3d7uLLi+E4gAAAACuB8V1eQcEBMhoMGp31m79lf+XcoNyleKUohTnFCXkJ+h8yHkpWJKTHTc0SUqV7T29D0kquvPWNae45dBZ9hwAAAAAgIpXlhy4zMunS1K1atX0yCOP2FUcAAAAAODybIXckpSenq5jx46pTp06OnbimP448Yfe/+V9ZdbKvNDlHfT3a6js/C8/FXRz2wq9UySdt/fpKofL7f9N+A0AAAAAQNVQqr8aWbduXaknvO++++wuBgAAAACud0ajUS+++KLmzZunEydOFBz0l/WS5hGSmv79Gi7Jxc6bHZV10H3x98mSztk571Xm6+urfv36KTIy0urDA5eG3ATeAAAAAABcn0oVivfq1atUkxkMBhmNVWB9PAAAAABwoEu7vuvUqaOMjAzVqVNHxzOOyy3ETaYwkzYnbda639YpLzBPWq6C0DtCkr07VZ2Q7T29kyWduaLHuiq8vLw0ZMgQurkBAAAAAIDdShWKm0ym8q4DAAAAACq1koLtkl6TkpK0/JPlyqiRcaHL21lSfV14X+Pvm9wiqW8ZispS8V3eha9ZV/jQFcjHx0exsbGaMGECgTcAAAAAALgi9u4sBwAAAADXrLIG3ElJSVqxYoWOHTtW/IQ1ZL20eeTfx5r9/T7OzkJzZHtP70RJJ+2ctxLw8fHRU089paioKLq/AQAAAABAubIrFN+4caNeeeUV7dmzR5LUpEkTjRo1Sp07d3ZocQAAAABQFqUJuzdt2qS1a9de2K+7NNxVEG63UdG9vSMl1bGz4FzZ7vJOlGQjg78WlLTPN6E3AAAAAAC4msocis+fP1+xsbGKiYlRbGysJGn79u26++679corr2j48OEOLxIAAAAALic+Pl6xsbE6dOhQ2S92kRSuomF34au/nUWdl5Qi293e6ZLMds5diVza9U3oDQAAAAAAKhOD2Wwu01/BhISE6LnnntOIESOsjr/++uuaMWOGUlNTHVrglcrKypK3t7cyMzPl5eVV0eUAAAAAcKDCzvAPP/xQ8+bNsz2wmqRQFQ28C78PtrcASYdkO/ROlWSyc+4KYqvDOz09XceOHaPrGwAAAAAAVAplyYHL3Cl+6tQpdevWrcjxLl266Nlnny3rdAAAAABgUZa9vq2WQXdS8aF34WuIJHsyW5Okw7K9xPlBSfn2Pm3FuzQADw4OJuAGAAAAAABVTplD8fvuu08ffPCBxo4da3V87dq1uvfeex1WWHH+7//+T+PGjVNsbKzi4uLK9V4AAAAAHOviwPvIkSPKyMiQVLD0tp+fX8l7fRskBcg67L5NUv+/34dJqm5nYemyvad3iqQ8O+etAJfr8i78UAEBOAAAAAAAuJ6UORS/8cYb9eKLL2rz5s1q166dpII9xb/99ls988wzevXVVy1jR44c6bBCf/zxRy1cuFDNmzd32JwAAAAAHKekLu8SA+9CfpIaqPhu73BJrnYWdly2Q+9kSWftnPcq8fT01AMPPKDOnTsTcgMAAAAAANihzHuKR0ZGlm5ig0EHDhywq6hLZWdnq3Xr1po/f76mT5+uli1blrpTnD3FAQAAAPuVZjnzY8eO6dtvv9WGDRt0+vRp25P5qPilzQtfPews8pSKBt4Xf59t57wVzMfHR7GxsZowYQJBNwAAAAAAwCXKdU/xxMREuwuz1/Dhw3XPPfeoc+fOmj59+lW/PwAAAFBVGY1Gbd68WZs3b5bJZLIsZZ6RkaEDBw5o2bJlyszMLN1kXpJaqCDgjlDR0Nvez6hmq/gu78LXUpZX0S5e2vzSDxdcvNT50aNHFRgYSNc3AAAAAACAg5Q5FL/aVq1apV9++UU//vhjqcbn5uYqNzfX8j4rK6u8SgMAAAAqpeK6u48dO1bsHt6rV69WdnYpW6k9ZTvwjpRU286Cz6r4wLvw+ww75y0HJQXbtl5Z2hwAAAAAAKBilTkUN5vNWrNmjTZt2qSjR4/KZDJZnY+Pj3dYcQcPHlRsbKw2bNggNze3Ul0zc+ZMTZ061WE1AAAAAJWRrWXNy9zdfTE3FezdHaHiQ29fO4vNU8He3ba6vY/YOa8D1K5dWz179tSdd95JsA0A+H/27js8yjJt4/A16Y0kBEIKmZAAglho0hTpUUBBqujKSl3FgoBYUWmioqJswAKWXYqrgouAHUU6giJgwE+QZkIKCaFIGiEJM/P9kc3IkExIJmVC+J0cc2TmLc97v0OIyDX38wAAAACopcq9pvjEiRP1zjvvqEePHgoJCZHBYLDZv2jRokorbvXq1Ro0aJDNPzqZTCYZDAa5uLgoLy+v2D9IldQpbjQaWVMcAAAAl6WSpjc/evSoY8G3u6RI2V/TO8zBIs9LSpL90PuYpHL9X0flGT9+vJo0aULIDQAAAAAAUMtU6ZriH3zwgVauXKnbbrvN4QLLqlevXvr1119tto0ePVpXX321nnrqqRL/8crT01Oenp5VXhsAAABQGeyt6X3ixAn98MMP+vrrr3Xu3LmyDeYqKUL2Q++GklwcKNIsKVn21/ROkWRyYNwqZDQaFRsbq8GDBzu7FAAAAAAAADhZuUPxgIAANW7cuCpqKaZOnTq67rrrbLb5+vqqXr16xbYDAAAANcmF05sfP37cup53YGCgzpw5I0lKSUnRp59+WvY1vV0khcv+9OYRcuBv+P9zTPZD7yRJBQ6OW02KpkGPiYmhAxwAAAAAAAA2yv1PZjNmzNDMmTP173//W97e3lVREwAAAFDj2Qu9KzS9uSSFyn7oHSnJw8GC01U88C56niipjM3o1YW1vgEAAAAAAFBZyh2KDxs2TB9//LEaNGigqKgoubu72+zfvXt3pRVXko0bN1bp+AAAALiyXTyd+YWd3UXPf//9d61bt86x0Lu+/gq6o2QbejeS5OjnTk/L/preCZLOOjhuFahbt6769++viIgISbJOGU/IDQAAAAAAgKpQ7lB85MiR2rVrl/7+978rJCREBoOhKuoCAAAAKt2lAu8ff/yxfGt4lyRQ9tf0jpLk5+C4mSoMuS/u8i56nunguFXA19dXd955Z7EubwJvAAAAAAAAOEO5Q/GvvvpK3377rW6++eaqqAcAAAAos4unMD9x4oSSk5MVERGhoKCgyg+8pcJQ217oHS0pwMFxc2R/Te8ESX86OG4lCggI0L333qsmTZrYTGN+4sQJnTp1Si4uLurevbu6d+9O6A0AAAAAAIAao9yhuNFolL+/f1XUAgAAANgo6uxev369EhMTbcLuCk1hXhofFU5jXlKXd7Skeg6Oe07SUdkPvU84OG4lqVOnjm699VbdeOON1qnM6fAGAAAAAABAbVDuUPz111/Xk08+qYULFyoqKqoKSgIAAMCVxF7wXWmd3RfzlBQp+93eIQ6OW6DC0DtBJQffxyVZHBy7Aoq6u6Ojo3Xq1ClJrOENAAAAAACAK0u5Q/G///3vOnv2rJo0aSIfHx+5u7vb7D99+nSlFQcAAIDao6Spzrdt26YdO3ZUbvDtJsko+6F3QwfHNUlKkv3Q+5gks4NjV1BJ05oTdgMAAAAAAACFyh2Kx8bGVkEZAAAAuJwVdXtv3LhRZrNZgYGBOn36tHV975SUFK1evVpZWVkVv5iLpAjZX9O7oSRHMmCzCoPtoqA7Qbahd7Kk8w5XXWFeXl66/fbbbaY3J/gGAAAAAAAALq3cofjIkSOrog4AAADUcCV1eicnJysnJ0fffvutzp49WzkXMkgKk/3Q2yjJveRTLylN9tf0TpSU7+C4leDiNb1PnDihU6dOycXFRd27d1f37t0JvgEAAAAAAAAHlDsUv9C5c+eUn2/7L4f+/v4VKggAAADOVdIa35Xa6S1JDVQ88C563kiF63474qTsh95HJeU6OG4F+fv7KyYmRldffbUCAwN15swZSYVre4eGhtLtDQAAAAAAAFShcofiOTk5euqpp/TJJ5/o1KlTxfabTKZKKQwAAAAVU1K4HRQUpNOnTysxMVEGg0FGo9FmW1JSkn7++eeKr/EdJPtrekdJ8nFw3D9lf03vo5KyHRy3gi4MvYOCgpjeHAAAAAAAAKhByh2KP/nkk9qwYYMWLFige++9V2+99ZZSUlL0zjvv6OWXX66KGgEAAFCKC8PvhIQEGQwGnT17tnKnNL9YgEru8i76WsfBcbNVGHDb6/bOcHBcBxSt4d2xY0drZzdd3gAAAAAAAMDlp9yh+BdffKGlS5eqe/fuGj16tLp06aKmTZuqUaNG+vDDDzV8+PCqqBMAAOCKc6lOb4vFouTk5Mrp7L6Yr+yv6R0lqa6D455VYbidoOKBd4Kk4hMRVYnSAm/W8AYAAAAAAABql3KH4qdPn1bjxo0lFU4Tefr0aUnSzTffrAcffLByqwMAALhCFAXgGzdulNlsVlJSkv773/9WfthdxEuFa3fbC72DHRw3T4XTmCeo5G7vdAfHLQN/f3/16tVLvr6+1g8QEHgDAAAAAAAAKHco3rhxY8XHxysyMlJXX321PvnkE3Xo0EFffPGFAgMDq6BEAACAmu3i6cstFoskycXFpdia3SXt2759u7766ivl5+dXXlEekiJlf03vMAfHPS8pUfZD71RJFgfHLoWnp6c6duyom266ySbsZgpzAAAAAAAAAJdS7lB89OjR2rNnj7p166ann35a/fv315tvvqmCggLNnTu3KmoEAABwGnuBt1QYbFf52t32uEoyyv4U5+GSXBwY1ywpWfbX9E6RZHK46lKVFHzT2Q0AAAAAAACgogyWC/9l1wEJCQnavXu3mjZtqpYtW1ZWXZUmMzNTAQEBysjIkL+/v7PLAQAANdTF4bfBYHBe4C0VBtrhsu3uvjD0jpADH2/8n2OyH3onSSpwcNxy8Pb2Vp8+feTr66vIyEj17NmT4BsAAAAAAABAmZUnB3b0n1KtoqKiFBUVVdFhAAAAqkVJnd9JSUnasWNH5U5ffikGSSGyv6Z3pAqnQHfEcdkG3Rc+P6rCdb+rkJ+fnwYNGqSGDRsqOTnZZn1vOr8BAAAAAAAAVLcyh+Lbt2/XqVOn1K9fP+u2pUuXavr06crJydHAgQP1xhtvyNPTs0oKBQAAuFBp05qXxClTndeX/dA7SpKXg+Oekv01vY9Kqobbu7DTOyIiQvXr12dtbwAAAAAAAAA1UplD8eeff17du3e3huK//vqrxo4dq1GjRqlFixaaM2eOwsPDNWPGjKqqFQAAXEGKQu+NGzfKbDYrMDBQp0+fVmJiohITE6u/s7skdWU/8I6S5OfguBkqHnhf+DzLwXHLiTW+AQAAAAAAANQGZQ7F4+LiNGvWLOvrZcuWqWPHjnrvvfckSUajUdOnTycUBwAAZVJap7dTpjMvSR2VHHoXfQ1wcNwc2V/TO17SGQfHLUVRZ/eNN95o/XCBwWCQ0WhUUFCQzbZGjRqxxjcAAAAAAACAWqPMofiff/6pkJAQ6+tNmzapb9++1tft27dXUlJS5VYHAAAua/aC7xoTevvItrP74tC7noPjnlPx7u4Lv550cNxL8PT0VIcOHRQZGSmj0ciU5gAAAAAAAACgcoTiISEhio+Pl9FoVH5+vnbv3q2ZM2da92dlZcnd3b1KigQAADXPpdb0rhHBt6ekRrLf7d3AwXHzJSXKfrf3cUmlL3Febh4eHrr99tttOr0tFotcXFzo7AYAAAAAAACAUpQ5FL/tttv09NNP65VXXtHq1avl4+OjLl26WPfv3btXTZo0qZIiAQBAzWEymTRr1iy98sorOnfunHOLcZdklP3QO9zBcU2SkmQ/9D4myezg2GXg5eWlO++8U0ajkTW8AQAAAAAAAKCCyhyKz5o1S4MHD1a3bt3k5+enJUuWyMPDw7r/3//+t2699dYqKRIAAFSPkrq/zWazTp48qdzcXGVlZWn//v06f/589RTkKqmh7K/p3fB/x5SXWVKKbIPuC58nS3LwFr28vNSuXTtroH3xmt1FHfUX70tOTlZkZCQd3wAAAAAAAABQyQyWi+c6vYSMjAz5+fkV+4fa06dPy8/PzyYorwkyMzMVEBCgjIwM+fv7O7scAACq3aWmOS/ilOnODZLCZD/0NqqwG9wRqbK/pneSCqdAL6cLA2/pr2CbtbsBAAAAAAAAoHqVJwcuc6d4kYCAgBK3BwUFlXcoAADggPz8fL355pvavHmzcnJyVL9+fRkMhmLHmc1m7du3r3o7u0sSItug+8LnjVS47rcjTsh+6H1UUgVmdnd3d1enTp3UuXNnAm8AAAAAAAAAuMyVOxQHAABVz1539y+//KLff//dydVdpJ7sr+kdJcnbwXH/lP01vY9KynZw3AtcPNV5o0aNmL4cAAAAAAAAAGoZQnEAAJzswgD8jz/+0G+//eb87u4LBaj00LuOg+NmyX7onSApo+xDubu7q2PHjtZpzUvCVOcAAAAAAAAAcGUiFAcAoBpdPPV5bm6ufv755+pdx/tivrIfeEdJquvguGdlf3rzBEmnyz6Ul5eX7rzzTjVs2FCJiYmyWCx0dgMAAAAAAAAAyoRQHACASmYymbRu3TotWbJECQkJ8vb2VnBwsOLi4pwz9bmXiq/lfeHX+g6Om6fCaczthd7pZR+qpE5vQm8AAAAAAAAAQGUgFAcAwEElhd/nzp3TTz/9VL1Tn3tIipT90DvUwXELJCXqr+nMLw69UyVZyj7cxcE3oTcAAAAAAAAAoDoQigMAUIqL1/s+ceKEcnNzlZWVVX3rfrtJipD9Kc7DJbk4MK5JUrLsT3F+7H/HlIGLi4tuuummYmt6E3wDAAAAAAAAAJytxofis2fP1sqVK/X777/L29tbN910k1555RU1b97c2aUBAGqRksLv5ORkHTlypOqDbxdJDWV/inOjJEez5BTZD72TVdgNXgHe3t568sknNXXqVAJvAAAAAAAAAECNVOND8U2bNunhhx9W+/btdf78eT3zzDO69dZbtW/fPvn6+jq7PADAZcTeWt9JSUlVO+W5QYVTmEep5G7vSEnuDo59XMUD76LniSpc99tBRdOdN2zYUCdPnlRubq68vb0VEhKiqKgour8BAAAAAAAAAJcFg8ViKcdqoM534sQJNWjQQJs2bVLXrl0veXxmZqYCAgKUkZEhf3//aqgQAFDd7E1x7u3trXr16unUqVNKTk7WoUOHZDabq6aIYNkPvRtJ8nJw3FMqucs74X+P3PINZ2+a8wv3M905AAAAAAAAAKCmK08OXOM7xS+WkZEhSQoKCipxf15envLy/mqLy8zMrJa6AADV48IAPCEhQUePHq3aLu8idVU88L7wuaOTl2SoMOQuKfBOkJRV+umurq7q1KmTIiMji+0zm806efKkzp07p6ioKI0cOVI9e/Yk6AYAAAAAAAAAXFEuq1DcbDZr0qRJ6ty5s6677roSj5k9e7ZmzpxZzZUBACpbta/xXUcld3kXfXV0spEclRx6F309c+khLu7uppsbAAAAAAAAAICyu6ymT3/wwQf1zTffaOvWrYqIiCjxmJI6xY1GI9OnA0ANc3HHt8lksq5bnZmZqd9//71yw28fFe/uvvBryROQXNo5lRx2F309Wb7h3NzcdPXVVysgIIDubgAAAAAAAAAA7KiV06ePHz9eX375pTZv3mw3EJckT09PeXp6VmNlAIALmUwmrVu3TkuWLFFCQoK8vAoX0z537pz1eUpKSuV3fHuqcO1ue93eDRwcN1/SUdkPvtMlOfjxsqKpz6Oiouj8BgAAAAAAAACgitT4UNxiseiRRx7RqlWrtHHjRkVHRzu7JAC44tgLunNzc61ht7e3t9LT07Vv3z6ZzebKL8JdklH2Q+9wB8c9LylJ9kPvVEkVuB0XFxddc801uu6662QwGJj6HAAAAAAAAACAalbjQ/GHH35YH330kT777DPVqVNHaWlpkqSAgAB5e3s7uToAqD2KpjP//vvv9fPPPys3N1deXl5VG3RfyFVShGyD7gufN/zfMeVllpSiv4LuBNmG3smSTI4W/ZcLw29XV1eCbwAAAAAAAAAAaogav6a4wWAocfuiRYs0atSoS55fnrnkAaA2shd2S391eufk5OiPP/6o3OnML2ZQYTd3lEru9jbK8Y9qpcr+mt6JkgocHPciRet9+/v7y9vbWyEhIYqKiiL8BgAAAAAAAACgmtWqNcVreGYPAE534dTm8fHxxaYz//3336s27L5QiOyH3pEqXPfbEekqucs7QYXrfZ9zcNxSGI1GGY1G+fj4qH379urVqxfBNwAAAAAAAAAAl6EaH4oDwJUuPz9fb775pjZt2qTk5GR5enpal49ITk7W4cOHq35q8yL1ZH9N7yhJjq5qcVr21/Q+KinHwXFLceF05xaLRadOnZKvr6+6dOmiRx55RB4eHpV/UQAAAAAAAAAAUO0IxQGgBiip29vT01N//PGH0tPTq6+QAJUeetdxcNwsFQbc9qY4z3RwXDuKury9vb1Vr149nTp1Srm5uXR9AwAAAAAAAABwBSIUB4AqZC/szsvLs37Nycmpvm5vP9mf3jxKUqCD456V/cA7QYWd4FXE1dVV11xzjRo3bkyXNwAAAAAAAAAAKIZQHAAqycXTnGdnZ1fv1OZS4fTljWQ/9K7v4Lh5sr+md7ykEw6OWw4Xdn+HhIQoKipKPXv2pOMbAAAAAAAAAACUilAcAMrh4uDbw8NDeXl5SktLU2pqatUX4KHC0DtKJYfeoQ6OWyApUfZD7zRJFgfHLiNXV1e1aNFC/v7+8vLyksFgkJ+fH93fAAAAAAAAAACgQgjFAeB/7AXenp6eOnfunJKSknTq1KmqLcJNklH2pzgPk+TiwLgmScmyP8V5iqQqaGg3GAy65pprFBISonPnzsnLy0uSdO7cOTq+AQAAAAAAAABAtSAUB3BFM5lM2rhxo5555hnt2LGj6i/oIqmh7IfeEZIczYVTZD/0TpJ03sFxL3Jh0J2bm2sNu729vSVJeXl5ioqK0siRI9WzZ0+CbgAAAAAAAAAA4FSE4gCuOPn5+Zo/f77ef/99HTp0qHLX/DaocArziwPvoueRktwdHDtNJQfeCZKOSsp3cFw7XFxc1KJFC4WEhBB0AwAAAAAAAACAyxahOIBapyj0XrVqlc6cOSNPT8/KnQI9WCV3eUepcL1vLwfHPSn7a3oflZTr4LgXuTDsvrDT28fHh+nMAQAAAAAAAABArUMoDuCyduE64ElJSUpMTKx46F1X9kPvKEm+Do57RiV3eRc9z3Zw3IsEBweradOm1unMz507Jx8fH7Vv3169evUi7AYAAAAAAAAAAFcUQnEANZ7JZNK6deu0ZMkSxcfHKzc3V/n5+Tp+/LhjAbi/7K/pHfW//Y7Ilv01veMlZTg47kWuuuoqGY1GSVJubq7y8vIUERGhrl276pFHHpGHh0flXAgAAAAAAAAAAKAWIBQH4DRFYfeiRYv066+/ymKxyMPDQ/n5hYtje3h46OTJk0pJSZHFYin7wD4qPfQOcrDgXBXv7r7wawUb1C8UHBysJk2aKC8vT97e3oqOjmY9bwAAAAAAAAAAAAcQigOoMheG3nv37lVOTo58fHzk6enpWNhdxEuFa3dHyXZa86LnDRwsOF+Fa3fb6/Y+7uC4F7gw7Pb09LR+zc/Pp9sbAAAAAAAAAACgChCKA3CIyWTSxo0b9f3332vHjh1KS0uzCb1PnDihY8eOORZ6u0uKlP1u7zAHiz4vKUn2Q+9jkhwo157Q0FCFh4cTdgMAAAAAAAAAADgRoTiAS8rPz9f8+fO1atUqnTlzRmfPnlViYqLMZrNjA7pKilDJXd7RkhpKcnFgXLOkZNkG3Rc+T5Zkcqxke5o2bao6derQ7Q0AAAAAAAAAAFBDEYoDV7Ci6c2XLFmi+Ph45ebmKi8vTzk5OTIYDPLx8dHJkyd14sSJ8g3sosJubntrehvl+E+fY7K/pneSpAIHxy1BaGiowsLC5OnpqXPnzik/P18uLi5q2bKlRo0axfreAAAAAAAAAAAAlwFCcaCWung97+zsbGvQXeHpzSUpRPZD70aSHG2STlfJXd7xkhIlnXNw3DJyd3fXPffco3fffZdObwAAAAAAAAAAgFqAUBy4zF0cfufk5Oj8+fNKTU11fHpzSaov+2t6N5Lk7eC4p2V/Te8ESWcdHLcCrrvuOvXv31+9evVS9+7d6f4GAAAAAAAAAACoRQjFgRqspMC7qNM7Ly9PJ06c0KlTpxzr9g6U/dA7SpKfg0VnqvTQO9PBcSugUaNGCgsLYwp0AAAAAAAAAACAKxChOOBkJU1zLklnz551PPCWCkPtooA7SsVD70AHC86R/TW9EyT96eC4lSQoKEjh4eGE3gAAAAAAAAAAAJBEKA5Umfz8fM2fP18rV65USkpKicfk5ubq5MmTjgXf3rIfeEdLqudA0VLhmt1HZT/0PuHguJWsYcOGCggIkJeXlyIiItS1a1c98sgjrAMOAAAAAAAAAAAAG4TiQDnY6+q+2J9//qmsrKyKXcxDhWt3R6nk0DvEwXELVBh6J6jk0DtNkoPN6ZUhMjJSfn6Fc7d7eHgoPz9fBoNBoaGh6tChA+t+AwAAAAAAAAAAoFwIxQE7Lu70rvB05hdzk2RU8cC76HlDB8c1SUqS/SnOj0kyOzh2BdWpU0cRERHy9PQk7AYAAAAAAAAAAEC1IBTHFcne1OYWi0Xnzp1TVlaWzp07V7GLuKgw2C6pyztKUoQkR/JfswqD7QSVHHonSzrvcNUVUr9+fQUHB8vT01N5eXnKzc1VeHi4Bg0apAkTJjC1OQAAAAAAAAAAAKodoThqLXvBd6VMbS5JBklhKjnwjpIUKcndwbHTZH9N70RJ+Q6OW0nq1aunkJAQubi4qGXLlho1apR69uxJlzcAAAAAAAAAAABqHEJx1AoXB+CVFnw3kP01vRtJ8nRw3JOyH3oflZTr4LiVIDw8XG5ubjIYDPLx8ZGnp6cKCgoUGBiogQMH0vENAAAAAAAAAACAywqhOC4rF4bfycnJFZ/qPEj2Q+8oST4OFvqnSg68ix7ZDo5bQRdPb3727Fn5+fmpVatWdHsDAAAAAAAAAACgViIUR42Rm5urRx99VOvWrVNGRoa8vLxkMBgqts63v+wH3lH/2++IbBUG3fa6vTMcHLeSNGzYUA0aNJC3t7eio6M1cuRIAm8AAAAAAAAAAABckQjFUSVMJpPWrVunRYsWac+ePTp58qRMJpNcXV3l5eUlSTp37px1m8Pd3r76K+AuKfyu6+AN5KrksLvo6ykHx60EDRs2VHBwsPLy8pSTkyODwUC3NwAAAAAAAAAAAGAHoTgcUlrobTabdepUJaXGXipcu/vC7u4LQ+9gB8fNU+Ha3QkqOfhOd3DcSlKvXj35+voSeAMAAAAAAAAAAAAVdFmE4m+99ZbmzJmjtLQ0tWrVSm+88YY6dOjg7LKuWCtXrtTIkSOVnV0JC2O7S4qU/SnOwxwc97ykRNkPvVMlWRwc20F+fn4KCgqy2WYwGOTr66uwsDB16NBBvXr1Uvfu3Qm+AQAAAAAAAAAAgEpS40Px5cuXa/LkyVq4cKE6duyo2NhY9e7dWwcOHFCDBg2cXd4VZ+XKlRoyZEjZT3CVFCH7oXdDSS4OFGKWlKzigXfR8xRJJgfGdUBRV/fFXFxcFB4erkGDBmnChAny8PConoIAAAAAAAAAAAAAWBksFks198uWT8eOHdW+fXu9+eabkiSz2Syj0ahHHnlETz/99CXPz8zMVEBAgDIyMuTv71/V5dZqJpNJkZGROnbs2F8bXSSFy/6a3hFy/KMXx2R/Te8kSQUOjusgPz8/1atXj+nMAQAAAAAAAAAAACcrTw5cozvF8/PztWvXLk2ZMsW6zcXFRTExMdq+fXuJ5+Tl5SkvL8/6OjMzs8rrvFJs2bLlr0C8nqQfVTj1uaMN0MdVcpd3ggrX+84r+bSqUDS1ucVi0blz52QymeTu7q7GjRtr8ODBdHoDAAAAAAAAAAAAl6kaHYqfPHlSJpNJISEhNttDQkL0+++/l3jO7NmzNXPmzOoo74qTmpr614s/delA/JTsr+l9VNLZqqiydEVTnTO1OQAAAAAAAAAAAHBlqNGhuCOmTJmiyZMnW19nZmbKaDQ6saLaIyws7K8XZkn/p8I1w+1NcZ5VvfVdiKnOAQAAAAAAAAAAAEg1PBSvX7++XF1ddfz4cZvtx48fV2hoaInneHp6ytPTszrKu+J06dJF4eHhf02hfoNz65EkLy8v+fj4MNU5AAAAAAAAAAAAgBLV6FDcw8NDN9xwg9atW6eBAwdKksxms9atW6fx48c7t7grkKurq9544w0NGTKkWq7HOt8AAAAAAAAAAAAAKqpGh+KSNHnyZI0cOVLt2rVThw4dFBsbq5ycHI0ePdrZpV2RBg8erE8//VQjR45UdnZ2uc719fWVj4+PvLy8JMkadLu6usrLy0uurq6s8w0AAAAAAAAAAACgUtX4UPyuu+7SiRMnNG3aNKWlpal169Zas2aNQkJCnF3aFWvw4MEaMGCA1q1bp0WLFmnPnj06efKkNeD29PRUfn6+3N3ddfXVV+uJJ55QTEwM63kDAAAAAAAAAAAAqHYGi8VicXYRVSkzM1MBAQHKyMiQv7+/s8sBAAAAAAAAAAAAAFRQeXJgl2qqCQAAAAAAAAAAAACAakcoDgAAAAAAAAAAAACotQjFAQAAAAAAAAAAAAC1FqE4AAAAAAAAAAAAAKDWcnN2AVXNYrFIKlxoHQAAAAAAAAAAAABw+SvKf4vy4NLU+lA8KytLkmQ0Gp1cCQAAAAAAAAAAAACgMmVlZSkgIKDUYwyWskTnlzGz2axjx46pTp06MhgMzi6nVsnMzJTRaFRSUpL8/f2dXQ4AOB0/FwHAFj8XAaA4fjYCgC1+LgKALX4uAmVnsViUlZWl8PBwubiUvmp4re8Ud3FxUUREhLPLqNX8/f35wQwAF+DnIgDY4uciABTHz0YAsMXPRQCwxc9FoGwu1SFepPTIHAAAAAAAAAAAAACAyxihOAAAAAAAAAAAAACg1iIUh8M8PT01ffp0eXp6OrsUAKgR+LkIALb4uQgAxfGzEQBs8XMRAGzxcxGoGgaLxWJxdhEAAAAAAAAAAAAAAFQFOsUBAAAAAAAAAAAAALUWoTgAAAAAAAAAAAAAoNYiFAcAAAAAAAAAAAAA1FqE4gAAAAAAAAAAAACAWotQHA556623FBUVJS8vL3Xs2FE7duxwdkkA4DSzZ89W+/btVadOHTVo0EADBw7UgQMHnF0WANQYL7/8sgwGgyZNmuTsUgDAaVJSUvT3v/9d9erVk7e3t66//nrt3LnT2WUBgNOYTCZNnTpV0dHR8vb2VpMmTTRr1ixZLBZnlwYA1WLz5s3q37+/wsPDZTAYtHr1apv9FotF06ZNU1hYmLy9vRUTE6NDhw45p1igFiAUR7ktX75ckydP1vTp07V79261atVKvXv3Vnp6urNLAwCn2LRpkx5++GH9+OOPWrt2rQoKCnTrrbcqJyfH2aUBgNP9/PPPeuedd9SyZUtnlwIATvPnn3+qc+fOcnd31zfffKN9+/bp9ddfV926dZ1dGgA4zSuvvKIFCxbozTff1P79+/XKK6/o1Vdf1RtvvOHs0gCgWuTk5KhVq1Z66623Stz/6quvav78+Vq4cKF++ukn+fr6qnfv3jp37lw1VwrUDgYLH71DOXXs2FHt27fXm2++KUkym80yGo165JFH9PTTTzu5OgBwvhMnTqhBgwbatGmTunbt6uxyAMBpsrOz1bZtW7399tt64YUX1Lp1a8XGxjq7LACodk8//bR++OEHbdmyxdmlAECN0a9fP4WEhOhf//qXdduQIUPk7e2t//znP06sDACqn8Fg0KpVqzRw4EBJhV3i4eHheuyxx/T4449LkjIyMhQSEqLFixfr7rvvdmK1wOWJTnGUS35+vnbt2qWYmBjrNhcXF8XExGj79u1OrAwAao6MjAxJUlBQkJMrAQDnevjhh3X77bfb/N0RAK5En3/+udq1a6c777xTDRo0UJs2bfTee+85uywAcKqbbrpJ69at08GDByVJe/bs0datW9W3b18nVwYAzhcfH6+0tDSb/58OCAhQx44dyWIAB7k5uwBcXk6ePCmTyaSQkBCb7SEhIfr999+dVBUA1Bxms1mTJk1S586ddd111zm7HABwmmXLlmn37t36+eefnV0KADjdH3/8oQULFmjy5Ml65pln9PPPP2vChAny8PDQyJEjnV0eADjF008/rczMTF199dVydXWVyWTSiy++qOHDhzu7NABwurS0NEkqMYsp2gegfAjFAQCoRA8//LD+7//+T1u3bnV2KQDgNElJSZo4caLWrl0rLy8vZ5cDAE5nNpvVrl07vfTSS5KkNm3a6P/+7/+0cOFCQnEAV6xPPvlEH374oT766CNde+21iouL06RJkxQeHs7PRgAAUOmYPh3lUr9+fbm6uur48eM2248fP67Q0FAnVQUANcP48eP15ZdfasOGDYqIiHB2OQDgNLt27VJ6erratm0rNzc3ubm5adOmTZo/f77c3NxkMpmcXSIAVKuwsDBdc801NttatGihxMREJ1UEAM73xBNP6Omnn9bdd9+t66+/Xvfee68effRRzZ4929mlAYDTFeUtZDFA5SEUR7l4eHjohhtu0Lp166zbzGaz1q1bpxtvvNGJlQGA81gsFo0fP16rVq3S+vXrFR0d7eySAMCpevXqpV9//VVxcXHWR7t27TR8+HDFxcXJ1dXV2SUCQLXq3LmzDhw4YLPt4MGDatSokZMqAgDnO3v2rFxcbP952tXVVWaz2UkVAUDNER0drdDQUJssJjMzUz/99BNZDOAgpk9HuU2ePFkjR45Uu3bt1KFDB8XGxionJ0ejR492dmkA4BQPP/ywPvroI3322WeqU6eOdV2fgIAAeXt7O7k6AKh+derU0XXXXWezzdfXV/Xq1Su2HQCuBI8++qhuuukmvfTSSxo2bJh27Nihd999V++++66zSwMAp+nfv79efPFFRUZG6tprr9Uvv/yiuXPnasyYMc4uDQCqRXZ2tg4fPmx9HR8fr7i4OAUFBSkyMlKTJk3SCy+8oKuuukrR0dGaOnWqwsPDNXDgQOcVDVzGDBaLxeLsInD5efPNNzVnzhylpaWpdevWmj9/vjp27OjssgDAKQwGQ4nbFy1apFGjRlVvMQBQQ3Xv3l2tW7dWbGyss0sBAKf48ssvNWXKFB06dEjR0dGaPHmy7rvvPmeXBQBOk5WVpalTp2rVqlVKT09XeHi4/va3v2natGny8PBwdnkAUOU2btyoHj16FNs+cuRILV68WBaLRdOnT9e7776rM2fO6Oabb9bbb7+tZs2aOaFa4PJHKA4AAAAAAAAAAAAAqLVYUxwAAAAAAAAAAAAAUGsRigMAAAAAAAAAAAAAai1CcQAAAAAAAAAAAABArUUoDgAAAAAAAAAAAACotQjFAQAAAAAAAAAAAAC1FqE4AAAAAAAAAAAAAKDWIhQHAAAAAAAAAAAAANRahOIAAAAAAAAAAAAAgFqLUBwAAAAAUGts3LhRBoNBZ86ccXYp5WIwGLR69epKGy8qKkqxsbGVNp6zJCQkyGAwKC4uTtLl+/sLAAAAAHAuQnEAAAAAwGXBYDCU+pgxY4azS7ykGTNmqHXr1sW2p6amqm/fvtVay+nTpzVp0iQ1atRIHh4eCg8P15gxY5SYmFitdRQZNWqUBg4caLPNaDQqNTVV1113nVNqAgAAAADUDm7OLgAAAAAAgLJITU21Pl++fLmmTZumAwcOWLf5+flp586dzihN+fn58vDwcPj80NDQSqzm0k6fPq1OnTrJw8NDCxcu1LXXXquEhAQ999xzat++vbZv367GjRtXa00lcXV1rfb3BgAAAABQ+9ApDgAAAAC4LISGhlofAQEBMhgMNtv8/Pysx+7atUvt2rWTj4+PbrrpJpvwXJI+++wztW3bVl5eXmrcuLFmzpyp8+fPW/cnJiZqwIAB8vPzk7+/v4YNG6bjx49b9xd1fL///vuKjo6Wl5eXJOnMmTP6xz/+oeDgYPn7+6tnz57as2ePJGnx4sWaOXOm9uzZY+1uX7x4saTi06cnJyfrb3/7m4KCguTr66t27drpp59+kiQdOXJEAwYMUEhIiPz8/NS+fXt9//335Xovn332WR07dkzff/+9+vbtq8jISHXt2lXffvut3N3d9fDDD1uPLWkq9tatW9t05s+dO1fXX3+9fH19ZTQa9dBDDyk7O9u6f/HixQoMDNS3336rFi1ayM/PT3369LF+0GHGjBlasmSJPvvsM+t7s3HjxmLTp5dk69at6tKli7y9vWU0GjVhwgTl5ORY97/99tu66qqr5OXlpZCQEA0dOrRc7xUAAAAA4PJHKA4AAAAAqHWeffZZvf7669q5c6fc3Nw0ZswY674tW7ZoxIgRmjhxovbt26d33nlHixcv1osvvihJMpvNGjBggE6fPq1NmzZp7dq1+uOPP3TXXXfZXOPw4cP69NNPtXLlSmtoe+eddyo9PV3ffPONdu3apbZt26pXr146ffq07rrrLj322GO69tprlZqaqtTU1GJjSlJ2dra6deumlJQUff7559qzZ4+efPJJmc1m6/7bbrtN69at0y+//KI+ffqof//+ZZ723Gw2a9myZRo+fHixLmxvb2899NBD+vbbb3X69Okyv98uLi6aP3++fvvtNy1ZskTr16/Xk08+aXPM2bNn9dprr+mDDz7Q5s2blZiYqMcff1yS9Pjjj2vYsGHWoDw1NVU33XTTJa975MgR9enTR0OGDNHevXu1fPlybd26VePHj5ck7dy5UxMmTNDzzz+vAwcOaM2aNeratWuZ7wsAAAAAUDswfToAAAAAoNZ58cUX1a1bN0nS008/rdtvv13nzp2Tl5eXZs6cqaefflojR46UJDVu3FizZs3Sk08+qenTp2vdunX69ddfFR8fL6PRKElaunSprr32Wv38889q3769pMIp05cuXarg4GBJhR3LO3bsUHp6ujw9PSVJr732mlavXq0VK1bo/vvvl5+fn9zc3EqdEvyjjz7SiRMn9PPPPysoKEiS1LRpU+v+Vq1aqVWrVtbXs2bN0qpVq/T5559bw+DSnDhxQmfOnFGLFi1K3N+iRQtZLBYdPnxYHTp0uOR4kjRp0iTr86ioKL3wwgt64IEH9Pbbb1u3FxQUaOHChWrSpIkkafz48Xr++eclFU597+3trby8vHJNlz579mwNHz7cev2rrrpK8+fPV7du3bRgwQIlJibK19dX/fr1U506ddSoUSO1adOmzOMDAAAAAGoHQnEAAAAAQK3TsmVL6/OwsDBJUnp6uiIjI7Vnzx798MMP1s5wSTKZTDp37pzOnj2r/fv3y2g0WgNxSbrmmmsUGBio/fv3W0PxRo0aWQNxSdqzZ4+ys7NVr149m1pyc3N15MiRMtceFxenNm3aWAPxi2VnZ2vGjBn66quvlJqaqvPnzys3N7fMneJFLBZLqfvLs0b6999/r9mzZ+v3339XZmamzp8/b30/fXx8JEk+Pj7WQFwq/H1JT08vV80X27Nnj/bu3asPP/zQus1ischsNis+Pl633HKLGjVqpMaNG6tPnz7q06ePBg0aZK0JAAAAAHBlIBQHAAAAANQ67u7u1ucGg0GSbKYfnzlzpgYPHlzsvKK1wcvC19fX5nV2drbCwsK0cePGYscGBgaWeVxvb+9S9z/++ONau3atXnvtNTVt2lTe3t4aOnSo8vPzyzR+cHCwNeAvyf79++Xm5qbo6GhJhVOjXxygFxQUWJ8nJCSoX79+evDBB/Xiiy8qKChIW7du1dixY5Wfn28NoC/8PZEKf18uFcxfSnZ2tsaNG6cJEyYU2xcZGSkPDw/t3r1bGzdu1Hfffadp06ZpxowZ+vnnn8v1ewIAAAAAuLwRigMAAAAAriht27bVgQMHbKYkv1CLFi2UlJSkpKQka7f4vn37dObMGV1zzTWljpuWliY3NzdFRUWVeIyHh4dMJlOp9bVs2VLvv/++Tp8+XWK3+A8//KBRo0Zp0KBBkgqD4YSEhFLHvJCLi4uGDRumDz/8UM8//7zNdOW5ubl6++23NWjQIAUEBEgqDNFTU1Otx2RmZio+Pt76eteuXTKbzXr99dfl4uIiSfrkk0/KXE+Rsrw3F2vbtq327dtn9/dSktzc3BQTE6OYmBhNnz5dgYGBWr9+fYkfigAAAAAA1E4uzi4AAAAAAIDqNG3aNC1dulQzZ87Ub7/9pv3792vZsmV67rnnJEkxMTG6/vrrNXz4cO3evVs7duzQiBEj1K1bN7Vr187uuDExMbrxxhs1cOBAfffdd0pISNC2bdv07LPPaufOnZIK19uOj49XXFycTp48qby8vGLj/O1vf1NoaKgGDhyoH374QX/88Yc+/fRTbd++XVLhutkrV65UXFyc9uzZo3vuucfaBV9WL774okJDQ3XLLbfom2++UVJSkjZv3qzevXvLxcVF8+bNsx7bs2dPffDBB9qyZYt+/fVXjRw5Uq6urtb9TZs2VUFBgd544w398ccf+uCDD7Rw4cJy1VP03uzdu1cHDhzQyZMnbbrR7Xnqqae0bds2jR8/XnFxcTp06JA+++wz69rqX375pebPn6+4uDgdPXpUS5culdlsVvPmzctdHwAAAADg8kUoDgAAAAC4ovTu3VtffvmlvvvuO7Vv316dOnXSP//5TzVq1EhS4bTen332merWrauuXbsqJiZGjRs31vLly0sd12Aw6Ouvv1bXrl01evRoNWvWTHfffbeOHj2qkJAQSdKQIUPUp08f9ejRQ8HBwfr444+LjePh4aHvvvtODRo00G233abrr79eL7/8sjWInjt3rurWraubbrpJ/fv3V+/evdW2bdtyvQf169fXjz/+qB49emjcuHGKjo5Wt27dZDKZFBcXZ12HXZKmTJmibt26qV+/frr99ts1cOBAm7XBW7Vqpblz5+qVV17Rddddpw8//FCzZ88uVz2SdN9996l58+Zq166dgoOD9cMPP1zynJYtW2rTpk06ePCgunTpojZt2mjatGkKDw+XVDht/cqVK9WzZ0+1aNFCCxcu1Mcff6xrr7223PUBAAAAAC5fBktFF/ACAAAAAACXvX/961966KGHtHz5cg0cONDZ5QAAAAAAUGnoFAcAAAAAABo7dqyWLVum/fv3Kzc319nlAAAAAABQaegUBwAAAAAAAAAAAADUWnSKAwAAAAAAAAAAAABqLUJxAAAAAAAAAAAAAECtRSgOAAAAAAAAAAAAAKi1CMUBAAAAAAAAAAAAALUWoTgAAAAAAAAAAAAAoNYiFAcAAAAAAAAAAAAA1FqE4gAAAAAAAAAAAACAWotQHAAAAAAAAAAAAABQaxGKAwAAAAAAAAAAAABqLUJxAAAAAAAAAAAAAECtRSgOAAAAAAAAAAAAAKi1CMUBAAAAAAAAAAAAALUWoTgAAAAAAAAAAAAAoNYiFAcAAAAAAAAAAAAA1FqE4gAAAAAAAAAAAACAWotQHAAAAAAAAAAAAABQaxGKAwAAAAAAAAAAAABqLUJxAAAAAAAAAAAAAECtRSgOAAAAAAAAAAAAAKi1CMUBAAAAAAAAAAAAALUWoTgAAAAAAAAAAAAAoNYiFAcAAAAAAAAAAAAA1FqE4gAAAAAAAAAAAACAWotQHAAAAAAAAAAAAABQaxGKAwAAAAAAAAAAAABqLUJxAAAAAAAAAAAAAECtRSgOAAAAAAAAAAAAAKi1CMUBAAAAAAAAAAAAALUWoTgAAAAAAFe4xYsXy2AwKCEhwdmlAAAAAABQ6QjFAQAAAAA1TlFIW/Tw8vJSeHi4evfurfnz5ysrK8vhsbdt26YZM2bozJkzlVdwBbz99ttavHhxuc45d+6c/vnPf6pjx44KCAiQl5eXmjVrpvHjx+vgwYNVU2gtsWDBAt15552KjIyUwWDQqFGjnF0SAAAAAKCKuTm7AAAAAAAA7Hn++ecVHR2tgoICpaWlaePGjZo0aZLmzp2rzz//XC1btiz3mNu2bdPMmTM1atQoBQYGVn7R5fT222+rfv36ZQ5nT548qT59+mjXrl3q16+f7rnnHvn5+enAgQNatmyZ3n33XeXn51dt0ZexV155RVlZWerQoYNSU1OdXQ4AAAAAoBoQigMAAAAAaqy+ffuqXbt21tdTpkzR+vXr1a9fP91xxx3av3+/vL29nVhh9Rs1apR++eUXrVixQkOGDLHZN2vWLD377LNOquzysGnTJmuXuJ+fn7PLAQAAAABUA6ZPBwAAAABcVnr27KmpU6fq6NGj+s9//mPdvnfvXo0aNUqNGzeWl5eXQkNDNWbMGJ06dcp6zIwZM/TEE09IkqKjo63Tsxetpb1o0SL17NlTDRo0kKenp6655hotWLCgWA07d+5U7969Vb9+fXl7eys6OlpjxoyxOcZsNis2NlbXXnutvLy8FBISonHjxunPP/+0HhMVFaXffvtNmzZtstbSvXt3u/f+008/6auvvtLYsWOLBeKS5Onpqddee81m2/r169WlSxf5+voqMDBQAwYM0P79++2/wf9jMBg0Y8aMYtujoqJsutqLprrfunWrJkyYoODgYAUGBmrcuHHKz8/XmTNnNGLECNWtW1d169bVk08+KYvFYj0/ISFBBoNBr732mt599101adJEnp6eat++vX7++edL1llejRo1ksFgqPRxAQAAAAA1F53iAAAAAIDLzr333qtnnnlG3333ne677z5J0tq1a/XHH39o9OjRCg0N1W+//aZ3331Xv/32m3788UcZDAYNHjxYBw8e1Mcff6x//vOfql+/viQpODhYUuF609dee63uuOMOubm56YsvvtBDDz0ks9mshx9+WJKUnp6uW2+9VcHBwXr66acVGBiohIQErVy50qbGcePGafHixRo9erQmTJig+Ph4vfnmm/rll1/0ww8/yN3dXbGxsXrkkUfk5+dn7fAOCQmxe9+ff/659f7L4vvvv1ffvn3VuHFjzZgxQ7m5uXrjjTfUuXNn7d69W1FRUWV/0y/hkUceUWhoqGbOnKkff/xR7777rgIDA7Vt2zZFRkbqpZde0tdff605c+bouuuu04gRI2zO/+ijj5SVlaVx48bJYDDo1Vdf1eDBg/XHH3/I3d290uoEAAAAAFx5CMUBAAAAAJediIgIBQQE6MiRI9ZtDz30kB577DGb4zp16qS//e1v2rp1q7p06aKWLVuqbdu2+vjjjzVw4MBiofCmTZtspmMfP368+vTpo7lz51pD8W3btunPP//Ud999ZzO1+wsvvGB9vnXrVr3//vv68MMPdc8991i39+jRQ3369NF///tf3XPPPRo4cKCee+451a9fX3//+98ved9FHd7XX399Gd4l6YknnlBQUJC2b9+uoKAgSdLAgQPVpk0bTZ8+XUuWLCnTOGUREhKir7/+WgaDQQ899JAOHz6sOXPmaNy4cdZu+/vvv19RUVH697//XSwUT0xM1KFDh1S3bl1JUvPmzTVgwAB9++236tevX6XVCQAAAAC48jB9OgAAAADgsuTn56esrCzr6wvD7HPnzunkyZPq1KmTJGn37t1lGvPCMTIyMnTy5El169ZNf/zxhzIyMiRJgYGBkqQvv/xSBQUFJY7z3//+VwEBAbrlllt08uRJ6+OGG26Qn5+fNmzYUK57LZKZmSlJqlOnziWPTU1NVVxcnEaNGmUNxCWpZcuWuuWWW/T11187VIM9Y8eOtZmWvGPHjrJYLBo7dqx1m6urq9q1a6c//vij2Pl33XWXNRCXpC5dukhSiccCAAAAAFAehOIAAAAAgMtSdna2TTh8+vRpTZw4USEhIfL29lZwcLCio6MlyRpoX8oPP/ygmJgY6/rbwcHBeuaZZ2zG6Natm4YMGaKZM2eqfv36GjBggBYtWqS8vDzrOIcOHVJGRoYaNGig4OBgm0d2drbS09Mdumd/f39JsvkwgD1Hjx6VVNhxfbEWLVro5MmTysnJcaiOkkRGRtq8DggIkCQZjcZi2y9cV93e+UUBeUnHFjGZTEpLS7N55OfnO1Q/AAAAAKD2Yvp0AAAAAMBlJzk5WRkZGWratKl127Bhw7Rt2zY98cQTat26tfz8/GQ2m9WnTx+ZzeZLjnnkyBH16tVLV199tebOnSuj0SgPDw99/fXX+uc//2kdw2AwaMWKFfrxxx/1xRdf6Ntvv9WYMWP0+uuv68cff7Ret0GDBvrwww9LvFbRGubldfXVV0uSfv31V2sndXUzmUwlbnd1dS3zdovFUubzSzq2SFJSkvWDD0U2bNig7t272z0HAAAAAHDlIRQHAAAAAFx2PvjgA0lS7969JRV2E69bt04zZ87UtGnTrMcdOnSo2LkXTvF9oS+++EJ5eXn6/PPPbbqW7U113qlTJ3Xq1EkvvviiPvroIw0fPlzLli3TP/7xDzVp0kTff/+9OnfubDMle0ns1VOS/v37a/bs2frPf/5zyVC8UaNGkqQDBw4U2/f777+rfv368vX1tXt+3bp1debMGZtt+fn5Sk1NLXO9VS00NFRr16612daqVSsnVQMAAAAAqKmYPh0AAAAAcFlZv369Zs2apejoaA0fPlzSX13GF3cVx8bGFju/KAi+OPAtaYyMjAwtWrTI5rg///yz2HVat24tSdYp1IcNGyaTyaRZs2YVu/758+dtru3r61usFntuvPFG9enTR++