-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.Rmd
862 lines (795 loc) · 59.9 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
---
title: Searching for Pathogens in Cancer Sequence Data
author:
- name: '**Gihawi, A.**'
affil: 1
main: true
orcid: '0000-0002-3676-5561'
twitter: AbrahamGihawi
email: [email protected]
- name: Hurst, R.
affil: 1
- name: Leggett, R.M.
affil: 2
orcid: '0000-0003-3044-4297'
- name: Cooper, C.S.
affil: 1
orcid: '0000-0003-2013-8042'
- name: Brewer, D.S.
affil: 1,2
orcid: '0000-0003-4753-9794'
- name: Genomics England Research Consortium
affil: 3
affiliation:
- num: 1
address: Bob Champion Research and Education Building, University of East Anglia, Norwich, UK
- num: 2
address: Earlham Institute, Norwich, UK
- num: 3
address: Genomics England, London, UK
column_numbers: 3
logoright_name: "resources/uea_gel.png"
logoleft_name: "resources/bigC_logo.png"
output:
posterdown::posterdown_html:
self_contained: false
bibliography: references.bib
csl: biomed-central.csl
link-citations: true
poster_height: "38in" #38in
poster_width: "45in" #45in
title_textsize: "75pt"
author_textsize: "40pt"
affiliation_textsize: "40pt"
bibliography_textsize: "12pt"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
library(tidyverse)
library(magrittr)
library(lubridate)
library(ggpubr)
library(gganimate)
library(plotly)
# ABSTRACT
# It is estimated that infection accounts for 15% of all cancers globally. The involvement of H. pylori in over 90% of gastric noncardia adenocarcinoma and the role of Human Papillomavirus in cervical tumorigenesis are testament to the prominent role that pathogens play in cancer. As we transition into an era of genomic medicine, it is becoming increasingly possible to characterise the tumour-pathogen landscape by interrogating high-throughput sequencing data.
#
# Here, we evaluate computational approaches to identify the constituent taxa within human high-throughput sequence data. We have produced the top performing approaches into a pipeline (SEPATH) which will be applied to over 10,000 whole genome sequences from Genomics England’s 100,000 Genomes Project.
#
# The resulting data is highly sparse in nature and rife with environmental and sequencing contaminants. Despite this, SEPATH has revealed a range of interesting bacterial and viral genera associated with tumour samples. Many of the genera identified have been previously suggested for association with tumours such as Bacteroides and Fusobacterium in colorectal cancer and Alphapapillomavirus in oral cancer. Additionally, we have detected evidence for infectious disease which will be subject to independent validation and followed up appropriately.
#
# Analysing the microbial composition of tumours could provide an additional tool to aid in therapeutic stratification of cancer patients with little added cost following sequencing. Additionally, novel treatment avenues could be investigated further such as the use of antibiotics in certain types of cancer.
```
# Background
The association of _H. pylori_ with gastric adenocarcinomacarcinoma[@RN102] and the successful Human papillomavirus (HPV) vaccine, estimated to prevent ≤80% of cervical cancer cases[@Johannes2011; @Crosbie2013] attest to the prominent role that pathogens play in cancer.
When cancer tissue is sequenced, any microorganisms present in the sample can be incidentally sequenced simultaneously[@RN455]. We have been investigating this in over 10,000 samples from cancer cohort of the 100,000 genomes project by Genomics England. It is hoped that this dataset will prove to be a rich resource for detecting microorganisms and linking them to disease.
We previously benchmarked software to devise the optimal approach to detect mircorogranisms in cancer whole genome sequences. The top performing pipelines are provided in a tool called [SEPATH](https://github.com/UEA-Cancer-Genetics-Lab/sepath_tool_UEA)[@RN454] which performs the following:
* Extracts unmapped reads from BAM files
* Quality trimming & human read removal
* Metagenomic classification - Kraken/mOTUs2[@RN72; @RN391]
# Methods
[SEPATH](https://github.com/UEA-Cancer-Genetics-Lab/sepath_tool_UEA) is currently being applied to all samples from within the [100,00 genomes project](https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project/) to search for evidence of and associations between pathogens and disease. The resulting non-human reads were pooled by cancer type and subject to metagenomic assembly MEGAHIT[@RN269]. The resulting contigs were classified with Diamond[@RN204] using a database built from NCBI genomes available [here](ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/). From both approaches, all potential contaminants according to Salter *et al.*[@Salter2014] and any mammalian classifications were removed from further investigation.
```{r calculatebases, include=FALSE}
# Tumour is minimum of 75x coverage in 100,000 genomes project
# Human genome approx 300,000,000 base pairs
# well over 10,000 samples
bp <- 75 * 300000000 * 10000
#2.25x10^14
```
So far we have sifted through in excess of $2.25\times10^{14}$ base pairs from >10,000 tumour samples to search for evidence of pathogens. This is set to increase as more sequence data is released (figure \@ref(fig:gelrelease)) and as we search through the rare disease cohort.
