-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_segmentation_multi.py
293 lines (230 loc) · 10.5 KB
/
eval_segmentation_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from datasets import load_dataset
from tqdm import tqdm
from spacy.vocab import Vocab
from spacy.training import Example
from spacy.scorer import Scorer
from spacy.tokens import Doc
import json
import time
def load_and_preprocess_dataset(dataset_name):
dataset = load_dataset(dataset_name, split='test')
preprocessed_data = []
if dataset_name == "AlienKevin/hkcancor-multi":
for item in dataset:
chars = item['chars']
labels = item['labels']
preprocessed_data.append((''.join(chars), labels))
else:
for item in dataset:
tokens = item['tokens']
text = ''.join(tokens)
preprocessed_data.append((text, tokens))
return preprocessed_data
def evaluate_segmentation(cut, dataset_names):
results = {}
total_tokens = 0
total_time = 0
for dataset_name in dataset_names:
print(f"Evaluating on {dataset_name}")
# Load and preprocess the dataset
test_data = load_and_preprocess_dataset(dataset_name)
if dataset_name == "AlienKevin/hkcancor-multi":
# Initialize counters for correct predictions and total predictions
correct_predictions = 0
total_predictions = 0
for text, labels in tqdm(test_data):
total_tokens += len(text)
start = time.time()
predictions = cut(text)
total_time += time.time() - start
# Iterate through the characters and labels
assert len(labels) == len(predictions)
for label, pred in zip(labels, predictions):
pred_label = pred['entity']
# Compare prediction with the true label
if pred_label == 'DIPS'[label]:
correct_predictions += 1
total_predictions += 1
# Calculate accuracy
accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
print(f"Accuracy: {accuracy:.4f} ({correct_predictions}/{total_predictions})")
results[dataset_name] = {'accuracy': accuracy, 'correct_predictions': correct_predictions, 'total_predictions': total_predictions}
continue
V = Vocab()
examples = []
errors = []
for text, reference in tqdm(test_data):
total_tokens += len(text)
start = time.time()
predictions = cut(text)
total_time += time.time() - start
# Fine segmentation
hypothesis_fine = []
current_token = ""
for pred in predictions:
if not pred['entity'].startswith('I'):
if current_token:
hypothesis_fine.append(current_token)
current_token = pred['word'].lstrip('##')
else:
current_token += pred['word'].lstrip('##')
if current_token:
hypothesis_fine.append(current_token)
if len(''.join(reference)) != len(''.join(hypothesis_fine)):
print("Hypothesis does not match reference.")
print("HYP:" + ''.join(hypothesis_fine))
print("REF:" + ''.join(reference))
continue
# Coarse segmentation
hypothesis_coarse = []
current_token = ""
for pred in predictions:
if pred['entity'].startswith('S'):
if current_token:
hypothesis_coarse.append(current_token)
current_token = pred['word'].lstrip('##')
else:
current_token += pred['word'].lstrip('##')
if current_token:
hypothesis_coarse.append(current_token)
# Map coarse tokens to fine tokens
coarse_to_fine = {}
char_index = 0
for coarse_token in hypothesis_coarse:
start = char_index
end = start + len(coarse_token)
fine_tokens = []
current_length = 0
fine_char_index = 0
for fine_token in hypothesis_fine:
if fine_char_index < start:
fine_char_index += len(fine_token)
continue
elif fine_char_index > start:
break
if current_length + len(fine_token) <= len(coarse_token):
fine_tokens.append(fine_token)
current_length += len(fine_token)
else:
break
coarse_to_fine[(start, end)] = fine_tokens
char_index = end
# Split/merge matching words in reference according to coarse_to_fine mapping
new_reference = []
char_index = 0
for ref_token in reference:
start = char_index
end = start + len(ref_token)
if (start, end) in coarse_to_fine:
new_reference.extend(coarse_to_fine[(start, end)])
else:
new_reference.append(ref_token)
char_index = end
# Update reference with the split version
reference = new_reference
hypothesis = hypothesis_fine
target = Doc(V, words=reference, spaces=[False] * len(reference))
predicted = Doc(V, words=hypothesis, spaces=[False] * len(hypothesis))