//75Wr15dbH9+fr4ef/xxSVJYWJhat26tJUuW2Iz/f//3f/ruu+902223lXqtJk2aaPPmzTbb3n33Xbud4s7g5eWlmJgYm8eF65IDAAAAACDRKQ4AAAAAqMG++eYb/f777zp//ryOHz+u9evXa+3atWrUqJE+//xzeXl5SSpca7tr16569dVXVVBQoIYNG+q7775TfHx8sTFvuOEGSdKzzz6ru+++W+7u7urfv79uvfVWeXh4qH///ho3bpyys7P13nvvqUGDBjbd0UuWLNHbb7+tQYMGqUmTJsrKytJ7770nf39/a9DcrVs3jRs3TrNnz1ZcXJxuvfVWubu769ChQ/rvf/+refPmaejQodZ6FixYoBdeeEFNmzZVgwYN1LNnT7vvydKlS3Xrrbdq8ODB6t+/v3r16iVfX18dOnRIy5YtU2pqql577TVJ0pw5c9S3b1/deOONGjt2rHJzc/XGG28oICBAM2bMKPW9/8c//qEHHnhAQ4YM0S233KI9e/bo22+/Vf369cv+G1gDffHFF9qzZ48kqaCgQHv37tULL7wgSbrjjjvUsmVLZ5YHAAAAAKgChOIAAAAAgBqraCp0Dw8PBQUF6frrr1dsbKxGjx6tOnXq2Bz70Ucf6ZFHHtFbb70li8WiW2+9Vd98843Cw8Ntjmvfvr1mzZqlhQsXas2aNTKbzYqPj1fz5s21YsUKPffcc3r88ccVGhqqBx98UMHBwRozZoz1/G7dumnHjh1atmyZjh8/roCAAHXo0EEffvihzfrWCxcu1A033KB33nlHzzzzjNzc3BQVFaW///3v6ty5s809Hj16VK+++qqysrLUrVu3UkPx4OBgbdu2TW+//baWL1+uZ599Vvn5+WrUqJHuuOMOTZw40XpsTEyM1qxZo+nTp2vatGlyd3dXt27d9MorrxRbi/ti9913n+Lj4/Wvf/1La9asUZcuXbR27Vr16tWr1PNquk8//VRLliyxvv7ll1/0yy+/SJIiIiIIxQEAAACgFjJYLp7zDQAAAAAAAAAAAACAWoI1xQEAAAAAAAAAAAAAtRahOAAAAAAAAAAAAACg1iIUBwAAAAAAAAAAAADUWoTiAAAAAAAAAAAAAIBai1AcAAAAAAAAAAAAAFBrEYoDAAAAAAAAAAAAAGotQnEAAAAAAAAAAAAAQK3l5syLb968WXPmzNGuXbuUmpqqVatWaeDAgTbH7N+/X0899ZQ2bdqk8+fP65prrtGnn36qyMjIMl3DbDbr2LFjqlOnjgwGQxXcBQAAAAAAAAAAAACgOlksFmVlZSk8PFwuLqX3gjs1FM/JyVGrVq00ZswYDR48uNj+I0eO6Oabb9bYsWM1c+ZM+fv767fffpOXl1eZr3Hs2DEZjcbKLBsAAAAAAAAAAAAAUAMkJSUpIiKi1GMMFovFUk31lMpgMBTrFL/77rvl7u6uDz74wOFxMzIyFBgYqKSkJPn7+1dCpQAAAAAAAAAAAAAAZ8rMzJTRaNSZM2cUEBBQ6rFO7RQvjdls1ldffaUnn3xSvXv31i+//KLo6GhNmTKl2BTrpSmaMt3f359QHAAAAAAAAAAAAABqkbIsoV365OpOlJ6eruzsbL388svq06ePvvvuOw0aNEiDBw/Wpk2b7J6Xl5enzMxMmwcAAAAAAAAAAAAA4MpUozvFJWnAgAF69NFHJUmtW7fWtm3btHDhQnXr1q3E82bPnq2ZM2dWW50AAAAAAAAAAAAAgJqrxnaK169fX25ubrrmmmtstrdo0UKJiYl2z5syZYoyMjKsj6SkpKouFQAAAAAAAAAAAABQQ9XYTnEPDw+1b99eBw4csNl+8OBBNWrUyO55np6e8vT0LNe1LBaLCgoKdP78eYdqBa5Unp6ecnV1dXYZAAAAAAAAAAAANY7JZNKWLVuUmpqqsLAwdenShVzFSZwaimdnZ+vw4cPW1/Hx8YqLi1NQUJAiIyP1xBNP6K677lLXrl3Vo0cPrVmzRl988YU2btxYaTXk5eUpISFB2dnZlTYmcKUwGAxq2rSp/P39nV0KAAAAAAAAAABAjbFy5UpNnDhRycnJ1m0RERGaN2+eBg8e7MTKrkwGi8VicdbFN27cqB49ehTbPnLkSC1evFiS9O9//1uzZ89WcnKymjdvrpkzZ2rAgAFlvkZmZqYCAgKUkZFRLLgzm83as2eP3Nzc1LBhQ3l6espgMFTonoArhdlsVmpqqjIzM2U0GhUcHMyfHwAAAAAAAAAAcMVbuXKlhg4dqotj2KIcZcWKFQTjlaC0HPhiTg3Fq0Npb8bZs2e1f/9+NW/eXH5+fk6qELh8ZWdn68CBA4qLi1Pbtm3VunVrgnEAAAAAAAAAAHDFMplMioqKsukQv5DBYFBERITi4+OZSr2CyhOKu1RTTTWaiwtvA+CIC//srF+/Xvv373diNQAAAAAAAAAAAM61ZcsWu4G4JFksFiUlJWnLli3VWBVIgwFUWGBgoPLz85WSkuLsUgAAAAAAAAAAAJwmNTW1Uo9D5SAUB/4nKipKsbGxzi7jsuXu7q7s7GxnlwEAAAAAAAAAAOA0YWFhlXocKgeh+GVo8+bN6t+/v8LDw2UwGLR69epix1gsFk2bNk1hYWHy9vZWTEyMDh06ZHPM6dOnNXz4cPn7+yswMFBjx461CTUPHDigHj16KCQkRF5eXmrcuLGee+45FRQU2K0tISFBBoOhxMePP/5Yae8BqsalvicAAAAAAAAAAABgX5cuXRQRESGDwVDifoPBIKPRqC5dulRzZVc2QvFKYDKZtHHjRn388cfauHGjTCZTlV4vJydHrVq10ltvvWX3mFdffVXz58/XwoUL9dNPP8nX11e9e/fWuXPnrMcMHz5cv/32m9auXasvv/xSmzdv1v3332/d7+7urhEjRui7777TgQMHFBsbq/fee0/Tp0+/ZI3ff/+9UlNTbR433HBDxW4cl5SYmFih8y/1PQEAAAAAAAAAAAD7XF1dNW/ePEkqFowXvY6NjZWrq2u113YlIxSvoJUrVyoqKko9evTQPffcox49eigqKkorV66ssmv27dtXL7zwggYNGlTifovFotjYWD333HMaMGCAWrZsqaVLl+rYsWPWrvL9+/drzZo1ev/999WxY0fdfPPNeuONN7Rs2TIdO3ZMktS4cWONHj1arVq1UqNGjXTHHXdo+PDh2rJlyyVrrFevnkJDQ20e7u7uslgsiomJUe/evWWxWCQVdidHRERo2rRp1vO/+OILtW/fXl5eXqpfv77Nvebl5enxxx9Xw4YN5evrq44dO2rjxo0219+6dau6dOkib29vGY1GTZgwQTk5Odb96enp6t+/v7y9vRUdHa0PP/yw2D2cOXNG//jHPxQcHCx/f3/17NlTe/bsse6fMWOGWrdurQ8++EBRUVEKCAjQ3XffraysLOsxZrNZr776qpo2bSpPT09FRkbqxRdftO5PSkrSsGHDFBgYqKCgIA0YMEAJCQnW/Rs3blSHDh3k6+urwMBAde7cWUePHrX7vnfr1k2dOnXSggUL9Oeff5byO1RcWb4nAAAAAAAAAAAAULrBgwdrxYoVatiwoc32iIgIrVixQoMHD3ZSZVcuQvEKWLlypYYOHark5GSb7SkpKRo6dGiVBuOliY+PV1pammJiYqzbAgIC1LFjR23fvl2StH37dgUGBqpdu3bWY2JiYuTi4qKffvqpxHEPHz6sNWvWqFu3bg7XZjAYtGTJEv3888+aP3++JOmBBx5Qw4YNraH4V199pUGDBum2227TL7/8onXr1qlDhw7WMcaPH6/t27dr2bJl2rt3r+6880716dPHOj38kSNH1KdPHw0ZMkR79+7V8uXLtXXrVo0fP946xqhRo5SUlKQNGzZoxYoVevvtt5Wenm5T65133qn09HR988032rVrl9q2batevXrp9OnT1mOOHDmi1atX68svv9SXX36pTZs26eWXX7bunzJlil5++WVNnTpV+/bt00cffaSQkBBJUkFBgXr37q06depoy5Yt+uGHH+Tn56c+ffooPz9f58+f18CBA9WtWzft3btX27dv1/333293ug2pcGr9O+64Q/Pnz1dYWJiGDRumr776qkyzFzjyPQEAAAAAAAAAAIDiBg8erISEBG3YsEEfffSRNmzYoPj4eAJxJ3FzdgGXK5PJpIkTJ1q7nS9ksVhkMBg0adIkDRgwoNqnP0hLS5Mka/haJCQkxLovLS1NDRo0sNnv5uamoKAg6zFFbrrpJu3evVt5eXm6//779fzzz1+yhptuukkuLrafuSham7phw4Z65513NGLECKWlpenrr7/WL7/8Ije3wm/HF198UXfffbdmzpxpPbdVq1aSCqcHX7RokRITExUeHi5Jevzxx7VmzRotWrRIL730kmbPnq3hw4dr0qRJkqSrrrpK8+fPV7du3bRgwQIlJibqm2++0Y4dO9S+fXtJ0r/+9S+1aNHCer2tW7dqx44dSk9Pl6enpyTptdde0+rVq7VixQrrlOJms1mLFy9WnTp1JEn33nuv1q1bpxdffFFZWVmaN2+e3nzzTY0cOVKS1KRJE918882SpOXLl8tsNuv999+3Bt2LFi1SYGCgNm7cqHbt2ikjI0P9+vVTkyZNJMmmxpIYjUY988wzeuaZZ7Rjxw4tXbpUo0aNkpubm4YPH65Ro0bpuuuuK/Hc8nxPAAAAAAAAAAAAoHSurq7q3r27s8uACMUdtmXLlmId4heyWCxKSkrSli1bLvtv9uXLlysrK0t79uzRE088oddee01PPvnkJc8pLcC98847tWrVKr388stasGCBrrrqKuu+uLg43XfffSWe9+uvv8pkMqlZs2Y22/Py8lSvXj1J0p49e7R3716bKdEtFovMZrPi4+N18OBBubm52axxfvXVVyswMND6es+ePcrOzraOWSQ3N1dHjhyxvo6KirIG4pIUFhZm7Tjfv3+/8vLy1KtXrxLvZc+ePTp8+LDN+ZJ07tw5HTlyRLfeeqtGjRql3r1765ZbblFMTIyGDRumsLCwEse7WIcOHdShQwfNnTtXU6ZM0dy5c/X9998rLi6uTOcDAAAAAAAAAAAAtQGhuINSU1Mr9bjKFBoaKkk6fvy4TYB6/PhxtW7d2nrMxdOFnz9/XqdPn7aeX8RoNEqSrrnmGplMJt1///167LHHSu2ANxqNatq0qd39Z8+e1a5du+Tq6mqd9ryIt7e33fOys7Pl6upqPfdCfn5+1mPGjRunCRMmFDs/MjJSBw8etDv+hdcJCwsrtla5JJvw3N3d3WafwWCQ2Wy+5H0UXeOGG24ocT3z4OBgSYWd4xMmTNCaNWu0fPlyPffcc1q7dq06dep0yXs4cOCAPvjgA/3nP/9RRkaG7rvvPo0dO9bu8eX5ngAAAAAAAAAAAAAuF6wp7qCyduuW9bjKFB0drdDQUK1bt866LTMzUz/99JNuvPFGSdKNN96oM2fOaNeuXdZj1q9fL7PZrI4dO9od22w2q6CgwBr8Ouqxxx6Ti4uLvvnmG82fP1/r16+37mvZsqVN7Rdq06aNTCaT0tPT1bRpU5tHUXDbtm1b7du3r9j+pk2bysPDQ1dffbXOnz9vc+8HDhzQmTNnrK/btm2rtLQ0ubm5FRujfv36ZbrHq666St7e3nbvpW3btjp06JAaNGhQ7BoBAQE29zxlyhRt27ZN1113nT766CO71zx58qTefPNNdezYUddee6127dqll19+WampqXrnnXds1ma/mKPfEwAAAAAAAAAAAEBNRqe4g7p06aKIiAilpKSUuK64wWBQRESEunTpUunXzs7O1uHDh62v4+PjFRcXp6CgIEVGRlrXM3/hhRd01VVXKTo6WlOnTlV4eLgGDhwoqXBt6j59+ui+++7TwoULVVBQoPHjx+vuu++2rtX94Ycfyt3dXddff708PT21c+dOTZkyRXfddVexDumLnTp1qtg61IGBgfLy8tJXX32lf//739q+fbvatm2rJ554QiNHjtTevXtVt25dTZ8+Xb169VKTJk1099136/z58/r666/11FNPqVmzZho+fLhGjBih119/XW3atNGJEye0bt06tWzZUrfffrueeuopderUSePHj9c//vEP+fr6at++fVq7dq3efPNNNW/eXH369NG4ceO0YMECubm5adKkSTad3TExMbrxxhs1cOBAvfrqq2rWrJmOHTumr776SoMGDVK7du0u+fvk5eWlp556Sk8++aQ8PDzUuXNnnThxQr/99pvGjh2r4cOHa86cORowYICef/55RURE6OjRo1q5cqWefPJJFRQU6N1339Udd9yh8PBwHThwQIcOHdKIESPsXrNjx47y8vLSyJEjtXr16nJ9KKMs3xMAAAAAAAAAAADA5YZQ3EGurq6aN2+ehg4dKoPBYBOMGwwGSVJsbGypU4w7aufOnerRo4f19eTJkyVJI0eO1OLFiyVJTz75pHJycnT//ffrzJkzuvnmm7VmzRp5eXlZz/vwww81fvx49erVSy4uLhoyZIjmz59v3e/m5qZXXnlFBw8elMViUaNGjTR+/Hg9+uijl6wxJiam2LaPP/5YvXr10tixYzVjxgy1bdtWkjRz5kx99913euCBB7R8+XJ1795d//3vfzVr1iy9/PLL8vf3V9euXa3jLFq0SC+88IIee+wxpaSkqH79+urUqZP69esnqbDTfNOmTXr22WfVpUsXWSwWNWnSRHfddZfNGP/4xz/UrVs3hYSE6IUXXtDUqVOt+w0Gg77++ms9++yzGj16tE6cOKHQ0FB17dpVISEhl7z/IlOnTpWbm5umTZumY8eOKSwsTA888IAkycfHR5s3b9ZTTz2lwYMHKysrSw0bNlSvXr3k7++v3Nxc/f7771qyZIlOnTqlsLAwPfzwwxo3bpzd63311Ve6+uqry1zfxS71PQEAAAAAAAAAAABcbgyWktqca5HMzEwFBAQoIyND/v7+NvvOnj2r/fv3q0WLFvLx8XFo/JUrV2rixIlKTk62bjMajYqNjdXgwYMrVDtQ0xX9GUpISFB8fLyaNGmiQYMGObssAAAAAAAAAAAA1HKl5cAXo1O8ggYPHqwBAwZoy5YtSk1NVVhYmLp06VIlHeIAAAAAAAAAAAAAgPIhFK8Erq6u6t69u7PLAAAAAAAAAAAAAABcxMXZBQAAAAAAAAAAAAAAUFUIxQEAAAAAAAAAAAAAtRahOAAAAAAAAAAAAACg1nJqKL5582b1799f4eHhMhgMWr16td1jH3jgARkMBsXGxlZbfQAAAAAAAAAAAACAy5tTQ/GcnBy1atVKb731VqnHrVq1Sj/++KPCw8OrqTIAAAAAAAAAAAAAQG3g5syL9+3bV3379i31mJSUFD3yyCP69ttvdfvtt1dTZQAAAAAAAAAAAACA2sCpofilmM1m3XvvvXriiSd07bXXlumcvLw85eXlWV9nZmZWVXkAAAAAAAAAAAAAgBrOqdOnX8orr7wiNzc3TZgwocznzJ49WwEBAdaH0WiswgoBAAAAAAAAAAAAADVZjQ3Fd+3apXnz5mnx4sUyGAxlPm/KlCnKyMiwPpKSkqqwSgAAAAAAAAAAAABATVZjQ/EtW7YoPT1dkZGRcnNzk5ubm44eParHHntMUVFRds/z9PSUv7+/zQMAAAAAAAAAAAAAcGWqsWuK33vvvYqJibHZ1rt3b917770aPXq0k6oCAAAAAAAAAAAAAFxOnBqKZ2dn6/Dhw9bX8fHxiouLU1BQkCIjI1WvXj2b493d3RUaGqrmzZtXd6kAAAAAAAAAAAAAgMuQU0PxnTt3qkePHtbXkydPliSNHDlSixcvdlJVAAAAAAAAAAAAAIDawqmhePfu3WWxWMp8fEJCQtUVAwAAAAAAAAAAAACodWrsmuIAAAAAAAAAAAAAcDk6r/NKVaqS/verq7oqTGHOLuuKRSgOAAAAAAAAAAAAAGVkllnHddwaeCcr2fq86NcxHZNZZus5K7VSgzTIiVVf2QjFAQAAAAAAAAAAAECSRRad0qliIfeFv1KUogIVlGvcJCVVUcUoC0JxAAAAAAAAAAAAAFeEDGWUGngnK1m5yq3QNYIVLONFv7qoSyXdARxBKA4AAAAAAAAAAADgsndWZ0sNvJOUpCxlVegagQosFnhf+CtCEfKSVyXdESoLoTgAAAAAAAAAAACAGi1f+SWu3X3hr9M6XaFr+MnPbtBd9NxPfpV0R6hOhOIAAAAAAAAAAAAAnOa8zitVqaUG3sd1vELX8JRnqR3eRhkVoAAZZKiku0JNQigOAAAAAAAAAAAAoEqYZVa60ksNvFOVKpNMDl/DTW5qqIalBt71VZ/A+wpGKA4AAAAAAAAAAACg3Cyy6LROlxp4pyhF+cp3+BoGGRSmsFID7xCFyFWulXhnqG0IxWuZ7t27q3Xr1oqNja2W6y1evFiTJk3SmTNnquV6AAAAAAAAAAAAqB6Zyiw18E5SknKVW6FrBCu41MA7XOFyl3sl3RGuVITil6FRo0ZpyZIlxbYfOnRIK1eulLv7Xz8YoqKiNGnSJE2aNMm6zRlB9oYNG/T666/rp59+UlZWlho2bKh27drp4YcfVteuXSVJGzduVI8ePaznNGjQQDfffLPmzJmjxo0bW+/n6NGjkiQvLy+FhISoQ4cOeuCBB9SzZ89Sa+jevbs2bdokSfL09FTjxo01fvx4PfTQQ1VxywAAAAAAAAAAADVWrnIvGXhnKrNC1whUYKmBd4Qi5CWvSrojwD5C8ctUnz59tGjRIpttwcHBcnWteVNDvP322xo/frzuvfdeLV++XE2aNFFGRoY2bNigRx99VLt27bI5/sCBA6pTp44OHTqk+++/X/3799fevXut9/b888/rvvvuU35+vhISEvSf//xHMTExmjVrlp599tlSa7nvvvv0/PPP6+zZs1q6dKkefvhh1a1bV3/729/KfV/5+fny8PAo93kAAAAAAAAAAABVKV/5SlFKqYH3KZ2q0DV85Vtq4G2UUX7yq6Q7AirGxdkFwDGenp4KDQ21ebi6uqp79+7WrvDu3bvr6NGjevTRR2UwGGQwGLRx40aNHj1aGRkZ1m0zZsyQJOXl5enxxx9Xw4YN5evrq44dO2rjxo021128eLEiIyPl4+OjQYMG6dSp0n9gJiYmWjvVlyxZop49e6pRo0Zq2bKlJk6cqJ07dxY7p0GDBgoLC1PXrl01bdo07du3T4cPH7bur1OnjkJDQxUZGamuXbvq3Xff1dSpUzVt2jQdOHCg1Hp8fHwUGhqqxo0ba8aMGbrqqqv0+eefS5KeeuopNWvWTD4+PmrcuLGmTp2qgoIC67kzZsxQ69at9f777ys6OlpeXoWfXFqzZo1uvvlmBQYGql69eurXr5+OHDliPS8hIUEGg0GffPKJunTpIm9vb7Vv314HDx7Uzz//rHbt2snPz099+/bViRMnrOdt3LhRHTp0kK+vrwIDA9W5c2drlzwAAAAAAAAAALgymWRSspK1Xdv1iT7R63pdkzRJQzREHdRBYQqTl7zUWI3VTd30d/1dUzRFb+ttfaEvFKe4SwbinvJUEzVRd3XXvbpXz+gZLdACfakvtUd7dFqnlaUs7dd+fafv9C/9SzM0Q2M1VrfqVrVQCwJx1Ch0itdiK1euVKtWrXT//ffrvvvukyQFBQUpNjbWJkD28yv8oTR+/Hjt27dPy5YtU3h4uFatWqU+ffro119/1VVXXaWffvpJY8eO1ezZszVw4ECtWbNG06dPL7WGTz/9VAUFBXryySdL3G8wGEo939vbW1JhV3ZpJk6cqFmzZumzzz6zey174xeNXadOHS1evFjh4eH69ddfdd9996lOnTo24x0+fFiffvqpVq5cae1cz8nJ0eTJk9WyZUtlZ2dr2rRpGjRokOLi4uTi8tfnTqZPn67Y2FhFRkZqzJgxuueee1SnTh3NmzdPPj4+GjZsmKZNm6YFCxbo/PnzGjhwoO677z59/PHHys/P144dO6zvV0JCgqKjo7VhwwZ17969zPcLAAAAAAAAAABqLrPMOqETpXZ4H9MxmWRy+BquclVDNSy1wztYwTKo9AwHuJwQil+mvvzyS2uYLUl9+/bVf//7X5tjgoKC5Orqau2sLhIQECCDwWCzLTExUYsWLVJiYqLCw8MlSY8//rjWrFmjRYsW6aWXXtK8efPUp08fa0jcrFkzbdu2TWvWrLFb58GDB+Xv729zrU8//VQjR460vt6+fbuuv/76YuempqbqtddeU8OGDdW8efNS34+goCA1aNBACQkJpR5XxGQy6eOPP9bevXt1//33S5Kee+456/6oqCg9/vjjWrZsmU0onp+fr6VLlyo4ONi6bciQITZj//vf/1ZwcLD27dun6667zrr98ccfV+/evSUVhvh/+9vftG7dOnXu3FmSNHbsWC1evFiSlJmZqYyMDPXr109NmjSRJLVo0cI6lru7u5o3by4fH58y3S8AAAAAAAAAAHAuiyz6U3+WGngnK1n5Kr1RsDQGGRSq0FID71CFylU1bzleoCoRil+mevTooQULFlhf+/r6Vmi8X3/9VSaTSc2aNbPZnpeXp3r16kmS9u/fr0GDBtnsv/HGG0sNxaXi3eC9e/dWXFycUlJS1L17d5lMtp9mioiIkMVi0dmzZ9WqVSt9+umnZVq722KxXLLz/O2339b777+v/Px8ubq66tFHH9WDDz4oSVq+fLnmz5+vI0eOKDs7W+fPn5e/v7/N+Y0aNbIJxCXp0KFDmjZtmn766SedPHlSZrNZUuEHDS4MxVu2bGl9HhISIkk2HwYICQlRenq6pMKQf9SoUerdu7duueUWxcTEaNiwYQoLC5MkNWzYUL///vsl3xMAAAAAAAAAAFA9spRVauCdpCSd1dkKXaO+6pcaeIcrXB66dKYCXGkIxS9Tvr6+atq0aaWNl52dLVdXV+3atcs6LXiRCzvSy+uqq65SRkaG0tLSrN3ifn5+atq0qdzcSv7227Jli/z9/dWgQQPVqVOnTNc5deqUTpw4oejo6FKPGz58uJ599ll5e3srLCzMOr359u3bNXz4cM2cOVO9e/dWQECAli1bptdff93m/JI+fNC/f381atRI7733nsLDw2U2m3XdddcVm/Ld3d3d+rwovL94W1GgLkmLFi3ShAkTtGbNGi1fvlzPPfec1q5dq06dOpXpPQEAAAAAAAAAAJUjV7lKVnKpgXeGMip0jQAFlBp4RyhC3vKupDsCriyE4rWch4dHsU7skra1adNGJpNJ6enp6tKlS4ljtWjRQj/99JPNth9//LHU6w8dOlRPP/20XnnlFf3zn/8sU83R0dEKDAws07FF5s2bJxcXFw0cOLDU4wICAkr8MMG2bdvUqFEjPfvss9ZtR48eveR1T506pQMHDui9996zvm9bt24tV+2ladOmjdq0aaMpU6boxhtv1EcffUQoDgAAAAAAAABAJcpXvlKUYnc68yQl6aROVugaPvIpNfA2yqg6KlujIIDyc2oovnnzZs2ZM0e7du1SamqqVq1aZQ01CwoK9Nxzz+nrr7/WH3/8oYCAAMXExOjll1+2rnmNS4uKitLmzZt19913y9PTU/Xr11dUVJSys7O1bt06tWrVSj4+PmrWrJmGDx+uESNG6PXXX1ebNm104sQJrVu3Ti1bttTtt9+uCRMmqHPnznrttdc0YMAAffvtt5ecOj0yMlKvv/66Jk6cqNOnT2vUqFGKjo7W6dOn9Z///EeSinWmX0pWVpbS0tJUUFCg+Ph4/ec//9H777+v2bNnO9w9f9VVVykxMVHLli1T+/bt9dVXX2nVqlWXPK9u3bqqV6+e3n33XYWFhSkxMVFPP/20QzVcKD4+Xu+++67uuOMOhYeH68CBAzp06JBGjBghSUpJSVGvXr20dOlSdejQocLXAwAAAAAAAACgNjLJpFSlltrhfVzHZZHF4Wt4yEMRiig18K6rujKo9CVgAVQdp4biOTk5atWqlcaMGaPBgwfb7Dt79qx2796tqVOnqlWrVvrzzz81ceJE3XHHHdq5c6eTKr78PP/88xo3bpyaNGmivLw8WSwW3XTTTXrggQd011136dSpU5o+fbpmzJihRYsW6YUXXtBjjz2mlJQU1a9fX506dVK/fv0kSZ06ddJ7772n6dOna9q0aYqJidFzzz2nWbNmlVrDI488ohYtWmju3LkaOnSoMjMzVa9ePet65Beuq10W06ZN07Rp0+Th4aHQ0FB16tRJ69atU48ePRx+n+644w49+uijGj9+vPLy8nT77bdr6tSpmjFjRqnnubi4aNmyZZowYYKuu+46NW/eXPPnz1f37t0drkWSfHx89Pvvv2vJkiU6deqUwsLC9PDDD2vcuHGSCj80cuDAAZ09W7G1RwAAAAAAAAAAuFxZZFG60ksNvI/pmEwyXXowO1zlqoZqaHc6c6OMClawXORSiXcGoLIZLBaL4x99qUQGg8GmU7wkP//8szp06KCjR48qMjKyTONmZmYqICBAGRkZ8vf3t9l39uxZ7d+/Xy1atJCPj09FygeuSEV/hhISEhQfH68mTZpo0KBBzi4LAAAAAAAAAHCZs8iiP/VnqYF3spKVr3yHr2GQQaEKLbXDO1ShclX5ZrwFUD1Ky4EvdlmtKZ6RkSGDwVDu9aYBAAAAAAAAAABQc2Qpq9TAO0lJOquKzZZaX/VLDbzDFS4PeVTSHQGoyS6bUPzcuXN66qmn9Le//a3UpD8vL095eXnW15mZmdVRHgAAAAAAAAAAACTlKlfJSi418M5QRoWuEaCAUgPvCEXIW96VdEcALneXRSheUFCgYcOGyWKxaMGCBaUeO3v2bM2cObOaKgMAAAAAAAAAALhyFKhAKUopNfA+qZMVuoaPfEoNvI0yqo7qVNIdAbgS1PhQvCgQP3r0qNavX3/J+eCnTJmiyZMnW19nZmbKaDRWdZkAAAAAAAAAAACXNZNMSlNaqYF3mtJkkcXha3jIQxGKKDXwrqu6MshQiXcG4EpXo0PxokD80KFD2rBhg+rVq3fJczw9PeXp6VkN1QEAAAAAAAAAAFweLLLohE6UGngf0zGd13mHr+EqV4UrvNTAO1jBcpFLJd7Z5cVkMmnLli1KTU1VWFiYunTpIldXV2eXBdR65Q7Fd+/eLXd3d11//fWSpM8++0yLFi3SNddcoxkzZsjDw6PMY2VnZ+vw4cPW1/Hx8YqLi1NQUJDCwsI0dOhQ7d69W19++aVMJpPS0tIkSUFBQeW6DqrXW2+9pTlz5igtLU2tWrXSG2+8oQ4dOtg9/rffftO0adO0a9cuHT16VP/85z81adIkm2M2b96sOXPmaNeuXUpNTdWqVas0cODAqr0RAAAAAAAAAAAuAxZZdEZnSg28k5WsPOVV6DqhCi0Wcjc0N9SpuFOyJFrUom4Ldb+5OyGvHStXrtTEiROVnJxs3RYREaF58+Zp8ODBTqwMqP3KHYqPGzdOTz/9tK6//nr98ccfuvvuuzVo0CD997//1dmzZxUbG1vmsXbu3KkePXpYXxdNez5y5EjNmDFDn3/+uSSpdevWNudt2LBB3bt3L2/pqAbLly/X5MmTtXDhQnXs2FGxsbHq3bu3Dhw4oAYNGpR4ztmzZ9W4cWPdeeedevTRR0s8JicnR61atdKYMWP4DwMAAAAAAAAA4IqSrexSA+8kJSlHORW6Rj3VK7XDu6EaykO2DYuEvGW3cuVKDR06VBaL7dTzKSkpGjp0qFasWMF7BlQhg+XiP32XEBAQoN27d6tJkyZ65ZVXtH79en377bf64YcfdPfddyspKamqanVIZmamAgIClJGRUWw98rNnz2r//v1q0aKFfHx8nFSh8/z222966qmntHnzZlksFrVu3VqLFy9WkyZNHB6zY8eOat++vd58801JktlsltFo1COPPKKnn376kudHRUVp0qRJxTrFL2QwGOgUryGK/gwlJCQoPj5eTZo00aBBg5xdFgAAAAAAAABcNs7pnJKVXGrgfUZnKnQNf/mXGnhHKEI+Kl9OYi/kNRgK1wIn5P2LyWRSVFSUzYcHLmQwGBQREaH4+Hi67IFyKC0Hvli5O8UtFovMZrMk6fvvv1e/fv0kSUajUSdPnnSgXDhDSkqKunbtqu7du2v9+vXy9/fXDz/8oPPnC9cK2bhxo3r06KH4+HhFRUWVacz8/Hzt2rVLU6ZMsW5zcXFRTEyMtm/fXhW3AQAAAAAAAABAjVWgAiWZkvTV3q90MPeg8kPy5R7trmSXv0LwEzpRoWt4y7vUwNsoo/xVelhUXiaTSRMnTiwWiEuFOZLBYNCkSZM0YMAAQl5JW7ZssRuIS4XvWVJSkrZs2cJMyUAVKXco3q5dO73wwguKiYnRpk2btGDBAkmF64GHhIRUeoGoGm+99ZYCAgK0bNkyubu7S5KaNWtm3e/j46PmzZtb95XFyZMnZTKZin0fhISE6Pfff6+cwgEAAAAAAAAAVyyTyaQtW7YoNTVVYWFh6tKli9NCV5NMOq7jpXZ4p1pSZXG1SG0cu4a73BWhiFID7yAFySBD5d7cJRDylk9qamqlHgeg/ModisfGxmr48OFavXq1nn32WTVt2lRS4TQYN910U6UXiKoRFxenLl262A29O3ToUGqQvWXLFvXt29f6+p133rFZHx4AAAAAAAAAgMpUnetXW2TRSZ0sNfBOUYrO63zpA5WSVbtYXBRuCC818G6gBnKRS6XeW2Ug5C2fsLCwSj0OQPmVOxRv2bKlfv3112Lb58yZU2umwGindkpTWrVeM1Sh2qmd1XY9b2/vCp3frl07xcXFWV+HhITI09NTrq6uOn78uM2xx48fV2hoaIWuBwAAAAAAAAC4ctlbvzolJUVDhw4t1/rVFll0RmdKDbyTlaw85VWoZpd0F5mPmqUkFX8kS+Gu4Uo4nHBZZiuEvOXTpUsXRUREKCUlpcQp54vWFO/SpYsTqgOuDOUOxSXpzJkzWrFihY4cOaInnnhCQUFB2rdvn0JCQtSwYcPKrrHapSlNKUpxdhlVqmXLllqyZIkKCgrKNUV6EW9vb+ssARe64YYbtG7dOg0cOFCSZDabtW7dOo0fP76iJQMAAAAAAAAAqkmNmqa8nOtXZyv7koF3trIrVFOQgkrt8D686bB6d+9d6hjJSr5spxcn5C0fV1dXzZs3T0OHDpXBYLB5zwyGwukEYmNjL8sPSACXi3KH4nv37lWvXr0UGBiohIQE3XfffQoKCtLKlSuVmJiopUuXVkWd1SpU1d/VXN3XHD9+vN544w3dfffdmjJligICAvTjjz+qQ4cOat68uXbs2KERI0Zo3bp15fqgw+TJkzVy5Ei1a9dOHTp0UGxsrHJycjR69GjrMSNGjFDDhg01e/ZsSVJ+fr727dtnfZ6SkqK4uDj5+flZg/fs7GwdPnzYOkZ8fLzi4uIUFBSkyMjIynhLAAAAAAAAAACq3mnKy8Jm/WpPSRGSjH89LEaLkoxJapbbTKf9TuuMzlToev7yLzXwjlCEfORT6hg/HfupTNe6XKcXJ+Qtv8GDB2vFihUl/tmKjY11yp8t4EpS7lB88uTJGj16tF599VXVqVPHuv22227TPffcU6nFOUt1TmPuLPXq1dP69ev1xBNPqFu3bnJ1dVXr1q3VuXNnSdLZs2d14MABFRQUlGvcu+66SydOnNC0adOUlpam1q1ba82aNQoJCbEek5iYKBeXv9ZAOXbsmNq0aWN9/dprr+m1115Tt27dtHHjRknSzp07bdYsnzx5siRp5MiRWrx4cXlvHwAAAAAAAABqNGd1alfmNOXlVaACHdOxYp3d25tul3aqMARvYP/8P/THJa/hLe9SA2+jjPKXf4Xv5UqYXpyQt/wGDx6sAQMG1JhZGIAricFS0rwWpQgICNDu3bvVpEkT1alTR3v27FHjxo119OhRNW/eXOfOnauqWh2SmZmpgIAAZWRkyN/f9j9kZ8+e1f79+9WiRQv5+JT+qS4AxRX9GUpISFB8fLyaNGmiQYMGObssAAAAAAAA4LLmrE5tk8mkqKgom+teqGhK7Pj4+HKHeGaZlaa0Uqc1T1OazDI7XL+b2U1Gl9ID7yAFySCDw9coq6L38lLTizvyXtY0NWmqfQBXltJy4IuVu1Pc09NTmZmZxbYfPHhQwcHB5R0OAAAAAAAAAAD8jzM7tW2mKS+BxWJRUlJSsXWwLbLopE6WGninKEXndd7x4kySjklKKuGRLIWbwpWwI0Hucnf8GpXoSppe3NXV9bJcFx3AlaXcofgdd9yh559/Xp988omkwh/eiYmJeuqppzRkyJBKLxAAAAAAAAAAgCuByWTSxIkTS+wstlgsMhgMmjRpkgYMGFAlYard9a0DZLOG97z687RIi6yBd7KSdU4Vm0U2RCGldnj/+PmPumvIXZJUYsD8xoo35O5aMwLxIkwvDgA1R7lD8ddff11Dhw5VgwYNlJubq27duiktLU033nijXnzxxaqoEQAAAAAAAACAWs/RTu2KyFGONdz+pc0v0jTZBOAySqpje85qrS7XNYIUVGrg3VAN5SnPUscwDjLKdYXrZRcws4Y0ANQM5Q7FAwICtHbtWm3dulV79+5Vdna22rZtq5iYmKqoDwAAAAAAAACAK4LdTm0Hj8tTnpKVXOq05n/qz79OuFrSzPLVXEd1Sg28IxQhX/mWb1A7LteAmenFAcD5yh2KF7n55pt18803V2YtAAAAAAAAAABcscLCwsp83Hmd1zEdKzXwTld6xQrKVbG1u8fdNk4D2g6wht4BCqjYNcqJgBkA4IgyheLz588v84ATJkxwuBhUn40bN6pHjx76888/FRgY6OxyAAAAAAAAAOCK16VLF0VERCj5WLLUQMWnMTdKHk089Pe2f1eqUmWW2eFructdDdWwxO7ug+sOau6jc5X6618d6UajsXCa8rY1c5pyAABKU6ZQ/J///GeZBjMYDITiKFViYqIefPBBbdiwQX5+fho5cqRmz54tNzeHJy0AAAAAAAAAgCpnMpkqZdpuiyw6pVMl93a7Jin/93zJXZJHyefnK18pSin1Gi5yUZjCSp3WPEQhcpFLyQP0kh795dHLbppyAADsKVMSGR8fX9V14ApgMpl0++23KzQ0VNu2bVNqaqpGjBghd3d3vfTSS84uDwAAAAAAAABKtHLlSk2cOFHJycnWbREREZo3b54GD7btnM5QRqlTmicrWbnKtX+xMiy/3UANSg28wxUuN8dXT5XENOUAgNqF9lxYffrpp5o2bZoOHz6ssLAwPfLII3rssces+/Py8jRt2jR99NFHSk9Pl9Fo1JQpUzR27Ngyjf/dd99p3759+v777xUSEqLWrVtr1qxZeuqppzRjxgx5eNj56CMAAAAAAAAA2FFZHdz2rFy5UkOHDpXFYpG8ZZ3GPDkyWUP2DFFMmxi5RrtaQ+8sZVXoenVVV0YZFWGJkNsxN3md9FITjybq1ayXolyjFKEIecqzUu4NAIArRZlC8cmTJ2vWrFny9fXV5MmTSz127ty5lVIYqteuXbs0bNgwzZgxQ3fddZe2bdumhx56SPXq1dOoUaMkSSNGjND27ds1f/58tWrVSvHx8Tp58qR1jKioKI0aNUozZswo8Rrbt2/X9ddfr5CQEOu23r1768EHH9Rvv/2mNm3aVOUtAgAAAAAAAKhlytPBfSl5ylOKUmy6uhPNiVpcZ7Esuy2FYXi94ud9r+/LfA0/+ZXa4W2UUb5FreIGSQ3/9wAAABVSplD8l19+UUFBgfU5ap+5c+eqV69emjp1qiSpWbNm2rdvn+bMmaNRo0bp4MGD+uSTT7R27VrFxMRIkho3bmwzRpMmTVS/fn2710hLS7MJxCVZX6elpVXm7QAAAAAAAACoQaqim9umg/sCKSkpGjp0qFasWGENxs/rvI7pmHX68pKmNT+u48Uv4iLplrLV4yUvRSii1MA7QAEyyFCh+wYAAOVXplB8w4YNJT6vqM2bN2vOnDnatWuXUlNTtWrVKg0cONC632KxaPr06Xrvvfd05swZde7cWQsWLNBVV11VaTWg0P79+zVgwACbbZ07d1ZsbKxMJpPi4uLk6uqqbt262R1j3bp1VV0mAAAAAAAAgCpW2QF2ZXZzX1jjxIkTCwNxg6QQWac1txgtUqT0d4+/q6WlpZINyUpVqswyO3wPKpCULCmphEeytPC5hbp/8P0E3gAA1FDlXlN8zJgxmjdvnurUqWOzPScnR4888oj+/e9/l3msnJwctWrVSmPGjCnxLz+vvvqq5s+fryVLlig6OlpTp05V7969tW/fPnl5eZW3dFSAt7d3hccIDQ3Vjh07bLYdP37cug8AAAAAAACAc1V2gF2ebu6SWGTRKZ0q1tW98+ROJX+YXBiEN5TkUfzcXOXqJ/10yRpd5KIwhZXY2Z2+K10P9XtIOi7JYn+M5kHNCcQBAKjByh2KL1myRC+//HKxUDw3N1dLly4tVyjet29f9e3bt8R9FotFsbGxeu6556wdzEuXLlVISIhWr16tu+++u7yloxQtWrTQDz/8YLPthx9+ULNmzeTq6qrrr79eZrNZmzZtsk6fXl433nijXnzxRaWnp6tBgwaSpLVr18rf31/XXHNNhe8BAAAAAAAAgOMqGmBfzKab+yIWi0UGg0ETpk5QkwFNdMz1WIlTmicrWbnKLT54yP8eZdBADUqd0jxMYXKXe8n30Nqkl9xeUopSZCkhFTcYDIqIiFCXLl3KVgwAAHCKMofimZmZslgsslgsysrKsunUNplM+vrrr61BZ2WIj49XWlqaTQAbEBCgjh07avv27XZD8by8POXl5dnUjUt77LHH1L59e82aNUt33XWXtm/frjfffFNvv/22JCkqKkojR47UmDFjNH/+fLVq1UpHjx5Venq6hg0bJknq1auXBg0apPHjx5d4jVtvvVXXXHON7r33Xr366qtKS0vTc889p4cfflienp7Vdq8AAAAAAAAAbJUlwJ40aZIGDBhQ5qnU1/6wVsk+yVIvWac2v/BhMVqU4p+i1mrteOGnVfKU5v97fLvoW93a9VaHh3d1ddW8efM0dOhQGQwGm/fHYCjsDI+Nja3w+ugAAKBqlTkUDwwMlMFgkMFgULNmzYrtNxgMmjlzZqUVlpaWJkkKCbH9uF9ISIh1X0lmz55dqXVcKdq2batPPvlE06ZN06xZsxQWFqbnn39eo0aNsh6zYMECPfPMM3rooYd06tQpRUZG6plnnrHuP3LkiE6ePGn3Gq6urvryyy/14IMP6sYbb5Svr69Gjhyp559/vipvDQAAAAAAAKj1KroO+JYtW2ymTL+YxWJRUlKStmzZou7duytPeUpRSond3UW/Tnc9LR1w/J785Ge3uzvcFK5br7lVqYdSSwzyizq4e3Xu5XgB/zN48GCtWLGixGnlY2NjHV4XHQAAVJ8yh+IbNmyQxWJRz5499emnnyooKMi6z8PDQ40aNVJ4eHiVFFkeU6ZM0eTJk62vMzMzZTQanVhRzdS9e/dif1kcMmSIhgwZYvccLy8vzZ07V3Pnzi1xf0JCwiWv26hRI3399dflqhUAAAAAAACorSoaZkuVsw54amrqXy9cJYWpxO7usdePVY5ydFzHy1VjMedk7ea+9Zpb1T60fbHgO0AB9tfpdpXemP1GtXVwDx48WAMGDKjw7xUAAHCOMofi3bp1k1Q4rbnRaJSLi0uVFSVJoaGhkqTjx48rLCzMuv348eNq3bq13fM8PT2ZihsAAAAAAABAjVcZYXZ51wE3y6x0pRfr6t7Va5f0gwrD7zDZ/ZfjP/THJWtyk5saqqEiLBHa/dlu5R7MlRJlO7X5yb+6ub+O/1quKn+4XN0d3K6ururevXuljgkAAKpHmUPxIo0aNdKZM2e0Y8cOpaeny2w22+wfMWJEpRQWHR2t0NBQrVu3zhqCZ2Zm6qefftKDDz5YKdcAAAAAAAAAAEdVpMu7vGG2vesXWwc8SNb1uhUpjUodpU/NnyrZJVlJSlKKUpSv/OKDNfjf4xIMFoPCDGF2pzU3yqgQhRSG3AZppXmlhj49VJKqpJubDm4AAFAW5Q7Fv/jiCw0fPlzZ2dny9/e3/uVFKvyLTHlC8ezsbB0+fNj6Oj4+XnFxcQoKClJkZKQmTZqkF154QVdddZWio6M1depUhYeHa+DAgeUtGwAAAAAAAAAqTUW6vEsMs//HYrHIYDBo0qRJGjBggE24m6lMm+7uLUlblPx8su0U5z6242UpSx/po7LfWLpsO7qTJCUXfl3wzAKN7TtW7nIv83DV0c1NBzcAALiUcofijz32mMaMGaOXXnpJPj4+lz6hFDt37lSPHj2sr4vWAh85cqQWL16sJ598Ujk5Obr//vt15swZ3XzzzVqzZo28vLwqdF0AAAAAAAAAcFRFu7y3bNliExBLkrxkDbYtRouSjEkacHyATOEmawieqUzbc6IkjS573YEKLLXDO0IR+nrr18UCbKPRWBhg93UswKabGwAAOJvB8v/s3XlclPX6xvFrGPZVUVYZxSVzyVyyTItcS81Mc6ljVmqdVk3ItGwzrcwWMyozW05qq53joezYppmaa2qm9SszzYVFEFcQEJCZ+f1BTIzAsAwwgJ93L14xzzzP871nNFIu7vtb2o8jOuDn56dffvlFrVq1qqmaqlVmZqaCgoKUkZGhwMBAu+dycnK0e/dutW/f3umAH/aio6MVFxenuLg4V5eCGlT039DBgwd14MABtW7dWjfccIOrywIAAAAAAKgxZrNZ0dHRJUPtvxTtk33gwAFb6JuvfKUoxRZur9i5Qks3LrXv8G7qZGFZKtnh/dfH4mcWa+RlI+Uv/wq/RgJsAABQ1znKgc9V6U7xgQMHavv27fUmFEfDkZCQoDfeeEM7d+5UXl6eOnbsqJkzZ2rgwIFlXjNz5kzNmjWrxHFfX19lZ2fb7vvss89q3759Onv2rC644AI9+OCDuvXWW2vstQAAAAAAAKB+KtHl7SYpQiW6vPue6KvckFwlKUlHdERWFetN6vLXRwV5yUtRiirR2R1pjtSdg+5U+o/p0smS1xUF9LdcckvhHt8VxDhyAADQ0FQ6FB8yZIimTZum3377TZ06dZKHh/3+Mddff321FQcU9/333+vqq6/Ws88+q0aNGmnRokUaOnSofvjhB3Xt2rXUa6ZOnap77rnH7lj//v116aWX2h4HBwfrscceU7t27eTp6akVK1ZowoQJCg0NdRi4AwAAAAAAoGGzyKKjOmq3j/fKsJXSx/q7wztSpX6Xdb3WV2yRAkkpKrGHd5OcJvryzS8VbYxWiEJkkKHktUap4N4CjRo1SjLIbpy7wVB4fnx8PF3eAADgvFfpUPzOO++UJD311FMlnjMYDDKbzc5XhRp38uRJTZo0SStXrlRWVpaioqL06KOPasKEwk2IkpOTNW3aNH3zzTfKy8tT+/bt9frrr6tHjx76888/NWXKFG3ZskXZ2dlq37695syZowEDBpS53qlTpzR16lQtX75ceXl56t69u15++WV17ty5wjXHx8fbPX722We1fPly/e9//yszFPf395e//99joXbt2qXffvtNCxcutB0796deY2NjtWTJEm3YsIFQHAAAAAAAoB6oyrhvq6w6qZM6aD6ob377Rntz9yovNE8Gk0HJbslKUpKSlax85dtf2P6vjwowyKAIRZTa5f3nmj/1yK2PSGmSin1LtSjMfmvZW7rMeFm5a4wYMULLli0rsQ94VFRU4T7gDvY2BwAAOF9UOhS3WCw1UQdq2RNPPKHffvtNX331lZo2bap9+/bpzJkzkqSsrCz17t1bzZo10+eff67w8HDt2LHD9muflZWla6+9VrNnz5aXl5fee+89DR06VHv27FHz5s1LXW/06NHy8fHRV199paCgIL355pvq37+//vjjDwUHB+vgwYNq2bKl1qxZU+HRTBaLRadPn1ZwcHCFX/c777yjtm3bKiYmptTnrVarvvvuO+3Zs0fPP/98he8LAAAAAAAAe1UJqqtyTUJCQqmB8HOvP6eu13e16/I+958c5UhGSZ2q+CLTVXIP72QpNC9Um/+9WSajSR7yKP3avlLbV9tWS5g9YsQIDRs2jH3AAQAAylDpUBwNQ2Jiorp27aru3btLkqKjo23PffTRRzp69Ki2bdtmC5zbtGlje75z5852Hd5PP/20Pv30U33++eeaNGlSibU2bNigrVu3Kj09XV5eXpKkuXPn6rPPPtOyZct01113ycPDQxdeeKF8fX0r/Brmzp2rrKws3XjjjRU6Pzc3Vx9++KGmT59e4rmMjAw1a9ZMeXl5MhqNWrBgga6++uoK1wIAAAAAAIC/lRVUv/LKK2WGvZW55ozOKElJ+mj9R5r1v1nSeBWOMo8q/HeyKVm3NLrFqdfgl++nVp6tSnR4m2TSb9/8pknDJ8mQZyh1ZPkby95QK2OrcteozjCbfcABAADKVqVQPDs7W+vWrVNiYqLy8+3HB02ePLlaCkPNuvfeezVy5Ejt2LFD11xzjYYPH65evXpJknbu3KmuXbuW2YGdlZWlmTNn6osvvlBqaqoKCgp05swZJSYmlnr+rl27lJWVpSZNmtgdP3PmjP78809JUrNmzfT7779XuP6PPvpIs2bN0vLlyxUaGlqhaz799FOdPn1a48aNK/FcQECAdu7cqaysLK1evVpTpkxRq1at+IsEAAAAAABokCrbkV2Z8xMSEjRq1Ci7sFiSUlJSNGrUKC1btqxEyG13jYekZioMt5sna+S2kRrUeZA8WnvYOryP63jhhTF/fVSSn9VPefvyVHCgoGSnd5KkFCm4UbB+OvBTqa+z78C+ivgwolq6vAmzAQAAal6lQ/GffvpJ1157rXJycpSdna3g4GAdO3ZMvr6+Cg0NJRSvJwYPHqxDhw7pyy+/1KpVq9S/f39NnDhRc+fOlY+Pj8Nrp06dqlWrVmnu3Llq06aNfHx8NGrUqBI/IFEkKytLERERWrt2bYnnGjVqVOnaly5dqn/+85/6z3/+43Af83O98847uu666xQWFlbiOTc3N1s3fJcuXbR7927NmTOHv5AAAAAAAIB6obKhdWW6uCtzvtlsVmxsbIlAXCrctk5GadJzkxQ6LFSHjYeVpCQlWhL1tvfbsm6xFnZ7h0lys7/2a31d8TcjV1KybAH32N5jdWWLK+06vXeu26l+ffs5vE3S6SStX7++zO8PMbIcAACg/qh0KP7AAw9o6NChWrhwoYKCgrRlyxZ5eHjolltuUWxsbE3UiBoSEhKicePGady4cYqJidG0adM0d+5cXXzxxXrnnXd04sSJUrvFN27cqPHjx+uGG26QVBh6Hzx4sMx1unXrprS0NLm7u9uNaa+Kjz/+WLfffruWLl2qIUOGVPi6AwcOaM2aNfr8888rdL7FYlFeXl5VywQAAAAAAKg1lQmtK9vFXZnzrbJq+ZblSg5LlrqrMOA+9yNSSnVPVUzx9m43SddW7LUaZVQzNZNJJlkOWbT5k80lu7yP2l8z5KMhGtNijN2xtNS0Cq2XmprquB66vAEAAOoFt/JPsbdz5049+OCDcnNzk9FoVF5enkwmk1544QU9+uijNVEjasCMGTO0fPly7du3T7/++qtWrFih9u3bS5LGjBmj8PBwDR8+XBs3btT+/fv13//+V5s3b5YkXXDBBUpISNDOnTu1a9cu3XzzzbJYLGWuNWDAAPXs2VPDhw/XypUrdfDgQW3atEmPPfaYtm/fLqnwL1Lt2rXT1q1by7zPRx99pNtuu00vvfSSevToobS0NKWlpSkjI8N2zvz589W/f/8S17777ruKiIjQ4MGDSzw3Z84crVq1Svv379fu3bv10ksv6f3339cttzi37xQAAAAAAEBNKwqtiwfi0t+hdUJCgu1YuV3ckuLi4mQ2m0s/v7GkiyUNkax3W2WdbdWtulW9rb3VWq3lLW+NvGKktF3Sp5JelTRN0j8kXSGpuRy36FgkHZb0g6Rlkl6WNEXSaEmXS/M/m6885emQDmmDNujZA89KD0uaL2m5pB0qEYhLUkRERIWOlaai5wEAAKBuq3SnuIeHh9zcCrP00NBQJSYmqn379goKClJSUlK1F4ia4enpqUceeUQHDx6Uj4+PYmJitHTpUttzK1eu1IMPPqhrr71WBQUF6tChg15//XVJ0rx583T77berV69eatq0qR5++GFlZmaWuZbBYNCXX36pxx57TBMmTNDRo0cVHh6uq666yjbK/OzZs9qzZ49ycnLKvM9bb72lgoICTZw4URMnTrQdHzdunBYvXixJOnbsmG2f8iIWi0WLFy/W+PHjSx1flZ2drfvuu0/Jycny8fFRu3bt9MEHH+imm26q2JsJAAAAAABQCRUddV7eeeWF3AaDQXFxcRo2bJiMRqPWr19fIjy38ZesJquSTEmavm+6fC/01db0rUp+N/nvLm+/kpflKEff6/uKvfCjsnVzD+8+XJc3u1wmmXTsp2OKvSG2MBA/W/blHRt1lFF/v/6YmBhFRUUpJSWl1PfAYDAoKipKMTElNx135loAAADUPwZraX/qc+Caa67R+PHjdfPNN+vOO+/Uzz//rMmTJ+v999/XyZMn9cMPP9RUrVWSmZmpoKAgZWRkKDAw0O65nJwc7d69W+3bt5evr6+LKgTqr6L/hg4ePKgDBw6odevWtrH6AAAAAAA0FNUVYksVH3VekfPWrl2rvn37llv/1+u+VqurWmnJd0s0e8ns0seaN6rEG1KKIAXJJJOirFFa/+F6Ze/JlhL190jzZEm5f4fNBw4csL03ZrNZ0dHR5QbUxa8pUtQpL8nuWoPBIEklxsFX17UAAABwPUc58LkqPT792WeftY0Nmj17tho3bqx7771XR48e1VtvvVW1igEAAAAAAIA6KCEhQdHR0erbt69uvvlm9e3bV9HR0XZjySt6XkVHnVf0vNTU1MI5kC0kXSlpjKSHJL0m6TNJP0pKlwZdNUht1Vaz+82Wlkh6RtLdKtzHu5PKD8SzJf0uaZWkdyXNkvRPSQMldZC+WP+FTumUftEv+srwld7zfU+G2QYZ3jdIayTtky0Ql6T4+Hi7cNtoNOqVV16R9Pc5Rcq6psiIESO0bNkyNWvWzO54VFRUuaG2M9cCAACgfql0p3h9Q6c4UHPoFAcAAAAA1GfldXYXhdPnfvvs3E7iipw3bNgwRUdHlzm+vKgbet++fWrdunXheW6SwmXf0d1c8mnro4sGX6T9+ft13ON4FdpeislTYRf3Xx3dARkBmnPfHLVwa6FIc6SGdhmqw78elkr5DmJ5HdzndrqbTCbFx8c77Nyu7DVFKtrNX93XAgAAwHUq0ylOKE4oDlQZoTgAAAAAoCZUZC/t8kLMigTejsaTF430rlSI7eC8RYsWacCAAfZPhqjEGPOuw7rqp6M/FT6OlORR8fethALJeMSoyyIvU3NDc5lk0oldJ/TurHcLQ/BEFe7zbS17ZLgzI8arEjYTUAMAAKCiKhOKu1f25i1btiwxxqi4/fv3V/aWAAAAAAAAOE84G1ZXZK/tityjtM7uovHky5YtU3BwcJlBt1QYECclJWnBggWln9dIkkmymqxKMiXpSfcnC0eXFwXgUZK8S172k36SLnTwBv7FYDUozBAm/xP+2rdmX2G397l7eKdK//73v+1D687SkFuGFL4/6fbvT2kd2UUjxkt7P8vr4DYajerTp0/5L8bJawAAAIDyVLpTvGh/nyJnz57VTz/9pK+//lrTpk3T9OnTq7VAZ9EpDtQcOsUBAAAAAOdyFHpXNawuatCYOnWq5s6d63BMuSSH9/jkk080ZcqUcju758yZo1tuuaX0F+knW7jdb1w/fbf3uxId3/J3/D6V65j+DrhL+Vi5eKWu7n21pKqNHa9sRzYd3AAAAKhrXDI+/fXXX9f2RHe+kAABAABJREFU7du1aNGi6rhdtalIKH7hhRfK39/Zv6kA55+srCzt2bOHUBwAAAAAIMlx6C05F1ZLhV3EZrO51OcMBoOaNWsmSQ4D76ZNm+ro0aNlvwgvSVHSfc/dpwWfLygZdpskNS778grJUMmgO1kKyQ3Rd0u+08COA5X6Z2qJ96roNZS2jzehNQAAAM43LgnF9+/fry5duigzM7M6bldtHL0ZFotFu3btkru7u5o1ayYvLy+Ho+EB/M1isejw4cPKzMzUvn37lJycTCgOAAAAAPWEM3t2l/Wcoy5vq9WqJk2a6Pjx46XWU6Gwujq4q3Cf7tKC7qKPUCfXyJb9CPNkqXFWY73/7Pva+91ePTDqARlOGxzuz+3MPt4AAADA+aJG9xQvS9FeS9XJbDZr5syZ+uCDD5SWlqbIyEiNHz9ejz/+eLWE125uburQoYOtyxVA5VitViUnJ8tischqtfIT6AAAAABQy6oaXld1z25JpT43b948TZkypdTO5qJjZQXiRec4HYi7SQqT48A74q/zqipPhUH3X6H3iMtGaMCFA5S0KUlz7ptTePzE36cXff/qnWXvaIhxiHS11HxR83L353ZmH28AAAAAJVW6U7xr1652gbTValVaWpqOHj2qBQsW6K677qq24p599lnNmzdPS5YsUceOHbV9+3ZNmDBBs2fP1uTJkyt0j4r8hIDVatVXX32lffv2KSIiQm5uzvztCDh/nD17VhaLRWfPnlVSUpJ69+6tmJgYV5cFAAAAAOeFqoTXY8aMcbgnt6M9u8v6FpKj56pViKQolR14N5Pk4cT9CyQdlpQk+Rz30b3X3asWbi2UsiVFi59erPTt6dJRSdbS9+uuzL7eFR11zkh0AAAAoGw1Oj591qxZdo/d3NwUEhKiPn36qF27dpWv1oHrrrtOYWFh+te//mU7NnLkSPn4+OiDDz6o0D0q+mYcPXpUK1asUEpKinx8fAjGgQqyWCzKzc1Vq1atNGTIkHK/6AAAAAAAKqe0YHT58uUOR5VXlaM9u2tUI0kmKfCiQGUGZZYMv6MkeTu5RqoKA+9jPup7QV99+eaXhZ3diYXHlSYZLKWPJyfEBgAAAOqeGh2f/uSTT1a5sMrq1auX3nrrLf3xxx9q27atdu3apQ0bNmjevHnVvlZISIiuu+467dy5U6dOnXLNXwCBesjd3V3BwcHq3r07gTgAAAAAqGojzSsz6rxZs2bKzc11OKrcmdqrnZ8cjzQ3SfIvPDVTmVVb45ikJKl7eHc1zWmqr9/52j7wTpEMBYWB9wfLPtCIC0YooVcpnfam0seTG41G9enTp9wyKnoeAAAAgNpV6U7xlJQU/fe//9Uff/whT09PXXjhhbrxxhvVuHHjai/OYrHo0Ucf1QsvvGD7C+Ls2bP1yCOPlHlNXl6e8vLybI8zMzNlMpkq9BMCAAAAAAAA56pMkL18+fIqjTT/+OOPKzzqvE7xkuOR5iZJzn7LKENyT3NXp6BO6h7eXad/O61v3vlGJ3edLAy8kyVTU/sx5RUdZU5nNwAAAFB/1dj49AULFmjKlCnKz8+33TgzM1M+Pj565513NGbMGFmtVu3cuVNdu3Z17lVIWrp0qaZNm6YXX3xRHTt21M6dOxUXF6d58+Zp3LhxpV4zc+bMEiPeJRGKAwAAAAAAhyoTcpcWZDdp0kTHjx8vcd9a23O7urlLipTjwDvUyTVyJPdUd7UPaK9LQi+R6a9/Is2RSv8xXZZDFrUOaV0irK5ImE3gDQAAADRsNRKKf/HFFxo2bJji4uL04IMPKiIiQpKUmpqqF198UfPnz9d3332nBQsWqF27dpoxY4bTL8RkMmn69OmaOHGi7dgzzzyjDz74QL///nup19ApDgAAAADA+ae0AFSSUx3eZYXcDYJBUrhKhtzN9Xfnd7gkZzLkfEnJkle6l3pE9lCv5r1sgfexn47JcsiiC5pcoKtiriKsBgAAAFBpNbKn+Isvvqjp06frmWeesTseERGhefPmydfXV1dffbXCw8M1Z86cqlV+jpycHLm5udkdMxqNslgsZV7j5eUlLy+valkfAAAAAADULZUJtCXZhdqV7fCu14F4Uznu8G4mycOJ+5slHVbh+PK/RphPGDBB13W+TpHmSB3+4bDOHDqjZhHNSnZoGyV1/+sDAAAAAGpBhTvFAwMDtW3bNl144YWlPr9nzx61b99eBw8eVPPmzauluPHjx+vbb7/Vm2++qY4dO+qnn37SXXfdpdtvv13PP/98he5RmZ8QAAAAAAAAdce5AfixY8f0wAMPnD/d3GUJkuPAO0qSj3NLuKW7yXLIYgu9g04H6Y6r71CTM0302kOvKW1HWmEwrtL36gYAAACAmlYjneJms1keHmX/CLGHh4d8fHyqLRCXpNdee01PPPGE7rvvPqWnpysyMlJ33313tYxmBwAAAAAAdVdCQkKJ7u/SNLhA3FeOA2+TpADnlghWsExWk3yP+8rvpJ+ijdGKiY5RC7cWMsmkZmom9ybuWv/beqXmpSqis/1+3A9vfpi9ugEAAADUKxXuFL/ssss0ZswYPfDAA6U+P2/ePC1dulRbt26t1gKdRac4AAAAAAD1S0JCgkaNGqUKfsui/vDU3/t1l/UR7NwSAdYAmQwmmWRSlCVK5kNmeR7xVFufthp80WC1MLaQn/ycWwQAAAAA6oAa6RSfOHGi7r33Xnl5eemuu+6Su3vhpQUFBXrzzTf1+OOPa8GCBc5VDgAAAAAAzmtms1mxsbH1LxA3SoqU48A7zMk1zkhKkryOeqlnVE9d2eJKmc75J8gQ9Pf5bpJa/vUBAAAAAOexCofi48aN0y+//KJJkybpkUceUevWrWW1WrV//35lZWVp8uTJGj9+fA2WCgAAAAAA6pNz9wSPiYmRJIfHjhw5Uu7I9FpnUGGg7SjwjlBhMF5V+ZJSZNvDOyAjQDf1uklDuwxVpDlSKVtSlJ2YrciISMaVAwAAAEAlVXh8epEtW7bo448/1t69eyVJF1xwgcaMGaPLL7+8Rgp0FuPTAQAAAACouqoE2xERETp27JgeeOABu4C7SZMmkuz3AS/tWK1rIseBdzMVjj6vIjermyINkbaR5kqRvI96q7Vna13T/hpFG6PV1NxUG9dvZJ9uAAAAAKigyuTAlQ7F6xtCcQAAAAAAKubcALxeBdtlCZTjwDtKkq9zSwSdCVL42XC1D2iv5obmJUaaRyhC7hUf1gcAAAAAqIAa2VMcAAAAAADUX+V1fO/du1dvv/12uaPLSwu+XRaG+0hqLilK8mvvp+zG2baw2xhtlKWZRdYA53oBghVcIuQu/k8zNZOXj1dhLQAAAACAOolQHAAAAACABqaqHd91iqcKu7ijVHaXd5O/T89Wtt3lZpnLXcLnrI9C80N1oe+FpXZ4RylKfvKrphcEAAAAAHAVQnEAAAAAAOq54iG4Mx3ftcYoKVKOx5qHObeEt7wddnibZFKQR5Dk4dw6AAAAAIC6j1AcAAAAAIB6pCJd4C5lUGGg7SjwjlBhMF5FHvJQMzVzGHg3URMZZHD21QAAAAAAGoAqheIFBQVau3at/vzzT918880KCAjQ4cOHFRgYKH9//+quEQAAAACABqm8fb4jIiLUq1cvbdq0qVJd4DWqiRwH3s1UOPq8qsySUiUlST7HfXT3tXerhVsLu8A7TGFyk5tzrwMAAAAAcN6odCh+6NAhDRo0SImJicrLy9PVV1+tgIAAPf/888rLy9PChQtrok4AAAAAAOqcc0Pt4gF2eY9LC7hL2+fbaDTKbC5/f+xqESjHgXeUJF8n1zgiKcnBR6pkMBd2eH+w7AONcBvh5IIAAAAAgPNdpUPx2NhYde/eXbt27bL9ZV2SbrjhBt15553VWhwAAAAAAK7kKPQuLdQ+N8Au7/G5Stvnu9oCcR85DrxNKgzFnXFCDgPv4NxgGfIMdq+ztB8EiDJFKT4+XiNGEIgDAAAAAJxX6VB8/fr12rRpkzw97WehRUdHKyUlpdoKAwAAAACgpjkbepd2v8o8rjaeKhxb7ijwblLm1RVzWlKS5JHmIbfDbsrbm2cLuxudbiS3w246kXTCdrrJZNJLL72kkGtCHI6HL+uY0ejEpuMAAAAAABRT6VDcYrGU+pf45ORkBQQEVEtRAAAAAADUlKIgfPny5frwww919OhR23OVDb1rhVFShBwH3uFOrpGrUju7m+Y21fSbp+tCvwuVmZSpyIhIxfR2Ptju06dPhY4BAAAAAFAdDFar1VqZC2666SYFBQXprbfeUkBAgH7++WeFhIRo2LBhat68uRYtWlRTtVZJZmamgoKClJGRocBAZ+fAAQAAAADqs4SEBMXGxtp1f7uUQVKoHAfeEarCj7QXc1ZSikoE3gEZAXJLcVPGLxnSscJTo6KidOedd+qCCy6gYxsAAAAAUKdVJgeudCienJysgQMHymq1au/everevbv27t2rpk2b6vvvv1doaKhTxVc3QnEAAAAAaHgcjT0v+ntpenq63XPLly9XfHx87RYaLMeBdzNJXk7c3yIpVQ738dYRydTsr1HmIeWPMicEBwAAAADUBzUaiktSQUGBli5dqp9//llZWVnq1q2bxo4dKx8fnyoXXVMIxQEAAACg7qpquF2ZsefljUSvsgA5DrxNknydXCNdjgPvw5IKSl5GxzcAAAAAoKGrTA5cpQFs7u7uuuWWW6pUHAAAAADg/FJW8F2d4Xa17wPurfID76DK39bOSTkOvJMl5ZV/G5Op9C5wQnAAAAAAAApVKBT//PPPK3zD66+/vsrFAAAAAADql+KBd/HO7qLPV6xYUangu9rD7dJ4qHBsuaPAu6mTa5xW2UF30efZJS9r0qSJJOn48eO2Y+e+X3SBAwAAAABQORUKxYcPH16hmxkMhpoZSQcAAAAAcJmygu+9e/fq7bffVnJycqXvV2PcJEXIceAd9td5VZWrMru73Q67yXLQImUUnnpuoF2RgFtSmSPlCcEBAAAAAKi8Ku0pXptSUlL08MMP66uvvlJOTo7atGmjRYsWqXv37hW6nj3FAQAAAKDqEhISFBsbW+ngu0YYJIXIceAdqSpuFPaXs5JS5Dj0PmKxnX5uqH1ugF3eYwJuAAAAAACqpjI5cJ0OxU+ePKmuXbuqb9++uvfeexUSEqK9e/eqdevWat26dYXuQSgOAAAAAGVzNP58/fr1mjVrVu0V01iOA+8oSV5O3N8iKVUO9/F2O+Ymy9mKh96E2gAAAAAAuEZlcuAq/fz86tWr9fLLL2v37t2SpPbt2ysuLk4DBgyoyu3K9Pzzz8tkMmnRokW2Yy1btqzWNQAAAACgoarKft81JkClh9zFH/s5uUa6HAbeOiypoORlISEhGjt2rIYNG1ah0LtPnz5OFgoAAAAAAGpTpTvFFyxYoNjYWI0aNUo9e/aUJG3ZskXLli3Tyy+/rIkTJ1ZbcR06dNDAgQOVnJysdevWqVmzZrrvvvt05513lnlNXl6e8vLybI8zMzNlMpnoFAcAAABQ75UXcrss8PaW4w5vk6QgJ9c4KceBd7KkvDKvLlVcXJyGDRtGtzcAAAAAAPVQjY5Pj4qK0vTp0zVp0iS746+//rqeffZZpaSkVL7iMnh7e0uSpkyZotGjR2vbtm2KjY3VwoULNW7cuFKvmTlzZqnj/QjFAQAAANRHRUH48uXLay/kLs5DUjM5DrybOrlGlhwH3kmSsh3fwmg0ymw2V+g5k8mk+Ph4jRgxwsnCAQAAAACAq9RoKO7v76+dO3eqTZs2dsf37t2rrl27Kisrq/IVl8HT01Pdu3fXpk2bbMcmT56sbdu2afPmzaVeQ6c4AAAAgPqktO7vtLQ0HT16VAcPHtRHH31Uc0G4m6QIOQ68w/46r6pyVdjF7SjwPvX36ZUJt8sae168c559wAEAAAAAaJhqdE/x66+/Xp9++qmmTZtmd3z58uW67rrrKns7hyIiItShQwe7Y+3bt9d///vfMq/x8vKSl5dXtdYBAAAAAFVVFHqnpKTo6NGjCgkJUXh4uKRaGHEeKseBd6Sq8LfCYgokpchx4F3KS6upcNvRXt/sAw4AAAAAwPmr0t/+6NChg2bPnq21a9fa7Sm+ceNGPfjgg3r11Vdt506ePNmp4q644grt2bPH7tgff/yhFi1aOHVfAAAAAKguLgu9G8tx4B0lyZmfF7ZISpPjwDvtr/MqoKzgm3AbAAAAAADUtEqPT2/ZsmXFbmwwaP/+/VUqqsi2bdvUq1cvzZo1SzfeeKO2bt2qO++8U2+99ZbGjh1boXtUpm0eAAAAAMpS2pjzGgu9/eU48DZJ8nNyjaNyHHgflnS2/NtERUXpzjvv1AUXXGDX2X1ulzcjywEAAAAAQHWq0T3Fa9uKFSv0yCOPaO/evWrZsqWmTJmiO++8s8LXE4oDAAAAcMTRnt5FXd/r16/Xa6+9phMnTji/oLcKu7gdBd6NnFzjlBwH3skq3Ou7Cp588knFxMQQdgMAAAAAAJdqUKG4swjFAQAAABQ5NwCv1rBbKtygqpkcB94hTq6RLceBd5KkLCfXKIXJZFJ8fLxGjBhR/TcHAAAAAACopMrkwJXeU9xqtWrZsmVas2aN0tPTZbHYbyCXkJBQ2VsCAAAAQLUpa49vpwNwN0nhchx4h/91XlXlqbCL21HgfdKJ+5ehaL/v6667ThLjzwEAAAAAQMNS6VA8Li5Ob775pvr27auwsDAZDIaaqAsAAADAee7ccLtJkyY6fvy4LeSW/h5zXvTcwYMH9dFHH1Vtj+8QOQ68IyV5OPGCCiSlqOxx5kkq3Oe7mmd5EXgDAAAAAIDzXaVD8ffff18JCQm69tpra6IeAAAAAOeBsgLvagm3S9NIjgPvKBXu9V1VFklpctzhnfbXeU4qL+Qm8AYAAAAAALBX6VA8KChIrVq1qolaAAAAADRA5wbg1R54+8lx4G2S5O/kGkflOPA+LOmsk2s4UBSEDxs2jJAbAAAAAACgkiodis+cOVOzZs3Su+++Kx8fn5qoCQAAAEADYDabNXv2bL3yyitV38fbS4Vd3I4C78ZOFnpKjgPvZEm5Tq5RjnO7v4vGwoeEhKhZs2YE4QAAAAAAAE6odCh+44036uOPP1ZoaKiio6Pl4WG/qd6OHTuqrTgAAAAA9U9RGP7iiy8qKyur7BPdVbhPt6PAO9TJYrLlOPBOkuSgxOoSEhKiMWPGqGXLlnZ7ojPiHAAAAAAAoOZVOhQfN26cfvzxR91yyy0KCwuTwWCoiboAAAAAuFB5e36f+++ioHf9+vV66aWXlJWTJYVJ6qCyA+8ISW5OFJmnwi5uR4H3SSfuXwmE3gAAAAAAAHVXpUPxL774Qt98842uvPLKmqgHAAAAQC0qLfxes2aNli9f7njkeYjsA+58FQbcAySNl9RMkkdZF1dAgQr36XYUeB+VZHVijSoKDg7W/fffr5iYGEJvAAAAAACAeqDSobjJZFJgYGBN1AIAAACghhUPwVevXl16+N1IhUH35Sq9wztKkreThaTKceCdJsns5BqVVDzsLr6nN13fAAAAAAAA9VulQ/GXXnpJDz30kBYuXKjo6OgaKAkAAACAs8rqAP/s28900u/k3wH3/SoZevs7ufgxOQ68UySddXINJ9HtDQAAAAAAcP4wWK3WSg0cbNy4sXJyclRQUCBfX195eNjPRHQ4YtEFMjMzFRQUpIyMDDrcAQAAUO852us77VSaDCaDVv+xWusPrld24+ySgXdjJwvIkOPAO1nSGSfXqAbs8Q0AAAAAANCwVSYHrnSneHx8fFXrAgAAAFAKs9mstWvXau3atbJYLAoODlZoaKgt7D5+/LiCmgbpq11f6etfv9bpoNN/h9wBkjr89Xmok4XkyHHgnSTptJNrVFLxcLvovSgecheNOS/+XLNmzQi9AQAAAAAAYFPpTvH6hk5xAAAA1DXn7uv972X/VrZ/KV3dxT/CJTmT8earsIvbUeBdy0OfSgu8CbcBAAAAAABQETXaKV5cbm6u8vPz7Y4RPAMAAAB/d3+vWbtGWd5ZMjQ3yBpl1ZaULdp1Ypdym+ZKzSXNkPSmJI9ybuhwMUmH5TjwTpfk4h+H9fPz0+jRozVgwAACbwAAAAAAANSaSofi2dnZevjhh/Xvf/9bx48fL/G82WyulsIAAACA2lbWGPOjR4/a/uxbfLR5cJNgJWUm6aD5oDKDMmWONOts+Fn9mvmrDhYclLm5WXpUko+ThaXJceCdqsJgvI7y9/fXtGnT9NhjjxGCAwAAAAAAoNZVOhR/6KGHtGbNGr3xxhu69dZb9frrryslJUVvvvmmnnvuuZqoEQAAAKiU4uPJjxw5UiLQLi3kXrNmjf7zn/8oKyvr7xv5quQY8yAV7t19if7e09sZx+U48E5R4ejzeig4OFixsbGE4QAAAAAAAHCpSu8p3rx5c7333nvq06ePAgMDtWPHDrVp00bvv/++Pv74Y3355Zc1VWuVsKc4AADA+aEoCP/ss8+0ePFiZWRkOL7AU1KUHO/jHexkURlyHHgnSzrj5Bo1rHHjxho2bJj69etnt+d3aXuAh4eHS5LS09MVERHBeHQAAAAAAADUmBrdU/zEiRNq1aqVpML9w0+cOCFJuvLKK3XvvfdWoVwAAACg4s4dcd6oUSNt2bJFq1at0unTpwtPMspx2G2SFOZkITlyHHgnSTrt5Bq16NzwOyQkhH2/AQAAAAAA0CBUOhRv1aqVDhw4oObNm6tdu3b697//rcsuu0z/+9//1KhRoxooEQAAAOeT0kLvU6dOSZJSUlK0LGGZsv2y7QPuXpJuKvY4QoXBeFXlq7CL21HgfcKJ+9cBRSH4gAEDCL8BAAAAAADQoFU6FJ8wYYJ27dql3r17a/r06Ro6dKjmz5+vs2fPat68eTVRo81zzz2nRx55RLGxsYqPj6/RtQAAAFCzSgu/N2/ZrC9/+FJ5IXl/B9wBkjro78dvqXD0eZUXlnRYjgPvdEmV2mSo7qIDHAAAAAAAAOe7SofiDzzwgO3zAQMGaPfu3bZ9xS+++OJqLa64bdu26c0336zRNQAAAFD9ioffOR45kknakrJFW1O3qiC8QGqtvwPvSZJ8nFwwTY4D71QVBuP1XHl7fRN+AwAAAAAAAIUqHYqfKzo6WtHR0dVQStmysrI0duxYvf3223rmmWdqdC0AAACUz2w2a/369UpJSdGRI0d0/Phx5XvkS1FSiluKMoMylR+Wr71n9irRmihLM4s0TVKgkwsfl+PAO0WFo8/rqYCAAF1zzTXq2bOnQkNDCbsBAAAAAACAalDhUHzz5s06fvy4rrvuOtux9957T08++aSys7M1fPhwvfbaa/Ly8qr2IidOnKghQ4ZowIAB5YbieXl5ysvLsz3OzMys9noAAAAaqtLCbknyb+KvJGuSMoMydbDgoLYd2ab80PzC7u6LVPjvYCcXz5TjwDtZUo6Ta9Qx7OsNAAAAAAAA1LwKh+JPPfWU+vTpYwvFf/nlF91xxx0aP3682rdvrxdffFGRkZGaOXNmtRa4dOlS7dixQ9u2bavQ+XPmzNGsWbOqtQYAAICGoGiM+XfffafExERFRUUpODhYJzJP6HTAae3L26d1+9cpt2luYcjdUtJVKvw8zMnFz8hx4J2kwlC8ASqt+5tubwAAAAAAAKD2VDgU37lzp55++mnb46VLl6pHjx56++23JUkmk0lPPvlktYbiSUlJio2N1apVq+Tt7V2hax555BFNmTLF9jgzM1Mmk6naagIAAKgrygy5T5xQcnKyoqKi1Ci4kZLPJmvDoQ36NfNXnQ07Wxhyd9bf+3hHSHIml81X4dhyR4H3cSfu7wLnBtlHjx61dc0HBwfbjTYv6zmCbwAAAAAAAKBuqHAofvLkSYWF/d0itG7dOg0ePNj2+NJLL1VSUlK1Fvfjjz8qPT1d3bp1sx0zm836/vvvNX/+fOXl5ZX4BqOXl1eNjHAHAACoaUUh99q1a2WxWNSoUSOdOHFCiYmJMhgMMplMttB706ZN+mHrD8rzy/s73A6UFKTCceaD/zrWTJKnM0VJSpXjwPuIJKsTa9SwwMBADRgwQO3atbOF1gTZAAAAAAAAwPmjwqF4WFiYDhw4IJPJpPz8fO3YscNuTPnp06fl4eFRrcX1799fv/zyi92xCRMmqF27dnr44Yf5RiUAAKgXKhJ2p6Sk6D//+Y9yc3P/vjBQfwfeJkm+kkIkdZM0QVLUX8eccUSOA+/DKgzG6xE/Pz+NHj2afboBAAAAAAAASKpEKH7ttddq+vTpev755/XZZ5/J19dXMTExtud//vlntW7dulqLCwgI0EUXXWR3zM/PT02aNClxHAAAoLYUH1t+8ODBEl3c5YbdkuSjv8NuD0nRkl6VfQge6GShJ+Q48E5W4ejzeqpoxHmPHj106tQpubm5qU+fPurTpw8hOAAAAAAAAACbCofiTz/9tEaMGKHevXvL399fS5Yskafn37M43333XV1zzTU1UiQAAEBNODfctlqtcnNzKxFwFz9eZshdnKcKx5YXhdtxsg+7TZKaOFn8aTkOvJMk5Ti5hot5e3tryJAhttBbKhx1Hh4eTgc4AAAAAAAAgAozWK3WSu0AmZGRIX9//xLfgDxx4oT8/f3tgvK6IDMzU0FBQcrIyFBgoLPtVgAAoL46d4R5UlJS+eF2aYySIlQy5C7+Ee5ksWdU2MXtKPDOcHKNOuTc8JuObwAAAAAAAADlqUwOXOFO8SJBQUGlHg8ODq7srQAAACqltM7uImV1eEtSUlKStm7dqvz8cmaFGySFynHgHaEq/AmqmLMqO/AuOn7MifvXYYTfAAAAAAAAAFzBmW/pAgAAVIuKjDHfuHGjfvjhh/KDbUeC5TjwbibJy5kXIilVjju8j0iq1Jyeus/Hx0eDBw9Wu3bt1KhRI9uo86LPCb8BAAAAAAAAuBKhOAAAqDGOOruLVLiLuzwBchx4myT5OreEjshx4J0qqcDJNeoQwm4AAAAAAAAADQGhOAAAqLRaDbslyUdSlBwH3qXv8FJxJ+Q48E6RlOfkGnWEl5eXevTooV69eik4OJiwGwAAAAAAAECDRigOAADslBd4V2vYLUkeKhxb7ijwburkGqflOPBOlpTt5BoudG7IfeLECSUnJysqKsrucfPmzdWvXz/CbgAAAAAAAADnFUJxAADOU6WF39UeeLtJipDjwDvsr/OqKleOA+8kSRlO3N9FvL29NXr0aDVr1kyJiYkyGAx2e6wTcgMAAAAAAABAxRCKAwDQwBWF399++622bdumM2fO6PTp09qzZ49z4bdBUogcB96Rcu5PG2dVOLbcUeB9zIn7u4CjsJvR5QAAAAAAAABQ/QjFAQCop2p8X+9g/R1ul7afd5Qkr6rXL4ukVDkOvI/8dV4d5uHhocsvv1xXXHGFrYubsBsAAAAAAAAA6g5CcQAA6ihHobfTY84D5LjDO0qSn3P1K12OA+/DkgqcXKMaeXh4qEePHmrRooXdmPLExERZrVa5ubkRcgMAAAAAAABAPUQoDgCAC5jNZq1evVpLlizRwYMH5ePjo5CQEBkMBklSYmKifvjhBxUUVCE19pbjwNskKcjJF3BSjgPvZEl5Tq5Rg4pGmJtMJsJtAAAAAAAAAGjgCMUBAKgmpXV2WywWHTt2TGfOnLEF38nJydqyZUvVAm8PSc3kOPBu6uQLyZLjwDtJUraTa1SDos5uk8kkSXad3MU7vIu4ubmpRYsW6tevHwE4AAAAAAAAAJxHCMUBAKig4qH3/v37dfToUVvYnZubq23btlV9nLkkuUmKkOPAO+yv86oqV4Vd3I4C71NO3L8aOBpjbjAYCLYBAAAAAAAAAJVCKA4AwF+KQu9vv/1W27ZtswXeTZo00e7du7V79+6qdXdLkkFSiBwH3pFy7v/MBZJS5DjwPurE/Z10bmd3cXRxAwAAAAAAAABqCqE4AKDBO3esudlsthtpXi2hd2M5DryjJHk58SIsklLluMs77a/zahlhNwAAAAAAAACgLiMUBwDUO6V1dHt7e0uScnNzbUH38ePHlZycrD///LPqYbck+ctx4G2S5Ofca1K6HHd4H1ZhJ3gtKyvwJuwGAAAAAAAAANQXhOIAgDqprP27MzMz9fvvvzsXchfnrcIubkeBdyMn1zgpx4F3sqQ8J9dwUvHwm8AbAAAAAAAAANCQEIoDAGqd2WzW6tWrtWTJEh04cEC5ubny9vaWj4+PJCklJcX57m6p8P9yzeQ48A5xbgllqfzAO8vJNaqR0WhU69atZTKZFBYWpujoaMJvAAAAAAAAAECDRigOAKgRZY04T09P12+//SaLxcnNr90khctx4B3+13lVlSvHe3gnSTrlxP2rmbu7uy6//HJGnQMAAAAAAAAAUEydD8XnzJmjhIQE/f777/Lx8VGvXr30/PPP68ILL3R1aQBwXiut29vLy0t5eXnKzs7W/v37nev0DpHjwDtSkocTL6BAUoocB95Hnbh/DWjXrp26du1qd4zAGwAAAAAAAAAAx+p8KL5u3TpNnDhRl156qQoKCvToo4/qmmuu0W+//SY/Pz9XlwcA9V5+fr7mz5+vdevWKTk5WZ6ensrLy7MF3KX9+8iRIzp06FDVu70byXHgHaXCvb6ryiIpTY4D77S/zqsD3Nzc1KFDB1100UUyGAySJIvFouPHj8vPz08xMTG6//775enp6eJKAQAAAAAAAACofwxWq9Xq6iIq4+jRowoNDdW6det01VVXlXt+ZmamgoKClJGRocDAwFqoEADqlnPHmOfk5Ni6uvfv36/09PTqXdBPjgNvkyR/J9c4KseB92FJZ51coxq4u7urR48e8vb21pkzZ+Tj46OQkBAZDAY6vAEAAAAAAAAAcEJlcuA63yl+royMDElScHCwiysBANc4d2z5mTNnlJ+fL0ny8vIq0dGdlJTk3Bjz4rxU2MXtKPBu7OQap+Q48E5W4V7fLmYwGNSxY0cFBgYSdgMAAAAAAAAAUIfVq1DcYrEoLi5OV1xxhS666KJSz8nLy1NeXp7tcWZmZm2VBwDVrigAX7RokX755RdlZGTo8OHDVR9b7oi7CvfpdhR4hzq5RrYcB95JkrKcXKOaGAwGXXDBBTKZTGrSpImOHz+u3NxcRUdHa9y4cerXrx+BNwAAAAAAAAAA9UC9CsUnTpyo//u//9OGDRvKPGfOnDmaNWtWLVYFAJVTfA/vpKQk2w/yFHV55+bmKj8/X5mZmdUXgLtJClfZ+3ebJEX8dV5V5amwi9tR4H3SiftXI6PRqPbt29u6vAm9AQAAAAAAAABouOrNnuKTJk3S8uXL9f3336tly5Zlnldap7jJZGJPcQDVpvge3Vu3blVaWpqys7Pl6+srLy8v2yhzT0/PEp8fOXJEx48fr/6iQuS4wztSkocT9y9Q4T7djgLvo5Jc9H+UiIgItW/fXpKUm5trF3QX7eUdFham6OhoxpoDAAAAAAAAANAANKg9xa1Wq+6//359+umnWrt2rcNAXPq70xIAKuPc7u3c3Fzl5OTYgu68vDzl5OSooKBAaWlpMpvNtVdcIzkOvKMkeTtxf4ukI3IceKf+dZ4Lubm5qU2bNoqKipLBYJC/v79iYmJ0//33y9PT07XFAQAAAAAAAACAOqvOh+ITJ07URx99pOXLlysgIEBpaWmSpKCgIPn4+Li4OgB1XdGe3EuWLNGBAwd05swZ5eXlKTs7WwaDQb6+vjp27JiOHj3qmgL95DjwNknyd3KNY3IceKdIOuvkGk6Kjo5WRESE7et6Ubc33d0AAAAAAAAAAMBZdX58usFgKPX4okWLNH78+HKvr0zbPID6Kz8/X6+++qo+/fRTnTp1Sp6enjp69KgOHz4sl32Z89Lf+3WX9dHYyTUy5DjwTpZ0xsk1qombm5vat2+vsLAw5eXlsXc3AAAAAAAAAACosgY3Ph0AikLvhIQEpaSk2Lq8vby8lJiYqBMnTtRuQe4q3KfbUeAd6uQa2bIPt0sLvU87uUY1io6OVnh4uPLy8uTt7S1fX186vQEAAAAAAAAAgMvV+VAcQMN0bshdXPHAOy8vT8nJyTp9uhbTX4OkcDkOvMMlOZPv5qnsoLvo46QT93dCmzZtFBAQYHv/y/q3j4+PWrZsSbc3AAAAAAAAAACo0wjFAdSYov28Fy1apJ9//llZWVmSpJMnT9ZuyH2upnIceDeT5OHE/QskHZbjwPuoJBcNwjAYDGrRooWtq5twGwAAAAAAAAAANGSE4gCqpKzAu0hOTo6OHz9e+1sgBMlx4B0lycfJNVLlOPBOk2R2co1KaNq0qUJDC2e1e3l5lejo9vb2lp+fny699FL179+fMeYAAAAAAAAAAOC8QigOoExlBd8uC7x95TjwNkkKcHKNY3IceKdIOuvkGk5o3LixWrZsqaioKF111VW6//775enp6bqCAAAAAAAAAAAA6jhCcQCl7u9d68G3pwq7uB0F3sFOrpEhx4F3sqQzTq5RBcHBwQoPD7d1eefm5io/P1+S5O3tTQAOAAAAAAAAAADgBEJx4DzgaNR5rezvbZQUKceBd5iTa+TIceCdJKkGX2bTpk0VEhIiLy8vW6Dt6elZ6ucE3QAAAAAAAAAAALWHUBxoQFzS8W1QYaDtKPCOUGEwXlX5KuzidhR4n3Di/qVo3LixAgMD5evra9ubOycnR76+vvL29paPj49atmypcePGqV+/fuzRDQAAAAAAAAAAUEcRigP1RPFu7127dunYsWMym80yGo3y9vbWyZMn7TrAq00TOQ68m6lw9HlVmSUdluPAO11SNWb6kZGRcnd3l8FgsIXeZ8+eVaNGjTR8+HBNnjyZ7m0AAAAAAAAAAIAGglAccKGizu7//ve/+vPPP2U2m+Xm5iaDwWALvL28vJSZmanMzMzqLyBQjgNvkyQfJ9dIk+PAO1WFwXg1a9KkiUJDQ5WTkyN/f3917txZ48ePp6sbAAAAAAAAAADgPEMoDtSA8sJuNzc3ZWdn68yZMzVXhK8ch91RKgzFnXFcjgPvFBWOPq8BAQEBioqKso02P3PmjCIjI3XDDTfQ6Q0AAAAAAAAAAAAbQnGggorGl//rX//Sli1blJWVZQu6CwoKZLFYZDQalZOTo9zc3JotxlOFobaj0DvYyTUy5TjwTpaU4+Qaxfj7+ys4uLDo4mPN8/LylJ2dLTc3N0JvAAAAAAAAAAAAVBqhOFDMuR3eRWG32Wyumf26S2OUFCnHgXeYk2uckePAO0mFoXgNaNKkifz8/Ai5AQAAAAAAAAAAUCsIxXFeMZvNWrlypebOnavff/9d+fn5tk7v7Oxs5efX0KzvIgYVBtqOAu8IFQbjVZWvwrHljgLv407c34GiwLuIwWBgP28AAAAAAAAAAAC4FKE4Gpz8/HzFx8dryZIlSktLs+3hnZeXp5ycapz3XZomchx4N1Ph6POqMks6LPsR5ucG3kckWZ1YoxxFwTeBNwAAAAAAAAAAAOoDQnHUK2UF3mazWRaLRbm5uSooKKiZxQPlOPCOkuTr5BppctzhnarCYLwWNGnSRP7+/gTfAAAAAAAAAAAAqNcIxVGnnDlzRrGxsfriiy+UkZEho9Eoi8Uiq9Wqs2fP1tx4cx85DrxNKgzFnXFcjgPvFBWOPq8l/v7+Cg4OlsSYcwAAAAAAAAAAADRchOKoFed2eBcUFMhsNstsNstoNMpoNCo7O1tmcw20QXuqcGy5o8C7iZNrZMpx4J0sqYYnt5fG09NT4eHhkiQ3NzdFRkbqhhtu0OTJk+Xp6cwcdwAAAAAAAAAAAKB+IBRHtSjq8F6xYoVOnjxpC7rNZrNyc3NrJuyWJKOkCDkOvMOdXOOMHAfeSSoMxV3Az89Pvr6+8vb2llT4wweBgYHq37+/5s2bJx8fH9cUBgAAAAAAAAAAANQRhOKoErPZrJUrV2ru3LnasGFDzYw1N0gKlePAO1KFwXhV5atwbLmjwPu4E/evJE9PTwUGBspgMNi66L28vJSXlyeLxaKAgAD17NlTEyZMYMQ5AAAAAAAAAAAAUAH1IhR//fXX9eKLLyotLU2dO3fWa6+9pssuu8zVZZ23EhISNHbsWOXm5jp3o2A5DrybSfJy4v5mSalyHHgfkWR1Yo0KMhqNaty4sS3sdnNzk8FgkNVqVVhYmG677TbFxcUx0hwAAAAAAAAAAACoZnU+FP/kk080ZcoULVy4UD169FB8fLwGDhyoPXv2KDQ01NXlnXcSEhI0cuTI8k8MkOPA2yTJ18lijshx4J0qqcDJNcrh6empoKAgFRQUyGKxyGg0ys3NTUajkTHmAAAAAAAAAAAAQB1gsFqttdAnW3U9evTQpZdeqvnz50uSLBaLTCaT7r//fk2fPr3c6zMzMxUUFKSMjAwFBgbWdLkNmtlslslkUmpqquQhKUZlB95BTi52Qo4D7xRJeU6uUUHe3t7y9fWV0WiUr6+vmjVrphtuuEGTJ0+msxsAAAAAAAAAAABwgcrkwHW6Uzw/P18//vijHnnkEdsxNzc3DRgwQJs3by71mry8POXl/Z2WZmZm1nid54v169cXBuKS5C1pdRVvdFqOA+8kSTlOFlsJ3t7e8vHxkcVikbu7O/t2AwAAAAAAAAAAAA1InQ7Fjx07JrPZrLCwMLvjYWFh+v3330u9Zs6cOZo1a1ZtlHfesQXiUmGwnaGSHeG5Kj/wzqj5Wotzc3NTUFCQbby5h4eHWrVqpREjRtDtDQAAAAAAAAAAADRwdToUr4pHHnlEU6ZMsT3OzMyUyWRyYUUNR0REhP2Bp1Q4wrx44H2s1suSj4+PPDw8ZLFYZLVa5enpqaZNm7KfNwAAAAAAAAAAAIC6HYo3bdpURqNRR44csTt+5MgRhYeHl3qNl5eXvLy8aqO8805MTIwiIiL+7hifV/NrGo1G+fj4yGq1yt3dnfHmAAAAAAAAAAAAACqlTofinp6euuSSS7R69WoNHz5ckmSxWLR69WpNmjTJtcWdh4xGo+bPn6+RI0dWy/08PDxkNBptHxaLRW5uboqKitK4ceMUFxfHaHMAAAAAAAAAAAAATqnTobgkTZkyRePGjVP37t112WWXKT4+XtnZ2ZowYYKrSzsvjRgxQv/97381duxY5ebmOjw3MDBQZrNZZrNZHh4eCg4OVq9evejwBgAAAAAAAAAAAFBr6nwoftNNN+no0aOaMWOG0tLS1KVLF3399dcKCwtzdWnnrREjRigrK0srV67U3LlztXv3buXm5rKPNwAAAAAAAAAAAIA6x2C1Wq2uLqImZWZmKigoSBkZGQoMDHR1OQAAAAAAAAAAAAAAJ1UmB3arpZoAAAAAAAAAAAAAAKh1hOIAAAAAAAAAAAAAgAaLUBwAAAAAAAAAAAAA0GARigMAAAAAAAAAAAAAGix3VxdQ06xWq6TCjdYBAAAAAAAAAAAAAPVfUf5blAc70uBD8dOnT0uSTCaTiysBAAAAAAAAAAAAAFSn06dPKygoyOE5BmtFovN6zGKx6PDhwwoICJDBYHB1OQ1KZmamTCaTkpKSFBgY6OpyALgYXxMAFMfXBABF+HoAoDi+JgAojq8JAIrw9QBAcRX9mmC1WnX69GlFRkbKzc3xruENvlPczc1NUVFRri6jQQsMDOR/UgBs+JoAoDi+JgAowtcDAMXxNQFAcXxNAFCErwcAiqvI14TyOsSLOI7MAQAAAAAAAAAAAACoxwjFAQAAAAAAAAAAAAANFqE4qszLy0tPPvmkvLy8XF0KgDqArwkAiuNrAoAifD0AUBxfEwAUx9cEAEX4egCguJr4mmCwWq3WarsbAAAAAAAAAAAAAAB1CJ3iAAAAAAAAAAAAAIAGi1AcAAAAAAAAAAAAANBgEYoDAAAAAAAAAAAAABosQnFU2euvv67o6Gh5e3urR48e2rp1q6tLAlDL5syZo0svvVQBAQEKDQ3V8OHDtWfPHleXBaCOeO6552QwGBQXF+fqUgC4SEpKim655RY1adJEPj4+6tSpk7Zv3+7qsgC4gNls1hNPPKGWLVvKx8dHrVu31tNPPy2r1erq0gDUsO+//15Dhw5VZGSkDAaDPvvsM7vnrVarZsyYoYiICPn4+GjAgAHau3eva4oFUOMcfU04e/asHn74YXXq1El+fn6KjIzUbbfdpsOHD7uuYAA1qrw/JxR3zz33yGAwKD4+vkprEYqjSj755BNNmTJFTz75pHbs2KHOnTtr4MCBSk9Pd3VpAGrRunXrNHHiRG3ZskWrVq3S2bNndc011yg7O9vVpQFwsW3btunNN9/UxRdf7OpSALjIyZMndcUVV8jDw0NfffWVfvvtN7300ktq3Lixq0sD4ALPP/+83njjDc2fP1+7d+/W888/rxdeeEGvvfaaq0sDUMOys7PVuXNnvf7666U+/8ILL+jVV1/VwoUL9cMPP8jPz08DBw5Ubm5uLVcKoDY4+pqQk5OjHTt26IknntCOHTuUkJCgPXv26Prrr3dBpQBqQ3l/Tijy6aefasuWLYqMjKzyWgYrP5KLKujRo4cuvfRSzZ8/X5JksVhkMpl0//33a/r06S6uDoCrHD16VKGhoVq3bp2uuuoqV5cDwEWysrLUrVs3LViwQM8884y6dOlS5Z/gBFB/TZ8+XRs3btT69etdXQqAOuC6665TWFiY/vWvf9mOjRw5Uj4+Pvrggw9cWBmA2mQwGPTpp59q+PDhkgq7xCMjI/Xggw9q6tSpkqSMjAyFhYVp8eLF+sc//uHCagHUtHO/JpRm27Ztuuyyy3To0CE1b9689ooDUOvK+pqQkpKiHj166JtvvtGQIUMUFxdXpcmUdIqj0vLz8/Xjjz9qwIABtmNubm4aMGCANm/e7MLKALhaRkaGJCk4ONjFlQBwpYkTJ2rIkCF2f1YAcP75/PPP1b17d40ePVqhoaHq2rWr3n77bVeXBcBFevXqpdWrV+uPP/6QJO3atUsbNmzQ4MGDXVwZAFc6cOCA0tLS7P7uEBQUpB49evB9RgCSCr/faDAY1KhRI1eXAsAFLBaLbr31Vk2bNk0dO3Z06l7u1VQTziPHjh2T2WxWWFiY3fGwsDD9/vvvLqoKgKtZLBbFxcXpiiuu0EUXXeTqcgC4yNKlS7Vjxw5t27bN1aUAcLH9+/frjTfe0JQpU/Too49q27Ztmjx5sjw9PTVu3DhXlweglk2fPl2ZmZlq166djEajzGazZs+erbFjx7q6NAAulJaWJkmlfp+x6DkA56/c3Fw9/PDDGjNmjAIDA11dDgAXeP755+Xu7q7Jkyc7fS9CcQBAtZg4caL+7//+Txs2bHB1KQBcJCkpSbGxsVq1apW8vb1dXQ4AF7NYLOrevbueffZZSVLXrl31f//3f1q4cCGhOHAe+ve//60PP/xQH330kTp27KidO3cqLi5OkZGRfE0AAAAlnD17VjfeeKOsVqveeOMNV5cDwAV+/PFHvfLKK9qxY4cMBoPT92N8OiqtadOmMhqNOnLkiN3xI0eOKDw83EVVAXClSZMmacWKFVqzZo2ioqJcXQ4AF/nxxx+Vnp6ubt26yd3dXe7u7lq3bp1effVVubu7y2w2u7pEALUoIiJCHTp0sDvWvn17JSYmuqgiAK40bdo0TZ8+Xf/4xz/UqVMn3XrrrXrggQc0Z84cV5cGwIWKvpfI9xkBFFcUiB86dEirVq2iSxw4T61fv17p6elq3ry57XuNhw4d0oMPPqjo6OhK349QHJXm6empSy65RKtXr7Yds1gsWr16tXr27OnCygDUNqvVqkmTJunTTz/Vd999p5YtW7q6JAAu1L9/f/3yyy/auXOn7aN79+4aO3asdu7cKaPR6OoSAdSiK664Qnv27LE79scff6hFixYuqgiAK+Xk5MjNzf7bUEajURaLxUUVAagLWrZsqfDwcLvvM2ZmZuqHH37g+4zAeaooEN+7d6++/fZbNWnSxNUlAXCRW2+9VT///LPd9xojIyM1bdo0ffPNN5W+H+PTUSVTpkzRuHHj1L17d1122WWKj49Xdna2JkyY4OrSANSiiRMn6qOPPtLy5csVEBBg2+8rKChIPj4+Lq4OQG0LCAjQRRddZHfMz89PTZo0KXEcQMP3wAMPqFevXnr22Wd14403auvWrXrrrbf01ltvubo0AC4wdOhQzZ49W82bN1fHjh31008/ad68ebr99ttdXRqAGpaVlaV9+/bZHh84cEA7d+5UcHCwmjdvrri4OD3zzDO64IIL1LJlSz3xxBOKjIzU8OHDXVc0gBrj6GtCRESERo0apR07dmjFihUym8227zcGBwfL09PTVWUDqCHl/Tnh3B+M8fDwUHh4uC688MJKr2WwWq1WpyvGeWn+/Pl68cUXlZaWpi5duujVV19Vjx49XF0WgFpU1j4eixYt0vjx42u3GAB1Up8+fdSlSxfFx8e7uhQALrBixQo98sgj2rt3r1q2bKkpU6bozjvvdHVZAFzg9OnTeuKJJ/Tpp58qPT1dkZGRGjNmjGbMmME3uIEGbu3aterbt2+J4+PGjdPixYtltVr15JNP6q233tKpU6d05ZVXasGCBWrbtq0LqgVQ0xx9TZg5c2aZkyjXrFmjPn361HB1AGpbeX9OOFd0dLTi4uIUFxdX6bUIxQEAAAAAAAAAAAAADRZ7igMAAAAAAAAAAAAAGixCcQAAAAAAAAAAAABAg0UoDgAAAAAAAAAAAABosAjFAQAAAAAAAAAAAAANFqE4AAAAAAAAAAAAAKDBIhQHAAAAAAAAAAAAADRYhOIAAAAAAAAAAAAAgAaLUBwAAAAAAAAAAAAA0GARigMAAAAAGoy1a9fKYDDo1KlTri6lUgwGgz777LNqu190dLTi4+Or7X6ucvDgQRkMBu3cuVNS/f31BQAAAAC4FqE4AAAAAKBeMBgMDj9mzpzp6hLLNXPmTHXp0qXE8dTUVA0ePLhWazlx4oTi4uLUokULeXp6KjIyUrfffrsSExNrtY4i48eP1/Dhw+2OmUwmpaam6qKLLnJJTQAAAACAhsHd1QUAAAAAAFARqampts8/+eQTzZgxQ3v27LEd8/f31/bt211RmvLz8+Xp6Vnl68PDw6uxmvKdOHFCl19+uTw9PbVw4UJ17NhRBw8e1OOPP65LL71UmzdvVqtWrWq1ptIYjcZaf28AAAAAAA0PneIAAAAAgHohPDzc9hEUFCSDwWB3zN/f33bujz/+qO7du8vX11e9evWyC88lafny5erWrZu8vb3VqlUrzZo1SwUFBbbnExMTNWzYMPn7+yswMFA33nijjhw5Ynu+qOP7nXfeUcuWLeXt7S1JOnXqlP75z38qJCREgYGB6tevn3bt2iVJWrx4sWbNmqVdu3bZutsXL14sqeT49OTkZI0ZM0bBwcHy8/NT9+7d9cMPP0iS/vzzTw0bNkxhYWHy9/fXpZdeqm+//bZS7+Vjjz2mw4cP69tvv9XgwYPVvHlzXXXVVfrmm2/k4eGhiRMn2s4tbRR7ly5d7Drz582bp06dOsnPz08mk0n33XefsrKybM8vXrxYjRo10jfffKP27dvL399fgwYNsv2gw8yZM7VkyRItX77c9t6sXbu2xPj00mzYsEExMTHy8fGRyWTS5MmTlZ2dbXt+wYIFuuCCC+Tt7a2wsDCNGjWqUu8VAAAAAKD+IxQHAAAAADQ4jz32mF566SVt375d7u7uuv32223PrV+/XrfddptiY2P122+/6c0339TixYs1e/ZsSZLFYtGwYcN04sQJrVu3TqtWrdL+/ft100032a2xb98+/fe//1VCQoIttB09erTS09P11Vdf6ccff1S3bt3Uv39/nThxQjfddJMefPBBdezYUampqUpNTS1xT0nKyspS7969lZKSos8//1y7du3SQw89JIvFYnv+2muv1erVq/XTTz9p0KBBGjp0aIXHnlssFi1dulRjx44t0YXt4+Oj++67T998841OnDhR4ffbzc1Nr776qn799VctWbJE3333nR566CG7c3JycjR37ly9//77+v7775WYmKipU6dKkqZOnaobb7zRFpSnpqaqV69e5a77559/atCgQRo5cqR+/vlnffLJJ9qwYYMmTZokSdq+fbsmT56sp556Snv27NHXX3+tq666qsKvCwAAAADQMDA+HQAAAADQ4MyePVu9e/eWJE2fPl1DhgxRbm6uvL29NWvWLE2fPl3jxo2TJLVq1UpPP/20HnroIT355JNavXq1fvnlFx04cEAmk0mS9N5776ljx47atm2bLr30UkmFI9Pfe+89hYSESCrsWN66davS09Pl5eUlSZo7d64+++wzLVu2THfddZf8/f3l7u7ucCT4Rx99pKNHj2rbtm0KDg6WJLVp08b2fOfOndW5c2fb46efflqffvqpPv/8c1sY7MjRo0d16tQptW/fvtTn27dvL6vVqn379umyyy4r936SFBcXZ/s8OjpazzzzjO655x4tWLDAdvzs2bNauHChWrduLUmaNGmSnnrqKUmFo+99fHyUl5dXqXHpc+bM0dixY23rX3DBBXr11VfVu3dvvfHGG0pMTJSfn5+uu+46BQQEqEWLFuratWuF7w8AAAAAaBgIxQEAAAAADc7FF19s+zwiIkKSlJ6erubNm2vXrl3auHGjrTNcksxms3Jzc5WTk6Pdu3fLZDLZAnFJ6tChgxo1aqTdu3fbQvEWLVrYAnFJ2rVrl7KystSkSRO7Ws6cOaM///yzwrXv3LlTXbt2tQXi58rKytLMmTP1xRdfKDU1VQUFBTpz5kyFO8WLWK1Wh89XZo/0b7/9VnPmzNHvv/+uzMxMFRQU2N5PX19fSZKvr68tEJcKf13S09MrVfO5du3apZ9//lkffvih7ZjVapXFYtGBAwd09dVXq0WLFmrVqpUGDRqkQYMG6YYbbrDVBAAAAAA4PxCKAwAAAAAaHA8PD9vnBoNBkuzGj8+aNUsjRowocV3R3uAV4efnZ/c4KytLERERWrt2bYlzGzVqVOH7+vj4OHx+6tSpWrVqlebOnas2bdrIx8dHo0aNUn5+foXuHxISYgv4S7N79265u7urZcuWkgpHo58boJ89e9b2+cGDB3Xdddfp3nvv1ezZsxUcHKwNGzbojjvuUH5+vi2ALv5rIhX+upQXzJcnKytLd999tyZPnlziuebNm8vT01M7duzQ2rVrtXLlSs2YMUMzZ87Utm3bKvVrAgAAAACo3wjFAQAAAADnlW7dumnPnj12I8mLa9++vZKSkpSUlGTrFv/tt9906tQpdejQweF909LS5O7urujo6FLP8fT0lNlsdljfxRdfrHfeeUcnTpwotVt848aNGj9+vG644QZJhcHwwYMHHd6zODc3N91444368MMP9dRTT9mNKz9z5owWLFigG264QUFBQZIKQ/TU1FTbOZmZmTpw4IDt8Y8//iiLxaKXXnpJbm5ukqR///vfFa6nSEXem3N169ZNv/32W5m/lpLk7u6uAQMGaMCAAXryySfVqFEjfffdd6X+UAQAAAAAoGFyc3UBAAAAAADUphkzZui9997TrFmz9Ouvv2r37t1aunSpHn/8cUnSgAED1KlTJ40dO1Y7duzQ1q1bddttt6l3797q3r17mfcdMGCAevbsqeHDh2vlypU6ePCgNm3apMcee0zbt2+XVLjf9oEDB7Rz504dO3ZMeXl5Je4zZswYhYeHa/jw4dq4caP279+v//73v9q8ebOkwn2zExIStHPnTu3atUs333yzrQu+ombPnq3w8HBdffXV+uqrr5SUlKTvv/9eAwcOlJubm1555RXbuf369dP777+v9evX65dfftG4ceNkNBptz7dp00Znz57Va6+9pv379+v999/XwoULK1VP0Xvz888/a8+ePTp27JhdN3pZHn74YW3atEmTJk3Szp07tXfvXi1fvty2t/qKFSv06quvaufOnTp06JDee+89WSwWXXjhhZWuDwAAAABQfxGKAwAAAADOKwMHDtSKFSu0cuVKXXrppbr88sv18ssvq0WLFpIKx3ovX75cjRs31lVXXaUBAwaoVatW+uSTTxze12Aw6Msvv9RVV12lCRMmqG3btvrHP/6hQ4cOKSwsTJI0cuRIDRo0SH379lVISIg+/vjjEvfx9PTUypUrFRoaqmuvvVadOnXSc889Zwui582bp8aNG6tXr14aOnSoBg4cqG7dulXqPWjatKm2bNmivn376u6771bLli3Vu3dvmc1m7dy507YPuyQ98sgj6t27t6677joNGTJEw4cPt9sbvHPnzpo3b56ef/55XXTRRfrwww81Z86cStUjSXfeeacuvPBCde/eXSEhIdq4cWO511x88cVat26d/vjjD8XExKhr166aMWOGIiMjJRWOrU9ISFC/fv3Uvn17LVy4UB9//LE6duxY6foAAAAAAPWXwersBl4AAAAAAKDe+9e//qX77rtPn3zyiYYPH+7qcgAAAAAAqDZ0igMAAAAAAN1xxx1aunSpdu/erTNnzri6HAAAAAAAqg2d4gAAAAAAAAAAAACABotOcQAAAAAAAAAAAABAg0UoDgAAAAAAAAAAAABosAjFAQAAAAAAAAAAAAANFqE4AAAAAAAAAAAAAKDBIhQHAAAAAAAAAAAAADRYhOIAAAAAAAAAAAAAgAaLUBwAAAAAAAAAAAAA0GARigMAAAAAAAAAAAAAGixCcQAAAAAAAAAAAABAg0UoDgAAAAAAAAAAAABosAjFAQAAAAAAAAAAAAANFqE4AAAAAAAAAAAAAKDBIhQHAAAAAAAAAAAAADRYhOIAAAAAAAAAAAAAgAaLUBwAAAAAAAAAAAAA0GARigMAAAAAAAAAAAAAGixCcQAAAAAAAAAAAABAg0UoDgAAAAAAAAAAAABosAjFAQAAAAAAAAAAAAANFqE4AAAAAAAAAAAAAKDBIhQHAAAAAAAAAAAAADRYhOIAAAAAAAAAAAAAgAaLUBwAAAAAAAAAAAAA0GARigMAAAAAAAAAAAAAGixCcQAAAAAAAAAAAABAg0UoDgAAAAAAAAAAAABosAjFAQAAAAAAAAAAAAANFqE4AAAAAAAAAAAAAKDBIhQHAAAAAAAAAAAAADRYhOIAAAAAAJznFi9eLIPBoIMHD7q6FAAAAAAAqh2hOAAAAACgzikKaYs+vL29FRkZqYEDB+rVV1/V6dOnq3zvTZs2aebMmTp16lT1FeyEBQsWaPHixZW6Jjc3Vy+//LJ69OihoKAgeXt7q23btpo0aZL++OOPmim0AUhKStKsWbN02WWXqXHjxmratKn69Omjb7/91tWlAQAAAABqEKE4AAAAAKDOeuqpp/T+++/rjTfe0P333y9JiouLU6dOnfTzzz9X6Z6bNm3SrFmz6m0ofuzYMV155ZWaMmWKQkND9dRTT+n111/X8OHD9fnnn+uiiy6quWLrueXLl+v5559XmzZt9Mwzz+iJJ57Q6dOndfXVV2vRokWuLg8AAAAAUEPcXV0AAAAAAABlGTx4sLp37257/Mgjj+i7777Tddddp+uvv167d++Wj4+PCyusfePHj9dPP/2kZcuWaeTIkXbPPf3003rsscdcVFnd17dvXyUmJqpp06a2Y/fcc4+6dOmiGTNmaMKECS6sDgAAAABQU+gUBwAAAADUK/369dMTTzyhQ4cO6YMPPrAd//nnnzV+/Hi1atVK3t7eCg8P1+23367jx4/bzpk5c6amTZsmSWrZsqVtPHvRXtqLFi1Sv379FBoaKi8vL3Xo0EFvvPFGiRq2b9+ugQMHqmnTpvLx8VHLli11++23251jsVgUHx+vjh07ytvbW2FhYbr77rt18uRJ2znR0dH69ddftW7dOlstffr0KfO1//DDD/riiy90xx13lAjEJcnLy0tz5861O/bdd98pJiZGfn5+atSokYYNG6bdu3eX/Qb/xWAwaObMmSWOR0dHa/z48bbHRaPuN2zYoMmTJyskJESNGjXS3Xffrfz8fJ06dUq33XabGjdurMaNG+uhhx6S1Wq1XX/w4EEZDAbNnTtXb731llq3bi0vLy9deuml2rZtW7l1VkbHjh3tAnGp8D279tprlZyc7NRYfgAAAABA3UWnOAAAAACg3rn11lv16KOPauXKlbrzzjslSatWrdL+/fs1YcIEhYeH69dff9Vbb72lX3/9VVu2bJHBYNCIESP0xx9/6OOPP9bLL79sC0hDQkIkSW+88YY6duyo66+/Xu7u7vrf//6n++67TxaLRRMnTpQkpaen65prrlFISIimT5+uRo0a6eDBg0pISLCr8e6779bixYs1YcIETZ48WQcOHND8+fP1008/aePGjfLw8FB8fLzuv/9++fv72zq8w8LCynzdn3/+ue31V8S3336rwYMHq1WrVpo5c6bOnDmj1157TVdccYV27Nih6Ojoir/p5bj//vsVHh6uWbNmacuWLXrrrbfUqFEjbdq0Sc2bN9ezzz6rL7/8Ui+++KIuuugi3XbbbXbXf/TRRzp9+rTuvvtuGQwGvfDCCxoxYoT2798vDw+PaquzNGlpafL19ZWvr2+NrgMAAAAAcA1CcQAAAABAvRMVFaWgoCD9+eeftmP33XefHnzwQbvzLr/8co0ZM0YbNmxQTEyMLr74YnXr1k0ff/yxhg8fXiIUXrdund049kmTJmnQoEGaN2+eLRTftGmTTp48qZUrV9qNdn/mmWdsn2/YsEHvvPOOPvzwQ918882243379tWgQYP0n//8RzfffLOGDx+uxx9/XE2bNtUtt9xS7usu6vDu1KlTBd4ladq0aQoODtbmzZsVHBwsSRo+fLi6du2qJ598UkuWLKnQfSoiLCxMX375pQwGg+677z7t27dPL774ou6++25bt/1dd92l6OhovfvuuyVC8cTERO3du1eNGzeWJF144YUaNmyYvvnmG1133XXVVue59u3bp4SEBI0ePVpGo7HG1gEAAAAAuA7j0wEAAAAA9ZK/v7/duOviYXZubq6OHTumyy+/XJK0Y8eOCt2z+D0yMjJ07Ngx9e7dW/v371dGRoYkqVGjRpKkFStW6OzZs6Xe5z//+Y+CgoJ09dVX69ixY7aPSy65RP7+/lqzZk2lXmuRzMxMSVJAQEC556ampmrnzp0aP368LRCXpIsvvlhXX321vvzyyyrVUJY77rhDBoPB9rhHjx6yWq264447bMeMRqO6d++u/fv3l7j+pptusgXikhQTEyNJpZ5bXXJycjR69Gj5+Pjoueeeq7F1AAAAAACuRSgOAAAAAKiXsrKy7MLhEydOKDY2VmFhYfLx8VFISIhatmwpSbZAuzwbN27UgAEDbPtvh4SE6NFHH7W7R+/evTVy5EjNmjVLTZs21bBhw7Ro0SLl5eXZ7rN3715lZGQoNDRUISEhdh9ZWVlKT0+v0msODAyUpArtfX3o0CFJhR3X52rfvr2OHTum7OzsKtVRmubNm9s9DgoKkiSZTKYSx4vvq17W9UUBeWnnFjGbzUpLS7P7yM/Pr1C9ZrNZ//jHP/Tbb79p2bJlioyMrNB1AAAAAID6h/HpAAAAAIB6Jzk5WRkZGWrTpo3t2I033qhNmzZp2rRp6tKli/z9/WWxWDRo0CBZLJZy7/nnn3+qf//+ateunebNmyeTySRPT099+eWXevnll233MBgMWrZsmbZs2aL//e9/+uabb3T77bfrpZde0pYtW2zrhoaG6sMPPyx1raI9zCurXbt2kqRffvnF1kld28xmc6nHyxo9Xtpxq9Va4etLO7dIUlKS7QcfiqxZs0Z9+vQp85oid955p1asWKEPP/xQ/fr1K/d8AAAAAED9RSgOAAAAAKh33n//fUnSwIEDJRV2E69evVqzZs3SjBkzbOft3bu3xLXFR3wX97///U95eXn6/PPP7bqWyxp1fvnll+vyyy/X7Nmz9dFHH2ns2LFaunSp/vnPf6p169b69ttvdcUVV9iNZC9NWfWUZujQoZozZ44++OCDckPxFi1aSJL27NlT4rnff/9dTZs2lZ+fX5nXN27cWKdOnbI7lp+fr9TU1ArXW9PCw8O1atUqu2OdO3cu97pp06Zp0aJFio+P15gxY2qqPAAAAABAHcH4dAAAAABAvfLdd9/p6aefVsuWLTV27FhJf3cZn9tVHB8fX+L6oiD43MC3tHtkZGRo0aJFduedPHmyxDpdunSRJNsI9RtvvFFms1lPP/10ifULCgrs1vbz8ytRS1l69uypQYMG6Z133tFnn31W4vn8/HxNnTpVkhQREaEuXbpoyZIldvf/v//7P61cuVLXXnutw7Vat26t77//3u7YW2+9VWanuCt4e3trwIABdh/F9yUvzYsvvqi5c+fq0UcfVWxsbC1VCgAAAABwJTrFAQAAAAB11ldffaXff/9dBQUFOnLkiL777jutWrVKLVq00Oeffy5vb29JhXttX3XVVXrhhRd09uxZNWvWTCtXrtSBAwdK3POSSy6RJD322GP6xz/+IQ8PDw0dOlTXXHONPD09NXToUN19993KysrS22+/rdDQULvu6CVLlmjBggW64YYb1Lp1a50+fVpvv/22AgMDbUFz7969dffdd2vOnDnauXOnrrnmGnl4eGjv3r36z3/+o1deeUWjRo2y1fPGG2/omWeeUZs2bRQaGupwnPd7772na665RiNGjNDQoUPVv39/+fn5ae/evVq6dKlSU1M1d+5cSYUB8ODBg9WzZ0/dcccdOnPmjF577TUFBQVp5syZDt/7f/7zn7rnnns0cuRIXX311dq1a5e++eYbNW3atOK/gHXMp59+qoceekgXXHCB2rdvrw8++MDu+auvvlphYWEuqg4AAAAAUFMIxQEAAAAAdVbRKHRPT08FBwerU6dOio+P14QJExQQEGB37kcffaT7779fr7/+uqxWq6655hp99dVXioyMtDvv0ksv1dNPP62FCxfq66+/lsVi0YEDB3ThhRdq2bJlevzxxzV16lSFh4fr3nvvVUhIiG6//Xbb9b1799bWrVu1dOlSHTlyREFBQbrsssv04Ycf2u1vvXDhQl1yySV688039eijj8rd3V3R0dG65ZZbdMUVV9i9xkOHDumFF17Q6dOn1bt3b4eheEhIiDZt2qQFCxbok08+0WOPPab8/Hy1aNFC119/vV3384ABA/T111/rySef1IwZM+Th4aHevXvr+eefL7EX97nuvPNOHThwQP/617/09ddfKyYmRqtWrVL//v0dXleX7dq1S1LhWP1bb721xPNr1qwhFAcAAACABshgPXfmGwAAAAAAAAAAAAAADQR7igMAAAAAAAAAAAAAGixCcQAAAAAAAAAAAABAg0UoDgAAAAAAAAAAAABosAjFAQAAAAAAAAAAAAANFqE4AAAAAAAAAAAAAKDBIhQHAAAAAAAAAAAAADRY7q4uoKZZLBYdPnxYAQEBMhgMri4HAAAAAAAAAAAAAOAkq9Wq06dPKzIyUm5ujnvBG3wofvjwYZlMJleXAQAAAAAAAAAAAACoZklJSYqKinJ4ToMPxQMCAiQVvhmBgYEurgYAAAAAAAAAAAAA4KzMzEyZTCZbHuxIgw/Fi0amBwYGEooDAAAAAAAAAAAAQANSkS20HQ9XBwAAAAAAAAAAAACgHiMUBwAAAAAAAAAAAAA0WITiAAAAAAAAAAAAAIAGq8HvKV5RBQUFys/Pd3UZQL3i7e0tNzd+tgYAAAAAAAAAAAB113kfilutViUmJurYsWOuLgWod9zc3NShQwd5eXm5uhQAAAAAAAAAAIA6xWw2a/369UpNTVVERIRiYmJkNBpdXdZ56bwPxYsC8WbNmsnf35+uV6CCLBaLDhw4oIMHD6pt27YyGAyuLgkAAAAAAAAAAKBOSEhIUGxsrJKTk23HoqKi9Morr2jEiBEurOz8ZLBarVZXF1GTMjMzFRQUpIyMDAUGBto9V1BQoF27dqlZs2YKDw93UYVA/XXixAkdOHBAeXl56tChgxo1auTqkgAAAAAAAAAAAFwqISFBo0aN0rkxbFGD4bJlywjGq4GjHPhc53VbdNEe4v7+/i6uBKifisamb9++XV988YVOnTrl2oIAAAAAAAAAAABcyGw2KzY2tkQgLsl2LC4uTmazubZLO6+d16F4EUamA1VT9BNN4eHhOnjwoDZv3uziigAAAAAAAAAAAFxn/fr1diPTz2W1WpWUlKT169fXYlUgDQbgNKPRKD8/Px07dszVpQAAAAAAAAAAALhMampqtZ6H6kEoDvylT58+iouLc3UZ9Zabm5sKCgpcXQYAAAAAAAAAAIDLREREVOt5qB6E4vXQ999/r6FDhyoyMlIGg0GfffZZiXOsVqtmzJihiIgI+fj4aMCAAdq7d6/dObNnz1avXr3k6+urRo0albpWYmKihgwZIl9fX4WGhmratGnlBp8Gg6HUj6VLl1b1JaOW5ObmauLEiWrSpIn8/f01cuRIHTlyxNVlAQAAAAAAAAAA1AsxMTGKioqybUF7LoPBIJPJpJiYmFqu7PxGKF4NzGaz1q5dq48//lhr166V2Wyu0fWys7PVuXNnvf7662We88ILL+jVV1/VwoUL9cMPP8jPz08DBw5Ubm6u7Zz8/HyNHj1a9957b6n3MJvNGjJkiPLz87Vp0yYtWbJEixcv1owZM8qtcdGiRUpNTbX7GD58eKVfKyonMTHRqesfeOAB/e9//9N//vMfrVu3TocPH9aIESOqqToAAAAAAAAAAICGzWg06pVXXpGkEsF40eP4+HgZjcZar+18RijupISEBEVHR6tv3766+eab1bdvX0VHRyshIaHG1hw8eLCeeeYZ3XDDDaU+b7VaFR8fr8cff1zDhg3TxRdfrPfee0+HDx+26yqfNWuWHnjgAXXq1KnU+6xcuVK//fabPvjgA3Xp0kWDBw/W008/rddff135+fkOa2zUqJHCw8PtPry9vSVJt99+uy6++GLl5eVJKgznu3btqttuu812/caNG9WnTx/5+vqqcePGGjhwoE6ePClJslgsmjNnjlq2bCkfHx917txZy5Yts1v///7v/zR48GD5+/srLCxMt956q91+19nZ2brtttvk7++viIgIvfTSSyVeQ15enqZOnapmzZrJz89PPXr00Nq1a23PL168WI0aNdI333yj9u3by9/fX4MGDSqxB8S7776rjh07ysvLSxEREZo0aZLtuVOnTumf//ynQkJCFBgYqH79+mnXrl2253ft2qW+ffsqICBAgYGBuuSSS7R9+/Yy3/dx48bpoosu0osvvljpvSgyMjL0r3/9S/PmzVO/fv10ySWXaNGiRdq0aZO2bNlSqXsBAAAAAAAAAACcr0aMGKFly5apWbNmdsejoqK0bNkyGhJdwKWhuKMx4GfPntXDDz+sTp06yc/PT5GRkbrtttt0+PBh1xV8joSEBI0aNUrJycl2x1NSUjRq1KgaDcYdOXDggNLS0jRgwADbsaCgIPXo0UObN2+u8H02b96sTp06KSwszHZs4MCByszM1K+//lrl+l599VVlZ2dr+vTpkqTHHntMp06d0vz58yVJO3fuVP/+/dWhQwdt3rxZGzZs0NChQ20d+HPmzNF7772nhQsX6tdff9UDDzygW265RevWrZNUGDT369dPXbt21fbt2/X111/ryJEjuvHGG201TJs2TevWrdPy5cu1cuVKrV27Vjt27LCrc9KkSdq8ebOWLl2qn3/+WaNHj9agQYPsxtDn5ORo7ty5ev/99/X9998rMTFRU6dOtT3/xhtvaOLEibrrrrv0yy+/6PPPP1ebNm1sz48ePVrp6en66quv9OOPP6pbt27q37+/Tpw4IUkaO3asoqKitG3bNv3444+aPn26PDw8ynxv//3vf+uuu+7SJ598IpPJpGuvvVaffPKJ3YSAsvz44486e/as3e+bdu3aqXnz5pX6fQMAAAAAAAAAAHC+GzFihA4ePKg1a9boo48+0po1a3TgwAECcRdxd+XiRWPAb7/99hK/AXJycrRjxw498cQT6ty5s06ePKnY2Fhdf/31Djtla4vZbFZsbKysVmuJ56xWqwwGg+Li4jRs2LBaH3+QlpYmSXZhdtHjoucqep/S7lF8jbKMGTOmxOv+7bff1Lx5c/n7++uDDz5Q7969FRAQoPj4eK1Zs0aBgYGSCke/d+/eXQsWLLBd27FjR0mF3dvPPvusvv32W/Xs2VOS1KpVK23YsEFvvvmmevfurfnz56tr16569tlnbde/++67MplM+uOPPxQZGal//etf+uCDD9S/f39J0pIlSxQVFWU7PzExUYsWLVJiYqIiIyMlSVOnTtXXX3+tRYsW2e599uxZLVy4UK1bt5ZUGKQ/9dRTtvs888wzevDBBxUbG2s7dumll0qSNmzYoK1btyo9PV1eXl6SpLlz5+qzzz7TsmXLdNdddykxMVHTpk1Tu3btJEkXXHCBw/c9JCREkydP1uTJk7V7924tWbJEU6dO1T333KObbrpJ48eP1+WXX17qtWlpafL09Cyxv3xlf98AAAAAAAAAAIC6x2w2a/369UpNTVVERIRiYmIY4V3DjEaj+vTp4+oyIBeH4oMHD9bgwYNLfS4oKEirVq2yOzZ//nxddtllSkxMVPPmzWujxDKtX7++RId4cVarVUlJSVq/fv15+Zv95Zdftus4lmQLlyWpZ8+emjp1qp5++mk9/PDDuvLKK23P7dy5U6NHjy71vvv27VNOTo6uvvpqu+NFI9ilwpHja9askb+/f4nr//zzT505c0b5+fnq0aOH7XhwcLAuvPBC2+NffvlFZrNZbdu2tbs+Ly9PTZo0sT329fW1BeKSFBERofT0dElSenq6Dh8+bAvez7Vr1y5lZWXZ3U+Szpw5oz///FOSNGXKFP3zn//U+++/rwEDBmj06NF26znSvn17Pffcc3r22Wf14osv6oknntDSpUt16tSpCl0PAAAAAAAAAAAahoSEBMXGxtplW1FRUXrllVfoXMZ5waWheGVlZGTIYDCU6GQtLi8vz7ZXtSRlZmbWSC0V3a+5svs6V4fw8HBJ0pEjRxQREWE7fuTIEXXp0qVS99m6davdsSNHjtit4eja4mPCz2WxWLRx40YZjUbt27fP7jkfH58yr8vKypIkffHFFyX2YSjqts7KytLQoUP1/PPPl7g+IiKixHplrWM0GvXjjz+W+Cmp4mH7uaPMDQaDbXqAo9dRtEZERITdPuVFin6Pz5w5UzfffLO++OILffXVV3ryySe1dOnSMveTLy4pKUkffvih3n//fR04cECjR4/WhAkTyjw/PDxc+fn5OnXqlN1/Y0eOHCn31xsAAAAAAAAAANRNRdsBnzv9uGg7YPa4xvnApXuKV0Zubq4efvhhjRkzxjZmuzRz5sxRUFCQ7cNkMtVIPcXD5uo4rzq1bNlS4eHhWr16te1YZmamfvjhB9vI8Yro2bOnfvnlF1vnsyStWrVKgYGB6tChg1M1vvjii/r999+1bt0620jyIhdffLFd7cV16NBBXl5eSkxMVJs2bew+in6tu3Xrpl9//VXR0dElzvHz81Pr1q3l4eGhH374wXbfkydP6o8//rA97tq1q8xms9LT00vco6IBcUBAgKKjo8t8Ld26dVNaWprc3d1LrNG0aVPbeW3bttUDDzyglStXasSIEXbv1blOnz6txYsXq1+/foqOjtYXX3yhKVOmKC0tTR9++GGJ7v3iLrnkEnl4eNjVu2fPHiUmJlbq9w0AAAAAAAAAAKgbytsOWJLi4uJkNptruzSgVtWLTvGzZ8/qxhtvlNVq1RtvvOHw3EceeURTpkyxPc7MzKyRYDwmJkZRUVFKSUkp9QuJwWBQVFSUYmJiqn3trKwsu27nAwcOaOfOnQoODlbz5s1t+5k/88wzuuCCC9SyZUs98cQTioyM1PDhw23XJSYm6sSJE0pMTJTZbNbOnTslSW3atJG/v7+uueYadejQQbfeeqteeOEFpaWl6fHHH9fEiRNtXdllOXXqVIl9qAMCAuTn56effvpJM2bM0LJly3TFFVdo3rx5io2NVe/evdWqVSs98sgj6tSpk+677z7dc8898vT01Jo1azR69Gg1bdpUU6dO1QMPPCCLxaIrr7xSGRkZ2rhxowIDAzVu3DhNnDhRb7/9tsaMGaOHHnpIwcHB2rdvn5YuXap33nlH/v7+uuOOOzRt2jQ1adJEoaGheuyxx+Tm9vfPiLRt21Zjx47Vbbfdppdeekldu3bV0aNHtXr1al188cUaMmRIhX6tZs6cqXvuuUehoaEaPHiwTp8+rY0bN+r+++/XgAED1LNnTw0fPlwvvPCC2rZtq8OHD+uLL77QDTfcoI4dO2ratGkaNWqUWrZsqeTkZG3btk0jR44sc73hw4dr//79uvXWW/X2229XeNS6VLhlwR133KEpU6YoODhYgYGBuv/++9WzZ88y9yEHAAAAAAAAAAB1F9sBA4XqfCheFIgfOnRI3333ncMucalwhHZ5gW11MBqNeuWVVzRq1Ci7kdlSYSAuSfHx8SVGb1eH7du3q2/fvrbHRT8EMG7cOC1evFiS9NBDDyk7O1t33XWXTp06pSuvvFJff/21vL29bdfNmDFDS5YssT0u2pN7zZo16tOnj4xGo1asWKF7771XPXv2lJ+fn8aNG6ennnqq3BpLG9M9Z84cxcXF6ZZbbtH48eM1dOhQSdJdd92lL774Qrfeequ+//57tW3bVitXrtSjjz6qyy67TD4+PurRo4fGjBkjSXr66acVEhKiOXPmaP/+/WrUqJG6deumRx99VFLh3uUbN27Uww8/rGuuuUZ5eXlq0aKFBg0aZAu+X3zxRduY9YCAAD344IPKyMiwq3fRokV65pln9OCDDyolJUVNmzbV5Zdfruuuu67c119k3Lhxys3N1csvv6ypU6eqadOmGjVqlKTC3ydffvmlHnvsMU2YMEFHjx5VeHi4rrrqKoWFhcloNOr48eO67bbbdOTIETVt2lQjRozQrFmzylxvwYIFatu2re33YGW9/PLLcnNz08iRI5WXl6eBAwdqwYIFVboXAAAAAAAAAABwrbq8HTBQmwzW0tqcXcBgMOjTTz+162QuCsT37t2rNWvWKCQkpNL3zczMVFBQkDIyMkoE6jk5Odq9e7fat28vX1/fKtWdkJCg2NhYu5+yMZlMio+PZ/8FNHhF/w0dPHhQKSkpCggIcLhvOQAAAAAAAAAAqD1r1661a7QsS1HDJFCfOMqBz+XSTnFHY8AjIiI0atQo7dixQytWrJDZbLaN4w4ODpanp6eryrYzYsQIDRs2TOvXr1dqaqoiIiIUExNTIx3iAAAAAAAAAAAAqB5ms7nB5zuu3A4YqEtcGoo7GgM+c+ZMff7555KkLl262F1X135axWg01ql6AAAAAAAAAAAAULbSJgFHRUXplVdeaVCTgF25HTBQl7g0FO/Tp0+pP5VSpI5MdgcAAAAAAAAAAEADkZCQoFGjRpXIoVJSUjRq1CgtW7asQQXjI0aM0LJly0r9IQC2A8b5wqWhOAAAAAAAAAAAAFBbzGazYmNjS23MtFqtMhgMiouL07BhwxpU9zTbAeN8RygOAAAAAAAAAACA88L69evtuqXPZbValZSUpPXr1ze4rXPZDhjnMzdXFwAAAAAAAAAAAADUhtTU1Go9D0D9QKc4AAAAAAAAAAAAzgsRERHVeh7gyCmdUuJf/1ymyxSqUFeXdN4iFAcAAAAAAAAAAMB5ISYmRlFRUUpJSSl1X3GDwaCoqCjFxMS4oDrUJ2aZlapUHdIhJSrR9u/in2cq03b+Z/pMwzTMhRWf3wjFAQAAAAAAAAAAcF4wGo165ZVXNGrUKBkMBrtg3GAwSJLi4+NlNBpdVSLqiGxl2wXc54beyUqWWeYK3y9RiTVYLcpDKA4AAAAAAAAAAIDzxogRI7Rs2TLFxsYqOTnZdjwqKkrx8fEaMWKEC6tDbbDIonSll9nhfUiHdEInqnx/T3mq+V//tFALNVdz9VCPanwFqCxCcQAAAAAAAAAAAJxXRowYoWHDhmn9+vVKTU1VRESEYmJi6BBvIHKVqyQllRl6JylJecqr8v2DFWwLu4sH30X/DlWo3ORWja8IziIUBwAAAAAAAAAAwHnHaDSqT58+ri4DlWSVVSd0oswO70Ql6oiOVPn+RhkVpagyQ2+TTPKXfzW+ItQGQnEAAAAAAAAAAAAAdcJZnVWKUkoNvYv+yVZ2le8foIASnd3FA/BIRcooJgY0NITiAAAAAAAAAAAAAGpFhjLK7PBOVKIO67AsslTp3gYZFKnIMseaN1dzNVKj6n1BqBcIxQEAAAAAAAAAAFBlZrOZvbkhSTLLrFSlltrhXfR5hjKqfH8f+ZQZdrdQCzVTM3nKsxpfERoKQnEAAAAAAAAAAABUSUJCgmJjY5WcnGw7FhUVpVdeeUUjRoxwYWWoCdnKVpKSSu3wPqRDSlayClRQ5fuHKtRh6N1ETWSQoRpfEc4XhOIAAAAAAAAAAACotISEBI0aNUpWq9XueEpKikaNGqVly5YRjNcjVlmVrvQyO7wP6ZCO63iV7+8pT5n+n707D4+yPP82fk4CCQmEIHsgC+CKG2pBRYuiUncLIm6lFbCvtW6AqBWrImiVal3Qure/KrauRZTW3aIo7riAtiiiQjYSCCCEEEggmfePmJGQmZDJJCTA+emRY2aeZ+Z+rgk1Yr5zXTcZYcPuTDLJIIMkkhrxHUk/MhSXJEmSJEmSJElSVCoqKhg3blytQBwgGAwSCAQYP348Q4cOdZR6C1FGGbnkRgy9c8ihjLIGr78bu4UNu6tvu9GNOOIa8R1J9WcoLkmSJEmSJEmSpKjMnTu3xsj0rQWDQXJzc5k7dy6DBw/efoXtooIE+Z7vI3Z455BDIYUNXj+eeHrSM2LonUEGKaQ04juSGpehuCRJkiRJkiRJkqJSUFDQqM9T3TazmXzyw4bd1ffXs77B67ejXa3O7i0D8B70oJWxonZg/r9XkiRJkiRJkiRJUUlLS2vU5+3qiimO2OGdQw755FNJZYPWDhAgjbSIY80zyaQDHQgQaOR3JbUchuKSJEmSJEmSJEmKyqBBg0hPTyc/Pz/svuKBQID09HQGDRrUDNW1LJVUUkhhxA7vHHJYw5oGr9+GNhHD7iyy6ElPEklsvDck7YAMxSVJkiRJkiRJknYQFRUVzJ07l4KCAtLS0hg0aBDx8fHbvY74+HjuvvtuRowYQSAQqBGMBwJVHcfTpk1rltq2t1JKySU34n7eeeSxiU0NXr8LXcKG3dW3nelsl7e0DYbikiRJkiRJkiRJO4CZM2cybtw48vLyQsfS09O5++67GT58+HavZ/jw4cyYMSNsTdOmTWuWmhpbkCBFFEXs8M4hhyKKGrx+a1qTQUbE0DuDDJJJbsR3JO2aDMUlSZIkSZIkSZJauJkzZzJixIhao8rz8/MZMWIEM2bMaLZgfOjQoS2ie70hyiknl9w69/PeyMYGr9+BDhE7vDPJpDvdiSOuEd+RpHAMxXcygwcP5qCDDmLatGnb5XqPPvoo48ePZ82aNdvlepIkSZIkSZIk7WoqKioYN25c2L27g8EggUCA8ePHM3To0GYbpT548ODtft1tCRJkDWsidnhnk00hhQSp/X2tjzji6EnPiKF3Bhm0p30jvytJDWEovgMaPXo006dPr3V88eLFzJw5k9atW4eO9erVi/HjxzN+/PjQseYIst98803uuOMOPvzwQ9atW0fPnj3p378/l1xyCUcddRQAc+bM4Zhjjgm9pmvXrvz0pz/lT3/6E3369Am9n+zsbADatGlDt27dOPTQQ/ntb3/LscceW2cNgwcP5q233gIgMTGRPn36cOmll3LxxRc3xVuWJEmSJEmSJO2ktve+3nPnzq0xnnxrwWCQ3Nxc5s6d2yLD6aaymc0sY1nEDu9ssimhpMHrt6Vtrc7uLQPwnvSklVGbtEPwn9Qd1IknnsgjjzxS41iXLl1a5DiS+++/n0svvZRf/epXPP300+y+++6sXbuWN998k8svv5xPPvmkxvMXLVpESkoKixcv5je/+Q2nnXYan3/+eei93XjjjVxwwQWUl5ezdOlS/vGPfzBkyBBuuukmrr322jprueCCC7jxxhspLS3lscce45JLLmG33Xbj3HPPjfp9lZeXk5CQEPXrJEmSJEmSJEk7rubY17ugoKBRn7ejWMe6iB3eOeSQTz4VVDR4/TTSIo41zyST3diNAIFGfEeSmkuzblLw9ttvc9ppp9GjRw8CgQDPP/98jfPBYJBJkyaRlpZGUlISQ4YMYfHixc1TbAuTmJhI9+7da3xVjyep7gofPHgw2dnZXH755QQCAQKBAHPmzGHMmDGsXbs2dGzy5MkAlJWVceWVV9KzZ0/atm3LYYcdxpw5c2pc99FHHyUzM5Pk5GROP/10Vq1aVWedOTk5oU716dOnc+yxx5KVlcWBBx7IuHHj+Pjjj2u9pmvXrqSlpXHUUUcxadIkFi5cyDfffBM6n5KSQvfu3cnMzOSoo47i4Ycf5vrrr2fSpEksWrSoznqSk5Pp3r07ffr0YfLkyey5557861//AuDqq69mr732Ijk5mT59+nD99dezadOm0GsnT57MQQcdxF//+ld69+5NmzZtAHjllVf46U9/SocOHejUqROnnnoq3377beh1S5cuJRAI8MwzzzBo0CCSkpIYMGAAX3/9NfPmzaN///60a9eOk046iaKiotDr5syZw6GHHkrbtm3p0KEDRx55ZKhLXpIkSZIkSZK0/VXv671113b1vt4zZ85skuumpaU16vNagkoqKaCAD/iAZ3iGP/EnLuMyhjKUgziIjnSkPe3Zn/05mZO5iIuYylQe53He4R1yyKkzEE8kkT3ZkyEM4XzOZwpTeIRHmM1svuEbNrKRZSyrdf2f8/PQ9Q3EpZ1Hs3aKr1+/nn79+nH++eeH/fTUbbfdxj333MP06dPp3bs3119/PSeccAILFy4MBZKKbObMmfTr14/f/OY3XHDBBQB07NiRadOm1QiQ27VrB8Cll17KwoULeeqpp+jRowfPPfccJ554Il988QV77rknH374Ib/+9a+ZOnUqw4YN45VXXuGGG26os4Znn32WTZs28bvf/S7s+UCg7n+hJCUlAVVd2XUZN24cN910E7NmzYp4rUjrV6+dkpLCo48+So8ePfjiiy+44IILSElJqbHeN998w7PPPsvMmTNDnevr169nwoQJHHjggZSUlDBp0iROP/105s+fT1zcj587ueGGG5g2bRqZmZmcf/75/OIXvyAlJYW7776b5ORkzjrrLCZNmsQDDzzA5s2bGTZsGBdccAFPPvkk5eXlfPTRR6Hv19KlS+nduzdvvvnmLjUKR5IkSZIkSZKaS3Pu6z1o0CDS09PJz88Pe/1AIEB6ejqDBg1q1OvGYgMbyCU3bId3NtnkkssmNm17oQg607lWZ/eW3d5d6GKoLSmkWUPxk046iZNOOinsuWAwyLRp07juuusYOnQoAI899hjdunXj+eef55xzztmepbY4L7zwQijMhqrv5T//+c8az+nYsSPx8fGhzupqqampBAKBGsdycnJ45JFHyMnJoUePHgBceeWVvPLKKzzyyCPccsst3H333Zx44omhkHivvfbivffe45VXXolY59dff0379u1rXOvZZ59l1KhRocfvv/8+BxxwQK3XFhQUcPvtt9OzZ0/23nvvOr8fHTt2pGvXrixdurTO51WrqKjgySef5PPPP+c3v/kNANddd13ofK9evbjyyit56qmnaoTi5eXlPPbYY3Tp0iV07Iwzzqix9t/+9je6dOnCwoUL2X///UPHr7zySk444QSgKsQ/99xzmT17NkceeSQAv/71r3n00UcBKC4uZu3atZx66qnsvvvuAPTt2ze0VuvWrdl7771JTk6u1/uVJEmSJEmSJMWmOff1jo+P5+6772bEiBEEAoEawXh1M9W0adO22xarQYKsZGXEsebZZFNE0bYXiqAVrcggI2LonUkmyfj7cUn112L3FF+yZAmFhYUMGTIkdCw1NZXDDjuM999/f5cPxY855hgeeOCB0OO2bdvGtN4XX3xBRUUFe+21V43jZWVldOrUCYAvv/yS008/vcb5gQMH1hmKQ+1u8BNOOIH58+eTn5/P4MGDqaioOd4kPT2dYDBIaWkp/fr149lnn63X3t3Vn8Sry/33389f//pXysvLiY+P5/LLL+eiiy4C4Omnn+aee+7h22+/paSkhM2bN9O+ffsar8/KyqoRiAMsXryYSZMm8eGHH7Jy5UoqKyuBqg8abBmKH3jggaH73bp1A6jxYYBu3bqxYsUKoCrkHz16NCeccAI/+9nPGDJkCGeddVZo9E3Pnj356quvtvk9kSRJkiRJkiQ1jube13v48OHMmDEj7H7m06ZNa9T9zMspJ4+8sGF39bENbGjw+qmkRuzwziST7nQnnu0T8EvaNbTYULywsBD4MTys1q1bt9C5cMrKyigrKws9Li4ubpoCm1nbtm3ZY489Gm29kpIS4uPj+eSTT2p9kmzLjvRo7bnnnqxdu5bCwsJQt3i7du3YY489aNUq/P/95s6dS/v27enatSspKSn1us6qVasoKiqid+/edT5v5MiRXHvttSQlJZGWlhYab/7+++8zcuRIpkyZwgknnEBqaipPPfUUd9xxR43Xh/vwwWmnnUZWVhZ/+ctf6NGjB5WVley///61Rr63bt06dL86vN/6WHWgDvDII48wduxYXnnlFZ5++mmuu+46Xn/9dQ4//PB6fU8kSZIkSZIkSY2nJezrPXz4cIYOHcrcuXMpKCggLS2NQYMGRdUhHiTIWtZG7PDOIYcCCghSe0x7fcQRRw96RAy9M8ggldQGrS1JDdViQ/GGmjp1KlOmTGnuMlqMhISEWp3Y4Y4dfPDBVFRUsGLFioh7jvTt25cPP/ywxrEPPvigzuuPGDGCiRMncuutt3LXXXfVq+bevXvToUOHej232t13301cXBzDhg2r83mpqalhP0zw3nvvkZWVxbXXXhs6lp2dvc3rrlq1ikWLFvGXv/wl9H175513oqq9LgcffDAHH3ww11xzDQMHDuSJJ54wFJckSZIkSZKkZtBS9vWOj4+vczz7ZjZTQEHEDu9sslnHugZfP5nkWp3dWwbgPelJa1pveyFJ2o5abChe3VW8fPnyGp+qWr58OQcddFDE111zzTVMmDAh9Li4uJiMjIwmq7Ol69WrF2+//TbnnHMOiYmJdO7cmV69elFSUsLs2bPp168fycnJ7LXXXowcOZLzzjuPO+64g4MPPpiioiJmz57NgQceyCmnnMLYsWM58sgjuf322xk6dCivvvrqNkenZ2ZmcscddzBu3DhWr17N6NGj6d27N6tXr+Yf//gHQNR7nKxbt47CwkI2bdrEkiVL+Mc//sFf//pXpk6d2uDu+T333JOcnByeeuopBgwYwIsvvshzzz23zdfttttudOrUiYcffpi0tDRycnKYOHFig2rY0pIlS3j44Yf5+c9/To8ePVi0aBGLFy/mvPPOAyA/P5/jjjuOxx57jEMPPTTm60mSJEmSJEmS6tZS9vUuoaRWh/eW9/PIo4KKbS8UQXe6RxxrnkkmHelIgLq3MpWklqbFhuK9e/eme/fuzJ49OxSCFxcX8+GHH4b2gA4nMTGRxMTE7VRly3fjjTdy4YUXsvvuu1NWVkYwGOSII47gt7/9LWeffTarVq3ihhtuYPLkyTzyyCP84Q9/4IorriA/P5/OnTtz+OGHc+qppwJw+OGH85e//IUbbriBSZMmMWTIEK677jpuuummOmu47LLL6Nu3L3feeScjRoyguLiYTp06hfYj33Jf7fqYNGkSkyZNIiEhge7du3P44Ycze/ZsjjnmmAZ/n37+859z+eWXc+mll1JWVsYpp5zC9ddfz+TJk+t8XVxcHE899RRjx45l//33Z++99+aee+6p81N69ZGcnMxXX33F9OnTWbVqFWlpaVxyySVceOGFAGzatIlFixZRWloa03UkSZIkSZIkSfXX1Pt6V1LJClZE7PDOIYfVrG7w+gkkRAy7s8ginXTa0Cam9yBJLVEgGG7Gx3ZSUlLCN998A1SNib7zzjs55phj6NixI5mZmdx666388Y9/ZPr06fTu3Zvrr7+ezz//nIULF9KmTf1+KBcXF5OamsratWtp3759jXOlpaV8+eWX9O3bl+Tk5EZ/f9LOrvqfoaVLl5Kfn09KSgpjxoxp7rIkSZIkSZIk7WIqKipi2md7e11vIxvJJTfift655FJOeYPr6kSnsGF39W0XuhBHXIPXl6SWpK4ceGvN2in+8ccf1+jurR57PmrUKB599FF+97vfsX79en7zm9+wZs0afvrTn/LKK6/UOxCXJEmSJEmSJEk7t5kzZ4bt3L777rtj7tyOJNy+3kGCrGJVxA7vHHJYzvIGX7MVrUgnPWLonUkmbWkb4zuTpJ1Ts4bigwcPpq5G9UAgwI033siNN964HauSJEmSJEmSJEk7gpkzZzJixIhaWUN+fj4jRoxgxowZjRaMb2ITeeSF7fCuPlZKw7e8bE/7iB3emWSSRhrxNO1+5ZK0s2qxe4pLkiRJkiRJkqSdQ1OMN6+oqGDcuHFhm++CwSCBQIDx48czdOjQel1rLWsjdnhnk80ylhGkYTvSBgjQgx4RO7yzyCKV1AatLUnaNkNxSZIkSZIkSZLUZJpqvPncuXNrrLm1YDBIbm4uc+fOZdDgQRRQELHDO5tsiilucC1JJNXq7N4y9E4nnda0bvD6kqTYRB2Kf/rpp7Ru3ZoDDjgAgFmzZvHII4+w7777MnnyZBISEhq9SEmSJEmSJEmStONpyvHmBQUFPz5IBjJ/+Mqqef+sn5zF93zPZjY37E0A3egWscM7k0w60YkAgQavL0lqWlGH4hdeeCETJ07kgAMO4LvvvuOcc87h9NNP55///CelpaVMmzatCcrUjuS+++7jT3/6E4WFhfTr148///nPHHrooRGf/7///Y9JkybxySefkJ2dzV133cX48eNrPKeiooLJkyfzj3/8g8LCQnr06MHo0aO57rrrCAT8i4YkSZIkSZIktTSNNd48SJAVrKjV4f3pkE/hE6rC786R6yiiqM46E0ggg4ywHd5ZZJFOOkkk1fNdS5JaoqhD8a+//pqDDjoIgH/+858cddRRPPHEE7z77rucc845huK7uKeffpoJEybw4IMPcthhhzFt2jROOOEEFi1aRNeuXcO+prS0lD59+nDmmWdy+eWXh33OrbfeygMPPMD06dPZb7/9+PjjjxkzZgypqamMHTu2Kd+SJEmSJEmSJKkB6jvefPa7s+lzVJ+w+3lnk00uuZRRVnuBLj98bUPHYEcyA+E7vLPIoitdiSOu4W9UktTiRR2KB4NBKisrAfjPf/7DqaeeCkBGRgYrV65s3OrUpP73v/9x9dVX8/bbbxMMBjnooIN49NFH2X333Ru85p133skFF1zAmDFjAHjwwQd58cUX+dvf/sbEiRPDvmbAgAEMGDAAIOJz3nvvPYYOHcopp5wCQK9evXjyySf56KOPGlyrJEmSJEmSJKnphMabdyTsWPPq2xO6n9Dga8RVxlGZUwk5QDZVt1t8/eOWfzBy6MgY3oUkaWcQdSjev39//vCHPzBkyBDeeustHnjgAQCWLFlCt27dGr1ANY38/HyOOuooBg8ezBtvvEH79u1599132by5ak+VOXPmcMwxx7BkyRJ69epVrzXLy8v55JNPuOaaa0LH4uLiGDJkCO+//35M9R5xxBE8/PDDfP311+y1114sWLCAd955hzvvvDOmdSVJkiRJkiRJDbeJTeSTH7bD+6uffwXrgHYNXz+FlIgd3plkkhaXxr8+/Rfjxo2r0ZWekZHBtGnTGD60YfuVS5J2LlGH4tOmTWPkyJE8//zzXHvtteyxxx4AzJgxgyOOOKLRC1TTuO+++0hNTeWpp56idevWAOy1116h88nJyey9996hc/WxcuVKKioqan04olu3bnz11Vcx1Ttx4kSKi4vZZ599iI+Pp6KigptvvpmRI/2EnyRJkiRJkqRdV0VFBXPnzqWgoIC0tDQGDRpU5/7c0a7Xb1A/8uLzaoXe1feXsYxKKsMv1nYbF6uE+BXxDOg2gKxAVtjQO5VUAgTqXGb48OEMHTq0Ub8PkqSdS9Sh+IEHHsgXX3xR6/if/vQn/wWzA5k/fz6DBg2KGHofeuihdQbZc+fO5aSTTgo9fuihhzjmmGMavc5qzzzzDI8//jhPPPEE++23H/Pnz2f8+PH06NGDUaNGNdl1JUmSJEmSJKmlmjlzZq0O6fT0dO6++26GD992h3QFFRRSGAq4X/riJWZ+OpP1HdfDvlSNOI/h1/5JJLHbut1Y9v6yH8ebV484zwXy4Jknn6lXrdsSHx/P4MGDY15HkrRzijoUB1izZg0zZszg22+/5aqrrqJjx44sXLiQbt260bNnz8aucbvrT38KKdyu1+xOdz7m4+12vaSkpJhe379/f+bPnx963K1bNxITE4mPj2f58uU1nrt8+XK6d+8e0/WuuuoqJk6cyDnnnAPAAQccQHZ2NlOnTjUUlyRJkiRJkrTDibXDe+bMmYwYMYJgMFjjeH5+PiNGjGDGjBmcOPzEiB3eOeSQRx6b2PTjiw/44aueutK11ljzLe93pjOBlAAzS2YybkqY8eZPTmuUQFySpG2JOhT//PPPOe644+jQoQNLly7lggsuoGPHjsycOZOcnBwee+yxpqhzuyqkkHzym7uMJnXggQcyffp0Nm3aFNWI9GpJSUmh0flb+slPfsLs2bMZNmwYAJWVlcyePZtLL700pnpLS0uJi4urcSw+Pp7KyghjeSRJkiRJkiSphYq5w7uigrHjxhLsHKzq5s4kdBvMrDp2Zq8zI481r49yqrq5f+jsbr+mPbePvZ1ecb3IIosMMkiifs1XjjeXJDW3qEPxCRMmMGbMGG677TZSUlJCx08++WR+8YtfNGpxzaU7sXU17wjXvPTSS/nzn//MOeecwzXXXENqaioffPABhx56KHvvvTcfffQR5513HrNnz46q+3/ChAmMGjWK/v37c+ihhzJt2jTWr1/PmDFjQs8577zz6NmzJ1OnTgWgvLychQsXhu7n5+czf/582rVrFwreTzvtNG6++WYyMzPZb7/9+Oyzz7jzzjs5//zzG/G7IkmSJEmSJElNqz4d3sOHD6eMMvLIC9vh/VXZV+R/nU9dmfS2AvHd2C3U1R2fF89zdz/342jzbGA5sEWJxRSz50F7NnhEuePNJUnNKepQfN68eTz00EO1jvfs2ZPCwu07crypbM8x5s2lU6dOvPHGG1x11VUcffTRxMfHc9BBB3HkkUcCVZ3ZixYtYtOmTdtYqaazzz6boqIiJk2aRGFhIQcddBCvvPIK3bp1Cz0nJyenRtf3smXLOPjgg0OPb7/9dm6//XaOPvpo5syZA8Cf//xnrr/+ei6++GJWrFhBjx49uPDCC5k0aVIM3wVJkiRJkiRJ2n4qKioYN25cVSC+G2E7vM/tdS6dgp0oCBREXih5GxfaDOTD3kl7079r/7AjzlP4sentyblP8tztz22z/oKCOmqSJKkFizoUT0xMpLi4uNbxr7/+mi5dujRKUdo+DjzwQF599dWw5wYPHlzrk4r1demll9Y5Lr066K7Wq1evbV4rJSWFadOmMW3atAbVJEmSJEmSJEnby2Y2k09+rQ7vz9Z8Rt4reVVheEr415ZTTgF1h89Jm5PY8NWGqq7u6s7uLW+XARXw4JsPMrjr4G3Wm5aWVq/3Vd/nSZLU0kQdiv/85z/nxhtv5JlnngEgEAiQk5PD1VdfzRlnnNHoBUqSJEmSJEmS1JKsY13YsebV9/PJDz++vNMPX9vQobQD+yTvE7bDO4ssUgIp9D6pN/n5+WEbjgKBAOkZ6QwaNKhe72fQoEGkp6fXvV56/deTJKmliToUv+OOOxgxYgRdu3Zlw4YNHH300RQWFjJw4EBuvvnmpqhRkiRJkiRJkqRGU1FRwdy5cykoKCAtLY1BgwYRHx8PVO3FXUhhjbB769B7DWsafvENRO7wzgHy4LlXn6t7/+14uPvuuxkxYgSBQKBGkB0IBACYNm1a6D1tS3x8fKOuJ0lSSxN1KJ6amsrrr7/OO++8w+eff05JSQmHHHIIQ4YMaYr6JEmSJEmSJElqNE/OepLL77yc5QnLQ/t5Jxcl03twbzZ02UAuuWxiU4PX70KXiB3ePSt6MmCvASzLXxZzR/bw4cOZMWMG48aNIy8vL3Q8PT2dadOmMXz48Kjqbuz1JElqSQLBhm4cvYMoLi4mNTWVtWvX0r59+xrnSktL+fLLL+nbty/JycnNVKG046r+Z2jp0qXk5+eTkpLCmDFjmrssSZIkSZIk7QLCdXvHxcexkpURO7wXb1xMcZviBl8zvjKeiqUVtTu8c6vuP3HrE5w79Nw615g5cyYjRowACNuRPWPGjKgC6Lq63huisdeTJKmp1JUDb61eneL33HNPvS8+duzYej9XzWfOnDkcc8wxfP/993To0KG5y5EkSZIkSZKkbSqnnDzy+Pvbf+fu5+7m+3bfV3V7l0Orpa2I6xVHeXx55AXa1L1+YG2AA9ofQFYgq1a3d3pFOgP7DCQ/Jz/8awMBrr7sas469aw6Q+TG7siOj4+ve9R6lBp7PUmSWoJ6heJ33XVXvRYLBAKG4qpTTk4OF110EW+++Sbt2rVj1KhRTJ06lVatop7kL0mSJEmSJGkHt2VXcve07hww6ADy4/NrdXhX3xZSSJAgHEXV1xY2s7nOa8UF46jMray9h/cW94Prgtz95t1hQ+E5c+dEDMShqus7NzeXuXPnbjNUHj58OEOHDrUjW5Kk7aReSeSSJUuaug7tAioqKjjllFPo3r077733HgUFBZx33nm0bt2aW265pbnLkyRJkiRJktSENrOZZSwLhd0v/fclnv/sedZ3Wg8HAJlALJlwCZANbVa04VdH/4pecb1qdHq//fTbnHfuedtcpqCgIKrjDX2eHdmSJG0/tucq5Nlnn2XSpEl88803pKWlcdlll3HFFVeEzpeVlTFp0iSeeOIJVqxYQUZGBtdccw2//vWv67X+a6+9xsKFC/nPf/5Dt27dOOigg7jpppu4+uqrmTx5MgkJCU311iRJkiRJkiQ1sRJKanV2b9ntnU8+FVT8+IL9f/iqp+50p0NxB7565avw3d7fVz1vIxv5xZu/qBU4Z3TPqNd10tLSojre0OdJkqTtp16h+IQJE7jpppto27YtEyZMqPO5d955Z6MUpu3rk08+4ayzzmLy5MmcffbZvPfee1x88cV06tSJ0aNHA3Deeefx/vvvc88999CvXz+WLFnCypUrQ2v06tWL0aNHM3ny5LDXeP/99znggAPo1q1b6NgJJ5zARRddxP/+9z8OPvjgpnyLkiRJkiRJkhqokkqWs7zO0Pv76lS6ITbyY8CdA+3XtOeu8XeFur0zyCCRRJ588Ul+8YtfbHO5cN3agwYNIj09nfz8fILBYK3zgUCA9PR0Bg0aFHbNWF8vSZKaT71C8c8++4xNmzaF7mvnc+edd3Lcccdx/fXXA7DXXnuxcOFC/vSnPzF69Gi+/vprnnnmGV5//XWGDBkCQJ8+fWqssfvuu9O5c+eI1ygsLKwRiAOhx4WFhY35diRJkiRJkiRFYSMba+3hveX9XHIpp7zB63eiU2iMeXxePM/e+WzNbu8VNZ9fTDF9DulTq9s7lm7t+Ph47r77bkaMGEEgEKgRbAcCAQCmTZsWcV/vWF8vSZKaT71C8TfffDPsfe08vvzyS4YOHVrj2JFHHsm0adOoqKhg/vz5xMfHc/TRR0dcY/bs2U1dpiRJkiRJkqQoBQmyilURO7xzyGHF1ql0FOIr46nIrvgx4K6+za26//gfH+cXQ3/s7n5y7pM8e9ez21y3Kbq9hw8fzowZMxg3bhx5eXmh4+np6UybNo3hw4fXWVOsr5ckSc0j6j3Fzz//fO6++25SUlJqHF+/fj2XXXYZf/vb3xqtOLUcSUlJMa/RvXt3PvrooxrHli9fHjonSZIkSZIkKXrllJNPftiwu/p2AxsavH7bzW3pE9+HrEBVp3cmmaGu7/SKdI7ocwT5OflhXxsIBJh42UTOPvXsUAd1c3Z7Q1WwPXToUObOnUtBQQFpaWkMGjSo3h3esb5ekiRtf1GH4tOnT+ePf/xjrVB8w4YNPPbYY40aildUVDB58mT+8Y9/UFhYSI8ePRg9ejTXXXdd6C84ahx9+/bl3XffrXHs3XffZa+99iI+Pp4DDjiAyspK3nrrrdD49GgNHDiQm2++mRUrVtC1a1cAXn/9ddq3b8++++4b83uQJEmSJEmSdkZrWBOxwzuHHJaxjCC1u6brI444etCjRti9ev5qZt41k1WfroIcWF+8nu/Tv2fy3ZNrdULPmTsnYiAOEAwGyc3NZe7cuaFR6M3d7Q1V4frWo9mjEevrJUnS9lXvULy4uJhgMEgwGGTdunW0adMmdK6iooKXXnopFHQ2lltvvZUHHniA6dOns99++/Hxxx8zZswYUlNTGTt2bKNea1d3xRVXMGDAAG666SbOPvts3n//fe69917uv/9+AHr16sWoUaM4//zzueeee+jXrx/Z2dmsWLGCs846C4DjjjuO008/nUsvvTTsNY4//nj23XdffvWrX3HbbbdRWFjIddddxyWXXEJiYuJ2e6+SJEmSJElSS1FBBctYFrHDO4cciilu8PrJJNOxuCNFnxZR9nVZaLR5lw1duPH/3civT/w1rWkdev7MmTMZMWJErbA6Pz+fESNGMGPGjBqhc7gR5+Fs+byW0O0tSZJ2LfUOxTt06EAgECAQCLDXXnvVOh8IBJgyZUqjFvfee+8xdOhQTjnlFKAqmH3yySdrjeBW7A455BCeeeYZJk2axE033URaWho33ngjo0ePDj3ngQce4Pe//z0XX3wxq1atIjMzk9///veh899++y0rV66MeI34+HheeOEFLrroIgYOHEjbtm0ZNWoUN954Y1O+NUmSJEmSJKnZrGd9xA7vbLLJI48KKhp+gUJC+3i3+74dZx12Fqf1Oy3U9T1n5hzOHHFmrZB7ZWAlF8+8mK4zuoZC7oqKCsaNGxe2ezsYDBIIBBg/fjxDhw6NeRR6S+j2liRJu45AMNzfcMJ46623CAaDHHvssTz77LN07NgxdC4hIYGsrCx69OjRqMXdcsstPPzww7z22mvstddeLFiwgOOPP54777yTkSNHhn1NWVkZZWVlocfFxcVkZGSwdu1a2rdvX+O5paWlfPnll/Tt25fk5ORGrV3aFVT/M7R06VLy8/NJSUlhzJgxzV2WJEmSJEnSdlFJJStYEbHDO5tsVrO64Rcog+6burNvu31De3hnkUX23Gym/HpKVRj+469CQ13W1d3cFRUV9OrVq0bovKXqMeVLliwhPj6eOXPmcMwxx2yzrDfffDMURldfY1uj0KuvsbWKigq7vSVJUoMUFxeTmpoaNgfeWr07xY8++mgAlixZQkZGBnFxcbFVWQ8TJ06kuLiYffbZh/j4eCoqKrj55psjBuIAU6dObfSOdUmSJEmSJEm7no1sJJfciPt55wZzKQuUbXuhCDrSkSyyaLWsFfNmzAuNNg/dFsHy4HLum3FfjW7uXr/oBWFy7q27uefOnRsxEK9+/pb7fTfHKHS7vSVJ0vZQ71C8WlZWFmvWrOGjjz5ixYoVVFZW1jh/3nnnNVpxzzzzDI8//jhPPPEE++23H/Pnz2f8+PH06NGDUaNGhX3NNddcw4QJE0KPqzvFJUmSJEmSJKlakCCrWR22w3tpcCnfbvqW7xO+r3uRQORT8cTTcX1Hij4uqhl0V3/lwl+m/4WhQ4fS67BeYUPu6mtsObI8mqA72pC7OUehS5IkNaWoQ/F///vfjBw5kpKSEtq3bx/6tB9UffKvMUPxq666iokTJ3LOOecAcMABB5Cdnc3UqVMjhuKJiYkkJiY2Wg2SJEmSJEmSdjyb2EQ++TXD7sqlLFizgPz4fFa3W83G+I3hXxwAErZxgWKqgu6tw+4cePjahxl1/Ch232f3iGF3dUd3ampqk3VzRxtyDxo0iPT09G2OQh80aFCtc8OHDw91pzsKXZIktTRRh+JXXHEF559/PrfcckuT78NdWlpaa0x7fHx8re50SZIkSZIkSbuWtayt0eG9tHIpnxR9Ql5cHt+nfM+qxFVUBrb6PWIc0LEei1cCy6gVdl/zi2s487AzOfXAU1m2cFnYlwYCAW668Cb6PNKnXmH3nDlz6vN2G9TNHW3I7Sh0SZK0s4o6FM/Pz2fs2LFNHogDnHbaadx8881kZmay33778dlnn3HnnXdy/vnnN/m1FZtevXoxfvx4xo8f39ylSJIkSZIkaQdTQQUFFNTaw3vLru+1rK35ojigWz0vUMqPHd65cO7Aczm+7/H87uzfVY07zwc21XxJIBDgH//6B8c9clzEQByiD7vrqyHd3A0JuR2FLkmSdkZx235KTSeccAIff/xxU9RSy5///GdGjBjBxRdfTN++fbnyyiu58MILuemmm7bL9dWyzJw5k5/97Gd06dKF9u3bM3DgQF599dVtvu7VV1/l8MMPJyUlhS5dunDGGWewdOnSGs95/PHH6devH8nJyaSlpXH++eezatWqJnonkiRJkiRJu7b1rOcrvuJVXuUv/IXruI7zOI/BDKY3vWlDGzLI4EiO5FzOZSITuZ/7eZEX+YIvagfiW1sOzANmwClfn0LqDalwOvAToDPQFtgXOBECvwnwzknvkPFmBkUzimAptQJxaLqwe/DgwaSnp9fYpnJLgUCAjIyMWt3c1ee2fi7UDLqrQ+6ePXvWeG56ejozZswIG3IPHz6cpUuX8uabb/LEE0/w5ptvsmTJEgNxSZK0w4q6U/yUU07hqquuYuHChRxwwAG0bt26xvmf//znjVZcSkoK06ZNY9q0aY22pnZcb7/9Nj/72c+45ZZb6NChA4888ginnXYaH374IQcffHDY1yxZsoShQ4cyYcIEHn/8cdauXcvll1/O8OHD+fTTTwF49913Oe+887jrrrs47bTTyM/P57e//S0XXHABM2fO3J5vUZIkSZIkaYcXJMgKVkTs8M4mm1XE0IxQBvEF8fRN7stPOv+EmXfPZN0X634cc54L/LBVeCAQ4KPOH7G2KHKI3pRh96OPPrrNju7Bgwc3eTd3Q/b7dhS6JEnamUQdil9wwQUA3HjjjbXOBQIBKioqYq9KTe7777/n0ksv5bXXXqOkpIT09HR+//vfM2bMGADy8vK46qqrePXVVykrK6Nv377cd999HHbYYXz77bdMmDCBDz74gPXr19O3b1+mTp3KkCFDIl5vzZo1XHnllcyaNYuysjL69+/PXXfdRb9+/epd89YfjrjllluYNWsW//73vyOG4p988gkVFRX84Q9/CO1Pf+WVVzJ06FA2bdpE69atef/99+nVqxdjx44FoHfv3lx44YXceuut9a5NkiRJkiRpV1FGGbnkhg27q++XUdbg9XcL7kZWIItMMtn8zWZeeuilqlHn1ePOl0MllfyP/3Hm5DNZd8O6iGsFg0GKiooaXEs4TRF2N2RkebRBtyG3JEnalUUdildWVjZFHdrOrr/+ehYuXMjLL79M586d+eabb9iwYQMAJSUlHH300fTs2ZN//etfdO/enU8//TT0Z19SUsLJJ5/MzTffTGJiIo899hinnXYaixYtIjMzM+z1zjzzTJKSknj55ZdJTU3loYce4rjjjuPrr7+mY8eOLF26lN69e/Pmm2/W+y/nlZWVrFu3jo4dO0Z8zk9+8hPi4uJ45JFHGD16NCUlJfz9739nyJAhoSkHAwcO5Pe//z0vvfQSJ510EitWrGDGjBmcfPLJUXxHJUmSJEmSdnxBgnzP9xE7vHPIoZDCBq8fF4wjnfRQ6L1h0QbeeOQN1ixYUxV650LbDm25/u7rGTp0KL2O6QV5tdcJEiQQCITGiDeG5g677eaWJElqOlGH4to55OTkcPDBB9O/f38AevXqFTr3xBNPUFRUxLx580KB8x577BE6369fvxod3jfddBPPPfcc//rXv7j00ktrXeudd97ho48+YsWKFSQmJgJw++238/zzzzNjxgx+85vf0Lp1a/bee2+Sk5Pr/R5uv/12SkpKOOussyI+p3fv3rz22mucddZZXHjhhVRUVDBw4EBeeuml0HOOPPJIHn/8cc4++2w2btzI5s2bOe2007jvvvvqXYskSZIkSdKOYBObWMayGmH30sqlLPh+Afmt8lnVbhUb4zc2eP2kzUn0ie8TCr3X/XcdLz/0Mqs/Ww3ZUFlQSWVaJePvHg/AiBEjagXQ+evzGTFiBJMnT64RJG8tGAyyevXqetXVpUsXVq5c2eLDbkNuSZKkptGgUHz9+vW89dZb5OTkUF5eXuNc9QhqtWwXXXQRZ5xxBp9++inHH388w4YN44gjjgBg/vz5HHzwwRE7sEtKSpg8eTIvvvgiBQUFbN68mQ0bNpCTkxP2+QsWLKCkpIROnTrVOL5hwwa+/fZbAHr27MlXX31V7/qfeOIJpkyZwqxZs+jatWvE5xUWFnLBBRcwatQozj33XNatW8ekSZMYMWIEr7/+OoFAgIULFzJu3DgmTZrECSecQEFBAVdddRW//e1v+b//+7961yRJkiRJktTciikO2+GdHczmm7JvKEooIhi3VTAcB3QKu1xNlUABJBQm0L9bf45MP5LV81fz/N3Ps+rTVZADG9ZsYG36Wn5996+BCKF3fj5nnHEGnTp1ChtSB4PRdYF37NiR77//vs7A+8477+Sss84y7JYkSdpFRR2Kf/bZZ5x88smUlpayfv16OnbsyMqVK0lOTqZr166G4juIk046iezsbF566SVef/11jjvuOC655BJuv/12kpKS6nztlVdeyeuvv87tt9/OHnvsQVJSEiNGjKj1AYlqJSUlpKWlMWfOnFrnOnToEHXtTz31FP/v//0//vnPf9a5jznAfffdR2pqKrfddlvo2D/+8Q8yMjL48MMPOfzww5k6dSpHHnkkV111FQAHHnggbdu2ZdCgQfzhD38gLS0t6holSZIkSZIa26aKTTz/4fMsLFlIRc8KkvsmkxeXVxWAB3P4bvN3lLQuCf/iANBmGxfYwI/7dufCkelH8u6T78LSH47lA+WwKbCJ93mfI688kr/d/rcGhd4Aq1atilhKNF3g48aNY/LkyXUG3obdkiRJu7aoQ/HLL7+c0047jQcffJDU1FQ++OADWrduzS9/+UvGjRvXFDWqiXTp0oVRo0YxatQoBg0axFVXXcXtt9/OgQceyF//+ldWr14dtlv83XffZfTo0Zx++ulAVei9dOnSiNc55JBDKCwspFWrVjXGtDfEk08+yfnnn89TTz3FKaecss3nl5aWEhcXV+NY9X/AVO+RXlpaSqtWrcI+J9x/uEmSJEmSJDWFUkpZWrGUF//7Ios3LmZjt42QCblxuSxcv5AVrVfAERFeHABab+MCK6gKt7O3uq2+v7Lm0z+I/wAqai9T/fuSO++8s8Ghd33Vpwv82muvZf/9999m4G3YLUmStOuKOhSfP38+Dz30EHFxccTHx1NWVkafPn247bbbGDVqVI1PVarlmjRpEj/5yU/Yb7/9KCsr44UXXqBv374AnHvuudxyyy0MGzaMqVOnkpaWxmeffUaPHj0YOHAge+65JzNnzuS0004jEAhw/fXXhwLmcIYMGcLAgQMZNmwYt912G3vttRfLli3jxRdf5PTTT6d///7k5+dz3HHH8dhjj3HooYeGXeeJJ55g1KhR3H333Rx22GEUFhYCkJSURGpqKgD33nsvzz33HLNnzwbglFNO4a677uLGG28MjU///e9/T1ZWFgcffDAAp512GhdccAEPPPBAaHz6+PHjOfTQQ+nRo0ejfc8lSZIkSdKupaKiIhTAdk/rzj6D9iE/Pp8lFUuYs2QOSzYvoaRTCaWdS8kOZLOSlRAP9AuzWNttXKwcyOXHgDu36jbl+xTW/Xdd1eMN0dcfy/nGUJ8u8Oqx5/UJvA27JUmSdk1Rh+KtW7cOdd527dqVnJwc+vbtS2pqKrm5uY1eoJpGQkIC11xzDUuXLiUpKYlBgwbx1FNPhc699tprXHHFFZx88sls3ryZfffdl/vuuw+o+hTw+eefzxFHHEHnzp25+uqrKS4ujnitQCDASy+9xLXXXsuYMWMoKiqie/fuHHXUUXTr1g2ATZs2sWjRIkpLSyOu8/DDD7N582YuueQSLrnkktDxUaNG8eijjwKwcuXK0D7lAMceeyxPPPEEt912G7fddhvJyckMHDiQV155JTQmfvTo0axbt457772XK664gg4dOnDsscdy6623NuybK0mSJEmSdhnVwXfu8lzisuLoNqAbefF5vLLwFf694N+Udi6FQ4BMqgJvfrjdI8oLfU/kDu8coBAIM/BuHesa8raaXbRd4GDgLUmSpMgCwSjnQx9//PGMHj2aX/ziF1xwwQV8/vnnjB07lr///e98//33fPjhh01Va4MUFxeTmprK2rVrad++fY1zpaWlfPnll/Tt25fk5ORmqlDacVX/M7R06VLy8/NJSUlhzJgxzV2WJEmSJEkNtmV3d3W3cVx8HKsqVvH8Z8/zVelXbErbRKvdW/HBsg/4eMXHlHcvh+5A3DaXj3BRqvbrDhd2V3d975jZdkSBQICOHTuG9g0P1wU+Y8aMUOgd7s8l3NhzSZIk7TrqyoG3FnWn+C233MK6dVV/C7/55ps577zzuOiii9hzzz3529/+1rCKJUmSJEmSpCYQKUzd8njXHl3p89M+PP7O49w14y5Wt1sNWUAqtPqmFYFeATYlboL+Wy2e/sPXtpRQFW5HCr2XEXbv7uYWHx9PZWVl2P28t3W+PqH3ww8/DGAXuCRJkppc1KF4//4//u2/a9euvPLKK41akCRJkiRJkhStcOH3rFmzqgLXNXlV48szocOrHdj7Z3vz+drP2dB5AxwB9KRqpPnRP3xtYTObt33xZYQPu6uPfd9ob7NJRNqve8KECdx+++0NPl/f0Ls+e4FLkiRJsYg6FJckSZIkSZIaU7hAG9hmh3daWhpHDjqS6a9O5/cP/p6iNkVVHd6Z0HpDazb12QQLgI4/XmsNa/iQKLb/28CP4Xa40DsPKG+M70Ljq0+39pVXXsmTTz4ZMbQ+/PDD6wy1t3Ueth162wUuSZKkphb1nuK9e/cO/aU5nO+++y7mohqTe4pLTcc9xSVJkiRJsZo5c2atULVTp04ArFq1CtoAGdC5f2d+cvpPeC//PdZ1WFfV+Z1VdY6EGAooInKHd/YP51uIcB3Z1Y8jdWvPmDEDqN2tnZGREQqut7Vfd6znJUmSpKbQpHuKjx8/vsbjTZs28dlnn/HKK69w1VVXRbucJEmSJEmSdlHPznyWEb8dURVsDyA04nxV1qofQ++uVc9dyUpe5dXoLrAJyCV82F19f0NjvJPGEyncrqujG2IbUb6tTu1Yz0uSJEnNLepQfNy4cWGP33fffXz88ccxF9QcKisrm7sEaYcU5aAJSZIkSdIuppxy8sgjhxyyySbnh/9lk01OMIevT/oaVsRwgTVE7vDOAQqBZvy1z9YBd13Pg22PMp86dWrEYNsR5ZIkSVJkUY9Pj+S7777joIMOori4uDGWazR1tc1v3ryZBQsW0LNnT7p3795MFUo7rtWrV7NkyRK++eYbli9f7vh0SZIkSdqFBAmylrW1w+4tbgsoIEgDf/VUASwjfNidTVUHeMv6NRRQd8CdkZHBOeecE/Z4fUeZS5IkSarSpOPTI5kxYwYdO3ZsrOW2i1atWtG5c2fy8/MBaNeuHXFxcc1clbRjqKysJDc3l9LSUioqKpq7HEmSJElSI9vMZgooCBt6V99fx7oGr9+6vDWbvtkUOfReBmxujHfSNKq7wDt16lS19/kP6tPZXVfHtx3dkiRJUuOLOhQ/+OCDQ594harxyYWFhRQVFXH//fc3anHbQ2ZmJkAoGJdUf5WVlRQWFgJVkxfatGnTzBVJkiRJkuqrhJKIHd455JBHHhU0/EPQccvjqFxaGQq5k1clE58Xz7r/roMc2LR6U+O9mUYQKeSO1N1dHX43ZK9ug29JkiRp+4o6FB82bFiNx3FxcXTp0oXBgwezzz77NFZd200gECArK4vc3Fw+++wzOnToQHJycnOXJbV4wWCQTZs2EQwGKSkpoaysjIyMjOYuS5IkSZIEVFLJcpZH7PDOIYfVrG7w+okkkrnF/zIqM9j49UZaLWtFyf9KuOd391C5seZm3qWUxvq2otLYIXdd3d0G3JIkSVLL1mh7irdU9Z0lv3nzZt58800WLFjApk2banTDS4osGAzSunVr+vXrxzHHHEOrVo22K4MkSZIkKYKNbCSX3LAd3tlkk0su5ZQ3eP1OwU5kkknblW1pu7otfeL7MLj3YDLIoOCDAjbkbKBnWk8GDRrErFmzGDduXI2AeXuqK/yuK+R2725JkiRpxxbNnuJRh+L5+fk8++yzfP311yQkJLD33ntz1llnsdtuu8VUdFOJ5puxefNmli1bRklJCTv5ZwWkRhMIBGjXrh09evQwEJckSZKkRhAkyCpWRezwziabFaxo8Pqtgq3ovLEzHdZ1IKMyg5TvU3jj0TdYM39NaG/vTkmdAGqEzJ06hT+25ePGEu5akTq8txV+S5IkSdo5NVkofv/99zNhwgTKy8tDCxcXF5OUlMRf//pXzj33XILBIPPnz+fggw+O7V00kmi+GZIkSZIkSU1tE5vIIy9i6J1DTkyjxtvTniyyyCSTLLJIr0yn9KtSWuW3ovi/xTw97Wnyc/Ib8R01juuuu4599903FGgDdnhLkiRJiiiaHLjebZ0vvvgiY8eOZfz48VxxxRWkpaUBUFBQwJ/+9CdGjRpFRkYG999/P/vss0+LCcUlSZIkSZK2p7WsjdjhnUMOy1hGkIZNqAsEA3Qq78SeCXuSGcwkkBcgaXkSe7bZk5P2PYlMMvl87uehwHjlypVcfvnlzTbaPBrHHXdcrb25w+3VHR8f7x7ekiRJkqJS707xwYMH89Of/pQ//OEPYc9fd9113HHHHXTv3p05c+aQlZXVqIU2lJ3ikiRJkiSpsVRQQQEFdYbexRQ3eP3EikR6x/Umk0xaF7QmeWUyFd9WMPeJuRTNK4J8YHPkUeZbH9sRBAIB0tPTWbJkiR3fkiRJkuqtScant2/fnnnz5rH33nuHPb9o0SL69u3L0qVLyczMjL7qJmIoLkmSJEmS6ms96yOG3TnkkEcem9nc4PVTN6ZS+lUpm77ZBNlADsTlxlG5tLJqP+9VO2643RCBQACAGTNmMHz48GauRpIkSdKOpEnGp1dUVNC6deuI51u3bk1SUlKjB+L5+flcffXVvPzyy5SWlrLHHnvwyCOP0L9//0a9jiRJkiRJ2rkFCbKCFWHD7ur7q4ghiC6jKtiu/sqGQF6A4JJg1eM8WLtxba2XVVJZ4/HOGoaHC/vT09OZNm2agbgkSZKkJlXvUHy//fZj1qxZXH755WHPP//88+y3336NVhjA999/z5FHHskxxxzDyy+/TJcuXVi8eDG77bZbo15HkiRJkiTt+DaykTzyQgH3ksolzFs+j9xALmvar2Fl0krKAmUNXr9dWTvKFpdVdXn/EHpvGYCzArbeKryhe4fv6AKBAMFgkClTprDnnnuSlpbGoEGDAJg7d25oz/NBgwY5Ml2SJElSk6t3KH7JJZdw0UUXkZiYyG9+8xtatap66ebNm3nooYe47rrruP/++xu1uFtvvZWMjAweeeSR0LHevXs36jUkSZIkSVLLFyTIalazpGIJr3z5CovLFrOh8waWt1lOfnw+q9uv5vuE72u+KA5Iq+cFNgN51Ai7a3R550DJ+pJGfEc7h+rwu1OnTvXuAB88ePB2rFCSJEmSothTHODKK6/kzjvvJCUlhd13351gMMh3331HSUkJY8eO5a677mrU4vbdd19OOOEE8vLyeOutt+jZsycXX3wxF1xwQb3XcE9xSZIkSZKaV0VFRY3u4COOOIL33nuPgoICunbtCsCyomW07tWaLj/pwuxvZvNt+beUdimlrHsZX2/4msKEQspaN7zLm2J+7OzeusM7BygAKmJ7nzuTcKPOwx3LyMhg2rRpDB061A5wSZIkSdtVNDlwVKE4wAcffMCTTz7J4sWLAdhzzz0599xzOfzwwxtecQRt2rQBYMKECZx55pnMmzePcePG8eCDDzJq1KiwrykrK6Os7Mf/SC4uLiYjI8NQXJIkSZKk7WTLEHzx4sX85S9/IW9tHmQBmRDoFSCYEYRMQsfoATQ0Q62kKtQOF3ZX39beyls/yMjI4I477qBLly41Qm2oPeo83DHDb0mSJEnNoUlD8e0pISGB/v37895774WOjR07lnnz5vH++++Hfc3kyZOZMmVKreOG4pIkSZIkbduWgXZ1F/eKFSsidnivWLGCrmld6XNEH17874u89N+XeHvp26zvtL4q7K4OvjvEUFQpkTu8c6gae74phvV3Menp6VxwwQU19vo22JYkSZK0o4kmFK/3nuLNIS0tjX333bfGsb59+/Lss89GfM0111zDhAkTQo+rO8UlSZIkSdrZ1WdM+YoVKyKG3bNmzeLxxx+nqKio5sJJQCbE9Y6jMr2yKujeVHWMw4AMoDVwyA9f0VpO5A7vHGBlA9bcyUUz3jxcF7ghuCRJkqRdSYsOxY888kgWLVpU49jXX39NVlZWxNckJiaSmJjY1KVJkiRJktTkInVth7v/wgsv1Aq04+PjqajY9kbZcWlxVPb8Iez+JTU7vDOBLlXPq6Qy+jdRzo/hdrhu71xgY/TL7ky2/nMKF26H6+4Gx5tLkiRJUn206FD88ssv54gjjuCWW27hrLPO4qOPPuLhhx/m4Ycfbu7SJEmSJElqUjNnzmTcuHHk5eU1eI2KigpIANL5MeCuvt3ifmWbBoTd1VYTucM7m6ou8Ba7cVvj2zrg3vpxuM7tLTv6ow23Bw8eXK9jkiRJkrQra9F7ikPVJ92vueYaFi9eTO/evZkwYQIXXHBBvV8fzSx5SZIkSZIaU306vcONOZ87dy5Tpkyp30V2I2LYTRaQFsMb2AzkU/d+3iUxrL8T2LqDe+uAO1zgbee2JEmSJMUumhy4QaH45s2bmTNnDt9++y2/+MUvSElJYdmyZbRv35527do1uPCmYCguSZIkSdqeqoPwiPtzhxFxzHk80JPIoXcmkBJDseuI3OGdAywDtj19fYexrS7uhnR5G3JLkiRJUvOIJgeOenx6dnY2J554Ijk5OZSVlfGzn/2MlJQUbr31VsrKynjwwQcbXLgkSZIkSTuSrTvB586dy5///GdWr15dvwXaAVlQkVlRu8M7k6pAPJa8dRnhw+7q2zUxrN0CbR1iR9vFbZe3JEmSJO2cou4UHzZsGCkpKfzf//0fnTp1YsGCBfTp04c5c+ZwwQUXsHjx4qaqtUHsFJckSZIk1Vd9xp1X33/hhRfq7gQPAN2J3OGdRdXo84baQOQO72yqxp6Xx7B+E4rYGR/mXF1Bd11j6A2xJUmSJGnn1qSd4nPnzuW9994jISGhxvFevXqRn58f7XKSJEmSJDWrhow7ByAJyAD6UbvDO/OHcwkRX71tK4jc4Z0D1LPMlqCuju1tBdvRBt2DBw/eTu9KkiRJkrSjiDoUr6ysDPtp7ry8PFJSYtnITJIkSZKkxlHfju86x513JnzYXX2/awwFbgJyibyfdy5VneAtTDQd3l26dGHkyJEMHTo0bJBdV3i99TmDbkmSJElSLKIOxY8//nimTZvGww8/DEAgEKCkpIQbbriBk08+udELlCRJkiSpLg3a17s1kE5VwH0q4UPvpBiK+p7IHd7ZwHKgMob166muELuu51UH2qeeeioQvovb0eWSJEmSpB1F1HuK5+XlccIJJxAMBlm8eDH9+/dn8eLFdO7cmbfffjv0H8UthXuKS5IkSVLLVB1m5+fnU1RURJcuXejevTsAhYWFtY5t2eldfX7p0qU88cQTtUeedyByh3cWVXt9xzW0cKr26460n3cOsK6BazeCLTu0I4XYBtqSJEmSpB1dNDlw1KE4wObNm3nqqaf4/PPPKSkp4ZBDDmHkyJEkJcXyMfqmYSguSZIkSc1v6wA8YphdH/FADyKH3plALP/5V0L4sLv6dhmwOYb1G+iGG25g0KBBYcfAV9830JYkSZIk7SqiyYGjHp8O0KpVK375y182qDhJkiRJ0s6jPt3eUQfgbYnc4Z0J9KSB/zX7gwLqDr2/j2HtBqprzHlGRgbTpk1j+PDh27kqSZIkSZJ2DvX6NcK//vWvei/485//vMHFSJIkSZJalq3364YYwm6AANCNyB3eWUDHGAreSOSwOwfIBcpjWL8B2rdvz/nnn19jf+66xpfb+S1JkiRJUuOq1/j0uLj6bbQWCAQifrK9uTg+XZIkSZLqFin4nj17NrNmzWL16tX1X6wNkEH4Du/MH84lxlBsEXWH3itiWLuRdezYkXHjxnHttdcaakuSJEmS1MgafXx6ZWVloxQmSZIkSWoejRZ8dyZyh3cmVV3gDbUJyCN82J1NVZd3aQzrN5EuXbowcuTIGp3gdnhLkiRJktRyxLILmyRJkiSpBdjWvt71Dr5bU7Vfd7gO7+r7yTEUuobIHd7ZQCHQAj6Tva1x5443lyRJkiRpx9KgUHz27NncddddfPnllwD07duX8ePHM2TIkEYtTpIkSZJU25YheFSd3qlEDruzgDSgfrtnhSkKWEb4sLv6fnED195OHHcuSZIkSdLOKepQ/P7772fcuHGMGDGCcePGAfDBBx9w8sknc9ddd3HJJZc0epGSJEmStLPausu7U6dOrFq1KuLt0qVLeeKJJygqKqq5UBzQg8ihdyZVoXhDrSd82F19mw9sjmH9JtKxY0cuu+wyBg0aZMe3JEmSJEm7qEAwGAxG84L09HQmTpzIpZdeWuP4fffdxy233EJ+fn6jFhiraDZYlyRJkqTGtK3AO2LAHU5bfgy3t+7wzgTSiW2DrELqDr3rueV4c3Ffb0mSJEmSdi3R5MBR/8pkzZo1nHjiibWOH3/88Vx99dXRLidJkiRJO6y6Qu8333yz/mPNA0BXwofd1fc7xVBoGZHD7hwg94fnNIMuXbpw7rnn0rt371p7oW+9P/qW3d1bnu/Zs6fhtyRJkiRJiijqUPznP/85zz33HFdddVWN47NmzQp9Il+SJEmSdmT1GWkeVeidCGQQOfTOANrEUPBK6g69VwBRzQhrGlsH4IbZkiRJkiRpe4g6FN933325+eabmTNnDgMHDgSq9hR/9913ueKKK7jnnntCzx07dmzjVSpJkiRJjSxc+B1V2F2tI5E7vDOB7jEUuRnII3zYnU1Vl/f6GNZvBPXp9jYAlyRJkiRJzSXqPcV79+5dv4UDAb777rsGFdWY3FNckiRJ2vnVp7O7wZ3erYCe1B16t42h+GKqwu1I+3kXAJUxrN9IOnbsyGWXXcagQYMMuyVJkiRJUrNr0j3FlyxZ0uDCJEmSJKkxbBmCz549O/rO7i21J3LYnQX0AOIaWGglsIzwHd7Vt8UNXLsJGHxLkiRJkqSdUdShuCRJkiRtbw0OweOANCKH3plAhxgKKyVy2J0D5AObYli/CRh8S5IkSZKkXU3UoXgwGGTGjBm8+eabrFixgsrKmnP8Zs6c2WjFSZIkSdLMmTMZN24ceXl5tU8m82O4vXWHdyaQDrSO4eLLqTv0XhXD2k1gt912Y+jQoQwZMsR9vSVJkiRJkn4QdSg+fvx4HnroIY455hi6detGIBBoirokSZIk7SIi7QfesVNHXv7kZZ567yk4DDiT2t3enWO4cBmQS/iwO+eHcxtjWL+JdenShXPPPZfevXsbeEuSJEmSJNUh6lD873//OzNnzuTkk09uinokSZIk7QQiBd1b3hasLmD217OZmz2XDV02/Bh0p1EVgmcCv4qhiFVE7vDOoaoLPBjD+o1oy4A73Pdqy1sDcEmSJEmSpOhEHYqnpqbSp0+fpqhFkiRJUgtTV7hdVFTEqlVV88M7duxI165dWbVqFd999x3TH5tOcVxx7XHmicDAH+6nxVDYZqr26w4XdmdT1eVdEsP6jax6rPmxxx5rwC1JkiRJkrSdBYLBYFS9EdOnT+eVV17hb3/7G0lJSU1VV6MpLi4mNTWVtWvX0r59++YuR5IkSWoRwoXdW4fc2dnZPPbYY6xdu7b2Aq2AHtQOvbe83y6GAtdRFW5H2s+7AKiIYf1GZugtSZIkSZK0fUWTA0fdKX7WWWfx5JNP0rVrV3r16kXr1q1rnP/000+jXbLe/vjHP3LNNdcwbtw4pk2b1mTXkSRJknZEFRUVzJkzhzlz5lBZWRnq3o4q7K6WQlWwfSS1w+4sqgLxhma8lVSF2uE6vKtv6yhte4oUdht6S5IkSZIk7TiiDsVHjRrFJ598wi9/+Uu6detGIBBoirpqmTdvHg899BAHHnjgdrmeJEmS1NJt2e09e/Zs/vnPf1JSUo+Z4QGqRpf3pXbYXR2A7xZDYRuIHHbnAHnAphjWbwJbh9+G3ZIkSZIkSTuPqEPxF198kVdffZWf/vSnTVFPWCUlJYwcOZK//OUv/OEPf9hu15UkSZJagi3D7+XLl7Nq1Sq++uorZs+eHb7bO4kfw+1woXc6kBBDQSuoO/ReGcPaMdpWZ7ed3pIkSZIkSbueqEPxjIyM7b439yWXXMIpp5zCkCFDDMUlSZK0S6gehf7ggw/y6quvsm7duh9PdqEq3D6O8Pt5d4nhwuVALuHD7uqvjTGs38iqQ/AhQ4YYbkuSJEmSJCmsqEPxO+64g9/97nc8+OCD9OrVqwlKqumpp57i008/Zd68efV6fllZGWVlZaHHxcXFTVWaJEmSVC/hOr2BsHt+t+vUjjnfzOHNb99kU9qmqhHnJ1Kz8zsphmJWE7nDOwcoBIIxrL8dTZkyhWuvvdYQXJIkSZIkSXWKOhT/5S9/SWlpKbvvvjvJycm0bt26xvnVq1c3WnG5ubmMGzeO119/nTZt2tTrNVOnTmXKlCmNVoMkSZIUSXU395w5c6isrKRDhw6sWbMGIHS/1pjzDtQcZ175w/0jfrjtDsQ1tCAgn/BhdzZVHeDrIr56h5GRkcG0adMYPnx4c5ciSZIkSZKkHUAgGAxG1Qcyffr0Os+PGjUqpoK29Pzzz3P66afX6PyoqKggEAgQFxdHWVlZra6QcJ3iGRkZrF27druPfZckSdKOLVKHd4cOHfjggw946aWX2Lhxi1ni8UAPao8z3/I2JYaCSqgKtyPt572MqmB8B9W2bVvOPPPMiPuBu/+3JEmSJEmSqhUXF5OamlqvHDjqUHx7WrduHdnZ2TWOjRkzhn322Yerr76a/ffff5trRPPNkCRJ0q6hrrC7utM7NzeX559/vuZe3u0Iv4d39f2eNGAW0xaWEb7Du/p2TQxrN6PU1FR+9atfsfvuu9cIuqvHxsfFxTF48GAGDx5s2C1JkiRJkqR6iSYHjuVXdmzcuJHy8vIaxxozeE5JSakVfLdt25ZOnTrVKxCXJEnSrmNbo8xXr15NXl4e69ev54033vhxnHm1AFWjy7cMu2+mZujdMYYCN/Bj0B1uP+88oDziq1uErcPtLfdCr94f3c5uSZIkSZIktTRRh+Lr16/n6quv5plnngn9AmxLFRU78LxGSZIktSjRBN2vvvoqpaWlkRdrw4/h9hnU7vbOABJiKLaI8B3e1feLYli7iVWH3b179w4bchtuS5IkSZIkaUcWdSj+u9/9jjfffJMHHniAX/3qV9x3333k5+fz0EMP8cc//rEpaqxhzpw5TX4NSZIkbT9bjzIvKiqqf9C9pc7APtTew7v6ftcYitwE5BK+w7v6a0MM6zeylJQUjj/+eAYOHEjXrl0jdnQbdkuSJEmSJGlXEHUo/u9//5vHHnuMwYMHM2bMGAYNGsQee+xBVlYWjz/+OCNHjmyKOiVJkrSDqe7yfuONN8jJySE9PZ2OHTuGurvT09PJz8+vvW93OK2BdOrezzs5hmK/J3KHdw5QCFTGsP52kJqayqhRozj99NMNuSVJkiRJkqQtRB2Kr169mj59+gBV+4evXr0agJ/+9KdcdNFFjVudJEmSWoRwY8xXr15NTk4OgUCAjIyMUOCdk5NDbm4u8+bNY+PGjfW7QCqRO7wzgTQgrqHFA8sI3+FdfX8bmXxL0bZtW8444wzS09OBqq7v7t272+0tSZIkSZIk1SHqULxPnz4sWbKEzMxM9tlnH5555hkOPfRQ/v3vf9OhQ4cmKFGSJElNLdwI8+rAu7S0NLox5luLpyrUDhd2V9+2j6H49VSF2+HC7myqAvHNMazfzNq0acOpp57Kb3/7WwYPHmzwLUmSJEmSJEUp6lB8zJgxLFiwgKOPPpqJEydy2mmnce+997Jp0ybuvPPOpqhRkiRJTaC6+/v+++/nlVdeaXjo3ZbIHd5ZQE8a8LfOLRQQucM7m6rR5zuQ9u3bM2TIEPbZZ5/Q/t5b7vndoUMH1qxZQ1xcHIMHDzYIlyRJkiRJkmIUCAaDwVgWWLp0KZ9++il77LEHBx54YGPV1WiKi4tJTU1l7dq1tG8fSwuSJElSy1PXWPNgMEhcXFyt0eZRdX8HgG5E7vDOBDrF8AY28mPQvXXYnQPkAWUxrL+dtGnThlNOOYXDDjuMNWvWAD+G2+CYc0mSJEmSJKmxRZMDx9KzA0CvXr3o1atXrMtIkiSpDuHC7/fff58XX3yR8vLyhi+cyI/hdrhu74wfntNQK4nc4Z0DFAExfURz+0lKSuKkk05in332sZtbkiRJkiRJ2oHUOxR///33WbVqFaeeemro2GOPPcYNN9zA+