diff --git a/01_variables.html b/01_variables.html index 2a4df5e..6810bc2 100644 --- a/01_variables.html +++ b/01_variables.html @@ -376,8 +376,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Variables and Values#

The topics in this chapter are:

diff --git a/02_times.html b/02_times.html index c08f8cf..fde4497 100644 --- a/02_times.html +++ b/02_times.html @@ -379,8 +379,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Times and Places#

Click here to run this notebook on Colab.

diff --git a/03_arrays.html b/03_arrays.html index e746d54..9e97de9 100644 --- a/03_arrays.html +++ b/03_arrays.html @@ -377,8 +377,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Lists and Arrays#

Click here to run this notebook on Colab.

diff --git a/04_loops.html b/04_loops.html index 39f409b..6253946 100644 --- a/04_loops.html +++ b/04_loops.html @@ -376,8 +376,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Loops and Files#

Click here to run this notebook on Colab.

diff --git a/05_dictionaries.html b/05_dictionaries.html index a8e0499..9503077 100644 --- a/05_dictionaries.html +++ b/05_dictionaries.html @@ -375,8 +375,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Dictionaries#

Click here to run this notebook on Colab or diff --git a/06_plotting.html b/06_plotting.html index f55fc88..b9903dc 100644 --- a/06_plotting.html +++ b/06_plotting.html @@ -377,8 +377,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Plotting#

Click here to run this notebook on Colab.

diff --git a/07_dataframes.html b/07_dataframes.html index 785b965..3664356 100644 --- a/07_dataframes.html +++ b/07_dataframes.html @@ -379,8 +379,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

DataFrames and Series#

Click here to run this notebook on Colab.

diff --git a/08_distributions.html b/08_distributions.html index 6fdf963..d23ef93 100644 --- a/08_distributions.html +++ b/08_distributions.html @@ -380,8 +380,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Distributions#

Click here to run this notebook on Colab.

diff --git a/09_relationships.html b/09_relationships.html index 407949f..c8786f8 100644 --- a/09_relationships.html +++ b/09_relationships.html @@ -374,8 +374,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Relationships#

Click here to run this notebook on Colab.

diff --git a/10_regression.html b/10_regression.html index 23c1784..27abf83 100644 --- a/10_regression.html +++ b/10_regression.html @@ -375,8 +375,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Regression#

diff --git a/11_resampling.html b/11_resampling.html index 974dab9..0be4e97 100644 --- a/11_resampling.html +++ b/11_resampling.html @@ -374,8 +374,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Resampling#

@@ -557,7 +556,7 @@

Simulating One Group

-_images/3e6d2409a2cf89a0d4454fca0b6a901c28dc57d342b507edb2254e9ce25599dc.png +_images/c8d1a98d424f44f32d59fb95e54085ba97fbdb9cbc359388af64cac8a4379784.png

The mean of this distribution is close to the efficacy we computed with the results of the actual trial.

@@ -833,7 +832,7 @@

Estimating Means -_images/26b923ed3af86a65bb522dfab77040ee3a6ea9c1a3c0af91e2bbd95e659a9b0c.png +_images/ec2770347978626d9a5fcaf8b1fcf276c505818353e0743267492d58195371b4.png

This result is called a sampling distribution because it represents the variation in the results due to the random sampling process. diff --git a/12_bootstrap.html b/12_bootstrap.html index 7888631..677e34f 100644 --- a/12_bootstrap.html +++ b/12_bootstrap.html @@ -377,8 +377,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Bootstrap Sampling#

Click here to run this notebook on Colab.

diff --git a/13_hypothesis.html b/13_hypothesis.html index 0c05852..1a6c0c0 100644 --- a/13_hypothesis.html +++ b/13_hypothesis.html @@ -378,8 +378,7 @@

Contents

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Hypothesis Testing#

Click here to run this notebook on Colab.

diff --git a/14_outro.html b/14_outro.html index 77798de..6674f81 100644 --- a/14_outro.html +++ b/14_outro.html @@ -359,8 +359,7 @@

Further Reading

-

Printed copies of Elements of Data Science are available now, with a full color interior.

-

From July 17 to July 31, get 20% off at Lulu.com.

+

Printed copies of Elements of Data Science are available now, with a full color interior, from Lulu.com.