```{r gelrelease, out.width='70%', fig.asp=.75, fig.align='center', echo=FALSE, message=FALSE, warning=FALSE, fig.cap='The release of tumour sequence data from Genomics England 100,000 Genomes Project. SEPATH has been applied to data up to version 6.'}
#no data on version 2 number of genomes inferring from number of genomes - participants 5225-2531
genomes <- data.frame(Release_Version = c('1','2','3','4','5','6','7','8'),
Cancer_Genomes = c(1211, 2694,
4362, 5891,
9773 ,11473,
13845, 17318),
date_of_release= c('2017-10-11', '2018-01-30',
'2018-04-30', '2018-07-31',
'2018-11-20', '2019-02-28',
'2019-07-25','2019-11-28'),
friendly_date = c('Oct 2017', 'Jan 2018',
'Apr 2018', 'July 2018',
'Nov 2018', 'Feb 2018',
'Jul 2019', 'Nov 2019'))
genomes$friendly_date <- factor(genomes$friendly_date, levels=c('Oct 2017', 'Jan 2018',
'Apr 2018', 'July 2018',
'Nov 2018', 'Feb 2018',
'Jul 2019', 'Nov 2019'))
release <- ggplot(genomes, aes(x=friendly_date, y=Cancer_Genomes)) +
geom_bar(stat='identity', fill='darkorchid4', alpha=0.7) +
geom_text(aes(y=300, label=Release_Version)) +
labs(x='Release Date & Version',
y='Number of Cancer Genomes',
title='Genomics England Cancer Sample Release') +
scale_y_continuous(limits=c(0,20000),
breaks=c(0, 1200, 2700, 4500, 5981, 10000, 12000, 14000, 18000, 20000 )) +
theme_pubclean() +
theme(plot.title=element_text(hjust=0.5),
axis.text.x=element_text(angle=90, vjust=0.5))
release
```
# Results
## **SEPATH using Kraken**
We filtered samples to retain only those that were PCR-free, fresh tissue tumours. Classifications with fewer than 20 reads were disregarded. Here we report on the top 20 most frequently occuring genera within each cancer type. Although some environmental contaminants likely remain, some pathogens have emerged that have previously been suspected to contribute to tumorigenesis such as *Bacteroides*, *Prevotella* and *Fusobacterium*[@Shang2018].
```{r, gelkraken, out.width='100%', fig.asp=1, fig.cap='Results from the 100,000 Genomes Project. Genus level classifications were obtained by using SEPATH with Kraken. Results are displayed by cancer type.', message=FALSE, warning=FALSE}
# kraken_prevalence <- read_tsv(file='~/Desktop/kraken_prevalence.tsv')
# #contigs were filtered for the following contaminant genera and weird list + mammalia
# salter_contaminants <- c("Afipia", "Aquabacterium", "Asticcacaulis", "Aurantimonas",
# "Beijerinckia", "Bosea", "Bradyrhizobium", "Brevundimonas",
# "Caulobacter", "Craurococcus", "Devosia", "Hoeflea", "Mesorhizobium",
# "Methylobacterium", "Novosphingobium", "Ochrobactrum", "Paracoccus",
# "Pedomicrobium", "Phyllobacterium", "Rhizobium", "Roseomonas", "Sphingobium",
# "Sphingomonas", "Sphingopyxis", "Acidovorax", "Azoarcus", "Azospira", "Burkholderia",
# "Comamonas", "Cupriavidus", "Curvibacter", "Delftia", "Duganella", "Herbaspirillum",
# "Janthinobacterium", "Kingella", "Leptothrix", "Limnobacter", "Massilia", "Methylophilus",
# "Methyloversatilis", "Oxalobacter", "Pelomonas", "Polaromonase", "Ralstonia", "Schlegelella",
# "Sulfuritalea", "Undibacterium", "Variovorax", "Acinetobacter", "Enhydrobacter", "Enterobacter",
# "Escherichia", "Nevskiae", "Pseudomonas", "Pseudoxanthomonas", "Psychrobacter", "Stenotrophomonas",
# "Xanthomonas", "Aeromicrobium", "Arthrobacter", "Beutenbergia", "Brevibacterium", "Corynebacterium",
# "Curtobacterium", "Dietzia", "Geodermatophilus", "Janibacter", "Kocuria", "Microbacterium", "Micrococcus",
# "Microlunatus", "Patulibacter", "Propionibacterium", "Rhodococcus", "Tsukamurella", "Abiotrophia", "Bacillus",
# "Brevibacillus", "Brochothrix", "Facklamia", "Paenibacillus", "Streptococcus", "Chryseobacterium", "Dyadobacter",
# "Flavobacterium", "Hydrotalea", "Niastella", "Olivibacter", "Pedobacter", "Wautersiella", "Deinococcus", "Acidobacteria")
# weird_list <- c('Homo', 'Pan', 'gorilla', 'Gorilla',
# 'Nomascus', 'Pongo', 'Muntiacus',
# 'Aotus', 'Sus', 'Crocuta', 'Mus',
# 'Trachypithecus', 'Hylobates', 'Macaca',
# 'uncultured', 'bacterium', 'synthetic', 'unknown',
# 'Bos', 'Canis', 'Colobus', 'Vicugna', 'Trichechus',
# 'Chlorocebus', 'Mandrillus',
# 'gateway_entry_vector',
# 'Mycobacterium', 'Toxoplasma', 'Candidatus Pelagibacter')
#
# kraken_prevalence %<>% filter(!genus %in% salter_contaminants) %>%
# filter(!genus %in% weird_list) %>%
# mutate(all_cancers = ADULT_GLIOMA + BLADDER + BREAST + CARCINOMA_OF_UNKNOWN_PRIMARY +
# CHILDHOOD + COLORECTAL + ENDOCRINE + ENDOMETRIAL_CARCINOMA + HAEMONC +
# HEPATOPANCREATOBILIARY + LUNG + MALIGNANT_MELANOMA + NASOPHARYNGEAL + ORAL_OROPHARYNGEAL +
# OTHER + OVARIAN + PROSTATE + RENAL + SARCOMA +
# SINONASAL + TESTICULAR_GERM_CELL_TUMOURS + UPPER_GASTROINTESTINAL)
#
# kraken <- kraken_prevalence %>% pivot_longer(cols= c("ADULT_GLIOMA", "BLADDER", "BREAST",
# "CARCINOMA_OF_UNKNOWN_PRIMARY",
# "CHILDHOOD", "COLORECTAL", "ENDOCRINE",
# "ENDOMETRIAL_CARCINOMA", "HAEMONC",
# "HEPATOPANCREATOBILIARY", "LUNG", "MALIGNANT_MELANOMA",
# "NASOPHARYNGEAL", "ORAL_OROPHARYNGEAL","OTHER",
# "OVARIAN", "PROSTATE", "RENAL", "SARCOMA",
# "SINONASAL", "TESTICULAR_GERM_CELL_TUMOURS", "UPPER_GASTROINTESTINAL", "all_cancers"))
#
# kraken_top <- kraken %>%
# group_by(name) %>%
# arrange(-value) %>%
# slice(1:20) %>%
# as.data.frame() %>%
# pivot_wider(names_from=name)
#
# write.table(kraken_top, file='~/Desktop/ncrn_html/ncrn_html/resources/kraken_top.tsv',
# col.names = TRUE, row.names=FALSE, quote=FALSE, sep='\t')
kraken_prevalence <- read_tsv(file='resources/kraken_top.tsv')
