-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnsupervisedToSupervised.py
43 lines (30 loc) · 1.11 KB
/
UnsupervisedToSupervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
df = pd.read_csv("Customer Data.csv")
# Fill missing values with mean
df["MINIMUM_PAYMENTS"].fillna(df["MINIMUM_PAYMENTS"].mean(), inplace=True)
df["CREDIT_LIMIT"].fillna(df["CREDIT_LIMIT"].mean(), inplace=True)
df.drop(columns=["CUST_ID"], axis=1, inplace=True)
scaler = StandardScaler()
scaled_df = scaler.fit_transform(df)
pca = PCA(n_components=2)
principal_components = pca.fit_transform(scaled_df)
pca_df = pd.DataFrame(data=principal_components, columns=["PCA1", "PCA2"])
kmeans = KMeans(n_clusters=4)
kmeans.fit(scaled_df)
clusters = kmeans.labels_
# Add cluster labels as a new column
df['Cluster'] = clusters
# Save the new supervised CSV file
df.to_csv("Supervised_Customer_Data.csv", index=False)
# Plotting (optional)
plt.figure(figsize=(8, 8))
sns.scatterplot(x="PCA1", y="PCA2", hue=clusters, palette="viridis", data=pca_df)
plt.title("Clusters visualization")
plt.show()