example = Example(predicted, target)
examples.append(example)
if reference != hypothesis:
# Fine segmentation
hypothesis_str = ""
for pred in predictions:
if pred['entity'].startswith('S'):
hypothesis_str += " "
elif pred['entity'].startswith('D'):
hypothesis_str += "-"
elif pred['entity'].startswith('P'):
hypothesis_str += "|"
hypothesis_str += pred['word'].lstrip('##')
hypothesis_str = hypothesis_str.lstrip(' ')
errors.append({'reference': ' '.join(reference), 'hypothesis': hypothesis_str})
# with open(f'{dataset_name.split("/")[-1]}_seg_errors.jsonl', 'w') as f:
# for error in errors:
# f.write(json.dumps(error, ensure_ascii=False) + '\n')
scorer = Scorer()
scorer_results = scorer.score(examples)
print(f"Token F1 Score: {scorer_results['token_f']:.4f}")
print(f"Token Precision: {scorer_results['token_p']:.4f}")
print(f"Token Recall: {scorer_results['token_r']:.4f}")
print()
results[dataset_name] = {'token_f': scorer_results['token_f'], 'token_p': scorer_results['token_p'], 'token_r': scorer_results['token_r']}
results['total_tokens'] = total_tokens
results['total_time'] = total_time
return results
if __name__ == "__main__":
model_results = {}
ckip_models = [
"electra_small_hkcancor_multi",
"electra_small_layers_6_hkcancor_multi",
"electra_small_layers_5_hkcancor_multi",
"electra_small_layers_4_hkcancor_multi",
"electra_small_layers_3_hkcancor_multi",
"electra_base_hkcancor_multi",
"electra_large_hkcancor_multi",
"albert_tiny_chinese_hkcancor_multi",
"bert_tiny_chinese_hkcancor_multi",
"electra_small_layers_6_multi",
"electra_small_layers_6_multi_compressed",
]
dataset_names = ["AlienKevin/hkcancor-multi", "AlienKevin/ud_yue_hk", "AlienKevin/ud_zh_hk", "AlienKevin/cityu-seg"]
for model_name in ckip_models:
print(f'Evaluating {model_name}')
model_path = f"finetune-ckip-transformers/{model_name}"
model_results[model_name] = {}
# from transformers import pipeline
# cut = pipeline("token-classification", model=model_name, device="cpu")
from transformers import AutoModelForTokenClassification
import torch
from pathlib import Path
start = time.time()
model = AutoModelForTokenClassification.from_pretrained(model_path).to('cpu')
vocab_path = Path(model_path) / "vocab.txt"
vocab = {}
with open(vocab_path, 'r', encoding='utf-8') as f:
for i, line in enumerate(f):
vocab[line.strip()] = i
model_results[model_name]['load_time'] = time.time() - start
def cut(text):
inputs = torch.tensor([vocab['[CLS]']] + [vocab[char] if char in vocab else vocab['[UNK]'] for char in text.lower()] + [vocab['[SEP]']]).unsqueeze(0)
with torch.no_grad():
# squeeze removes the first singleton batch dimension
# [1, -1] removes the first [CLS] and last [SEP] tokens
logits = model(input_ids=inputs).logits.squeeze()[1:-1]
predictions = logits.argmax(dim=-1).tolist()
return list({"word": token, "entity": "DIPS"[prediction]} for token, prediction in zip(text, predictions))
results = evaluate_segmentation(cut, dataset_names)
for k, v in results.items():
model_results[model_name][k] = v
# from scratch_inference.flax_model import Electra
# model = Electra()
# model.load("finetune-ckip-transformers/electra_small_layers_6_multi_compressed")
# cut = lambda text: model.cut(text)
gguf_models = [
"electra.gguf",
"electra-q8_0.gguf",
"electra-q4_1.gguf",
"electra-q4_0.gguf",
]
for model_name in gguf_models:
model_path = f"bert.cpp/{model_name}"
print(f'Evaluating {model_name}')
model_results[model_name] = {}
import sys
import os
module_path = os.path.join(os.path.dirname(__file__), 'bert.cpp')
sys.path.append(module_path)
from bert_cpp import BertModel
start = time.time()
model = BertModel(model_path, use_cpu=True)
model_results[model_name]['load_time'] = time.time() - start
def cut(text):
tags = model.cut(text, mode='dips')
return [{'word': char, 'entity': tag} for char, tag in zip(text, tags)]
results = evaluate_segmentation(cut, dataset_names)
for k, v in results.items():
model_results[model_name][k] = v
import json
with open('multi_model_results.json', 'w') as f:
json.dump(model_results, f, ensure_ascii=False)