colnames(kraken_prevalence) <- gsub('all_cancers', 'allcancers', colnames(kraken_prevalence))
colnames(kraken_prevalence) <- tolower(colnames(kraken_prevalence))
colnames(kraken_prevalence) <- gsub('endometrial_carcinoma', 'endometrial', colnames(kraken_prevalence))
colnames(kraken_prevalence) <- gsub('adult_glioma', 'glioma', colnames(kraken_prevalence))
colnames(kraken_prevalence) <- gsub('malignant_melanoma', 'melanoma', colnames(kraken_prevalence))
colnames(kraken_prevalence) <- gsub('oral_oropharyngeal', 'oral', colnames(kraken_prevalence))
colnames(kraken_prevalence) <- gsub('testicular_germ_cell_tumours', 'testicular', colnames(kraken_prevalence))
colnames(kraken_prevalence) <- gsub('upper_gastrointestinal', 'uppergi', colnames(kraken_prevalence))
colnames(kraken_prevalence) <- gsub('haemonc', 'haematological', colnames(kraken_prevalence))
allcancers <- kraken_prevalence %>% select(genus, allcancers) %>% filter(!is.na(allcancers)) %>% arrange(allcancers)
bladder <- kraken_prevalence %>% select(genus, bladder) %>% filter(!is.na(bladder)) %>% arrange(bladder)
breast <- kraken_prevalence %>% select(genus, breast) %>% filter(!is.na(breast)) %>% arrange(breast)
childhood <- kraken_prevalence %>% select(genus, childhood) %>% filter(!is.na(childhood)) %>% arrange(childhood)
colorectal <- kraken_prevalence %>% select(genus, colorectal) %>% filter(!is.na(colorectal)) %>% arrange(colorectal)
endocrine <- kraken_prevalence %>% select(genus, endocrine) %>% filter(!is.na(endocrine)) %>% arrange(endocrine)
endometrial <- kraken_prevalence %>% select(genus, endometrial) %>% filter(!is.na(endometrial)) %>% arrange(endometrial)
haematological <- kraken_prevalence %>% select(genus, haematological) %>% filter(!is.na(haematological)) %>% arrange(haematological)
glioma <- kraken_prevalence %>% select(genus, glioma) %>% filter(!is.na(glioma)) %>% arrange(glioma)
hepatopancreatobiliary <- kraken_prevalence %>% select(genus, hepatopancreatobiliary) %>% filter(!is.na(hepatopancreatobiliary)) %>% arrange(hepatopancreatobiliary)
lung <- kraken_prevalence %>% select(genus, lung) %>% filter(!is.na(lung)) %>% arrange(lung)
melanoma <- kraken_prevalence %>% select(genus, melanoma) %>% filter(!is.na(melanoma)) %>% arrange(melanoma)
nasopharyngeal <- kraken_prevalence %>% select(genus, nasopharyngeal) %>% filter(!is.na(nasopharyngeal)) %>% arrange(nasopharyngeal)
oral <- kraken_prevalence %>% select(genus, oral) %>% filter(!is.na(oral)) %>% arrange(oral)
ovarian <- kraken_prevalence %>% select(genus, ovarian) %>% filter(!is.na(ovarian)) %>% arrange(ovarian)
prostate <- kraken_prevalence %>% select(genus, prostate) %>% filter(!is.na(prostate)) %>% arrange(prostate)
renal <- kraken_prevalence %>% select(genus, renal) %>% filter(!is.na(renal)) %>% arrange(renal)
sarcoma <- kraken_prevalence %>% select(genus, sarcoma) %>% filter(!is.na(sarcoma)) %>% arrange(sarcoma)
sinonasal <- kraken_prevalence %>% select(genus, sinonasal) %>% filter(!is.na(sinonasal)) %>% arrange(sinonasal)
testicular <- kraken_prevalence %>% select(genus, testicular) %>% filter(!is.na(testicular)) %>% arrange(testicular)
uppergi <- kraken_prevalence %>% select(genus, uppergi) %>% filter(!is.na(uppergi)) %>% arrange(uppergi)
kraken_fig <- plot_ly(type='bar') %>%
add_trace(data=allcancers, y=~genus, x=~allcancers, visible=T, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=bladder, y=~genus, x=~bladder, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=breast, y=~genus, x=~breast, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=childhood, y=~genus, x=~childhood, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=colorectal, y=~genus, x=~colorectal, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=endocrine, y=~genus, x=~endocrine, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=endometrial, y=~genus, x=~endometrial, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=haematological, y=~genus, x=~haematological, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=glioma, y=~genus, x=~glioma, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=hepatopancreatobiliary, y=~genus, x=~hepatopancreatobiliary, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=lung, y=~genus, x=~lung, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=melanoma, y=~genus, x=~melanoma, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