vXrGTZsGH/+859JTIzlt6aSJEm7purQ+4033iAnJ4f09PRQd/e7777Lhx9+2LDwuxORO7yzqOoCb6hNVHVyhwu7q78aOJF9e9pynPmW3d0G35IkSZIkSdLOod6h+I033sjgwYNDofgXX3zBr3/9a0aPHk3fvn3505/+RI8ePZg8eXJT1SpJkrRD2jLwXrp0KYFAoMZI8waH3q2AdCLv551J1X7fDbWW8GF39f0CoDKG9ZtQu3btOP3008nIyAAIjZXPy8sjPT2dzp07O85ckiRJkiRJ2kXUOxSfP38+N910U+jxU089xWGHHcZf/vIXADIyMrjhhhsMxSVJ0i6nybq82xO5wzsT6AHENbDoSmAZdYfexQ1cu4kYdEuSJEmSJElqiHqH4t9//z3duv04X/Ott97ipJNOCj0eMGAAubm5jVudJElSMwq3j/fq1avJyckhGKzaCDs3N5ePPvoo+tA7DkgjfNhdfZsaQ/HriRx2ZwP5wOYY1m8iSUlJnHjiibRt29agW5IkSZIkSVKjqHco3q1bN5YsWUJGRgbl5eV8+umnTJkyJXR+3bp1tG7dukmKlCRJakpbjzcPBoMND7urJVP3WPN0IJa/OhUSOfTOAVbFsHYjS0xM5LDDDuOII44IddBXd3d37NjRfbslSZIkSZIkNal6h+Inn3wyEydO5NZbb+X5558nOTmZQYMGhc5//vnn7L777k1SpCRJUiwqKiqYO3cu+fn5LF++nKKiolC3d4PC7wDQlcgd3plA5xgKLuPHcHvrDu8cIPeH5zST6jHmPXv2JCcnp9Ye6dXHsrKyOPbYYw26JUmSJEmSJDWreofiN910E8OHD+foo4+mXbt2TJ8+nYSEhND5v/3tbxx//PFNUqQkSVIk4bq8t5Sbm8unn35KaWlp/RdNBDII3+Gd9cO5NjEUvYrIHd7ZwAogGPHVTa56hHlSUlIo8HaMuSRJkiRJkqQdVSC49W+Ot2Ht2rW0a9eu1i9CV69eTbt27WoE5S1BcXExqamprF27lvbt2zd3OZIkqQEiBd8NHnHekcgd3llA9xiK3QzkEb7Du/prfQzrN5GkpCROOukkLr74Yju7JUmSJEmSJLV40eTA9e4Ur5aamhr2eMeOHaNdSpIk7aK21d29paiD71ZAT+rez7tdDMUXEz7srr6/DKiMYf0YtGnThjPPPDM01jwYDBIXFxd2tLnd35IkSZIkSZJ2FVGH4pIkSeHUN+hucHd3tRQid3hnAj2Ahma7lUABdYfeaxu4diPaMvzOy8sjMzPTvbslSZIkSZIkKQJDcUmStE1bBt7fffcdRUVFbNiwgaSkJLp06UJeXl5sQXe1OKpGl4cLu6tvO8SwfimRw+5sIB/YFMP6jSQhIYFTTjmFgQMH1ujuzsrKMvyWJEmSJEmSpCgZikuSpBq27vjOyclpnMAbIInIHd5ZQDrQOob1l1N36L0qhrUbSevWrTn88MM58sgja400N/SWJEmSJEmSpMZnKC5J0k6srpHmlZWVrFy5snE7vrsSucM7E+gSw5sp58ege+uwOwfIBTbGsH4jsctbkiRJkiRJkloWQ3FJknYw9Q26161bx6JFixqnwxsggapO7rr2824Tw/qrCd/hXX1/ORB+m/LtYst9vHNycmp83+Pi4gy9JUmSJEmSJKmFMhSXJKmFKS8v59577+Xtt99m/fr1dO7cmUAgAEBOTg4ffvghmzdvbvwL70bkDu8sIC2GtTdTtV93uA7v6q+SGNZvRK1bt+awww4jIyPDsFuSJEmSJEmSdgKG4pIkNbFwIXcwGKw1ujwQCPDZZ5/x1VdfNX4R8UBPInd4ZwIpMay/jvBhd/X9ZUBFDOs3oqSkJE488USSkpJC3d6G35IkSZIkSZK08zIUlySpgbYeY15RUVEr6J4/f37ThNxba0fdY817UhWMN9Qy6g6918SwdiPasst7S4bekiRJkiRJkrTrMhSXJKkOFRUVzJ49m+nTp7N06dJQ2J2bm9t0Y8y3FgC6Ez7srr7dLYb1NxA57M6maux5I21L3hi2Dr4NvCVJkiRJkiRJdTEUlyTtkrbs8v7uu+8oKioKdXh36tSJVatWkZeXx+LFi6msrGzaYpKADCKPNc8AEmJYfwWRQ+8coCiGtRtBpO7uLRl8S5IkSZIkSZIaylBckrRTqE/IXf14w4YNfPTRR9unyxugC5E7vDOBrjGsXQ7kEr7DO+eHcxtiWL+BthV0G3JLkiRJkiRJkraXFh+KT506lZkzZ/LVV1+RlJTEEUccwa233sree+/d3KVJkppIdcD9n//8h3nz5rFhwwbatGkDwMaNG2sF3cXFxXz11VfbL+TeUmuqOrnDdXhX30+KYf3vidzhnQ0sB5q4kX1rrVq1Yp999qF9+/ahcfKBQMCgW5IkSZIkSZLUIrX4UPytt97ikksuYcCAAWzevJnf//73HH/88SxcuJC2bds2d3mSpChE6ubeMvBu1oA7nA5E7vDOomqv77gGrl1B1X7d4Tq8q7/WNbz0xlDd8Z2VlWXgLUmSJEmSJEnaIQWCwWCwuYuIRlFREV27duWtt97iqKOO2ubzi4uLSU1NZe3atbRv3347VChJKi8v59577+Xtt9+mpKSEYDBIfn4+3377bcsJuwHigR5E7vDOAlJiWL+E8GF39f18qoLx7WTrkeaVlZWsXLkyNFbejm9JkiRJkiRJ0o4imhy4xXeKb23t2rUAdOzYMez5srIyysrKQo+Li4u3S12StCurqKhg9uzZTJ8+nTlz5rBs2bLmLqlKWyJ3eGcCPYnt34QF1B16fx/D2lHYZ599OPjgg4HaQXe3bt3o1auXAbckSZIkSZIkaZe1Q4XilZWVjB8/niOPPJL9998/7HOmTp3KlClTtnNlkrTzizT6vLi4mIULF1JZuZ03tg4A3Yjc4Z0JhP/8VP1sJHLYnQ3kAeUxrF9P8fHxHH744WRmZgJV/y5ctWoVbdu2ZdCgQVx22WUkJCQ0fSGSJEmSJEmSJO2gdqjx6RdddBEvv/wy77zzDunp6WGfE65TPCMjw/HpklQP1WPP33rrLfLy8khMTCQpKYkVK1Zs/32+2wAZRN7POwNIjGH9IuoOvYtiWLsO1SF3enp62NHlgOPLJUmSJEmSJEnahp1yfPqll17KCy+8wNtvvx0xEAdITEwkMTGWlESSdm7VHd//+c9/mDdvHqWlpWzcuJHCwkIKCgq2XyGdidzhnUlVF3hDbQJyCR925/xwrjSG9SPYe++9SU9Pd49uSZIkSZIkSZJakBYfigeDQS677DKee+455syZQ+/evZu7JElqUcKNNa8OuhMTEykrKwvdrl+/nu+++67pO75bU7Vfd137eSfHsP4awofd1fcLgSaY5h4XF8e+++7L/vvvTzAYdIy5JEmSJEmSJEk7gBYfil9yySU88cQTzJo1i5SUFAoLCwFITU0lKSmpmauTpKZRUVHB7NmzmT59OkuWLAkbcCcmJrJ8+XJyc3O371hzgFQid3hnAWlAXAPXrgCWETn0zgGKY6g9goyMDDIyMkhKSqJTp06sWrWKDRs2kJyczIABAzjuuOPs8pYkSZIkSZIkaQfU4vcUr95fdWuPPPIIo0eP3ubro5klL0nbQ6Tx5Vt2c3/zzTdUVjZBq3N9xAE9iNzhnQXE8uN0PZE7vHOAfKARMv5IIXf149WrV9vlLUmSJEmSJEnSDmqn2lO8hWf2khRWeXk59957L2+99Ra5ubmUlZUBsGHDhubp7N5SW2oH3VveTye2fzsUEj7srr5dHf2SaWlp9O3bF4CNGzfWCrrbtGlDIBCgXbt2htySJEmSJEmSJKmGFh+KS1Jzq6uze+PGjZSXlwOQmJhIYmIi3333HStWrGieYgNAVyJ3eGcCnWJYv4zIHd7ZQN4Pz6mnuLg49thjD9LT04GqwNuAW5IkSZIkSZIkNSZDcUm7vC1D748++ojly5cTDAZJTExk/fr1fPvtt1RUVDR3mVUSgQzCh97VX4kxrL+SyB3eOcAKIMoBHnFxcfTt25fU1FSSkpLo1q0bvXr14thjj3WPbkmSJEmSJEmS1OQMxSXt1CoqKpg9ezbTp09nyZIlbNiwIdTZnZCQwMqVK1m2bFnz7d+9tU5E7vDOBLrHsPYmqjq5I4XeuVTt990IMjMzGTlyJMcdd5zBtyRJkiRJkiRJalaG4pJ2WNWB9yOPPMIXX3xBMBgkISEhFHqXlpaSnZ1NMBhla3NTaQX0JHzYXX2/bQzrF1MVcIfr8M4GCoBGzP63HH3uuHNJkiRJkiRJktRSGYpLarG2HmteWFjI+vXrSU5OZsOGDS0r8AZoT+QO7yygBxDXwLUrgWXUvZ93cQy1hxEIBNhjjz3IyMgAqvb7Tk5OZsCAAXaAS5IkSZIkSZKkHYahuKQWpby8nHvvvZcnn3ySzz77rOXs5R0HpBG5wzsLSI1h/VIid3jnAPlUjT9vAoFAgKysLNLS0mjbtq2htyRJkiRJkiRJ2qkYiktqFluOPv/8889Zv34969atY/Xq1c1TUDK1g+4t76cDrWNYfzmRO7xzgFUxrL2VuLg4dt99d9q1a0diYiJlZWWh2zZt2pCcnEy3bt3o1asXxx57rOG3JEmSJEmSJEnaqRmKS2p0dY09T0xMpKioiGXLlm3f0eddidzhnQl0jmHtMiCXyKF3HrAxhvWBLl26sPvuu9cIuLcMuu3wliRJkiRJkiRJCs9QXFJUysvLueeee3juuedYs2YNCQkJlJWVUVpaGtrrOycnh8rKyu1XVAKQQeT9vDOBNjGsv4rIHd45VHWBx5DvV48v7969eyjsLi8vJz09naOOOorLLruMhISEGN6AJEmSJEmSJEnSrstQXFJYW443/+KLLwgGgxQVFVFUVLT9i+lI5A7vTKr2+m6ozVR1ckcKvXOBkhjW/0HPnj1JTU0lMTHRzm5JkiRJkiRJkqTtyFBc2sVVd37PnDmT/Px8AoEAmzdvpqCgYPt0e7cCehA+7K6+3y6G9ddRFXCH6/DOBgqAiuiX7dWrF927d2fjxo2Ul5cDkJiYGBppnpSURO/evRk1ahTHHnusobckSZIkSZIkSVIzMRSXdjLhOryrR5yvX78+9LxAIMC6detYvXp10xaUQuQO7yyqAvGG5sWVVIXa4cLu6tu10S8bCATo0aMHXbt2NeSWJEmSJEmSJEnawRmKSzuQcF3dycnJoeC2qKiIVatWEQzGsMF1NAJUjS6P1OGdBXSIYf1SagfdW97PAzZFt2Tnzp3p2rUrAAkJCZSXlxMIBOjevTuHHnqo48wlSZIkSZIkSZJ2MobiUjOrDrqfe+451qxZE7arG+D7779n3bp127e4JGoH3VveTwcSYlh/BZE7vHOAldEtt9tuu5GVlRUaZ56QkMCmTZvo0KEDw4YNY+zYsSQkxFKwJEmSJEmSJEmSdjSG4lIT27q7e0vNEnRvqQuRO7wzfzjfUOVALuFD7+qvjdEv27lzZ7p06UJiYqKBtyRJkiRJkiRJkrbJUFxqoLrC7mrNGnonUNXJHWk/70yqOsEbajWRO7xzgEKgEaa49+jRg2OOOca9vCVJkiRJkiRJktQghuJSPWwdgDd7hzfAbkTu8M4EugNxDVy7gqr9uiPt550LNPLbT0lJIT09naSkJNLT0znqqKO47LLL7P6WJEmSJEmSJElSTAzFpR9s2LCByy+/nNmzZ7N27VratGlDIBBongA8HuhB+LC7+n5KDOuXUBVuh+vwzgaWURWMN6Itx56XlZWxYcMGevTowemnn+7oc0mSJEmSJEmSJDUZQ3HtErY16nzFihVs3NiADa4bqh2RO7yzgJ5UBeMNtYzwYXf17ZoY1t5Kp06d6Nq1K6WlpSQnJ5OYmEh5eTlxcXEceOCBjB492rHnkiRJkiRJkiRJajaG4tqhVVRUMHv2bB555BE+//xzSkpKQueCwSAbN25k3bp12zfwDlA1ujxSh3cWVaPPG2oDkcea51A19rw8hvXrkJmZSUpKCh06dGDYsGF2eEuSJEmSJEmSJKnFMxTXDiFc+L1+/XpWrVq1/Ytpw49Bd7hu7wwglpy4iMgd3jk/nG9C1Xt7t2nThqSkJHr37s2oUaPs9pYkSZIkSZIkSdIOyVBcLUqLCL87E7nDOxPoGsPam4BcIofeuVR1gjeyzMxM2rZty/r160PHAoEAycnJJCUlkZ6ezlFHHcVll11m57ckSZIkSZIkSZJ2Kobi2q6q9/Z+9tln+fbbb6moqCA+Pp42bdpQWlra9OF3ayCdyPt5ZwLJMaz/PZE7vHOAQqAyhvW3Ut3VnZiYSFlZGevXrycQCNCuXTv69evnft6SJEmSJEmSJEna5RmKq8ls2fW9YMECli5dyoYNTdAGvaVUwofd1ffTgLgGrl0B5FP3ft7rYqj9B506daJr1641urqrxcXF0aNHD04//XT385YkSZIkSZIkSZLqwVBcDRap6zsxMZHi4mKKi4sb94LxVIXadYXe7WNYfz1V4Xa4Du9sYBmwOYb1f9CuXTs6duwYemzQLUmSJEmSJEmSJDWdHSIUv++++/jTn/5EYWEh/fr1489//jOHHnpoc5e1S7vqqqu4/fbbG3fRtkQOu7OAnsT2/9gCInd4Z1M1+jwGW4fd1Qy9JUmSJEmSJEmSpObT4kPxp59+mgkTJvDggw9y2GGHMW3aNE444QQWLVpE165dm7u8XdKwYcOYNWtWdC8KAN2IHHpnAp1iKGojdY81zwPKYlh/K+3ataNz586G3ZIkSZIkSZIkSVILFwgGg8HmLqIuhx12GAMGDODee+8FoLKykoyMDC677DImTpy4zdcXFxeTmprK2rVrad8+ltnagqoPKZxzzjm1TyTyY7i9dYd3JpDxw3MaaiWRO7xzgCKgkf+fvGXnt93ekiRJkiRJkiRJUssRTQ7cojvFy8vL+eSTT7jmmmtCx+Li4hgyZAjvv/9+M1a2a6qoqOA3v/lN1YNU4K/8GHx3i2HhTVR1cocLvau/SmNYP4xwo84NviVJkiRJkiRJkqSdT4sOxVeuXElFRQXdutVMXLt168ZXX30V9jVlZWWUlf04J7u4uLhJa9yVzJ0798fv53pgOBBXjxeuIXKHdw5Ve31XNl6dnTp1om3btgSDQTZu3EhFRQWtW7emT58+DB8+3MBbkiRJkiRJkiRJ2oW06FC8IaZOncqUKVOau4ydUkFBwY8PNgPLgLQfbuvaz7uJPpfQsWNHWrVqRevWrdlnn3246qqrGDJkCPHx8U1zQUmSJEmSJEmSJEk7nBYdinfu3Jn4+HiWL19e4/jy5cvp3r172Ndcc801TJgwIfS4uLiYjIyMJq1zV5GWllbzwACq9vre3LTXNfyWJEmSJEmSJEmS1FAtOhRPSEjgJz/5CbNnz2bYsGEAVFZWMnv2bC699NKwr0lMTCQxMXE7VrnrGDRoEOnp6eTl5VUdKIx9zYSEBFJTU2nTpg1QNf7e8FuSJEmSJEmSJElSY2nRoTjAhAkTGDVqFP379+fQQw9l2rRprF+/njFjxjR3abuc+Ph47r77bkaMGEEwGGzQGikpKWRmZnLeeecxfvx49/aWJEmSJEmSJEmS1KRafCh+9tlnU1RUxKRJkygsLOSggw7ilVdeoVu3bs1d2i5p+PDhzJgxg3Hjxv3YMf6Dtm3bkpycTGJiImVlZVRWVpKSksLAgQMZM2YMxx57rF3fkiRJkiRJkiRJkrarQLChLb87iOLiYlJTU1m7di3t27dv7nJ2GhUVFcydO5eCggLS0tIYNGiQgbckSZIkSZIkSZKk7SKaHLjFd4qrZYqPj2fw4MHNXYYkSZIkSZIkSZIk1SmuuQuQJEmSJEmSJEmSJKmpGIpLkiRJkiRJkiRJknZahuKSJEmSJEmSJEmSpJ3WTr+neDAYBKo2WpckSZIkSZIkSZIk7fiq89/qPLguO30ovm7dOgAyMjKauRJJkiRJkiRJkiRJUmNat24dqampdT4nEKxPdL4Dq6ysZNmyZaSkpBAIBJq7nJ1KcXExGRkZ5Obm0r59++YuR5IazJ9nknYW/jyTtLPw55mknYU/zyTtLPx5JqklCgaDrFu3jh49ehAXV/eu4Tt9p3hcXBzp6enNXcZOrX379v5LUNJOwZ9nknYW/jyTtLPw55mknYU/zyTtLPx5Jqml2VaHeLW6I3NJkiRJkiRJkiRJknZghuKSJEmSJEmSJEmSpJ2WobgaLDExkRtuuIHExMTmLkWSYuLPM0k7C3+eSdpZ+PNM0s7Cn2eSdhb+PJO0owsEg8FgcxchSZIkSZIkSZIkSVJTsFNckiRJkiRJkiRJkrTTMhSXJEmSJEmSJEmSJO20DMUlSZIkSZIkSZIkSTstQ3FJkiRJkiRJkiRJ0k7LUFwNct9999GrVy/atGnDYYcdxkcffdTcJUlS1KZOncqAAQNISUmha9euDBs2jEWLFjV3WZIUkz/+8Y8EAgHGjx/f3KVIUoPk5+fzy1/+kk6dOpGUlMQBBxzAxx9/3NxlSVJUKioquP766+nduzdJSUnsvvvu3HTTTQSDweYuTZLq9Pbbb3PaaafRo0cPAoEAzz//fI3zwWCQSZMmkZaWRlJSEkOGDGHx4sXNU6wkRcFQXFF7+umnmTBhAjfccAOffvop/fr144QTTmDFihXNXZokReWtt97ikksu4YMPPuD1119n06ZNHH/88axfv765S5OkBpk3bx4PPfQQBx54YHOXIkkN8v3333PkkUfSunVrXn75ZRYuXMgdd9zBbrvt1tylSVJUbr31Vh544AHuvfdevvzyS2699VZuu+02/vznPzd3aZJUp/Xr19OvXz/uu+++sOdvu+027rnnHh588EE+/PBD2rZtywknnMDGjRu3c6WSFJ1A0I8nKkqHHXYYAwYM4N577wWgsrKSjIwMLrvsMiZOnNjM1UlSwxUVFdG1a1feeustjjrqqOYuR5KiUlJSwiGHHML999/PH/7wBw466CCmTZvW3GVJUlQmTpzIu+++y9y5c5u7FEmKyamnnkq3bt34v//7v9CxM844g6SkJP7xj380Y2WSVH+BQIDnnnuOYcOGAVVd4j169OCKK67gyiuvBGDt2rV069aNRx99lHPOOacZq5WkutkprqiUl5fzySefMGTIkNCxuLg4hgwZwvvvv9+MlUlS7NauXQtAx44dm7kSSYreJZdcwimnnFLj72mStKP517/+Rf/+/TnzzDPp2rUrBx98MH/5y1+auyxJitoRRxzB7Nmz+frrrwFYsGAB77zzDieddFIzVyZJDbdkyRIKCwtr/Hdnamoqhx12mPmApBavVXMXoB3LypUrqaiooFu3bjWOd+vWja+++qqZqpKk2FVWVjJ+/HiOPPJI9t9//+YuR5Ki8tRTT/Hpp58yb9685i5FkmLy3Xff8cADDzBhwgR+//vfM2/ePMaOHUtCQgKjRo1q7vIkqd4mTpxIcXEx++yzD/Hx8VRUVHDzzTczcuTI5i5NkhqssLAQIGw+UH1OkloqQ3FJkqjqsPzvf//LO++809ylSFJUcnNzGTduHK+//jpt2rRp7nIkKSaVlZX079+fW265BYCDDz6Y//73vzz44IOG4pJ2KM888wyPP/44TzzxBPvttx/z589n/Pjx9OjRw59nkiRJzcDx6YpK586diY+PZ/ny5TWOL1++nO7duzdTVZIUm0svvZQXXniBN998k/T09OYuR5Ki8sknn7BixQoOOeQQWrVqRatWrXjrrbe45557aNWqFRUVFc1doiTVW1paGvvuu2+NY3379iUnJ6eZKpKkhrnqqquYOHEi55xzDgcccAC/+tWvuPzyy5k6dWpzlyZJDVadAZgPSNoRGYorKgkJCfzkJz9h9uzZoWOVlZXMnj2bgQMHNmNlkhS9YDDIpZdeynPPPccbb7xB7969m7skSYracccdxxdffMH8+fNDX/3792fkyJHMnz+f+Pj45i5RkurtyCOPZNGiRTWOff3112RlZTVTRZLUMKWlpcTF1fzVa3x8PJWVlc1UkSTFrnfv3nTv3r1GPlBcXMyHH35oPiCpxXN8uqI2YcIERo0aRf/+/Tn00EOZNm0a69evZ8yYMc1dmiRF5ZJLLuGJJ55g1qxZpKSkhPY+Sk1NJSkpqZmrk6T6SUlJYf/9969xrG3btnTq1KnWcUlq6S6//HKOOOIIbrnlFs466yw++ugjHn74YR5++OHmLk2SonLaaadx8803k5mZyX777cdnn33GnXfeyfnnn9/cpUlSnUpKSvjmm29Cj5csWcL8+fPp2LEjmZmZjB8/nj/84Q/sueee9O7dm+uvv54ePXowbNiw5itakuohEAwGg81dhHY89957L3/6058oLCzkoIMO4p577uGwww5r7rIkKSqBQCDs8UceeYTRo0dv32IkqRENHjyYgw46iGnTpjV3KZIUtRdeeIFrrrmGxYsX07t3byZMmMAFF1zQ3GVJUlTWrVvH9ddfz3PPPceKFSvo0aMH5557LpMmTSIhIaG5y5OkiObMmcMxxxxT6/ioUaN49NFHCQaD3HDDDTz88MOsWbOGn/70p9x///3stddezVCtJNWfobgkSZIkSZIkSZIkaaflnuKSJEmSJEmSJEmSpJ2WobgkSZIkSZIkSZIkaadlKC5JkiRJkiRJkiRJ2mkZikuSJEmSJEmSJEmSdlqG4pIkSZIkSZIkSZKknZahuCRJkiRJkiRJkiRpp2UoLkmSJEmSJEmSJEnaaRmKS5IkSZIkSZIkSZJ2WobikiRJkqSdxpw5cwgEAqxZs6a5S4lKIBDg+eefb7T1evXqxbRp0xptveaydOlSAoEA8+fPB3bcP19JkiRJUvMyFJckSZIk7RACgUCdX5MnT27uErdp8uTJHHTQQbWOFxQUcNJJJ23XWlavXs348ePJysoiISGBHj16cP7555OTk7Nd66g2evRohg0bVuNYRkYGBQUF7L///s1SkyRJkiRp59CquQuQJEmSJKk+CgoKQveffvppJk2axKJFi0LH2rVrx8cff9wcpVFeXk5CQkKDX9+9e/dGrGbbVq9ezeGHH05CQgIPPvgg++23H0uXLuW6665jwIABvP/++/Tp02e71hROfHz8dv/eSJIkSZJ2PnaKS5IkSZJ2CN27dw99paamEggEahxr165d6LmffPIJ/fv3Jzk5mSOOOKJGeA4wa9YsDjnkENq0aUOfPn2YMmUKmzdvDp3Pyclh6NChtGvXjvbt23PWWWexfPny0Pnqju+//vWv9O7dmzZt2gCwZs0a/t//+3906dKF9u3bc+yxx7JgwQIAHn30UaZMmcKCBQtC3e2PPvooUHt8el5eHueeey4dO3akbdu29O/fnw8//BCAb7/9lqFDh9KtWzfatWvHgAED+M9//hPV9/Laa69l2bJl/Oc//+Gkk04iMzOTo446ildffZXWrVtzySWXhJ4bbhT7QQcdVKMz/8477+SAAw6gbdu2ZGRkcPHFF1NSUhI6/+ijj9KhQwdeffVV+vbtS7t27TjxxBNDH3SYPHky06dPZ9asWaHvzZw5c2qNTw/nnXfeYdCgQSQlJZGRkcHYsWNZv3596Pz999/PnnvuSZs2bejWrRsjRoyI6nslSZIkSdrxGYpLkiRJknY61157LXfccQcff/wxrVq14vzzzw+dmzt3Lueddx7jxo1j4cKFPPTQQzz66KPcfPPNAFRWVjJ06FBWr17NW2+9xeuvv853333H2WefXeMa33zzDc8++ywzZ84MhbZnnnkmK1as4OWXX+aTTz7hkEMO4bjjjmP16tWcffbZXHHFFey3334UFBRQUFBQa02AkpISjj76aPLz8/nXv/7FggUL+N3vfkdlZWXo/Mknn8zs2bP57LPPOPHEEznttNPqPfa8srKSp556ipEjR9bqwk5KSuLiiy/m1VdfZfXq1fX+fsfFxXHPPffwv//9j+nTp/PGG2/wu9/9rsZzSktLuf322/n73//O22+/TU5ODldeeSUAV155JWeddVYoKC8oKOCII47Y5nW//fZbTjzxRM444ww+//xznn76ad555x0uvfRSAD7++GPGjh3LjTfeyKJFi3jllVc46qij6v2+JEmSJEk7B8enS5IkSZJ2OjfffDNHH300ABMnTuSUU05h48aNtGnThilTpjBx4kRGjRoFQJ8+fbjpppv43e9+xw033MDs2bP54osvWLJkCRkZGQA89thj7LfffsybN48BAwYAVSPTH3vsMbp06QJUdSx/9NFHrFixgsTERABuv/12nn/+eWbMmMFvfvMb2rVrR6tWreocCf7EE09QVFTEvHnz6NixIwB77LFH6Hy/fv3o169f6PFNN93Ec889x7/+9a9QGFyXoqIi1qxZQ9++fcOe79u3L8FgkG+++YZDDz10m+sBjB8/PnS/V69e/OEPf+C3v/0t999/f+j4pk2bePDBB9l9990BuPTSS7nxxhuBqtH3SUlJlJWVRTUuferUqYwcOTJ0/T333JN77rmHo48+mgceeICcnBzatm3LqaeeSkpKCllZWRx88MH1Xl+SJEmStHMwFJckSZIk7XQOPPDA0P20tDQAVqxYQWZmJgsWLODdd98NdYYDVFRUsHHjRkpLS/nyyy/JyMgIBeIA++67Lx06dODLL78MheJZWVmhQBxgwYIFlJSU0KlTpxq1bNiwgW+//bbetc+fP5+DDz44FIhvraSkhMmTJ/Piiy9SUFDA5s2b2bBhQ707xasFg8E6z0ezR/p//vMfpk6dyldffUVxcTGbN28OfT+Tk5MBSE5ODgXiUPXnsmLFiqhq3tqCBQv4/PPPefzxx0PHgsEglZWVLFmyhJ/97GdkZWXRp08fTjzxRE488UROP/30UE2SJEmSpF2DobgkSZIkaafTunXr0P1AIABQY/z4lClTGD58eK3XVe8NXh9t27at8bikpIS0tDTmzJlT67kdOnSo97pJSUl1nr/yyit5/fXXuf3229ljjz1ISkpixIgRlJeX12v9Ll26hAL+cL788ktatWpF7969garR6FsH6Js2bQrdX7p0KaeeeioXXXQRN998Mx07duSdd97h17/+NeXl5aEAess/E6j6c9lWML8tJSUlXHjhhYwdO7bWuczMTBISEvj000+ZM2cOr732GpMmTWLy5MnMmzcvqj8TSZIkSdKOzVBckiRJkrRLOeSQQ1i0aFGNkeRb6tu3L7m5ueTm5oa6xRcuXMiaNWvYd99961y3sLCQVq1a0atXr7DPSUhIoKKios76DjzwQP7617+yevXqsN3i7777LqNHj+b0008HqoLhpUuX1rnmluLi4jjrrLN4/PHHufHGG2uMK9+wYQP3338/p59+OqmpqUBViF5QUBB6TnFxMUuWLAk9/uSTT6isrOSOO+4gLi4OgGeeeabe9VSrz/dma4cccggLFy6M+GcJ0KpVK4YMGcKQIUO44YYb6NChA2+88UbYD0VIkiRJknZOcc1dgCRJkiRJ29OkSZN47LHHmDJlCv/73//48ssveeqpp7juuusAGDJkCAcccAAjR47k008/5aOPPuK8887j6KOPpn///hHXHTJkCAMHDmTYsGG89tprLF26lPfee49rr72Wjz/+GKjab3vJkiXMnz+flStXUlZWVmudc889l+7duzNs2DDeffddvvvuO5599lnef/99oGrf7JkzZzJ//nwWLFjAL37xi1AXfH3dfPPNdO/enZ/97Ge8/PLL5Obm8vbbb3PCCScQFxfH3XffHXrusccey9///nfmzp3LF198wahRo4iPjw+d32OPPdi0aRN//vOf+e677/j73//Ogw8+GFU91d+bzz//nEWLFrFy5coa3eiRXH311bz33ntceumlzJ8/n8WLFzNr1qzQ3uovvPAC99xzD/Pnzyc7O5vHHnuMyspK9t5776jrkyRJkiTtuAzFJUmSJEm7lBNOOIEXXniB1157jQEDBnD44Ydz1113kZWVBVSN9Z41axa77bYbRx11FEOGDKFPnz48/fTTda4bCAR46aWXOOqooxgzZgx77bUX55xzDtnZ2XTr1g2AM844gxNPPJFjjjmGLl268OSTT9ZaJyEhgddee42uXbty8sknc8ABB/DHP/4xFETfeeed7LbbbhxxxBGcdtppnHDCCRxyyCFRfQ86d+7MBx98wDHHHMOFF15I7969Ofroo6moqGD+/PmhfdgBrrnmGo4++mhOPfVUTjnlFIYNG1Zjb/B+/fpx5513cuutt7L//vvz+OOPM3Xq1KjqAbjgggvYe++96d+/P126dOHdd9/d5msOPPBA3nrrLb7++msGDRrEwQcfzKRJk+jRowdQNbZ+5syZHHvssfTt25cHH3yQJ598kv322y/q+iRJkiRJO65AMNYNvCRJkiRJ0g7v//7v/7j44ot5+umnGTZsWHOXI0mSJElSo7FTXJIkSZIk8etf/5qnnnqKL7/8kg3/n707j4uq7N84fg3IJpuibAKKSy6Va+5FYpqmZZrSYj65VLZpYmaLLaZZ2qKGPZWl/bKs1MooWzUztzRLK60nzSwXFkFcWURZhvn9QTMyMAMMA7L4efvi1Zwz59z3fTDTvOZ7f8+cqe7lAAAAAABQaagUBwAAAAAAAAAAAADUWVSKAwAAAAAAAAAAAADqLEJxAAAAAAAAAAAAAECdRSgOAAAAAAAAAAAAAKizCMUBAAAAAAAAAAAAAHUWoTgAAAAAAAAAAAAAoM4iFAcAAAAAAAAAAAAA1FmE4gAAAAAAAAAAAACAOotQHAAAAAAAAAAAAABQZxGKAwAAAAAAAAAAAADqLEJxAAAAAAAAAAAAAECdRSgOAAAAAAAAAAAAAKizCMUBAAAAAAAAAAAAAHUWoTgAAAAAAAAAAAAAoM4iFAcAAAAAAAAAAAAA1FmE4gAAAAAAAAAAAACAOotQHAAAAAAAAAAAAABQZxGKAwAAAAAAAAAAAADqLEJxAAAAAAAAAAAAAECdRSgOAAAAAAAAAAAAAKizCMUBAAAAAAAAAAAAAHUWoTgAAAAAAAAAAAAAoM4iFAcAAAAAAAAAAAAA1FmE4gAAAAAAAAAAAACAOotQHAAAAAAAAAAAAABQZxGKAwAAAAAAAAAAAADqLEJxAAAAAAAAAAAAAECdRSgOAAAAAAAAAAAAAKizCMUBAAAAAAAAAAAAAHUWoTgAAAAAABe4t99+WwaDQQcPHqzupQAAAAAAUOkIxQEAAAAANY45pDV/eXp6qkmTJho4cKBefvllZWZmVnjsrVu3asaMGTp16lTlLdgJr732mt5++22H7jl79qxeeukl9ejRQ/7+/vL09FTr1q01ceJE/fXXX1Wz0DrgzJkzuuOOO3TppZfK399fPj4+6tixoxYsWKC8vLzqXh4AAAAAoIrUq+4FAAAAAABgz9NPP63mzZsrLy9Pqamp2rBhgyZPnqz58+frs88+U4cOHRwec+vWrZo5c6bGjh2rBg0aVP6iHfTaa6+pcePGGjt2bLmuP3bsmK655hr9/PPPuu6663TrrbfKx8dHe/fu1YoVK7Ro0SLl5uZW7aJrqTNnzuiPP/7Q4MGDFRkZKRcXF23dulUPPPCAfvzxRy1btqy6lwgAAAAAqAKE4gAAAACAGmvQoEHq2rWr5XjatGn67rvvdN111+n666/Xnj175OXlVY0rPP/Gjh2rX3/9VStXrtSIESOs3ps1a5Yef/zxalpZzRcQEKBt27ZZnbvnnnvk7++vV155RfPnz1dISEg1rQ4AAAAAUFXYPh0AAAAAUKtcddVVevLJJ3Xo0CG99957lvO//fabxo4dqxYtWsjT01MhISG6/fbbdfz4ccs1M2bM0EMPPSRJat68uWV7dnMv7SVLluiqq65SUFCQPDw8dPHFF2vhwoUl1rBjxw4NHDhQjRs3lpeXl5o3b67bb7/d6pqCggLFxcXpkksukaenp4KDg3X33Xfr5MmTlmsiIyP1xx9/aOPGjZa1REdH2332H3/8UV9++aXuuOOOEoG4JHl4eGju3LlW57777jtFRUXJ29tbDRo00NChQ7Vnzx773+B/GQwGzZgxo8T5yMhIq6p281b333//vSZNmqTAwEA1aNBAd999t3Jzc3Xq1CmNHj1aDRs2VMOGDfXwww/LZDJZ7j948KAMBoPmzp2rRYsWqWXLlvLw8FC3bt20ffv2MtdZGSIjIyWpxmypDwAAAACoXFSKAwAAAABqndtuu02PPfaYvvnmG40fP16StHbtWu3fv1/jxo1TSEiI/vjjDy1atEh//PGHtm3bJoPBoOHDh+uvv/7S8uXL9dJLL6lx48aSpMDAQEnSwoULdckll+j6669XvXr19Pnnn+u+++5TQUGBJkyYIElKS0vTgAEDFBgYqEcffVQNGjTQwYMHFR8fb7XGu+++W2+//bbGjRunSZMm6cCBA3rllVf066+/asuWLXJzc1NcXJzuv/9++fj4WCq8g4OD7T73Z599Znn+8vj22281aNAgtWjRQjNmzNCZM2f03//+V5dffrl++eUXSxhcGe6//36FhIRo5syZ2rZtmxYtWqQGDRpo69atatq0qWbPnq2vvvpKL774oi699FKNHj3a6v5ly5YpMzNTd999twwGg1544QUNHz5c+/fvl5ubW6WtU5Jyc3OVkZGhM2fOaMeOHZo7d66aNWumVq1aVeo8AAAAAICagVAcAAAAAFDrhIeHy9/fX//884/l3H333acHH3zQ6rqePXtq5MiR+v777xUVFaUOHTqoS5cuWr58uYYNG1YiFN64caPVduwTJ07UNddco/nz51tC8a1bt+rkyZP65ptvrLZ2f+aZZyyvv//+e7355pt6//33deutt1rO9+3bV9dcc40++ugj3XrrrRo2bJieeOIJNW7cWP/5z3/KfG5zhXf79u3L8V2SHnroIQUEBOiHH35QQECAJGnYsGHq3LmznnrqKb3zzjvlGqc8goOD9dVXX8lgMOi+++7T33//rRdffFF33323pdr+rrvuUmRkpN56660SoXhCQoL27dunhg0bSpLatGmjoUOHas2aNbruuusqbZ2SFB8fr5EjR1qOu3btqrfeekv16vHXJAAAAABQF7F9OgAAAACgVvLx8VFmZqbluGiYffbsWR07dkw9e/aUJP3yyy/lGrPoGOnp6Tp27Jj69Omj/fv3Kz09XZLUoEEDSdIXX3yhvLw8m+N89NFH8vf319VXX61jx45Zvi677DL5+Pho/fr1Dj2rWUZGhiTJ19e3zGtTUlK0c+dOjR071hKIS1KHDh109dVX66uvvqrQGuy54447ZDAYLMc9evSQyWTSHXfcYTnn6uqqrl27av/+/SXuv/nmmy2BuCRFRUVJks1rndW3b1+tXbtWH330ke655x65ubnp9OnTlT4PAAAAAKBmIBQHAAAAANRKWVlZVuHwiRMnFBsbq+DgYHl5eSkwMFDNmzeXJEugXZYtW7aof//+lv7bgYGBeuyxx6zG6NOnj0aMGKGZM2eqcePGGjp0qJYsWaKcnBzLOPv27VN6erqCgoIUGBho9ZWVlaW0tLQKPbOfn58kWX0YwJ5Dhw5JKqy4Lq5du3Y6duxYpQbBTZs2tTr29/eXJEVERJQ4X7Svur37zQG5rWvNjEajUlNTrb5yc3PLXGtwcLD69++vmJgYLVy4UNddd52uvvpqpaamlnkvAAAAAKD2YV8wAAAAAECtk5SUpPT0dKse0DfddJO2bt2qhx56SJ06dZKPj48KCgp0zTXXqKCgoMwx//nnH/Xr109t27bV/PnzFRERIXd3d3311Vd66aWXLGMYDAatXLlS27Zt0+eff641a9bo9ttv17x587Rt2zbLvEFBQXr//fdtzmXuYe6otm3bSpJ+//13SyX1+WY0Gm2ed3V1Lfd5k8lU7vttXWuWmJho+eCD2fr16xUdHW33HltiYmL0+OOPa9WqVbr77rsduhcAAAAAUPMRigMAAAAAap13331XkjRw4EBJhdXE69at08yZMzV9+nTLdfv27Stxb9Etvov6/PPPlZOTo88++8yqatneVuc9e/ZUz5499eyzz2rZsmUaNWqUVqxYoTvvvFMtW7bUt99+q8svv9xqS3Zb7K3HliFDhmjOnDl67733ygzFmzVrJknau3dviff+/PNPNW7cWN7e3nbvb9iwoU6dOmV1Ljc3VykpKeVeb1ULCQnR2rVrrc517NjR4XHOnDkjqfw7CgAAAAAAahe2TwcAAAAA1CrfffedZs2apebNm2vUqFGSzlUZF68qjouLK3G/OQguHvjaGiM9PV1Lliyxuu7kyZMl5unUqZMkWbZQv+mmm2Q0GjVr1qwS8+fn51vN7e3tXWIt9vTq1UvXXHON3nzzTX366acl3s/NzdXUqVMlSaGhoerUqZPeeecdq/H/97//6ZtvvtHgwYNLnatly5batGmT1blFixbZrRSvDp6enurfv7/VV9G+5MUdO3bMZuX5m2++KUnq2rVrla0VAAAAAFB9qBQHAAAAANRYX3/9tf7880/l5+fryJEj+u6777R27Vo1a9ZMn332mTw9PSUV9tq+8sor9cILLygvL09hYWH65ptvdODAgRJjXnbZZZKkxx9/XLfccovc3Nw0ZMgQDRgwQO7u7hoyZIjuvvtuZWVlafHixQoKCrKqjn7nnXf02muv6YYbblDLli2VmZmpxYsXy8/PzxI09+nTR3fffbfmzJmjnTt3asCAAXJzc9O+ffv00UcfacGCBYqJibGsZ+HChXrmmWfUqlUrBQUF6aqrrrL7PVm6dKkGDBig4cOHa8iQIerXr5+8vb21b98+rVixQikpKZo7d64k6cUXX9SgQYPUq1cv3XHHHTpz5oz++9//yt/fXzNmzCj1e3/nnXfqnnvu0YgRI3T11Vdr165dWrNmjRo3blz+n8Aa5r333tPrr7+uYcOGqUWLFsrMzNSaNWu0du1aDRkypNTvOwAAAACg9iIUBwAAAADUWOat0N3d3RUQEKD27dsrLi5O48aNk6+vr9W1y5Yt0/33369XX31VJpNJAwYM0Ndff60mTZpYXdetWzfNmjVLr7/+ulavXq2CggIdOHBAbdq00cqVK/XEE09o6tSpCgkJ0b333qvAwEDdfvvtlvv79Omjn376SStWrNCRI0fk7++v7t276/3337fqb/3666/rsssu0xtvvKHHHntM9erVU2RkpP7zn//o8ssvt3rGQ4cO6YUXXlBmZqb69OlTajgbGBiorVu36rXXXtMHH3ygxx9/XLm5uWrWrJmuv/56xcbGWq7t37+/Vq9eraeeekrTp0+Xm5ub+vTpo+eff75EL+7ixo8frwMHDuj//u//tHr1akVFRWnt2rXq169fqffVZFdccYW2bt2q5cuX68iRI6pXr57atGmj+fPn6/7776/u5QEAAAAAqojBZGvfMAAAAAAAAAAAAAAA6gB6igMAAAAAAAAAAAAA6ixCcQAAAAAAAAAAAABAnUUoDgAAAAAAAAAAAACoswjFAQAAAAAAAAAAAAB1FqE4AAAAAAAAAAAAAKDOIhQHAAAAAAAAAAAAANRZhOIAAAAAAAAAAAAAgDqrXnUvoKoVFBTo8OHD8vX1lcFgqO7lAAAAAAAAAAAAAACcZDKZlJmZqSZNmsjFpfRa8Dofih8+fFgRERHVvQwAAAAAAAAAAAAAQCVLTExUeHh4qdfU+VDc19dXUuE3w8/Pr5pXAwAAAAAAAAAAAABwVkZGhiIiIix5cGnqfChu3jLdz8+PUBwAAAAAAAAAAAAA6pDytNAufXN1AAAAAAAAAAAAAABqMUJxAAAAAAAAAAAAAECdRSgOAAAAAAAAAAAAAKiz6nxP8fLKz89Xbm5udS8DqDHc3d1Vrx7/iQAAAAAAAAAAAKgIo9GozZs3KyUlRaGhoYqKipKrq2t1L+uCdMEnXiaTSQkJCTp27Fh1LwWocRo3bqymTZvKYDBU91IAAAAAAAAAAABqjfj4eMXGxiopKclyLjw8XAsWLNDw4cOrcWUXpgs+FDcH4mFhYfLx8ZGLCzvKAwUFBcrKylJycrKMRqNatGhR3UsCAAAAAAAAAACoFeLj4xUTEyOTyWR1Pjk5WTExMVq5ciXB+HlmMBX/2ahjMjIy5O/vr/T0dPn5+Vm9l5+fr127diksLEwhISHVtEKg5kpNTVVycrIyMzPZ0gMAAAAAAAAAAKAMRqNRkZGRVhXiRRkMBoWHh+vAgQPkLk4qLQcu7oIuizb3EPfx8anmlQA1k/nXxv/+9z9t2rSpxCeaAAAAAAAAAAAAcM7mzZvtBuJSYWvnxMREbd68+TyuChd0KG7GlumAbeZfG97e3tq9e7dycnKqeUUAAAAAAAAAAAA1V0pKSqVeh8pBGowLwowZM9SpU6fqXkat5e7urry8PGVnZ1f3UgAAAAAAAAAAAGqs0NDQSr0OlYNQvBbKzMzU5MmT1axZM3l5eal3797avn271TVHjhzR2LFj1aRJE9WvX1/XXHON9u3bZ3M8k8mkQYMGyWAw6NNPPy117ujoaBkMhhJf99xzT2U9HqrQq6++qsjISHl6eqpHjx766aefynWfwWCo4pUBAAAAAAAAAADUflFRUQoPD7ebrRgMBkVERCgqKuo8r+zCRiheC915551au3at3n33Xf3+++8aMGCA+vfvr+TkZEmFIfewYcO0f/9+rVq1Sr/++quaNWum/v376/Tp0yXGi4uLcyj0HD9+vFJSUqy+XnjhhUp7Pth2+PBh5efnV/j+Dz74QFOmTNFTTz2lX375RR07dtTAgQOVlpZWiasEAAAAAAAAAAC4cLm6umrBggWSShYdmo/j4uLk6up63td2ISMUrwRGo1EbNmzQ8uXLtWHDBhmNxiqb68yZM/r444/1wgsv6Morr1SrVq00Y8YMtWrVSgsXLpQk7du3T9u2bdPChQvVrVs3tWnTRgsXLtSZM2e0fPlyq/F27typefPm6a233ir3GurXr6+QkBCrLz8/P0nS0qVL5ePjY1WVft9996lt27aWrbeTkpI0cuRIBQQEyNvbW127dtWPP/5ouX7VqlXq0qWLPD091aJFC82cOdMqDD516pTuvPNOBQYGys/PT1dddZV27dpltcbnnntOwcHB8vX11R133KGzZ8+WeI4333xT7dq1k6enp9q2bavXXnvN8t7BgwdlMBgUHx+vvn37qn79+urYsaN++OEHqzG2bNmi6Oho1a9fXw0bNtTAgQN18uRJSVJBQYHmzJmj5s2by8vLSx07dtTKlSst9548eVKjRo1SYGCgvLy8dNFFF2nJkiV2v++LFy9WeHi4pk6dqt9//93+T5Ad8+fP1/jx4zVu3DhdfPHFev3111W/fn2Hfu4BAAAAAAAAAABQuuHDh2vlypUKCwuzOh8eHq6VK1dq+PDh1bSyC1e1huKbNm3SkCFD1KRJkxJbd+fl5emRRx5R+/bt5e3trSZNmmj06NE6fPhw9S3Yhvj4eEVGRqpv37669dZb1bdvX0VGRio+Pr5K5svPz5fRaJSnp6fVeS8vL33//feSpJycHEmyusbFxUUeHh6WayQpOztbt956q1599VWFhIRUyvpGjx6twYMHa9SoUcrPz9eXX36pN998U++//77q16+vrKws9enTR8nJyfrss8+0a9cuPfzwwyooKJAkbd68WaNHj1ZsbKx2796tN954Q2+//baeffZZyxw33nij0tLS9PXXX+vnn39Wly5d1K9fP504cUKS9OGHH2rGjBmaPXu2duzYodDQUKvAW5Lef/99TZ8+Xc8++6z27Nmj2bNn68knn9Q777xjdd3jjz+uqVOnaufOnWrdurVGjhxpCeh37typfv366eKLL9YPP/yg77//XkOGDLF8KGLOnDlaunSpXn/9df3xxx964IEH9J///EcbN26UJD355JPavXu3vv76a+3Zs0cLFy5U48aN7X5vH3nkES1YsEB79uxRly5d1KVLF7388ss6evRomT8vubm5+vnnn9W/f3/LORcXF/Xv379E0A8AAAAAAAAAAADnDB8+XAcPHtT69eu1bNkyrV+/XgcOHCAQryYGk8lkqq7Jv/76a23ZskWXXXaZhg8frk8++UTDhg2TJKWnpysmJkbjx49Xx44ddfLkScXGxspoNGrHjh3lniMjI0P+/v5KT0+3VDObZWdna8+ePWrXrp3q16/v8Prj4+MVExOj4t9C89YHVfVJj969e8vd3V3Lli1TcHCwli9frjFjxqhVq1bau3ev8vLy1KpVK/Xo0UNvvPGGvL299dJLL+nRRx/VgAEDtGbNGknS3XffLaPRqDfffNOy7qI/B7ZER0dr69atcnd3tzr/xhtvaNSoUZIKK6A7dOigIUOGKD4+XpMmTdJjjz0mSVq0aJGmTp2qgwcPKiAgoMT4/fv3V79+/TRt2jTLuffee08PP/ywDh8+rO+//17XXseHMvkAAIWdSURBVHut0tLS5OHhYbmmVatWevjhh3XXXXepd+/e6ty5s1599VXL+z179tTZs2e1c+dOy/WzZs3SyJEjLdc888wz+uqrr7R161YdPHhQzZs315tvvqk77rhDkrR7925dcskl2rNnj9q2batbb71VCQkJVh80MMvJyVFAQIC+/fZb9erVy3L+zjvvVHZ2tpYtW6brr79ejRs3rlCldlpampYtW6alS5fqf//7nwYPHqwxY8ZoyJAhqlevXonrDx8+rLCwMG3dutVqPQ8//LA2btxoValflPnXyN69e5WWlqbRo0fb/HkDAAAAAAAAAAAAzqfScuDiSqZn59GgQYM0aNAgm+/5+/tr7dq1VudeeeUVde/eXQkJCWratOn5WKJdRqNRsbGxJQJxqbCnt8Fg0OTJkzV06NBK7wnw7rvv6vbbb1dYWJhcXV3VpUsXjRw5Uj///LMkyc3NTfHx8brjjjsUEBAgV1dX9e/fX4MGDbKs97PPPtN3332nX3/91eH5R40apccff9zqXHBwsOV1w4YN9X//938aOHCgevfurUcffdTy3s6dO9W5c2e7wequXbu0ZcsWq8pwo9Gos2fPKjs7W7t27VJWVpYaNWpkdd+ZM2f0zz//SJL27Nmje+65x+r9Xr16af369ZKk06dP659//tEdd9yh8ePHW67Jz8+Xv7+/1X0dOnSwvA4NDZVUGEi3bdtWO3fu1I033mjzOf7++29lZ2fr6quvtjqfm5urzp07S5LuvfdejRgxQr/88osGDBigYcOGqXfv3jbHKy4oKEiTJ0/W5MmT9fXXX2vs2LGW/vGdOnUq1xgAAAAAAAAAAADAhaBaQ3FHpaeny2AwqEGDBtW9FG3evFlJSUl23zeZTEpMTNTmzZsVHR1dqXO3bNlSGzdu1OnTp5WRkaHQ0FDdfPPNatGiheWayy67TDt37lR6erpyc3MVGBioHj16qGvXrpKk7777Tv/880+J7+WIESMUFRWlDRs22J3f399frVq1KnWNmzZtkqurq1JSUnT69Gn5+vpKKtzmvTRZWVmaOXOmzQp7T09PZWVlKTQ01Ob6yvvvRVZWlqTCHt09evSweq/4Bxjc3Nwsr807AJi3ei/tWcxzfPnllyX6RZgr3AcNGqRDhw7pq6++0tq1a9WvXz9NmDBBc+fOLfMZMjMztXLlSr377rvatGmT+vTpozFjxujiiy+2eX3jxo3l6uqqI0eOWJ0/cuRIpW2dDwAAAAAAAAAAANRE1dpT3BFnz57VI488opEjR5Za/p6Tk6OMjAyrr6qQkpJSqddVhLe3t0JDQ3Xy5EmtWbNGQ4cOLXGNv7+/AgMDtW/fPu3YscNyzaOPPqrffvtNO3futHxJ0ksvvaQlS5Y4ta6tW7fq+eef1+effy4fHx9NnDjR8l6HDh20c+dOS//v4rp06aK9e/eqVatWJb5cXFzUpUsXpaamql69eiXeN/fjbteuXYntwLdt22Z5HRwcrCZNmmj//v0lxmjevHm5n7NDhw5at26dzfcuvvhieXh4KCEhocQcERERlusCAwM1ZswYvffee4qLi9OiRYvszmc0GvX111/r1ltvVXBwsJ577jn169dP+/fv17p16zR69OgS29qbubu767LLLrNab0FBgdatW2e1nToAAAAAAAAAAABQ19SKSvG8vDzddNNNMplMWrhwYanXzpkzRzNnzqzyNZm30q6s6xyxZs0amUwmtWnTRn///bceeughtW3bVuPGjbNc89FHHykwMFBNmzbV77//rtjYWA0bNkwDBgyQJIWEhNisEG7atGmZwXB2drZSU1Otznl4eKhhw4bKzMzUbbfdpkmTJmnQoEEKDw9Xt27dNGTIEMXExGjkyJGaPXu2hg0bpjlz5ig0NFS//vqrmjRpol69emn69Om67rrr1LRpU8XExMjFxUW7du3S//73Pz3zzDPq37+/evXqpWHDhumFF15Q69atdfjwYX355Ze64YYb1LVrV8XGxmrs2LHq2rWrLr/8cr3//vv6448/rCrpZ86cqUmTJsnf31/XXHONcnJytGPHDp08eVJTpkwp18/DtGnT1L59e913332655575O7urvXr1+vGG29U48aNNXXqVD3wwAMqKCjQFVdcofT0dG3ZskV+fn4aM2aMpk+frssuu0yXXHKJcnJy9MUXX6hdu3Z255s9e7bmzZunm2++Wd9++225t1o3mzJlisaMGaOuXbuqe/fuiouL0+nTp63+vQEAAAAAAAAAAADqmhpfKW4OxA8dOqS1a9eW2SR92rRpSk9Pt3wlJiZWybqioqIUHh5u2VK7OIPBoIiICEVFRVX63Onp6ZowYYLatm2r0aNH64orrtCaNWustvpOSUnRbbfdprZt22rSpEm67bbbtHz58kqZf/HixQoNDbX6GjlypCQpNjZW3t7emj17tiSpffv2mj17tu6++24lJyfL3d1d33zzjYKCgjR48GC1b99ezz33nGXb8oEDB+qLL77QN998o27duqlnz5566aWX1KxZM0mF39evvvpKV155pcaNG6fWrVvrlltu0aFDhyx9zW+++WY9+eSTevjhh3XZZZfp0KFDuvfee62e4c4779Sbb76pJUuWqH379urTp4/efvtthyrFW7durW+++Ua7du1S9+7d1atXL61atUr16hV+1mTWrFl68sknNWfOHLVr107XXHONvvzyS8sc7u7umjZtmjp06KArr7xSrq6uWrFihd35brvtNqWmpuqNN95wOBA3f1/mzp2r6dOnq1OnTtq5c6dWr15t1Q8eAAAAAAAAAAAAqGsMJpPJVN2LkArDzk8++UTDhg2znDMH4vv27dP69esVGBjo8LgZGRny9/dXenp6iUA9Oztbe/bsUbt27VS/fn2Hx46Pj1dMTIykwh7iRZ9FklauXGmzNzZQW5h/jezdu1dpaWkaPXq0AgICqntZAAAAAAAAAAAAuMCVlgMXV62V4llZWVb9rA8cOKCdO3cqISFBeXl5iomJ0Y4dO/T+++/LaDQqNTVVqampys3Nrc5lWwwfPlwrV65UWFiY1fnw8HACcQAAAAAAAAAAAACoAaq1p/iOHTvUt29fy7G5l/OYMWM0Y8YMffbZZ5KkTp06Wd23fv16RUdHn69llmr48OEaOnSoNm/erJSUFIWGhioqKsqyHTgAAAAAAAAAAAAAoPpUaygeHR2t0nZvryE7u5fJ1dW1xoT0AAAAAAAAAAAAAIBzqnX7dAAAAAAAAAAAAAAAqhKhOAAAAAAAAAAAAACgziIUBwAAAAAAAAAAAADUWYTiAAAAAAAAAAAAAIA6i1AcAAAAAAAAAAAAAFBnEYoDAAAAAAAAAAAAAOosQnEAAAAAAAAAAAAAQJ1FKA4AAAAAAAAAAAAAqLMIxQEAAAAAAAAAAAAAdRahOAAAAAAAAAAAAACgziIUBwAAAAAAAAAAAADUWYTiAAAAAAAAAAAAAFDJTDLplE7pd/2uDGVU93IuaPWqewEAAAAAAAAAAAAAUNuc0RklFvuRoASr11nKkiR9oS90ra6t5hVfuAjFAQAAAAAAAAAAAKCIfOXrsA6XCLqLHh/TsXKPl6jEKlwtykIoDgAAAAAAAAAAAOCCYZJJR3W0RFV30eD7sA6rQAUVnsNDHmqqpor490dLtazEJ4CjCMUBAAAAAAAAAAAA1BnpSre7nXmiEpWkJOUop8Lju8pVTdREEYqwCr6LHjdWYxlkqMSngjMIxQEAAAAAAAAAAADUCmd1VklKslvlnaAEZSrTqTkCFWgVdhcPvkMVqnrErLUKP1sAAAAAAAAAAAAAql2+8pWilFKrvI/qqFNz+MnPZthtfh2ucHnKs5KeCDUFoTgAAAAAAAAAAACAKmWSScd0rETv7qLHh3VYRhkrPIeHPKwqum1VefvLvxKfCrUFoTgAAAAAAAAAAAAAp2Qow2bQbT5OUpLO6myFx3eRS5l9vAMVSB9v2EQoDgAAAAAAAAAAAMCuHOWU6ONdPPxOV7pTczRW41L7eDdRE/p4o8L4NwcAAAAAAAAAAAC4QBlltNvH23ycpjSn5vCRjyXktlXlHa5wecmrkp4IKIlQvI6Jjo5Wp06dFBcXd17me/vttzV58mSdOnXqvMwHAAAAAAAAAACA8jHJpOM6XiLsLvo6WclO9fF2l7vCFV5qlbe//NnWHNWKULwWGjt2rN55550S5/ft26f4+Hi5ublZzkVGRmry5MmaPHmy5Vx1BNnr16/XvHnz9OOPPyozM1NhYWHq2rWrJkyYoCuvvFKStGHDBvXt29dyT1BQkK644gq9+OKLatGiheV5Dh06JEny9PRUcHCwunfvrnvuuUdXXXVVqWuIjo7Wxo0bJUkeHh5q0aKFJk6cqPvuu68qHhkAAAAAAAAAAKBKZSrT7nbm5j7eZ3SmwuO7yEWhCrUZdhft4+0il0p8KqDyEYrXUtdcc42WLFlidS4wMFCurq7VtCL7XnvtNU2cOFG33XabPvjgA7Vs2VLp6elav369HnjgAf38889W1+/du1e+vr7at2+f7rrrLg0ZMkS//fab5dmefvppjR8/Xrm5uTp48KDee+899e/fX7NmzdLjjz9e6lrGjx+vp59+WtnZ2Vq6dKkmTJighg0bauTIkQ4/V25urtzd3R2+DwAAAAAAAAAAoCw5ylGykq3C7oSCBO08uVOHXQ/rpPdJZbllOTVHIzWyG3ab+3i7ya3sgYAajo9t1FIeHh4KCQmx+nJ1dVV0dLSlKjw6OlqHDh3SAw88IIPBIIPBoA0bNmjcuHFKT0+3nJsxY4YkKScnR1OnTlVYWJi8vb3Vo0cPbdiwwWret99+W02bNlX9+vV1ww036Pjx46WuMyEhwVKp/s477+iqq65Ss2bN1KFDB8XGxmrHjh0l7gkKClJoaKiuvPJKTZ8+Xbt379bff/9ted/X11chISFq2rSprrzySi1atEhPPvmkpk+frr1795a6nvr16yskJEQtWrTQjBkzdNFFF+mzzz6TJD3yyCNq3bq16tevrxYtWujJJ59UXl6e5d4ZM2aoU6dOevPNN9W8eXN5enpKklavXq0rrrhCDRo0UKNGjXTdddfpn3/+sdx38OBBGQwGffjhh4qKipKXl5e6deumv/76S9u3b1fXrl3l4+OjQYMG6ejRo5b7NmzYoO7du8vb21sNGjTQ5ZdfbqmSBwAAAAAAAAAAtZdRRiUrWdu0TR/pI83XfE3WZI3QCHVXd4UoRJ7yVEu1VLSiNVqj9bge1xsub+jHRj8qsUFimYG4t7zVTu00QAN0h+7QTM3UW3pLa7VWe7VXp3Vax3RMv+pXrdIqvaJX9Ige0UiN1BW6Qs3UjEAcdUa1Vopv2rRJL774on7++WelpKTok08+0bBhwyzvm0wmPfXUU1q8eLFOnTqlyy+/XAsXLtRFF11UfYuuReLj49WxY0fdddddGj9+vCQpICBAcXFxVgGyj4+PJGnixInavXu3VqxYoSZNmuiTTz7RNddco99//10XXXSRfvzxR91xxx2aM2eOhg0bptWrV+upp54qdQ0ff/yx8vLy9PDDD9t832AovX+El5eXpMKq7NLExsZq1qxZWrVqld257I1vHtvX11dvv/22mjRpot9//13jx4+Xr6+v1Xh///23Pv74Y8XHx1sq10+fPq0pU6aoQ4cOysrK0vTp03XDDTdo586dcnE597mTp556SnFxcWratKluv/123XrrrfL19dWCBQtUv3593XTTTZo+fboWLlyo/Px8DRs2TOPHj9fy5cuVm5urn376yfL9OnjwoJo3b67169crOjq63M8LAAAAAAAAAACqlkkmndCJEtuZFz1OVrLylV/xSXIlJUlKkJQoDe8+XP3b9Leq8m6gBvTxBv5VraH46dOn1bFjR91+++0aPnx4ifdfeOEFvfzyy3rnnXfUvHlzPfnkkxo4cKB2795tqdK9UH3xxReWMFuSBg0apI8++sjqmoCAALm6uloqq838/f1lMBisziUkJGjJkiVKSEhQkyZNJElTp07V6tWrtWTJEs2ePVsLFizQNddcYwmJW7dura1bt2r16tV21/nXX3/Jz8/Paq6PP/5YY8aMsRz/8MMPat++fYl7U1JSNHfuXIWFhalNmzalfj8CAgIUFBSkgwcPlnqdmdFo1PLly/Xbb7/prrvukiQ98cQTlvcjIyM1depUrVixwioUz83N1dKlSxUYGGg5N2LECKux33rrLQUGBmr37t269NJLLeenTp2qgQMHSioM8UeOHKl169bp8ssvlyTdcccdevvttyVJGRkZSk9P13XXXaeWLVtKktq1a2cZy83NTW3atFH9+vXL9bwAAAAAAAAAANQ2RqNRmzdvVkpKikJDQxUVFVUj2shmKctuH2/zj2xlV3h8gwxWfbzDC8K15OklSv89XUpUYRCeJsn07/UGg7aHb9eHBz6sEd8foCaq1lB80KBBGjRokM33TCaT4uLi9MQTT2jo0KGSpKVLlyo4OFiffvqpbrnllvO51Bqnb9++WrhwoeXY29vbqfF+//13GY1GtW7d2up8Tk6OGjVqJEnas2ePbrjhBqv3e/XqVWooLpWsBh84cKB27typ5ORkRUdHy2g0Wr0fHh4uk8mk7OxsdezYUR9//HG5enebTKYyK89fe+01vfnmm8rNzZWrq6seeOAB3XvvvZKkDz74QC+//LL++ecfZWVlKT8/X35+flb3N2vWzCoQl6R9+/Zp+vTp+vHHH3Xs2DEVFBRIKvygQdFQvEOHDpbXwcHBkmT1YYDg4GClpaVJKgz5x44dq4EDB+rqq69W//79ddNNNyk0NFSSFBYWpj///LPM7wkAAAAAAAAAALVRfHy8YmNjlZSUZDkXHh6uBQsW2Cy0rCy5yi3Rx7t4+H1SJ52aI0ABZfbxdte5XGTDpg2KmxlndzyTyaTExERt3ryZ3WUBO6o1FC/NgQMHlJqaqv79+1vO+fv7q0ePHvrhhx/shuI5OTnKycmxHGdkZFT5WquDt7e3WrVqVWnjZWVlydXVVT///HOJTxEVrUh31EUXXaT09HSlpqZaqsV9fHzUqlUr1atn+1+/zZs3y8/PT0FBQfL19S3XPMePH9fRo0fVvHnzUq8bNWqUHn/8cXl5eSk0NNSyvfkPP/ygUaNGaebMmRo4cKD8/f21YsUKzZs3z+p+Wx8+GDJkiJo1a6bFixerSZMmKigo0KWXXlpiy3c3t3N9N8zhffFz5kBdkpYsWaJJkyZp9erV+uCDD/TEE09o7dq16tmzZ7m+JwAAAAAAAAAA1Ebx8fGKiYmRyWSyOp+cnKyYmBitXLmyQsF4gQp0REeswu7iwXeqUmWSqezB7Kiv+nbD7qZqqnCFy1uOFTqmpKRU6nXAhajGhuKpqamSzlXUmgUHB1ves2XOnDmaOXNmla6tNnF3dy9RiW3rXOfOnWU0GpWWlqaoqCibY7Vr104//vij1blt27aVOn9MTIweffRRPf/883rppZfKtebmzZurQYMG5brWbMGCBXJxcbHqSW+Lv7+/zQ8TbN26Vc2aNdPjjz9uOXfo0KEy5z1+/Lj27t2rxYsXW75v33//vUNrL03nzp3VuXNnTZs2Tb169dKyZcsIxQEAAAAAAAAAdtXULcfLy2g0KjY2tkQgLp3bMXby5MkaOnSo1XOZZNJJnbQZdhft452nvAqvrZ7qKVzhpVZ5N1TDSu/jbd5FtrKuAy5ENTYUr6hp06ZpypQpluOMjAxFRERU44qqV2RkpDZt2qRbbrlFHh4eaty4sSIjI5WVlaV169apY8eOql+/vlq3bq1Ro0Zp9OjRmjdvnjp37qyjR49q3bp16tChg6699lpNmjRJl19+uebOnauhQ4dqzZo1ZW6d3rRpU82bN0+xsbE6ceKExo4dq+bNm+vEiRN67733JMnh34wzMzOVmpqqvLw8HThwQO+9957efPNNzZkzp8LV8xdddJESEhK0YsUKdevWTV9++aU++eSTMu9r2LChGjVqpEWLFik0NFQJCQl69NFHK7SGog4cOKBFixbp+uuvV5MmTbR3717t27dPo0ePllT4abh+/fpp6dKl6t69u9PzAQAAAAAAAABqv+racrwybd682Wr9FvUlRUimCJMSIxJ1Z8KdcmnuYhV8O9vHO0QhlnDbVvAdrGC5yKXiD1dBUVFRCg8PV3Jyss0PCxgMBoWHh9stegRQg0Nx81bbR44csfpky5EjR9SpUye793l4eMjDw6Oql1drPP3007r77rvVsmVL5eTkyGQyqXfv3rrnnnt088036/jx43rqqac0Y8YMLVmyRM8884wefPBBJScnq3HjxurZs6euu+46SVLPnj21ePFiPfXUU5o+fbr69++vJ554QrNmzSp1Dffff7/atWun+fPnKyYmRhkZGWrUqJGlH3nRvtrlMX36dE2fPl3u7u4KCQlRz549tW7dOvXt27fC36frr79eDzzwgCZOnKicnBxde+21evLJJzVjxoxS73NxcdGKFSs0adIkXXrppWrTpo1efvllp3t21K9fX3/++afeeecdHT9+XKGhoZowYYLuvvtuSVJeXp727t2r7OyK/wYPAAAAAAAAAKg7qmrL8fMhT3mWPt4r3VdKj0iK+Per6b//bGR9z9t626E5GqphiaC76HGYwqz6eNckrq6uWrBggWJiYmQwGKx+js3tWuPi4mrVjgDA+WYw2fpISTUwGAz65JNPLNtfm0wmNWnSRFOnTtWDDz4oqbDqOygoSG+//bbdnuLFZWRkyN/fX+np6fLz87N6Lzs7W3v27FG7du1Uv379Sn0eoC4w/xrZu3ev0tLSNHr0aAUEBFT3sgAAAAAAAAAARRiNRkVGRtqusNa5SuIDBw6c9+C0QAVKU1qJ3t1Fj1OU4lQfby952d3O3PzDRz6V+FTVw9ZOABEREYqLi6uxH3gAqlJpOXBx1VopnpWVpb///ttyfODAAe3cuVMBAQFq2rSpJk+erGeeeUYXXXSRmjdvrieffFJNmjQps280AAAAAAAAAADAhcLuluP/MplMSkxM1ObNm53e6dRqXJl0SqdsBt3m4yQlOdXHW3mSkiUlSkqQlCQ1yGygJTOXKNI1UhGKUIACKr2Pd000fPhwDR06tFb3jAeqS7WG4jt27LDa8trcC3zMmDF6++239fDDD+v06dO66667dOrUKV1xxRVavXq1PD09q2vJAAAAAAAAAADgAmU0GmtkIJmSklKp15md0ZkSYXfx4DtLWRVZskWwgktUeR/+8bDmTZ5XGISnSCoovNa8Vfj/rfw/DXMd5tS8tZWrq2ulfrABuFBUaygeHR1dordFUQaDQU8//bSefvrp87gqAAAAAAAAAABQk9SEMNrW1tXh4eFasGBBtW9dHRoa6vB1ecrTYR0utcr7uI47ta4GamBzS/Oifbw95FHyxh5S74d6F36/C6y/32wVDqAiqjUUBwAAAAAAAAAAtUd1hNM1IYyOj49XTExMiUK/5ORkxcTEaOXKldUa1EZFRSk8PFzJycmFazRICpQUIalp4ZdvO1+9euWrmqZplj7eBeYS7ArwlKfdsNv8w1e+FR6frcIBVCZCcQAAAAAAAAAAUKbqCKdrQhhtNBoVGxtrc+dbk8kkg8GgyZMna+jQoectsE1XuvWW5q4Javl9SyXtTyoMwcOl4gXYmcrUSq0s1/iuclWYwkqt8m6kRlXex5utwgFUFodD8V9++UVubm5q3769JGnVqlVasmSJLr74Ys2YMUPu7u6VvkgAAAAAAAAAAGDb+ajero5wuqaE0Zs3b7b6IICttSQmJmrz5s2VEuCe0RklKcnmdubm15nKLHljs3+/yiFIQSWquosehypUrqIiG0Dd4XAofvfdd+vRRx9V+/bttX//ft1yyy264YYb9NFHHyk7O1txcXFVsEzUJq+++qpefPFFpaamqmPHjvrvf/+r7t27273+jz/+0PTp0/Xzzz/r0KFDeumllzR58mS71z/33HOaNm2aYmNj+fcNAAAAAAAAwAXtfFRvV1c4fb7DaHtSUlIq7bp85Vv18S4edicoQcd0zKn1+pv8FXA6QH4ZfmqqpuoW0k3NXJpZgu8whclTnk7NAQC1jcOh+F9//aVOnTpJkj766CNdeeWVWrZsmbZs2aJbbrmFkPIC98EHH2jKlCl6/fXX1aNHD8XFxWngwIHau3evgoKCbN6TnZ2tFi1a6MYbb9QDDzxQ6vjbt2/XG2+8oQ4dOlTF8gEAAAAAAACg1jhf1dvVFU5XZhjtjNDQ0HJdFxIaojSllQi6ix4f1mGn+nh7yKPMPt5+Bj/JR4VfAABJFQjFTSaTCgoK/4P97bff6rrrrpMkRURE6Ngx5z69hPPrjz/+0COPPKJNmzbJZDKpU6dOevvtt9WyZcsKjzl//nyNHz9e48aNkyS9/vrr+vLLL/XWW2/p0UcftXlPt27d1K1bN0mye40kZWVladSoUVq8eLGeeeaZCq8RAAAAAAAAAGq781m9XV3hdHnD6PJeV1FRUVEKDw9XUkaSFKFzX03Pva7XvJ4GRQ5SjnIqPI+LXMrs491Yjau8jzcA1EUOh+Jdu3bVM888o/79+2vjxo1auHChJOnAgQMKDg6u9AWiaiQnJ+vKK69UdHS0vvvuO/n5+WnLli3Kz8+XJG3YsEF9+/bVgQMHFBkZWa4xc3Nz9fPPP2vatGmWcy4uLurfv79++OEHp9c8YcIEXXvtterfvz+hOAAAAAAAAIAL2vms3q6ucNocRicnJ9sM/w0Gg8LDwxUVFeX0XGd1VklKsrmdeaJrok7sPyG52b8//98fpQlUYJl9vOs5HtsAAMrB4f+6xsXFadSoUfr000/1+OOPq1WrVpKklStXqnfv3pW+QFSNV199Vf7+/lqxYoXc3Ap/J2/durXl/fr166tNmzaW98rj2LFjMhqNJT4cERwcrD///NOp9a5YsUK//PKLtm/f7tQ4AAAAAAAAAHC+GY1Gbd68WSkpKQoNDVVUVFStqt4+n+F0Ua6urlqwYIFiYmJkMBis5jYYCqul4+LiyvxeGmVUilJKht1FXh/V0dIXU8ZflfvK1+6W5k3VVOEKp483AFQjh0PxDh066Pfffy9x/sUXX3T6N/Gaoqu6KlWp53XOEIVoh3act/l27typqKgou6F39+7dSw2yN2/erEGDBlmO33jjDfXt27fS1ylJiYmJio2N1dq1a+XpyR8aAAAAAAAAANQe8fHxio2NtarqDg8P14IFC5zq930+q7crK5yuiOHDh2vlypU2v4dxcXG6YfgNOqqjdsNucx9vo4wVXoOHPBSu8MJwuyBcpkSTPI546CLPi3TNJdco0jVS/vKvjMcFAFSRCu3DcerUKa1cuVL//POPHnroIQUEBGj37t0KDg5WWFhYZa/xvEtVqpKVXN3LqFJeXl5O3d+1a1ft3LnTchwcHCwPDw+5urrqyJEjVtceOXJEISEhFZ7r559/Vlpamrp06WI5ZzQatWnTJr3yyivKycmpMx/IAAAAAAAAAFB3xMfHKyYmpkR1dXJysmJiYrRy5coKB+Pnu3q7rHDamYC/NJnKVJvhbfT60Ne1/u/12p+3X9mNs5UbnKtHDY9qlEbprM5WeHwXuaiJmtis8DYfByrwXB9vF0nN/v0CANQaDofiv/32m/r166cGDRro4MGDGj9+vAICAhQfH6+EhAQtXbq0KtZ5XoWo4gFubZmzQ4cOeuedd5SXl+fQFulmXl5elq3zi7rsssu0bt06DRs2TJJUUFCgdevWaeLEiRVea79+/UrsTjBu3Di1bdtWjzzyCIE4AAAAAAAAgBrHaDQqNjbWZmBtMplkMBg0efJkDR06tEJ/x1kd1dvDhw/X0KFDK20r+Bzl2OzjXfQ4XemFF7tKauP4HI3V2G7YHaEINVET+ngDwAXA4f/ST5kyRePGjdMLL7wgX19fy/nBgwfr1ltvrdTFVZfzuY15dZk4caL++9//6pZbbtG0adPk7++vbdu2qXv37mrTpo1++uknjR49WuvWrXOo+n/KlCkaM2aMunbtqu7duysuLk6nT5/WuHHjLNeMHj1aYWFhmjNnjiQpNzdXu3fvtrxOTk7Wzp075ePjo1atWsnX11eXXnqp1Tze3t5q1KhRifMAAAAAAAAAUBNs3rzZqqK6OJPJpMTERG3evFnR0dEVmqM6qrddXV3LtV6jjEpVqt2wO1GJOqIjZY5TGh/5lNnH20vO7ZoKAKgbHA7Ft2/frjfeeKPE+bCwMKWmnt8+3Ki4Ro0a6bvvvtNDDz2kPn36yNXVVZ06ddLll18uScrOztbevXuVl5fn0Lg333yzjh49qunTpys1NVWdOnXS6tWrFRwcbLkmISFBLi4uluPDhw+rc+fOluO5c+dq7ty56tOnjzZs2ODcgwIAAAAAAABANUhJSanU6+yp7Ort8jDJpOM6bjPoNh8f1mHlK7/Cc7jLXeEKtxl2m1/7y//ctuYAAJTC4VDcw8NDGRkZJc7/9ddfCgwMrJRF4fzo0KGD1qxZY/O96Ohom9v6lMfEiRNL3S69eNAdGRnp8FyE5QAAAAAAAABqstDQ0Eq9rjTlrd4uryxllQi7iwffZ3SmwuMbZLDq420r+A5UoFzkUvZgAACUg8Oh+PXXX6+nn35aH374oaTC3iQJCQl65JFHNGLEiEpfIAAAAAAAAAAAtU1UVJTCw8OVnJxssyjIYDAoPDxcUVFR53Vducq19PG2F3yf0imn5mikRmX28XaTW+U8EAAA5eBwKD5v3jzFxMQoKChIZ86cUZ8+fZSamqpevXrp2WefrYo1AgAAAAAAAABQq7i6umrBggWKiYmRwWCwCsYNhsItv+Pi4ip1m/MCFShVqaVWeafKuTao3vK2u525+Ud91a+kJwIAoHI4HIr7+/tr7dq1+v777/Xbb78pKytLXbp0Uf/+/atifQAAAAAAAAAA1ErDhw/XypUrFRsbq6SkJMv58PBwxcXFafjw4eUeyySTTuhEid7dRV8nK9mpPt5uciuzj3cDNaCPNwCg1nE4FDe74oordMUVV1TmWgAAAAAAAAAAqFZGo1GbN29WSkqKQkNDFRUV5VQ19/DhwzV06NAyxzyt0zZ7dxc9zlZ2hddhkEEhCim1yjtYwfTxBgDUSeUKxV9++eVyDzhp0qQKLwbnz4YNG9S3b1+dPHlSDRo0qO7lAAAAAAAAAEC1i4+Pt1nVvWDBAoequoszuhrVLLqZXOSiRCXqBb1QIvg+qZNOrT1AATbD7qJ9vN3l7tQcAADUVuUKxV966aVyDWYwGAjFUaqEhATde++9Wr9+vXx8fDRmzBjNmTNH9epVeNMCAAAAAAAAAHBafHy8YmJirHp/S1JycrJiYmK0cuVKm8F4gQp0REdKrfJOVapMMpW4t7zqq36Jqu7ix97yrvD4AADUdeVKIg8cOFDV68AFwGg06tprr1VISIi2bt2qlJQUjR49Wm5ubpo9e3Z1Lw8AAAAAAADABcpoNCo2NrZEIC5JJn+T1Ey6+/O7lTIsRUkuSVbBd5KSlKe8Cs9dT/UsfbztVXk3VEP6eAMA4ATKc2Hx8ccfa/r06fr7778VGhqq+++/Xw8++KDl/ZycHE2fPl3Lli1TWlqaIiIiNG3aNN1xxx3lGv+bb77R7t279e233yo4OFidOnXSrFmz9Mgjj2jGjBlyd2frHgAAAAAAAOBCUVm9u50ZJ1vZSlSivvjfF0q6OkmKUOFXU5177VN47TEd00RNdHh9xft4Fw++gxUsV1W8ZzkAAChbuULxKVOmaNasWfL29taUKVNKvXb+/PmVsjCcXz///LNuuukmzZgxQzfffLO2bt2q++67T40aNdLYsWMlSaNHj9YPP/ygl19+WR07dtSBAwd07NgxyxiRkZEaO3asZsyYYXOOH374Qe3bt1dwcLDl3MCBA3Xvvffqjz/+UOfOnavyEQEAAAAAAADUEJXVu7u0cYYMH6JkJdvcztz847iOF97UUdJbjj9HQzW0u515UzVVmMLo4w0AQA1QrlD8119/VV5enuU16p758+erX79+evLJJyVJrVu31u7du/Xiiy9q7Nix+uuvv/Thhx9q7dq16t+/vySpRYsWVmO0bNlSjRs3tjtHamqqVSAuyXKcmppamY8DAAAAAAAAoAo5U51d0d7dRRWoQEu+XKI7n7tT6iZphCyV3UlNkzQiYoQMJoNMhor38Va2pERJCf/+M1GaevNUXd32akvw7WMuIwcAADVauULx9evX23yNumPPnj0aOnSo1bnLL79ccXFxMhqN2rlzp1xdXdWnTx+7Y6xbt66qlwkAAAAAAACgEjgbale0yrvU3t0mkwwGg2Inx6rP0D5KdrVf5Z1kSlLutbnStfbnMsl+IF5P9RSmMEu4HV4QrsXTF+vU76ekQyoMwU+cu95gMCg8PFzPPfEcW50DAFALOdxT/Pbbb9eCBQvk6+trdf706dO6//779dZbFdhjxg6j0agZM2bovffeU2pqqpo0aaKxY8fqiSeekMFgqLR5UDYvLy+nxwgJCdFPP/1kde7IkSOW9wAAAAAAAABUPWdCbWervDdv3qykY0nSRSrZuztCMjU1KSkiSY1d7e9IKUkq66+HUyUlSlGRUeoS2KXE9uYhCrEOt12knl16KmZ2jCRZPZ/576Lj4uIq1PMcAABUP4dD8XfeeUfPPfdciVD8zJkzWrp0aaWG4s8//7wWLlyod955R5dccol27NihcePGyd/fX5MmTaq0eSC1a9dOW7ZssTq3ZcsWtW7dWq6urmrfvr0KCgq0ceNGy/bpjurVq5eeffZZpaWlKSgoSJK0du1a+fn56eKLL3b6GQAAAAAAAIDaxpmK7Yrc60yoXa4q7wdj1XloZ6sq76IV3n/3/Fs6U67Hs6uBGsj3lK8StySW2N5cCZKSJeUWXnvvsns1cuTIco07fPhwrVy50uYHBuLi4hzqdQ4AAGqWcofiGRkZMplMMplMyszMlKenp+U9o9Gor776yhJ0VpatW7dq6NChuvbawj1wIiMjtXz58hLVxnDegw8+qG7dumnWrFm6+eab9cMPP+iVV17Ra6+9Jqnwez9mzBjdfvvtevnll9WxY0cdOnRIaWlpuummmyRJ/fr10w033KCJEyfanGPAgAG6+OKLddttt+mFF15QamqqnnjiCU2YMEEeHh7n7VkBAAAAAACAmsDZim1H7y1PqD158mQNHTrUZri+afMmJeUmSZfJfpV3aJJauLawv3BP+29JKgzME6UugV3UoWEHS2V30SpvX/lqw84N6ntd3zIGk0JDQ8u8pqjhw4dr6NChFf6gAgAAqJnKHYo3aNBABoNBBoNBrVu3LvG+wWDQzJkzK3VxvXv31qJFi/TXX3+pdevW2rVrl77//nvNnz+/UueB1KVLF3344YeaPn26Zs2apdDQUD399NMaO3as5ZqFCxfqscce03333afjx4+radOmeuyxxyzv//PPPzp27JjdOVxdXfXFF1/o3nvvVa9eveTt7a0xY8bo6aefrspHAwAAAAAAAM4LRyq3nanYrui9mzdvtgrRizP5mpTol6gX/3hRDTs0LFHlnRCVIB0p67tgn6tcFWYKU+r2VOX+k2td4W2u8j4hRYRH6KcDP5XauzsqKkrh4eFKTk62GfKbe4BHRUU5vk5XV0VHRzt8HwAAqLkMJlt/YrBh48aNMplMuuqqq/Txxx8rICDA8p67u7uaNWumJk2aVOriCgoK9Nhjj+mFF16Qq6urjEajnn32WU2bNs3uPTk5OcrJybEcZ2RkKCIiQunp6fLz87O6Njs7W3v27FG7du1Uv379Sl07UBeYf43s3btXaWlpGj16tNWvfQAAAAAAABRypHLbaDQqMjLSbkBtDnQPHDhQIlSv6L1ndEYLP1+oB196sGSVt/m1n80hy++ICvt4N4tS58DOJSq8QxUqV7laQn3Jdu/usvqSm1XWOAAAoHbKyMiQv7+/zRy4uHJXivfp00eSdODAAUVERMjFxcW5VZbDhx9+qPfff1/Lli3TJZdcop07d2ry5Mlq0qSJxowZY/OeOXPmVHrFOgAAAAAAAIALS1VWfZdZsW0yKTExUZs3by5RsWzzXldJoZKaSqYIkxIjEnVjyo0qCC+wVHkf1VFpiAq/KsBPfmpqaqq/1/+ts3+flQ7Juso7STLkFgby6w+sL7XKu7J6d9MDHAAAlFe5K8WLOnXqlH766SelpaWpoKDA6r3Ro0dX2uIiIiL06KOPasKECZZzzzzzjN577z39+eefNu+hUhyoPFSKAwAAAACAusLRkLsqq76XL1+uW2+9tcw1L1u2TLeMvEVHddQSbn/y8yda+t1S6yrvJlIpGXTZzsoSbtc/Xl+TR0xWM5dmVlXefv+WkVdmdbYjPyfnYxwAAFC7VEmluNnnn3+uUaNGKSsrS35+fpY/7EiFf/CpzFA8Ozu7REW6q6triSC+KA8PD3l4eFTaGgAAAAAAAADUbo6E3Oej6js0NPTcBb4quZ35v8cP9XxIt+t2ndXZc9df9u9XObnIRWEKs4TbZ/46o89e+excD+8EScfOhdrvrnxXw13sh9qVWZ1dWb276QEOAADK4nAo/uCDD+r222/X7Nmzq7y6esiQIXr22WfVtGlTXXLJJfr11181f/583X777VU6LwAAAAAAAICarbzVwY6E3EajUbGxsSWulQrDbYPBoMmTJ2vo0KGWuVJSUuwv0kNSuKQI6QOPD/S9vleiEpXQJ0H19tRTfmi+5G//9mQll/l9UJrOBdz/bmPe6HQjffLyJ4p0jVSoQlWv6F8Dt5bio21/SKC8ofbw4cM1dOhQqrMBAECt4fD26d7e3vr999/VokWLqlqTRWZmpp588kl98sknSktLU5MmTTRy5EhNnz5d7u7u5RqjtLJ5tk+vOpGRkZo8ebImT55c3UuBE9g+HQAAAAAA1ETlrfx2dGvzDRs2qG/fvmXOv379ekVFRylFKVr1yypNfH6i9Xbm5tfBTj2mfOVrtYW5+fXBzQc1444ZUpKkM9bPI5VvC3O2HAcAALVdlW6fPnDgQO3YseO8hOK+vr6Ki4tTXFxclc+Fmi8+Pl4LFy7Uzp07lZOTo0suuUQzZszQwIEDy3X/33//rc6dO8vV1VWnTp2ynM/Ly9OcOXP0zjvvKDk5WW3atNHzzz+va665poqeBAAAAAAAABXlSOW3o1ubW1V9N1aJ7czNr2M6x+iUTskoo9RF0geOP4e73BWQFaCTv51Uzr4cS0/vxmcb6/HbHte4/uPkb6+MPEpq/1x7p6q92XIcAABcSBwOxa+99lo99NBD2r17t9q3by83Nzer96+//vpKWxxQ1KZNm3T11Vdr9uzZatCggZYsWaIhQ4boxx9/VOfOnUu9Ny8vTyNHjlRUVJS2bt1q9d4TTzyh9957T4sXL1bbtm21Zs0a3XDDDdq6dWuZ4wIAAAAAAKDylFW97Oj25na3NveRVdj9cuOX9Y7e0a5rdkl7/z3vZX+dx3W8jAeRlCLLlubXd75e/Vr3s1R8RyhCgQqUi4+LjD2M2py7WSnuKQq9ovwV22xhDgAAUH4Oh+Ljx4+XJD399NMl3jMYDDIajc6vClXu5MmTmjhxor755htlZWUpPDxcjz32mMaNGydJSkpK0kMPPaQ1a9YoJydH7dq106uvvqoePXron3/+0ZQpU7Rt2zadPn1a7dq105w5c9S/f3+78506dUpTp07VqlWrlJOTo65du+qll15Sx44dy73m4jsGzJ49W6tWrdLnn39eZnj9xBNPqG3bturXr1+JUPzdd9/V448/rsGDB0uS7r33Xn377beaN2+e3nvvvXKvDwAAAAAAABVXni3Ry1X5fSRRK7avUFjPMP3e6Xdpmqy3NG8qqYH1fZ/ok8IXDf/9KkNjU2NFGKy3NE/5KUXvz3lfR38+WhiI50sRERGFldut7VduO1OxTbU3AABA+TgcihcUFFTFOnCePfnkk9q9e7e+/vprNW7cWH///bfOnClsQJSVlaU+ffooLCxMn332mUJCQvTLL79Yfu6zsrI0ePBgPfvss/Lw8NDSpUs1ZMgQ7d27V02bNrU534033igvLy99/fXX8vf31xtvvKF+/frpr7/+UkBAgA4ePKjmzZtr/fr15f6DfEFBgTIzM8vscf3dd9/po48+0s6dOxUfH1/i/ZycHHl6elqd8/Ly0vfff1+udQAAAAAAAMC+8vSuLu+W6MmpyVITlezdXfQ4RPqP/lM4QDtJsx1br2eep87uO2up8laiCl8nFb5e9sIyjRw6suSN3aW5K+dSuQ0AAFADORyKo25ISEhQ586d1bVrV0lSZGSk5b1ly5bp6NGj2r59uyVwbtWqleX9jh07WlV4z5o1S5988ok+++wzTZw4scRc33//vX766SelpaXJw8NDkjR37lx9+umnWrlype666y65ubmpTZs2ql+/frmfYe7cucrKytJNN91k95rjx49r7Nixeu+99+Tn52fzmoEDB2r+/Pm68sor1bJlS61bt07x8fHsegAAAAAAAFCK8obdZVV/W22JHiCrsNvU1CRFSCPDRyrUFKqkm5KkW5xYdI4s4bb5665Bd+n6ztdbKr793fz1yZ+flFi3pep7aNVUfQMAAKDqVCgUP336tDZu3KiEhATl5uZavTdp0qRKWRiq1r333qsRI0bol19+0YABAzRs2DD17t1bkrRz50517tzZbgV2VlaWZsyYoS+//FIpKSnKz8/XmTNnlJCQYPP6Xbt2KSsrS40aNbI6f+bMGf3zzz+SpLCwMP3555/lXv+yZcs0c+ZMrVq1SkFBQXavGz9+vG699VZdeeWVdq9ZsGCBxo8fr7Zt28pgMKhly5YaN26c3nrrrXKvBwAAAAAA4EJSnrC7RPW3t6QIKalpkkZ8PUI3trtRPu18tCtjl5K+TSoMwu3US+QqV4d0SDKUsqgCSSmSe6p7Ycjt0tSyvfnf6/9W3INxStmZIv27HEvI3blkyE2/bgAAgLrF4VD8119/1eDBg5Wdna3Tp08rICBAx44dU/369RUUFEQoXksMGjRIhw4d0ldffaW1a9eqX79+mjBhgubOnSsvL69S7506darWrl2ruXPnqlWrVvLy8lJMTEyJD0iYZWVlKTQ0VBs2bCjxXoMGDRxe+4oVK3TnnXfqo48+KrWPuVS4dfpnn32muXPnSirsK1VQUKB69epp0aJFuv322xUYGKhPP/1UZ8+e1fHjx9WkSRM9+uijatGihcNrAwAAAAAAqMnKU91d1jU2tzp3k5LckjTi5RGaFDFJQZcFac7pOTJ9Zjq3vXmx+ouP9FHhi3L28fbJ8VErj1aql1JPO+J3nNvW3PzPFMmQb9Dylcs1/LJiQXdf6cHtDzoUclP1DQAAUHc4HIo/8MADGjJkiF5//XX5+/tr27ZtcnNz03/+8x/FxsZWxRpRRQIDAzVmzBiNGTNGUVFReuihhzR37lx16NBBb775pk6cOGGzWnzLli0aO3asbrjhBkmFoffBgwftztOlSxelpqaqXr16Vtu0V8Ty5ct1++23a8WKFbr22mvLvP6HH36w2gZ91apVev7557V161aFhYVZXevp6amwsDDl5eXp448/LnVbdgAAAAAAgJqksrYyt3VNWESYZrw+Q+0Ht9ch4yHd9b+7ZJpnsu7jHSzJpfD6l/Vy4YvbHHiALFmH3MVfJ0qff/V5YUgdKsWHxiv2OTvbmw+3vb05ITcAAMCFy+FQfOfOnXrjjTfk4uIiV1dX5eTkqEWLFnrhhRc0ZswYu3/oRM0yffp0XXbZZbrkkkuUk5OjL774Qu3atZMkjRw5UrNnz9awYcM0Z84chYaG6tdff1WTJk3Uq1cvXXTRRYqPj9eQIUNkMBj05JNPqqCgwO5c/fv3V69evTRs2DC98MILat26tQ4fPqwvv/xSN9xwg7p27ark5GT169dPS5cuVffu3W2Os2zZMo0ZM0YLFixQjx49lJqaKkny8vKSv7+/JOmVV17RJ598onXr1kmS5ZnMduzYIRcXF1166aWWcz/++KOSk5PVqVMnJScna8aMGSooKNDDDz9c8W8wAAAAAABAJSlP5bbDW5n/Kyk5SSPGj9Bc/7k65nVMz617TrpPVn29k8OTNd5tfOENrpKmO/gAubLu410k7H5uwnO6Y8Ad6tSukw4nHy6xPkkyGAwKDw9XVFSU5RzbmwMAAMARDofibm5ucnEp/NhnUFCQEhIS1K5dO/n7+ysxMbHSF4iq4e7urmnTpungwYPy8vJSVFSUVqxYYXnvm2++0YMPPqjBgwcrPz9fF198sV599VVJ0vz583X77berd+/eaty4sR555BFlZGTYnctgMOirr77S448/rnHjxuno0aMKCQnRlVdeqeDgYElSXl6e9u7dq+zsbLvjLFq0SPn5+ZowYYImTJhgOT9mzBi9/fbbkqRjx45Z+pSX19mzZ/XEE09o//798vHx0eDBg/Xuu+9WaGt3AAAAAAAAR5UWepcVeNsLu5OTkxUTE6P3PnlPHa/rqLtX3i3TWJNV2G157S1N1dTCG3s7uPgCSakqUdU9ovsIffzSx4XHR2Tp411cj6k91Ni1sV5e8LJiYmJkMBisnsVgKGwiHhcXVyLwpvIbAAAA5WUw2fr4ZSkGDBigsWPH6tZbb9X48eP122+/adKkSXr33Xd18uRJ/fjjj1W11grJyMiQv7+/0tPT5efnZ/Vedna29uzZo3bt2ql+/frVtEKg5jL/Gtm7d6/S0tI0evRom1vqAwAAAAAA25yp8pZkM/A2B8Xvf/i+psybolS31HNBd9GwO0JSIycf4Liswu5rO1yrLxd+ea7i+7CkvJK3ffvttxo7dqySk5NLrf4+cOBAqR8AKGtLdAAAAFy4SsuBi3O4Unz27NnKzMyUJD377LMaPXq07r33Xl100UV66623KrZiAAAAAAAAoJqUFlyXFWpXVZX3iJgRatiuoUxdTSWCblNEYcX3rSG3SjFOPPhp2ezdbXVcbFO/ke+N1K5Nu8oMu6Ojo7VgwQKHqr/ZEh0AAABVxeFQvGvXrpbXQUFBWr16daUuCAAAAAAAADhfyqrULivUdrTK2xx4vxX/lh5d+KhMg00lKrxNESYpXDrpfrLiD5YnSx/vS/wv0R9f/VEy+K7A8GFhYeUOu4cPH66VK1fa/B7Zq/5mS3QAAABUBYe3T69t2D4dqDi2TwcAAAAA1GX2KrWLh73F35OkqVOnau7cubbv9TSpQYcGOuVzquR25ubXPk4uPkWlV3kfUWG/b5VvK/OwsDBJKvd2545sdV5WtT0AAABQEVW6fXrz5s0tf/i3Zf/+/Y4OCQAAAAAAAJSpotuc23pPKqwCtxUAl1ZDYnI1SU2keT/Ok+kWO1XejaVTOlXxBz0p67C7+OtkWfp4BwYG6tixY05vZV60ur082507stU51d8AAACobg6H4pMnT7Y6zsvL06+//qrVq1froYceqqx1AQAAAAAAABYV3ebc3nvjx4+3OidJMkgK0rmg21aVd4gkV6nAXIbtqGzZD7vNr0+XPYw58J4/f75uuummStvK3JHtzgm7AQAAUFtU2vbpr776qnbs2KElS5ZUxnCVpjzbp7dp00Y+Ps7uWQXUPVlZWdq7d6/+/PNPHT16lO3TAQAAAACVwtGq7lWrVlVom/MS7/mrMNxuJilcJYPvcEkeTjxYvix9vO0G3yfOXV5WlXdAQIBOnCi8wVbgvXLlSru9zZ3ZypztzgEAAFAbOLJ9eqWF4vv371enTp2UkZFRGcNVmtK+Gfn5+dq1a5fCwsIUEhJSTSsEaq7U1FQlJyfr999/16lTpwjFAQAAAABOc7TiOywsTGfPntXx48dLH9hT1hXetqq8fZ1cfKpK7+OdKpWngLx4lbdkP/SWSn5PbAXeBNkAAAC40FRpT3F7Vq5cWevCsnr16qlx48ZKTk6WJPn4+MjFxaWaVwVUv4KCAmVlZSk5OVmnTp1Sfn6+pHP/Uw4AAAAAQEXEx8fbrPhOTk7WiBEjbN6TnJwsucp20F30ONDJxZ2S/e3ME1VYAZ577nJXV1cVFBRUuMrbHGqXZ7vy8vTuZitzAAAAwD6HQ/HOnTtbBWMmk0mpqak6evSoXnvttUpd3PnQtGlTSbIE4wDOOXXqlI4cOaLs7Gy5u7urfv361b0kAAAAAEAtZTQaFRsbazNENjU2lazqLhp8N1FhMF5RZ1R6H+8kSZnnLi+69bq9Xt1TpkzR3Llz7b6/aNEiSbb7mRcNvIcPH15m6E3gDQAAADjH4VB82LBhVscuLi4KDAxUdHS02rZtW1nrOm8MBoOaNWumvLw8bd68WWfPnpWXlxcVsbigmUwm5ebmymg06uzZs8rLy9OVV14pDw9nGqsBAAAAAGo6e1twO9oDvOg9/xz7Ry7NXJTqlqqkwUm2+3h7OrHofEmHVXqV9zH7t8+cOVOLFy9WUmbJ4FoqPdTu2bMnVd4AAABALVBpPcVrKkf2kv/nn3+0ZcsWZWVl2fzUMnAh8vT0VPv27dWtWzc+LAIAAAAAdZi9Xt8jR47U8uXLbfYAz3XJ1QPzHlCqW6ol7PZu562gy4KUaEhUfmi+VPpfx5TtiEqv8k6VZHR8WHNf7wMHDkiSw6G/Gb28AQAAgOrhSA7scCienJysjz/+WH/99Zfc3d3Vpk0b3XTTTWrYsKFTi64qjnwzzPLy8lRQUFDFKwNqB3d3d8JwAAAAAKjhHK3wLn7+2LFjuummm6yLBFwlhcr2lubm10FOLjxdJau6ix4nScqxf3tZ25yXtQX6ypUrLRXdAAAAAGqXKgvFX3vtNU2ZMkW5ubmWgTMyMuTl5aU333xTI0eOlMlk0s6dO9W5c2fnnqKSVCQUBwAAAAAAqC0crfAeOXKkli1fpuSzyZZw29DMIFNYsb7eTVSBxntFnJX9sNv8OtPu