-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
47 lines (36 loc) · 1.79 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from keras import backend as K
from keras.engine.topology import Layer
from keras.layers import ZeroPadding2D, BatchNormalization
from debug import _print_tensor
import tensorflow as tf
class AdaIN(Layer):
def __init__(self, epsilon=1e-5, **kwargs):
self.epsilon = epsilon
self.alpha = 0.5
super(AdaIN, self).__init__(**kwargs)
def build(self, input_shape):
super(AdaIN, self).build(input_shape)
def call(self, inputs):
if type(inputs) is not list or len(inputs) <= 1:
raise Exception('AdaIN must be called on a list of tensors '
'(exactly 2). Got: ' + str(inputs))
content_layer = inputs[0]
style_layer = inputs[1]
style_mean, style_variance = tf.nn.moments(style_layer, [1, 2], keep_dims=True)
content_mean, content_variance = tf.nn.moments(content_layer, [1, 2], keep_dims=True)
normalized_content_features = tf.nn.batch_normalization(content_layer, content_mean,
content_variance, style_mean,
tf.sqrt(style_variance), self.epsilon)
self.result = self.alpha * normalized_content_features + (1 - self.alpha) * content_layer
return self.result
def compute_output_shape(self, input_shape):
return K.int_shape(self.result)
# Extending the ZeroPadding2D layer to do reflection padding instead.
class ReflectionPadding2D(ZeroPadding2D):
def call(self, x, mask=None):
(top_pad, bottom_pad), (left_pad, right_pad) = self.padding
pattern = [[0, 0],
[top_pad, bottom_pad],
[left_pad, right_pad],
[0, 0]]
return tf.pad(x, pattern, mode='REFLECT')