=nasopharyngeal, x=~genus, y=~nasopharyngeal, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=oral, y=~genus, x=~oral, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=ovarian, y=~genus, x=~ovarian, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=prostate, y=~genus, x=~prostate, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=renal, y=~genus, x=~renal, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=sarcoma, y=~genus, x=~sarcoma, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=sinonasal, y=~genus, x=~sinonasal, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=testicular, y=~genus, x=~testicular, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=uppergi, y=~genus, x=~uppergi, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
layout(
yaxis = list(
title='Genus',
size=20,
tickfont=list(size=18)),
xaxis=list(
title='Number of Samples',
size=20,
tickfont=list(size=18)),
showlegend=FALSE,
updatemenus = list(
list(
xanchor='right',
yanchor='bottom',
buttons = list(
list(method='restyle',
args=list('visible', list(FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='All Cancers'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Bladder'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Breast'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Childhood'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Colorectal'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Endocrine'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Endometrial'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Haematological'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Glioma'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Hepatopancreatobiliary'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Lung'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Melanoma'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Nasopharyngeal'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Oral'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Ovarian'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Prostate'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE)),
label='Renal'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE)),
label='Sarcoma'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE)),
label='Sinonasal'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE)),
label='Testicular'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE)),
label='Upper Gastrointestinal')
)
)
)
)
kraken_fig
```
## **Classification of Assembled Contigs**
Although reads with any similarity to the human genome have been removed prior to assembly, we see hundreds of thousands of assembled genomic fragments accross the entire dataset for a variety of genera. The most common of which in the whole dataset are for *Prevotella*, *Bacteroides*, *Treponema* and *Fusobacterium*.
```{r, gelcontigs, fig.cap="Genus level classifications of contigs from metagenomic assembly of non-human reads within the 100,000 genomes project.", out.width='100%', fig.asp=1, fig.height=20, message=FALSE, warning=FALSE}
#gelcontigs, animation.hook='gifski', fig.align='center', echo=FALSE, message=FALSE, warning=FALSE
#out.width='100%', fig.asp=.75, fig.cap='Contigs in Genomics England'
#contigs were filtered for the following contaminant genera and weird list + mammalia
salter_contaminants <- c("Afipia", "Aquabacterium", "Asticcacaulis", "Aurantimonas",
"Beijerinckia", "Bosea", "Bradyrhizobium", "Brevundimonas",
"Caulobacter", "Craurococcus", "Devosia", "Hoeflea", "Mesorhizobium",
"Methylobacterium", "Novosphingobium", "Ochrobactrum", "Paracoccus",
"Pedomicrobium", "Phyllobacterium", "Rhizobium", "Roseomonas", "Sphingobium",
"Sphingomonas", "Sphingopyxis", "Acidovorax", "Azoarcus", "Azospira", "Burkholderia",
"Comamonas", "Cupriavidus", "Curvibacter", "Delftia", "Duganella", "Herbaspirillum",
"Janthinobacterium", "Kingella", "Leptothrix", "Limnobacter", "Massilia", "Methylophilus",
"Methyloversatilis", "Oxalobacter", "Pelomonas", "Polaromonase", "Ralstonia", "Schlegelella",
"Sulfuritalea", "Undibacterium", "Variovorax", "Acinetobacter", "Enhydrobacter", "Enterobacter",
"Escherichia", "Nevskiae", "Pseudomonas", "Pseudoxanthomonas", "Psychrobacter", "Stenotrophomonas",
"Xanthomonas", "Aeromicrobium", "Arthrobacter", "Beutenbergia", "Brevibacterium", "Corynebacterium",
"Curtobacterium", "Dietzia", "Geodermatophilus", "Janibacter", "Kocuria", "Microbacterium", "Micrococcus",
"Microlunatus", "Patulibacter", "Propionibacterium", "Rhodococcus", "Tsukamurella", "Abiotrophia", "Bacillus",
"Brevibacillus", "Brochothrix", "Facklamia", "Paenibacillus", "Streptococcus", "Chryseobacterium", "Dyadobacter",
"Flavobacterium", "Hydrotalea", "Niastella", "Olivibacter", "Pedobacter", "Wautersiella", "Deinococcus", "Acidobacteria")
weird_list <- c('Homo', 'Pan', 'gorilla', 'Gorilla',
'Nomascus', 'Pongo', 'Muntiacus',
'Aotus', 'Sus', 'Crocuta', 'Mus',