3VYMBoMCAgLk5eVl9TwRERF2tzkvz3sE4gAAAEDtVSWh+JdffqmhQ4dq8uTJevDBBxUaGipJSklJ0YsvvqhXXnlF3333nV577TW1bdtW06dPd/5JKgGhOAAAAAAAqKvi4+MVExNTsg2cr2xXeJuPwyV5OTGxUSX7eBcPvo+Wf7jyVnWX1p+7In3PAQAAANReVRKKR0dH64orrtAzzzxj8/0nnnhC8+bNU0hIiDZs2KBmzZo5vvIqQCgOAAAAAADqCqPRqHXfr9PujN0yhhn17NJnddL7ZMnwu4GTE6XJdtBtPk5Rhfp4mwUEBOjEiROWY6q6AQAAADiqSkJxPz8/bd++XW3atLH5/t69e9WuXTsdPHhQTZs2dXzVVYRQHAAAAAAA1GRFq5iDQoPUKqqVDrse1qGCQ9p4YKMO5B9QdkC2Drse1gHjARUEFjg3YYbsb2du7uN91rkpyvLtt9/K1dWVqm4AAAAAFeZIDlzuzlBGo1Fubm5233dzc5OXl1elB+LJycl65JFH9PXXXys7O1utWrXSkiVL1LVr10qdBwAAAAAAoCy2AltJ5Trn4uqiNGOaPvv1M/2Z/afyQ/N1qOCQvvnzG51pdEbqLSlMkjn/dZHU0sEF5qjsPt4Zzn0PnGEwGBQeHq7o6Gi7Qberq6uio6PP78IAAAAA1GnlDsUvueQSrVq1Sg888IDN9z/99FNdcskllbYwSTp58qQuv/xy9e3bV19//bUCAwO1b98+NWzYsFLnAQAAAAAAF46KBtvHjh3TAw88YLW1d6NGjSRJx48fl3wkRUi+l/iqIKxApwNOF25lni/VO1RPCpfy3fOl4p/zt70pn42Fq3Db8tKqvI9KKteegM4prQd4afdIUlxcHJXfAAAAAM6rcofiEyZM0L333isPDw/dddddqlev8Nb8/Hy98cYbeuKJJ/Taa69V6uKef/55RUREaMmSJZZzzZs3r9Q5AAAAAABA7VSecLt3797aunVr+YNte+fcVVjF3UJStCy9u483PX6uj/e/n+HPVGaJteYrv+wHOqrSq7xTpPIM4wxXV1cZjeeahUdEROiWW27R8uXLrb5n4eHhpfYAL+0eeoMDAAAAON/K3VNckqZOnar58+fL19dXLVu2lMlk0v79+5WVlaVJkybppZdeqtTFXXzxxRo4cKCSkpK0ceNGhYWF6b777tP48ePLPQY9xQEAAAAAqH2KB94VDbeLh7w2uUgK0blwO0JS02KvQ5x8oEyVDLqLHidJOuPkHE4wV3F/8MEHCgwMLNHPu7Q+3/beozc4AAAAgKrkSA7sUCguSdu2bdPy5cu1b98+SdJFF12kkSNHqmfPnhVfsR2enp6SpClTpujGG2/U9u3bFRsbq9dff11jxoyxeU9OTo5ycnIsxxkZGYqIiCAUBwAAAACgloiPjy9RfVyucNueAJUMuoseh0lyc2LBubJf4W0+Tndi/AqwV61d2nmquAEAAADUJlUaip9P7u7u6tq1q7Zu3Wo5N2nSJG3fvl0//PCDzXtmzJihmTNnljhPKA4AAAAAQM1UtKJ43759mjFjRrl6VEuSvGW/wtv85e3E4gpUdh/vNJ2XPt72GAwGhYWF6e2331ZaWlq5qrWp4gYAAABQ29WZULxZs2a6+uqr9eabb1rOLVy4UM8884ySk5Nt3kOlOAAAAAAAtYetqnALNxVWcZdW5R3g5AKOy37YnSgpWVXex9sZ5m3PV65cSZU3AAAAgAuKI6F4vfO0pgq5/PLLtXfvXqtzf/31l5o1a2b3Hg8PD3l4eFT10gAAAAAAQAUZjUZt3LxRK9av0OLVi6UekmJUMvgOUWG/74rKku2wu2gf72wnxq8BwsPD2fYcAAAAAMpQo0PxBx54QL1799bs2bN100036aefftKiRYu0aNGi6l4aAAAAAACQSmzD3bt3b23ZukV/H/9bhqYGNerUSBsPbNSB/APKbpStZJdk/XXmLxl7G6VoSSU7oJVPrgpDbXu9vBMknXL68apFaX2/582bp8DAQLY9BwAAAAAH1Ojt0yXpiy++0LRp07Rv3z41b95cU6ZM0fjx48t9vyNl8wAAAAAAwJqt0HvdtnX6I+MP/X7qd32+83Od9D5pXeXdVM738U6V7e3MzcdHVK19vM0aNWokSTp+/Hip5yoSdNP3GwAAAADsq/Ke4vn5+dqwYYP++ecf3XrrrfL19dXhw4fl5+cnHx+fCi+8KhCKAwAAAAAuZLZC7a1bt9o97ta7mz7/5XPtydqjPzL+0Nq9a5Xhl2Hdx7uRk4s6obL7eOc5OYcDHAm2bQXYkkqE17bOEXQDAAAAQOWp0lD80KFDuuaaa5SQkKCcnBz99ddfatGihWJjY5WTk6PXX3/dqcVXNkJxAAAAAEBd4kjIvW/fPi1evPhcZbJBcgl1UUFYgaWq29DMIFO46VyVd6ic6+N9WvbDbvNxFfXxthVkm4Nos8oItgEAAAAA1c+RHNjhnuKxsbHq2rWrdu3aZfmfTUm64YYbHNrWHAAAAAAAlK1oCF4i5Fax0LeB5BLpooImBeequmfrXJV3uFTgXmA1vsmRPcjzVFjFXVqV94kKPWaZKhpuF//QQGnBdnR0dLnOAQAAAABqF4dD8c2bN2vr1q1yd3e3Oh8ZGank5ORKWxgAAAAAABe6+Ph4xcbGFobgnioMt9tI6i9L0G2MMJ6r8vaVClRQyohlSJHtsLtoH28nhi8vg8Egk8mkmTNn6qKLLnI63CbYBgAAAIALm8OheEFBgdUns82SkpLk6+tbKYsCAAAAAOBCkqc8HdZhJf7742DBQX2641P95PqTtEqFVd6NnZzkpOyH3eY+3rlOzlFJwsPDFRcXp+HDh1udJ9wGAAAAAFSEw6H4gAEDFBcXp0WLFkkq/PR2VlaWnnrqKQ0ePLjSFwgAAAAAQG1WoAId1VEdNB7Umj1r9HfO38oJypGxiVF7svYo1S1Vp7xOqcBQpATbRVJ3BybJlu3e3UVfn66kB6pCkydP1tChQ+ndDQAAAACoVAaTyeRA87DCivCBAwfKZDJp37596tq1q/bt26fGjRtr06ZNCgoKqqq1VogjDdYBAAAAAHCE0WjU11u/1h+Zf8gUbpLvxb76IfkHHSo4pMwGmUrzSNNRj6PKd82v+CT5KtnHu3jwfdzpR6lWERERNivDAQAAAACwx5Ec2OFQXJLy8/O1YsUK/fbbb8rKylKXLl00atQoeXl5VXjRVYVQHAAAAADgKKPRqM2bN+tQ2iG5NnNV4y6NteGfDfon9x9lN8pWmmea9uft10nvkzL5Ovy/1dZSZTvoNh+n6rz08a4srq6uVm3Xih9HRERo3rx5CgwMLFd/cAAAAAAAbKnyULw2IRQHAAAAAJiZw+6UlBQFNQlSs17N9PX/vtZfZ/5STlCO0jzT9Pup35VQkKD8JvlSoJMTnlLpfbyTVGP6eJdX8ZA7PDxc48eP10UXXaTQ0FD17t1bW7dutQTexY8JwAEAAAAAlaHSQ/HPPvus3JNff/315b72fCAUBwAAAIALQ9HAOzAoUKfcTmlv9l7lN8nXUY+j2pa8Tf9L/59ygnOkCElNJDmTzZ5R2X28s5x7pqpQViW3o6E3ITcAAAAAoDpUeiju4uJSrokNBoPV/zjXBITiAAAAAFC3GI1Grd66Wn9k/iFjE6PSPNK0NXGrdp3cpZzAfwPvCEmeTkySL+mwSu/jfcy556gszobaVHYDAAAAAGojtk8vglAcAAAAAGoGq63Lg4IkSWlpaSVe57rk6s+sP1UQVqA0jzQdMB4o7OPtUdjH+4T3CZn8nPxf2SMqvco7VVLN+sy3RVhYmO666y62KwcAAAAAXNAIxYsgFAcAAACAqldW4P3FF1/o/fff19HjR6VQSU11rqK7+OsgJxeTrpJBd9HjJEk5Ts5RTWbOnKnHH3+ckBsAAAAAcMFzJAeuV5EJ1q1bp5deekl79uyRJLVr106TJ09W//79KzIcAAAAAKCGM4feycnJOnr0qAIDAxUSEiKpSOB99KjUWLbD7hhJD6iwj3eF/k/0X2dlv8Lb/JXhxPg1VEREhOLi4jR8+PDqXgoAAAAAALWOw38V8dprryk2NlYxMTGKjY2VJG3btk2DBw/WSy+9pAkTJlT6IgEAAAAAVafcVd5njloH3ebg+zpJ9/577OXMQlTYx7u0Ku+jToxfwxTv/V1U8T7gbIEOAAAAAEDFObx9enh4uB599FFNnDjR6vyrr76q2bNnKzk5uVIX6Cy2TwcAAABwoSst9N68ebP++9//6kTWCSlcJSu8ix43cHIhR1Wyd3fR1ymqsX28y8uRoLto7++iPy+E4AAAAAAAlK1Ke4r7+Pho586datWqldX5ffv2qXPnzsrKynJ8xVWIUBwAAADAhcDe9uabN2/Wy6++rJPuJ+2H3RGSQpxcQIbsh93mPt5nnZyjGpUWdgcGBmrUqFEaOnQoQTcAAAAAAOdJlfYUv/766/XJJ5/ooYcesjq/atUqXXfddY4OBwAAAACQ7Wru1NTUEv27i58zyaSV61fqg60f6JTPqXNBt0GSu6Rxkh6X5ObE4nJUsm938eC7lvbxroqwOzo6+nwsHQAAAAAAlJPDofjFF1+sZ599Vhs2bFCvXr0kFfYU37Jlix588EG9/PLLlmsnTZpUeSsFAAAAgFrKXhW3VBhyr1u3TqtWrdKJEydK3uytklXdTSUF69x25/2cWZwKty0vq4+3Q3uM1WyE3QAAAAAAXFgc3j69efPm5RvYYND+/fsrtKjKxPbpAAAAAKpKadXdjRo10vHjx3Xw4EEtW7ZMR48eLTmAm84F27aC7whJDZ1c5DHZ7+OdKOmwpHwn56hBzIG3eSczc+9082u2MQcAAAAAoG6o0u3TDxw4UOGFAQAAAMD5Up7Auvg/bW1Tbu+9Uqu7pcLty0NUGGz3ke3gO9TJh8xU2X28zzg5Rw1lK/wm8AYAAAAAALY4HIoDAAAAQE1SfGvyRo0aaf369aUH1pUhQIXBdm/ZrvIOk3N9vHNVGGqXVuV9yonxq0lZldzleU34DQAAAAAAHOFwKG4ymbRy5UqtX79eaWlpKigosHo/Pj6+0hYHAAAAAGbnNfyur5JBd/FjbyfGL9C5Pt72qrzTVOv6eLN1OQAAAAAAqIkcDsUnT56sN954Q3379lVwcLAMBkNVrAsAAADABcBW0G1rW/NS+3I7yk2FVdy2gm7zcYCTcxxXyaruoseHJeU5OUc1CAwM1MiRI9W8eXOr7eQJvAEAAAAAQE3mcCj+7rvvKj4+XoMHD66K9QAAAACog85blbdBUrBKr/IOkeTixBxZsh92J6hwy/NsJ8avRgEBAbr//vsVFRVFlTcAAAAAAKgzHA7F/f391aJFi6pYCwAAAIBaqrSK70oNvxuoZO/uosF3uCR3J8bPlZSs0qu8TzoxfjUj9AYAAAAAABcih0PxGTNmaObMmXrrrbfk5eVVFWsCAAAAUIMYjUZt2LBBGzZsUEFBgQICAhQUFFT5obeXbIfdRV/7ODF+gaRU2Q66zcdHVOv6eBfF9uYAAAAAAAAlORyK33TTTVq+fLmCgoIUGRkpNzc3q/d/+eWXSltccc8995ymTZum2NhYxcXFVdk8AAAAQF1W3j7e5sD7o48+UlZWlnOT1pN1H29bVd6NnZtCJ2R7O3Pz62TVij7eRau5U1NTdfToUauA29Y5Qm8AAAAAAAD7HA7Fx4wZo59//ln/+c9/FBwcLIPBUBXrKmH79u1644031KFDh/MyHwAAAFCb2Qq+jx49qi1btmjt2rXKzMysvMkMkoJUeh/vUDnXx/u0yu7jfdqJ8c8De1XcRUPusLAwgm0AAAAAAIBK5nAo/uWXX2rNmjW64oorqmI9NmVlZWnUqFFavHixnnnmmfM2LwAAAFAT2Qu8jx8/LklKTk7W559/Xjk9vCXJX/bDbnMfbw8nxs9TYRV3aVXelfQoVcVWdbe54p6wGwAAAAAAoHo5HIpHRETIz8+vKtZi14QJE3Tttdeqf//+ZYbiOTk5ysnJsRxnZGRU9fIAAACACikr3C7eu7tKKr09ZX87c/Oxr5NzpKj0Ku8jKuz3XUVKC6yL/9NWBXdp7xF4AwAAAAAA1HwOh+Lz5s3Tww8/rNdff12RkZFVsCRrK1as0C+//KLt27eX6/o5c+Zo5syZVbwqAAAAwL6iYfeRI0dKhNxVto15ca6Smsg67C4efAc6OcdJlQy6ix4nS8p1co5yatiwoYYOHaqrrrqKCm0AAAAAAABYGEwmk8mRGxo2bKjs7Gzl5+erfv36cnNzs3q/0rZolJSYmKiuXbtq7dq1ll7i0dHR6tSpk+Li4mzeY6tSPCIiQunp6ee9wh0AAAAXDqPRqA0bNuj111/XmjVrqjbsNjP38S4edhft4+1MFnxG9rczN39lOTF+BRTty8325AAAAAAAABeujIwM+fv7lysHdrhS3F4YXRV+/vlnpaWlqUuXLpZzRqNRmzZt0iuvvKKcnJwSf+nl4eEhDw9nGhoCAAAA5VM0CP/iiy909uzZyhvcT/bDbvOXM3/szVfZfbyPOzG+g4pXedva1pzgGwAAAAAAABXhcKX4+ZSZmalDhw5ZnRs3bpzatm2rRx55RJdeemmZYzjyCQEAAADAHnMAvmHDBhUUFCg5OVkff/yxsrIqUCrtKSlcpVd5O/tH1yMqvco7RVXax9setjgHAAAAAABAZajSSvGizp49q9xc6waBlRk8+/r6lgi+vb291ahRo3IF4gAAAIAt9np+N2jQQKdOnZJUsv/3V199Vb5KcFcVbltevKq76HGQkw9wSrbD7qJ9vHPs3Vy17FV8E34DAAAAAACgujgcip8+fVqPPPKIPvzwQ8tfHhZlNBorZWEAAACAs4pXdwcEBOjQoUNaunSp0tPTKzZooOxvZ95UUhM518f7rEpWdRc/Pg/tym3x9fXVgAED1KtXLwUFBRF6AwAAAAAAoFZwOBR/+OGHtX79ei1cuFC33XabXn31VSUnJ+uNN97Qc889VxVrtLJhw4YqnwMAAAC1Q2kV39u2bSt/dbeZr+yH3REq3PLcy4kF50s6rNKrvI85Mb6DvL29deONN9rt403gDQAAAAAAgLrA4VD8888/19KlSxUdHa1x48YpKipKrVq1UrNmzfT+++9r1KhRVbFOAAAAXKCKV3ubtzj/888/tW7duvJXfHvIfh9v87G/k4tNU+lV3imSzvPGSkW3Mz969KiOHz8uFxcXRUdHKzo6mpAbAAAAAAAAdZ7DofiJEyfUokULSYX9w0+cOCFJuuKKK3TvvfdW7uoAAABQ55Snn3fR4Hv16tXKzs4ufVAXFfbxLh52F30d7OTC02V/O/MESUk67328i1Z6mwNvqbAfekhICNXdAAAAAAAAgCoQirdo0UIHDhxQ06ZN1bZtW3344Yfq3r27Pv/8czVo0KAKlggAAIDaxl7wnZiYqE8//VSZmQ42xW4s29uZF+3j7fCfbIs4q8JQ29Z25uavDCfGL0Np4XbR3t1UegMAAAAAAACOc/ivDseNG6ddu3apT58+evTRRzVkyBC98sorysvL0/z586tijQAAAKihzFubf/fdd0pISFB4eLiSk5MdC759ZD/sNr92po+3UWX38T7qxPil8Pb21ogRIxQeHi7pXMhNuA0AAAAAAACcPwaTyWRyZoCDBw/ql19+UatWrdShQ4fKWlelycjIkL+/v9LT0+Xn51fdywEAAKjxbAXdAQEBOnHihJKSkizH27Zt01dffaWzZ8/aH8xd1n28bQXfDZxc8FGV3sf7sM5rH29PT09dd911uueeewi7AQAAAAAAgCriSA7szCaTkqTIyEhFRkY6OwwAAACqiDnk3rBhgwoKCtSgQQOdOHFCCQkJMhgMioiIsITeW7du1U8//VR60G3mIilEJYPuoschTi4+U/a3NDf38S7HUquar6+vBg4cSBAOAAAAAAAA1EDlDsV/+OEHHT9+XNddd53l3NKlS/XUU0/p9OnTGjZsmP773//Kw8OjShYKAACAc4pWcx88eLBEuG0OvLOzs7VmzRplZ2c7PkmA7G9nHiEpTJKbEw+Ro5J9vIsH3+lOjF9FPD09de2116pXr14KCQlRWFiYoqKiCMIBAAAAAACAGqrcofjTTz+t6OhoSyj++++/64477tDYsWPVrl07vfjii2rSpIlmzJhRVWsFAAC4IBUPwBMTE7V9+/byVXPb462y+3jXd2LRBbLfx9t8fFSSU418Koefn5/69++vtm3bqkGDBjp16pQk+n8DAAAAAAAAdUW5Q/GdO3dq1qxZluMVK1aoR48eWrx4sSQpIiJCTz31FKE4AACAg0rb3rxCAbibCqu4S6vyDnBy0cdkezvzon28852coxIVre4OCgrS8ePHFRgYSJU3AAAAAAAAcAEodyh+8uRJBQcHW443btyoQYMGWY67deumxMTEyl0dAABALVRayG0ymeTi4mLZ6vyHH37Ql19+qdzc3PINbtC5Pt72qryDVdjvu6KyZD/sNn+dcWL8KmKr4pvqbgAAAAAAAADlDsWDg4N14MABRUREKDc3V7/88otmzpxpeT8zM1Nubs40lQQAAKiZim9fbjKd2/O7aMB94sQJbdmyRT/++GP5Q+7iGqpkVXfR43A518c7V2X38T7lxPhVzMfHRzfccIMiIiIkFW5xTl9vAAAAAAAAAKUpdyg+ePBgPfroo3r++ef16aefqn79+oqKirK8/9tvv6lly5ZVskgAAABn2Qq2iwfa5kruopKSkpzv321WX/bDbvNrbyfGL5CUIvthd4KkNNWIPt5mXl5eGjRoUIl+3sV7exN8AwAAAAAAAKiocofis2bN0vDhw9WnTx/5+PjonXfekbu7u+X9t956SwMGDKiSRQIAAJSltC3LExIS9NNPP1W8ers86qlkH+/iwXcjJ+c4LtvbmZuPD0vKc3KOKmAr+GZbcwAAAAAAAADni8FUvByqDOnp6fLx8Snxl5cnTpyQj4+PVVBeE2RkZMjf31/p6eny8/Or7uUAAIByKG27clsSExOrNvQ2qLBPt62g23wcIuf6eJ9W2X28s50Yv4p5eHioR48e6t27twICAgi+AQAAAAAAAFQpR3LgcleKm/n7+9s8HxAQ4OhQAADgAlLe7cvPS1V3cQ1kfztzcx9vZz73l6fCPt62tjM3vz7pxPhVpHjQfeLECSUlJSk8PJzgGwAAAAAAAECt4XAoDgAAUB5FQ/DNmzfrxx9/PL9Bt5mXyu7j7ePkHCmyH3YnSDqiGtPH28fHRzfccIPCwsKUkJAgg8Fg9cGEpKQkNW3aVFdddRVBNwAAAAAAAIA6gVAcAABUSGlbnFf5duZm9SQ1UelV3o2dnOOE7IfdiZKSVa19vD08PNS9e3c1bdq0RNW9OfBu3LixQkJCFBYWpqioKIJuAAAAAAAAABcUQnEAAGClrH7eBQUF2r17t/bs2aP8/PyqW4hBUpBKr/IOkeRMvputkr27ix+fdmL8SlY0AG/WrBnV3AAAAAAAAABQDoTiAABcIMoKu6XzWOEtSf4qGXQXPQ6X5OHE+HkqrOK2FXSbj084MX4V8fT01I033mi1vTkBOAAAAAAAAABUHKE4AAB1QGmB93mr7C7KU9ZBt60qb18n50hV6VXeqZIKnJyjEhQPuU0mk1xcXOjjDQAAAAAAAADnCaE4AAA1nK3Au6CgQMeOHdOZM2eUmZmpvXv3np/qbqlwu3JbfbyLHgc6OcdJ2d/OPEGFFeDn6XGLMm9fHh4ebjlXPOCmuhsAAAAAAAAAahZCcQAAaqDc3Fy98sorWrFihX799dfzV+EtFQbaxau6iwbfTeRcH+8zKhl2Fw++s5wYvxzc3NzUo0cPNWvWrESgXXxbeRcXFwJuAAAAAAAAAKjFCMUBAKgm9rY8//XXX/Xnn39WzaR+sr+dubmPt6cT4+frXB9ve8H3cSfGLyd7W5YTbgMAAAAAAADAhYdQHACAKmQv+E5ISNCPP/5YuRXgHioMte1VeTdVYSjujCMqvY93iiq9j7e5qjsiIqLU6wi9AQAAAAAAAAC2EIoDAFABxcNuo9Fo6fHt5eWlwMBAJSUl6aeffqqcXt+ukkJVepV3kJNznJL9sNvcxzvHyTn+Vdb25QTcAAAAAAAAAIDKUuND8Tlz5ig+Pl5//vmnvLy81Lt3bz3//PNq06ZNdS8NAFAHmXt5b9q0SadPn1ZAQICOHz9uFXYnJiZWfpV3Y5Xs3V30uImc+137rGz37i56nOnE+GVwc3NTz549FRUVRdANAAAAAAAAADivanwovnHjRk2YMEHdunVTfn6+HnvsMQ0YMEC7d++Wt7d3dS8PAFCLlFXdnZycXDW9vH1lO+g2H4dL8nJifKPs9/E2Hx9zYvxycHFxUe/eva22OKfaGwAAAAAAAABQExhM5uamtcTRo0cVFBSkjRs36sorryzz+oyMDPn7+ys9PV1+fs42UgUA1HRFg+/9+/fr6NGjOnPmjDIzM7V3797K2cq8KHeV7ONdPPxu4OQcabK9nXnRPt5GJ+eww1Y/74KCAh07dkxnz55VZGSkxowZo6uuuorQGwAAAAAAAABw3jiSA9f4SvHi0tPTJUkBAQHVvBIAwPlmDry//fZbbd++XWfOnJGnp6ck6ezZs5UffLvIfh9v83Gwk3NkyH7YnSApSZXWx7soW5XdRd+jwhsAAAAAAAAAUFfUqlC8oKBAkydP1uWXX65LL73U5jU5OTnKyTmXHmRkZJyv5QEAnFS0n3dWVpZMJpPOnj0rT09PpaWl6c8//6zcPt6NVDLsLvo6TM738U5S6VXeVfDbVPHqbiq7AQAAAAAAAAAXsloVik+YMEH/+9//9P3339u9Zs6cOZo5c+Z5XBUAoDTmoHvjxo1KSkqSh4eHvLwKG2ibA29J+vPPP3X48OHKm9hH9rczN/fxru/E+EZJh1Wyd3fR10edGN8Oc+AdFhZm1Q89ODhYkZGRVHcDAAAAAAAAAFBMrekpPnHiRK1atUqbNm1S8+bN7V5nq1I8IiKCnuIAUEVKC70rPeg2c1dhFXdpVd4NnZzjqEoG3UWPD6vK+ngXV69ePQ0ZMkQTJkwg8AYAAAAAAAAAQHWsp7jJZNL999+vTz75RBs2bCg1EJckDw8PeXh4nKfVAUDtZzQatW7dOr3zzjs6cOCApXrbHGyfOXPG7rnU1FSlpKRU7oJcJIWo9CrvECfnyJT97cwTVbjl+Rkn56iAtm3bqnPnzpLo6w0AAAAAAAAAQGWp8aH4hAkTtGzZMq1atUq+vr5KTU2VJPn7+1vCGQCAY8zV3cuXL9cvv/yigoKC8zd5gEoG3UWPwyS5OTF+jsru453uxPhOqlevnnr27KmwsDAdP35c3t7eioqK0v333y93d/fqWxgAAAAAAAAAAHVUjd8+3WAw2Dy/ZMkSjR07tsz7HSmbB4DarPg25u7u7srJyZGHh4fVP6ukutvMW/YrvM1f3k6MXyApRaVXeadJqobf2dq0aaPw8HBLj+/AwEDL72FUfQMAAAAAAAAAULnq3PbpAHChs7XFedGwe//+/UpLS6vaRbjJdh/voscBTs5xTLbD7qJ9vPOdnMMBrq6u6tGjh7y8vKzCbpPJRJU3AAAAAAAAAAC1RI0PxQGgriseeJ85c0a5ubmSJA8PD50+fVp///131W5xbpAUrJK9u4sG3yEq7PddUVkqWdVd/Pg89/F2dXVVu3bt5OfnZwm8XV1dqeoGAAAAAAAAAKAOIRQHgPPEVrX3eQm8JamhbIfdRft4O1PonCvbfbyLHp9yYnwnuLi4qFWrVoqIiCD0BgAAAAAAAADgAkQoDgCVwFY/77Nnz1oqvs+cOaNDhw5VTfhdXyX7dhcPvp3t452q0qu8j+i89/E2GAy66KKLFB4eLkk6e/Ys1d4AAAAAAAAAAKAEQnEAKAej0agNGzbo22+/1U8//aQjR47IZDLJw8NDqampSklJqZqJ6+lcH297Vd6NnJzjuOxvZ56gwj7eeU7OUQEuLi5q166d/P395enpKUnKyclRZGSkxowZo6uuuoqwGwAAAAAAAAAAlIlQHACKKFrxnZiYqJycHGVkZCglJUVGo7FyJzNIClLJ3t1Fj0PlXB/v0yoZdhcPvrOdGN9BBoPBspW5VFjdbQ68z549q/r166tbt27q168fFd4AAAAAAAAAAKBSEIoD/9/evUdFXed/HH/NDA4MV29cpEBRu5gXlFDLfummtFrpEbXM1t2w2rbdNDKyFrdCrcyuLotm1uZJbS3trJoddyuVVlPTvAVWmplimCKIhDCAoMz8/uAwSQKCwzAyPB/ncPxeZr7ftzPnfLu8+Lzf8Gh1rfA2m82O1ubV27m5uTp16lTT3bytag+6q/evlHNzvM/qlznedQXfPztx/UtQW+hN0A0AAAAAAAAAANyJUBxAi1JRUaG0tDStXr1ahYWFMpvNKi8vV2lpqXx9feXt7e0Iu0tLS5Wdne2aOd4+qrudefVPgJP3yNHF53i74K8WHBys7t27y2KxSKqah169oru2Y35+foTeAAAAAAAAAADgskUoDuCy8uv25WfOnFFJSYkMBoOKi4tVUFDg+iK8JIWr/lXeHZ28R4HqDruzJR1Ts83xNhqNiomJ0YQJE/TII4/IbHZm+ToAAAAAAAAAAMDlhVAcgMtVVlYqPT1dS5YsUVZWlsrKylReXu4Iu6tXeGdnZ7s+9DZIClb9q7w7SXJmsXOpap/dff5+iRPXb6Du3bsrICBA3t7eKi8vd/zJ6m4AAAAAAAAAANCaEIoDcEp14P3OO+9o7969slqtNYLukydP6vjx47Lb7c1TUKDqDrur53h7O3H9c6p7jnf1fjMsZg8ODla3bt1qhN0Wi0VRUVFKSEjQ0KFDCboBAAAAAAAAAABEKA6gDrWF3dWqQ++ysjL9+OOPzRd4+6gq1K6tnXn1dqCT9zih2tuZV2+fkEvmeJ+vY8eOCgkJkSR5e3s75qRfeeWVGjx4MC3OAQAAAAAAAAAAGoFQHGhl6gq73bq6W6pqV37+HO/aVnkHO3mPQtUddh9V1QrwCifv0QgGg0HdunVTYGAggTcAAAAAAAAAAICLEIoDHqq28Lu0tFSnTp1q3rC7Wm1zvM/fD5dzc7zLVHvYff62tc53N7mwsDCFhYWpoqIqZff29maWNwAAAAAAAAAAgBsQigMtTH1tzas1e/gdoLrneFf/+Dhx/XOSjunC2d3nb59y4vqX6IorrlBISAjtzQEAAAAAAAAAAC5jhOLAZaKiokKpqalasmSJcnNzZTQa5ePjI4PB4HiNW1Z6e6tqjndt7cyrt4OcvEeuam9nXr2fI5fP8a5L+/btFRYWJm9vb1ksFkVFRSkhIUFDhw5llTcAAAAAAAAAAEALQCgOuFD1qu5FixZp+/btslqtMplMF4TdP//8s4qLi5u/QKOkTqo77I6UFOLkPU7r4nO8y528RyNdccUVCg4OdrQ2N5vNjm0fHx9WfAMAAAAAAAAAAHgQQnGgCVVUVCgtLU2rVq3SwYMH3Te/u1pH1R12V8/xduYpcEYXn+Pt4qy/Q4cOCgkJUWlpqXx9fR2tzKVfwm6j0ag+ffpo0qRJrPAGAAAAAAAAAABoZQjFgUY6P/g+duyYJMlutys/P19lZWXNV4i/Lpzd/et9ixPXr5R0XHWH3dmS8p24fgO1a9dOAQEBMhgM8vX1lcViYSU3AAAAAAAAAAAAGoxQHDhPdbvzd955R5mZmcrPz1dlZaWj5fnPP/8sq9Xq+kLMqn2O9/n7bZ28R57qX+Wdo6pg3EXCw8Pl5eXlCLu9vb1VXl6usrIyhYeHa8yYMUpMTCT0BgAAAAAAAAAAgFMIxdHqVFRUKDU1VUuWLFFubq6MRqN8fHxUWlqqU6dOub4Ao6Qw1b/KO8zJexTpwtnd5+//pKrW5y7SsWNHBQcHO4Lu0tJS+fv7Kzo6mhbmAAAAAAAAAAAAaFaE4vBYZWVleuyxx5Senq7CwkIZDAYVFxfrzBkXpsGS1EF1tzOPVNUc7zZOXL9ctQfd5+8XOXH9enTo0EF+fn41VnczsxsAAAAAAAAAAACXM0JxtEjVbc4XLVqk7du3y2q1ymQyOVYmFxYW6uzZs01/Yz9dGHb/Ovj2deL6lapqW17fKu+TkuxO3KMWHTp0kL+/f4025qzuBgAAAAAAAAAAgCcgFMdlqaKiQmlpaVq5cqUOHTqkc+fOyWazyWQy6ezZsyouLm76m7bRL3O86wq+2zl5j5Oqf5V3jqRzTt6jHtXhN2E3AAAAAAAAAAAAWgtCcbhVdYvzDRs2KD8/XyaTSaWlpU3f4tygqjnd9a3y7uTkPYp1Ydj96zneZU7eow7Vbc3PZzAYCL8BAAAAAAAAAADQ6hGKw2V+3eK8uLhYNptNRqNRNptNpaWlTdfivL0unN19/vYVcn6O90+qPeyu3j7txPVr4e3trZCQEBkMhhrHCbsBAAAAAAAAAACAhiMUxyW5WOB97tw5lZSUNM3NfFX77O7z9/3qfPfF2XTxOd55arI53v7+/mrXrt0FYbfRaFR4eLjGjBmjxMREmc3mprkhAAAAAAAAAAAA0Iq1iFD89ddf1yuvvKITJ04oOjpa8+bN04ABA9xdVqu1atUqJSQkyGq1On+xNqpaxV1b0F29397Je+Sr7rA7W9JxuWyOd0BAgCIjI1nVDQAAAAAAAAAAALjJZR+Kr1ixQklJSVq4cKEGDhyo1NRUDR8+XAcOHFBISIi7y2t1Vq1apXHjxjXsxQZJoap/jneYJKMTBVl1YdB9/v5PkkqduH4DmM1mhYaG6syZM7Lb7QoNDdW9996rqVOnstobAAAAAAAAAAAAcDOD3W5voqbQrjFw4ED1799f8+fPlyTZbDZFRETokUceUXJy8kXfX1RUpKCgIJ0+fVqBgYGuLtejVVZWKjIyUsePH6860FZ1h93Vc7ydyYQrVPcc7+r9Qieu30B+fn7y9fWVj49PVVkVFQoMDNSwYcM0d+5cWSwW1xcBAAAAAAAAAAAAwKExOfBlvVK8oqJCu3fv1vTp0x3HjEaj4uLitG3btlrfU15ervLycsd+UVGRy+tsLTZv3vxLIN5BVW3JL5VN0gnV3s68ejtXTTbHuz7e3t6OrgPl5eVq06aNrr32Wj3xxBOKi4uj3TkAAAAAAAAAAADQgl3WoXh+fr4qKysVGhpa43hoaKi+++67Wt8zZ84czZo1qznKa3VycnJ+2TklqUxSXYukC1R32F09x/us62qtjY+Pj3x9fdWmTRt17dpVY8eOVWJiIi3OAQAAAAAAAAAAAA92WYfil2L69OlKSkpy7BcVFSkiIsKNFXmOTp061TywQlKlag++XTzHuzb+/v5q27atysvLVVlZSfgNAAAAAAAAAAAA4PIOxTt27CiTyaTc3Nwax3NzcxUWFlbre7y9veXt7d0c5bU6N998s8LDw39poX5f893baDQqICBAJpNJRqNRRqORNucAAAAAAAAAAAAALuqyDsXNZrOuv/56paenKz4+XpJks9mUnp6uKVOmuLe4VshkMmnevHkaN26cy+5hNpsVGBgok8mkwMBADRs2THPnzpXFUlefdgAAAAAAAAAAAACo22UdiktSUlKSEhISFBsbqwEDBig1NVUlJSW6775mXKYMh7Fjx2rlypVKSEiQ1Wpt9Pt9fHxksVhks9lkMplocQ4AAAAAAAAAAADApS77UPzuu+/WyZMnlZKSohMnTqhv37765JNPFBoa6u7SWq2xY8dq9OjRSk9P16JFi7R9+3YVFxfLZrPJaDQ6/rTb7fLz86PFOQAAAAAAAAAAAAC3Mdjtdru7i3CloqIiBQUF6fTp0woMDHR3OQAAAAAAAAAAAAAAJzUmBzY2U00AAAAAAAAAAAAAADQ7QnEAAAAAAAAAAAAAgMciFAcAAAAAAAAAAAAAeCxCcQAAAAAAAAAAAACAx/JydwGuZrfbJVUNWgcAAAAAAAAAAAAAtHzV+W91Hlwfjw/Fi4uLJUkRERFurgQAAAAAAAAAAAAA0JSKi4sVFBRU72sM9oZE5y2YzWbT8ePHFRAQIIPB4O5yPEpRUZEiIiJ09OhRBQYGurscAGg2PP8AtEY8+wC0Vjz/ALRWPP8AtEY8+4CWxW63q7i4WOHh4TIa658a7vErxY1Go6688kp3l+HRAgMD+YcDgFaJ5x+A1ohnH4DWiucfgNaK5x+A1ohnH9ByXGyFeLX6I3MAAAAAAAAAAAAAAFowQnEAAAAAAAAAAAAAgMciFMcl8/b21owZM+Tt7e3uUgCgWfH8A9Aa8ewD0Frx/APQWvH8A9Aa8ewDPJfBbrfb3V0EAAAAAAAAAAAAAACuwEpxAAAAAAAAAAAAAIDHIhQHAAAAAAAAAAAAAHgsQnEAAAAAAAAAAAAAgMciFMcle/3119WlSxf5+Pho4MCB2rFjh7tLAgCXmTNnjvr376+AgACFhIQoPj5eBw4ccHdZANDsXnzxRRkMBk2dOtXdpQCAyx07dky///3v1aFDB1ksFvXu3Vu7du1yd1kA4DKVlZV65plnFBUVJYvFom7duum5556T3W53d2kA0KQ+//xzjRo1SuHh4TIYDPrwww9rnLfb7UpJSVGnTp1ksVgUFxengwcPuqdYAE2CUByXZMWKFUpKStKMGTO0Z88eRUdHa/jw4crLy3N3aQDgEps2bdLkyZO1fft2rV+/XmfPntVvf/tblZSUuLs0AGg2O3fu1Jtvvqk+ffq4uxQAcLmff/5ZN910k9q0aaOPP/5Y+/bt02uvvaZ27dq5uzQAcJmXXnpJb7zxhubPn6/9+/frpZde0ssvv6x58+a5uzQAaFIlJSWKjo7W66+/Xuv5l19+WWlpaVq4cKG+/PJL+fn5afjw4Tpz5kwzVwqgqRjs/JofLsHAgQPVv39/zZ8/X5Jks9kUERGhRx55RMnJyW6uDgBc7+TJkwoJCdGmTZs0ePBgd5cDAC5ntVoVExOjBQsW6Pnnn1ffvn2Vmprq7rIAwGWSk5O1detWbd682d2lAECzGTlypEJDQ7Vo0SLHsXHjxslisehf//qXGysDANcxGAxavXq14uPjJVWtEg8PD9fjjz+uadOmSZJOnz6t0NBQLV68WBMmTHBjtQAuFSvF0WgVFRXavXu34uLiHMeMRqPi4uK0bds2N1YGAM3n9OnTkqT27du7uRIAaB6TJ0/WHXfcUePfAQHAk3300UeKjY3VXXfdpZCQEPXr10///Oc/3V0WALjUoEGDlJ6eru+//16SlJmZqS1btui2225zc2UA0HyysrJ04sSJGv/9GxQUpIEDB5KBAC2Yl7sLQMuTn5+vyspKhYaG1jgeGhqq7777zk1VAUDzsdlsmjp1qm666Sb16tXL3eUAgMstX75ce/bs0c6dO91dCgA0m8OHD+uNN95QUlKS/va3v2nnzp1KTEyU2WxWQkKCu8sDAJdITk5WUVGRrr32WplMJlVWVmr27NmaOHGiu0sDgGZz4sQJSao1A6k+B6DlIRQHAKCRJk+erG+++UZbtmxxdykA4HJHjx7Vo48+qvXr18vHx8fd5QBAs7HZbIqNjdULL7wgSerXr5+++eYbLVy4kFAcgMf64IMPtGzZMr333nvq2bOnMjIyNHXqVIWHh/PsAwAALRrt09FoHTt2lMlkUm5ubo3jubm5CgsLc1NVANA8pkyZorVr1+p///ufrrzySneXAwAut3v3buXl5SkmJkZeXl7y8vLSpk2blJaWJi8vL1VWVrq7RABwiU6dOum6666rcaxHjx7Kzs52U0UA4HpPPPGEkpOTNWHCBPXu3Vt/+MMf9Nhjj2nOnDnuLg0Amk11zkEGAngWQnE0mtls1vXXX6/09HTHMZvNpvT0dN14441urAwAXMdut2vKlClavXq1PvvsM0VFRbm7JABoFsOGDdPXX3+tjIwMx09sbKwmTpyojIwMmUwmd5cIAC5x00036cCBAzWOff/99+rcubObKgIA1ystLZXRWPN/GZtMJtlsNjdVBADNLyoqSmFhYTUykKKiIn355ZdkIEALRvt0XJKkpCQlJCQoNjZWAwYMUGpqqkpKSnTfffe5uzQAcInJkyfrvffe05o1axQQEOCYHxQUFCSLxeLm6gDAdQICAtSrV68ax/z8/NShQ4cLjgOAJ3nsscc0aNAgvfDCCxo/frx27Niht956S2+99Za7SwMAlxk1apRmz56tyMhI9ezZU1999ZXmzp2r+++/392lAUCTslqt+uGHHxz7WVlZysjIUPv27RUZGampU6fq+eef11VXXaWoqCg988wzCg8PV3x8vPuKBuAUg91ut7u7CLRM8+fP1yuvvKITJ06ob9++SktL08CBA91dFgC4hMFgqPX4O++8o0mTJjVvMQDgZr/5zW/Ut29fpaamursUAHCptWvXavr06Tp48KCioqKUlJSkBx980N1lAYDLFBcX65lnntHq1auVl5en8PBw3XPPPUpJSZHZbHZ3eQDQZDZu3KhbbrnlguMJCQlavHix7Ha7ZsyYobfeekuFhYX6v//7Py1YsEBXX321G6oF0BQIxQEAAAAAAAAAAAAAHouZ4gAAAAAAAAAAAAAAj0UoDgAAAAAAAAAAAADwWITiAAAAAAAAAAAAAACPRSgOAAAAAAAAAAAAAPBYhOIAAAAAAAAAAAAAAI9FKA4AAAAAAAAAAAAA8FiE4gAAAAAAAAAAAAAAj0UoDgAAAAAAAAAAAADwWITiAAAAAAAAAAAAAACPRSgOAAAAAPAYGzdulMFgUGFhobtLaRSDwaAPP/ywya7XpUsXpaamNtn13OXIkSMyGAzKyMiQ1HK/XwAAAACAexGKAwAAAABaBIPBUO/PzJkz3V3iRc2cOVN9+/a94HhOTo5uu+22Zq2loKBAU6dOVefOnWU2mxUeHq77779f2dnZzVpHtUmTJik+Pr7GsYiICOXk5KhXr15uqQkAAAAA4Bm83F0AAAAAAAANkZOT49hesWKFUlJSdODAAccxf39/7dq1yx2lqaKiQmaz+ZLfHxYW1oTVXFxBQYFuuOEGmc1mLVy4UD179tSRI0f09NNPq3///tq2bZu6du3arDXVxmQyNftnAwAAAADwPKwUBwAAAAC0CGFhYY6foKAgGQyGGsf8/f0dr929e7diY2Pl6+urQYMG1QjPJWnNmjWKiYmRj4+PunbtqlmzZuncuXOO89nZ2Ro9erT8/f0VGBio8ePHKzc313G+esX322+/raioKPn4+EiSCgsL9cc//lHBwcEKDAzU0KFDlZmZKUlavHixZs2apczMTMfq9sWLF0u6sH36Tz/9pHvuuUft27eXn5+fYmNj9eWXX0qSDh06pNGjRys0NFT+/v7q37+/NmzY0KjP8qmnntLx48e1YcMG3XbbbYqMjNTgwYP16aefqk2bNpo8ebLjtbW1Yu/bt2+Nlflz585V79695efnp4iICD388MOyWq2O84sXL1bbtm316aefqkePHvL399eIESMcv+gwc+ZMLVmyRGvWrHF8Nhs3brygfXpttmzZoptvvlkWi0URERFKTExUSUmJ4/yCBQt01VVXycfHR6Ghobrzzjsb9VkBAAAAAFo+QnEAAAAAgMd56qmn9Nprr2nXrl3y8vLS/fff7zi3efNm3XvvvXr00Ue1b98+vfnmm1q8eLFmz54tSbLZbBo9erQKCgq0adMmrV+/XocPH9bdd99d4x4//PCDVq5cqVWrVjlC27vuukt5eXn6+OOPtXv3bsXExGjYsGEqKCjQ3Xffrccff1w9e/ZUTk6OcnJyLrimJFmtVg0ZMkTHjh3TRx99pMzMTD355JOy2WyO87fffrvS09P11VdfacSIERo1alSD257bbDYtX75cEydOvGAVtsVi0cMPP6xPP/1UBQUFDf68jUaj0tLS9O2332rJkiX67LPP9OSTT9Z4TWlpqV599VW9++67+vzzz5Wdna1p06ZJkqZNm6bx48c7gvKcnBwNGjToovc9dOiQRowYoXHjxmnv3r1asWKFtmzZoilTpkiSdu3apcTERD377LM6cOCAPvnkEw0ePLjBfy8AAAAAgGegfToAAAAAwOPMnj1bQ4YMkSQlJyfrjjvu0JkzZ+Tj46NZs2YpOTlZCQkJkqSuXbvqueee05NPPqkZM2YoPT1dX3/9tbKyshQRESFJWrp0qXr27KmdO3eqf//+kqpapi9dulTBwcGSqlYs79ixQ3l5efL29pYkvfrqq/rwww/173//W3/605/k7+8vLy+veluCv/feezp58qR27typ9u3bS5K6d+/uOB8dHa3o6GjH/nPPPafVq1fro48+coTB9Tl58qQKCwvVo0ePWs/36NFDdrtdP/zwgwYMGHDR60nS1KlTHdtdunTR888/rz//+c9asGCB4/jZs2e1cOFCdevWTZI0ZcoUPfvss5KqWt9bLBaVl5c3ql36nDlzNHHiRMf9r7rqKqWlpWnIkCF64403lJ2dLT8/P40cOVIBAQHq3Lmz+vXr1+DrAwAAAAA8A6E4AAAAAMDj9OnTx7HdqVMnSVJeXp4iIyOVmZmprVu3OlaGS1JlZaXOnDmj0tJS7d+/XxEREY5AXJKuu+46tW3bVvv373eE4p07d3YE4pKUmZkpq9WqDh061KilrKxMhw4danDtGRkZ6tevnyMQ/zWr1aqZM2fqP//5j3JycnTu3DmVlZU1eKV4NbvdXu/5xsxI37Bhg+bMmaPvvvtORUVFOnfunOPz9PX1lST5+vo6AnGp6nvJy8trVM2/lpmZqb1792rZsmWOY3a7XTabTVlZWbr11lvVuXNnde3aVSNGjNCIESM0ZswYR00AAAAAgNaBUBwAAAAA4HHatGnj2DYYDJJUo/34rFmzNHbs2AveVz0bvCH8/Pxq7FutVnXq1EkbN2684LVt27Zt8HUtFku956dNm6b169fr1VdfVffu3WWxWHTnnXeqoqKiQdcPDg52BPy12b9/v7y8vBQVFSWpqjX6rwP0s2fPOraPHDmikSNH6i9/+Ytmz56t9u3ba8uWLXrggQdUUVHhCKDP/06kqu/lYsH8xVitVj300ENKTEy84FxkZKTMZrP27NmjjRs3at26dUpJSdHMmTO1c+fORn0nAAAAAICWjVAcAAAAANCqxMTE6MCBAzVakp+vR48eOnr0qI4ePepYLb5v3z4VFhbquuuuq/e6J06ckJeXl7p06VLra8xmsyorK+utr0+fPnr77bdVUFBQ62rxrVu3atKkSRozZoykqmD4yJEj9V7zfEajUePHj9eyZcv07LPP1mhXXlZWpgULFmjMmDEKCgqSVBWi5+TkOF5TVFSkrKwsx/7u3btls9n02muvyWg0SpI++OCDBtdTrSGfza/FxMRo3759dX6XkuTl5aW4uDjFxcVpxowZatu2rT777LNafykCAAAAAOCZjO4uAAAAAACA5pSSkqKlS5dq1qxZ+vbbb7V//34tX75cTz/9tCQpLi5OvXv31sSJE7Vnzx7t2LFD9957r4YMGaLY2Ng6rxsXF6cbb7xR8fHxWrdunY4cOaIvvvhCTz31lHbt2iWpat52VlaWMjIylJ+fr/Ly8guuc8899ygsLEzx8fHaunWrDh8+rJUrV2rbtm2SquZmr1q1ShkZGcrMzNTvfvc7xyr4hpo9e7bCwsJ066236uOPP9bRo0f1+eefa/jw4TIajfrHP/7heO3QoUP17rvvavPmzfr666+VkJAgk8nkON+9e3edPXtW8+bN0+HDh/Xuu+9q4cKFjaqn+rPZu3evDhw4oPz8/Bqr0evy17/+VV988YWmTJmijIwMHTx4UGvWrHHMVl+7dq3S0tKUkZGhH3/8UUuXLpXNZtM111zT6PoAAAAAAC0XoTgAAAAAoFUZPny41q5dq3Xr1ql///664YYb9Pe//12dO3eWVNXWe82aNWrXrp0GDx6suLg4de3aVStWrKj3ugaDQf/97381ePBg3Xfffbr66qs1YcIE/fjjjwoNDZUkjRs3TiNGjNAtt9yi4OBgvf/++xdcx2w2a926dQoJCdHtt9+u3r1768UXX3QE0XPnzlW7du00aNAgjRo1SsOHD1dMTEyjPoOOHTtq+/btuuWWW/TQQw8pKipKQ4YMUWVlpTIyMhxz2CVp+vTpGjJkiEaOHKk77rhD8fHxNWaDR0dHa+7cuXrppZfUq1cvLVu2THPmzGlUPZL04IMP6pprrlFsbKyCg4O1devWi76nT58+2rRpk77//nvdfPPN6tevn1JSUhQeHi6pqm39qlWrNHToUPXo0UMLFy7U+++/r549eza6PgAAAABAy2WwOzvACwAAAAAAtHiLFi3Sww8/rBUrVig+Pt7d5QAAAAAA0GRYKQ4AAAAAAPTAAw9o+fLl2r9/v8rKytxdDgAAAAAATYaV4gAAAAAAAAAAAAAAj8VKcQAAAAAAAAAAAACAxyIUBwAAAAAAAAAAAAB4LEJxAAAAAAAAAAAAAIDHIhQHAAAAAAAAAAAAAHgsQnEAAAAAAAAAAAAAgMciFAcAAAAAAAAAAAAAeCxCcQAAAAAAAAAAAACAxyIUBwAAAAAAAAAAAAB4LEJxAAAAAAAAAAAAAIDH+n+CFaB9DY6iEwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "