forked from hane1818/NeuralSum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
181 lines (142 loc) · 7.39 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import numpy as np
import tensorflow as tf
from utils import softmax
import model
from data_reader import load_data, DataReader
flags = tf.flags
# data
flags.DEFINE_string('data_dir', 'data/demo', 'data directory. Should contain train.txt/valid.txt/test.txt with input data')
flags.DEFINE_string('train_dir', 'cv', 'training directory (models and summaries are saved there periodically)')
flags.DEFINE_string('load_model', None, '(optional) filename of the model to load. Useful for re-starting training from a checkpoint')
# model params
flags.DEFINE_string('model_choice', 'lstm', 'model choice')
flags.DEFINE_integer('rnn_size', 650, 'size of LSTM internal state')
flags.DEFINE_integer('highway_layers', 2, 'number of highway layers')
flags.DEFINE_integer('word_embed_size', 50, 'dimensionality of word embeddings')
flags.DEFINE_string ('kernels', '[1,2,3,4,5,6,7]', 'CNN kernel widths')
flags.DEFINE_string ('kernel_features', '[50,100,150,200,200,200,200]', 'number of features in the CNN kernel')
flags.DEFINE_integer('rnn_layers', 2, 'number of layers in the LSTM')
# optimization
flags.DEFINE_integer('batch_size', 20, 'number of sequences to train on in parallel')
flags.DEFINE_integer('max_doc_length', 15, 'max_doc_length')
flags.DEFINE_integer('max_sen_length', 50, 'maximum sentence length')
flags.DEFINE_float ('weight_2', 0.5, 'how much do we count about label 2')
# bookkeeping
flags.DEFINE_integer('seed', 3435, 'random number generator seed')
FLAGS = flags.FLAGS
def run_test(session, m, data, batch_size, num_steps):
"""Runs the model on the given data."""
costs = 0.0
iters = 0
state = session.run(m.initial_state)
for step, (x, y) in enumerate(reader.dataset_iterator(data, batch_size, num_steps)):
cost, state = session.run([m.cost, m.final_state], {
m.input_data: x,
m.targets: y,
m.initial_state: state
})
costs += cost
iters += 1
return costs / iters
def build_model(word_vocab):
if FLAGS.model_choice == 'bilstm':
valid_model = model.cnn_sen_enc(
word_vocab_size=word_vocab.size,
word_embed_size=FLAGS.word_embed_size,
batch_size=FLAGS.batch_size,
num_highway_layers=FLAGS.highway_layers,
max_sen_length=FLAGS.max_sen_length,
kernels=eval(FLAGS.kernels),
kernel_features=eval(FLAGS.kernel_features),
max_doc_length=FLAGS.max_doc_length)
valid_model.update(model.bilstm_doc_enc(valid_model.input_cnn,
batch_size=FLAGS.batch_size,
num_rnn_layers=FLAGS.rnn_layers,
rnn_size=FLAGS.rnn_size,
max_doc_length=FLAGS.max_doc_length,
dropout=0.0))
valid_model.update(model.label_prediction(valid_model.enc_outputs))
valid_model.update(model.loss_extraction(valid_model.logits, FLAGS.batch_size, FLAGS.max_doc_length))
elif FLAGS.model_choice == 'lstm':
valid_model = model.cnn_sen_enc(
word_vocab_size=word_vocab.size,
word_embed_size=FLAGS.word_embed_size,
batch_size=FLAGS.batch_size,
num_highway_layers=FLAGS.highway_layers,
max_sen_length=FLAGS.max_sen_length,
kernels=eval(FLAGS.kernels),
kernel_features=eval(FLAGS.kernel_features),
max_doc_length=FLAGS.max_doc_length)
valid_model.update(model.lstm_doc_enc(valid_model.input_cnn,
batch_size=FLAGS.batch_size,
num_rnn_layers=FLAGS.rnn_layers,
rnn_size=FLAGS.rnn_size,
max_doc_length=FLAGS.max_doc_length,
dropout=0.0))
valid_model.update(model.lstm_doc_dec(valid_model.input_cnn, valid_model.final_enc_state,
batch_size=FLAGS.batch_size,
num_rnn_layers=FLAGS.rnn_layers,
rnn_size=FLAGS.rnn_size,
max_doc_length=FLAGS.max_doc_length,
dropout=0.0))
valid_model.update(model.label_prediction_att(valid_model.enc_outputs, valid_model.dec_outputs))
valid_model.update(model.loss_extraction(valid_model.logits, FLAGS.batch_size, FLAGS.max_doc_length))
return valid_model
def main(_):
''' Loads trained model and evaluates it on test split '''
if FLAGS.load_model is None:
print('Please specify checkpoint file to load model from')
return -1
if not os.path.exists(FLAGS.load_model + ".index"):
print('Checkpoint file not found', FLAGS.load_model)
return -1
word_vocab, word_tensors, max_doc_length, label_tensors = \
load_data(FLAGS.data_dir, FLAGS.max_doc_length, FLAGS.max_sen_length)
test_reader = DataReader(word_tensors['test'], label_tensors['test'],
FLAGS.batch_size)
print('initialized test dataset reader')
with tf.Graph().as_default(), tf.Session() as session:
# tensorflow seed must be inside graph
tf.set_random_seed(FLAGS.seed)
np.random.seed(seed=FLAGS.seed)
''' build inference graph '''
with tf.variable_scope("Model"):
m = build_model(word_vocab)
global_step = tf.Variable(0, dtype=tf.int32, name='global_step')
saver = tf.train.Saver()
saver.restore(session, FLAGS.load_model)
print('Loaded model from', FLAGS.load_model, 'saved at global step', global_step.eval())
''' training starts here '''
count = 0
start_time = time.time()
result_scores = None
for x, y in test_reader.iter():
count += 1
logits = session.run(
m.logits,
{
m.input : x,
m.targets: y
})
total_scores = []
for tid, tlogits in enumerate(logits):
scores = softmax(tlogits)
weights = np.array([0, 1, 0.5])
scores = np.dot(scores, weights)
total_scores.append(scores)
total_scores = np.transpose(np.asarray(total_scores))
if result_scores is None:
result_scores = total_scores
else:
result_scores = np.vstack((result_scores, total_scores))
save_as = '%s/scores' % (FLAGS.train_dir)
np.savetxt(save_as, result_scores, delimiter=' ')
time_elapsed = time.time() - start_time
print("test samples:", count*FLAGS.batch_size, "time elapsed:", time_elapsed, "time per one batch:", time_elapsed/count)
if __name__ == "__main__":
tf.app.run()