'Trachypithecus', 'Hylobates', 'Macaca',
'uncultured', 'bacterium', 'synthetic', 'unknown',
'Bos', 'Canis', 'Colobus', 'Vicugna', 'Trichechus',
'Chlorocebus', 'Mandrillus',
'gateway_entry_vector')
contig_data <- data.frame(
stringsAsFactors = FALSE,
cancer = c("all_cancers",
"all_cancers","all_cancers","all_cancers","all_cancers",
"all_cancers","all_cancers","all_cancers",
"all_cancers","all_cancers","all_cancers","all_cancers",
"all_cancers","all_cancers","all_cancers",
"all_cancers","all_cancers","all_cancers","all_cancers",
"all_cancers","bladder","bladder","bladder",
"bladder","bladder","bladder","bladder","bladder",
"bladder","bladder","bladder","bladder","bladder",
"bladder","bladder","bladder","bladder","bladder",
"bladder","bladder","breast","breast","breast",
"breast","breast","breast","breast","breast",
"breast","breast","breast","breast","breast","breast",
"breast","breast","breast","breast","breast",
"breast","childhood","childhood","childhood",
"childhood","childhood","childhood","childhood",
"childhood","childhood","childhood","childhood",
"childhood","childhood","childhood","childhood",
"childhood","childhood","childhood","childhood",
"childhood","endocrine","endocrine","endocrine","endocrine",
"endocrine","endocrine","endocrine","endocrine",
"endocrine","endocrine","endocrine","endocrine",
"endocrine","endocrine","endocrine","endocrine",
"endocrine","endocrine","endocrine","endocrine",
"endometrial","endometrial","endometrial",
"endometrial","endometrial","endometrial","endometrial",
"endometrial","endometrial","endometrial",
"endometrial","endometrial","endometrial","endometrial",
"endometrial","endometrial","endometrial",
"endometrial","endometrial","endometrial","glioma","glioma",
"glioma","glioma","glioma","glioma","glioma",
"glioma","glioma","glioma","glioma","glioma",
"glioma","glioma","glioma","glioma","glioma","glioma",
"glioma","glioma","hepatopancreatobiliary",
"hepatopancreatobiliary","hepatopancreatobiliary",
"hepatopancreatobiliary","hepatopancreatobiliary",
"hepatopancreatobiliary","hepatopancreatobiliary",
"hepatopancreatobiliary","hepatopancreatobiliary",
"hepatopancreatobiliary","hepatopancreatobiliary",
"hepatopancreatobiliary","hepatopancreatobiliary",
"hepatopancreatobiliary","hepatopancreatobiliary",
"hepatopancreatobiliary","hepatopancreatobiliary",
"hepatopancreatobiliary","hepatopancreatobiliary",
"hepatopancreatobiliary","lung","lung","lung","lung","lung",
"lung","lung","lung","lung","lung","lung","lung",
"lung","lung","lung","lung","lung","lung",
"lung","lung","melanoma","melanoma","melanoma",
"melanoma","melanoma","melanoma","melanoma","melanoma",
"melanoma","melanoma","melanoma","melanoma",
"melanoma","melanoma","melanoma","melanoma",
"melanoma","melanoma","melanoma","melanoma",
"nasopharyngeal","nasopharyngeal","nasopharyngeal",
"nasopharyngeal","nasopharyngeal","nasopharyngeal",
"nasopharyngeal","nasopharyngeal","nasopharyngeal",
"nasopharyngeal","nasopharyngeal","nasopharyngeal",
"nasopharyngeal","nasopharyngeal","nasopharyngeal",
"nasopharyngeal","nasopharyngeal","nasopharyngeal",
"nasopharyngeal","nasopharyngeal","nasopharyngeal",
"nasopharyngeal","oral","oral","oral","oral","oral",
"oral","oral","oral","oral","oral","oral","oral",
"oral","oral","oral","oral","oral","oral",
"oral","oral","ovarian","ovarian","ovarian",
"ovarian","ovarian","ovarian","ovarian","ovarian",
"ovarian","ovarian","ovarian","ovarian","ovarian",
"ovarian","ovarian","ovarian","ovarian","ovarian",
"ovarian","ovarian","prostate","prostate",
"prostate","prostate","prostate","prostate","prostate",
"prostate","prostate","prostate","prostate",
"prostate","prostate","prostate","prostate","prostate",
"prostate","prostate","prostate","prostate",
"renal","renal","renal","renal","renal","renal",
"renal","renal","renal","renal","renal","renal",
"renal","renal","renal","renal","renal","renal",
"renal","renal","sarcoma","sarcoma","sarcoma",
"sarcoma","sarcoma","sarcoma","sarcoma","sarcoma",
"sarcoma","sarcoma","sarcoma","sarcoma","sarcoma",
"sarcoma","sarcoma","sarcoma","sarcoma",
"sarcoma","sarcoma","sarcoma","sinonasal","sinonasal",
"sinonasal","sinonasal","sinonasal","sinonasal",
"sinonasal","sinonasal","sinonasal","sinonasal",
"sinonasal","sinonasal","sinonasal","sinonasal",
"sinonasal","sinonasal","sinonasal","sinonasal",
"sinonasal","sinonasal","testicular","testicular",
"testicular","testicular","testicular","testicular",
"testicular","testicular","testicular","testicular",
"testicular","testicular","testicular",
"testicular","testicular","testicular","testicular",
"testicular","testicular","testicular","testicular",
"testicular","uppergi","uppergi","uppergi","uppergi",
"uppergi","uppergi","uppergi","uppergi",
"uppergi","uppergi","uppergi","uppergi","uppergi",
"uppergi","uppergi","uppergi","uppergi","uppergi",
"uppergi","uppergi"),
number_of_contigs = c(153966L,130777L,
65754L,58792L,47973L,47960L,44341L,41555L,37504L,
36840L,35509L,35162L,34796L,33217L,32684L,30945L,
30907L,30562L,29577L,27943L,10775L,8312L,6154L,
5928L,5082L,4818L,4418L,4362L,3439L,3342L,
3228L,2442L,2335L,2208L,1776L,1735L,1419L,1371L,
1309L,1281L,8661L,8399L,7969L,7718L,7080L,
6871L,6403L,6023L,5317L,4736L,3979L,3557L,3449L,
3397L,3235L,3070L,3042L,3032L,2763L,2755L,
3893L,3667L,2786L,2188L,824L,768L,383L,362L,327L,
262L,140L,127L,116L,107L,103L,97L,84L,78L,
65L,60L,3675L,462L,234L,218L,163L,140L,88L,
74L,60L,59L,59L,50L,41L,40L,35L,33L,33L,30L,
30L,29L,4959L,4569L,3671L,3484L,3451L,2468L,
2184L,2074L,1851L,1812L,1763L,1749L,1144L,947L,
803L,505L,467L,421L,337L,287L,4247L,3969L,
3571L,3360L,3019L,3009L,2441L,1946L,1881L,1812L,
1573L,1417L,1020L,894L,808L,759L,738L,695L,
686L,638L,22309L,13358L,7487L,6476L,5310L,5282L,
4143L,3643L,3456L,3373L,3329L,3195L,3170L,
2780L,2754L,2736L,2664L,2621L,2190L,2163L,14546L,
8053L,7511L,5488L,5294L,5136L,3582L,3512L,
3401L,3322L,3255L,2978L,2364L,2343L,2265L,2225L,
2053L,2046L,1967L,1921L,7988L,6308L,5496L,
4366L,3947L,3573L,2704L,2479L,2149L,1997L,1871L,
1850L,1774L,1768L,1692L,1595L,1460L,1442L,
1362L,1328L,1090L,684L,545L,110L,108L,57L,43L,
26L,14L,12L,12L,9L,9L,8L,8L,7L,6L,6L,5L,5L,
5L,5L,74674L,42882L,30679L,26583L,26115L,
24220L,24177L,22941L,22262L,20628L,14862L,13196L,
12394L,11247L,10126L,9880L,9544L,9182L,8824L,
8472L,8477L,3747L,3501L,3174L,2188L,2161L,1989L,
1864L,1837L,1622L,1474L,1459L,1304L,1284L,
1201L,1145L,1073L,967L,931L,872L,7476L,6629L,
5483L,5066L,4944L,4821L,4548L,4478L,4301L,3878L,
3565L,3296L,3166L,2777L,2652L,2425L,2359L,
2248L,2020L,1829L,24069L,14082L,11170L,6313L,6230L,
6114L,6061L,6052L,5827L,5761L,5607L,5376L,
4914L,4783L,4632L,4487L,4100L,3846L,3678L,3642L,
35434L,16428L,7615L,7410L,6999L,6564L,6471L,
6237L,5126L,5113L,4625L,4527L,4299L,4239L,4221L,
4133L,3829L,3653L,3545L,3123L,4592L,2216L,
2174L,1864L,1749L,1678L,1631L,1402L,1398L,1392L,
1303L,1123L,902L,619L,470L,469L,435L,412L,
386L,365L,669L,124L,114L,24L,18L,13L,8L,8L,7L,
7L,6L,6L,5L,4L,3L,3L,3L,3L,2L,2L,2L,2L,
9442L,7728L,5841L,5654L,4416L,3876L,3386L,
3178L,2781L,2758L,2698L,2323L,2315L,2271L,2134L,
1909L,1754L,1543L,1520L,1406L),
genus = as.factor(c("Prevotella","Bacteroides","Treponema",
"Fusobacterium","Selenomonas","Candidatus",
"Plasmodium","Porphyromonas","Rudaea",
"Campylobacter","Achromobacter",
"Clostridium","Staphylococcus","Burkholderiales",
"Bradyrhizobiaceae","unclassified",
"Veillonella","Leptotrichia","Actinomyces",
"Mycobacteroides","Anaerococcus","Prevotella",
"Peptoniphilus","Achromobacter","Rudaea",
"Campylobacter","Actinotignum",
"Finegoldia","Plasmodium","unclassified",
"Vulcaniibacterium","Veillonella","Varibaculum",
"Cutibacterium","Gleimia","Lactobacillus",
"Enterococcus","Alloscardovia",
"Aerococcus","Tepidimonas","Bacteroides",
"Candidatus","Malassezia","Burkholderiales",
"Plasmodium","Staphylococcus","Rhizobiales",
"Mycobacterium","Meiothermus",
"Bradyrhizobiaceae","Betaproteobacteria","Asanoa",
"Agrobacterium","Hyphomicrobium",
"Mycobacteroides","Leifsonia","Dechloromonas",
"Gordonia","Mycolicibacterium",
"unclassified","Bradyrhizobiaceae","Rudaea",
"Plasmodium","Fusobacterium","Cutibacterium",
"Sulfolobus","Virgibacillus","Mycobacterium",
"Achromobacter","Mycobacteroides",
"Enterobius","Mycolicibacterium",
"Burkholderiales","Staphylococcus","Shewanella",
"Roseolovirus","Candidatus","Porphyromonas",
"Leuconostoc","Varicellovirus","Emticicia",
"Plasmodium","Rickettsiales",
"Alphaproteobacteria","Candidatus","Sulfolobus",
"Thauera","Trichinella","Proteobacteria",
"Elizabethkingia","Tanacetum","Rickettsia",
"Rhodospirillaceae","Virgibacillus",
"Gammaproteobacteria","Burkholderiales",
"Sphingobacteriales","Klebsiella",
"unclassified","Citrobacter","Mycobacteroides",
"Nocardia","unclassified","Penicillium",
"Meiothermus","Chitinophagaceae",
"Mycobacterium","Cutibacterium","Bodo",
"Sediminibacterium","Plasmodium","Alternaria",
"Mycolicibacterium","Peptoniphilus",
"Aspergillus","Lachnospiraceae","Bradyrhizobiaceae",
"Candidatus","Virgibacillus",
"Lactobacillus","Plasmodium","Achromobacter",
"Candidatus","Bradyrhizobiaceae",
"Burkholderiales","Bodo","Chitinophagaceae",
"unclassified","Sediminibacterium","Tepidimonas",
"Campylobacter","Chlamydiales",
"Vulcaniibacterium","Lawsonella","Emticicia",
"Porphyromonas","Rudaea","Moraxella",
"Chlamydiae","Cutibacterium","Bacteroides",
"Prevotella","Fusobacterium","Achromobacter",
"Clostridium","Rudaea","Ruminococcus",
"Klebsiella","Oscillibacter",
"Faecalibacterium","Plasmodium","Enterococcus",
"Firmicutes","unclassified","Veillonella",
"Selenomonas","Clostridiales","Haemophilus",
"Treponema","Dialister","Bacteroides",
"Achromobacter","Candidatus","Staphylococcus",
"Burkholderiales","Fusobacterium",
"Methylorubrum","Bodo","Prevotella",
"Malassezia","Bradyrhizobiaceae","Mycobacteroides",
"unclassified","Veillonella",
"Mycolicibacterium","Exiguobacterium","Nocardia",
"Rhizobiales","Youhaiella","Starkeya",
"Prevotella","Treponema","Rudaea",
"Emticicia","Fusobacterium","Selenomonas",
"Mogibacterium","Campylobacter","Dialister",
"Fretibacterium","Bacteroides","Veillonella",
"Tannerella","Olsenella",
"Shuttleworthia","Peptoniphilus","Haemophilus",
"Eggerthia","Mycobacteroides","Plasmodium",
"Fusobacterium","Prevotella","Plasmodium",
"Bacteroides","Sulfolobus","Trichinella",
"Solobacterium","Virgibacillus",
"Staphylococcus","Enterobius","Porphyromonas",
"Mycobacterium","Parvimonas","Enterococcus",
"Mycoplasma","Chlamydia",
"Alphapapillomavirus","Leuconostoc","Cercocebus",
"Klebsiella","Neisseria","Selenomonas",
"Prevotella","Treponema","Selenomonas",
"Actinomyces","Trichomonas","Capnocytophaga",
"Leptotrichia","Fusobacterium","Campylobacter",
"Porphyromonas","Neisseria",
"Haemophilus","Veillonella","Lachnospiraceae",
"Rothia","Alloprevotella","Gemella",
"Lachnoanaerobaculum","Catonella","Oribacterium",
"Bacteroides","Burkholderiales",
"Plasmodium","Mycolicibacterium","Effusibacillus",
"Fusobacterium","Candidatus",
"Staphylococcus","Hyphomicrobium","Mycobacterium",
"Mycobacteroides","Vulcaniibacterium",
"Bradyrhizobiaceae","Cutibacterium",
"Malassezia","Alishewanella","Nocardia",
"unclassified","Porphyromonas","Meiothermus",
"Bradyrhizobiaceae","Methylorubrum",
"Candidatus","Mycobacteroides","Burkholderiales",
"Mycolicibacterium","Pannonibacter",
"Plasmodium","Bacteroides","Mycobacterium",
"Malassezia","Staphylococcus","Tepidimonas",
"Pelagibacterium","Nocardia",
"Prevotella","Vulcaniibacterium","Porphyrobacter",
"Dialister","Fusobacterium","Bacteroides",
"Clostridium","Prevotella",
"Porphyromonas","Candidatus","Malassezia",
"Achromobacter","Bradyrhizobiaceae","Tepidimonas",
"Plasmodium","Clostridiales",
"Staphylococcus","Vulcaniibacterium","Roseburia",
"Fusobacterium","Emticicia",
"Faecalibacterium","Mycobacteroides","Butyricimonas",
"Enterococcus","Bacteroides","Prevotella",
"Staphylococcus","Peptoniphilus",
"Anaerococcus","Faecalibacterium","Porphyromonas",
"Parabacteroides","Rudaea","Nocardia",
"Candidatus","Veillonella",
"Burkholderiales","unclassified","Roseburia",
"Emticicia","Citrobacter","Vulcaniibacterium",
"Alistipes","Clostridium","Treponema",
"Prevotella","Campylobacter","Fusobacterium",
"Haemophilus","Moraxella","Alloprevotella",
"Selenomonas","Parvimonas","Neisseria",
"Eikenella","Gemella","Bodo",
"Fretibacterium","Candidatus","Peptostreptococcus",
"Plasmodium","Porphyromonas",
"Filifactor","Peptoanaerobacter","Plasmodium",
"Sulfolobus","Trichinella","Virgibacillus",
"Staphylococcus","Leuconostoc","Chlamydia",
"Roseolovirus","Enterococcus",
"Mycobacterium","Enterobius","Tetrasphaera",
"Lactobacillus","Butyrivibrio","Cercocebus",
"Klebsiella","Rhinopithecus","Vibrio",
"Bifidobacterium","Campylobacter",
"Pediococcus","Shigella","Prevotella","Treponema",
"Clostridium","Selenomonas",
"Leptotrichia","Lactobacillus","Fusobacterium",
"Veillonella","Effusibacillus","Neisseria",
"Bacteroides","Haemophilus","Hafnia",
"Mycobacteroides","Rothia","Peptoanaerobacter",
"Catonella","Parvimonas",
"Lachnospiraceae","Solobacterium"))
)
contig_wider <- contig_data %>% pivot_wider(names_from=cancer, values_from=number_of_contigs)
colnames(contig_wider) <- gsub('all_cancers', 'allcancers', colnames(contig_wider))
allcancers <- contig_wider %>% select(genus, allcancers) %>% filter(!is.na(allcancers)) %>% arrange(allcancers)
bladder <- contig_wider %>% select(genus, bladder) %>% filter(!is.na(bladder)) %>% arrange(bladder)
breast <- contig_wider %>% select(genus, breast) %>% filter(!is.na(breast)) %>% arrange(breast)
childhood <- contig_wider %>% select(genus, childhood) %>% filter(!is.na(childhood)) %>% arrange(childhood)
endocrine <- contig_wider %>% select(genus, endocrine) %>% filter(!is.na(endocrine)) %>% arrange(endocrine)
endometrial <- contig_wider %>% select(genus, endometrial) %>% filter(!is.na(endometrial)) %>% arrange(endometrial)
glioma <- contig_wider %>% select(genus, glioma) %>% filter(!is.na(glioma)) %>% arrange(glioma)
hepatopancreatobiliary <- contig_wider %>% select(genus, hepatopancreatobiliary) %>% filter(!is.na(hepatopancreatobiliary)) %>% arrange(hepatopancreatobiliary)
lung <- contig_wider %>% select(genus, lung) %>% filter(!is.na(lung)) %>% arrange(lung)
melanoma <- contig_wider %>% select(genus, melanoma) %>% filter(!is.na(melanoma)) %>% arrange(melanoma)
nasopharyngeal <- contig_wider %>% select(genus, nasopharyngeal) %>% filter(!is.na(nasopharyngeal)) %>% arrange(nasopharyngeal)
oral <- contig_wider %>% select(genus, oral) %>% filter(!is.na(oral)) %>% arrange(oral)
ovarian <- contig_wider %>% select(genus, ovarian) %>% filter(!is.na(ovarian)) %>% arrange(ovarian)
prostate <- contig_wider %>% select(genus, prostate) %>% filter(!is.na(prostate)) %>% arrange(prostate)
renal <- contig_wider %>% select(genus, renal) %>% filter(!is.na(renal)) %>% arrange(renal)
sarcoma <- contig_wider %>% select(genus, sarcoma) %>% filter(!is.na(sarcoma)) %>% arrange(sarcoma)
sinonasal <- contig_wider %>% select(genus, sinonasal) %>% filter(!is.na(sinonasal)) %>% arrange(sinonasal)
testicular <- contig_wider %>% select(genus, testicular) %>% filter(!is.na(testicular)) %>% arrange(testicular)
uppergi <- contig_wider %>% select(genus, uppergi) %>% filter(!is.na(uppergi)) %>% arrange(uppergi)
contig_fig <- plot_ly(type='bar') %>%
add_trace(data=allcancers, y=~genus, x=~allcancers, visible=T, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=bladder, y=~genus, x=~bladder, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=breast, y=~genus, x=~breast, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=childhood, y=~genus, x=~childhood, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=endocrine, y=~genus, x=~endocrine, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=endometrial, y=~genus, x=~endometrial, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=glioma, y=~genus, x=~glioma, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=hepatopancreatobiliary, y=~genus, x=~hepatopancreatobiliary, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=lung, y=~genus, x=~lung, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=melanoma, y=~genus, x=~melanoma, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=nasopharyngeal, x=~genus, y=~nasopharyngeal, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=oral, y=~genus, x=~oral, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=ovarian, y=~genus, x=~ovarian, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=prostate, y=~genus, x=~prostate, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=renal, y=~genus, x=~renal, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=sarcoma, y=~genus, x=~sarcoma, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=sinonasal, y=~genus, x=~sinonasal, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=testicular, y=~genus, x=~testicular, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
add_trace(data=uppergi, y=~genus, x=~uppergi, visible=F, color=I("darkorchid4"), opacity=0.7) %>%
layout(
yaxis = list(
title='Genus',
size=20,
tickfont=list(size=18)),
xaxis=list(
title='Number of Contigs',
size=20,
tickfont=list(size=18)),
showlegend=FALSE,
updatemenus = list(
list(
xanchor='right',
yanchor='bottom',
buttons = list(
list(method='restyle',
args=list('visible', list(FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='All Cancers'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Bladder'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Breast'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Childhood'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Endocrine'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Endometrial'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Glioma'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Hepatopancreatobiliary'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Lung'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Melanoma'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Nasopharyngeal'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Oral'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Ovarian'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE)),
label='Prostate'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE)),
label='Renal'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE)),
label='Sarcoma'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE)),
label='Sinonasal'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE)),
label='Testicular'),
list(method='restyle',
args=list('visible', list(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE)),
label='Upper Gastrointestinal')
)
)
)
)
contig_fig
```
# Conclusion
Although the data overall is sparse and rife with potential contaminants, there are a range of interesting genera being reported accross cancer types by both SEPATH and by investigating assembled contigs. Some of these genera have previously been suggested to contribute to tumourigenesis.
# Future Directions
Despite using machine learning efforts to refine lists of informative taxa, our efforts so far have not identified any obvious structure by cancer type. This is contradictory to recent publications[@Nejman2020; @Poore2020] and will be investigated further.
- This data will be interrogated for associations with metadata.
- The raw quality-trimmed and non-human reads have been mapped back to the contigs and this will be assessed as a second layer of information.
- Contigs will be subject to analysis to investigate the functional potential of pathogens reported.
# Final note
This poster was produced using [posterdown](https://github.com/brentthorne/posterdown). The associated GitHub can be found [here](https://github.com/Agihawi/ncrn_poster).
```{r, include=FALSE}
knitr::write_bib(c('knitr','rmarkdown','posterdown','pagedown'), 'packages.bib')
```
# References