Further Reading#

The first part of this book is an accelerated introduction to Python with emphasis on tools for working with data. diff --git a/_images/9403253e7d1c710973e48f11c2f481541c98749a35e9fed906f90c52d10909e5.png b/_images/9403253e7d1c710973e48f11c2f481541c98749a35e9fed906f90c52d10909e5.png new file mode 100644 index 0000000..87a140c Binary files /dev/null and b/_images/9403253e7d1c710973e48f11c2f481541c98749a35e9fed906f90c52d10909e5.png differ diff --git a/_images/c8d1a98d424f44f32d59fb95e54085ba97fbdb9cbc359388af64cac8a4379784.png b/_images/c8d1a98d424f44f32d59fb95e54085ba97fbdb9cbc359388af64cac8a4379784.png new file mode 100644 index 0000000..b2b466a Binary files /dev/null and b/_images/c8d1a98d424f44f32d59fb95e54085ba97fbdb9cbc359388af64cac8a4379784.png differ diff --git a/_images/ec2770347978626d9a5fcaf8b1fcf276c505818353e0743267492d58195371b4.png b/_images/ec2770347978626d9a5fcaf8b1fcf276c505818353e0743267492d58195371b4.png new file mode 100644 index 0000000..66c7fc4 Binary files /dev/null and b/_images/ec2770347978626d9a5fcaf8b1fcf276c505818353e0743267492d58195371b4.png differ diff --git a/_sources/01_variables.ipynb b/_sources/01_variables.ipynb index 3c90187..8b6fa89 100644 --- a/_sources/01_variables.ipynb +++ b/_sources/01_variables.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/02_times.ipynb b/_sources/02_times.ipynb index fa0c3e0..03f684e 100644 --- a/_sources/02_times.ipynb +++ b/_sources/02_times.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/03_arrays.ipynb b/_sources/03_arrays.ipynb index d0cf306..c459c8d 100644 --- a/_sources/03_arrays.ipynb +++ b/_sources/03_arrays.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/04_loops.ipynb b/_sources/04_loops.ipynb index ee27977..7fe3644 100644 --- a/_sources/04_loops.ipynb +++ b/_sources/04_loops.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/05_dictionaries.ipynb b/_sources/05_dictionaries.ipynb index f02c1f9..acf05c9 100644 --- a/_sources/05_dictionaries.ipynb +++ b/_sources/05_dictionaries.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/06_plotting.ipynb b/_sources/06_plotting.ipynb index 7c81d92..947f226 100644 --- a/_sources/06_plotting.ipynb +++ b/_sources/06_plotting.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/07_dataframes.ipynb b/_sources/07_dataframes.ipynb index 09851b9..878109e 100644 --- a/_sources/07_dataframes.ipynb +++ b/_sources/07_dataframes.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/08_distributions.ipynb b/_sources/08_distributions.ipynb index 7beca5b..33f68d3 100644 --- a/_sources/08_distributions.ipynb +++ b/_sources/08_distributions.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/09_relationships.ipynb b/_sources/09_relationships.ipynb index b2f6382..7f7c8e0 100644 --- a/_sources/09_relationships.ipynb +++ b/_sources/09_relationships.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/10_regression.ipynb b/_sources/10_regression.ipynb index da0a4de..21d920e 100644 --- a/_sources/10_regression.ipynb +++ b/_sources/10_regression.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/11_resampling.ipynb b/_sources/11_resampling.ipynb index db77de2..192386d 100644 --- a/_sources/11_resampling.ipynb +++ b/_sources/11_resampling.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { @@ -340,7 +338,7 @@ { "data": { "text/plain": [ - "array([1, 0, 0, 0, 0, 1, 1, 1, 1, 1])" + "array([1, 0, 1, 1, 1, 1, 1, 1, 1, 0])" ] }, "execution_count": 11, @@ -391,7 +389,7 @@ { "data": { "text/plain": [ - "4.883391903610059" + "5.294144493633334" ] }, "execution_count": 13, @@ -452,7 +450,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEICAYAAACeSMncAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAAuJAAALiQE3ycutAABIOUlEQVR4nO3dd1xT5/4H8E8Im7A3JoCAoglbxF1wW7cWt4gtaAfd99r2tre1t+N22d6qReuvWLVibVXU0tbauqh1VHHgQhBkRvYMG0Ke3x/UtBQIAQkHyPf9euWlyXnOyYfD+OY855zn4THGGAghhJBu0OE6ACGEkP6LigghhJBuoyJCCCGk26iIEEII6TYqIoQQQrqNigghhJBuoyJCCCGk26iIkF6Xk5MDgUCAyspKle2ysrLA4/FQUVHxwO/5xRdfwNHREQKBAFevXn3g7fW03377DUKhUGPbDwkJwaefftrt9Z944gm8/PLLPReIDBhUREiPCwkJgYGBAQQCAaysrBAcHIxLly4plzs7O6O6uhrm5ua9kqepqQnPPvss9u3bh+rqavj7+/fK+/7d7t274e3tDTMzM1hbW2P8+PFITEwEAEyYMAFSqZSTXH/35ptvYv78+a1e+/zzz/HBBx9wE4j0aVREiEZ88MEHqK6uRkFBAUaNGoWFCxdylqWgoAD19fXw9vZudzljDM3NzRrN8Ntvv+HZZ5/F1q1bUVlZiZycHLz66qswMDDQ6PsSomlURIhG6evrIzw8HLm5uSguLgbQtpvq2LFj8PHxgampKezt7fHkk0+2u63ff/8dgwYNwsGDBwEAn3zyCZydnWFqagpXV1fExMS0Wefq1asYNmwYAEAoFMLd3R0A4Orqivfeew+jR4+GsbExkpOTkZ6ejunTp8PKygru7u6tun927twJPz8/vPHGG7CxsYGDgwO+/fZbnD17Fl5eXjA3N0dERAQUCkW72S9cuICAgACMHz8ePB4PJiYmmDlzJnx8fAAACQkJsLCwULYPCQnBSy+9hMmTJ8PExASjR4/GvXv38Oabb8LW1hZCoRCHDh1q1f6veZOSksDj8drNUl1djXnz5sHOzg7m5uZ46KGHcO3aNQDA4cOH8d///hc//PADBAIBBAIBAGD16tV4/vnnldu4dOkSxo0bBwsLC4jFYuzdu1e57M0338ScOXPw9NNPw8LCAs7Ozvj222+Vy9X9fpN+ghHSw4KDg9n//vc/xhhjtbW17IUXXmA2NjasqamJMcZYZmYmA8DKy8sZY4w5Ojqyr776ijHGWHV1NTt79mybdj/88ANzdHRkCQkJjDHGUlNTmZGREbt9+zZjjLGCggJ27dq1dvP8/f0YY8zFxYUNHTqUpaSkMLlczhoaGpinpydbt24dq6urY9euXWOOjo5sz549jDHGduzYwfh8Ptu4cSNrampiMTExzMzMjC1atIiVlJSwe/fuMTs7OxYXF9duhrNnzzI9PT32yiuvsJMnTzKZTNZq+alTp5i5uXmrfSgUCtnNmzdZfX09mzJlCnN3d2/1/tbW1qyxsbHNPmeMsatXr7K//nr/dXllZSX75ptvWHV1Naurq2PPPvssGzp0KFMoFIwxxtavX8/mzZvXKl94eDh77rnnGGOMlZeXM2tra7Zp0ybW2NjIEhISmImJCTtz5oxyfT09Pfbtt98yuVzOdu3axQQCgfJr7uj7TfonOhIhGvGvf/0LFhYWMDExwddff42DBw9CV1e33bZ6enpIT09HcXExTExMMHbs2FbLd+zYgSeffBJHjx5FcHAwAIDP54Mxhlu3bqGurg729vbKT/XqevLJJ+Hp6Qk+n4/ExETk5+fjnXfegaGhIXx8fPD0009j586dyva2trZ49tlnoauri2XLlkEmkyEiIgLW1tZwcnJCcHAwrly50u57jR07FkePHkVaWhqWLFkCa2trhIaGKo/O2rNy5UpIJBIYGBhgwYIFqKmpafX+paWlyM7O7tLXDABmZmZYsmQJTExMYGhoiP/85z+4c+cO8vLy1Fr/xx9/hK2tLZ555hno6ekhODgYy5cvx65du5RtAgICsHjxYvD5fISFhaGxsRF37twB0Pn3m/QvVESIRrz33nuoqKhAbm4uBg0ahOvXr3fY9tChQ7h58yY8PT3h7++Pffv2tVr+wQcfYOXKla2KhLu7O3bt2oXPPvsM9vb2mDZtGpKSkrqU0dnZWfl/qVQKJycn6OvrK19zc3NrdbLb3t5e+X9jY+N2X6uuru7w/SZNmoQDBw6gqKgIiYmJuHv3Lp577rkO2/992+29v6r360hdXR2eeuopuLq6wszMDK6urgCAkpIStdaXSqXKde77+75ycHBQ/p/H48HIyAhVVVUAOv9+k/6FigjRqEGDBuGLL77Ayy+/3OEn3YCAAMTFxaGkpASvv/46li9fjsLCQuXyn376CV9//TU++uijVustXrwYp06dQmFhIXx9fREWFtalbDo6f/74C4VC5OXloampSflaVlaWxi679fX1xWOPPYYbN270yPYEAgFqa2uVz/Pz8zts+/HHH+Py5cs4c+YMZDIZsrKyALRcYAC03i/tEQqFynXu68q+6uz7TfoXKiJE4wICAhASEoL//ve/bZY1NjZi9+7dKC8vh46OjvLk8l+7vgYPHoxff/0VW7duxXvvvQcASE1NxbFjx1BXVwd9fX0IBIIOu8vUERQUBHt7e7zxxhtoaGjAzZs3sXnzZoSHh3d7m391+PBh7N69W9l9lZmZiT179vRYV05AQAAOHjyIyspKFBUV4cMPP+ywrUwmg6GhISwtLVFdXY1XX3211XJ7e3tkZ2dDLpe3u/7MmTNRVFSELVu2QC6X47fffsOePXuwatWqTnOq8/0m/QsVEdIrXnvtNcTExCA3N7fNsq+//hoeHh4wNTXFM888g6+//hrW1tat2ri4uODXX3/F9u3b8fbbb6OxsRGvv/467O3tYW1tjZMnT7Y6f9FVenp6+OGHH3D58mU4ODhg7ty5ePHFF7F8+fJub/OvrKyssHv3bojFYggEAoSEhGDkyJH4+OOPe2T7L7zwAhwdHSESiTBp0iQsWbKkw7Yvvvgi+Hw+7O3t4eXlhTFjxrRavmjRIpiZmcHW1rbVFWP3WVpa4qeffkJsbCysra2xdu1abN26FePHj1crqzrfb9J/8BijmQ0JIYR0Dx2JEEII6TYqIoQQQrqNigghhJBuoyJCCCGk2/rldXVmZmYaHTabEELIn6RSKWQyWbvLNFpEEhISEBUVhYaGBoSEhGDbtm3g8/mt2mzYsAE7duwAn8+Hk5MTdu3a1erO3PYIhUIkJydrMjohhJA/iMXiDpdprDtLoVAgMjIS+/fvR3p6OmQyGWJjY1u1SUtLw9atW3Hp0iVcv34dfn5+2LBhg6YiEUII6WEaKyKJiYlwcnJSVrCIiAjExcW1asMYQ1NTE+rq6sAYg0wmg6Ojo6YiEUII6WEa686SSqUQiUTK587Ozm3uVh46dCieeeYZiEQimJqawtPTE5s3b26zrejoaERHRyufl5eXayo2IYSQLtDYkYg6N8KXlpbi4MGDSE9Px7179+Dm5tZmkD0AiIqKQnJysvJhaWmpiciEEEK6SGNFRCQStTryyMnJaXNF1cmTJ+Hm5gZHR0fw+XwsWrQI586d01QkQgghPUxjRSQwMBBSqVR5FdX27dvbzLPt4uKCCxcuKC8dO3bsmMqrAAghhPQtGjsnwufzERMTg9DQUDQ0NCA4OBhhYWGIj49HfHw8YmJiEBQUhPDwcAQFBUFPTw9DhgzBl19+qalIhPSo6gY58ivqIKtvgrG+LsyM9GBupAcTfX6H85v/VbOCobpBjka5ApbGetDl072/pP/pl6P4isViuk+EcKK+qRn7L+XiwJV7uCGtgKKd3x59XR3YCgxgI9CHoV7LfVE8HtAoV6CqXv7Howk1jc3KdXR4gLutABOG2GJZkAhD7E1760sipFOq/ub2yzvWCeHCubslePHbayiQ1cPF2hhho10wxN4UZkZ6qGuUQ1YnR2VdE0prGlBc1Yji6gbI6uXKi0z0+DqwNTWAm60JTA31YGqoC1NDPejzeSiqasC13ArsOJeJHecyMcvbEW/N84KViX4nqQjhFhURQtSw/Uwm3v0xGXamhti6IgDTJQ7Q0em8y6qrpOW1+PzXu9hzIQeJWWXYsmIERrjQ1Yik76JOWEI68dX5LLz9QzJGu1njyHMT8LC3o0YKCAAILY3xznxvfB05GgoGrNp+AZezyzTyXoT0BCoihKhwPLkQb3x3C0GDrbA9fGSvdS+NcbfGvsfHwMRAF+FfJiKtsKpX3peQrqIiQkgHCirr8c8D1+BibYyY8EAY6fM7X6kHDbYxwddrRgMAntxzBTUN8l59f0LUQUWEkHYwxvCP/UmoaZBj8zJ/mBnqcZLDw06Aj0J9kF5UjTe+u8VJBkJUoSJCSDu+v56Ps+mleG7yEPgILTjN8rC3I1aMckbcFSnO3S3hNAshf0dFhJC/qWmQ490fk+FqbYw1D7lxHQcA8NKMYbARGODfh2+iQd7c+QqE9BIqIoT8zf+dzkChrAHr50hgoNu750E6Ym6kh3/PGo6M4hrsPp/NdRxClKiIEPIXFbWN+PJMJsa4WWPiMDuu47Qyz88JEiczfP7rXTrJTvoMKiKE/EXMb5moapDjhalDuY7SBo/Hwz+neaKkuhG7zmdxHYcQAFRECFGqrG3CznNZGOdhjaDBVlzHaVeIpy0CnC3wf6czUNdI50YI96iIEPKHvYk5qG6QI2qiB9dROsTj8fBkiAcqapsQd0XKdRxCqIgQArSMsLvzbBYkTmYY42bNdRyVJg+zg6u1Mb48mwlFe8MIE9KLqIgQAuDIjXwUyOqxZoKbWnOBcElHh4dHxw1GRnENfr1TzHUcouU0WkQSEhIgkUjg4eGByMhINDe37sNNSkqCn5+f8mFlZYUXXnhBk5EIadeOc1lwMDPELB9HrqOoJXSEEKYGuthzgS73JdzSWBFRKBSIjIzE/v37kZ6eDplMhtjY2FZt/Pz8kJSUpHxYW1tj0aJFmopESLtuSCtxLbcCy4KcoddPZhc0MdDFXD8nnEwpQqGsnus4RItp7DcmMTERTk5OyjnTIyIiEBcX12H7CxcugDGGsWPHaioSIe2K/T0bfB0elgaJuI7SJUtGiqBgwIHLdIKdcEdjRUQqlUIk+vOX0tnZGbm5uR22j42NxcqVKzUVh5B2VdY14btr9zBNbA97M0Ou43SJ9yBzDHc0w75LuXSCnXBGY0WkK1O3y+Vy7Nu3r8MiEh0dDbFYrHyUl5f3VEyi5eKT7qG+SYEVo1y4jtJlPB4PiwOFyC6txeUc+p0g3NBYERGJRK2OPHJyciAUCttt+/PPP8PNzQ0eHu1fnx8VFYXk5GTlw9KSpgslPWPfJSkGWRhhrHvfvqy3I7N9nKDDA+KT8riOQrSUxopIYGAgpFIpkpOTAQDbt2/HwoUL220bGxuLsLAwTUUhpF2382W4ca8SiwKFGpvuVtNsTQ0wzsMGR27ko6lZwXUcooU0VkT4fD5iYmIQGhoKd3d3CAQChIWFIT4+HpGRkcp21dXV+Omnn7BkyRJNRSGkXfsvScHjtVwu25/N9XVCaU0jzqbTXCOk9/FYV05e9BFisVh5hENIdzTKFRj13+OQOJkjNnIU13EeiKy+CYHvHMdsH0d8stiP6zhkAFL1N7d/XBRPSA87cbsQ5bVNWBTYv49CAMDMUA/BQ21xPLmQurRIr6MiQrTSvku5MDXUxXSJA9dResQMiQNk9XL8nlHKdRSiZaiIEK1TUFmPX+8UY56fEwz1+sbMhQ9q8nA78HV4OHqzgOsoRMtQESFa5+BVKRQMWBzYv+5QV8XCWB9j3KzxS3Ih3XhIehUVEaJVGGPYf0mKYQ6m8B5kznWcHjXdywHFVQ24mks3HpLeQ0WEaJVL2eXILKnBokBRnx/yvaumDrcHAJxMKeI4CdEmVESIVtmXmAs9Pg/z/Zy4jtLjHMwNMdzRDKdSaI4R0nuoiBCtUd0gx4838jF5mD2sBQZcx9GIEE9bJOfLUFBJw8OT3kFFhGiNH67lobaxGUv62ZDvXTHR0w4AkJBKXVqkd1ARIVrjm8RcOJob4qEhtlxH0ZgAZwuYGuriFBUR0kuoiBCtkFIgQ1JuBRaNEILfTwdbVIcuXwcPDbXFmbQSNMrp7nWieVREiFb4NjEXPB6waADdG9KRiZ52qGlsxqWsMq6jEC1ARYQMeA3yZhy6eg/jPWwgsjLmOo7GBQ9t6a6jLi3SG6iIkAHvl1uFqKhtwpKRA/8oBGiZY8RHaI5TqXSpL9E8KiJkwPs2MReWxnqYKrbnOkqvCfG0Q3pRNXLLarmOQgY4KiJkQMsprcWZ9BIsDBDCQHdgDLaojome1KVFeodGi0hCQgIkEgk8PDwQGRmJ5ubmNm0KCwsxb948DBs2DJ6envjhhx80GYloma/OZwEAlgU5cxukl/kILWBupIczaTTbIdEsjRURhUKByMhI7N+/H+np6ZDJZIiNjW3TLjw8HCtWrEBKSgpu3bqFMWPGaCoS0TI1DXJ8eykXE4bYwMNOwHWcXsXX4WGsuzXOZ5RCThNVEQ3SWBFJTEyEk5MTxGIxACAiIgJxcXGt2qSmpqKwsBCLFy8GAOjq6sLa2lpTkYiWOXj1Hqrq5Xhs3GCuo3BinIcNqurluJkn4zoKGcA0VkSkUilEoj+vhnF2dkZubm6rNikpKbCzs8OyZcvg7++PVatWoays7bXt0dHREIvFykd5OQ11TVRjjGHn2Uy4WhsrL3nVNuM8bAAAZ9OpS4tojlpF5NFHH8X58+e7tGHGOp8YRy6X4/Tp03jttddw9epVuLq6Yt26dW3aRUVFITk5WfmwtLTsUhaifc6kl+BucQ3Cx7pCZwDfoa6Kq7UxBlkYUREhGqVWEZk2bRpee+01eHl54X//+x9KSzufx1kkErU68sjJyYFQKGzTRiwWw8vLCwCwdOlSXL58uSv5CWnXzrNZMNHnI3SEsPPGAxSP13Je5FJWOeoa217UQkhPUKuILFu2DCdPnsR3332H4uJi+Pv7Y+nSpUhISOhwncDAQEilUiQnJwMAtm/fjoULF7Zp09jYqCw2x44dg0Qi6eaXQkiLrJIanEwtwqJAEUwN9biOw6nxQ2zQ2KzApWwaAoVoRpfOiWRkZCAtLQ0mJiYYNmwY3n77bYSHh7fbls/nIyYmBqGhoXB3d4dAIEBYWBji4+MRGRnZ8uY6OtiyZQvmzZsHHx8fHD16FBs2bHjwr4pota/OZ4MxYNUYF66jcG6s+/3zIp33HhDSHbrqNHr77bexe/du+Pj44PHHH8fUqVOVy4YMGdLhepMmTVIeidw3d+5czJ07V/l8woQJuHLlSldzE9Ku6gY59l/KRYinLdxsteuy3vbYmhrA096UzosQjVGriOjo6OD06dNwcHBos+znn3/u8VCEdNfBK1JUNcixeqwr11H6jHEeNthxLhMVtY2wMNbnOg4ZYNTqzkpLS2tTQFavXg0AcHNz6/FQhHSHQsGw81wW3GxMBvTEU101zsMajAHn71KXFul5ahWR69evt3mNrqIifc1v6SXI0PLLetszys0afB0ezt6lLi3S81R2Z23evBmbNm2CVCrF0KFDla9XVVVh+vTpGg9HSFfsOJsJUwNdPKLFl/W2R2CgCz+RBZ1cJxqhsoisWrUKc+bMwYsvvoj//e9/ytdNTU1hZWWl8XCEqCujuBoJqcV4bNxgCAzUOtWnVcZ52GDTiTTcq6jDIAsjruOQAUTlb5u5uTnMzc1x8ODB3spDSLd8dT4bPB5d1tuR8X8UkbPpJVisBVMEk96jsojMnz8fhw8fxpAhQ8Dj/dnHzBgDj8fDnTt3NB6QkM5U1Tdh/6VcTPK0g6uNCddx+iQ/kQWM9PhUREiPU1lEtm7dCgA4fvx4r4QhpDsOXJaiprEZq8e5ch2lz9LX1cEoNyucTS9VfggkpCeovDrL0dFR+a+LiwtcXFzAGENycnKbcbAI4YJCwbDrXBY87AQY/8eotaR949xtUFLdgDuF1VxHIQOIWpf4jh07FlVVVSguLkZwcDA2btyIxx9/XNPZCOnU6bRiZJXWInyMC3267gQNDU80Qa0i0tzcDFNTU8THxyMiIgJHjx7FxYsXNZ2NkE7F/p4NE30+FgTQkXFnhjmYwspEn4oI6VFqFRG5XI6Ghgb8+OOPmDZtGgDQpz7COWl5LU6mFGFhgJAu61WDjg4PY9ytcSGzjKbMJT1GrSISFRWFIUOGQKFQYPTo0cjMzIS5ubmmsxGi0t6LOVAwYOVouqxXXeM9bFDdIMc1aSXXUcgAoVYReeKJJ5CTk4PDhw8DAFxcXOiKLcKpRrkC3ybmIsjVCp4OplzH6TfGudN5EdKz1OoDaGxsRFxcHDIzMyGXy5Wvv/HGGxoLRogqR28VoKS6Ea/PduY6Sr/ibG0MkVXLlLnPTu54GgdC1KVWEVmwYAF0dHQwcuRI8Pl8TWcipFOx57NhbaKPGV5tpycgqo1zt8HBK/dQ2yiHsT6dSyIPRq2foKysLNy6davLG09ISEBUVBQaGhoQEhKCbdu2tSlCPB4Pvr6+yucnTpyAtbV1l9+LaI/UgipczCrDUyHuMNClDzVdNdbDBt8k5iIxqxzBQ2nIfPJg1Don4ufnh+zs7C5tWKFQIDIyEvv370d6ejpkMhliY2PbtOPz+UhKSlI+qICQzuy/lAsAWBZEXVndMda95XfsHJ0XIT1ArSOR7OxseHl5ISAgAAYGBsrXf/nllw7XSUxMhJOTE8RiMQAgIiIC0dHRHc7JTog65M0KHE7Kw6jBVhBZGXMdp1+yERhgmIMpzlARIT1ArSLy7rvvdnnDUqkUItGfA705OzsjNze3TTuFQoGRI0dCoVBgxYoVePHFF9u0iY6ORnR0tPJ5eXl5l/OQgeG39BKUVDfgpemeXEfp18Z52ODLs5kor2mEpQlNmUu6T60iEhwcjIqKCmRkZCAgIECtDTPG1GqXnZ0NkUiE0tJSzJ8/H46Ojli2bFmrNlFRUYiKilI+v390Q7TPwSv3YKCrg4e96YT6gxjvYYPtZzJxPqMUM70duY5D+jG1zokcPHgQQUFBCA0NBQAkJSVh5syZKtcRiUStjjxycnLaHbTx/tGKtbU1VqxYgXPnzqkdnmgXWX0TfrlVgOkSB5ga6nEdp18LGmwFXR0edWmRB6ZWEXnnnXeQmJiovEvdz88POTk5KtcJDAyEVCpFcnIyAGD79u1YuHBhqzbl5eWor68HANTX1yM+Ph4+Pj5d/iKIdvjpRj4a5AosDBjEdZR+z8RAF/7OFnRynTwwtYqIvr5+m2FOdHRUr8rn8xETE4PQ0FC4u7tDIBAgLCwM8fHxiIyMBACkpKRg5MiR8PX1xYgRI+Dt7Y2IiIhufilkoIu7cg+2pgY05HsPGetug6zSWkjLa7mOQvoxtc6JDB48GMePHwePx4NMJsMnn3zS6t6OjkyaNEl5JHLf3LlzMXfuXADAmDFjcOPGjW7EJtomt6wWFzPLsGbCYOjy1frsQzoxzsMGG0+k4Vx6KRaPpCvdSPeo9du4ZcsW7N69G1KpFO7u7sjIyMCmTZs0nY0QpcNX7wEAFtKQ7z3GT2QBY30+zt6lLi3SfWodiVhaWmLXrl2azkJIh368kY8hdgIMdzTjOsqAoa+rg6DBNGUueTAqi8h///tflSu/+uqrPRqGkPZkFFcjpaCKBgzUgPEeNkhILcbt/CqInahAk65T2Z3V1NSEpqYmJCcnY/v27SgpKUFJSQm+/PJL3L59u7cyEi33080CAMBMujekx4V4toydlXCniOMkpL9SeSSyfv16AC03G165ckV5hdb69euVJ8cJ0bSjNwvgZmMCT3uaN6SnudsKMMjCCL+mFuOpEA+u45B+SK0T6wUFBTA1/fMX2MTEBAUFBRoLRch9uWW1uHGvEg97O1CfvQbweDwEe9ricnY5quqbuI5D+iG1TqzPmjULkydPxpIlSwAA+/btw+zZszUajBAA+OlmPgDgYS8amkNTQoba4usLOTibXoIZtJ9JF6lVRD755BMcPnwYp0+fBgA899xzmDdvnkaDEQIAR24UQGRlBAmd9NWYsR420OPzkJBaTEWEdJna05rNnz8f8+fP12AUQlrLq6hDUm4FHn/IjbqyNEhgoIuRrlb49U4xXepLuoxu/SV91tE/rsp6mEaZ1bjgobbIr6zHncJqrqOQfoaKCOmzjt4qgJO5IXyF5p03Jg8kxNMOAJCQSpf6kq5Rq4jU1NRoOgchrZTXNOJSVhmmiO2pe6UXDLUXwNHcEAmpxVxHIf2MWkVk2LBhWLt2LS5evKjpPIQAaLn5TcGAycPtuY6iFXg8HkI8bXEpuwzVDXKu45B+RK0icufOHYwfPx7//Oc/4efnh88++wwVFRUajka02fHbRTDR52O0mxXXUbRGiKcdmpoZzqTR0QhRn1pFxMjICKtWrcLp06exZcsWvP/++3BycsLq1auRlZWl4YhE2zTKFTidWowJQ2xhoMvnOo7WmDDEBga6Ovj5ViHXUUg/ovaJ9YSEBCxfvhyrV6/G2rVrkZycjIkTJ2LGjBmazEe0UGJWGaoa5Jg83I7rKFrFWF8XDw21xYnbhWiUK7iOQ/oJtYqIp6cnPv74YyxbtgwpKSl444034OrqivDwcPj7+3e4XkJCAiQSCTw8PBAZGYnm5uYO286aNQseHjR2DwGO3y4EjwdMHEZFpLdNlzhAVi/H7xmlXEch/YRaReSLL77A999/jzlz5iinxb0/x/revXvbXUehUCAyMhL79+9Heno6ZDIZYmNj2227Z88eWFlR3zcBGGM4cbsI/iIL2AgMuI6jdaYMtwNfh4efb9HYeEQ9ahWR559/vs1rnd29npiYCCcnJ4jFYgBAREQE4uLi2rQrKSlBdHQ0XnvtNXWikAEuvagaOWW1dFUWRyyM9THazQrHkguhUDCu45B+QOWwJ1KpFNnZ2aipqcG5c+eUr1dWVqK2tlblhqVSKUQikfK5s7MzcnNz27R7/vnn8c4778DQ0LDDbUVHRyM6Olr5vLy8XOV7k/7r+O2Wm92mUBHhzHSJA86m38LV3AqMcLHkOg7p41QWkRMnTmDnzp3Iy8trdaRgamqK999/X+WGGev8U8xPP/0EPp+PSZMmqbzKKyoqClFRUcrn949uyMBz4nYhhJZGGGov4DqK1pomdsAb393Cz7cKqIiQTqksIuHh4QgPD8fXX3+N5cuXd2nDIpGo1ZFHTk4OhEJhqzanT5/GiRMn4OrqCrlcjsLCQvj4+OD69etdei8yMJTVNOJKTjlWjXGlu9Q55GBuCF+RBX6+VYB/PTyMvhdEJZXnRO7/MXd1dcW5c+faPFQJDAyEVCpFcnIyAGD79u1YuHBhqzbvvfcepFIpsrKycObMGbi4uFAB0WKnUu7fpU5XZXFtusQe2aW1SC2s4joK6eNUHols3rwZX3zxRbsnvXk8Hk6ePNnhunw+HzExMQgNDUVDQwOCg4MRFhaG+Ph4xMfHIyYm5sHTkwHlREohTPT5GDXYmusoWm+GxAEfHk3Fj9fzMcyB5nIhHeMxdU5e9DFisVh5hEMGhka5AgFvH8OEITbYunIE13EIgLmfnUFZTSNOr5sIHR3q0tJmqv7mqjwS6azLauzYsd1PRchfXMxsGfiPLu3tOxb4D8J/vk/GpexyBA2m+7hI+1QWEVX3bnTWnUVIVyjvUve05ToK+cMcXye8++NtHLoqpSJCOqSyiJw6daq3chAtxhjDiZRCBDhbwpruUu8zbAQGCB5qix+u52P9HAkM9WgwTNKWyiJy/fp1+Pj4dNitRd1ZpCekFVUjt6wOy4KcuY5C/mZBwCCcSCnCidtFmOVD0xSTtjR2dRYh6jp+u2XocbpLve+ZMtwepoa6OHRVSkWEtEtlEfniiy8AULcW0awTt4sgsjLCEDu6S72vMdTjY5a3Iw5clqK0uoG6G0kbag3AKJfLsWXLFixZsgRLlizB1q1b0dTUpOlsRAuUVjfgSk45Jg+judT7qgX+gyBXMHx/LY/rKKQPUnkkct+aNWtQVVWFVatWAQBiY2Nx4cIF7Ny5U5PZiBY4cbsIjAHTxNSV1VeNdLWCs5Uxvr6Yg/CxNCQNaU2tInL+/HmkpKQon8+ZMwfDhw/XWCiiPX5JLoSZoS5G0iWkfZaODg9ho13w7pHbOJ9RirHuNlxHIn2IWt1ZIpEIBQV/TlJTVFQEZ2e6koY8mLrGZpxJL8bk4fbQ46s9UzPhwOJAEYz0+Nh1LovrKKSPUXkksmbNGvB4PBgZGUEikWDKlCng8Xg4fvw4xo0b11sZyQB1Oq0Y9U0KTKWurD7P3FgPCwIG4ZuLOZCW10Joacx1JNJHqCwi48ePV/7/kUceUf7/4Ycf1lwiojWOJRdCX1cHDw2lu9T7g/Axrvj6Qg5if8/BKw8P4zoO6SM6nU+EEE2QNytw4nYhxrlbQ2Cg1qk5wjFPB1OMcbPGN4k5eH7KELqDnQBQ88R6eXk5NmzYgBs3bqC+vl75+i+//KKxYGRgu5xdjvLaJkyTOHAdhXRB+FhXPBF7Gd8l3cOSkXRelKh5Yj08PBw2NjZISUnBs88+CxMTEwQEBGg6GxnAfkluGXCRJqDqX6YMt8MgCyN8eSYLCkW/m0WCaIBaRSQ3NxcvvPACDA0NMXv2bBw4cIDuYifdxhjDseRC+IssYGdqyHUc0gW6fB1EThiM1MIq/JJcyHUc0geoVUT09fUBAKampsjKykJ9fT2Ki4s7XS8hIQESiQQeHh6IjIxEc3Nzq+U1NTUICgqCn58fJBIJ1q5dC7lc3o0vg/QnqYVVyCmrxVQxdWX1R8uCnGFraoBNJ9LQD+e0Iz1MrSIyf/58lJeX45VXXkFgYCCcnZ0RERGhch2FQoHIyEjs378f6enpkMlkiI2NbdXGyMgIJ0+eRFJSEm7cuIGSkpI2bcjAc+R6PgBghhcVkf7IUI+Pxx9yQ3K+DMdvF3Edh3BMrSLyr3/9C5aWlpgzZw7y8vKQmZmpcsIqAEhMTISTkxPEYjEAICIiAnFxca3fXEcHAkHLoHtyuRwNDQ00pMIAxxjDD9fzIXEyw2AbE67jkG5aMcoFNgJ9OhohXR+AMSwsDHv27Ol0AEapVAqRSKR87uzsjNzc3Hbbjho1Cra2tjAzM8OKFSvaLI+OjoZYLFY+ysvL1YlN+qDkfBkySmow28eJ6yjkARjp87H2ITfcuFeJU6l0NKLN1Coia9aswcmTJ7FixQqsWLECp06dwpo1a1Su05VPJxcuXMC9e/dQVlaGhISENsujoqKQnJysfFhaWqq9bdK3/PBHV9Zsmpui31sxygVWJvrYeJyORrSZxgZgFIlErY48cnJyIBQKO2wvEAgwd+5cfP/995gyZYo6sUg/09KVlQdfkQVEVjRsRn9nYqCLtQ+54f2fUvDTzQLM9KYPBtpIYwMwBgYGQiqVIjk5GQCwfft2LFy4sFWboqIiVFRUAAAaGhpw5MgRSCSSruQn/ch1aSVyy+owh45CBozVY10xyMII7/+Ugka5gus4hAMqi8iaNWuwdu1a5QCMS5YswdKlSyGRSGBkZKRyw3w+HzExMQgNDYW7uzsEAgHCwsIQHx+PyMhIAEBeXh4mTpwIHx8fBAQEQCwWK5eRgeeH6y2TGtEn1oHDUI+Pl2Z4IqesFl+dz+I6DuEAj6nozNy1a5fKlbkaW0ssFiuPcEj/oFAwjPvgJAZZGOHAk2O5jkN6kELBMH/LWWSX1uLXdSGwMNbnOhLpYar+5nZpAMb742YZGtJdxqRrruSUI7+yHo8/5MZ1FNLDdHR4eG3mcCz5v9/x2cl0/Hu2mOtIpBepdU4kLS0No0ePhlAohFAoxNixY5GWlqbpbGQAOZx0Dzo86soaqEa5WWOa2B67zmchs6SG6zikF6l9ie9LL72EkpISlJSUYN26dZ1e4kvIffVNzfguKQ8hnnawM6Oj2IHq1ZnDwQMP6+Nv0SW/WkStIlJRUdHqyqoFCxYor6oipDNHbxagql6OxYEdX+JN+j9XGxM8EeKO03eKcfRmQecrkAFBrSJiZmaGH3/8Ufn8yJEjMDMz01goMrDsu5QLaxN9TBpG0+AOdE+FuENkZYT/fJ+MmgYaTFUbqFVEPv/8c7z++uuwt7eHvb093njjDWzbtk3T2cgAkFNai3N3S7HAfxD0ddX6cSP9mKEeH/+ZK0GBrB6bTtB5U23Q6R3rzc3NOHbsGK5cuQKZTAYejwdTU9PeyEYGgAOXW0YtWDxS1ElLMlBMGmaPqWJ7bD+TiUdGCDHUnv5eDGSdfjTk8/nK4dnNzMyogBC1NSsYDlyWwk9kQX9ItMz6OWLo8XXwctx1NNMMiAOaWv0LU6ZMwZtvvom0tDTk5eUpH4Socia9BHmV9VgcSEch2kZoaYx10z1xNaeC7mQf4NQagPGbb74B0PoOdh6Ph4yMDM2kIgPCNxdzYKing9m+dG+INgof64rvr+fhw6OpmDLcngbdHKDUKiKZmZmazkEGmNyyWvx8qwBLRjrDzFCP6ziEA3wdHj58xAezNp3Bq4du4KvHgmjSuQFIZXdWZmYmFixYAG9vb4SFhaGwsLC3cpF+7qvzWVAw4LFxrlxHIRwaYm+KqIke+C2tBAcuS7mOQzRAZRF57LHH4OnpiY8++gimpqZ4/vnneykW6c+qG+T4JjEXE4bYYAidUNd6T4a4w9PeFO/8eBtFVfVcxyE9TGURKSkpwfvvv48ZM2YgOjq61cRUhHQk7rIUVfVyRIwfzHUU0gfo6+rgg1AfVNU34c34W1zHIT1MZRHR0/uzL5vH41F/JumUQsGw42wm3G1N8NAQW67jkD7CT2SBiPGDceRGgXJeGTIwqCwiSUlJ0NfXVz7uP9fT04O+fudzBiQkJEAikcDDwwORkZFobm5us/1x48ZBIpHAy8sLmzZterCvhnDuZEoRskpr8ei4wdDRoQ8d5E//mOYJN1sT/PvwTRTJqFtroFBZRBQKBRobG5WP+8+bmprQ2NiocsMKhQKRkZHYv38/0tPTIZPJlDct3mdsbIwvv/wSt27dwrlz57B582YkJSU98BdFuBNzJgPmRnpYGDCI6yikjzHU4+OTxX6oqpfjlYM3aKTfAUJjgxklJibCyckJYnHLBDURERGIi4tr1Wbo0KHw9PQE0HI3/PDhw5Gbm6upSETDLmaW4feMMqwa4wJjfbWuHidaxk9kgagQd5xMKcK3ifS7PhBorIhIpVKIRH/eqezs7KyyQNy9exeXLl3CuHHj2iyLjo6GWCxWPsrLyzWSmTyYjSfuQGCgSyfUiUpPTxoCr0FmePuHZOSW1XIdhzwgjRWRrhyqVlRUYP78+di4cSOsrKzaLI+KikJycrLyYWlp2ZNRSQ9IzCrD2fRSrB7rSnNsE5X0dXXwyWI/NCkY/rH/GhQ0tla/prEiIhKJWh155OTkQChsOylRbW0tZs2ahTVr1mDRokWaikM0bOPxNDoKIWobam+KddM8cTGzDF+epREx+jONFZHAwEBIpVIkJycDALZv395qdkQAaGpqwsKFCzF16lQ8++yzmopCNCwxqwxn0kuweqwrLE3oKISo57HxgxHkaoUPf07FncIqruOQbtJYEeHz+YiJiUFoaCjc3d0hEAgQFhaG+Ph4REZGAgD27duHY8eO4fDhw/Dz84Ofnx8OHDigqUhEQ+gohHQHX4eHDYt8oafDw4v7ktDUrOA6EukGHuuH19mJxWLlEQ7h1pm0EqzcfgFPT/TAP6d7ch2H9EPfXMzBKwdv4JlJHvjHNPoZ6otU/c2l+UpJtzUrGN75MRnWJvp4PNiN6zikn1oyUoQpw+0QfSodiVllXMchXURFhHRb3GUpUgqq8PzUoTCl4d5JN/F4PLz/iA+sTPTxwrdJkNU3cR2JdAEVEdItNQ1yfPRLKjzsBFhG86eTB2QjMMBHob6Qltfhze9okMb+hIoI6ZZtpzNQXNWAV2cOgy6ffozIg5s4zA7hY1xw8Oo9xF+jQRr7C/rtJ12WX1mH/zt9F+M9bDDR047rOGQA+dfM4RhiJ8Brh27gXkUd13GIGqiIkC77T3wympoZXps1nKYHID3KUI+PT5f6oaFJgRe+TUIz3c3e51ERIV1y4nYhjt4qwGPjXDHc0YzrOGQAkjiZY930lrvZt52+y3Uc0gkqIkRttY1yvPHdLTiZG+L5KUO5jkMGsIjxgzHOwxqf/HIHN6SVXMchKlARIWrbeCIN9yrq8J95XjAxoKHeiebo6PDw8SI/mBjo4rlvrqK2Uc51JNIBKiJELSkFMmz/LRPTxPaYKrbnOg7RAg7mhnh/oTcySmrwzo+3uY5DOkBFhHSqUa7AP/Zdg6EeH+vnSriOQ7TIw96OWDRCiK8v5OCXWwVcxyHtoCJCOvXZqXTcypPh9dnDMcjCiOs4RMusnyuBq7Ux1h24Dmk5TWLV11ARISpdy61A9Kl0TBpmh8WBdGc66X0CA118tjwAdY3NeHbvVRrtt4+hIkI6VN/UjH/svwaBgS7eX+hN94QQzngNMse/Zw/HlZwKbPglles45C+oiJAOfXA0BelF1Xh7vhfszAy5jkO0XNhoF8z0dsC2XzNwKqWI6zjkD1RESLt+uVWAHWezMM/PCXN9nbiOQ4hytF9nK2M8/20SsktruI5EoOEikpCQAIlEAg8PD0RGRqK5ublNm8WLF8PW1hYeHh6ajEK6ILesFv/cfw2DbUzw7gJvruMQomRmqIdtYSPQKFdgzVeXUNNA949wTWNFRKFQIDIyEvv370d6ejpkMhliY2PbtHviiSfw888/ayoG6aJGuQLP7L2KerkCny33h4BuKiR9zHBHM2xY5Is7hdX4x75r6IeTsw4oGisiiYmJcHJyglgsBgBEREQgLi6uTbtJkybByspKUzFIF314NAVJuRV4Y7YYEidzruMQ0q5ZPo54KsQdR28VYPPJdK7jaDWNfcyUSqUQif68JNTZ2Rm5ubnd2lZ0dDSio6OVz8vLyx84H2nr8NV7iDmTidk+jlgxypnrOISo9I9pnridL8Mnx+7A0dwQi+gSdE5o7EikJw8xo6KikJycrHxYWlr22LZJixvSSrwcdx3DHc3wYagPXc5L+jy+Dg+fLQ+Ar9Acrxy8gRO3C7mOpJU0VkREIlGrI4+cnBwIhUJNvR15AMVVDVi7+xJMDHTxf2EjYKxP50FI/2BioIsvV4+Ei5Uxor6+gsvZZVxH0joaKyKBgYGQSqVITk4GAGzfvh0LFy7U1NuRbqpvasaTsZdRVNWA6OUBEFkZcx2JkC6xFhhg12NBMDPUw6M7EnE1h7q7e5PGigifz0dMTAxCQ0Ph7u4OgUCAsLAwxMfHIzIyUtlu1qxZGDNmDLKysiAUCvHee+9pKhL5G4WC4Z/7r+FSdjnenCPGGHdrriMR0i0iK2PERo6Cvi4fK2Mu4PzdUq4jaQ0e64fXx4nFYuURDum+947cxrbTGVj7kBtenTmc6ziEPLDMkhqsjLmAkuoGbF0ZgEnDaNqCnqDqby7dsa6lvjqfhW2nMzDLxxGvzBjGdRxCesRgGxPsf2IMBlkYYe1Xl7H792y6j0TDqIhooe+v5eHN+FsIcrXCx4t8oaNDV2KRgcPJwgj7nhgDX5EFXj98Ey/HXUd9U9vRMkjPoCKiZY4lF+KFb5Mw1N4U/7dqBAz1+FxHIqTH2QgMsHfNaKwY5Yx9l6RYsu08zUWiIVREtMjpO8WI2nMFLtYtJyEtjPW5jkSIxujr6uDdBd54f6E3budXYcanv2HfpVzq3uphVES0xNn0EqzdfQkO5obYEzkaNgIDriMR0iuWBjkj/plxEFkZ46UD17Hmq8soqqrnOtaAQUVECxy9mY9HdyTCRmCAPZGj4GBOc4MQ7TLMwQzfRY1D1ER3nEwpxOQNv2LH2UzIaZbEB0ZFZID7NjEHT+25AlcbY8Q9OZZuJiRaS19XB+umD8PhqHFwszXBf75PxuzNZ3Axk+5yfxBURAYohYLhf8fu4OW4G/AVWWDf42NgT7MTEgIfoQUOPTUO7y/0RqGsHou3nccL3yahoJK6uLqDBkkagCpqG/H8t0lISC3G5GF22LTMHyY0LwghSjo6PCwNcsYMLwds+CUVey7k4Keb+Xhs3GA8EeIOM0M9riP2G3TH+gBzLbcCT+25grzKOrw4ZSiiJnrQfSCEdOJ2vgwfHE1BQmoxLI318PSkIVg52hkGunQJPKD6by4VkQGitlGOTSfS8cVvGTAz1MXGpf54aKgt17EI6VfO3S3B+z+l4Lq0EkJLIzw90QOPjBBCj6/dPf9URAawpmYFDl25h4+PpaJQ1oCpYnu8M9+Lzn8Q0k0KBcOPN/LxybE7yCypwSALI0RN9EDoCCH0dbWzmFARGYCKqupx8Mo97D6fjXsVdXCzMcG/Zg7HlOF2NKEUIT1A3qzAD9fzselkGjKKW4rJ48FueCRAqHXnGKmIDAAN8mbczq/Cr6nFSLhThKTcCjAGDHMwxePBbpjt46T1h9yEaEKzguGH63nYfDId6UXVMDXUxeJAEVaNcYGLtQnX8XoFFZF+gjGG4uoG5JbVIresDrlltcgsqUFyvgzpRdWQK1q+VW42Jgj2tMVcXyf4iSzoyIOQXqBQMPx6pxg7zmXh9J1iAMAIF0vM83PCTG/HAT0KBBWRPkTerEBeRT2yy2qQVVqLnNL7/9Yiu6wG9U2t76A11udjmIMphjuaQeJkjvEeNnC2phsGCeHS3eJq7EvMxffX8pBXWQ8dHuArssB4DxuM97CBr8hiQA1uylkRSUhIQFRUFBoaGhASEoJt27aBz2+9Y/ft24d///vfaG5uxtKlS/Huu+92ut2+XkRqG+XILatDTlktcspqkV1ag+zSln+l5XXKI4r7HMwM4WxtDBcrYzhbGcPZ2hhCy5b/2wj06UiDkD5KoWC4lF2OIzfy8VtaMe4W1wAA+Do8uNuaQOJkDg87AYSWRhBaGkNkZQRbgUG/+53mpIgoFAoMHToU8fHxEIvFWLx4MWbNmoXw8HBlm8rKSnh7e+PChQuwtbXFQw89hPfeew/BwcEqt93bRYQxhsZmBWobmlHTKEdVvRwl1Q0orW5ESXUDiqsbkF9Rj9zyWuSW1aKkurHV+jo8QGhpDBfrPx5WJn/83wTOVsYw0h84n1gI0WZ5FXU4d7cUN+9V4ua9SiTny1Db2HouEwNdHdgIDGAt0IeVScvD2kQfViYGsDTWg8BQFwIDXZga6kJg8OdzgYEu+Bzd86Xqb67GLjFITEyEk5MTxGIxACAiIgLR0dGtisjRo0cREhICR0dHAEB4eDji4uI6LSIP4tBVKfZeyEUzY2hWMChYy6NZ0fKpopkx5b8NTQrUNMpR29iMZoXqWmtmqAtna2MEDbaCyNIYoj+OKkRWxhhkYaS1lwYSok2cLIwQOkKI0BFCAC1/U4qrGyAtbznPKS2vhbS8ruVDaE0jMktqcDmrHFUNcrW2r6+rA32+DvT4POjxdaDH14G+7p/PdXV44PF40OGh1b88ABuX+mtk8FWNFRGpVAqRSKR87uzsjNzc3E7bHD16tM22oqOjER0drXyekZGhLE49rby8HJaWlq1eU+d0mRxAxh+P3tBezr6mP2QEKGdPo5xdp+os599zKgA0/PHoikkbuxHsD1KptMNlGisi6vSSqduTFhUVhaioqAeNpJa+fr7lvv6Qsz9kBChnT6OcPauv59RYH4tIJGp15JGTkwOhUNjlNoQQQvoujRWRwMBASKVSZQXdvn07Fi5c2KrNjBkzcOrUKeTn50Mul2PXrl1t2hBCCOm7NFZE+Hw+YmJiEBoaCnd3dwgEAoSFhSE+Ph6RkZEAAHNzc3z00Ud46KGH4OnpieDgYEycOFFTkdTSW91mD6o/5OwPGQHK2dMoZ8/q6zn75c2GhBBC+ga67pQQQki3UREhhBDSbVpZRKZNmwY/Pz94e3sjNDQUMpmsTRtXV1dIJBL4+fnBz88PN27c4CBpi6ioKOjqtn81dkJCAiQSCTw8PBAZGYnm5uZ22/UGVTn7wv5UJ0Nf2J/q5OwL+7Ompgbh4eHw9PTEsGHDsG3btjZtuN6f6mTkel8WFRUp39vPzw8ODg5YsGBBm3Zc78sOMS1UUVGh/P9zzz3H1q9f36aNi4sLy83N7cVU7Tt9+jRbtWoV4/P5bZY1Nzczd3d3duvWLcYYY4sWLWI7d+7s7YiMMdU5Gesb+7OzDH1lf6qzr/rC/nz88cfZBx98wBhjTKFQsMLCwlbL+8L+7CwjY31jX/7V5MmT2Z49e1q91hf2ZUe08kjE3NwcQMv4XvX19X12MLSGhga88sor2LBhQ7vL2xtaJi4urjcjAug8Z3/RV/Znf1BVVYX4+Hi8+OKLAFqG1rCzs2vVhuv9qU7GviYvLw+XLl3C/PnzW73O9b5URSuLCAAsWLAAdnZ2SE1NxT/+8Y9228yZMwd+fn547bXX0NTU1MsJgbfeegsRERGwtW1/rnR1hpbpDZ3lvI/r/dlZhr6yPwH19hWX+zMjIwP29vZ4+umnERAQgAULFiA7O7tVG673pzoZ7+sLP5sAsHfvXsyfPx/Gxq0HQuF6X6qitUXk0KFDyMvLg1AoxIEDB9os/+2333D16lWcPXsWqampvf4p+/r167hw4QIeffTRDtuwPnB1tjo5Ae73pzoZ+sL+BNTbV1zvT7lcjqSkJISGhuLKlSuYM2cOHnvssVZtuN6f6mQEuN+XfxUbG4uVK1e2eZ3rfamK1hYRANDX18fSpUtx6NChNsvuV30TExNERkbi3LlzvZrt7NmzSE5OxuDBg+Hq6orm5ma4urq2ugigLwwbo07O+1kB7vanOhn6wv68nwNQva+43p9CoRDW1taYMmUKAGDp0qW4fPlym4xc7k91Mt7PCXD7swkAycnJKC4uxqRJk9os43pfqqJ1RaSqqgr5+fkAWs6JxMfHQyKRtGpTU1Oj/CPY3NyMuLg4+Pj49GrOJ598Enl5ecjKykJWVhb4fD6ysrJgZmambKPO0DJ9IWdf2J/qZOgL+1OdnH1hf9rb20MikeDKlSsAgGPHjrX5PeJ6f6qTsS/sy/t2796N5cuXQ0en7Z9lrvelStye1+999+7dY4GBgczb25tJJBL22GOPsZqaGpaYmMgefvhhxhhjd+/eZb6+vszb25uJxWIWERHBampqOM19/6qnv+ZkjLETJ06w4cOHMzc3N/boo4+ypqYmriIyxtrP2Rf2Z0cZ+tr+VCdnX9ifjDF269YtNnr0aObt7c0mTJjAkpOT+9z+7CxjX9mXCoWCOTs7s2vXrilf62v7siM07AkhhJBu07ruLEIIIT2HigghhJBuoyJCCCGk26iIEEII6TYqIoQQQrqNighRicfjKUc8HjNmDG7evKlcNnPmTBQVFXW47s6dO5WzWHbHnTt34O/vD39/f1y4cEFlW1dXV0ilUgAt19T3Na+//nqfGetIE+rq6jB16lRYWFgob+67TyaTYc6cORgyZAgCAwNx+/Zt5bJ9+/Zh6NChcHd3x2uvvdbpOjk5OZgxY0bvfFFELVREiEp8Ph9JSUm4ceMGJk+e3GqcsSNHjmh0QLuDBw9i1qxZuHr1KkaNGqX2epcuXdJYpu6QyWT47rvv+s7NYT1ALpe3eq6rq4tXX30VsbGxbdp++OGH8Pb2RlpaGt566y089dRTAIDKykr885//xK+//orU1FScOnUKv/76q8p1nJ2dYWtrq2xHuEdFhKht/PjxrYZeuP/pX6FQYO3atZBIJPDx8cHq1avbrHvhwgX4+fkhJSWlzbJDhw7B19cX3t7eWL58OaqqqnDo0CF8+umn2L59O/z8/NrMnZCdnY3x48dDIpHg8ccfbzW20P05TWpra7FgwQL4+PjAy8tL+Um3rq4OTzzxBIKCguDt7Y3PPvtM+frUqVMxYsQISCQSfPTRR8ptvvHGG8qvb+rUqcrXN2/ejKCgIPj6+iIyMrLdwfsOHDiA6dOnK0eLLikpwZIlS+Dj4wMfHx/s3bsXAPDMM89g5MiR8Pb2xsqVK9HQ0KDcPz4+PvDz84OPj49yEMGEhASMHz8eI0aMwLRp05Tfm88//xxeXl7w9fVFQEAA6uvr22RydXXFyy+/DD8/P4jFYpw6darTr8nV1RWvvPIKAgMDsXnz5lbb09PTw8SJEyEQCNq8V1xcnPKIdObMmbhz5w5KS0tx9OhRhISEwNHREbq6uggPD1cerXW0DgA88sgj2LVrV5v3IRzh+GZH0sf9dX6QZ555hr366qvK5/fnYbh8+TKbNm2a8vWysjLGGGM7duxgERER7NixY8zf359lZ2e32X5+fj5zcHBQLnv66afZSy+9xBhjbP369eztt99uN9fcuXPZ559/zhhj7PDhwwyAck6I+5nj4uLY2rVr2+R6/fXX2bZt2xhjjNXX17MRI0awW7duMblczsrLyxljjDU0NLDAwEB2+/ZtVlpayoYPH86am5tbbefEiRNs5cqVytejoqLYli1b2mRdvXo1++abb5TPly9fzt566y3l89LSUsYYYyUlJcrXnnnmGeXX5+3tzfLy8hhjjNXW1rK6ujpWWlrKxowZo5wbZ9++fWzx4sWMMcaEQiGrra1ljLXMnXM/31+5uLiwdevWMcYYu3LlChMKhayhoUHl1+Ti4sJef/31Ntv6q1OnTrHJkye3ek0gELDGxkbl86CgIJaUlMQ2bNjQ6ufpyJEjbP78+SrXYYwxqVTKPDw8VOYgvaf9aegI+UNzczP8/PyU5z7uj0P0V25ubsjOzsYTTzyBadOmYebMmcpl586dw4ULF3D8+HHY29u3WffChQsYP348nJ2dAbTMk7B27dpOc50+fVr5CX7evHmwsLBo08bX1xfr1q3Diy++iKlTp2LatGkAWrrh6urqsGXLFgAt3U2pqakYOnQo3nrrLZw4cQKMMUilUty8eRMLFiyAiYkJVq9ejenTp2POnDnK7Zw+fRoBAQEAgPr6ehgZGbXJkZeX16rb7+eff8bWrVuVz62srAAA3333HbZu3Yr6+npUVlZCoVAAAEJCQrBy5UrMnz8f8+bNg7OzM44fP47U1FQEBwcDaBkHztTUFADg7++P5cuXY9asWZg7d65y/py/Cw8PV7a3sbFBWlpap1/TihUrOv6mdBHr5mAZdnZ2yMvL67Ec5MFQdxZR6f45kZycHEydOhVPP/10mzYWFha4evUqZs+ejWPHjmHUqFHKP4Curq5gjCEpKand7f99QrDuThDW3nru7u64cuUKxo4di127dmHu3LkAWv547dmzB0lJSUhKSkJGRgYWLFiAPXv24O7du7h48SKuX7+OiRMnor6+Hnw+H+fOnUN4eDiuXbsGX19fVFZWgjGGF154QbmdlJSUVl1g9xkZGbXpUvp73qysLLz55ps4cuQIbty4gXXr1inX2bRpEzZs2IC6ujoEBwfj7NmzYIxhwoQJyve+fv06zp49CwA4fPgw1q1bh3v37iEwMBAZGRlq77POviYTExNV34Z2CYXCVt2gUqkUgwYNUjkybUfrAB0Xa8INKiJELbq6uti4cSNOnTrV6gotACguLkZDQwNmz56NTz75BDk5OaitrQUAODk54aeffsILL7yAEydOtNluUFAQzp49q7yyaseOHe0Ohf13wcHB2LNnDwDg+++/R3l5eZs2UqkUenp6CA0NxSeffIKLFy8CAB5++GFs3LhReZ4lLS0NMpkMlZWVsLGxgYGBATIzM3Hs2DEALSM/l5aWYvLkyXj//fdhaGgIqVSKhx9+GDt27EBFRQUAoLy8HJmZmW1ySCQSpKWlKZ9Pnz4dGzduVD4vKyuDTCaDkZERLC0tUVtbi927dyuX379K7aWXXsLUqVORlJSEMWPG4OLFi8rvRVNTE27cuAG5XI6srCyMHTsW69evx/Dhw1tdDfVXX331FQDg2rVrKC0txZAhQ9T+mrpi4cKFiImJAdBy9Obh4QEbGxvMmDEDp06dQn5+PuRyOXbt2qW8+KCjde7vDy8vrwfKRHoQh11ppB/4+5zp7777Llu2bBljrPU5EX9/f+bj48O8vLzYp59+yhj785wIY4xlZmayYcOGsVOnTrV5j7i4OOW6y5YtYzKZjDGm+pxIVlYWGzduHJNIJOzxxx9nzs7Obc6JHDlyhPn4+DBfX1/m4+PD9u7dyxhjrK6ujj399NNMIpEwiUTCgoODWXFxMSsrK2MTJkxgYrGYzZw5k82ePZvt3r2b5ebmsqCgIOXIzy+//LIyx5YtW5i3tzfz9vZm/v7+7PTp022y/v7772zu3LnK58XFxWzRokVMIpEwHx8f5fmStWvXMnd3dzZ69GgWFRWl3Hfz5s1jEomE+fr6srlz5yrPgyQkJLBRo0YxHx8fJhaL2Weffcbq6+vZ+PHjmZeXF/Py8mKPPvpoq3ML97m4uLCXX36Z+fr6suHDh7MTJ050+jV1Nhe5t7c3s7GxYQYGBmzQoEFs9+7djLGW8zKzZs1iHh4ezN/fn928eVO5zt69e5mHhwdzc3Njr7zyivJ1Vet88MEHbMOGDR3mIL2LRvElpBcEBwdj7969cHJy4joKgJZuxjNnzvSZiY3UpVAoMG7cOPz444/Kc0mEW9SdRUgv2LRpU4fzexP15eXl4dVXX6UC0ofQkQghhJBuoyMRQggh3UZFhBBCSLdRESGEENJtVEQIIYR0GxURQggh3UZFhBBCSLf9P0dIzZdyR/dJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEICAYAAACeSMncAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAABIOUlEQVR4nO3dd1xT5/4H8E8Im7A3JoCAoglbxF1wW7cWt4gtaAfd99r2tre1t+N22d6qReuvWLVibVXU0tbauqh1VHHgQhBkRvYMG0Ke3x/UtBQIAQkHyPf9euWlyXnOyYfD+OY855zn4THGGAghhJBu0OE6ACGEkP6LigghhJBuoyJCCCGk26iIEEII6TYqIoQQQrqNigghhJBuoyJCCCGk26iIkF6Xk5MDgUCAyspKle2ysrLA4/FQUVHxwO/5xRdfwNHREQKBAFevXn3g7fW03377DUKhUGPbDwkJwaefftrt9Z944gm8/PLLPReIDBhUREiPCwkJgYGBAQQCAaysrBAcHIxLly4plzs7O6O6uhrm5ua9kqepqQnPPvss9u3bh+rqavj7+/fK+/7d7t274e3tDTMzM1hbW2P8+PFITEwEAEyYMAFSqZSTXH/35ptvYv78+a1e+/zzz/HBBx9wE4j0aVREiEZ88MEHqK6uRkFBAUaNGoWFCxdylqWgoAD19fXw9vZudzljDM3NzRrN8Ntvv+HZZ5/F1q1bUVlZiZycHLz66qswMDDQ6PsSomlURIhG6evrIzw8HLm5uSguLgbQtpvq2LFj8PHxgampKezt7fHkk0+2u63ff/8dgwYNwsGDBwEAn3zyCZydnWFqagpXV1fExMS0Wefq1asYNmwYAEAoFMLd3R0A4Orqivfeew+jR4+GsbExkpOTkZ6ejunTp8PKygru7u6tun927twJPz8/vPHGG7CxsYGDgwO+/fZbnD17Fl5eXjA3N0dERAQUCkW72S9cuICAgACMHz8ePB4PJiYmmDlzJnx8fAAACQkJsLCwULYPCQnBSy+9hMmTJ8PExASjR4/GvXv38Oabb8LW1hZCoRCHDh1q1f6veZOSksDj8drNUl1djXnz5sHOzg7m5uZ46KGHcO3aNQDA4cOH8d///hc//PADBAIBBAIBAGD16tV4/vnnldu4dOkSxo0bBwsLC4jFYuzdu1e57M0338ScOXPw9NNPw8LCAs7Ozvj222+Vy9X9fpN+ghHSw4KDg9n//vc/xhhjtbW17IUXXmA2NjasqamJMcZYZmYmA8DKy8sZY4w5Ojqyr776ijHGWHV1NTt79mybdj/88ANzdHRkCQkJjDHGUlNTmZGREbt9+zZjjLGCggJ27dq1dvP8/f0YY8zFxYUNHTqUpaSkMLlczhoaGpinpydbt24dq6urY9euXWOOjo5sz549jDHGduzYwfh8Ptu4cSNrampiMTExzMzMjC1atIiVlJSwe/fuMTs7OxYXF9duhrNnzzI9PT32yiuvsJMnTzKZTNZq+alTp5i5uXmrfSgUCtnNmzdZfX09mzJlCnN3d2/1/tbW1qyxsbHNPmeMsatXr7K//nr/dXllZSX75ptvWHV1Naurq2PPPvssGzp0KFMoFIwxxtavX8/mzZvXKl94eDh77rnnGGOMlZeXM2tra7Zp0ybW2NjIEhISmImJCTtz5oxyfT09Pfbtt98yuVzOdu3axQQCgfJr7uj7TfonOhIhGvGvf/0LFhYWMDExwddff42DBw9CV1e33bZ6enpIT09HcXExTExMMHbs2FbLd+zYgSeffBJHjx5FcHAwAIDP54Mxhlu3bqGurg729vbKT/XqevLJJ+Hp6Qk+n4/ExETk5+fjnXfegaGhIXx8fPD0009j586dyva2trZ49tlnoauri2XLlkEmkyEiIgLW1tZwcnJCcHAwrly50u57jR07FkePHkVaWhqWLFkCa2trhIaGKo/O2rNy5UpIJBIYGBhgwYIFqKmpafX+paWlyM7O7tLXDABmZmZYsmQJTExMYGhoiP/85z+4c+cO8vLy1Fr/xx9/hK2tLZ555hno6ekhODgYy5cvx65du5RtAgICsHjxYvD5fISFhaGxsRF37twB0Pn3m/QvVESIRrz33nuoqKhAbm4uBg0ahOvXr3fY9tChQ7h58yY8PT3h7++Pffv2tVr+wQcfYOXKla2KhLu7O3bt2oXPPvsM9vb2mDZtGpKSkrqU0dnZWfl/qVQKJycn6OvrK19zc3NrdbLb3t5e+X9jY+N2X6uuru7w/SZNmoQDBw6gqKgIiYmJuHv3Lp577rkO2/992+29v6r360hdXR2eeuopuLq6wszMDK6urgCAkpIStdaXSqXKde77+75ycHBQ/p/H48HIyAhVVVUAOv9+k/6FigjRqEGDBuGLL77Ayy+/3OEn3YCAAMTFxaGkpASvv/46li9fjsLCQuXyn376CV9//TU++uijVustXrwYp06dQmFhIXx9fREWFtalbDo6f/74C4VC5OXloampSflaVlaWxi679fX1xWOPPYYbN270yPYEAgFqa2uVz/Pz8zts+/HHH+Py5cs4c+YMZDIZsrKyALRcYAC03i/tEQqFynXu68q+6uz7TfoXKiJE4wICAhASEoL//ve/bZY1NjZi9+7dKC8vh46OjvLk8l+7vgYPHoxff/0VW7duxXvvvQcASE1NxbFjx1BXVwd9fX0IBIIOu8vUERQUBHt7e7zxxhtoaGjAzZs3sXnzZoSHh3d7m391+PBh7N69W9l9lZmZiT179vRYV05AQAAOHjyIyspKFBUV4cMPP+ywrUwmg6GhISwtLVFdXY1XX3211XJ7e3tkZ2dDLpe3u/7MmTNRVFSELVu2QC6X47fffsOePXuwatWqTnOq8/0m/QsVEdIrXnvtNcTExCA3N7fNsq+//hoeHh4wNTXFM888g6+//hrW1tat2ri4uODXX3/F9u3b8fbbb6OxsRGvv/467O3tYW1tjZMnT7Y6f9FVenp6+OGHH3D58mU4ODhg7ty5ePHFF7F8+fJub/OvrKyssHv3bojFYggEAoSEhGDkyJH4+OOPe2T7L7zwAhwdHSESiTBp0iQsWbKkw7Yvvvgi+Hw+7O3t4eXlhTFjxrRavmjRIpiZmcHW1rbVFWP3WVpa4qeffkJsbCysra2xdu1abN26FePHj1crqzrfb9J/8BijmQ0JIYR0Dx2JEEII6TYqIoQQQrqNigghhJBuoyJCCCGk2/rldXVmZmYaHTabEELIn6RSKWQyWbvLNFpEEhISEBUVhYaGBoSEhGDbtm3g8/mt2mzYsAE7duwAn8+Hk5MTdu3a1erO3PYIhUIkJydrMjohhJA/iMXiDpdprDtLoVAgMjIS+/fvR3p6OmQyGWJjY1u1SUtLw9atW3Hp0iVcv34dfn5+2LBhg6YiEUII6WEaKyKJiYlwcnJSVrCIiAjExcW1asMYQ1NTE+rq6sAYg0wmg6Ojo6YiEUII6WEa686SSqUQiUTK587Ozm3uVh46dCieeeYZiEQimJqawtPTE5s3b26zrejoaERHRyufl5eXayo2IYSQLtDYkYg6N8KXlpbi4MGDSE9Px7179+Dm5tZmkD0AiIqKQnJysvJhaWmpiciEEEK6SGNFRCQStTryyMnJaXNF1cmTJ+Hm5gZHR0fw+XwsWrQI586d01QkQgghPUxjRSQwMBBSqVR5FdX27dvbzLPt4uKCCxcuKC8dO3bsmMqrAAghhPQtGjsnwufzERMTg9DQUDQ0NCA4OBhhYWGIj49HfHw8YmJiEBQUhPDwcAQFBUFPTw9DhgzBl19+qalIhPSo6gY58ivqIKtvgrG+LsyM9GBupAcTfX6H85v/VbOCobpBjka5ApbGetDl072/pP/pl6P4isViuk+EcKK+qRn7L+XiwJV7uCGtgKKd3x59XR3YCgxgI9CHoV7LfVE8HtAoV6CqXv7Howk1jc3KdXR4gLutABOG2GJZkAhD7E1760sipFOq/ub2yzvWCeHCubslePHbayiQ1cPF2hhho10wxN4UZkZ6qGuUQ1YnR2VdE0prGlBc1Yji6gbI6uXKi0z0+DqwNTWAm60JTA31YGqoC1NDPejzeSiqasC13ArsOJeJHecyMcvbEW/N84KViX4nqQjhFhURQtSw/Uwm3v0xGXamhti6IgDTJQ7Q0em8y6qrpOW1+PzXu9hzIQeJWWXYsmIERrjQ1Yik76JOWEI68dX5LLz9QzJGu1njyHMT8LC3o0YKCAAILY3xznxvfB05GgoGrNp+AZezyzTyXoT0BCoihKhwPLkQb3x3C0GDrbA9fGSvdS+NcbfGvsfHwMRAF+FfJiKtsKpX3peQrqIiQkgHCirr8c8D1+BibYyY8EAY6fM7X6kHDbYxwddrRgMAntxzBTUN8l59f0LUQUWEkHYwxvCP/UmoaZBj8zJ/mBnqcZLDw06Aj0J9kF5UjTe+u8VJBkJUoSJCSDu+v56Ps+mleG7yEPgILTjN8rC3I1aMckbcFSnO3S3hNAshf0dFhJC/qWmQ490fk+FqbYw1D7lxHQcA8NKMYbARGODfh2+iQd7c+QqE9BIqIoT8zf+dzkChrAHr50hgoNu750E6Ym6kh3/PGo6M4hrsPp/NdRxClKiIEPIXFbWN+PJMJsa4WWPiMDuu47Qyz88JEiczfP7rXTrJTvoMKiKE/EXMb5moapDjhalDuY7SBo/Hwz+neaKkuhG7zmdxHYcQAFRECFGqrG3CznNZGOdhjaDBVlzHaVeIpy0CnC3wf6czUNdI50YI96iIEPKHvYk5qG6QI2qiB9dROsTj8fBkiAcqapsQd0XKdRxCqIgQArSMsLvzbBYkTmYY42bNdRyVJg+zg6u1Mb48mwlFe8MIE9KLqIgQAuDIjXwUyOqxZoKbWnOBcElHh4dHxw1GRnENfr1TzHUcouU0WkQSEhIgkUjg4eGByMhINDe37sNNSkqCn5+f8mFlZYUXXnhBk5EIadeOc1lwMDPELB9HrqOoJXSEEKYGuthzgS73JdzSWBFRKBSIjIzE/v37kZ6eDplMhtjY2FZt/Pz8kJSUpHxYW1tj0aJFmopESLtuSCtxLbcCy4KcoddPZhc0MdDFXD8nnEwpQqGsnus4RItp7DcmMTERTk5OyjnTIyIiEBcX12H7CxcugDGGsWPHaioSIe2K/T0bfB0elgaJuI7SJUtGiqBgwIHLdIKdcEdjRUQqlUIk+vOX0tnZGbm5uR22j42NxcqVKzUVh5B2VdY14btr9zBNbA97M0Ou43SJ9yBzDHc0w75LuXSCnXBGY0WkK1O3y+Vy7Nu3r8MiEh0dDbFYrHyUl5f3VEyi5eKT7qG+SYEVo1y4jtJlPB4PiwOFyC6txeUc+p0g3NBYERGJRK2OPHJyciAUCttt+/PPP8PNzQ0eHu1fnx8VFYXk5GTlw9KSpgslPWPfJSkGWRhhrHvfvqy3I7N9nKDDA+KT8riOQrSUxopIYGAgpFIpkpOTAQDbt2/HwoUL220bGxuLsLAwTUUhpF2382W4ca8SiwKFGpvuVtNsTQ0wzsMGR27ko6lZwXUcooU0VkT4fD5iYmIQGhoKd3d3CAQChIWFIT4+HpGRkcp21dXV+Omnn7BkyRJNRSGkXfsvScHjtVwu25/N9XVCaU0jzqbTXCOk9/FYV05e9BFisVh5hENIdzTKFRj13+OQOJkjNnIU13EeiKy+CYHvHMdsH0d8stiP6zhkAFL1N7d/XBRPSA87cbsQ5bVNWBTYv49CAMDMUA/BQ21xPLmQurRIr6MiQrTSvku5MDXUxXSJA9dResQMiQNk9XL8nlHKdRSiZaiIEK1TUFmPX+8UY56fEwz1+sbMhQ9q8nA78HV4OHqzgOsoRMtQESFa5+BVKRQMWBzYv+5QV8XCWB9j3KzxS3Ih3XhIehUVEaJVGGPYf0mKYQ6m8B5kznWcHjXdywHFVQ24mks3HpLeQ0WEaJVL2eXILKnBokBRnx/yvaumDrcHAJxMKeI4CdEmVESIVtmXmAs9Pg/z/Zy4jtLjHMwNMdzRDKdSaI4R0nuoiBCtUd0gx4838jF5mD2sBQZcx9GIEE9bJOfLUFBJw8OT3kFFhGiNH67lobaxGUv62ZDvXTHR0w4AkJBKXVqkd1ARIVrjm8RcOJob4qEhtlxH0ZgAZwuYGuriFBUR0kuoiBCtkFIgQ1JuBRaNEILfTwdbVIcuXwcPDbXFmbQSNMrp7nWieVREiFb4NjEXPB6waADdG9KRiZ52qGlsxqWsMq6jEC1ARYQMeA3yZhy6eg/jPWwgsjLmOo7GBQ9t6a6jLi3SG6iIkAHvl1uFqKhtwpKRA/8oBGiZY8RHaI5TqXSpL9E8KiJkwPs2MReWxnqYKrbnOkqvCfG0Q3pRNXLLarmOQgY4KiJkQMsprcWZ9BIsDBDCQHdgDLaojome1KVFeodGi0hCQgIkEgk8PDwQGRmJ5ubmNm0KCwsxb948DBs2DJ6envjhhx80GYloma/OZwEAlgU5cxukl/kILWBupIczaTTbIdEsjRURhUKByMhI7N+/H+np6ZDJZIiNjW3TLjw8HCtWrEBKSgpu3bqFMWPGaCoS0TI1DXJ8eykXE4bYwMNOwHWcXsXX4WGsuzXOZ5RCThNVEQ3SWBFJTEyEk5MTxGIxACAiIgJxcXGt2qSmpqKwsBCLFy8GAOjq6sLa2lpTkYiWOXj1Hqrq5Xhs3GCuo3BinIcNqurluJkn4zoKGcA0VkSkUilEoj+vhnF2dkZubm6rNikpKbCzs8OyZcvg7++PVatWoays7bXt0dHREIvFykd5OQ11TVRjjGHn2Uy4WhsrL3nVNuM8bAAAZ9OpS4tojlpF5NFHH8X58+e7tGHGOp8YRy6X4/Tp03jttddw9epVuLq6Yt26dW3aRUVFITk5WfmwtLTsUhaifc6kl+BucQ3Cx7pCZwDfoa6Kq7UxBlkYUREhGqVWEZk2bRpee+01eHl54X//+x9KSzufx1kkErU68sjJyYFQKGzTRiwWw8vLCwCwdOlSXL58uSv5CWnXzrNZMNHnI3SEsPPGAxSP13Je5FJWOeoa217UQkhPUKuILFu2DCdPnsR3332H4uJi+Pv7Y+nSpUhISOhwncDAQEilUiQnJwMAtm/fjoULF7Zp09jYqCw2x44dg0Qi6eaXQkiLrJIanEwtwqJAEUwN9biOw6nxQ2zQ2KzApWwaAoVoRpfOiWRkZCAtLQ0mJiYYNmwY3n77bYSHh7fbls/nIyYmBqGhoXB3d4dAIEBYWBji4+MRGRnZ8uY6OtiyZQvmzZsHHx8fHD16FBs2bHjwr4pota/OZ4MxYNUYF66jcG6s+/3zIp33HhDSHbrqNHr77bexe/du+Pj44PHHH8fUqVOVy4YMGdLhepMmTVIeidw3d+5czJ07V/l8woQJuHLlSldzE9Ku6gY59l/KRYinLdxsteuy3vbYmhrA096UzosQjVGriOjo6OD06dNwcHBos+znn3/u8VCEdNfBK1JUNcixeqwr11H6jHEeNthxLhMVtY2wMNbnOg4ZYNTqzkpLS2tTQFavXg0AcHNz6/FQhHSHQsGw81wW3GxMBvTEU101zsMajAHn71KXFul5ahWR69evt3mNrqIifc1v6SXI0PLLetszys0afB0ezt6lLi3S81R2Z23evBmbNm2CVCrF0KFDla9XVVVh+vTpGg9HSFfsOJsJUwNdPKLFl/W2R2CgCz+RBZ1cJxqhsoisWrUKc+bMwYsvvoj//e9/ytdNTU1hZWWl8XCEqCujuBoJqcV4bNxgCAzUOtWnVcZ52GDTiTTcq6jDIAsjruOQAUTlb5u5uTnMzc1x8ODB3spDSLd8dT4bPB5d1tuR8X8UkbPpJVisBVMEk96jsojMnz8fhw8fxpAhQ8Dj/dnHzBgDj8fDnTt3NB6QkM5U1Tdh/6VcTPK0g6uNCddx+iQ/kQWM9PhUREiPU1lEtm7dCgA4fvx4r4QhpDsOXJaiprEZq8e5ch2lz9LX1cEoNyucTS9VfggkpCeovDrL0dFR+a+LiwtcXFzAGENycnKbcbAI4YJCwbDrXBY87AQY/8eotaR949xtUFLdgDuF1VxHIQOIWpf4jh07FlVVVSguLkZwcDA2btyIxx9/XNPZCOnU6bRiZJXWInyMC3267gQNDU80Qa0i0tzcDFNTU8THxyMiIgJHjx7FxYsXNZ2NkE7F/p4NE30+FgTQkXFnhjmYwspEn4oI6VFqFRG5XI6Ghgb8+OOPmDZtGgDQpz7COWl5LU6mFGFhgJAu61WDjg4PY9ytcSGzjKbMJT1GrSISFRWFIUOGQKFQYPTo0cjMzIS5ubmmsxGi0t6LOVAwYOVouqxXXeM9bFDdIMc1aSXXUcgAoVYReeKJJ5CTk4PDhw8DAFxcXOiKLcKpRrkC3ybmIsjVCp4OplzH6TfGudN5EdKz1OoDaGxsRFxcHDIzMyGXy5Wvv/HGGxoLRogqR28VoKS6Ea/PduY6Sr/ibG0MkVXLlLnPTu54GgdC1KVWEVmwYAF0dHQwcuRI8Pl8TWcipFOx57NhbaKPGV5tpycgqo1zt8HBK/dQ2yiHsT6dSyIPRq2foKysLNy6davLG09ISEBUVBQaGhoQEhKCbdu2tSlCPB4Pvr6+yucnTpyAtbV1l9+LaI/UgipczCrDUyHuMNClDzVdNdbDBt8k5iIxqxzBQ2nIfPJg1Don4ufnh+zs7C5tWKFQIDIyEvv370d6ejpkMhliY2PbtOPz+UhKSlI+qICQzuy/lAsAWBZEXVndMda95XfsHJ0XIT1ArSOR7OxseHl5ISAgAAYGBsrXf/nllw7XSUxMhJOTE8RiMQAgIiIC0dHRHc7JTog65M0KHE7Kw6jBVhBZGXMdp1+yERhgmIMpzlARIT1ArSLy7rvvdnnDUqkUItGfA705OzsjNze3TTuFQoGRI0dCoVBgxYoVePHFF9u0iY6ORnR0tPJ5eXl5l/OQgeG39BKUVDfgpemeXEfp18Z52ODLs5kor2mEpQlNmUu6T60iEhwcjIqKCmRkZCAgIECtDTPG1GqXnZ0NkUiE0tJSzJ8/H46Ojli2bFmrNlFRUYiKilI+v390Q7TPwSv3YKCrg4e96YT6gxjvYYPtZzJxPqMUM70duY5D+jG1zokcPHgQQUFBCA0NBQAkJSVh5syZKtcRiUStjjxycnLaHbTx/tGKtbU1VqxYgXPnzqkdnmgXWX0TfrlVgOkSB5ga6nEdp18LGmwFXR0edWmRB6ZWEXnnnXeQmJiovEvdz88POTk5KtcJDAyEVCpFcnIyAGD79u1YuHBhqzbl5eWor68HANTX1yM+Ph4+Pj5d/iKIdvjpRj4a5AosDBjEdZR+z8RAF/7OFnRynTwwtYqIvr5+m2FOdHRUr8rn8xETE4PQ0FC4u7tDIBAgLCwM8fHxiIyMBACkpKRg5MiR8PX1xYgRI+Dt7Y2IiIhufilkoIu7cg+2pgY05HsPGetug6zSWkjLa7mOQvoxtc6JDB48GMePHwePx4NMJsMnn3zS6t6OjkyaNEl5JHLf3LlzMXfuXADAmDFjcOPGjW7EJtomt6wWFzPLsGbCYOjy1frsQzoxzsMGG0+k4Vx6KRaPpCvdSPeo9du4ZcsW7N69G1KpFO7u7sjIyMCmTZs0nY0QpcNX7wEAFtKQ7z3GT2QBY30+zt6lLi3SfWodiVhaWmLXrl2azkJIh368kY8hdgIMdzTjOsqAoa+rg6DBNGUueTAqi8h///tflSu/+uqrPRqGkPZkFFcjpaCKBgzUgPEeNkhILcbt/CqInahAk65T2Z3V1NSEpqYmJCcnY/v27SgpKUFJSQm+/PJL3L59u7cyEi33080CAMBMujekx4V4toydlXCniOMkpL9SeSSyfv16AC03G165ckV5hdb69euVJ8cJ0bSjNwvgZmMCT3uaN6SnudsKMMjCCL+mFuOpEA+u45B+SK0T6wUFBTA1/fMX2MTEBAUFBRoLRch9uWW1uHGvEg97O1CfvQbweDwEe9ricnY5quqbuI5D+iG1TqzPmjULkydPxpIlSwAA+/btw+zZszUajBAA+OlmPgDgYS8amkNTQoba4usLOTibXoIZtJ9JF6lVRD755BMcPnwYp0+fBgA899xzmDdvnkaDEQIAR24UQGRlBAmd9NWYsR420OPzkJBaTEWEdJna05rNnz8f8+fP12AUQlrLq6hDUm4FHn/IjbqyNEhgoIuRrlb49U4xXepLuoxu/SV91tE/rsp6mEaZ1bjgobbIr6zHncJqrqOQfoaKCOmzjt4qgJO5IXyF5p03Jg8kxNMOAJCQSpf6kq5Rq4jU1NRoOgchrZTXNOJSVhmmiO2pe6UXDLUXwNHcEAmpxVxHIf2MWkVk2LBhWLt2LS5evKjpPIQAaLn5TcGAycPtuY6iFXg8HkI8bXEpuwzVDXKu45B+RK0icufOHYwfPx7//Oc/4efnh88++wwVFRUajka02fHbRTDR52O0mxXXUbRGiKcdmpoZzqTR0QhRn1pFxMjICKtWrcLp06exZcsWvP/++3BycsLq1auRlZWl4YhE2zTKFTidWowJQ2xhoMvnOo7WmDDEBga6Ovj5ViHXUUg/ovaJ9YSEBCxfvhyrV6/G2rVrkZycjIkTJ2LGjBmazEe0UGJWGaoa5Jg83I7rKFrFWF8XDw21xYnbhWiUK7iOQ/oJtYqIp6cnPv74YyxbtgwpKSl444034OrqivDwcPj7+3e4XkJCAiQSCTw8PBAZGYnm5uYO286aNQseHjR2DwGO3y4EjwdMHEZFpLdNlzhAVi/H7xmlXEch/YRaReSLL77A999/jzlz5iinxb0/x/revXvbXUehUCAyMhL79+9Heno6ZDIZYmNj2227Z88eWFlR3zcBGGM4cbsI/iIL2AgMuI6jdaYMtwNfh4efb9HYeEQ9ahWR559/vs1rnd29npiYCCcnJ4jFYgBAREQE4uLi2rQrKSlBdHQ0XnvtNXWikAEuvagaOWW1dFUWRyyM9THazQrHkguhUDCu45B+QOWwJ1KpFNnZ2aipqcG5c+eUr1dWVqK2tlblhqVSKUQikfK5s7MzcnNz27R7/vnn8c4778DQ0LDDbUVHRyM6Olr5vLy8XOV7k/7r+O2Wm92mUBHhzHSJA86m38LV3AqMcLHkOg7p41QWkRMnTmDnzp3Iy8trdaRgamqK999/X+WGGev8U8xPP/0EPp+PSZMmqbzKKyoqClFRUcrn949uyMBz4nYhhJZGGGov4DqK1pomdsAb393Cz7cKqIiQTqksIuHh4QgPD8fXX3+N5cuXd2nDIpGo1ZFHTk4OhEJhqzanT5/GiRMn4OrqCrlcjsLCQvj4+OD69etdei8yMJTVNOJKTjlWjXGlu9Q55GBuCF+RBX6+VYB/PTyMvhdEJZXnRO7/MXd1dcW5c+faPFQJDAyEVCpFcnIyAGD79u1YuHBhqzbvvfcepFIpsrKycObMGbi4uFAB0WKnUu7fpU5XZXFtusQe2aW1SC2s4joK6eNUHols3rwZX3zxRbsnvXk8Hk6ePNnhunw+HzExMQgNDUVDQwOCg4MRFhaG+Ph4xMfHIyYm5sHTkwHlREohTPT5GDXYmusoWm+GxAEfHk3Fj9fzMcyB5nIhHeMxdU5e9DFisVh5hEMGhka5AgFvH8OEITbYunIE13EIgLmfnUFZTSNOr5sIHR3q0tJmqv7mqjwS6azLauzYsd1PRchfXMxsGfiPLu3tOxb4D8J/vk/GpexyBA2m+7hI+1QWEVX3bnTWnUVIVyjvUve05ToK+cMcXye8++NtHLoqpSJCOqSyiJw6daq3chAtxhjDiZRCBDhbwpruUu8zbAQGCB5qix+u52P9HAkM9WgwTNKWyiJy/fp1+Pj4dNitRd1ZpCekFVUjt6wOy4KcuY5C/mZBwCCcSCnCidtFmOVD0xSTtjR2dRYh6jp+u2XocbpLve+ZMtwepoa6OHRVSkWEtEtlEfniiy8AULcW0awTt4sgsjLCEDu6S72vMdTjY5a3Iw5clqK0uoG6G0kbag3AKJfLsWXLFixZsgRLlizB1q1b0dTUpOlsRAuUVjfgSk45Jg+judT7qgX+gyBXMHx/LY/rKKQPUnkkct+aNWtQVVWFVatWAQBiY2Nx4cIF7Ny5U5PZiBY4cbsIjAHTxNSV1VeNdLWCs5Uxvr6Yg/CxNCQNaU2tInL+/HmkpKQon8+ZMwfDhw/XWCiiPX5JLoSZoS5G0iWkfZaODg9ho13w7pHbOJ9RirHuNlxHIn2IWt1ZIpEIBQV/TlJTVFQEZ2e6koY8mLrGZpxJL8bk4fbQ46s9UzPhwOJAEYz0+Nh1LovrKKSPUXkksmbNGvB4PBgZGUEikWDKlCng8Xg4fvw4xo0b11sZyQB1Oq0Y9U0KTKWurD7P3FgPCwIG4ZuLOZCW10Joacx1JNJHqCwi48ePV/7/kUceUf7/4Ycf1lwiojWOJRdCX1cHDw2lu9T7g/Axrvj6Qg5if8/BKw8P4zoO6SM6nU+EEE2QNytw4nYhxrlbQ2Cg1qk5wjFPB1OMcbPGN4k5eH7KELqDnQBQ88R6eXk5NmzYgBs3bqC+vl75+i+//KKxYGRgu5xdjvLaJkyTOHAdhXRB+FhXPBF7Gd8l3cOSkXRelKh5Yj08PBw2NjZISUnBs88+CxMTEwQEBGg6GxnAfkluGXCRJqDqX6YMt8MgCyN8eSYLCkW/m0WCaIBaRSQ3NxcvvPACDA0NMXv2bBw4cIDuYifdxhjDseRC+IssYGdqyHUc0gW6fB1EThiM1MIq/JJcyHUc0geoVUT09fUBAKampsjKykJ9fT2Ki4s7XS8hIQESiQQeHh6IjIxEc3Nzq+U1NTUICgqCn58fJBIJ1q5dC7lc3o0vg/QnqYVVyCmrxVQxdWX1R8uCnGFraoBNJ9LQD+e0Iz1MrSIyf/58lJeX45VXXkFgYCCcnZ0RERGhch2FQoHIyEjs378f6enpkMlkiI2NbdXGyMgIJ0+eRFJSEm7cuIGSkpI2bcjAc+R6PgBghhcVkf7IUI+Pxx9yQ3K+DMdvF3Edh3BMrSLyr3/9C5aWlpgzZw7y8vKQmZmpcsIqAEhMTISTkxPEYjEAICIiAnFxca3fXEcHAkHLoHtyuRwNDQ00pMIAxxjDD9fzIXEyw2AbE67jkG5aMcoFNgJ9OhohXR+AMSwsDHv27Ol0AEapVAqRSKR87uzsjNzc3Hbbjho1Cra2tjAzM8OKFSvaLI+OjoZYLFY+ysvL1YlN+qDkfBkySmow28eJ6yjkARjp87H2ITfcuFeJU6l0NKLN1Coia9aswcmTJ7FixQqsWLECp06dwpo1a1Su05VPJxcuXMC9e/dQVlaGhISENsujoqKQnJysfFhaWqq9bdK3/PBHV9Zsmpui31sxygVWJvrYeJyORrSZxgZgFIlErY48cnJyIBQKO2wvEAgwd+5cfP/995gyZYo6sUg/09KVlQdfkQVEVjRsRn9nYqCLtQ+54f2fUvDTzQLM9KYPBtpIYwMwBgYGQiqVIjk5GQCwfft2LFy4sFWboqIiVFRUAAAaGhpw5MgRSCSSruQn/ch1aSVyy+owh45CBozVY10xyMII7/+Ugka5gus4hAMqi8iaNWuwdu1a5QCMS5YswdKlSyGRSGBkZKRyw3w+HzExMQgNDYW7uzsEAgHCwsIQHx+PyMhIAEBeXh4mTpwIHx8fBAQEQCwWK5eRgeeH6y2TGtEn1oHDUI+Pl2Z4IqesFl+dz+I6DuEAj6nozNy1a5fKlbkaW0ssFiuPcEj/oFAwjPvgJAZZGOHAk2O5jkN6kELBMH/LWWSX1uLXdSGwMNbnOhLpYar+5nZpAMb742YZGtJdxqRrruSUI7+yHo8/5MZ1FNLDdHR4eG3mcCz5v9/x2cl0/Hu2mOtIpBepdU4kLS0No0ePhlAohFAoxNixY5GWlqbpbGQAOZx0Dzo86soaqEa5WWOa2B67zmchs6SG6zikF6l9ie9LL72EkpISlJSUYN26dZ1e4kvIffVNzfguKQ8hnnawM6Oj2IHq1ZnDwQMP6+Nv0SW/WkStIlJRUdHqyqoFCxYor6oipDNHbxagql6OxYEdX+JN+j9XGxM8EeKO03eKcfRmQecrkAFBrSJiZmaGH3/8Ufn8yJEjMDMz01goMrDsu5QLaxN9TBpG0+AOdE+FuENkZYT/fJ+MmgYaTFUbqFVEPv/8c7z++uuwt7eHvb093njjDWzbtk3T2cgAkFNai3N3S7HAfxD0ddX6cSP9mKEeH/+ZK0GBrB6bTtB5U23Q6R3rzc3NOHbsGK5cuQKZTAYejwdTU9PeyEYGgAOXW0YtWDxS1ElLMlBMGmaPqWJ7bD+TiUdGCDHUnv5eDGSdfjTk8/nK4dnNzMyogBC1NSsYDlyWwk9kQX9ItMz6OWLo8XXwctx1NNMMiAOaWv0LU6ZMwZtvvom0tDTk5eUpH4Socia9BHmV9VgcSEch2kZoaYx10z1xNaeC7mQf4NQagPGbb74B0PoOdh6Ph4yMDM2kIgPCNxdzYKing9m+dG+INgof64rvr+fhw6OpmDLcngbdHKDUKiKZmZmazkEGmNyyWvx8qwBLRjrDzFCP6ziEA3wdHj58xAezNp3Bq4du4KvHgmjSuQFIZXdWZmYmFixYAG9vb4SFhaGwsLC3cpF+7qvzWVAw4LFxrlxHIRwaYm+KqIke+C2tBAcuS7mOQzRAZRF57LHH4OnpiY8++gimpqZ4/vnneykW6c+qG+T4JjEXE4bYYAidUNd6T4a4w9PeFO/8eBtFVfVcxyE9TGURKSkpwfvvv48ZM2YgOjq61cRUhHQk7rIUVfVyRIwfzHUU0gfo6+rgg1AfVNU34c34W1zHIT1MZRHR0/uzL5vH41F/JumUQsGw42wm3G1N8NAQW67jkD7CT2SBiPGDceRGgXJeGTIwqCwiSUlJ0NfXVz7uP9fT04O+fudzBiQkJEAikcDDwwORkZFobm5us/1x48ZBIpHAy8sLmzZterCvhnDuZEoRskpr8ei4wdDRoQ8d5E//mOYJN1sT/PvwTRTJqFtroFBZRBQKBRobG5WP+8+bmprQ2NiocsMKhQKRkZHYv38/0tPTIZPJlDct3mdsbIwvv/wSt27dwrlz57B582YkJSU98BdFuBNzJgPmRnpYGDCI6yikjzHU4+OTxX6oqpfjlYM3aKTfAUJjgxklJibCyckJYnHLBDURERGIi4tr1Wbo0KHw9PQE0HI3/PDhw5Gbm6upSETDLmaW4feMMqwa4wJjfbWuHidaxk9kgagQd5xMKcK3ifS7PhBorIhIpVKIRH/eqezs7KyyQNy9exeXLl3CuHHj2iyLjo6GWCxWPsrLyzWSmTyYjSfuQGCgSyfUiUpPTxoCr0FmePuHZOSW1XIdhzwgjRWRrhyqVlRUYP78+di4cSOsrKzaLI+KikJycrLyYWlp2ZNRSQ9IzCrD2fRSrB7rSnNsE5X0dXXwyWI/NCkY/rH/GhQ0tla/prEiIhKJWh155OTkQChsOylRbW0tZs2ahTVr1mDRokWaikM0bOPxNDoKIWobam+KddM8cTGzDF+epREx+jONFZHAwEBIpVIkJycDALZv395qdkQAaGpqwsKFCzF16lQ8++yzmopCNCwxqwxn0kuweqwrLE3oKISo57HxgxHkaoUPf07FncIqruOQbtJYEeHz+YiJiUFoaCjc3d0hEAgQFhaG+Ph4REZGAgD27duHY8eO4fDhw/Dz84Ofnx8OHDigqUhEQ+gohHQHX4eHDYt8oafDw4v7ktDUrOA6EukGHuuH19mJxWLlEQ7h1pm0EqzcfgFPT/TAP6d7ch2H9EPfXMzBKwdv4JlJHvjHNPoZ6otU/c2l+UpJtzUrGN75MRnWJvp4PNiN6zikn1oyUoQpw+0QfSodiVllXMchXURFhHRb3GUpUgqq8PzUoTCl4d5JN/F4PLz/iA+sTPTxwrdJkNU3cR2JdAEVEdItNQ1yfPRLKjzsBFhG86eTB2QjMMBHob6Qltfhze9okMb+hIoI6ZZtpzNQXNWAV2cOgy6ffozIg5s4zA7hY1xw8Oo9xF+jQRr7C/rtJ12WX1mH/zt9F+M9bDDR047rOGQA+dfM4RhiJ8Brh27gXkUd13GIGqiIkC77T3wympoZXps1nKYHID3KUI+PT5f6oaFJgRe+TUIz3c3e51ERIV1y4nYhjt4qwGPjXDHc0YzrOGQAkjiZY930lrvZt52+y3Uc0gkqIkRttY1yvPHdLTiZG+L5KUO5jkMGsIjxgzHOwxqf/HIHN6SVXMchKlARIWrbeCIN9yrq8J95XjAxoKHeiebo6PDw8SI/mBjo4rlvrqK2Uc51JNIBKiJELSkFMmz/LRPTxPaYKrbnOg7RAg7mhnh/oTcySmrwzo+3uY5DOkBFhHSqUa7AP/Zdg6EeH+vnSriOQ7TIw96OWDRCiK8v5OCXWwVcxyHtoCJCOvXZqXTcypPh9dnDMcjCiOs4RMusnyuBq7Ux1h24Dmk5TWLV11ARISpdy61A9Kl0TBpmh8WBdGc66X0CA118tjwAdY3NeHbvVRrtt4+hIkI6VN/UjH/svwaBgS7eX+hN94QQzngNMse/Zw/HlZwKbPglles45C+oiJAOfXA0BelF1Xh7vhfszAy5jkO0XNhoF8z0dsC2XzNwKqWI6zjkD1RESLt+uVWAHWezMM/PCXN9nbiOQ4hytF9nK2M8/20SsktruI5EoOEikpCQAIlEAg8PD0RGRqK5ublNm8WLF8PW1hYeHh6ajEK6ILesFv/cfw2DbUzw7gJvruMQomRmqIdtYSPQKFdgzVeXUNNA949wTWNFRKFQIDIyEvv370d6ejpkMhliY2PbtHviiSfw888/ayoG6aJGuQLP7L2KerkCny33h4BuKiR9zHBHM2xY5Is7hdX4x75r6IeTsw4oGisiiYmJcHJyglgsBgBEREQgLi6uTbtJkybByspKUzFIF314NAVJuRV4Y7YYEidzruMQ0q5ZPo54KsQdR28VYPPJdK7jaDWNfcyUSqUQif68JNTZ2Rm5ubnd2lZ0dDSio6OVz8vLyx84H2nr8NV7iDmTidk+jlgxypnrOISo9I9pnridL8Mnx+7A0dwQi+gSdE5o7EikJw8xo6KikJycrHxYWlr22LZJixvSSrwcdx3DHc3wYagPXc5L+jy+Dg+fLQ+Ar9Acrxy8gRO3C7mOpJU0VkREIlGrI4+cnBwIhUJNvR15AMVVDVi7+xJMDHTxf2EjYKxP50FI/2BioIsvV4+Ei5Uxor6+gsvZZVxH0joaKyKBgYGQSqVITk4GAGzfvh0LFy7U1NuRbqpvasaTsZdRVNWA6OUBEFkZcx2JkC6xFhhg12NBMDPUw6M7EnE1h7q7e5PGigifz0dMTAxCQ0Ph7u4OgUCAsLAwxMfHIzIyUtlu1qxZGDNmDLKysiAUCvHee+9pKhL5G4WC4Z/7r+FSdjnenCPGGHdrriMR0i0iK2PERo6Cvi4fK2Mu4PzdUq4jaQ0e64fXx4nFYuURDum+947cxrbTGVj7kBtenTmc6ziEPLDMkhqsjLmAkuoGbF0ZgEnDaNqCnqDqby7dsa6lvjqfhW2nMzDLxxGvzBjGdRxCesRgGxPsf2IMBlkYYe1Xl7H792y6j0TDqIhooe+v5eHN+FsIcrXCx4t8oaNDV2KRgcPJwgj7nhgDX5EFXj98Ey/HXUd9U9vRMkjPoCKiZY4lF+KFb5Mw1N4U/7dqBAz1+FxHIqTH2QgMsHfNaKwY5Yx9l6RYsu08zUWiIVREtMjpO8WI2nMFLtYtJyEtjPW5jkSIxujr6uDdBd54f6E3budXYcanv2HfpVzq3uphVES0xNn0EqzdfQkO5obYEzkaNgIDriMR0iuWBjkj/plxEFkZ46UD17Hmq8soqqrnOtaAQUVECxy9mY9HdyTCRmCAPZGj4GBOc4MQ7TLMwQzfRY1D1ER3nEwpxOQNv2LH2UzIaZbEB0ZFZID7NjEHT+25AlcbY8Q9OZZuJiRaS19XB+umD8PhqHFwszXBf75PxuzNZ3Axk+5yfxBURAYohYLhf8fu4OW4G/AVWWDf42NgT7MTEgIfoQUOPTUO7y/0RqGsHou3nccL3yahoJK6uLqDBkkagCpqG/H8t0lISC3G5GF22LTMHyY0LwghSjo6PCwNcsYMLwds+CUVey7k4Keb+Xhs3GA8EeIOM0M9riP2G3TH+gBzLbcCT+25grzKOrw4ZSiiJnrQfSCEdOJ2vgwfHE1BQmoxLI318PSkIVg52hkGunQJPKD6by4VkQGitlGOTSfS8cVvGTAz1MXGpf54aKgt17EI6VfO3S3B+z+l4Lq0EkJLIzw90QOPjBBCj6/dPf9URAawpmYFDl25h4+PpaJQ1oCpYnu8M9+Lzn8Q0k0KBcOPN/LxybE7yCypwSALI0RN9EDoCCH0dbWzmFARGYCKqupx8Mo97D6fjXsVdXCzMcG/Zg7HlOF2NKEUIT1A3qzAD9fzselkGjKKW4rJ48FueCRAqHXnGKmIDAAN8mbczq/Cr6nFSLhThKTcCjAGDHMwxePBbpjt46T1h9yEaEKzguGH63nYfDId6UXVMDXUxeJAEVaNcYGLtQnX8XoFFZF+gjGG4uoG5JbVIresDrlltcgsqUFyvgzpRdWQK1q+VW42Jgj2tMVcXyf4iSzoyIOQXqBQMPx6pxg7zmXh9J1iAMAIF0vM83PCTG/HAT0KBBWRPkTerEBeRT2yy2qQVVqLnNL7/9Yiu6wG9U2t76A11udjmIMphjuaQeJkjvEeNnC2phsGCeHS3eJq7EvMxffX8pBXWQ8dHuArssB4DxuM97CBr8hiQA1uylkRSUhIQFRUFBoaGhASEoJt27aBz2+9Y/ft24d///vfaG5uxtKlS/Huu+92ut2+XkRqG+XILatDTlktcspqkV1ag+zSln+l5XXKI4r7HMwM4WxtDBcrYzhbGcPZ2hhCy5b/2wj06UiDkD5KoWC4lF2OIzfy8VtaMe4W1wAA+Do8uNuaQOJkDg87AYSWRhBaGkNkZQRbgUG/+53mpIgoFAoMHToU8fHxEIvFWLx4MWbNmoXw8HBlm8rKSnh7e+PChQuwtbXFQw89hPfeew/BwcEqt93bRYQxhsZmBWobmlHTKEdVvRwl1Q0orW5ESXUDiqsbkF9Rj9zyWuSW1aKkurHV+jo8QGhpDBfrPx5WJn/83wTOVsYw0h84n1gI0WZ5FXU4d7cUN+9V4ua9SiTny1Db2HouEwNdHdgIDGAt0IeVScvD2kQfViYGsDTWg8BQFwIDXZga6kJg8OdzgYEu+Bzd86Xqb67GLjFITEyEk5MTxGIxACAiIgLR0dGtisjRo0cREhICR0dHAEB4eDji4uI6LSIP4tBVKfZeyEUzY2hWMChYy6NZ0fKpopkx5b8NTQrUNMpR29iMZoXqWmtmqAtna2MEDbaCyNIYoj+OKkRWxhhkYaS1lwYSok2cLIwQOkKI0BFCAC1/U4qrGyAtbznPKS2vhbS8ruVDaE0jMktqcDmrHFUNcrW2r6+rA32+DvT4POjxdaDH14G+7p/PdXV44PF40OGh1b88ABuX+mtk8FWNFRGpVAqRSKR87uzsjNzc3E7bHD16tM22oqOjER0drXyekZGhLE49rby8HJaWlq1eU+d0mRxAxh+P3tBezr6mP2QEKGdPo5xdp+os599zKgA0/PHoikkbuxHsD1KptMNlGisi6vSSqduTFhUVhaioqAeNpJa+fr7lvv6Qsz9kBChnT6OcPauv59RYH4tIJGp15JGTkwOhUNjlNoQQQvoujRWRwMBASKVSZQXdvn07Fi5c2KrNjBkzcOrUKeTn50Mul2PXrl1t2hBCCOm7NFZE+Hw+YmJiEBoaCnd3dwgEAoSFhSE+Ph6RkZEAAHNzc3z00Ud46KGH4OnpieDgYEycOFFTkdTSW91mD6o/5OwPGQHK2dMoZ8/q6zn75c2GhBBC+ga67pQQQki3UREhhBDSbVpZRKZNmwY/Pz94e3sjNDQUMpmsTRtXV1dIJBL4+fnBz88PN27c4CBpi6ioKOjqtn81dkJCAiQSCTw8PBAZGYnm5uZ22/UGVTn7wv5UJ0Nf2J/q5OwL+7Ompgbh4eHw9PTEsGHDsG3btjZtuN6f6mTkel8WFRUp39vPzw8ODg5YsGBBm3Zc78sOMS1UUVGh/P9zzz3H1q9f36aNi4sLy83N7cVU7Tt9+jRbtWoV4/P5bZY1Nzczd3d3duvWLcYYY4sWLWI7d+7s7YiMMdU5Gesb+7OzDH1lf6qzr/rC/nz88cfZBx98wBhjTKFQsMLCwlbL+8L+7CwjY31jX/7V5MmT2Z49e1q91hf2ZUe08kjE3NwcQMv4XvX19X12MLSGhga88sor2LBhQ7vL2xtaJi4urjcjAug8Z3/RV/Znf1BVVYX4+Hi8+OKLAFqG1rCzs2vVhuv9qU7GviYvLw+XLl3C/PnzW73O9b5URSuLCAAsWLAAdnZ2SE1NxT/+8Y9228yZMwd+fn547bXX0NTU1MsJgbfeegsRERGwtW1/rnR1hpbpDZ3lvI/r/dlZhr6yPwH19hWX+zMjIwP29vZ4+umnERAQgAULFiA7O7tVG673pzoZ7+sLP5sAsHfvXsyfPx/Gxq0HQuF6X6qitUXk0KFDyMvLg1AoxIEDB9os/+2333D16lWcPXsWqampvf4p+/r167hw4QIeffTRDtuwPnB1tjo5Ae73pzoZ+sL+BNTbV1zvT7lcjqSkJISGhuLKlSuYM2cOHnvssVZtuN6f6mQEuN+XfxUbG4uVK1e2eZ3rfamK1hYRANDX18fSpUtx6NChNsvuV30TExNERkbi3LlzvZrt7NmzSE5OxuDBg+Hq6orm5ma4urq2ugigLwwbo07O+1kB7vanOhn6wv68nwNQva+43p9CoRDW1taYMmUKAGDp0qW4fPlym4xc7k91Mt7PCXD7swkAycnJKC4uxqRJk9os43pfqqJ1RaSqqgr5+fkAWs6JxMfHQyKRtGpTU1Oj/CPY3NyMuLg4+Pj49GrOJ598Enl5ecjKykJWVhb4fD6ysrJgZmambKPO0DJ9IWdf2J/qZOgL+1OdnH1hf9rb20MikeDKlSsAgGPHjrX5PeJ6f6qTsS/sy/t2796N5cuXQ0en7Z9lrvelStye1+999+7dY4GBgczb25tJJBL22GOPsZqaGpaYmMgefvhhxhhjd+/eZb6+vszb25uJxWIWERHBampqOM19/6qnv+ZkjLETJ06w4cOHMzc3N/boo4+ypqYmriIyxtrP2Rf2Z0cZ+tr+VCdnX9ifjDF269YtNnr0aObt7c0mTJjAkpOT+9z+7CxjX9mXCoWCOTs7s2vXrilf62v7siM07AkhhJBu07ruLEIIIT2HigghhJBuoyJCCCGk26iIEEII6TYqIoQQQrqNighRicfjKUc8HjNmDG7evKlcNnPmTBQVFXW47s6dO5WzWHbHnTt34O/vD39/f1y4cEFlW1dXV0ilUgAt19T3Na+//nqfGetIE+rq6jB16lRYWFgob+67TyaTYc6cORgyZAgCAwNx+/Zt5bJ9+/Zh6NChcHd3x2uvvdbpOjk5OZgxY0bvfFFELVREiEp8Ph9JSUm4ceMGJk+e3GqcsSNHjmh0QLuDBw9i1qxZuHr1KkaNGqX2epcuXdJYpu6QyWT47rvv+s7NYT1ALpe3eq6rq4tXX30VsbGxbdp++OGH8Pb2RlpaGt566y089dRTAIDKykr885//xK+//orU1FScOnUKv/76q8p1nJ2dYWtrq2xHuEdFhKht/PjxrYZeuP/pX6FQYO3atZBIJPDx8cHq1avbrHvhwgX4+fkhJSWlzbJDhw7B19cX3t7eWL58OaqqqnDo0CF8+umn2L59O/z8/NrMnZCdnY3x48dDIpHg8ccfbzW20P05TWpra7FgwQL4+PjAy8tL+Um3rq4OTzzxBIKCguDt7Y3PPvtM+frUqVMxYsQISCQSfPTRR8ptvvHGG8qvb+rUqcrXN2/ejKCgIPj6+iIyMrLdwfsOHDiA6dOnK0eLLikpwZIlS+Dj4wMfHx/s3bsXAPDMM89g5MiR8Pb2xsqVK9HQ0KDcPz4+PvDz84OPj49yEMGEhASMHz8eI0aMwLRp05Tfm88//xxeXl7w9fVFQEAA6uvr22RydXXFyy+/DD8/P4jFYpw6darTr8nV1RWvvPIKAgMDsXnz5lbb09PTw8SJEyEQCNq8V1xcnPKIdObMmbhz5w5KS0tx9OhRhISEwNHREbq6uggPD1cerXW0DgA88sgj2LVrV5v3IRzh+GZH0sf9dX6QZ555hr366qvK5/fnYbh8+TKbNm2a8vWysjLGGGM7duxgERER7NixY8zf359lZ2e32X5+fj5zcHBQLnv66afZSy+9xBhjbP369eztt99uN9fcuXPZ559/zhhj7PDhwwyAck6I+5nj4uLY2rVr2+R6/fXX2bZt2xhjjNXX17MRI0awW7duMblczsrLyxljjDU0NLDAwEB2+/ZtVlpayoYPH86am5tbbefEiRNs5cqVytejoqLYli1b2mRdvXo1++abb5TPly9fzt566y3l89LSUsYYYyUlJcrXnnnmGeXX5+3tzfLy8hhjjNXW1rK6ujpWWlrKxowZo5wbZ9++fWzx4sWMMcaEQiGrra1ljLXMnXM/31+5uLiwdevWMcYYu3LlChMKhayhoUHl1+Ti4sJef/31Ntv6q1OnTrHJkye3ek0gELDGxkbl86CgIJaUlMQ2bNjQ6ufpyJEjbP78+SrXYYwxqVTKPDw8VOYgvaf9aegI+UNzczP8/PyU5z7uj0P0V25ubsjOzsYTTzyBadOmYebMmcpl586dw4ULF3D8+HHY29u3WffChQsYP348nJ2dAbTMk7B27dpOc50+fVr5CX7evHmwsLBo08bX1xfr1q3Diy++iKlTp2LatGkAWrrh6urqsGXLFgAt3U2pqakYOnQo3nrrLZw4cQKMMUilUty8eRMLFiyAiYkJVq9ejenTp2POnDnK7Zw+fRoBAQEAgPr6ehgZGbXJkZeX16rb7+eff8bWrVuVz62srAAA3333HbZu3Yr6+npUVlZCoVAAAEJCQrBy5UrMnz8f8+bNg7OzM44fP47U1FQEBwcDaBkHztTUFADg7++P5cuXY9asWZg7d65y/py/Cw8PV7a3sbFBWlpap1/TihUrOv6mdBHr5mAZdnZ2yMvL67Ec5MFQdxZR6f45kZycHEydOhVPP/10mzYWFha4evUqZs+ejWPHjmHUqFHKP4Curq5gjCEpKand7f99QrDuThDW3nru7u64cuUKxo4di127dmHu3LkAWv547dmzB0lJSUhKSkJGRgYWLFiAPXv24O7du7h48SKuX7+OiRMnor6+Hnw+H+fOnUN4eDiuXbsGX19fVFZWgjGGF154QbmdlJSUVl1g9xkZGbXpUvp73qysLLz55ps4cuQIbty4gXXr1inX2bRpEzZs2IC6ujoEBwfj7NmzYIxhwoQJyve+fv06zp49CwA4fPgw1q1bh3v37iEwMBAZGRlq77POviYTExNV34Z2CYXCVt2gUqkUgwYNUjkybUfrAB0Xa8INKiJELbq6uti4cSNOnTrV6gotACguLkZDQwNmz56NTz75BDk5OaitrQUAODk54aeffsILL7yAEydOtNluUFAQzp49q7yyaseOHe0Ohf13wcHB2LNnDwDg+++/R3l5eZs2UqkUenp6CA0NxSeffIKLFy8CAB5++GFs3LhReZ4lLS0NMpkMlZWVsLGxgYGBATIzM3Hs2DEALSM/l5aWYvLkyXj//fdhaGgIqVSKhx9+GDt27EBFRQUAoLy8HJmZmW1ySCQSpKWlKZ9Pnz4dGzduVD4vKyuDTCaDkZERLC0tUVtbi927dyuX379K7aWXXsLUqVORlJSEMWPG4OLFi8rvRVNTE27cuAG5XI6srCyMHTsW69evx/Dhw1tdDfVXX331FQDg2rVrKC0txZAhQ9T+mrpi4cKFiImJAdBy9Obh4QEbGxvMmDEDp06dQn5+PuRyOXbt2qW8+KCjde7vDy8vrwfKRHoQh11ppB/4+5zp7777Llu2bBljrPU5EX9/f+bj48O8vLzYp59+yhj785wIY4xlZmayYcOGsVOnTrV5j7i4OOW6y5YtYzKZjDGm+pxIVlYWGzduHJNIJOzxxx9nzs7Obc6JHDlyhPn4+DBfX1/m4+PD9u7dyxhjrK6ujj399NNMIpEwiUTCgoODWXFxMSsrK2MTJkxgYrGYzZw5k82ePZvt3r2b5ebmsqCgIOXIzy+//LIyx5YtW5i3tzfz9vZm/v7+7PTp022y/v7772zu3LnK58XFxWzRokVMIpEwHx8f5fmStWvXMnd3dzZ69GgWFRWl3Hfz5s1jEomE+fr6srlz5yrPgyQkJLBRo0YxHx8fJhaL2Weffcbq6+vZ+PHjmZeXF/Py8mKPPvpoq3ML97m4uLCXX36Z+fr6suHDh7MTJ050+jV1Nhe5t7c3s7GxYQYGBmzQoEFs9+7djLGW8zKzZs1iHh4ezN/fn928eVO5zt69e5mHhwdzc3Njr7zyivJ1Vet88MEHbMOGDR3mIL2LRvElpBcEBwdj7969cHJy4joKgJZuxjNnzvSZiY3UpVAoMG7cOPz444/Kc0mEW9SdRUgv2LRpU4fzexP15eXl4dVXX6UC0ofQkQghhJBuoyMRQggh3UZFhBBCSLdRESGEENJtVEQIIYR0GxURQggh3UZFhBBCSLf9P0dIzZdyR/dJAAAAAElFTkSuQmCC", "text/plain": [ "

" ] @@ -662,7 +660,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEICAYAAABI7RO5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAAuJAAALiQE3ycutAAA8DElEQVR4nO3dd3xT5f4H8E+Spjud6Z50Ny0dDAXL3shGQFCmgOivXrkiioiKer1uUfQWrxdUFARRq4KIQqGUvaQUsKWL7pbuPbOe3x9IpNCWpE1ykvb7fr3ykoxzzufpafP1POc5z+ExxhgIIYQQNfG5DkAIIcS4UOEghBCiESochBBCNEKFgxBCiEaocBBCCNEIFQ5CCCEaocJBCCFEI1Q4iEaysrIwePBgiEQiPPvsswCA1157DU5OTrC2tkZVVRWsra1x9epVneaYPHkytmzZovX1dtQ+QxMWFob9+/frZN3bt29HVFRUt5c/ceIEPD09tReIGCQeXQBIbjdq1CicOXMGQqFQ9Zq5uTkqKysBACtWrABjDJ9//jkAoLCwEP369cP169fh4+PDSWZturN9XMjIyMDatWtx5swZSKVSuLu7Y9myZVi3bp3Ot719+3Z89NFHSElJuedn8/Ly0K9fP9TU1MDOzk7n2YjhoCMOcpd33nkHjY2NqsetogEAubm56N+/v+p5Xl4erK2te0XRAO5u351kMpnOM0yZMgWRkZEoKChATU0N4uPj4efnp/PtEqI2RshtRo4cyT788MMO3xs8eDDj8/nM1NSUWVlZse+//56Zm5szAMzKyoqNHj2aMcYYAHbp0iXVcrt27WIRERFMJBIxb29v9uWXXzLGGEtOTmYxMTHM3t6eicViNn/+fFZZWalarq2tjb388svMz8+PWVtbs/DwcHbx4sUOc168eJGNGjWK2dvbM39/f/a///2v3Xv3338/E4lEzNHRkU2dOlWt9iUkJLCNGzeyKVOmsCeeeILZ29uzNWvWMKlUyl544QXm5eXFxGIxmzdvHisvL1etBwD75JNPWGhoKLO0tGQLFy5k1dXVbN68eUwkErGoqCh27dq1DjNUVFQwAKygoKDTfeTj48N++uknxhhjX375JYuMjGQvv/wyc3R0ZC4uLuzbb79lJ0+eZGFhYczGxoY99thjTKFQtPv87SIjI1X75M73P/jgAxYQEMCsra2Zn58f++STT1TvOTk5qfa9lZUV27lzJzt69CiztbVVfaa+vp6tXLmSubq6MldXV7Zq1SrW2NjIGGMsNzeXAWBff/018/f3Z7a2tmzJkiVMKpUyxhirqqpiM2fOZHZ2dszW1pYNGDCA5eXldfpzIfpDhYO001Xh6Oj9O78oGGtfOPbt28ccHBzYkSNHmEKhYGVlZSw5OZkxxlhKSgo7ceIEk0qlrLS0lA0fPpytWLFCtZ5nnnmGDRw4kGVmZjKlUsnS09NVXxy357hx4wZzcHBge/bsYXK5nF29epW5ubmxw4cPM8YYGzp0KHvjjTeYQqFgra2t7NixY2q3b+PGjUwgELAvv/ySyWQy1tTUxF577TUWHh7O8vPzWUNDA3v44YfZ+PHj27V/3LhxrKqqihUXFzNnZ2fWv39/duLECSaTydjSpUvZtGnTOty+UqlkwcHBbOzYsWzPnj0dflHeWTgEAgHbvHkzk8lkbNu2bczGxobNnTuXVVZWqrYfHx+v+rwmheOHH35gBQUFTKlUssTERGZubs5OnjzJGPv7i7+mpkb1+Tt/H5YtW8ZGjx7NKisrWUVFBRs5ciRbuXJlu+UXLFjA6uvrWXFxMfP09FRlWb9+PZs6dSprampicrmcXbp0iVVVVXW264geUVcVucv69ethZ2eneowfP77b69qyZQtWr16NMWPGgM/nw9nZGdHR0QCAyMhIDBs2DEKhEC4uLlizZg2SkpIAAIwxfPbZZ9i0aRMCAwPB4/EQHBzcYZfYjh07MGLECMybNw8CgQDh4eFYtmwZdu3aBQAQCoXIz89HSUkJzMzMMGLECI3aEB4ejqVLl8LExASWlpbYsWMHXnrpJXh7e8Pa2hqbNm1CQkICSkpKVMusXbsWDg4OcHd3x8iRIxEWFoZhw4bBxMQEc+fORXJycofb4vF4SEpKQmRkJF577TX4+flBIpEgISGh03xOTk54+umnYWJiggULFqC+vh7Lly+Ho6Ojavudbe9eHnroIXh5eYHH42H06NGYOHGiah/di1KpxDfffIO33noLjo6OEIvFePPNN/H1119DqVSqPvfKK69AJBLB3d0dkyZNwsWLFwHc3G9VVVXIysqCQCBAVFQUHBwcutUOol1UOMhd3nrrLdTW1qoeXX1p3Ut+fj4CAwM7fC87OxszZsyAu7s7bGxssHDhQtX5lIqKCjQ3N3e67O3y8vJw4MCBdsXu448/xo0bNwAAX3zxBVpbWzFw4ECEhITgP//5j0Zt8Pb2bve8qKgIvr6+qufu7u4wMzNDUVGR6jUXFxfVvy0tLe963tjY2On2XF1d8cEHHyA1NRUVFRWYPHkyZs2aherq6g4/f+e6O3qtq+115ZtvvsGAAQPg4OAAOzs7HDhwoN05r65UVFRAKpW2+1n5+fmhra2t3TpcXV1V/7ayskJDQwMA4LnnnsPw4cMxb948uLq6YvXq1WhpaelWO4h2UeEgOuXj44Ps7OwO33viiSfg4eGBtLQ01NfXY+fOnWB/DfJzcnKCpaVlp8vezsvLC7NmzWpX7BoaGnDgwAEAgL+/P77++muUlpZi27ZtWLt2rer/atXB57f/M/H09EReXp7qeWlpKdra2nQyDNXBwQGvvvoqmpqakJub2+P1WVtbo7m5ud1rpaWlHX62oKAAS5Yswbvvvovy8nLU1tbiwQcfVO2jO38ud3JycoKpqWm7n1VeXh7MzMwgFovVyvrOO+8gIyMDZ86cwZEjR3QyBJtojgoH0alVq1Zh8+bNOHbsGJRKJcrLy3Hp0iUAQH19PUQiEWxsbFBYWIj33ntPtRyPx8PKlSvx7LPPIjs7G4wxZGRkID8//65tLFq0CImJiYiPj4dMJoNMJkNKSgouXLgAAPj6669RVlYGHo8HOzs78Pl8CASCbrdp4cKFePPNN1FYWIjGxkasWbMG48aNg7u7e7fXeUtNTQ1eeuklpKenQ6FQoLm5GZs2bYKDgwNCQkJ6vP6oqCjk5OTgxIkTkMvlePfdd1FVVdXhZxsbG8EYg7OzM/h8Pg4cOIBDhw6p3ndycgKfz8f169c7XJ7P5+ORRx7Bhg0bUF1djaqqKrz44otYtGjRPYsOAOzfvx+ZmZlQKpWwsbGBUCiEiYlJ9xpOtIoKB7nLunXrYG1t3e7R2ZfLvcycORObNm1CbGwsbG1tMXjwYNXFgZs2bcL+/fthY2ODGTNm4KGHHmq37DvvvIOxY8di3LhxsLGxwdy5czvsrvHw8MDBgwfx2Wefwc3NDS4uLoiNjUV9fT0A4PDhw4iMjIS1tTVmzJiB9957r0cXua1fvx4TJ07E0KFD4evrC5lMhp07d3Z7fbczNTVFcXExHnzwQdja2sLb2xunTp3Cb7/9Bisrqx6vPyAgAO+++y7mzJkDNzc3tLW1ISwsrMPPSiQSbNiwAWPGjIGjoyP27NmD6dOnq963sLDAxo0bMXnyZNjZ2anOKd1u8+bN8PX1hUQiQVhYGAICArBp0ya1smZnZ2PSpEkQiUSQSCQYOnQonnzyye41nGgVXQBICCFEI3TEQQghRCNUOAghhGiECgchhBCNUOEghBCiEaMZ22ZjY0PTNRNCiJ4UFRWpRibeyWgKh6enJ9LS0riOQQghfYJEIun0PeqqIoQQohEqHIQQQjRChYMQQohGqHAQQgjRCBUOQgghGqHCQQghRCNGMxyXENJeXYsMJbUtkCmUcLO1gNjaFDwej+tYpA+gwkGIEWmTK/DdhUL8dKkYlwprcfvc1v5OVpgZ5YGlMb4QmQu5C0l6PSochBiJw2ll2LgvFcW1LfC0t8CyB/ohwNkapiZ8FFQ1IeFaOT5IyMRXZ/KxcZoE0yJ7fmMpQjpChYMQAydTKPH6L2nYcTYfXg4W+GRBNKb0dwOf375bas2EYBzPrMBrv6TiH7svIaWwFusnh8BEQKcyiXZR4SDEgDW1yfHkN8k4nlmB2QM88PqMcFibdf5nOyLICfv/MRzr4q/g85O5qGhow6Z5kVQ8iFZR4SDEQLXKFFi2/QLO51bj+UnBeHKkv1onvy1MBdg8PwrOIjNsO5kLPg/YNC/qriMUQrqLCgchBkiuUOKpXZdwPrcar00Pw5IHfDVansfjYcOUUMiVDNtP58HbwRJrJgTrJizpc6hwEGKAPkjIxOFrZXh6bKDGReMWHo+Hl6dKUFzbgo8TsxHoIqIT5kQrdNrxuXr1anh6esLEpH19euGFFxAQEICgoCDEx8frMgIhRudQaik+TbqOSWGueGZcYI/WJeDz8NHDUQhyscaLP15FYXWzllKSvkynhWPu3Ln4448/2r12+PBhnD59GhkZGTh69CieeeYZNDY26jIGIUajvKEVz8dfQT+xFd6bG6GVC/qszEzw8YJotCmUWP3tJcgVSi0kJX2ZTgvHsGHD4Orq2u61+Ph4LF26FAKBAB4eHoiJicGhQ4d0GYMQo8AYwys/p6K+RYZN8yK1ehFfiKsNNjwYiuSCWnx8JEtr6yV9k97H6BUVFcHLy0v13NvbG4WFhXd9Li4uDhKJRPWoqanRZ0xC9O5gahl+Ty3FiuF+iPa21/r6Fw/1wdgQZ/znaDbO5VRpff2k79B74WC3z5HQhdjYWKSlpake9vba/0MixFC0yRX494E0eNhZYM34IJ1sg8fj4d05ERBbm+HZ7y+jqU2uk+2Q3k/vhcPLy6vdEUZBQQE8PT31HYMQg/LlqTwUVrdg/YMhMBcKdLYdR2szvDW7P4pqWvD2b+k62w7p3fReOGbPno3t27dDoVCguLgYJ0+exIQJE/QdgxCDUdcsQ1xiNgb52GNKfzedb29sqAtmD/DAjrP5OJ1dqfPtkd5Hp4Vj1apV8PT0hEKhgKenJ2JjYzF+/HgMGTIEQUFBGDVqFDZt2gSRSKTLGIQYtM9P5aKhTY7nJ4XobVr0jVPD4Cwyw/PxV6jLimiMx9Q96cAxiUSCtLQ0rmMQolV1LTIMeycRYe42+PbxoXrd9pFrZVj+1R9YNMQH/5oZrtdtE8PX1XcuzXxGCIe+Pp2HhlY5nh7bswv9uoO6rEh3UeEghCNSuRJfn81HlJcdhvo5cpKBuqxId1DhIIQjv14tQUVDG5bF+HJ2y1dbSyGNsiIao8JBCAcYY/jyVB5cbMzwoB5GUnWFuqyIpqhwEMKBy0V1uFJUh0VDfCA0gJssUZcV0QT3v7GE9EF7LhRCwOdh3iCve39YD2wthXhzFnVZEfVQ4SBEz1qkCvxyuQSjg53gbGPOdRyVcRIXzI6mLityb1Q4CNGzA1dvoLFNbjBHG7fbOI26rMi9UeEgRM++v1gIsbUpRoc4cx3lLtRlRdRBhYMQPSqta8W53GpMi3Q3iJPiHbm9y+poejnXcYgBMszfXEJ6qf1XSsAYMN3A7/29cXoYvB0ssfrbS8ivauI6DjEwVDgI0aN9l0vg7WCJKC87rqN0ydZCiM8WDYRUocSqHRfRIlVwHYkYECochOhJbmUTrhTVYVqkG2dXimsi1M0G7zwUgfTSBrzw4xW1b8JGej8qHIToyYGrNwAA0wy8m+p2M6I8sCzGF3tTSvDFqTyu4xADQYWDED05mFoKP7EVgl2M6/4zLz4YiiF+Dvj3r2k4nlnBdRxiAKhwEKIHxbUtuFJUh4nhrkbRTXU7oYCPLY8OhLudBZ7alYzcSjpZ3tdR4SBEDw7+WQoAmBTmynGS7nGwMsW2JYMgVzKs+OoC6ltlXEciHKLCQYge/J5aCjdbc0R42nIdpdtCXG3w4cNRuF7RhNW7L0GhpJPlfRUVDkJ0rLZZij/yqjFB4mJ03VR3mhjmimfHB+FoRgXePUhXlvdVVDgI0bHjWZVQMmCUAU4x0h1PjQnAlAg3fHYsB7//eYPrOIQDVDgI0bGkjHKYmfA5uz2stvF4PLw3JwJ+Yiusi7+KG3UtXEciekaFgxAdUioZjmdWYIifI8yFAq7jaI2lqQk2z49Gs1SOtd9fposD+xgqHIToUGpJPSobpRgV7MR1FK3r72mLp8cE4lR2FX66VMx1HKJHVDgI0aGkjJuzy44K7h3nN+60aqQ/Apyt8cav11DTJOU6DtETKhyE6FBSZgV8HC3RT2zFdRSdMDXh481Z/VHdJMXmI1lcxyF6QoWDEB2pbZbiUkENRgX1vm6q293XzwGTw13xzbl8FFY3cx2H6AEVDkJ05EQvG4bblbUTg6FkwAeHMriOQvSAs8Kxc+dOREREICoqCsOHD0dGBv3Ckd7laC8bhtsVfydrzB3oib2XS2guqz6Ak8LR3NyM1atXIzExESkpKXj00Ufx0ksvcRGFEJ3orcNwu/LESH/wAGw9kcN1FKJjahWOZcuW4cyZM1rbqFKpBGMMjY2NAIC6ujq4ublpbf2EcK03D8PtjK/YCpPCXfHDxSJUNLRxHYfokIk6H5owYQI2bNiA8vJyLF++HIsXL4ajY/cPv62trfGf//wH4eHhsLW1ha2t7V2FKS4uDnFxcarnNTU13d4eIfrW24fhdmbVCH8cuFqKHWfysGZCMNdxiI6odcSxYMECJCYmYu/evaioqEB0dDTmz5+PpKSkbm1UJpNhy5YtuHDhAoqLizFnzhysW7eu3WdiY2ORlpametjb23drW4RwobcPw+1MpJcdBnjb4dsLhZArlFzHITqi0TmOnJwcZGVlwcrKCiEhIfjXv/6FJUuWaLzRlJQUMMYQGhoKAJg/fz5Onz6t8XoIMUR9ZRhuZxbc543yhjYkppdzHYXoiFpdVf/617+wY8cOREREYNWqVRg/frzqvcDAQI036unpiYyMDBQXF8PDwwMJCQmQSCQar4cQQ6QahtvHuqlumRrhjtf3p2H3+QJMMNIbV5GuqVU4+Hw+jh8/DlfXu38JDh48qPFG3dzc8Pbbb2P8+PEQCoVwcnLCF198ofF6CDFESRkVMDPhY0gfGIbbEQtTAWZFe2DH2XyU1LbA3c6C60hEy9TqqsrKyrqraCxduhQA4Ofn160Nr1ixAmlpabh8+TIOHz4Mb2/vbq2HEEOiVDIc+2sYroVp3xiG25G5A73AGPDL5RKuoxAdUKtwXLly5a7XLl68qPUwhBi7tBv1qGxs61PDcDsS7mEDP7EV9qZQ4eiNuiwcn3zyCQIDA3Ht2jUEBQWpHm5ubhg4cKC+MhJiNI6m981huHfi8XiYHuWOtBv1yC5v4DoO0bIuz3EsXrwY06ZNw5o1a/Dhhx+qXheJRHBwcNB5OEKMTV8dhtuR6ZHu+OhwFvallNA1Hb1Ml4Xj1sV5P/74o77yEGK0bg3DXTTEh+soBsHPyRrhHjbYf+UGnhkfBB6Px3UkoiVddlXNnDkTwM0ht7d3Vd16Tgj5W18fhtuRyeFuyKlsQnZ5I9dRiBZ1ecTx6aefAgAOHz6slzCEGLOkjAqY9uFhuB2ZGOaC9w5m4GBqKQJdRFzHIVrS5RHHrYkH3dzc4OPjAx8fHzDGkJaWBk9PT70EJMQY0DDcjvk7WcNPbIWDqWVcRyFapNZw3AceeAANDQ2oqKjAyJEjsXnzZqxatUrX2QgxGreG4Y7u48Nw78Tj8TAhzBVXi+tQXNvCdRyiJWoVDoVCAZFIhH379mH58uX4/fffcf78eV1nI8Ro9NXZcNUxMcwFAHDkGh119BZqFQ65XI62tjb8+uuvmDBhAgDQCAlCbpOUQcNwOxPpaQcHK1Mcy6jgOgrRErUKR2xsLAIDA6FUKjFkyBDk5ubC1tZW19kIMQo1TVIk9+HZcO+Fz+dheKAYp69XoU2u4DoO0QK1CscTTzyBgoIC/PzzzwAAHx8fGmlFyF+OZ1VAyYAxoS5cRzFYo4Kd0CJT4EIu3ZCtN1BrdlypVIr4+Hjk5uZCLperXn/llVd0FowQY3HkWjksTQW4vx/NptCZ4YE3j8aOZZZjWKCY4zSkp9Q64pg1axZ27doFuVwOgUCgehDS18kVShzLrEBMgBjmQvqb6IzY2gz9PWxxLJPOc/QGah1x5OXlITU1VddZCDE6yQW1qGuRYUwIjaa6l1HBTvgkMZvu0dELqHXEERUVhfz8fF1nIcTo3Lo96mgahntPI4NudVfRUYexU+uIIz8/H+Hh4RgwYADMzMxUrx86dEhnwQgxBonpZQhzt4GrrTnXUQxelJcdbMxNcCyjAgvuoxu3GTO1Cse///1vXecgxOgUVjcjs6wRT48J4DqKUTAR8DE80AnHMysgUyghFKjV4UEMkFqFY+TIkaitrUVOTg4GDBig60yEGIWjf10tPprOb6htZJATfr16A8n5NbifJoM0WmqV/B9//BH33Xcf5syZAwBISUnBgw8+qNNghBi6xPRyOFqZItLTjusoRmMEnefoFdQqHG+88QYuXLigulo8KioKBQUFOg1GiCFrlspx+noVRgU7g8+n6XfU5WprjiAXa5zKruQ6CukBtQqHqanpXVOM8PnUP0n6rmMZFZDKlRgvoW4qTcUEiHGluA51zTKuo5BuUuvbv1+/fjh8+DB4PB7q6+vx6quvIjIyUtfZCDFYv/1ZCguhACODqHBoaliAGIwBZ3LoqMNYqVU4tmzZgh07dqCoqAj+/v7IycnBxx9/rOtshBikNrkCienlGBXsRDdt6ob7/Rwh4PNwkrqrjJZao6rs7e3x1Vdf6ToLIUbhVHYlGtvkmBTuynUUo2RtZoJoLzuczKLCYay6LBxvvvlmlwu/+OKLWg1DiDH4/c9SmAr4NM1ID8QEiLH5SBYKq5vh5WDJdRyioS67qmQyGWQyGdLS0vD555+jsrISlZWV+OKLL3Dt2jV9ZSTEYMgVSiSklSEmwBEicyHXcYzWrRlyT1+now5j1OURx8aNGwHcvAAwOTlZNbJq48aNmD59uu7TEWJgzudWo6ZZhsnhblxHMWpRXnawMhXgZHYVHh5M048YG7VOjpeWlkIkEqmeW1lZobS0tEcbbmpqwpIlSxAcHIyQkBB89tlnPVofIfrw25+lEPB5GCehmzb1hFDAx/1+jjidXQmlknEdh2hIrZPjU6ZMwdixY/Hwww8DAL777jtMnTq1Rxt+9tlnERYWhq+++gqMMVRU0JWkxLAplQwHU0txfz8HOFiZch3H6A0LECMxvRzppQ2QuNtwHYdoQK3CsWnTJvz88884fvw4AGD16tWYMWNGtzfa0NCAffv2qa4+5/F4cHamE43EsCUX1KC8oQ1P0aSGWnHrPMep7EoqHEZGrcIBADNnzsTMmTO1stGcnBy4uLjgqaeewvnz5+Hj44OPPvoIPj4+qs/ExcUhLi5O9bymhu5VTLj1c0ox+DzQMFwtCXS2hpPIDCezK7FyhB/XcYgGOJk3RC6XIyUlBXPmzEFycjKmTZuGxx57rN1nYmNjkZaWpnrY29tzEZUQAIBUrsSvV25gWKATnEV07w1t4PF4GBYgxvncarTJFVzHIRrgpHB4enrC0dER48aNAwDMnz8fFy9e5CIKIWo5nlmBmmYZZka5cx2lV4kJEKNFpsClglquoxANqFU4mpqatLpRFxcXhIWFITk5GQCQkJCAsLAwrW6DEG36OaUYFkIBJoZRN5U2xQTcvCcHzZZrXNQqHCEhIXj88cdx/vx5rW34008/RWxsLCIiIvDBBx9g27ZtWls3IdrU0CpDQloZJoS5wMpM7dOCRA1uthbwd7KieauMjFp/BZmZmfj++++xdu1a1NfXY8WKFVi4cCHs7Oy6vWGJRIIzZ850e3lC9OX3P0vRJldiZpQH11F6pWEBYuw4m4/6Vhls6Gp8o6DWEYeFhQUWL16M48ePY8uWLXj77bfh7u6OpUuXIi8vT8cRCeHW3pQSOFqZqoaPEu2KCRBDyYCz16u4jkLUpPbJ8aSkJDzyyCNYunQpHn/8caSlpWH06NGYNGmSLvMRwqmy+lacul6JaZHuEAro5mW6MMTfEXwenecwJmp1VQUHByMoKAiPP/44du7cqbr7n6+vL37//XedBiSES3tTisEYMINGU+mMjbkQkV52dJ7DiKj1v1Bbt27FL7/8gmnTpqmKxq2rvnfv3q27dIRwiDGGb88XItDZGlFedlzH6dWGBYhxvaIJN+pauI5C1KBW4fjnP/9512vauoqcEEN1LrcaOZVNWHCfN3g8HtdxerWYgJvnj+jmTsahy66qoqIi5Ofno6mpCadPn1a9XldXh+bmZp2HI4RLu88XwNSEj9kDaDSVrkV728FCKMCp7ErMHeTFdRxyD10WjiNHjmD79u0oKSnBhg0bVK+LRCK8/fbbOg9HCFdqmqT47c9SPBjuCjtLmglX18xMBLivnwNOZleBMUZHeAauy8KxZMkSLFmyBLt27cIjjzyir0yEcO7HS8WQypVYcB/dZEhfhgWIcSyzAplljQh2Fd17AcKZLgvHlStXEBERAV9f33ZdVbc88MADOgtGCFcYY9h9vgB+Tla4r58D13H6DNV5juxKKhwGrsvC8cknn2Dr1q3tuqlu4fF4SExM1FkwQrjyR34Nsssb8dKUUOoy0aMQVxEcrUxxKrsSy4f14zoO6UKXhWPr1q0AgKNHj+olDCGG4Juz+TAV8DF7gCfXUfoUPp+HmAAxDl8rg0yhpAsuDViXhaOj7qnbUVcV6W1K61qx/8oNTI9yp9vDcmBYgBj7LpcgpbAWg32pm9BQdVk4OuqiuoW6qkhv9PWZPMiVjLpKOBIT+Pf1HFQ4DFeXhYO6qEhf0iJVYNf5Agzxc0CYuy3XcfokDzsL9BNb4VR2JZ4ZH8R1HNIJtUZVddZlRV1VpDeJTy5CbbMMy4fR/a+5FBPgiN3nC9HQKoOIplk3SDSqihAASiXDF6dy4etoibEhzlzH6dOGBYix82wBzudWY2yoC9dxSAdoVBUhAJIyy5FT0YTXZ4SBz6chuFwa6icGj3fzeg4qHIZJrWnV5XI5/ve//+HYsWMAgFGjRmHFihUQCukwkvQO207kwsbcBA/REFzO2VoKEeFhS/fnMGBqDZReuXIlEhMT8eijj+LRRx/F0aNHsXLlSl1nI0QvLuZX4/T1Kiwa6kP3FDcQMQFiZJY1ory+lesopANq/ZWcOXMG6enpqufTpk1DaGiozkIRok8fHc6CpakAK+ikuMEYFiDGlqTrOHW9ErOi6SjQ0Kh1xOHl5YXS0lLV8/Lycnh70+RvxPglF9TgRFYlFg/1hT1d8GcwBvjYw8yEjxN0fw6D1OURx8qVK8Hj8WBhYYGwsDCMGzcOPB4Phw8fRkxMjL4yEqIzHx/JgoVQgJXD6YI/Q2IuvDnN+qnsSppm3QB1WTiGDRum+vdDDz2k+vfkyZN1l4gQPUkprEVSRgVWjfCDo7UZ13HIHWICxDiRVYnrFY0IcKbZcg3JPe/HQUhvpTraGEHnNgzRsNtuJ0uFw7CodXK8pqYG77//Pq5evYrW1r9HORw6dEhnwQjRpfO51UhML8fK4f0gpqMNgyRxs4GdpRAns6uwNIa6Eg2JWifHlyxZArFYjPT0dDz99NOwsrLCgAEDdJ2NEJ1QKhn+/WsabMxNEDs6gOs4pBN8Pg8x/mKczamCXKHkOg65jVqFo7CwEM888wzMzc0xdepU/PDDD3Q1OTFav1wpweWiOjw9NpDuJ27gYgLEaGyT43JRHddRyG3UKhympjf/uEQiEfLy8tDa2oqKigqdBiNEF1plCrz7ewa8HSyxaKgP13HIPQz/a5p1uorcsKhVOGbOnImamhq88MILGDRoELy9vbF8+XKtBIiNjYWJCV2tS/Tjy1N5KK5twQuTQ2BmIuA6DrkHLwdLeDtY4iQVDoOi1jf2+vXrAdy8YrykpAStra2wsbHp8cZPnDiBxsbGHq+HEHVUNrZhy9FsDPSxx+RwV67jEDXFBIjxw8VCNLXJaUoYA6HWEYdcLseWLVvw8MMPY9GiRfjmm28gk8l6tOG2tja88MILeP/993u0HkLU9eaBa2iUyvHSlFC6oMyIDAsQQ6ZgOJdbxXUU8he1yvfKlSvR0NCAxYsXAwB27tyJc+fOYfv27d3e8Ouvv47ly5fDycmpw/fj4uIQFxenel5TU9PtbRFyNqcKPyYXY8F93oj2tuc6DtHAsAAxBHwejqZXYEwITbNuCHiMMXavD4WEhLSb5JAxhtDQ0HavaeLKlStYs2YNEhISwOPxYGJiArlc3uUyEokEaWlp3doe6dukciWmfHwC1U1SHHl2JI2kMkLz/nsGxbUtOLluNB0t6klX37mcTHJ46tQppKWloV+/fvD19YVCoYCvry/q6+u7vU5COvP5yVxklTdi/YOhVDSM1OgQZxTXtiCrnM6JGgJOJjl88skn8eSTT/4dwsQEeXl53V4fIZ0pqmnGx0eycJ+vAx4a4MF1HNJNY0Kc8c7v6UhML0eQC00/wjWa5JD0aq/uS4NMocQbs8Kpi8OIBblYw8POAonXyvHESH+u4/R5Gk1yeGueKnNzc62GuNf5DUK6IyGtDIevlWHVSD/6v1Qjx+PxMDrECbvPF6KuWQZbS7ptNZfUOseRlZWFIUOGwNPTE56ennjggQeQlZWl62yEdFuLVIFX96XCw84Cq8cGch2HaMGYEGcolAzHsmjWCq6pfc/x559/HpWVlaisrMRzzz1H9xwnBm1LUjaKa1vwyjQJLE3porHe4AF/McyFfBxNL+c6Sp+nVuGora3F7NmzVc9nzZqF2tpaXWUipEdyK5vw2bEcjAp2wgQJjfvvLcyFAjzgL0ZSRjkUynteRUB0SK3CYWNjg19//VX1/MCBA1qZcoQQbWOM4bVfUgEAr04LoxPivczoEGfUNMuQUljLdZQ+Ta1j+P/+979YuHAhHnvsMQA3r+vYsWOHToMR0h0JaWVIyqjAP8YEwFdsxXUcomVjQpzxMoDE9DIM9KEZALhyz8KhUCiQkJCA5ORk1NfXg8fjQSSiESrE8LTKFHjtlzR42Fng/0bRDZp6Iw87C0jcbJCQVobnJoZwHafPumdXlUAgwM6dOwHc7LKiokEM1a0p01+eGgoLU5oyvbeaEOaCzLJG5FY2cR2lz1LrHMe4cePw6quvIisrCyUlJaoHIYaipkmKLUk3p0yfGEZTpvdm4/8a8JCQVnqPTxJdUescx7fffgsA+Oqrr1Sv8Xg85OTk6CYVIRqKO5qNhlY51k8OoRPivZzEzQYedhY4lFqGx0fQVeRcUKtw5Obm6joHId1WWN2Mr8/kY7zEBYN8HbiOQ3SMx+NhQpgLtp/OQ2VjG8TWZlxH6nO67KrKzc3FrFmz0L9/fyxatAhlZWX6ykWI2jYlZEKuVGLdpGCuoxA9GS9xAWPAkWv0ncSFLgvHY489huDgYLz33nsQiUT45z//qadYhKgnraQeP6cU4+HBXghwpoEbfcV9vg6wtRDiUCoVDi502VVVWVmJt99+GwAwceJEDBgwQC+hCFHXJ4lZEAr4WD02iOsoRI9MBHyMDXXG/is36F7kHOjyiEMo/HsGSh6PRycdiUHJLGvAb3+WYv5gL7jaanfGZmL4JkhcIZUrcYImPdS7Lst0SkoKTE3/vmOaXC6HqakpGGPg8XiQSqU6D0hIZ7YczYYJn4dVdH+GPmlEkBhmJnz8/mcpJoW7cR2nT+mycCiVSn3lIEQjeZVN2He5BHMHesHDzoLrOIQDlqYmGBXshMPXytEqU8BcSBd96otaFwASYmg+TboOAHhyFB1t9GVTItzR2CbH8UzqrtInKhzE6BTXtiA+uQjTI91pIsM+bmyIM8yFfPx69QbXUfoUKhzE6Gw9ngO5kuH/RtNEhn2dlZkJxoQ443BaGVplCq7j9BlUOIhRqWuW4bs/CjEu1IXuI04AAFMj3NEkVSApg+4MqC9UOIhR2XW+AM1SBVYM78d1FGIgRgc7w9JUgF+uUHeVvlDhIEZDKldi++lchHvY4P5+NCcVucnCVICxoS5IvFaOZqmc6zh9AhUOYjQOXL2Bsvo2rBjmRxejknam9HdDi0yBo+k0ukofqHAQo8AYw9YTOXC1MceUCLrYi7Q3KtgJVqYC7L9C9wnSByocxCiczalGakk9lsb4QiigX1vSnrlQgIlhrjiSXo66ZhnXcXo9+gskRuHzkzmwNBVgwWBvrqMQAzVnoCekciX2XS7mOkqvR4WDGLzrFY04fK0c8wZ5wdZSeO8FSJ80xM8RnvYW+O6PIq6j9HqcFI7CwkKMHTsWoaGhCAsLw/r167mIQYzEFydzweMBj8XQEFzSOT6fhzkDPXG1uA7XbtRzHadX46RwmJiY4J133sG1a9dw6dIlnDx5Env37uUiCjFw1U1SxCcXYaLEFd6OllzHIQbuoQGeAIDv6ahDpzgpHG5ubhg0aBAAwNTUFNHR0SgoKOAiCjFwO8/mo1WmpAv+iFq8HCwRE+CIn1OKIZXT7N66wvk5jurqavz8888YP358u9fj4uIgkUhUj5qaGo4SEq60yhT46nQeor3tMNDHnus4xEjMHeiF6iYpEtPptrK6wmnhkEqlmDNnDlavXo2QkJB278XGxiItLU31sLenL46+5qdLxahqkuLx4XTBH1HfxDBXiMxMqLtKhzgrHAqFAo888giioqLw7LPPchWDGCil8uYFfz6OlpgQ5sp1HGJELEwFmBbljqTMCpTUtnAdp1firHA8/vjjEIlE+OCDD7iKQAzYkfRy5FQ0YcWwfhDw6WiDaGbh/T5QKBl2ns3nOkqvxEnhOHXqFL744gv88ccfiI6ORlRUFD7++GMuohADtfV4DuwthZgz0IvrKMQISdxvToS5+3wB3adDB7q857iuxMTEgDHGxaaJEUgprMX5vGo8PTYQFqZ0H2nSPctifPHEzmTsTSnGwzTjgFZxPqqKkDvFHc2GmQkfi4f6cB2FGLFxoS7wsLPA1hO5UCrpf1S1iQoHMSh/FtchIa0Mj97vA7G1GddxiBEzEfCxaqQfsssbkXCNhuZqExUOYlA+OpwFMxM+nhjpx3UU0gvMG+QFsbUpthzNpu5xLaLCQQzGn8V1OHytDAuH+MDZxpzrOKQXMBcKsHyYHy4X1eFYJt3kSVuocBCD8dHhTJiZ3OxeIERbFg/1gaOVKd79PYPOdWgJFQ5iEK4W1eHwtfKbRxsiOtog2mNlZoJ/jAlA2o167L96g+s4vQIVDmIQPkjIgLmQjjaIbiy43xue9hZ49/d0uq5DC6hwEM4dy6xAUkYFHovpR0cbRCfMTAR4aUooimpasOVoNtdxjB4VDsIpuUKJN/anQWxthv8bHcB1HNKLTQxzxcggJ/z3WA5yKhq5jmPUqHAQTu04m4+s8kasnRAEazNOJjIgfQSPx8Nr08PA4wFrv78MuYLu19FdVDgIZ27UteD9gxmI8rLD3EE0JxXRPV+xFV58MBTJBbXYknSd6zhGiwoH4QRjDBv3pqJVrsSbs/rTDLhEbxYP9cGIICdsPpKFk1mVXMcxSlQ4CCd+TC7GobQyrBzuB4m7DddxSB/C4/Hw4bxIuNqYI3ZXMvIqm7iOZHSocBC9K6xuxsZ9qQhxFeGZ8YFcxyF9kKO1GbYuHgSpXIlFX5zDjTq64ZMmqHAQvWqVKRC7KxlShRIfzY+CmQlNm064IXG3wf8WD0RZfRse2XoOxXS3QLVR4SB6wxjDK3v/xJWiOrwxMxwhrtRFRbg1PNAJ/104AMW1LZgVdwp/FtdxHckoUOEgerMl6Tq++6MIj9zvjXk0iooYiDEhLti98n7IFErM/vQ0dpzJo5l074EKB9GL3ecL8N7BDIwKdsJr08O4jkNIOwN9HLDvqWEIc7fBy3tTsejz88ilk+adosJBdO7rM3lY/+NVRHvbYcujAyAU0K8dMTxeDpb4btVQrBkfhPN51Ri/6RjW/3gFRTXNXEczOHSpLtEZpZLhg4QMxB29jvt8HfD50kGwNKVfOWK4hAI+nh4biOmR7tiUkIlvLxTih4tFmDPQC4/F+CLQRcR1RIPAY0bSmSeRSJCWlsZ1DKKmqsY2PP/DFRxJL8fEMBd8+HAUFQ1idDLLGvDxkSz8evUGGAOG+Dlg0RBfTAhz6fVHzl1951LhIFrFGMNvf5bilb2pqGpqw9NjArF6bCD4dGU4MWKF1c345lwB9lwoQE2zDM4iMzw82AvzBnnBy8GS63g6QYWD6MUfedXYlJCJ09er4OVggQ/mRuG+fg5cxyJEa1plCvz25w3sOJOP5IJa8HhAjL8Y8wZ7YYLEBebC3nNdUlffudR3QHqkrlmGQ2ml2H2+AMkFtbA0FeCf4wLxxEj/XvVHRAhw8x7ms6I9MSvaExmlDdhzoRA/XirCyd2VsLMUYmaUBx4e7IVQt959jRIdcRC1MMZQ0yxDflUTCqqbkVnWgAt5NUjOr4FcyeAsMsP8+7yx7AFf2FuZch2XEL1pkyuQkFaGPRcKcTK7EowBkZ62mDfYC9Mj3SEyF3IdsVuoq4oAuPnlX1TTgqvFdcgsa0BlYxtqmmSobpKiTa6AXMkgUzDIFUrIFEq0ypRolSvQIlWgTX73vQt8HS0x1F+MCWEuGBYg7vUnCwm5l6KaZnz/RxG+/6MQJXWtsBAK8GB/Nzw82AuDfe3B4xnPuT4qHH2QUsmQX92Mq8V1SC2uw9XiOvxZXIf6VrnqMyZ8HuytTGFvKYS5UAChgA8TPg9CAR9CAQ/mQsFfDz7MhQKIzIXwcbCEj6Ml+omt4GhtxmELCTFcCiXDyexK7LlQgIS0MsgUDH5iK8wb7IWHBnjCSWT4fztUOHo5hZIht7Lxr+JQj6vFdUgrqUdj299FwsfREuEetgh3t0W4hw1C3WzgaGVqVP8HRIgxqmpsw0+XirHnQiGyyhsh4PNwfz8HTAp3xQSJK1xtzbmO2CGDLBxJSUmIjY1FW1sbRo0ahc8++wwCQecnU425cMgVSjS0ytEsU4DPAwQ8Hvh83t//Vf375nsCPk/1hc4YQ5tciWapAg2tMpTWtaK0vhUlta3IKm9AVlkjsssb0SJTAAB4PKCf2Arh7rbo72GLMA8bhLnbwtbCOPtZCektGGO4VFiL+ItFOJRWhoqGNgBAiKsIQ/wcMdTfEQO87Q3maMTgCodSqURQUBD27dsHiUSCefPmYcqUKViyZEmny3BROGQKJVpkCrRKFWhok6OhVY7GVjkaWmVoaJWjvlWGxr9ev/VaY5sc9bc/b5WrvtQ1wfurwCgZg7KTPWRpKkCgszUCXUSQuNkg3MMWEncbunc3IQZOqWS4VFiDQ2llOHO9Cn8W16n+zp1EZgh1s0GQszU87C3gaW8JN1tz2FoIYWMhhMjMRC/XRRnccNwLFy7A3d0dEokEALB8+XLExcV1WTh64pk9KSiuaYGCMSiUDErVf2/uQAVjUCoZ5EqGVpkCLbKbJ4TlnX1jd8DSVACRuQmszUwgMhfCw84CNubCv57ffM3SVACGm9tRKhkUSqi2rfrv7f9mDHweD5amJrA0FcDazAQuNuZwtTWHm605XG3M6cI6QowQn8/DQB8HDPS5eZ1TXYsMF3Krb3Yz36hHWkk9jmdWdLgsjweIzExgaWoCoQkPQj4fJgIeTPg3z02aCPjg84BQNxu8PiNcJ/k5KRxFRUXw8vp7Wm1vb28UFha2+0xcXBzi4uJUz3NyclSFRhdqampgb2+vem7610MTDX89bmgxV3fd2R5j15va05vaAlB7dKWr69HlAOrvsXwqgB/Wd789RUVFnb7HSeFQp3csNjYWsbGxekhzkzGfQ+kItcdw9aa2ANQeQ6eL9nAy8N7Ly6vdEUZBQQE8PT25iEIIIURDnBSOQYMGoaioSFUFP//8c8yePZuLKIQQQjTESeEQCATYtm0b5syZA39/f1hbW2PRokVcRFHRZ7eYPlB7DFdvagtA7TF0umiP0VwASAghxDDQ5EKEEEI0QoWDEEKIRnp94UhKSkJYWBgCAgKwYsUKKBR3X8XN4/EQFRWlelRVVQEA5HI5li1bhoCAAISFheHEiRP6jn+XnrRn+/btcHR0VL1uCH256rSnrKwMM2bMQEhICIKDg7F//34Axrt/OmuPoe2fe7UlJSWl3e+Zg4MDnnnmGQDGuW+6ao+h7RtAvd+1999/H2FhYYiIiMCkSZNQVlYGQAv7h/ViCoWC+fv7s9TUVMYYY3PnzmXbt2+/63MCgaDD5bdu3coWLFjAGGPs8uXLLDAwkCmVSt0FvoeetufLL79ky5cv12lGTajbnokTJ7I9e/YwxhiTyWSssrKSMWa8+6ez9hjS/lG3LbcLCAhgp06dYowZ77653e3tMaR9w5h67cnMzGR+fn6submZMcbYunXr2Nq1axljPd8/vfqIo6OpTeLj49VePj4+HitWrAAAREREwNHREZcuXdJJVnX0tD2GRp32ZGRkoKysDPPmzQMAmJiYwNHREYBx7p+u2mNINP1dO3fuHBhjeOCBBwAY57653Z3tMTTqtIcxBplMhpaWFjDGUF9fDzc3NwA93z+9unCoM7UJcHPSxcGDB2PgwIHYtGmTxsvrS0/bAwC//PILIiMjMWHCBFy4cEHnmbuiTnvS09Ph7OyMBQsWIDo6GosXL0Z1dbXay+tTT9sDGM7+0fRnu3PnTixcuLDby+taT9sDGM6+AdRrT1BQEP7xj3/Ay8sLbm5uSE1NxerVq9Veviu9unAwNUca5+fn48KFCzh06BB++ukn7N69W6Pl9aWn7Zk6dSry8vJw+fJlbNiwAbNmzUJjY6MuI3dJnfbI5XIcP34cGzZswKVLl+Dr64vnnntO7eX1qaftMaT9o8nPVi6X47vvvmv3RWuM++aWjtpjSPsGUK89VVVV+PHHH5GdnY3i4mL4+fnhvffeU3v5rvTqwqHu1Ca3Kq+joyMeffRRnD59WqPl9aWn7RGLxbCwsAAAjBw5Ep6ensjIyNBD8o6p0x4vLy9IJBKEh9+c5XP+/Pm4ePGi2svrU0/bY0j7R5Of7cGDB+Hn54eAgIBuLa8PPW2PIe0bQL32JCYmws/PD25ubhAIBJg7d67Wvtt6deFQZ2qTmpoatLa2AgBaW1uxb98+REREAABmz56Nbdu2AQCuXLmCiooKDBgwQI8taK+n7SkpKVF9LjU1FXl5efDz89NT+rup055BgwZBKpWqfskTEhIQFhYGwDj3T1ftMaT9o8m0QDt37rxr5gdj3De3dNQeQ9o3gHrt8fHxwblz51Bff3Me3YSEBNU5kR7vn26d0jciR44cYaGhoczPz48tW7aMyWQytnfvXtUIidOnT7Pw8HAWERHBJBIJe/7555lCoWCMMSaVStnixYuZv78/Cw0NZUlJSVw2hTHWs/asX7+eSSQSFhkZyQYNGsR+++03LpvCGLt3exhj7Pjx4yw6Opr179+fTZo0iZWUlDDGjHP/MNZ5ewxt/6jTloaGBmZra6saGXaLse6bztpjaPuGMfXa8/rrr7Pg4GAWHh7OZs2axWpqahhjPd8/NOUIIYQQjfTqripCCCHaR4WDEEKIRqhwEEII0QgVDkIIIRqhwkEIIUQjVDgIucOdswvfmtOnsrISQ4cORXR0NH766SecOnUK4eHhiI6ORmFhIQYNGsRxckL0g4bjEnIHExMTyOXyu17/9ttvsX//fuzcuRMA8MQTT2DQoEGqwkJIX0GFg5A7dFQ4zp07h7lz56KpqQleXl6YNWsWNm/eDJFIhJCQEBw8eLDdcomJiXjhhRfQ1tYGU1NTHDx4EE1NTVi4cCEaGhogk8mwbt061XxIKSkpePrpp1FXVwc+n4/du3fj/fffx4gRI7B48WIAwJtvvom2tja89tpr+v2BEHIn7VzDSEjvAYBFRkaqHm+99RZj7O57MixZsoTt2LFD9fzWfVAqKiqYu7s7u3btGmOMsfr6etbW1saam5tZU1MTY4yxuro6FhAQwGpqaphUKmV+fn6qq3dbW1tZQ0MDO3/+PBs+fDhjjDGlUskCAgJYXl6e7n8AhNyDCdeFixBDIxAIkJKS0u3lz549iyFDhiAkJAQAIBKJAAANDQ1YvXo1Lly4AD6fjxs3biA7Oxvm5uaws7PDyJEjAQBmZmYwMzPD4MGD0dTUhPT0dBQXF8Pf3x8+Pj49bh8hPUWFgxAtY530/m7atAkWFhZISUmBQCDAwIED0draCjMzs07XtWrVKmzbtg3FxcVYuXKlriITohEaVUWIlg0dOhRnz55Feno6gJtHGlKpFHV1dXB1dYVAIMC5c+dw+fJlAEBISAhqa2tx7NgxAEBbW5vqXg+PPPII4uPjcfr0aUyfPp2bBhFyBzriIOQOCoUCUVFRqucBAQH44Ycf1F5eLBZjx44dWLhwIWQyGczNzfHbb7/hqaeewpw5c/D9998jPDwcgwcPBgAIhULEx8fjqaeeQn19PYRCIXbt2oXg4GBYW1tjxIgRcHFxgVAo1HZTCekWGlVFiAGTyWSIiIjAL7/80u7GQoRwibqqCDFQJ06cQGBgIGbNmkVFgxgUOuIghBCiETriIIQQohEqHIQQQjRChYMQQohGqHAQQgjRCBUOQgghGqHCQQghRCP/D98pQfrUwC1JAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEICAYAAABI7RO5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAAA8DElEQVR4nO3dd3xT5f4H8E+Spjud6Z50Ny0dDAXL3shGQFCmgOivXrkiioiKer1uUfQWrxdUFARRq4KIQqGUvaQUsKWL7pbuPbOe3x9IpNCWpE1ykvb7fr3ykoxzzufpafP1POc5z+ExxhgIIYQQNfG5DkAIIcS4UOEghBCiESochBBCNEKFgxBCiEaocBBCCNEIFQ5CCCEaocJBCCFEI1Q4iEaysrIwePBgiEQiPPvsswCA1157DU5OTrC2tkZVVRWsra1x9epVneaYPHkytmzZovX1dtQ+QxMWFob9+/frZN3bt29HVFRUt5c/ceIEPD09tReIGCQeXQBIbjdq1CicOXMGQqFQ9Zq5uTkqKysBACtWrABjDJ9//jkAoLCwEP369cP169fh4+PDSWZturN9XMjIyMDatWtx5swZSKVSuLu7Y9myZVi3bp3Ot719+3Z89NFHSElJuedn8/Ly0K9fP9TU1MDOzk7n2YjhoCMOcpd33nkHjY2NqsetogEAubm56N+/v+p5Xl4erK2te0XRAO5u351kMpnOM0yZMgWRkZEoKChATU0N4uPj4efnp/PtEqI2RshtRo4cyT788MMO3xs8eDDj8/nM1NSUWVlZse+//56Zm5szAMzKyoqNHj2aMcYYAHbp0iXVcrt27WIRERFMJBIxb29v9uWXXzLGGEtOTmYxMTHM3t6eicViNn/+fFZZWalarq2tjb388svMz8+PWVtbs/DwcHbx4sUOc168eJGNGjWK2dvbM39/f/a///2v3Xv3338/E4lEzNHRkU2dOlWt9iUkJLCNGzeyKVOmsCeeeILZ29uzNWvWMKlUyl544QXm5eXFxGIxmzdvHisvL1etBwD75JNPWGhoKLO0tGQLFy5k1dXVbN68eUwkErGoqCh27dq1DjNUVFQwAKygoKDTfeTj48N++uknxhhjX375JYuMjGQvv/wyc3R0ZC4uLuzbb79lJ0+eZGFhYczGxoY99thjTKFQtPv87SIjI1X75M73P/jgAxYQEMCsra2Zn58f++STT1TvOTk5qfa9lZUV27lzJzt69CiztbVVfaa+vp6tXLmSubq6MldXV7Zq1SrW2NjIGGMsNzeXAWBff/018/f3Z7a2tmzJkiVMKpUyxhirqqpiM2fOZHZ2dszW1pYNGDCA5eXldfpzIfpDhYO001Xh6Oj9O78oGGtfOPbt28ccHBzYkSNHmEKhYGVlZSw5OZkxxlhKSgo7ceIEk0qlrLS0lA0fPpytWLFCtZ5nnnmGDRw4kGVmZjKlUsnS09NVXxy357hx4wZzcHBge/bsYXK5nF29epW5ubmxw4cPM8YYGzp0KHvjjTeYQqFgra2t7NixY2q3b+PGjUwgELAvv/ySyWQy1tTUxF577TUWHh7O8vPzWUNDA3v44YfZ+PHj27V/3LhxrKqqihUXFzNnZ2fWv39/duLECSaTydjSpUvZtGnTOty+UqlkwcHBbOzYsWzPnj0dflHeWTgEAgHbvHkzk8lkbNu2bczGxobNnTuXVVZWqrYfHx+v+rwmheOHH35gBQUFTKlUssTERGZubs5OnjzJGPv7i7+mpkb1+Tt/H5YtW8ZGjx7NKisrWUVFBRs5ciRbuXJlu+UXLFjA6uvrWXFxMfP09FRlWb9+PZs6dSprampicrmcXbp0iVVVVXW264geUVcVucv69ethZ2eneowfP77b69qyZQtWr16NMWPGgM/nw9nZGdHR0QCAyMhIDBs2DEKhEC4uLlizZg2SkpIAAIwxfPbZZ9i0aRMCAwPB4/EQHBzcYZfYjh07MGLECMybNw8CgQDh4eFYtmwZdu3aBQAQCoXIz89HSUkJzMzMMGLECI3aEB4ejqVLl8LExASWlpbYsWMHXnrpJXh7e8Pa2hqbNm1CQkICSkpKVMusXbsWDg4OcHd3x8iRIxEWFoZhw4bBxMQEc+fORXJycofb4vF4SEpKQmRkJF577TX4+flBIpEgISGh03xOTk54+umnYWJiggULFqC+vh7Lly+Ho6Ojavudbe9eHnroIXh5eYHH42H06NGYOHGiah/di1KpxDfffIO33noLjo6OEIvFePPNN/H1119DqVSqPvfKK69AJBLB3d0dkyZNwsWLFwHc3G9VVVXIysqCQCBAVFQUHBwcutUOol1UOMhd3nrrLdTW1qoeXX1p3Ut+fj4CAwM7fC87OxszZsyAu7s7bGxssHDhQtX5lIqKCjQ3N3e67O3y8vJw4MCBdsXu448/xo0bNwAAX3zxBVpbWzFw4ECEhITgP//5j0Zt8Pb2bve8qKgIvr6+qufu7u4wMzNDUVGR6jUXFxfVvy0tLe963tjY2On2XF1d8cEHHyA1NRUVFRWYPHkyZs2aherq6g4/f+e6O3qtq+115ZtvvsGAAQPg4OAAOzs7HDhwoN05r65UVFRAKpW2+1n5+fmhra2t3TpcXV1V/7ayskJDQwMA4LnnnsPw4cMxb948uLq6YvXq1WhpaelWO4h2UeEgOuXj44Ps7OwO33viiSfg4eGBtLQ01NfXY+fOnWB/DfJzcnKCpaVlp8vezsvLC7NmzWpX7BoaGnDgwAEAgL+/P77++muUlpZi27ZtWLt2rer/atXB57f/M/H09EReXp7qeWlpKdra2nQyDNXBwQGvvvoqmpqakJub2+P1WVtbo7m5ud1rpaWlHX62oKAAS5Yswbvvvovy8nLU1tbiwQcfVO2jO38ud3JycoKpqWm7n1VeXh7MzMwgFovVyvrOO+8gIyMDZ86cwZEjR3QyBJtojgoH0alVq1Zh8+bNOHbsGJRKJcrLy3Hp0iUAQH19PUQiEWxsbFBYWIj33ntPtRyPx8PKlSvx7LPPIjs7G4wxZGRkID8//65tLFq0CImJiYiPj4dMJoNMJkNKSgouXLgAAPj6669RVlYGHo8HOzs78Pl8CASCbrdp4cKFePPNN1FYWIjGxkasWbMG48aNg7u7e7fXeUtNTQ1eeuklpKenQ6FQoLm5GZs2bYKDgwNCQkJ6vP6oqCjk5OTgxIkTkMvlePfdd1FVVdXhZxsbG8EYg7OzM/h8Pg4cOIBDhw6p3ndycgKfz8f169c7XJ7P5+ORRx7Bhg0bUF1djaqqKrz44otYtGjRPYsOAOzfvx+ZmZlQKpWwsbGBUCiEiYlJ9xpOtIoKB7nLunXrYG1t3e7R2ZfLvcycORObNm1CbGwsbG1tMXjwYNXFgZs2bcL+/fthY2ODGTNm4KGHHmq37DvvvIOxY8di3LhxsLGxwdy5czvsrvHw8MDBgwfx2Wefwc3NDS4uLoiNjUV9fT0A4PDhw4iMjIS1tTVmzJiB9957r0cXua1fvx4TJ07E0KFD4evrC5lMhp07d3Z7fbczNTVFcXExHnzwQdja2sLb2xunTp3Cb7/9Bisrqx6vPyAgAO+++y7mzJkDNzc3tLW1ISwsrMPPSiQSbNiwAWPGjIGjoyP27NmD6dOnq963sLDAxo0bMXnyZNjZ2anOKd1u8+bN8PX1hUQiQVhYGAICArBp0ya1smZnZ2PSpEkQiUSQSCQYOnQonnzyye41nGgVXQBICCFEI3TEQQghRCNUOAghhGiECgchhBCNUOEghBCiEaMZ22ZjY0PTNRNCiJ4UFRWpRibeyWgKh6enJ9LS0riOQQghfYJEIun0PeqqIoQQohEqHIQQQjRChYMQQohGqHAQQgjRCBUOQgghGqHCQQghRCNGMxyXENJeXYsMJbUtkCmUcLO1gNjaFDwej+tYpA+gwkGIEWmTK/DdhUL8dKkYlwprcfvc1v5OVpgZ5YGlMb4QmQu5C0l6PSochBiJw2ll2LgvFcW1LfC0t8CyB/ohwNkapiZ8FFQ1IeFaOT5IyMRXZ/KxcZoE0yJ7fmMpQjpChYMQAydTKPH6L2nYcTYfXg4W+GRBNKb0dwOf375bas2EYBzPrMBrv6TiH7svIaWwFusnh8BEQKcyiXZR4SDEgDW1yfHkN8k4nlmB2QM88PqMcFibdf5nOyLICfv/MRzr4q/g85O5qGhow6Z5kVQ8iFZR4SDEQLXKFFi2/QLO51bj+UnBeHKkv1onvy1MBdg8PwrOIjNsO5kLPg/YNC/qriMUQrqLCgchBkiuUOKpXZdwPrcar00Pw5IHfDVansfjYcOUUMiVDNtP58HbwRJrJgTrJizpc6hwEGKAPkjIxOFrZXh6bKDGReMWHo+Hl6dKUFzbgo8TsxHoIqIT5kQrdNrxuXr1anh6esLEpH19euGFFxAQEICgoCDEx8frMgIhRudQaik+TbqOSWGueGZcYI/WJeDz8NHDUQhyscaLP15FYXWzllKSvkynhWPu3Ln4448/2r12+PBhnD59GhkZGTh69CieeeYZNDY26jIGIUajvKEVz8dfQT+xFd6bG6GVC/qszEzw8YJotCmUWP3tJcgVSi0kJX2ZTgvHsGHD4Orq2u61+Ph4LF26FAKBAB4eHoiJicGhQ4d0GYMQo8AYwys/p6K+RYZN8yK1ehFfiKsNNjwYiuSCWnx8JEtr6yV9k97H6BUVFcHLy0v13NvbG4WFhXd9Li4uDhKJRPWoqanRZ0xC9O5gahl+Ty3FiuF+iPa21/r6Fw/1wdgQZ/znaDbO5VRpff2k79B74WC3z5HQhdjYWKSlpake9vba/0MixFC0yRX494E0eNhZYM34IJ1sg8fj4d05ERBbm+HZ7y+jqU2uk+2Q3k/vhcPLy6vdEUZBQQE8PT31HYMQg/LlqTwUVrdg/YMhMBcKdLYdR2szvDW7P4pqWvD2b+k62w7p3fReOGbPno3t27dDoVCguLgYJ0+exIQJE/QdgxCDUdcsQ1xiNgb52GNKfzedb29sqAtmD/DAjrP5OJ1dqfPtkd5Hp4Vj1apV8PT0hEKhgKenJ2JjYzF+/HgMGTIEQUFBGDVqFDZt2gSRSKTLGIQYtM9P5aKhTY7nJ4XobVr0jVPD4Cwyw/PxV6jLimiMx9Q96cAxiUSCtLQ0rmMQolV1LTIMeycRYe42+PbxoXrd9pFrZVj+1R9YNMQH/5oZrtdtE8PX1XcuzXxGCIe+Pp2HhlY5nh7bswv9uoO6rEh3UeEghCNSuRJfn81HlJcdhvo5cpKBuqxId1DhIIQjv14tQUVDG5bF+HJ2y1dbSyGNsiIao8JBCAcYY/jyVB5cbMzwoB5GUnWFuqyIpqhwEMKBy0V1uFJUh0VDfCA0gJssUZcV0QT3v7GE9EF7LhRCwOdh3iCve39YD2wthXhzFnVZEfVQ4SBEz1qkCvxyuQSjg53gbGPOdRyVcRIXzI6mLityb1Q4CNGzA1dvoLFNbjBHG7fbOI26rMi9UeEgRM++v1gIsbUpRoc4cx3lLtRlRdRBhYMQPSqta8W53GpMi3Q3iJPiHbm9y+poejnXcYgBMszfXEJ6qf1XSsAYMN3A7/29cXoYvB0ssfrbS8ivauI6DjEwVDgI0aN9l0vg7WCJKC87rqN0ydZCiM8WDYRUocSqHRfRIlVwHYkYECochOhJbmUTrhTVYVqkG2dXimsi1M0G7zwUgfTSBrzw4xW1b8JGej8qHIToyYGrNwAA0wy8m+p2M6I8sCzGF3tTSvDFqTyu4xADQYWDED05mFoKP7EVgl2M6/4zLz4YiiF+Dvj3r2k4nlnBdRxiAKhwEKIHxbUtuFJUh4nhrkbRTXU7oYCPLY8OhLudBZ7alYzcSjpZ3tdR4SBEDw7+WQoAmBTmynGS7nGwMsW2JYMgVzKs+OoC6ltlXEciHKLCQYge/J5aCjdbc0R42nIdpdtCXG3w4cNRuF7RhNW7L0GhpJPlfRUVDkJ0rLZZij/yqjFB4mJ03VR3mhjmimfHB+FoRgXePUhXlvdVVDgI0bHjWZVQMmCUAU4x0h1PjQnAlAg3fHYsB7//eYPrOIQDVDgI0bGkjHKYmfA5uz2stvF4PLw3JwJ+Yiusi7+KG3UtXEciekaFgxAdUioZjmdWYIifI8yFAq7jaI2lqQk2z49Gs1SOtd9fposD+xgqHIToUGpJPSobpRgV7MR1FK3r72mLp8cE4lR2FX66VMx1HKJHVDgI0aGkjJuzy44K7h3nN+60aqQ/Apyt8cav11DTJOU6DtETKhyE6FBSZgV8HC3RT2zFdRSdMDXh481Z/VHdJMXmI1lcxyF6QoWDEB2pbZbiUkENRgX1vm6q293XzwGTw13xzbl8FFY3cx2H6AEVDkJ05EQvG4bblbUTg6FkwAeHMriOQvSAs8Kxc+dOREREICoqCsOHD0dGBv3Ckd7laC8bhtsVfydrzB3oib2XS2guqz6Ak8LR3NyM1atXIzExESkpKXj00Ufx0ksvcRGFEJ3orcNwu/LESH/wAGw9kcN1FKJjahWOZcuW4cyZM1rbqFKpBGMMjY2NAIC6ujq4ublpbf2EcK03D8PtjK/YCpPCXfHDxSJUNLRxHYfokIk6H5owYQI2bNiA8vJyLF++HIsXL4ajY/cPv62trfGf//wH4eHhsLW1ha2t7V2FKS4uDnFxcarnNTU13d4eIfrW24fhdmbVCH8cuFqKHWfysGZCMNdxiI6odcSxYMECJCYmYu/evaioqEB0dDTmz5+PpKSkbm1UJpNhy5YtuHDhAoqLizFnzhysW7eu3WdiY2ORlpametjb23drW4RwobcPw+1MpJcdBnjb4dsLhZArlFzHITqi0TmOnJwcZGVlwcrKCiEhIfjXv/6FJUuWaLzRlJQUMMYQGhoKAJg/fz5Onz6t8XoIMUR9ZRhuZxbc543yhjYkppdzHYXoiFpdVf/617+wY8cOREREYNWqVRg/frzqvcDAQI036unpiYyMDBQXF8PDwwMJCQmQSCQar4cQQ6QahtvHuqlumRrhjtf3p2H3+QJMMNIbV5GuqVU4+Hw+jh8/DlfXu38JDh48qPFG3dzc8Pbbb2P8+PEQCoVwcnLCF198ofF6CDFESRkVMDPhY0gfGIbbEQtTAWZFe2DH2XyU1LbA3c6C60hEy9TqqsrKyrqraCxduhQA4Ofn160Nr1ixAmlpabh8+TIOHz4Mb2/vbq2HEEOiVDIc+2sYroVp3xiG25G5A73AGPDL5RKuoxAdUKtwXLly5a7XLl68qPUwhBi7tBv1qGxs61PDcDsS7mEDP7EV9qZQ4eiNuiwcn3zyCQIDA3Ht2jUEBQWpHm5ubhg4cKC+MhJiNI6m981huHfi8XiYHuWOtBv1yC5v4DoO0bIuz3EsXrwY06ZNw5o1a/Dhhx+qXheJRHBwcNB5OEKMTV8dhtuR6ZHu+OhwFvallNA1Hb1Ml4Xj1sV5P/74o77yEGK0bg3DXTTEh+soBsHPyRrhHjbYf+UGnhkfBB6Px3UkoiVddlXNnDkTwM0ht7d3Vd16Tgj5W18fhtuRyeFuyKlsQnZ5I9dRiBZ1ecTx6aefAgAOHz6slzCEGLOkjAqY9uFhuB2ZGOaC9w5m4GBqKQJdRFzHIVrS5RHHrYkH3dzc4OPjAx8fHzDGkJaWBk9PT70EJMQY0DDcjvk7WcNPbIWDqWVcRyFapNZw3AceeAANDQ2oqKjAyJEjsXnzZqxatUrX2QgxGreG4Y7u48Nw78Tj8TAhzBVXi+tQXNvCdRyiJWoVDoVCAZFIhH379mH58uX4/fffcf78eV1nI8Ro9NXZcNUxMcwFAHDkGh119BZqFQ65XI62tjb8+uuvmDBhAgDQCAlCbpOUQcNwOxPpaQcHK1Mcy6jgOgrRErUKR2xsLAIDA6FUKjFkyBDk5ubC1tZW19kIMQo1TVIk9+HZcO+Fz+dheKAYp69XoU2u4DoO0QK1CscTTzyBgoIC/PzzzwAAHx8fGmlFyF+OZ1VAyYAxoS5cRzFYo4Kd0CJT4EIu3ZCtN1BrdlypVIr4+Hjk5uZCLperXn/llVd0FowQY3HkWjksTQW4vx/NptCZ4YE3j8aOZZZjWKCY4zSkp9Q64pg1axZ27doFuVwOgUCgehDS18kVShzLrEBMgBjmQvqb6IzY2gz9PWxxLJPOc/QGah1x5OXlITU1VddZCDE6yQW1qGuRYUwIjaa6l1HBTvgkMZvu0dELqHXEERUVhfz8fF1nIcTo3Lo96mgahntPI4NudVfRUYexU+uIIz8/H+Hh4RgwYADMzMxUrx86dEhnwQgxBonpZQhzt4GrrTnXUQxelJcdbMxNcCyjAgvuoxu3GTO1Cse///1vXecgxOgUVjcjs6wRT48J4DqKUTAR8DE80AnHMysgUyghFKjV4UEMkFqFY+TIkaitrUVOTg4GDBig60yEGIWjf10tPprOb6htZJATfr16A8n5NbifJoM0WmqV/B9//BH33Xcf5syZAwBISUnBgw8+qNNghBi6xPRyOFqZItLTjusoRmMEnefoFdQqHG+88QYuXLigulo8KioKBQUFOg1GiCFrlspx+noVRgU7g8+n6XfU5WprjiAXa5zKruQ6CukBtQqHqanpXVOM8PnUP0n6rmMZFZDKlRgvoW4qTcUEiHGluA51zTKuo5BuUuvbv1+/fjh8+DB4PB7q6+vx6quvIjIyUtfZCDFYv/1ZCguhACODqHBoaliAGIwBZ3LoqMNYqVU4tmzZgh07dqCoqAj+/v7IycnBxx9/rOtshBikNrkCienlGBXsRDdt6ob7/Rwh4PNwkrqrjJZao6rs7e3x1Vdf6ToLIUbhVHYlGtvkmBTuynUUo2RtZoJoLzuczKLCYay6LBxvvvlmlwu/+OKLWg1DiDH4/c9SmAr4NM1ID8QEiLH5SBYKq5vh5WDJdRyioS67qmQyGWQyGdLS0vD555+jsrISlZWV+OKLL3Dt2jV9ZSTEYMgVSiSklSEmwBEicyHXcYzWrRlyT1+now5j1OURx8aNGwHcvAAwOTlZNbJq48aNmD59uu7TEWJgzudWo6ZZhsnhblxHMWpRXnawMhXgZHYVHh5M048YG7VOjpeWlkIkEqmeW1lZobS0tEcbbmpqwpIlSxAcHIyQkBB89tlnPVofIfrw25+lEPB5GCehmzb1hFDAx/1+jjidXQmlknEdh2hIrZPjU6ZMwdixY/Hwww8DAL777jtMnTq1Rxt+9tlnERYWhq+++gqMMVRU0JWkxLAplQwHU0txfz8HOFiZch3H6A0LECMxvRzppQ2QuNtwHYdoQK3CsWnTJvz88884fvw4AGD16tWYMWNGtzfa0NCAffv2qa4+5/F4cHamE43EsCUX1KC8oQ1P0aSGWnHrPMep7EoqHEZGrcIBADNnzsTMmTO1stGcnBy4uLjgqaeewvnz5+Hj44OPPvoIPj4+qs/ExcUhLi5O9bymhu5VTLj1c0ox+DzQMFwtCXS2hpPIDCezK7FyhB/XcYgGOJk3RC6XIyUlBXPmzEFycjKmTZuGxx57rN1nYmNjkZaWpnrY29tzEZUQAIBUrsSvV25gWKATnEV07w1t4PF4GBYgxvncarTJFVzHIRrgpHB4enrC0dER48aNAwDMnz8fFy9e5CIKIWo5nlmBmmYZZka5cx2lV4kJEKNFpsClglquoxANqFU4mpqatLpRFxcXhIWFITk5GQCQkJCAsLAwrW6DEG36OaUYFkIBJoZRN5U2xQTcvCcHzZZrXNQqHCEhIXj88cdx/vx5rW34008/RWxsLCIiIvDBBx9g27ZtWls3IdrU0CpDQloZJoS5wMpM7dOCRA1uthbwd7KieauMjFp/BZmZmfj++++xdu1a1NfXY8WKFVi4cCHs7Oy6vWGJRIIzZ850e3lC9OX3P0vRJldiZpQH11F6pWEBYuw4m4/6Vhls6Gp8o6DWEYeFhQUWL16M48ePY8uWLXj77bfh7u6OpUuXIi8vT8cRCeHW3pQSOFqZqoaPEu2KCRBDyYCz16u4jkLUpPbJ8aSkJDzyyCNYunQpHn/8caSlpWH06NGYNGmSLvMRwqmy+lacul6JaZHuEAro5mW6MMTfEXwenecwJmp1VQUHByMoKAiPP/44du7cqbr7n6+vL37//XedBiSES3tTisEYMINGU+mMjbkQkV52dJ7DiKj1v1Bbt27FL7/8gmnTpqmKxq2rvnfv3q27dIRwiDGGb88XItDZGlFedlzH6dWGBYhxvaIJN+pauI5C1KBW4fjnP/9512vauoqcEEN1LrcaOZVNWHCfN3g8HtdxerWYgJvnj+jmTsahy66qoqIi5Ofno6mpCadPn1a9XldXh+bmZp2HI4RLu88XwNSEj9kDaDSVrkV728FCKMCp7ErMHeTFdRxyD10WjiNHjmD79u0oKSnBhg0bVK+LRCK8/fbbOg9HCFdqmqT47c9SPBjuCjtLmglX18xMBLivnwNOZleBMUZHeAauy8KxZMkSLFmyBLt27cIjjzyir0yEcO7HS8WQypVYcB/dZEhfhgWIcSyzAplljQh2Fd17AcKZLgvHlStXEBERAV9f33ZdVbc88MADOgtGCFcYY9h9vgB+Tla4r58D13H6DNV5juxKKhwGrsvC8cknn2Dr1q3tuqlu4fF4SExM1FkwQrjyR34Nsssb8dKUUOoy0aMQVxEcrUxxKrsSy4f14zoO6UKXhWPr1q0AgKNHj+olDCGG4Juz+TAV8DF7gCfXUfoUPp+HmAAxDl8rg0yhpAsuDViXhaOj7qnbUVcV6W1K61qx/8oNTI9yp9vDcmBYgBj7LpcgpbAWg32pm9BQdVk4OuqiuoW6qkhv9PWZPMiVjLpKOBIT+Pf1HFQ4DFeXhYO6qEhf0iJVYNf5Agzxc0CYuy3XcfokDzsL9BNb4VR2JZ4ZH8R1HNIJtUZVddZlRV1VpDeJTy5CbbMMy4fR/a+5FBPgiN3nC9HQKoOIplk3SDSqihAASiXDF6dy4etoibEhzlzH6dOGBYix82wBzudWY2yoC9dxSAdoVBUhAJIyy5FT0YTXZ4SBz6chuFwa6icGj3fzeg4qHIZJrWnV5XI5/ve//+HYsWMAgFGjRmHFihUQCukwkvQO207kwsbcBA/REFzO2VoKEeFhS/fnMGBqDZReuXIlEhMT8eijj+LRRx/F0aNHsXLlSl1nI0QvLuZX4/T1Kiwa6kP3FDcQMQFiZJY1ory+lesopANq/ZWcOXMG6enpqufTpk1DaGiozkIRok8fHc6CpakAK+ikuMEYFiDGlqTrOHW9ErOi6SjQ0Kh1xOHl5YXS0lLV8/Lycnh70+RvxPglF9TgRFYlFg/1hT1d8GcwBvjYw8yEjxN0fw6D1OURx8qVK8Hj8WBhYYGwsDCMGzcOPB4Phw8fRkxMjL4yEqIzHx/JgoVQgJXD6YI/Q2IuvDnN+qnsSppm3QB1WTiGDRum+vdDDz2k+vfkyZN1l4gQPUkprEVSRgVWjfCDo7UZ13HIHWICxDiRVYnrFY0IcKbZcg3JPe/HQUhvpTraGEHnNgzRsNtuJ0uFw7CodXK8pqYG77//Pq5evYrW1r9HORw6dEhnwQjRpfO51UhML8fK4f0gpqMNgyRxs4GdpRAns6uwNIa6Eg2JWifHlyxZArFYjPT0dDz99NOwsrLCgAEDdJ2NEJ1QKhn+/WsabMxNEDs6gOs4pBN8Pg8x/mKczamCXKHkOg65jVqFo7CwEM888wzMzc0xdepU/PDDD3Q1OTFav1wpweWiOjw9NpDuJ27gYgLEaGyT43JRHddRyG3UKhympjf/uEQiEfLy8tDa2oqKigqdBiNEF1plCrz7ewa8HSyxaKgP13HIPQz/a5p1uorcsKhVOGbOnImamhq88MILGDRoELy9vbF8+XKtBIiNjYWJCV2tS/Tjy1N5KK5twQuTQ2BmIuA6DrkHLwdLeDtY4iQVDoOi1jf2+vXrAdy8YrykpAStra2wsbHp8cZPnDiBxsbGHq+HEHVUNrZhy9FsDPSxx+RwV67jEDXFBIjxw8VCNLXJaUoYA6HWEYdcLseWLVvw8MMPY9GiRfjmm28gk8l6tOG2tja88MILeP/993u0HkLU9eaBa2iUyvHSlFC6oMyIDAsQQ6ZgOJdbxXUU8he1yvfKlSvR0NCAxYsXAwB27tyJc+fOYfv27d3e8Ouvv47ly5fDycmpw/fj4uIQFxenel5TU9PtbRFyNqcKPyYXY8F93oj2tuc6DtHAsAAxBHwejqZXYEwITbNuCHiMMXavD4WEhLSb5JAxhtDQ0HavaeLKlStYs2YNEhISwOPxYGJiArlc3uUyEokEaWlp3doe6dukciWmfHwC1U1SHHl2JI2kMkLz/nsGxbUtOLluNB0t6klX37mcTHJ46tQppKWloV+/fvD19YVCoYCvry/q6+u7vU5COvP5yVxklTdi/YOhVDSM1OgQZxTXtiCrnM6JGgJOJjl88skn8eSTT/4dwsQEeXl53V4fIZ0pqmnGx0eycJ+vAx4a4MF1HNJNY0Kc8c7v6UhML0eQC00/wjWa5JD0aq/uS4NMocQbs8Kpi8OIBblYw8POAonXyvHESH+u4/R5Gk1yeGueKnNzc62GuNf5DUK6IyGtDIevlWHVSD/6v1Qjx+PxMDrECbvPF6KuWQZbS7ptNZfUOseRlZWFIUOGwNPTE56ennjggQeQlZWl62yEdFuLVIFX96XCw84Cq8cGch2HaMGYEGcolAzHsmjWCq6pfc/x559/HpWVlaisrMRzzz1H9xwnBm1LUjaKa1vwyjQJLE3porHe4AF/McyFfBxNL+c6Sp+nVuGora3F7NmzVc9nzZqF2tpaXWUipEdyK5vw2bEcjAp2wgQJjfvvLcyFAjzgL0ZSRjkUynteRUB0SK3CYWNjg19//VX1/MCBA1qZcoQQbWOM4bVfUgEAr04LoxPivczoEGfUNMuQUljLdZQ+Ta1j+P/+979YuHAhHnvsMQA3r+vYsWOHToMR0h0JaWVIyqjAP8YEwFdsxXUcomVjQpzxMoDE9DIM9KEZALhyz8KhUCiQkJCA5ORk1NfXg8fjQSSiESrE8LTKFHjtlzR42Fng/0bRDZp6Iw87C0jcbJCQVobnJoZwHafPumdXlUAgwM6dOwHc7LKiokEM1a0p01+eGgoLU5oyvbeaEOaCzLJG5FY2cR2lz1LrHMe4cePw6quvIisrCyUlJaoHIYaipkmKLUk3p0yfGEZTpvdm4/8a8JCQVnqPTxJdUescx7fffgsA+Oqrr1Sv8Xg85OTk6CYVIRqKO5qNhlY51k8OoRPivZzEzQYedhY4lFqGx0fQVeRcUKtw5Obm6joHId1WWN2Mr8/kY7zEBYN8HbiOQ3SMx+NhQpgLtp/OQ2VjG8TWZlxH6nO67KrKzc3FrFmz0L9/fyxatAhlZWX6ykWI2jYlZEKuVGLdpGCuoxA9GS9xAWPAkWv0ncSFLgvHY489huDgYLz33nsQiUT45z//qadYhKgnraQeP6cU4+HBXghwpoEbfcV9vg6wtRDiUCoVDi502VVVWVmJt99+GwAwceJEDBgwQC+hCFHXJ4lZEAr4WD02iOsoRI9MBHyMDXXG/is36F7kHOjyiEMo/HsGSh6PRycdiUHJLGvAb3+WYv5gL7jaanfGZmL4JkhcIZUrcYImPdS7Lst0SkoKTE3/vmOaXC6HqakpGGPg8XiQSqU6D0hIZ7YczYYJn4dVdH+GPmlEkBhmJnz8/mcpJoW7cR2nT+mycCiVSn3lIEQjeZVN2He5BHMHesHDzoLrOIQDlqYmGBXshMPXytEqU8BcSBd96otaFwASYmg+TboOAHhyFB1t9GVTItzR2CbH8UzqrtInKhzE6BTXtiA+uQjTI91pIsM+bmyIM8yFfPx69QbXUfoUKhzE6Gw9ngO5kuH/RtNEhn2dlZkJxoQ443BaGVplCq7j9BlUOIhRqWuW4bs/CjEu1IXuI04AAFMj3NEkVSApg+4MqC9UOIhR2XW+AM1SBVYM78d1FGIgRgc7w9JUgF+uUHeVvlDhIEZDKldi++lchHvY4P5+NCcVucnCVICxoS5IvFaOZqmc6zh9AhUOYjQOXL2Bsvo2rBjmRxejknam9HdDi0yBo+k0ukofqHAQo8AYw9YTOXC1MceUCLrYi7Q3KtgJVqYC7L9C9wnSByocxCiczalGakk9lsb4QiigX1vSnrlQgIlhrjiSXo66ZhnXcXo9+gskRuHzkzmwNBVgwWBvrqMQAzVnoCekciX2XS7mOkqvR4WDGLzrFY04fK0c8wZ5wdZSeO8FSJ80xM8RnvYW+O6PIq6j9HqcFI7CwkKMHTsWoaGhCAsLw/r167mIQYzEFydzweMBj8XQEFzSOT6fhzkDPXG1uA7XbtRzHadX46RwmJiY4J133sG1a9dw6dIlnDx5Env37uUiCjFw1U1SxCcXYaLEFd6OllzHIQbuoQGeAIDv6ahDpzgpHG5ubhg0aBAAwNTUFNHR0SgoKOAiCjFwO8/mo1WmpAv+iFq8HCwRE+CIn1OKIZXT7N66wvk5jurqavz8888YP358u9fj4uIgkUhUj5qaGo4SEq60yhT46nQeor3tMNDHnus4xEjMHeiF6iYpEtPptrK6wmnhkEqlmDNnDlavXo2QkJB278XGxiItLU31sLenL46+5qdLxahqkuLx4XTBH1HfxDBXiMxMqLtKhzgrHAqFAo888giioqLw7LPPchWDGCil8uYFfz6OlpgQ5sp1HGJELEwFmBbljqTMCpTUtnAdp1firHA8/vjjEIlE+OCDD7iKQAzYkfRy5FQ0YcWwfhDw6WiDaGbh/T5QKBl2ns3nOkqvxEnhOHXqFL744gv88ccfiI6ORlRUFD7++GMuohADtfV4DuwthZgz0IvrKMQISdxvToS5+3wB3adDB7q857iuxMTEgDHGxaaJEUgprMX5vGo8PTYQFqZ0H2nSPctifPHEzmTsTSnGwzTjgFZxPqqKkDvFHc2GmQkfi4f6cB2FGLFxoS7wsLPA1hO5UCrpf1S1iQoHMSh/FtchIa0Mj97vA7G1GddxiBEzEfCxaqQfsssbkXCNhuZqExUOYlA+OpwFMxM+nhjpx3UU0gvMG+QFsbUpthzNpu5xLaLCQQzGn8V1OHytDAuH+MDZxpzrOKQXMBcKsHyYHy4X1eFYJt3kSVuocBCD8dHhTJiZ3OxeIERbFg/1gaOVKd79PYPOdWgJFQ5iEK4W1eHwtfKbRxsiOtog2mNlZoJ/jAlA2o167L96g+s4vQIVDmIQPkjIgLmQjjaIbiy43xue9hZ49/d0uq5DC6hwEM4dy6xAUkYFHovpR0cbRCfMTAR4aUooimpasOVoNtdxjB4VDsIpuUKJN/anQWxthv8bHcB1HNKLTQxzxcggJ/z3WA5yKhq5jmPUqHAQTu04m4+s8kasnRAEazNOJjIgfQSPx8Nr08PA4wFrv78MuYLu19FdVDgIZ27UteD9gxmI8rLD3EE0JxXRPV+xFV58MBTJBbXYknSd6zhGiwoH4QRjDBv3pqJVrsSbs/rTDLhEbxYP9cGIICdsPpKFk1mVXMcxSlQ4CCd+TC7GobQyrBzuB4m7DddxSB/C4/Hw4bxIuNqYI3ZXMvIqm7iOZHSocBC9K6xuxsZ9qQhxFeGZ8YFcxyF9kKO1GbYuHgSpXIlFX5zDjTq64ZMmqHAQvWqVKRC7KxlShRIfzY+CmQlNm064IXG3wf8WD0RZfRse2XoOxXS3QLVR4SB6wxjDK3v/xJWiOrwxMxwhrtRFRbg1PNAJ/104AMW1LZgVdwp/FtdxHckoUOEgerMl6Tq++6MIj9zvjXk0iooYiDEhLti98n7IFErM/vQ0dpzJo5l074EKB9GL3ecL8N7BDIwKdsJr08O4jkNIOwN9HLDvqWEIc7fBy3tTsejz88ilk+adosJBdO7rM3lY/+NVRHvbYcujAyAU0K8dMTxeDpb4btVQrBkfhPN51Ri/6RjW/3gFRTXNXEczOHSpLtEZpZLhg4QMxB29jvt8HfD50kGwNKVfOWK4hAI+nh4biOmR7tiUkIlvLxTih4tFmDPQC4/F+CLQRcR1RIPAY0bSmSeRSJCWlsZ1DKKmqsY2PP/DFRxJL8fEMBd8+HAUFQ1idDLLGvDxkSz8evUGGAOG+Dlg0RBfTAhz6fVHzl1951LhIFrFGMNvf5bilb2pqGpqw9NjArF6bCD4dGU4MWKF1c345lwB9lwoQE2zDM4iMzw82AvzBnnBy8GS63g6QYWD6MUfedXYlJCJ09er4OVggQ/mRuG+fg5cxyJEa1plCvz25w3sOJOP5IJa8HhAjL8Y8wZ7YYLEBebC3nNdUlffudR3QHqkrlmGQ2ml2H2+AMkFtbA0FeCf4wLxxEj/XvVHRAhw8x7ms6I9MSvaExmlDdhzoRA/XirCyd2VsLMUYmaUBx4e7IVQt959jRIdcRC1MMZQ0yxDflUTCqqbkVnWgAt5NUjOr4FcyeAsMsP8+7yx7AFf2FuZch2XEL1pkyuQkFaGPRcKcTK7EowBkZ62mDfYC9Mj3SEyF3IdsVuoq4oAuPnlX1TTgqvFdcgsa0BlYxtqmmSobpKiTa6AXMkgUzDIFUrIFEq0ypRolSvQIlWgTX73vQt8HS0x1F+MCWEuGBYg7vUnCwm5l6KaZnz/RxG+/6MQJXWtsBAK8GB/Nzw82AuDfe3B4xnPuT4qHH2QUsmQX92Mq8V1SC2uw9XiOvxZXIf6VrnqMyZ8HuytTGFvKYS5UAChgA8TPg9CAR9CAQ/mQsFfDz7MhQKIzIXwcbCEj6Ml+omt4GhtxmELCTFcCiXDyexK7LlQgIS0MsgUDH5iK8wb7IWHBnjCSWT4fztUOHo5hZIht7Lxr+JQj6vFdUgrqUdj299FwsfREuEetgh3t0W4hw1C3WzgaGVqVP8HRIgxqmpsw0+XirHnQiGyyhsh4PNwfz8HTAp3xQSJK1xtzbmO2CGDLBxJSUmIjY1FW1sbRo0ahc8++wwCQecnU425cMgVSjS0ytEsU4DPAwQ8Hvh83t//Vf375nsCPk/1hc4YQ5tciWapAg2tMpTWtaK0vhUlta3IKm9AVlkjsssb0SJTAAB4PKCf2Arh7rbo72GLMA8bhLnbwtbCOPtZCektGGO4VFiL+ItFOJRWhoqGNgBAiKsIQ/wcMdTfEQO87Q3maMTgCodSqURQUBD27dsHiUSCefPmYcqUKViyZEmny3BROGQKJVpkCrRKFWhok6OhVY7GVjkaWmVoaJWjvlWGxr9ev/VaY5sc9bc/b5WrvtQ1wfurwCgZg7KTPWRpKkCgszUCXUSQuNkg3MMWEncbunc3IQZOqWS4VFiDQ2llOHO9Cn8W16n+zp1EZgh1s0GQszU87C3gaW8JN1tz2FoIYWMhhMjMRC/XRRnccNwLFy7A3d0dEokEALB8+XLExcV1WTh64pk9KSiuaYGCMSiUDErVf2/uQAVjUCoZ5EqGVpkCLbKbJ4TlnX1jd8DSVACRuQmszUwgMhfCw84CNubCv57ffM3SVACGm9tRKhkUSqi2rfrv7f9mDHweD5amJrA0FcDazAQuNuZwtTWHm605XG3M6cI6QowQn8/DQB8HDPS5eZ1TXYsMF3Krb3Yz36hHWkk9jmdWdLgsjweIzExgaWoCoQkPQj4fJgIeTPg3z02aCPjg84BQNxu8PiNcJ/k5KRxFRUXw8vp7Wm1vb28UFha2+0xcXBzi4uJUz3NyclSFRhdqampgb2+vem7610MTDX89bmgxV3fd2R5j15va05vaAlB7dKWr69HlAOrvsXwqgB/Wd789RUVFnb7HSeFQp3csNjYWsbGxekhzkzGfQ+kItcdw9aa2ANQeQ6eL9nAy8N7Ly6vdEUZBQQE8PT25iEIIIURDnBSOQYMGoaioSFUFP//8c8yePZuLKIQQQjTESeEQCATYtm0b5syZA39/f1hbW2PRokVcRFHRZ7eYPlB7DFdvagtA7TF0umiP0VwASAghxDDQ5EKEEEI0QoWDEEKIRnp94UhKSkJYWBgCAgKwYsUKKBR3X8XN4/EQFRWlelRVVQEA5HI5li1bhoCAAISFheHEiRP6jn+XnrRn+/btcHR0VL1uCH256rSnrKwMM2bMQEhICIKDg7F//34Axrt/OmuPoe2fe7UlJSWl3e+Zg4MDnnnmGQDGuW+6ao+h7RtAvd+1999/H2FhYYiIiMCkSZNQVlYGQAv7h/ViCoWC+fv7s9TUVMYYY3PnzmXbt2+/63MCgaDD5bdu3coWLFjAGGPs8uXLLDAwkCmVSt0FvoeetufLL79ky5cv12lGTajbnokTJ7I9e/YwxhiTyWSssrKSMWa8+6ez9hjS/lG3LbcLCAhgp06dYowZ77653e3tMaR9w5h67cnMzGR+fn6submZMcbYunXr2Nq1axljPd8/vfqIo6OpTeLj49VePj4+HitWrAAAREREwNHREZcuXdJJVnX0tD2GRp32ZGRkoKysDPPmzQMAmJiYwNHREYBx7p+u2mNINP1dO3fuHBhjeOCBBwAY57653Z3tMTTqtIcxBplMhpaWFjDGUF9fDzc3NwA93z+9unCoM7UJcHPSxcGDB2PgwIHYtGmTxsvrS0/bAwC//PILIiMjMWHCBFy4cEHnmbuiTnvS09Ph7OyMBQsWIDo6GosXL0Z1dbXay+tTT9sDGM7+0fRnu3PnTixcuLDby+taT9sDGM6+AdRrT1BQEP7xj3/Ay8sLbm5uSE1NxerVq9Veviu9unAwNUca5+fn48KFCzh06BB++ukn7N69W6Pl9aWn7Zk6dSry8vJw+fJlbNiwAbNmzUJjY6MuI3dJnfbI5XIcP34cGzZswKVLl+Dr64vnnntO7eX1qaftMaT9o8nPVi6X47vvvmv3RWuM++aWjtpjSPsGUK89VVVV+PHHH5GdnY3i4mL4+fnhvffeU3v5rvTqwqHu1Ca3Kq+joyMeffRRnD59WqPl9aWn7RGLxbCwsAAAjBw5Ep6ensjIyNBD8o6p0x4vLy9IJBKEh9+c5XP+/Pm4ePGi2svrU0/bY0j7R5Of7cGDB+Hn54eAgIBuLa8PPW2PIe0bQL32JCYmws/PD25ubhAIBJg7d67Wvtt6deFQZ2qTmpoatLa2AgBaW1uxb98+REREAABmz56Nbdu2AQCuXLmCiooKDBgwQI8taK+n7SkpKVF9LjU1FXl5efDz89NT+rup055BgwZBKpWqfskTEhIQFhYGwDj3T1ftMaT9o8m0QDt37rxr5gdj3De3dNQeQ9o3gHrt8fHxwblz51Bff3Me3YSEBNU5kR7vn26d0jciR44cYaGhoczPz48tW7aMyWQytnfvXtUIidOnT7Pw8HAWERHBJBIJe/7555lCoWCMMSaVStnixYuZv78/Cw0NZUlJSVw2hTHWs/asX7+eSSQSFhkZyQYNGsR+++03LpvCGLt3exhj7Pjx4yw6Opr179+fTZo0iZWUlDDGjHP/MNZ5ewxt/6jTloaGBmZra6saGXaLse6bztpjaPuGMfXa8/rrr7Pg4GAWHh7OZs2axWpqahhjPd8/NOUIIYQQjfTqripCCCHaR4WDEEKIRqhwEEII0QgVDkIIIRqhwkEIIUQjVDgIucOdswvfmtOnsrISQ4cORXR0NH766SecOnUK4eHhiI6ORmFhIQYNGsRxckL0g4bjEnIHExMTyOXyu17/9ttvsX//fuzcuRMA8MQTT2DQoEGqwkJIX0GFg5A7dFQ4zp07h7lz56KpqQleXl6YNWsWNm/eDJFIhJCQEBw8eLDdcomJiXjhhRfQ1tYGU1NTHDx4EE1NTVi4cCEaGhogk8mwbt061XxIKSkpePrpp1FXVwc+n4/du3fj/fffx4gRI7B48WIAwJtvvom2tja89tpr+v2BEHIn7VzDSEjvAYBFRkaqHm+99RZj7O57MixZsoTt2LFD9fzWfVAqKiqYu7s7u3btGmOMsfr6etbW1saam5tZU1MTY4yxuro6FhAQwGpqaphUKmV+fn6qq3dbW1tZQ0MDO3/+PBs+fDhjjDGlUskCAgJYXl6e7n8AhNyDCdeFixBDIxAIkJKS0u3lz549iyFDhiAkJAQAIBKJAAANDQ1YvXo1Lly4AD6fjxs3biA7Oxvm5uaws7PDyJEjAQBmZmYwMzPD4MGD0dTUhPT0dBQXF8Pf3x8+Pj49bh8hPUWFgxAtY530/m7atAkWFhZISUmBQCDAwIED0draCjMzs07XtWrVKmzbtg3FxcVYuXKlriITohEaVUWIlg0dOhRnz55Feno6gJtHGlKpFHV1dXB1dYVAIMC5c+dw+fJlAEBISAhqa2tx7NgxAEBbW5vqXg+PPPII4uPjcfr0aUyfPp2bBhFyBzriIOQOCoUCUVFRqucBAQH44Ycf1F5eLBZjx44dWLhwIWQyGczNzfHbb7/hqaeewpw5c/D9998jPDwcgwcPBgAIhULEx8fjqaeeQn19PYRCIXbt2oXg4GBYW1tjxIgRcHFxgVAo1HZTCekWGlVFiAGTyWSIiIjAL7/80u7GQoRwibqqCDFQJ06cQGBgIGbNmkVFgxgUOuIghBCiETriIIQQohEqHIQQQjRChYMQQohGqHAQQgjRCBUOQgghGqHCQQghRCP/D98pQfrUwC1JAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -886,7 +884,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEICAYAAAB1f3LfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAAuJAAALiQE3ycutAABFBUlEQVR4nO3dd1gUV9sG8Ht36SwdFOkCgnRQxC4WotgViR3RiEZDEk0xieWLGo0aTTO+amKssdckaOyFWINYUAMqKL1JkSIgZXfP9wcv+4ogLGV3Fnh+17WX7O7szH0AeWbOzJzDY4wxEEIIIY3E5zoAIYSQlo0KCSGEkCahQkIIIaRJqJAQQghpEiokhBBCmoQKCSGEkCahQkIIIaRJqJCQZpeYmAgej4f8/HwAwJw5c/D5559zmqm5M7y6vtfb2xxWrVqFSZMmNdv6GiI7OxsDBw6Erq4u3n77bZk+s2zZMowZM0a+wYjyYqRVePToERsxYgQzMjJiOjo6zNHRka1Zs4aTLAkJCQwAy8vLU9i2tLW1mY6ODjMyMmL9+/dnO3bsYBKJpMHrCw4OZvPmzWtUhsa2d8eOHczDw6NRn5WHFStWMD8/PyYWi2t9v7a8S5cuZaNHj262DL6+vgwAO3fuXLXX165dywA0+GdE5IuOSFqJ4cOHw8PDA8nJycjLy8PRo0dha2vLdSyFSU1NRWFhIVJSUvDpp59i+fLlePfdd+WyLZFIJJf1KouEhAS4uLiAz+f2z4OjoyN27NhR7bUdO3agc+fOHCUib8R1JSNNl52dzQCw5OTkNy7z3XffMXt7eyYUCpmtrS3bsGGD9L2qPept27axjh07Mm1tbbZgwQKWnp7O/Pz8mI6ODuvXrx/LyMiQfgYA+/HHH5mDgwPT09Nj48ePZ/n5+dXWV7WH/upeftV7v/32G7Ozs2N6enosODiYlZeXS9d9+PBhZmdnx3R1dVlISAgbPnw4W7p0aa3tetPRwLVr1xiPx2PR0dE1MpSWlrIZM2YwIyMjpqury1xcXNjNmzfZ+vXrmYqKClNVVWXa2trM2dmZMVa5d7xgwQL21ltvMS0tLRYWFlZrm7Zs2cKsra2ZoaEhmzt3LisrK2OM1b4H7+HhwXbs2MHu3LnD1NXVGZ/PZ9ra2kxbW5slJSXV2MOPi4tjgwcPZgYGBszW1pb98MMP0veq1v/VV18xExMT1q5du2rvv04ikbBvv/2W2draMgMDAzZkyBD29OlTxhhjgYGB1b4HW7durfbZuvKOGDGChYaGMj09PWZpackOHDhQbZvr169njo6OTE9Pj/n6+rKYmJg3ZvT19WVLly5lBgYG0t+rf/75hzk5OdU4anzy5AkbMWIEMzY2ZlZWVmzFihXSo6mkpCTm5+fHjI2Nmb6+Phs2bBhLSEiQfjY4OJiFhISwCRMmMKFQyBwcHNilS5femIvUjo5IWgEjIyM4OjpixowZOHToEJKSkmosY21tjYsXL6KwsBBbt27FggULcO3atWrLXLp0CQ8ePMDNmzexfv16jB8/Hj/++COys7OhpqaGVatWVVt+9+7duHTpEhITE5GXl4f58+fLnPnUqVO4e/cuYmJicOHCBezduxcAEBsbi6CgIPznP/9Bbm4ufHx8cObMmQZ/T3r16gUzMzP8/fffNd7btWsX7t27hydPniA/Px/Hjh2DqakpPvzwQ0yZMgXvvfceioqKEB0dLf3Mzp07sXLlShQVFcHPz6/Wbf7++++IiorCgwcPcP36daxevbrenF5eXvj555/h5uaGoqIiFBUVwcrKqtoyIpEII0aMgIeHB9LT0/H7779j7dq12Ldvn3SZ6OhoaGlpIS0tDQcPHsSCBQvw9OnTWre5e/dufP/99/jjjz+Qnp4OFxcXjBw5EiKRCIcPH672PZg5c6bMec+cOYN+/fohNzcXK1euREhICF68eAEA2Lx5M7Zt24bjx48jJycHAQEBGDlyJMrLy9/4vdHX14e/vz/2798PANi+fTtmzJhRbZmSkhIMGjQIgwYNQlpaGq5cuYIDBw5Ij2QkEgk+/vhjpKSkICkpCVpaWpg1a1a1dRw8eBBz5sxBfn4+goKCMH369DdmIrWjQtIK8Hg8hIeHw8PDA8uXL4etrS2cnZ1x7tw56TLjxo2DpaUleDweBgwYgCFDhiA8PLzaepYsWQJtbW04OzvDw8MDffr0gYuLC9TV1TF27FjcuXOn2vKfffYZzMzMoK+vjxUrVmDfvn2QSCQyZf7yyy+ho6MDMzMz+Pv74/bt2wAq/1MPGjQI/v7+UFFRwaxZs+Dg4NCo74u5uTmeP39e43VVVVW8ePECDx8+BGMMDg4OsLS0rHNdkydPho+PD3g8HjQ1NWtdZtmyZdDX14eZmRkWLlyI3bt3Nyr36yIiIpCRkYGVK1dCQ0MD7u7ueP/997Fz507pMsbGxvjkk0+gqqqK/v37w8bGBlFRUbWub/fu3fjwww/h5uYGDQ0NrFq1CikpKbh582aTcnbp0gXjx4+HQCBAUFAQysvLERsbCwDYuHEjvvrqK3Tq1AkqKir48MMP8fLlS0RERNS5zhkzZmDHjh14+fIljh49iqCgoGrv//XXXzAwMMD8+fOhpqYGKysrzJs3T1pkbWxsMHToUGhoaEBXVxeLFy/GlStXqv2eDhs2DP3794dAIMCMGTOQlJSE3NzcJn0v2hoqJK2EqakpvvvuO0RHRyM7OxtDhw7F2LFjpX9I9+7diy5dusDQ0BD6+vo4efIkcnJyqq2jffv20q+1tLRqPC8qKqq2vLW1dbWvy8vLkZ2dLXPeKtra2tI91/T09Bp/1F/fQ5dVWloaDA0Na7xetdc5Z84cGBsbY/r06TW+F6+TJcPr34+0tLSGh65FamoqzMzMoKamJn3N1tYWqamp0uev/qyA6t/T2tZnY2Mjfa6urg4zM7Nq62uMV3+mVQW3KkNiYiKmTp0KfX196SMvL6/ebQ4aNAgZGRlYsWIFevbsWW0bVev9999/q633k08+QWZmJoDKK9AmT54MS0tL6Orqol+/figrK6v2vXn9dxHAG793pHZUSFohQ0NDLFu2DMXFxUhISEBycjKCg4Oxdu1aZGVlIT8/H8OGDQNr4gwCr3ahJScnQ01NDSYmJk1ap5mZGVJSUqq9lpyc3OD13LhxA+np6fD19a3xnoqKChYtWoR79+7h4cOHSE5OxvLlywHgjSeYZTnx/Pr3w9zcHAAgFApRUlJSbdmqP3SyrNvCwgLp6emoqKiQvpaYmAgLC4t6M71pfYmJidLn5eXlSE9Pl3l9jTkJb2lpicOHDyM/P1/6KCkpqfcSZz6fj+DgYKxZs6ZGt1bVert27VptvYWFhdJuyYULF6KkpAR37txBYWEhLl++DABN/t0n1VEhaQXy8vKwZMkSPHr0CGKxGCUlJfj+++9haGiIzp07o6ioCIwxtGvXDnw+HydPnsTZs2ebvN1169YhPT0d+fn5+PLLLzFx4sQmX+kzfvx4nD9/HmfPnoVIJML27dul3SOyKC0txalTpzB16lSEhITA2dm5xjIXL15EVFQURCIRtLW1oaGhARUVFQCVe/bx8fGN+kPz1VdfIT8/H+np6Vi9ejWmTJkCAPD09ER8fDyuXLkCkUiEtWvXVus6ad++PTIyMvDy5cta1+vj44P27dvjyy+/RFlZGf79919s2LABwcHBDc4IAFOnTsV//vMfxMTEoKysDEuWLIG5uTl8fHxk+nx9eWsTGhqKL7/8Eo8fPwYAFBYW4s8//5Rpz/+jjz7C2bNnMXLkyBrvjRgxAs+ePcOmTZtQWloKsViMx48fS7ttCwsLoaWlBX19feTm5kp3GEjzokLSCqipqSEtLQ3Dhg2Dnp4erKyscO3aNZw6dUp6zmPx4sUYOHAgjIyMcPDgQYwaNarJ2506dSoGDBgAa2tr6OjoYP369U1ep6OjI3bt2oW5c+fCyMgIN27cwMCBA6Gurl7n5ywsLKCrqwsLCwt88803WLJkCX755Zdal3327BkmTZoEfX19dOzYEXp6eli6dCkAICQkRNol5u7u3qDso0ePhqenJ1xdXdG9e3csWrQIAGBvb4+1a9ciMDAQHTp0QFlZGVxcXKSfGzhwIHr06AFzc3Po6+vXOAJTVVXFiRMncPv2bZiammLUqFH4+OOPMXny5AblqzJt2jR88MEHGDFiBExNTXHv3j0cP35cWkzrU1/e2rz//vuYPn06AgICoKurCycnp2oXC9TF0NAQfn5+UFVVrfGeUCjE+fPnceHCBdjY2MDIyAiTJ0+WHvEtX74cT548gYGBAXr37o2hQ4fKtE3SMDxGx3ikEXg8Hu7evQtPT0+5b8vR0RFffvmldA+fEKJc6IiEKJ3jx4/jxYsXKCsrw3fffYeMjAz4+/tzHYsQ8gayHcsSokBnzpxBcHAwKioq4OjoiLCwMBgZGXEdixDyBtS1RQghpEmoa4sQQkiTtMiuraqrcwghhMhf1aCob9IiC4mFhQViYmK4jkEIIW1CbfdjvYq6tgghhDQJFRJCCCFNQoWEEEJIk1AhIYQQ0iRUSAghhDQJFRJCCCFN0iIv/yWktSp4WYGMgpd4USoCn8eDsVANZvqaUBXQPh9RXlRICOEQYwy3k/LwR1Qarj3JRUJOcY1l1AR8eFrqw9fRBAFdzNFBr/apfgnhChUSQjhyOTYb352Lxb2UfAj4PHS1MsAQF1NYG2lBV0MVYsaQVViKJ1lFuBGfi3VnHuO7s48xysMM8/wc0NFYm+smEAKACgkhClfwsgLLw6Jx7G4aDLXV8Jm/I97uagkTnTdP3sUYQ3R6IXbfSMKRO6k4+SAT7w+0x9z+dtTtRTjXIkf/dXZ2piFSSIuUmFOMd3ZGIj6nGEE9rPH50M4Qqjdsfy4xpxj/9+e/uBKXgy5W+tg8tSva62rIKTEh9f/NpV0ZQhTkUWYhxm66hoyCUvw6zRsrxrg2uIgAgI2xNn57xwcrRrvgQVoBRmy4ipj0Nw+oR4i8USEhRAESc4oRtO0mJAw49G5PvOXcvknr4/F4COppgwOze6BCLMHELTdwOymvmdIS0jBUSAiRs8LSCszYGYniMhF2zugGNwu9Zlt3V2tDHH63JzTVBJi+/Sb+TStotnUTIisqJITIEWMMCw7fQ0JOMdZP9IKXlUGzb6NTex3sDekBVRU+grffRGItlxATIk9USAiRo93/JOFM9DOEDrBrcndWXezbCbFrhg9eVogxc1ckCksr5LYtQl5HhYQQOUl5XoI1px7Bw1IfH/k5yH17bhZ6+H68J55mF2Pe/ruQSFrcBZmkhaJCQogcMMaw6PcHEIkZ1gW6Q0VB93r4u5pivl8nXHqcjV8uxytkm4RQISFEDs7GPMOVuBy8N8AODu11FLrtDwZ2Qm97I3x79jFuJT5X6LZJ20SFhJBmViYSY9XJhzDT08AcXzuFb1/A5+HHCV4w0FLFp4fv4WW5WOEZSNtChYSQZrb7RhKSckvw+dDO0FAVcJLBREcdK0a7IjG3BN+efcxJBtJ2UCEhpBmVlIuwOfwp3Mz1MMrDjNMsQ906YLhbB2y/loDbSdTFReSHCgkhzWj3jSTkFpfjo7c6gcfjcR0Hy0e7wEBLDQuO3EdpBXVxEfmgQkJIMykpF+GXy/HwsNTHAMd2XMcBABgL1bF8lAvis4vx4/k4ruOQVooKCSHN5OjtVDwvLscHA+yV4mikygj3DvBzao9tV+MRn13EdRzSClEhIaQZSCQMO64lwtZYGwM7K8fRSBUej4f/G+EEHnhYcYKmXyDNjwoJIc0gPDYL8TnFmNHbBny+8hyNVLE20kZI34649Dgblx5lcR2HtDJUSAhpBtuuJkBXQwUBXSy4jvJGoQPs0V5XHStOxKBcJOE6DmlFqJAQ0kSPMgtx7UkuJnW3gnYjJqpSFG11FXwxtDPic4qx83oC13FIK0KFhJAm2n41AQI+D9N62nAdpV5jPM3RxUofGy48QX5JOddxSCtBhYSQJsgpKsMfUenwdzWFub4m13HqxePxsHCYE16UibD576dcxyGthFwLSXh4OFxcXGBvb4+QkBCIxW++IWr48OGwt7eXZxxCmt3hW6koF0nwTm8brqPIrJuNIQY4mmDntUQ8KyzlOg5pBeRWSCQSCUJCQnD48GE8efIEhYWF2LNnT63L7t27F4aGhvKKQohcMMZw6FYKHNoL0UUOMx/K0yeDHVEmkuCnC3STImk6uRWSyMhImJmZwdnZGQAwc+ZMHD16tMZyOTk52LhxIxYvXiyvKITIxc2E50jIKcaEblZKdQOiLFzN9TDCvQMORqYgKZem5iVNI7dCkpqaCktLS+lzKysrpKSk1Fhu/vz5WLlyJTQ0NN64ro0bN8LZ2Vn6yMvLk0tmQhri4K0UqAp4GOtlznWURvlksCMYgB/OxXIdhbRwciskjNU/zeepU6cgEAgwcODAOpcLDQ1FTEyM9GFg0LK6EUjrU1hagZMPMjDYxRSG2mpcx2mUjsbaGO9tgT/vpSPu2Quu45AWTG6FxNLSstoRSHJyMiwsqt+sdfnyZVy4cAE2Njbo06cPkpKS4O7uLq9IhDSbsKh0lFZIMMHbsv6Fldh7/e0h4PGwKZyu4CKNJ7dC4u3tjdTUVMTEVI7ts23bNgQEBFRbZvXq1UhNTUViYiKuXr0Ka2tr3L9/X16RCGk2ByNTYK6viT72xlxHaRJLQy2M9TLHn1FpdK6ENJrcColAIMDWrVsRGBgIOzs7CIVCBAUFISwsDCEhIfLaLCFyF51egAdpBXjb20Ipx9VqqPcGVF52v5mOSkgj8ZgsJzOUjLOzs/RIhxBFWxYWjV03EnHlswGwMNDiOk6zmHfgLk4+yED4ggEt4sZKolj1/c2lO9sJaYAKsQTH76Wjp61RqykiQOWAjhVihl/obnfSCFRICGmAK3HZyC0ub7GX/L6JQ3sdDHU1xYHIFGTR3e6kgaiQENIAx+6kQUOVj6FuHbiO0uxCB9ijXCTBzuuJXEchLQwVEkJkVFhagXMxzzDY2RRCJR4uvrFczfXQy84IeyOSUVwm4joOaUGokBAio9MPMlEmkmBsl9bVrfWqWX1tUfCyAodv1RyFgpA3oUJCiIyO3U2FsVAdfVv4vSN18XUwQad2Qmy7lgCRmGZRJLKhQkKIDFLzSvBP/HOM9jSDiqD1/rfh83mY1dcWKc9f4kz0M67jkBai9f6PIKQZ/RmVDgCt7mqt2oz2MoOxUB1bLj+Vacw8QqiQECKDsKh0dGonhIuZLtdR5E5dRYDpvaxxL7UAkYk00japHxUSQurxOPMFHj97gVEeZi1u3pHGmtLdGhqqfOy8nsB1FNICUCEhpB4n7ld2a43wMOM4ieIYaKthjKc5zkQ/Q3r+S67jECVHhYSQOjDGcPxeOtzM9dDRWJvrOAo1racNxBKGfRHJXEchSk6mQjJjxgzcuHFD3lkIUTr/phUiMbcEIz1a353s9XE204WPjSH230xGaYWY6zhEiclUSAYPHozFixfD1dUVP/zwA3Jzc+WdixClcPy/3VrD3dtOt9arpvWyRm5xOU4+yOA6ClFiMhWSSZMm4eLFi/jzzz+RnZ0NLy8vTJw4EeHh4XKORwh3JBKGE/fS4W1t0GaHVh/iYor2uurYdSOJ6yhEiTXoHEl8fDzi4uKgra2Nzp07Y8WKFQgODpZXNkI4dSc5D+kFpRjZhk6yv05VwMeU7ta4l5KPqJR8ruMQJSXTyHMrVqzA7t274e7ujnfffRdvvfWW9L1OnTrJLRwhXDp+Lx18HjDUzZTrKJya6GOJDRfj8Nv1RHhO8OQ6DlFCMhUSPp+Py5cvw9S05n+oM2fONHsoQrgmEkvw14MM9LQzQjsdDa7jcKqdjgaGuXXAifsZWDTcCcZCda4jESUjU9dWXFxcjSIyffp0AICtrW2zhyKEaxEJz5FTVI6RbfQk++uCe9mgXCzBgZt0KTCpSaZCcv/+/Rqv3b59u9nDEKIswqLSocLnwd+1bXdrVfGy1IebuR72/JNMowKTGuosJBs2bECnTp3w8OFDODg4SB8dOnRA165dFZWREIUqF0lw6t8M9HMwgb6WGtdxlAKPx8O0ntbILCzF+Yc0KjCprs5zJNOmTcPIkSPx8ccf44cffpC+rqOjA0NDQ7mHI4QLV+KyUVgqapM3IdZlpIcZVpyIwb6bKfB3pe8N+Z86C4menh709PRw7NgxReUhhHMnH2RCTcCHn1N7rqMoFQ1VAQK6WGDXjUSkPC+BpaEW15GIkqiza2vMmDEAKi/xfbVrq+o5Ia1NhViC8w+foW8nY+hoqHIdR+lM7m4FxoD9dNKdvKLOI5LNmzcDAM6fP6+QMIRw7WbCcxS8rMAQOsleK4f2OvC2NsChW6n46C0HqLbi2SKJ7Or8LejQoYP0X2tra1hbW4MxhpiYGFhYWCgkICGKdPrfTAj4POrWqsPk7lbIKSrD+Rg66U4qybQ70atXL7x48QLZ2dnw9fXF+vXr8e6778o7GyEKJZEwnInOhI+NIQy16WqtNxnm1gF6mqrYR91b5L9kKiRisRg6OjoICwvDzJkzcfr0ady8eVPe2QhRqLsp+ch6UUb3jtRDQ1WAcV0scCUuB8m5JVzHIUpApkIiEolQVlaGv/76C4MHDwaANjPlKGk7zkRnAgAGu1C3Vn0md7cEAOyPpKMSImMhCQ0NRadOnSCRSNCjRw8kJCRAT09P3tkIURjGKru1PC310UGvbQ4Z3xD27XTgY2OIw7dSUC6iO93bOpkKyZw5c5CcnIw//vgDAGBtbU1XcpFW5VHmCyTllmCIC3VryarypHs53elOZBv9t7y8HEePHkVCQgJEIpH09S+//FJuwQhRpNP/VnZrDaFuLZn5u5pC/7gq9kUkY5gb3enelsl0RDJ27Fjs27cPIpEIAoFA+qhPeHg4XFxcYG9vj5CQEIjF1ed9Li4uho+PDzw9PeHi4oLZs2dXK1SEKMr5h8/QqZ0QtiZCrqO0GFUn3a8+yUFiTjHXcQiHZDoiSUxMRHR0dINWLJFIEBISgrCwMDg7O2P8+PHYs2dPtRkVNTU1cfHiRQiFQkgkEgQGBmLPnj3SIeoJUYTMglJEpxfiXV+aEqGhJvlYYdvVBByITMEXQztzHYdwRKYjEk9PTyQlNWzO5sjISJiZmcHZ2RkAMHPmTBw9erT6xvl8CIWVe4BVV4bR1WBE0S49zgIADOpM3VoNZd9OiO4dDXHkNp10b8tkKiRJSUlwdXWFr68vBg8eLH3UJTU1FZaWltLnVlZWSElJqXXZ7t27w8TEBLq6upgyZUoD4hPSdBcfZUFPUxVdrPS5jtIiVZ10PxuTyXUUwhGZura+/vrrBq+YMSbzshERESgqKsK4ceMQHh4OPz+/au9v3LgRGzdulD7Py8trcB5CalNaIcbVuBy85dweKjRuVKP4u5rCQEsV+28mYwTNKNkmyVRIfH19kZ+fj/j4eHTp0kWmFVtaWlY7AklOTq5zfC6hUIhRo0bh+PHjNQpJaGgoQkNDpc+russIaaqIhOd4WSHGwM7tuI7SYqmrCBDY1QK/XklAUm4xrI20uY5EFEymXbBjx47Bx8cHgYGBAICoqCgMGzaszs94e3sjNTUVMTExAIBt27YhICCg2jJZWVnIz88HAJSVleHkyZNwcXFpaBsIabSLD5+BzwN8HUy4jtKiTehmBQA4EFl79zVp3WQqJCtXrkRkZKT0bnZPT08kJ9c9NIJAIMDWrVsRGBgIOzs7CIVCBAUFISwsDCEhIQCA9PR0DBgwAO7u7ujSpQucnZ2l7xEib4wxXHychS5WBjCgQRqbxL6dED4d6U73tkqmri01NbUaQ6Lw+fXXoIEDB0qPSKqMGjUKo0aNAlBZkO7evStrVkKa1ZOsIqQ8f4lJPlZcR2kVJvtYYf7BKFx4+AxD6QbFNkWmI5KOHTvi/Pnz4PF4KCwsxLJly+Dh4SHvbITI1cVHlZf90vmR5uHvakrDy7dRMhWSTZs2Yffu3UhNTYWdnR3i4+Px008/yTsbIXJ18VEWzPU14dheh+sorcKrw8unPKfh5dsSmQqJgYEBdu3ahaysLGRnZ+O3336DgYGBvLMRIjfFZSLcTspDPwcTugm2GU3yqbx37AANL9+m1HmOZNWqVXV+eNGiRc0ahhBFuZnwHCIJQ99OxlxHaVU6tddBN5vKOd3n+9Gc7m1FnT/liooKVFRUICYmBtu2bUNOTg5ycnKwfft2PHz4UFEZCWl2V5/kgMcDetoacR2l1ZnkY4XsF2W48DCL6yhEQeo8Ilm6dCmAyhsS79y5I71ya+nSpdIrrwhpia7G5cDVTI8u+5WDYW4dsCwsGvtvJtO0xW2ETMedmZmZ0NH53wlJbW1tZGbSuDqkZcp6UYrHz16gD3VryYWGqgABXSxwOS6bTrq3ETIVkuHDh2PQoEH4+eef8fPPP2Pw4MEYMWKEvLMRIhfXn+QCAPrYUyGRl4k+lmAMOHSL7nRvC2S6IfH777/HH3/8gcuXLwMA5s2bh9GjR8s1GCHyciUuB+oqfHS1pisP5aWzqS66WOnj0K0UzBvUiQbEbOVkKiQAMGbMGIwZM0aOUQiRP8YYrj3JgU9HQ2io1j/LJ2m8ST5WWHDkPi49zsZbzjTXS2tGuwmkTXmaXYzMwlL0pm4tuRvhbgYdDRXspzvdWz0qJKRNufYkBwCdH1EETTUBxnqZI/xxFtLyX3Idh8iRTIWkuLhY3jkIUYgrcTkw0FKFcwddrqO0CRO7WUHCgEM0vHyrJlMh6dy5M2bPno2bN2/KOw8hciMSS/BPfC562RuDz6dhURTB2UwXHpaVJ91FYhpevrWSqZDExsaiT58++PTTT+Hp6Yn//Oc/0gmpCGkp7qUWoKhMRN1aCjbZxxIZBaX4Ozab6yhETmQqJJqampg2bRouX76MTZs2Yc2aNTAzM8P06dORmJgo54iENA86P8KNEe5mEKrTSffWTOaT7eHh4Zg8eTKmT5+O2bNnIyYmBgMGDIC/v7888xHSbK7G5cDaSAuWhlpcR2lTtNVVMNrTDBcfZSGjgE66t0Yy3Ufi6OgIBwcHzJ49G3v27JHOjmhjY4PTp0/LNSAhzaG4TIQ7yXkY382S6yht0iQfK+yNSMahyFTM8+vEdRzSzGQ6Ivn1119x/PhxjBw5UlpEquZs379/v/zSEdJMqoaNp24tbria68HdQg8HI5MhljCu45BmJlMhmT9/fo3X6C530pJUDRvfy46GjefKJB8rpBeU4nIcnXRvbers2kpNTUVSUhKKi4tx/fp16esFBQUoKaFRPUnLcTUuB27metDXomHjuTLSwwwrT8Rgf0QyBji24zoOaUZ1FpILFy5g586dSE9Px+LFi6Wv6+joYM2aNXIPR0hzqBo2fm5/O66jtGlCdRWM8jTHoVspeFZYiva6GlxHIs2kzkISHByM4OBg7Nu3D5MnT1ZUJkKaVdWw8X3p/AjnJvlYYv/NZByKTMEHg+ike2tRZyG5f/8+3N3dYWNjU61rq0qvXr3kFoyQ5lI1bHwXGjaec27menAx08WByBS8N8AeAhphoFWos5Bs2LABv/76a7VurSo8Hg8XL16UWzBCmgMNG69ceDwegnpY44tjD3DpURb8aHj5VqHOQvLrr78CAC5duqSQMIQ0t6ph42f0tuE6CvmvUZ5m+PrkQ+z+J4kKSStRZyGprTvrVdS1RZRd1bAoNP+I8tBSU0FgVwvsuJaIpNxiWBtpcx2JNFGdhaS2Lq0q1LVFWgIaNl45Te1hjR3XErE3IhmLhjlxHYc0UZ2FhLq0SEtWNWy8r6MJDRuvZOxMhOhtb4RDt1Lw8VsOdP6qhZPpqq03dXFR1xZRZlXDxtNlv8opqIc15uy5g7/uZ2BcVwuu45AmoKu2SKtF50eUm59Te7TXVcfuf5KokLRwdNUWabVo2HjlpiLgY5KPFX48H4cHqQVws9DjOhJpJJkGbRSJRNi0aRMmTJiACRMmYPPmzaioqJB3NkIarbC0AneS89C3Ex2NKLNJPlYQ8HnY808S11FIE8hUSGbNmoWLFy9iypQpmDJlCi5duoRZs2bV+7nw8HC4uLjA3t4eISEhEIvF1d6PiopC79694eLiAldXV/z000+NawUhr7n+JBciCYOvAw0OqMza62pgiEt7/HkvDQUltHPaUslUSG7cuIEjR45g1KhRGDVqFA4ePIh//vmnzs9IJBKEhITg8OHDePLkCQoLC7Fnz55qy2hpaWH79u2Ijo7G9evXsWHDBkRFRTW6MYRUuRyXDRU+Dz1p2HilN7WHNUorJDhyJ5XrKKSRZCoklpaWyMzMlD7PysqClZVVnZ+JjIyEmZkZnJ2dAQAzZ87E0aNHqy3j4OAAR0dHAICuri6cnJyQkpLSoAYQ8jrGGP5+nI2u1gYQqss0CSjhUE9bI9iZaGPvP0lgjCa9aonqLCSzZs3C7NmzoampCRcXF0yYMAETJ06Ei4sLNDU161xxamoqLC3/N62plZVVnUXi6dOnuHXrFnr37l3jvY0bN8LZ2Vn6yMvLq69dpA2LzylGWv5L+DqacB2FyKBq/K34nGJcf5rLdRzSCHXurvXp00f69bhx46RfDx06tN4VN2TPIj8/H2PGjMH69ethaGhY4/3Q0FCEhoZKn1cd5RBSm78fV87A168TFZKWIqCrBb45/Ri7byTR5dotUL3zkTSWpaVltSOQ5ORkWFjUvFa8pKQEw4cPx6xZs/D22283enuEVLkclw1joToNi9KC6GqoYoxX5aRX6fkvYaZfd48HUS4ynSPJy8vD4sWLMWrUKAwePFj6qIu3tzdSU1MRExMDANi2bRsCAgKqLVNRUYGAgAC89dZb+PDDDxvZBEL+p7RCjH/ic9GvkzENi9LCTOtpDbGEYW8EXQrc0shUSIKDg2FsbIxHjx7hww8/hLa2Nrp06VLnZwQCAbZu3YrAwEDY2dlBKBQiKCgIYWFhCAkJAQAcOnQI586dwx9//AFPT094enriyJEjTW8VabMiE5+jtEKCfg7UrdXSOHXQRfeOhtgXkYzSCnH9HyBKg8dkOJnh5eWFu3fvwt3dHffv34dYLEavXr0QERGhiIw1ODs7S490CHnVyhMx2HYtAbcW+8FIqM51HNJAp//NwJw9d7A20B3jvS3r/wBRiPr+5sp0RKKmpgYA0NHRQWJiIkpLS5Gdnd08CQlpRpfjsuFqpkdFpIXyc2oPc31N7LyWSJcCtyAyFZIxY8YgLy8PX3zxBby9vWFlZYWZM2fKOxshDZLyvASxz4rgS91aLZaKgI+gntaIyShEZCJd5t9SyHS31sKFCwEAI0eORHp6OkpLS6GrS1fEEOVy/uEzAMBbNH1rizaxmyV+PB+LndcT4NOx5u0ARPnIVEhEIhG2bNmCv//+GwDQv39/hISEQFVVVa7hCGmIczHP0F5XHW7mNIpsS6avpYaxXuY4dCuVLgVuIeQ6aCMhilJQUoGIhOfwc2pPl/22AsG9bCCWMBoVuIWQ6Yjkxo0bePTokfT5yJEj4eRE8ywT5XHpcRbEEkbdWq1EZ1Nd9LA1xP6byfhwUCeailfJyW3QRkIU6Ux0JoTqKjTabysyvVdH5JVUICwqnesopB51HpHMmjULPB5POmijn58feDwezp8/X+vgioRwoahMhIuPsjDMrQPUVWjPtbXwc2oHc31NbL+WgLe9LcDjUZelspLboI2EKMqFh89QJpJguFsHrqOQZqQi4GN6Lxt8ffIhrj3JRR+a7VJpNWjQxtLSUgCAhoaG/BIR0kAn7mdAR0MFfR3oD01rM9HHEj9diMOWK/FUSJSYTOdI4uLi0KNHD1hYWMDCwgK9evVCXFycvLMRUq/C0gr8/Tgbg51NqVurFdLRUMWk7la4HJuNhxmFXMchbyDz5b+fffYZcnJykJOTgwULFtDlv0QpnLyfgXKxBKM8zbiOQuRkRm8bqPB5+PVKPNdRyBvIVEjy8/OrDQE/duxY5OfnyysTITI7fDsVproa6EOTIbVaHfQ0McrDDGFR6cgoeMl1HFILmQqJrq4u/vrrL+nzkydP0hAphHNPs4twOykPAV3MIaCbEFu1kL62EEkYdl5P5DoKqYVMNyT+/PPPmDp1Kt555x0AlfeV7N69W67BCKnPkdupAIDArjVn3iSti7OZLvp2Msa+f5Lx/gB76GjQ8EzKpN4jErFYjHPnzuHOnTuIi4vDkydPcOvWLbqznXCqTCTG4Vsp8LY2gK2JkOs4RAFm9bXFizIRDkam1L8wUah6C4lAIMCePXsAVHZx6ejoyD0UIfU5cS8DOUXlCO5lw3UUoiB9Oxmjs6kOtl9NQIVYwnUc8gqZzpH4+flh2bJliIuLQ3p6uvRBCBcYq+wrN9XVgL+rKddxiILweDzM6muL9IJSnHyQwXUc8gqZzpEcOHAAALBr1y7pazweD/HxdDkeUbxbSXl4kFaABUMcoSqQaV+ItBIjPcyw7sxjbA5/ipHuZjTSs5KQqZAkJCTIOwchMttw8Qm01ASY5EMDh7Y1aip8vOtri+XHY3Du4TMMcaEjUmVQ5+5cQkICxo4dCzc3NwQFBeHZs2eKykVIrW4n5eFybDam9bSBobYa13EIByZ2s4KxUA0bLsbRvO5Kos5C8s4778DR0RHr1q2Djo4O5s+fr6BYhNTux/Ox0FITYFbfjlxHIRzRVBNgVl9b/JtWiPDH2VzHIainkOTk5GDNmjXw9/fHxo0bq01uRYiihT/OwpW4HEzvZQMjoTrXcQiHpvawhoGWKn6ioxKlUGcheXVOdh6PR/MBEM5UiCVYcSIGJjrqeG+APddxCMe01VUws09H3E3Ox7UnuVzHafPqLCRRUVFQU1OTPqqeq6qqQk2N+qeJ4uy4loCn2cX43L8zhOoyXSNCWrlpvWygq6GCny7QUQnX6iwkEokE5eXl0kfV84qKCpSXlysqI2njnmYX4buzsehmY4AAL3Ou4xAloauhipl9bHEz8Tn+jqVzJVyii/CJUhOJJfj08D3weMC6QA+6b4BUM7NvRxhpq2HdmceQSOiohCtUSIhS++5cLO4m52PhUCfYGGtzHYcoGaG6Ct4faI/o9EL8RXe7c4YKCVFa52OeYXP4U/i7mGJaT2uu4xAlNbm7Fcz1NfH9uVgag4sjVEiIUrqfmo8PD9yFjZEW1r7tTlcMkjdSVxHgo7cckJBTjMO3UrmO0yZRISFKJym3GO/sjISmqgA7ZvhAl+aeIPUY62WOTu2EWH8hFiXlIq7jtDlUSIhSySkqw7TtN1FcJsb26d3Qkc6LEBkI+Dx87t8ZzwrL8HP4U67jtDlyLSTh4eFwcXGBvb09QkJCIBaLaywzfvx4mJiYwN6ebjJr64rLRJixIxJpeS+xeWoXeFjqcx2JtCCDnNqhn4MJfr4cj5TnJVzHaVPkVkgkEglCQkJw+PBhPHnyBIWFhdIJsl41Z84cnDlzRl4xSAtRIZZg7t47eJBWgDXj3NHfsR3XkUgLw+Px8OUIZ0gkDF//9ZDrOG2K3ApJZGQkzMzM4OzsDACYOXMmjh49WmO5gQMHwtDQUF4xSAvAGMPnR+7jcmw2PvN3pDnYSaPZtxNiei8bnI7OxPUnOVzHaTPkVkhSU1NhaWkpfW5lZYWUFJprmdT0zenHOHY3DdN72WCurx3XcUgL96FfJxgL1bDseDREdDmwQsitkDTn2DcbN26Es7Oz9JGXl9ds6ybc2vNPEn7++ymGuZni/0Y402W+pMl0NVTx2ZDOiH1WhK1XaVI+RZBbIbG0tKx2BJKcnAwLi8Z1WYSGhiImJkb6MDAwaK6YhEPhj7OwNCwaXa0N8P14Twho+BPSTAK7WqB7R0P8cC4W8dlFXMdp9eRWSLy9vZGamoqYmBgAwLZt2xAQECCvzZEW5mFGId7fdxcWBprYEtQVGqoCriORVoTP5+Gbce4AgM+P3qdxuORMboVEIBBg69atCAwMhJ2dHYRCIYKCghAWFoaQkBDpcsOHD0fPnj2RmJgICwsLrF69Wl6RiJLIelGKmTsjIeDzsH16N5qkisiFjbE2PhnsgMjEPOyNSOI6TqvGYy1wIH9nZ2fpkQ5pWURiCaZsjcDtpDzsCemOHrZGXEcirZhILMG4zdfxJKsIZz7qBwsDLa4jtUj1/c2lO9uJQn17NhYRCc+xcJgTFREidyoCPr4JdEeFmOHjg/foKi45oUJCFOZczDPpFVrv9LbhOg5pIzqb6uLzoZ1xM/E5Nlx8wnWcVokKCVGI5NwSfHwoCrbG2vhmHI3mSxTrnd42GOBogg0X4xART3O8NzcqJETuSivEmLv3NirEEmya2gU6NJovUTAej4dv3/aAsVAd8w9GIb+EpgpvTlRIiNwtPx6N6PRCfD3GDZ1NdbmOQ9ooI6E6fpjgiczCUnx0MApiuiS42VAhIXJ15HYq9t9MwSQfK4yjMbQIx3rbG+MjPwdcepyN784+5jpOq0GFhMjNw4xCLP79AVzNdbF0pDPXcQgBALw/wB7+LqbYFP4Ux++lcx2nVaBCQuSisLQCc/fchroKH5un0J3rRHnw+Tx8N94Dju11sODIPUSnF3AdqcWjQkKaHWMMnx2+j8TcEnw/3hOWhnQTGFEu2uoq+HWaNzRUBQjZdQsZBS+5jtSiUSEhze7XK/E4HZ2Juf3t4Ofcnus4hNTKykgLv0ztityicszYEYnC0gquI7VYVEhIs7r+JAdrTj1CLzsjfPKWA9dxCKlTd1sj/DDBE4+fvcC7v91GmajmdOCkflRISLNJy3+J9/ffhamuBjZM8oKKgH69iPIb7t4BS4Y740Z8Lj49fJ8uC24EFa4DkNahtEKMuXtuo6hMhJ0zetKIvqRFmdmnIzILXuLXKwnQVhNg1Vg38Gl+HJlRISFNJpEwfHbkPu6nFmDtOHe4W+hzHYmQBls0zAnF5WLsi0iGmgofy0e50FA+MqJCQpps3dnHCLuXjpl9OmJ8N0uu4xDSKDweDytHu6JcJMFvN5KgrsLHomFOVExkQIWENMmef5KwOfwphrqaYvEwJ67jENIkVTMrlokk+PVKAjRUBfhksCPXsZQeFRLSaOdinuHLP/9FV2sD/DDBk/qUSasg4PPw/XgPlIvE2HDxCVT4fHw4yJ6OTOpAl9WQRjkf8wzv7b0NGyNt6Y1dhLQWqgI+NkzqgkGd2+GH87FYc+oRWuBksgpDhYQ02NnoTMzdexuWhlrYP7sHDLXVuI5ESLNTU+Fj89SuGO7eAb9cjsfiP/6lS4PfgLq2SIOcepCBD/bfhY2xNvaFdEc7XQ2uIxEiN2oqfPw00Qs66irYF5GMolIRvhvvAVW6R6oaKiREJowxbLkcjzWnH8HeRIh9s3rARIfuFSGtn4DPw+oANwjVVbD1agJKykX4z+Qu1J37CiqrpF7lIgk+O3Ifq/879MmROb2oiJA2hcfjYfFwJ3z8lgPOP8zClK0RyC0q4zqW0qBCQuqUlv8SU7b+g8O3UzG1hxV2zvCBnhZNlUvaHh6Phw8HdcLKMa6ISsnHmE3XEPfsBdexlAIVEvJGf0alwf/Hy4hKycdXo12wcowb9Q2TNm9qD2vsmN4N+cUVCNh0HeGPs7iOxDn6q0BqeF5cjvkH7mLegSiY6mrgz9A+mNbThutYhCiNfg4mOPZeL+hrq2LGzkh8f/Zxm76ii062EymxhOFgZArWnnmE/JIKTO9lgy+GdqaTioTUolN7HRx/vw8+PXwPP118gsjEPKyf5Il2Om3vSkY6IiEAgJsJzxGw6RoW/f4AHfQ0cXRuTywb5UJFhJA66Gup4ddp3lg0rDNuJj7H0B+v4MT99DZ38yIdkbRxD1IL8O3Zx/g7Nhs6GipYNtIZU3tY01wihMiIx+Nhdj87dLU2xILD9/D+vrsIc07HyjGubeY+Kx5rgaXT2dkZMTExXMdosRhjiEh4jq1X4nH+YRY0VPmY0bsj3u1nC30tukudkMYqrRDjx/Nx+PVKPLTUBAgdYI/pvWxa/JF9fX9zqZC0IaUVYpz+NxM7riXgXmoBtNQEmNDNEnP727XJfl1C5OVBagGWhv2LO8n5MNfXxKdDHDDKwxyCFjqwKRWSNo4xhvupBThyOxV/RqWhsFQEEx11TO9lgyndregIhBA5YYzh1L+Z+Ob0IyTllsDaSAshfToisKslNNVa1hEKFZI2qEwkxt3kfJyNfoYz0ZlIy38JPq/yksUJ3pYY5NQeaip0DoQQRSgXSXD0Tip+vRKP+OxiGGipIrCrBQK6WMCpgy7X8WRChaSVY4zhWWEZHmYU4kFaASIScnE7KQ+lFRLweIC3tQGGuJhiuHsHdNDT5DouIW2WRMJw4VEWtl2Nxz/xzwEAzh10Mdy9AwZ2bofOpjpKO+cJp4UkPDwcoaGhKCsrQ//+/fHLL79AIKh+SHfo0CEsWbIEYrEYEydOxNdff13veltKIRFLGApfViCvpLzyUVz59csKMQCAh8orPng8gM/jgc+rfM7n8SDgV77G++/r5SIJispEeFEqwvPicqTnv0R6/kskPS9BfkmFdJvm+proYWuE7raG6O9oQuc+CFFCKc9L8PvdNPx+Nw0JOcUAAFNdDfTpZIwuVgboYq2PTu10lOacCmeFRCKRwMHBAWFhYXB2dsb48eMxfPhwBAcHS5cpKCiAm5sbIiIiYGJign79+mH16tXw9fWtc92KLCSMMZRWSPCirALFZWIUlYrworQCeSWVRSG/pPyVr6v/W/CyAvIq0yY66jDT04CFgRY6m+rAqYMunMx0YaanobR7NYSQ6hhjeJpdjEuPsnDpcRZuJ+WhTCQBAGio8mFrLIRdOyFsjbXRXlcDJjrqMNFRh7FQDUba6tBQ5Svk/3t9f3Pldh9JZGQkzMzM4OzsDACYOXMmNm7cWK2QnD59Gv3790eHDh0AAMHBwTh69Gi9haQpfr+biv0RKRBJJBBLGEQSVu1fsfS5BCXlYhSXiSDLyAc66irQ11aFgZYaLA214G6hBwMttcqHtir0tdRgoFX5vtZ/T7QxAIxV/jIxABLGIJH891/GIGFVrzGoqfAhVFeBUEMFepqqUFdpWSfrCCE18Xg82LcTwr6dELP62aJcJMGjzELcTc7Hg7QCxGcX4e/HWTh+T/SGzwOaqgJoqQmgqSaAmoAPAZ8HAZ8PAR+V//IAFT4f6yd5yq17W26FJDU1FZaWltLnVlZWSElJqXeZ06dP11jXxo0bsXHjRunz+Ph4aYGSN1k7hsQAcv/7eF1eXh4MDAyaLxQHqA3KozW0ozW0AVBcO7Tqeb/kv4+6DPqp9tdlaUNqamqd78utkMjSYyZrr1poaChCQ0ObGokzLeWcTl2oDcqjNbSjNbQBaB3taI42yO0aUEtLy2pHIMnJybCwsGjwMoQQQpSb3AqJt7c3UlNTpZVu27ZtCAgIqLaMv78/Ll26hIyMDIhEIuzatavGMoQQQpSb3AqJQCDA1q1bERgYCDs7OwiFQgQFBSEsLAwhISEAAD09Paxbtw79+vWDo6MjfH19MWDAAHlF4kxL7parQm1QHq2hHa2hDUDraEdztKFF3pBICCFEedA4GYQQQpqECgkhhJAmoULSRPPmzYOFhQVUVP53JfXWrVvh6ekpfaipqeHPP/+s9rlDhw6Bx+Ph6tWrio5cQ0PbMH36dFhbW0vf27FjB1fRq2nMz2LNmjVwdHSEi4sL3nnnHS5iV9PQNowaNUr6ur29vVLcm9HQNty+fRs9evSAp6cnPDw8EBYWxlX0ahrajitXrqBbt25wc3PDkCFD8OzZM66iS9XWhrKyMkybNg1ubm5wcnLC+++/D4mk8m76tLQ09OvXDw4ODujfvz8yMjJk2xAjTXLlyhWWkZHBBAJBre8nJyczfX199vLlS+lrubm5rHfv3qx79+7sypUrior6Rg1tQ3BwMNu9e7ciI8qkoe3Yv38/Gz16NCsvL2eMMZaRkaGwrG/SmN+nKitWrGCzZs2Sd8R6NbQNvXr1YmfOnGGMMfbw4UNmbGyssKx1aUg7JBIJMzc3Z3fu3GGMMXbs2DE2Y8YMRcatVW1t2LJlC5s0aRJjjDGRSMR69+7NTpw4wRhjbMqUKeyXX35hjDG2ceNGNn36dJm2Q0ckTdSnTx+Ympq+8f19+/YhICAAGhr/u0f+k08+wfLly6u9xqXGtEEZNbQd69evx/Lly6GqqgoAdX5WUZrys9i7dy+CgoLkGU8mjWlDfn6+9N+qIZO41pB25OTkgDEGLy8vAMCQIUNw6NAhRUV9oze1obi4GCKRCGVlZSgrK5Muc+LECUybNg1A5ZBVr/ekvFHz1r+26017LW5ubuzSpUvS52fPnmXTpk1jjDHm6+urFEckVWRtQ3BwMLOzs2Nubm5s6tSpSrEn/ypZ26Gvr89Wr17NfHx8WJ8+fVh4eLiCEtZP1jZUuXXrFrOxsWESiUTOyWQnaxuioqKYubk5s7S0ZPr6+iwyMlJBCWUjSzskEgmzsrKSPt+2bRsDwHJzcxWUsm6vtqG0tJQFBgYyQ0NDJhQK2aJFixhjjOXk5DAzM7Nqn2vXrh3Lz8+vd/10RCJH9+7dQ35+vnQQypKSEixcuBDffvstx8lk93obAODrr79GbGws7t27B3d392oDcSqr2tohEolQXFyMiIgIbN68GZMmTcKLFy84TFm32tpQZc+ePZgyZYrSj/xcWxt++eUXrFq1CsnJyThy5AimTZsm8/BJXHm9HTweD0ePHsVXX32Frl27Ii4uDsbGxjWmzVAGN2/ehEgkQnp6OlJSUvDXX3/h+vXrTfueN2fVa8tq22v59NNP2RdffCF9fv/+fWZiYsKsra2ZtbU1U1dXZ6amptL+Ya7J0obXlZSUMKFQKM9YDSZrO5ycnNj9+/elz7t168bu3r0r73gyacjPQiQSMVNTU/bo0SNFRJOZrG3Q0tJiZWVl0ucmJiZKsyfPWOP+X9S2d8+lV9vw3nvvsS1btkifL1iwgH333XdMIpEwPT096bmroqIipq+vL9P6qZA0k9d/2cRiMTM3N2fR0dFv/Iyyd229qQ1paWnSr3fu3Ml69eqlkHyykrUd//d//8e+//57xljliVNTU1OWl5enqJh1asjv0+nTp1m3bt0UFU1msrbByclJerL3zp07SvUHmDHZ25GZmckYq+zmeu+999jXX3+tsIz1ebUN33zzDZswYQITi8WstLSU9ejRg506dYoxxtjkyZOrnWyv6oavDxWSJpo9ezYzNzdnAJi5uTl77733GGOMXbhwgXl5edX5WWUpJA1tw6BBg5irqytzd3dngwcPZrGxsYqOXKuGtqOwsJCNHTuWubi4MA8PD/bHH38oOnINjfl9CgoKYuvXr1dkzDo1tA3Xrl1jXbt2Ze7u7szLy4tdvHhR0ZFr1dB2fPHFF8zBwYF16tSJzZ8/n1VUVCg6cg21taGoqIhNmDCBOTk5sc6dO1c7skpOTmZ9+vRh9vb2rG/fviw1NVWm7dAQKYQQQpqETrYTQghpEiokhBBCmoQKCSGEkCahQkIIIaRJqJAQQghpEiokROndvHkTPB5PaUaFlcWro63Kytvbu95ldu7cKZ1htLb3kpOT3/jZixcv4oMPPmhwrtqsWbMGv/32W7Osi7R8VEiI0tu9ezf69euHPXv2NNs6RSJRs62rudy6datJn6+vkCxbtgyffPJJk7ZRJTQ0FOvWrVP6oUyIYlAhIUpNJBLh6NGj+O233/D333+joKAARUVF6NChA0pLS6XLubq6IjY2FhKJBIsXL4aPjw/c3d2xaNEi6TIqKipYsmQJvLy8cOzYMezYsQM+Pj7w8vJC//79kZCQAABgjOGjjz6Co6Mj+vTpg8mTJ2PlypUAgOfPn2PixInw8fGBp6cnjhw58sbsX331FTw9PeHu7o7Y2FgAqDdflT179sDBwQFdu3bFvHnz4OfnJ30vOzsbI0aMgIODg3Sk1r179+LWrVuYMWMGPD09kZiYWC3L06dP8fLlS9jY2FTL4ebmBg8PD3z88ccAKueamTt3Lnr37g0rKyscOHAAK1asgJeXF7p164bMzEwAgI6ODuzs7HDlyhXZfpCkdZPH3ZSENJfjx4+zoUOHMsYYmz59Otu6dStjjLEJEyawI0eOMMYqR4/19vZmjFWOulo1mqlYLGYjR45kJ0+eZIwxBoBt27ZNuu6cnBzp10ePHmUTJ05kjFXOJeHr68vKy8tZfn4+s7W1ZStWrGCMVd5FXjU2Wl5eHrO3t691XCgAbP/+/YwxxtatW8dCQkLqzVc1jEVGRgYzMzNjGRkZTCKRsMDAQDZo0CDGGGM7duxgZmZmLCcnh1VUVDAPDw929epVxljdIyXs3LmTzZkzR/p8y5YtbOjQodIxrqq+F8HBwWzkyJFMLBaze/fuMS0tLbZv3z7GWOWYTMuWLZOuY+XKlWzlypW1bo+0LXREQpRa1ai2ADBlyhTs3r1b+vXevXsBVM4LMXnyZADAyZMncejQIXh6eqJLly54+PAh4uLipOurWg4AHj9+jAEDBsDNzQ1LlizBgwcPAACXL1/G+PHjoaqqCj09PYwaNUr6mVOnTuGzzz6Dp6cn+vfvj/LycsTHx9fIzePxMG7cOABAt27dpEc79eUDgIiICPTu3Rumpqbg8XiYOnVqtfcHDhwIIyMjqKiowMvLS7ruuqSnp6Ndu3bS52fOnMHcuXOhpqYGADAyMpK+N3r0aPD5fLi5uaG0tBQBAQEAAE9Pz2rbateuHdLT0+vdNmn9Gn5GkBAFKSwsxIkTJ3D9+nUsXrwYjDFkZmYiOTkZ/v7+mDNnDvLy8nD48GFcu3YNQGW31Lp16zBmzJga6xMIBNUmU5oyZQr27duHnj174sGDBxg7dmytOV4dml0ikSA8PBz6+vp1Zufz+dIJswQCgfScTF353uT1oeHV1dWrtUmW8z2amprSyaOqcrxJ1fp5PB54PJ70OZ/Pr7at0tJSaGpqytQG0rrREQlRWkePHsXIkSORnJyMxMREJCUl4YMPPsDevXuhqqqKkSNH4qOPPoKdnZ10Vr2hQ4di8+bN0vMn6enp0n791xUWFsLc3BwAsGXLFunr/fr1w5EjRyASiVBYWFjtarGhQ4fihx9+kD6/e/dug044y5LPx8cH169fR1ZWFhhj0iOv+ujo6KCwsLDW91xcXKod+fj7+2Pz5s0oLy8HAOTm5srchiqxsbFwdXVt8OdI60OFhCit3bt34+2336722ttvvy29emvKlCnYtWtXte6qmTNnomfPnvD29oabmxsCAgKq7Ym/au3atfD19UXXrl1hYGAgfX3MmDFwc3ODs7Mzhg8fDg8PD+jp6QEAfvrpJzx9+hRubm5wcXHBwoULG1RIZMnXoUMHrFq1Cn369IG3tzcMDQ2l26/LO++8g48++qjWk+19+/bFgwcPUFFRIc3h6ekJLy8veHp6YvXq1TK3ocrly5fh7+/f4M+R1odG/yWkFkVFRRAKhSguLkbfvn2xefNmdO/eXeHbZ4xhzpw5sLW1xeeff96kdX7xxRfw9vZGYGBgk/PduHEDmzZtkp6zIm0bHZEQUotx48bB09MTXbt2xbhx4xRaRABg9erV8PLygrOzM4qKivD+++83eZ0LFy6UHpE0VW5uLlatWtUs6yItHx2REEIIaRI6IiGEENIkVEgIIYQ0CRUSQgghTUKFhBBCSJNQISGEENIkVEgIIYQ0yf8D9AOQwyZp7TwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEICAYAAAB1f3LfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAABFBUlEQVR4nO3dd1gUV9sG8Ht36SwdFOkCgnRQxC4WotgViR3RiEZDEk0xieWLGo0aTTO+amKssdckaOyFWINYUAMqKL1JkSIgZXfP9wcv+4ogLGV3Fnh+17WX7O7szH0AeWbOzJzDY4wxEEIIIY3E5zoAIYSQlo0KCSGEkCahQkIIIaRJqJAQQghpEiokhBBCmoQKCSGEkCahQkIIIaRJqJCQZpeYmAgej4f8/HwAwJw5c/D5559zmqm5M7y6vtfb2xxWrVqFSZMmNdv6GiI7OxsDBw6Erq4u3n77bZk+s2zZMowZM0a+wYjyYqRVePToERsxYgQzMjJiOjo6zNHRka1Zs4aTLAkJCQwAy8vLU9i2tLW1mY6ODjMyMmL9+/dnO3bsYBKJpMHrCw4OZvPmzWtUhsa2d8eOHczDw6NRn5WHFStWMD8/PyYWi2t9v7a8S5cuZaNHj262DL6+vgwAO3fuXLXX165dywA0+GdE5IuOSFqJ4cOHw8PDA8nJycjLy8PRo0dha2vLdSyFSU1NRWFhIVJSUvDpp59i+fLlePfdd+WyLZFIJJf1KouEhAS4uLiAz+f2z4OjoyN27NhR7bUdO3agc+fOHCUib8R1JSNNl52dzQCw5OTkNy7z3XffMXt7eyYUCpmtrS3bsGGD9L2qPept27axjh07Mm1tbbZgwQKWnp7O/Pz8mI6ODuvXrx/LyMiQfgYA+/HHH5mDgwPT09Nj48ePZ/n5+dXWV7WH/upeftV7v/32G7Ozs2N6enosODiYlZeXS9d9+PBhZmdnx3R1dVlISAgbPnw4W7p0aa3tetPRwLVr1xiPx2PR0dE1MpSWlrIZM2YwIyMjpqury1xcXNjNmzfZ+vXrmYqKClNVVWXa2trM2dmZMVa5d7xgwQL21ltvMS0tLRYWFlZrm7Zs2cKsra2ZoaEhmzt3LisrK2OM1b4H7+HhwXbs2MHu3LnD1NXVGZ/PZ9ra2kxbW5slJSXV2MOPi4tjgwcPZgYGBszW1pb98MMP0veq1v/VV18xExMT1q5du2rvv04ikbBvv/2W2draMgMDAzZkyBD29OlTxhhjgYGB1b4HW7durfbZuvKOGDGChYaGMj09PWZpackOHDhQbZvr169njo6OTE9Pj/n6+rKYmJg3ZvT19WVLly5lBgYG0t+rf/75hzk5OdU4anzy5AkbMWIEMzY2ZlZWVmzFihXSo6mkpCTm5+fHjI2Nmb6+Phs2bBhLSEiQfjY4OJiFhISwCRMmMKFQyBwcHNilS5femIvUjo5IWgEjIyM4OjpixowZOHToEJKSkmosY21tjYsXL6KwsBBbt27FggULcO3atWrLXLp0CQ8ePMDNmzexfv16jB8/Hj/++COys7OhpqaGVatWVVt+9+7duHTpEhITE5GXl4f58+fLnPnUqVO4e/cuYmJicOHCBezduxcAEBsbi6CgIPznP/9Bbm4ufHx8cObMmQZ/T3r16gUzMzP8/fffNd7btWsX7t27hydPniA/Px/Hjh2DqakpPvzwQ0yZMgXvvfceioqKEB0dLf3Mzp07sXLlShQVFcHPz6/Wbf7++++IiorCgwcPcP36daxevbrenF5eXvj555/h5uaGoqIiFBUVwcrKqtoyIpEII0aMgIeHB9LT0/H7779j7dq12Ldvn3SZ6OhoaGlpIS0tDQcPHsSCBQvw9OnTWre5e/dufP/99/jjjz+Qnp4OFxcXjBw5EiKRCIcPH672PZg5c6bMec+cOYN+/fohNzcXK1euREhICF68eAEA2Lx5M7Zt24bjx48jJycHAQEBGDlyJMrLy9/4vdHX14e/vz/2798PANi+fTtmzJhRbZmSkhIMGjQIgwYNQlpaGq5cuYIDBw5Ij2QkEgk+/vhjpKSkICkpCVpaWpg1a1a1dRw8eBBz5sxBfn4+goKCMH369DdmIrWjQtIK8Hg8hIeHw8PDA8uXL4etrS2cnZ1x7tw56TLjxo2DpaUleDweBgwYgCFDhiA8PLzaepYsWQJtbW04OzvDw8MDffr0gYuLC9TV1TF27FjcuXOn2vKfffYZzMzMoK+vjxUrVmDfvn2QSCQyZf7yyy+ho6MDMzMz+Pv74/bt2wAq/1MPGjQI/v7+UFFRwaxZs+Dg4NCo74u5uTmeP39e43VVVVW8ePECDx8+BGMMDg4OsLS0rHNdkydPho+PD3g8HjQ1NWtdZtmyZdDX14eZmRkWLlyI3bt3Nyr36yIiIpCRkYGVK1dCQ0MD7u7ueP/997Fz507pMsbGxvjkk0+gqqqK/v37w8bGBlFRUbWub/fu3fjwww/h5uYGDQ0NrFq1CikpKbh582aTcnbp0gXjx4+HQCBAUFAQysvLERsbCwDYuHEjvvrqK3Tq1AkqKir48MMP8fLlS0RERNS5zhkzZmDHjh14+fIljh49iqCgoGrv//XXXzAwMMD8+fOhpqYGKysrzJs3T1pkbWxsMHToUGhoaEBXVxeLFy/GlStXqv2eDhs2DP3794dAIMCMGTOQlJSE3NzcJn0v2hoqJK2EqakpvvvuO0RHRyM7OxtDhw7F2LFjpX9I9+7diy5dusDQ0BD6+vo4efIkcnJyqq2jffv20q+1tLRqPC8qKqq2vLW1dbWvy8vLkZ2dLXPeKtra2tI91/T09Bp/1F/fQ5dVWloaDA0Na7xetdc5Z84cGBsbY/r06TW+F6+TJcPr34+0tLSGh65FamoqzMzMoKamJn3N1tYWqamp0uev/qyA6t/T2tZnY2Mjfa6urg4zM7Nq62uMV3+mVQW3KkNiYiKmTp0KfX196SMvL6/ebQ4aNAgZGRlYsWIFevbsWW0bVev9999/q633k08+QWZmJoDKK9AmT54MS0tL6Orqol+/figrK6v2vXn9dxHAG793pHZUSFohQ0NDLFu2DMXFxUhISEBycjKCg4Oxdu1aZGVlIT8/H8OGDQNr4gwCr3ahJScnQ01NDSYmJk1ap5mZGVJSUqq9lpyc3OD13LhxA+np6fD19a3xnoqKChYtWoR79+7h4cOHSE5OxvLlywHgjSeYZTnx/Pr3w9zcHAAgFApRUlJSbdmqP3SyrNvCwgLp6emoqKiQvpaYmAgLC4t6M71pfYmJidLn5eXlSE9Pl3l9jTkJb2lpicOHDyM/P1/6KCkpqfcSZz6fj+DgYKxZs6ZGt1bVert27VptvYWFhdJuyYULF6KkpAR37txBYWEhLl++DABN/t0n1VEhaQXy8vKwZMkSPHr0CGKxGCUlJfj+++9haGiIzp07o6ioCIwxtGvXDnw+HydPnsTZs2ebvN1169YhPT0d+fn5+PLLLzFx4sQmX+kzfvx4nD9/HmfPnoVIJML27dul3SOyKC0txalTpzB16lSEhITA2dm5xjIXL15EVFQURCIRtLW1oaGhARUVFQCVe/bx8fGN+kPz1VdfIT8/H+np6Vi9ejWmTJkCAPD09ER8fDyuXLkCkUiEtWvXVus6ad++PTIyMvDy5cta1+vj44P27dvjyy+/RFlZGf79919s2LABwcHBDc4IAFOnTsV//vMfxMTEoKysDEuWLIG5uTl8fHxk+nx9eWsTGhqKL7/8Eo8fPwYAFBYW4s8//5Rpz/+jjz7C2bNnMXLkyBrvjRgxAs+ePcOmTZtQWloKsViMx48fS7ttCwsLoaWlBX19feTm5kp3GEjzokLSCqipqSEtLQ3Dhg2Dnp4erKyscO3aNZw6dUp6zmPx4sUYOHAgjIyMcPDgQYwaNarJ2506dSoGDBgAa2tr6OjoYP369U1ep6OjI3bt2oW5c+fCyMgIN27cwMCBA6Gurl7n5ywsLKCrqwsLCwt88803WLJkCX755Zdal3327BkmTZoEfX19dOzYEXp6eli6dCkAICQkRNol5u7u3qDso0ePhqenJ1xdXdG9e3csWrQIAGBvb4+1a9ciMDAQHTp0QFlZGVxcXKSfGzhwIHr06AFzc3Po6+vXOAJTVVXFiRMncPv2bZiammLUqFH4+OOPMXny5AblqzJt2jR88MEHGDFiBExNTXHv3j0cP35cWkzrU1/e2rz//vuYPn06AgICoKurCycnp2oXC9TF0NAQfn5+UFVVrfGeUCjE+fPnceHCBdjY2MDIyAiTJ0+WHvEtX74cT548gYGBAXr37o2hQ4fKtE3SMDxGx3ikEXg8Hu7evQtPT0+5b8vR0RFffvmldA+fEKJc6IiEKJ3jx4/jxYsXKCsrw3fffYeMjAz4+/tzHYsQ8gayHcsSokBnzpxBcHAwKioq4OjoiLCwMBgZGXEdixDyBtS1RQghpEmoa4sQQkiTtMiuraqrcwghhMhf1aCob9IiC4mFhQViYmK4jkEIIW1CbfdjvYq6tgghhDQJFRJCCCFNQoWEEEJIk1AhIYQQ0iRUSAghhDQJFRJCCCFN0iIv/yWktSp4WYGMgpd4USoCn8eDsVANZvqaUBXQPh9RXlRICOEQYwy3k/LwR1Qarj3JRUJOcY1l1AR8eFrqw9fRBAFdzNFBr/apfgnhChUSQjhyOTYb352Lxb2UfAj4PHS1MsAQF1NYG2lBV0MVYsaQVViKJ1lFuBGfi3VnHuO7s48xysMM8/wc0NFYm+smEAKACgkhClfwsgLLw6Jx7G4aDLXV8Jm/I97uagkTnTdP3sUYQ3R6IXbfSMKRO6k4+SAT7w+0x9z+dtTtRTjXIkf/dXZ2piFSSIuUmFOMd3ZGIj6nGEE9rPH50M4Qqjdsfy4xpxj/9+e/uBKXgy5W+tg8tSva62rIKTEh9f/NpV0ZQhTkUWYhxm66hoyCUvw6zRsrxrg2uIgAgI2xNn57xwcrRrvgQVoBRmy4ipj0Nw+oR4i8USEhRAESc4oRtO0mJAw49G5PvOXcvknr4/F4COppgwOze6BCLMHELTdwOymvmdIS0jBUSAiRs8LSCszYGYniMhF2zugGNwu9Zlt3V2tDHH63JzTVBJi+/Sb+TStotnUTIisqJITIEWMMCw7fQ0JOMdZP9IKXlUGzb6NTex3sDekBVRU+grffRGItlxATIk9USAiRo93/JOFM9DOEDrBrcndWXezbCbFrhg9eVogxc1ckCksr5LYtQl5HhYQQOUl5XoI1px7Bw1IfH/k5yH17bhZ6+H68J55mF2Pe/ruQSFrcBZmkhaJCQogcMMaw6PcHEIkZ1gW6Q0VB93r4u5pivl8nXHqcjV8uxytkm4RQISFEDs7GPMOVuBy8N8AODu11FLrtDwZ2Qm97I3x79jFuJT5X6LZJ20SFhJBmViYSY9XJhzDT08AcXzuFb1/A5+HHCV4w0FLFp4fv4WW5WOEZSNtChYSQZrb7RhKSckvw+dDO0FAVcJLBREcdK0a7IjG3BN+efcxJBtJ2UCEhpBmVlIuwOfwp3Mz1MMrDjNMsQ906YLhbB2y/loDbSdTFReSHCgkhzWj3jSTkFpfjo7c6gcfjcR0Hy0e7wEBLDQuO3EdpBXVxEfmgQkJIMykpF+GXy/HwsNTHAMd2XMcBABgL1bF8lAvis4vx4/k4ruOQVooKCSHN5OjtVDwvLscHA+yV4mikygj3DvBzao9tV+MRn13EdRzSClEhIaQZSCQMO64lwtZYGwM7K8fRSBUej4f/G+EEHnhYcYKmXyDNjwoJIc0gPDYL8TnFmNHbBny+8hyNVLE20kZI34649Dgblx5lcR2HtDJUSAhpBtuuJkBXQwUBXSy4jvJGoQPs0V5XHStOxKBcJOE6DmlFqJAQ0kSPMgtx7UkuJnW3gnYjJqpSFG11FXwxtDPic4qx83oC13FIK0KFhJAm2n41AQI+D9N62nAdpV5jPM3RxUofGy48QX5JOddxSCtBhYSQJsgpKsMfUenwdzWFub4m13HqxePxsHCYE16UibD576dcxyGthFwLSXh4OFxcXGBvb4+QkBCIxW++IWr48OGwt7eXZxxCmt3hW6koF0nwTm8brqPIrJuNIQY4mmDntUQ8KyzlOg5pBeRWSCQSCUJCQnD48GE8efIEhYWF2LNnT63L7t27F4aGhvKKQohcMMZw6FYKHNoL0UUOMx/K0yeDHVEmkuCnC3STImk6uRWSyMhImJmZwdnZGQAwc+ZMHD16tMZyOTk52LhxIxYvXiyvKITIxc2E50jIKcaEblZKdQOiLFzN9TDCvQMORqYgKZem5iVNI7dCkpqaCktLS+lzKysrpKSk1Fhu/vz5WLlyJTQ0NN64ro0bN8LZ2Vn6yMvLk0tmQhri4K0UqAp4GOtlznWURvlksCMYgB/OxXIdhbRwciskjNU/zeepU6cgEAgwcODAOpcLDQ1FTEyM9GFg0LK6EUjrU1hagZMPMjDYxRSG2mpcx2mUjsbaGO9tgT/vpSPu2Quu45AWTG6FxNLSstoRSHJyMiwsqt+sdfnyZVy4cAE2Njbo06cPkpKS4O7uLq9IhDSbsKh0lFZIMMHbsv6Fldh7/e0h4PGwKZyu4CKNJ7dC4u3tjdTUVMTEVI7ts23bNgQEBFRbZvXq1UhNTUViYiKuXr0Ka2tr3L9/X16RCGk2ByNTYK6viT72xlxHaRJLQy2M9TLHn1FpdK6ENJrcColAIMDWrVsRGBgIOzs7CIVCBAUFISwsDCEhIfLaLCFyF51egAdpBXjb20Ipx9VqqPcGVF52v5mOSkgj8ZgsJzOUjLOzs/RIhxBFWxYWjV03EnHlswGwMNDiOk6zmHfgLk4+yED4ggEt4sZKolj1/c2lO9sJaYAKsQTH76Wjp61RqykiQOWAjhVihl/obnfSCFRICGmAK3HZyC0ub7GX/L6JQ3sdDHU1xYHIFGTR3e6kgaiQENIAx+6kQUOVj6FuHbiO0uxCB9ijXCTBzuuJXEchLQwVEkJkVFhagXMxzzDY2RRCJR4uvrFczfXQy84IeyOSUVwm4joOaUGokBAio9MPMlEmkmBsl9bVrfWqWX1tUfCyAodv1RyFgpA3oUJCiIyO3U2FsVAdfVv4vSN18XUwQad2Qmy7lgCRmGZRJLKhQkKIDFLzSvBP/HOM9jSDiqD1/rfh83mY1dcWKc9f4kz0M67jkBai9f6PIKQZ/RmVDgCt7mqt2oz2MoOxUB1bLj+Vacw8QqiQECKDsKh0dGonhIuZLtdR5E5dRYDpvaxxL7UAkYk00japHxUSQurxOPMFHj97gVEeZi1u3pHGmtLdGhqqfOy8nsB1FNICUCEhpB4n7ld2a43wMOM4ieIYaKthjKc5zkQ/Q3r+S67jECVHhYSQOjDGcPxeOtzM9dDRWJvrOAo1racNxBKGfRHJXEchSk6mQjJjxgzcuHFD3lkIUTr/phUiMbcEIz1a353s9XE204WPjSH230xGaYWY6zhEiclUSAYPHozFixfD1dUVP/zwA3Jzc+WdixClcPy/3VrD3dtOt9arpvWyRm5xOU4+yOA6ClFiMhWSSZMm4eLFi/jzzz+RnZ0NLy8vTJw4EeHh4XKORwh3JBKGE/fS4W1t0GaHVh/iYor2uurYdSOJ6yhEiTXoHEl8fDzi4uKgra2Nzp07Y8WKFQgODpZXNkI4dSc5D+kFpRjZhk6yv05VwMeU7ta4l5KPqJR8ruMQJSXTyHMrVqzA7t274e7ujnfffRdvvfWW9L1OnTrJLRwhXDp+Lx18HjDUzZTrKJya6GOJDRfj8Nv1RHhO8OQ6DlFCMhUSPp+Py5cvw9S05n+oM2fONHsoQrgmEkvw14MM9LQzQjsdDa7jcKqdjgaGuXXAifsZWDTcCcZCda4jESUjU9dWXFxcjSIyffp0AICtrW2zhyKEaxEJz5FTVI6RbfQk++uCe9mgXCzBgZt0KTCpSaZCcv/+/Rqv3b59u9nDEKIswqLSocLnwd+1bXdrVfGy1IebuR72/JNMowKTGuosJBs2bECnTp3w8OFDODg4SB8dOnRA165dFZWREIUqF0lw6t8M9HMwgb6WGtdxlAKPx8O0ntbILCzF+Yc0KjCprs5zJNOmTcPIkSPx8ccf44cffpC+rqOjA0NDQ7mHI4QLV+KyUVgqapM3IdZlpIcZVpyIwb6bKfB3pe8N+Z86C4menh709PRw7NgxReUhhHMnH2RCTcCHn1N7rqMoFQ1VAQK6WGDXjUSkPC+BpaEW15GIkqiza2vMmDEAKi/xfbVrq+o5Ia1NhViC8w+foW8nY+hoqHIdR+lM7m4FxoD9dNKdvKLOI5LNmzcDAM6fP6+QMIRw7WbCcxS8rMAQOsleK4f2OvC2NsChW6n46C0HqLbi2SKJ7Or8LejQoYP0X2tra1hbW4MxhpiYGFhYWCgkICGKdPrfTAj4POrWqsPk7lbIKSrD+Rg66U4qybQ70atXL7x48QLZ2dnw9fXF+vXr8e6778o7GyEKJZEwnInOhI+NIQy16WqtNxnm1gF6mqrYR91b5L9kKiRisRg6OjoICwvDzJkzcfr0ady8eVPe2QhRqLsp+ch6UUb3jtRDQ1WAcV0scCUuB8m5JVzHIUpApkIiEolQVlaGv/76C4MHDwaANjPlKGk7zkRnAgAGu1C3Vn0md7cEAOyPpKMSImMhCQ0NRadOnSCRSNCjRw8kJCRAT09P3tkIURjGKru1PC310UGvbQ4Z3xD27XTgY2OIw7dSUC6iO93bOpkKyZw5c5CcnIw//vgDAGBtbU1XcpFW5VHmCyTllmCIC3VryarypHs53elOZBv9t7y8HEePHkVCQgJEIpH09S+//FJuwQhRpNP/VnZrDaFuLZn5u5pC/7gq9kUkY5gb3enelsl0RDJ27Fjs27cPIpEIAoFA+qhPeHg4XFxcYG9vj5CQEIjF1ed9Li4uho+PDzw9PeHi4oLZs2dXK1SEKMr5h8/QqZ0QtiZCrqO0GFUn3a8+yUFiTjHXcQiHZDoiSUxMRHR0dINWLJFIEBISgrCwMDg7O2P8+PHYs2dPtRkVNTU1cfHiRQiFQkgkEgQGBmLPnj3SIeoJUYTMglJEpxfiXV+aEqGhJvlYYdvVBByITMEXQztzHYdwRKYjEk9PTyQlNWzO5sjISJiZmcHZ2RkAMHPmTBw9erT6xvl8CIWVe4BVV4bR1WBE0S49zgIADOpM3VoNZd9OiO4dDXHkNp10b8tkKiRJSUlwdXWFr68vBg8eLH3UJTU1FZaWltLnVlZWSElJqXXZ7t27w8TEBLq6upgyZUoD4hPSdBcfZUFPUxVdrPS5jtIiVZ10PxuTyXUUwhGZura+/vrrBq+YMSbzshERESgqKsK4ceMQHh4OPz+/au9v3LgRGzdulD7Py8trcB5CalNaIcbVuBy85dweKjRuVKP4u5rCQEsV+28mYwTNKNkmyVRIfH19kZ+fj/j4eHTp0kWmFVtaWlY7AklOTq5zfC6hUIhRo0bh+PHjNQpJaGgoQkNDpc+russIaaqIhOd4WSHGwM7tuI7SYqmrCBDY1QK/XklAUm4xrI20uY5EFEymXbBjx47Bx8cHgYGBAICoqCgMGzaszs94e3sjNTUVMTExAIBt27YhICCg2jJZWVnIz88HAJSVleHkyZNwcXFpaBsIabSLD5+BzwN8HUy4jtKiTehmBQA4EFl79zVp3WQqJCtXrkRkZKT0bnZPT08kJ9c9NIJAIMDWrVsRGBgIOzs7CIVCBAUFISwsDCEhIQCA9PR0DBgwAO7u7ujSpQucnZ2l7xEib4wxXHychS5WBjCgQRqbxL6dED4d6U73tkqmri01NbUaQ6Lw+fXXoIEDB0qPSKqMGjUKo0aNAlBZkO7evStrVkKa1ZOsIqQ8f4lJPlZcR2kVJvtYYf7BKFx4+AxD6QbFNkWmI5KOHTvi/Pnz4PF4KCwsxLJly+Dh4SHvbITI1cVHlZf90vmR5uHvakrDy7dRMhWSTZs2Yffu3UhNTYWdnR3i4+Px008/yTsbIXJ18VEWzPU14dheh+sorcKrw8unPKfh5dsSmQqJgYEBdu3ahaysLGRnZ+O3336DgYGBvLMRIjfFZSLcTspDPwcTugm2GU3yqbx37AANL9+m1HmOZNWqVXV+eNGiRc0ahhBFuZnwHCIJQ99OxlxHaVU6tddBN5vKOd3n+9Gc7m1FnT/liooKVFRUICYmBtu2bUNOTg5ycnKwfft2PHz4UFEZCWl2V5/kgMcDetoacR2l1ZnkY4XsF2W48DCL6yhEQeo8Ilm6dCmAyhsS79y5I71ya+nSpdIrrwhpia7G5cDVTI8u+5WDYW4dsCwsGvtvJtO0xW2ETMedmZmZ0NH53wlJbW1tZGbSuDqkZcp6UYrHz16gD3VryYWGqgABXSxwOS6bTrq3ETIVkuHDh2PQoEH4+eef8fPPP2Pw4MEYMWKEvLMRIhfXn+QCAPrYUyGRl4k+lmAMOHSL7nRvC2S6IfH777/HH3/8gcuXLwMA5s2bh9GjR8s1GCHyciUuB+oqfHS1pisP5aWzqS66WOnj0K0UzBvUiQbEbOVkKiQAMGbMGIwZM0aOUQiRP8YYrj3JgU9HQ2io1j/LJ2m8ST5WWHDkPi49zsZbzjTXS2tGuwmkTXmaXYzMwlL0pm4tuRvhbgYdDRXspzvdWz0qJKRNufYkBwCdH1EETTUBxnqZI/xxFtLyX3Idh8iRTIWkuLhY3jkIUYgrcTkw0FKFcwddrqO0CRO7WUHCgEM0vHyrJlMh6dy5M2bPno2bN2/KOw8hciMSS/BPfC562RuDz6dhURTB2UwXHpaVJ91FYhpevrWSqZDExsaiT58++PTTT+Hp6Yn//Oc/0gmpCGkp7qUWoKhMRN1aCjbZxxIZBaX4Ozab6yhETmQqJJqampg2bRouX76MTZs2Yc2aNTAzM8P06dORmJgo54iENA86P8KNEe5mEKrTSffWTOaT7eHh4Zg8eTKmT5+O2bNnIyYmBgMGDIC/v7888xHSbK7G5cDaSAuWhlpcR2lTtNVVMNrTDBcfZSGjgE66t0Yy3Ufi6OgIBwcHzJ49G3v27JHOjmhjY4PTp0/LNSAhzaG4TIQ7yXkY382S6yht0iQfK+yNSMahyFTM8+vEdRzSzGQ6Ivn1119x/PhxjBw5UlpEquZs379/v/zSEdJMqoaNp24tbria68HdQg8HI5MhljCu45BmJlMhmT9/fo3X6C530pJUDRvfy46GjefKJB8rpBeU4nIcnXRvbers2kpNTUVSUhKKi4tx/fp16esFBQUoKaFRPUnLcTUuB27metDXomHjuTLSwwwrT8Rgf0QyBji24zoOaUZ1FpILFy5g586dSE9Px+LFi6Wv6+joYM2aNXIPR0hzqBo2fm5/O66jtGlCdRWM8jTHoVspeFZYiva6GlxHIs2kzkISHByM4OBg7Nu3D5MnT1ZUJkKaVdWw8X3p/AjnJvlYYv/NZByKTMEHg+ike2tRZyG5f/8+3N3dYWNjU61rq0qvXr3kFoyQ5lI1bHwXGjaec27menAx08WByBS8N8AeAhphoFWos5Bs2LABv/76a7VurSo8Hg8XL16UWzBCmgMNG69ceDwegnpY44tjD3DpURb8aHj5VqHOQvLrr78CAC5duqSQMIQ0t6ph42f0tuE6CvmvUZ5m+PrkQ+z+J4kKSStRZyGprTvrVdS1RZRd1bAoNP+I8tBSU0FgVwvsuJaIpNxiWBtpcx2JNFGdhaS2Lq0q1LVFWgIaNl45Te1hjR3XErE3IhmLhjlxHYc0UZ2FhLq0SEtWNWy8r6MJDRuvZOxMhOhtb4RDt1Lw8VsOdP6qhZPpqq03dXFR1xZRZlXDxtNlv8opqIc15uy5g7/uZ2BcVwuu45AmoKu2SKtF50eUm59Te7TXVcfuf5KokLRwdNUWabVo2HjlpiLgY5KPFX48H4cHqQVws9DjOhJpJJkGbRSJRNi0aRMmTJiACRMmYPPmzaioqJB3NkIarbC0AneS89C3Ex2NKLNJPlYQ8HnY808S11FIE8hUSGbNmoWLFy9iypQpmDJlCi5duoRZs2bV+7nw8HC4uLjA3t4eISEhEIvF1d6PiopC79694eLiAldXV/z000+NawUhr7n+JBciCYOvAw0OqMza62pgiEt7/HkvDQUltHPaUslUSG7cuIEjR45g1KhRGDVqFA4ePIh//vmnzs9IJBKEhITg8OHDePLkCQoLC7Fnz55qy2hpaWH79u2Ijo7G9evXsWHDBkRFRTW6MYRUuRyXDRU+Dz1p2HilN7WHNUorJDhyJ5XrKKSRZCoklpaWyMzMlD7PysqClZVVnZ+JjIyEmZkZnJ2dAQAzZ87E0aNHqy3j4OAAR0dHAICuri6cnJyQkpLSoAYQ8jrGGP5+nI2u1gYQqss0CSjhUE9bI9iZaGPvP0lgjCa9aonqLCSzZs3C7NmzoampCRcXF0yYMAETJ06Ei4sLNDU161xxamoqLC3/N62plZVVnUXi6dOnuHXrFnr37l3jvY0bN8LZ2Vn6yMvLq69dpA2LzylGWv5L+DqacB2FyKBq/K34nGJcf5rLdRzSCHXurvXp00f69bhx46RfDx06tN4VN2TPIj8/H2PGjMH69ethaGhY4/3Q0FCEhoZKn1cd5RBSm78fV87A168TFZKWIqCrBb45/Ri7byTR5dotUL3zkTSWpaVltSOQ5ORkWFjUvFa8pKQEw4cPx6xZs/D22283enuEVLkclw1joToNi9KC6GqoYoxX5aRX6fkvYaZfd48HUS4ynSPJy8vD4sWLMWrUKAwePFj6qIu3tzdSU1MRExMDANi2bRsCAgKqLVNRUYGAgAC89dZb+PDDDxvZBEL+p7RCjH/ic9GvkzENi9LCTOtpDbGEYW8EXQrc0shUSIKDg2FsbIxHjx7hww8/hLa2Nrp06VLnZwQCAbZu3YrAwEDY2dlBKBQiKCgIYWFhCAkJAQAcOnQI586dwx9//AFPT094enriyJEjTW8VabMiE5+jtEKCfg7UrdXSOHXQRfeOhtgXkYzSCnH9HyBKg8dkOJnh5eWFu3fvwt3dHffv34dYLEavXr0QERGhiIw1ODs7S490CHnVyhMx2HYtAbcW+8FIqM51HNJAp//NwJw9d7A20B3jvS3r/wBRiPr+5sp0RKKmpgYA0NHRQWJiIkpLS5Gdnd08CQlpRpfjsuFqpkdFpIXyc2oPc31N7LyWSJcCtyAyFZIxY8YgLy8PX3zxBby9vWFlZYWZM2fKOxshDZLyvASxz4rgS91aLZaKgI+gntaIyShEZCJd5t9SyHS31sKFCwEAI0eORHp6OkpLS6GrS1fEEOVy/uEzAMBbNH1rizaxmyV+PB+LndcT4NOx5u0ARPnIVEhEIhG2bNmCv//+GwDQv39/hISEQFVVVa7hCGmIczHP0F5XHW7mNIpsS6avpYaxXuY4dCuVLgVuIeQ6aCMhilJQUoGIhOfwc2pPl/22AsG9bCCWMBoVuIWQ6Yjkxo0bePTokfT5yJEj4eRE8ywT5XHpcRbEEkbdWq1EZ1Nd9LA1xP6byfhwUCeailfJyW3QRkIU6Ux0JoTqKjTabysyvVdH5JVUICwqnesopB51HpHMmjULPB5POmijn58feDwezp8/X+vgioRwoahMhIuPsjDMrQPUVWjPtbXwc2oHc31NbL+WgLe9LcDjUZelspLboI2EKMqFh89QJpJguFsHrqOQZqQi4GN6Lxt8ffIhrj3JRR+a7VJpNWjQxtLSUgCAhoaG/BIR0kAn7mdAR0MFfR3oD01rM9HHEj9diMOWK/FUSJSYTOdI4uLi0KNHD1hYWMDCwgK9evVCXFycvLMRUq/C0gr8/Tgbg51NqVurFdLRUMWk7la4HJuNhxmFXMchbyDz5b+fffYZcnJykJOTgwULFtDlv0QpnLyfgXKxBKM8zbiOQuRkRm8bqPB5+PVKPNdRyBvIVEjy8/OrDQE/duxY5OfnyysTITI7fDsVproa6EOTIbVaHfQ0McrDDGFR6cgoeMl1HFILmQqJrq4u/vrrL+nzkydP0hAphHNPs4twOykPAV3MIaCbEFu1kL62EEkYdl5P5DoKqYVMNyT+/PPPmDp1Kt555x0AlfeV7N69W67BCKnPkdupAIDArjVn3iSti7OZLvp2Msa+f5Lx/gB76GjQ8EzKpN4jErFYjHPnzuHOnTuIi4vDkydPcOvWLbqznXCqTCTG4Vsp8LY2gK2JkOs4RAFm9bXFizIRDkam1L8wUah6C4lAIMCePXsAVHZx6ejoyD0UIfU5cS8DOUXlCO5lw3UUoiB9Oxmjs6kOtl9NQIVYwnUc8gqZzpH4+flh2bJliIuLQ3p6uvRBCBcYq+wrN9XVgL+rKddxiILweDzM6muL9IJSnHyQwXUc8gqZzpEcOHAAALBr1y7pazweD/HxdDkeUbxbSXl4kFaABUMcoSqQaV+ItBIjPcyw7sxjbA5/ipHuZjTSs5KQqZAkJCTIOwchMttw8Qm01ASY5EMDh7Y1aip8vOtri+XHY3Du4TMMcaEjUmVQ5+5cQkICxo4dCzc3NwQFBeHZs2eKykVIrW4n5eFybDam9bSBobYa13EIByZ2s4KxUA0bLsbRvO5Kos5C8s4778DR0RHr1q2Djo4O5s+fr6BYhNTux/Ox0FITYFbfjlxHIRzRVBNgVl9b/JtWiPDH2VzHIainkOTk5GDNmjXw9/fHxo0bq01uRYiihT/OwpW4HEzvZQMjoTrXcQiHpvawhoGWKn6ioxKlUGcheXVOdh6PR/MBEM5UiCVYcSIGJjrqeG+APddxCMe01VUws09H3E3Ox7UnuVzHafPqLCRRUVFQU1OTPqqeq6qqQk2N+qeJ4uy4loCn2cX43L8zhOoyXSNCWrlpvWygq6GCny7QUQnX6iwkEokE5eXl0kfV84qKCpSXlysqI2njnmYX4buzsehmY4AAL3Ou4xAloauhipl9bHEz8Tn+jqVzJVyii/CJUhOJJfj08D3weMC6QA+6b4BUM7NvRxhpq2HdmceQSOiohCtUSIhS++5cLO4m52PhUCfYGGtzHYcoGaG6Ct4faI/o9EL8RXe7c4YKCVFa52OeYXP4U/i7mGJaT2uu4xAlNbm7Fcz1NfH9uVgag4sjVEiIUrqfmo8PD9yFjZEW1r7tTlcMkjdSVxHgo7cckJBTjMO3UrmO0yZRISFKJym3GO/sjISmqgA7ZvhAl+aeIPUY62WOTu2EWH8hFiXlIq7jtDlUSIhSySkqw7TtN1FcJsb26d3Qkc6LEBkI+Dx87t8ZzwrL8HP4U67jtDlyLSTh4eFwcXGBvb09QkJCIBaLaywzfvx4mJiYwN6ebjJr64rLRJixIxJpeS+xeWoXeFjqcx2JtCCDnNqhn4MJfr4cj5TnJVzHaVPkVkgkEglCQkJw+PBhPHnyBIWFhdIJsl41Z84cnDlzRl4xSAtRIZZg7t47eJBWgDXj3NHfsR3XkUgLw+Px8OUIZ0gkDF//9ZDrOG2K3ApJZGQkzMzM4OzsDACYOXMmjh49WmO5gQMHwtDQUF4xSAvAGMPnR+7jcmw2PvN3pDnYSaPZtxNiei8bnI7OxPUnOVzHaTPkVkhSU1NhaWkpfW5lZYWUFJprmdT0zenHOHY3DdN72WCurx3XcUgL96FfJxgL1bDseDREdDmwQsitkDTn2DcbN26Es7Oz9JGXl9ds6ybc2vNPEn7++ymGuZni/0Y402W+pMl0NVTx2ZDOiH1WhK1XaVI+RZBbIbG0tKx2BJKcnAwLi8Z1WYSGhiImJkb6MDAwaK6YhEPhj7OwNCwaXa0N8P14Twho+BPSTAK7WqB7R0P8cC4W8dlFXMdp9eRWSLy9vZGamoqYmBgAwLZt2xAQECCvzZEW5mFGId7fdxcWBprYEtQVGqoCriORVoTP5+Gbce4AgM+P3qdxuORMboVEIBBg69atCAwMhJ2dHYRCIYKCghAWFoaQkBDpcsOHD0fPnj2RmJgICwsLrF69Wl6RiJLIelGKmTsjIeDzsH16N5qkisiFjbE2PhnsgMjEPOyNSOI6TqvGYy1wIH9nZ2fpkQ5pWURiCaZsjcDtpDzsCemOHrZGXEcirZhILMG4zdfxJKsIZz7qBwsDLa4jtUj1/c2lO9uJQn17NhYRCc+xcJgTFREidyoCPr4JdEeFmOHjg/foKi45oUJCFOZczDPpFVrv9LbhOg5pIzqb6uLzoZ1xM/E5Nlx8wnWcVokKCVGI5NwSfHwoCrbG2vhmHI3mSxTrnd42GOBogg0X4xART3O8NzcqJETuSivEmLv3NirEEmya2gU6NJovUTAej4dv3/aAsVAd8w9GIb+EpgpvTlRIiNwtPx6N6PRCfD3GDZ1NdbmOQ9ooI6E6fpjgiczCUnx0MApiuiS42VAhIXJ15HYq9t9MwSQfK4yjMbQIx3rbG+MjPwdcepyN784+5jpOq0GFhMjNw4xCLP79AVzNdbF0pDPXcQgBALw/wB7+LqbYFP4Ux++lcx2nVaBCQuSisLQCc/fchroKH5un0J3rRHnw+Tx8N94Dju11sODIPUSnF3AdqcWjQkKaHWMMnx2+j8TcEnw/3hOWhnQTGFEu2uoq+HWaNzRUBQjZdQsZBS+5jtSiUSEhze7XK/E4HZ2Juf3t4Ofcnus4hNTKykgLv0ztityicszYEYnC0gquI7VYVEhIs7r+JAdrTj1CLzsjfPKWA9dxCKlTd1sj/DDBE4+fvcC7v91GmajmdOCkflRISLNJy3+J9/ffhamuBjZM8oKKgH69iPIb7t4BS4Y740Z8Lj49fJ8uC24EFa4DkNahtEKMuXtuo6hMhJ0zetKIvqRFmdmnIzILXuLXKwnQVhNg1Vg38Gl+HJlRISFNJpEwfHbkPu6nFmDtOHe4W+hzHYmQBls0zAnF5WLsi0iGmgofy0e50FA+MqJCQpps3dnHCLuXjpl9OmJ8N0uu4xDSKDweDytHu6JcJMFvN5KgrsLHomFOVExkQIWENMmef5KwOfwphrqaYvEwJ67jENIkVTMrlokk+PVKAjRUBfhksCPXsZQeFRLSaOdinuHLP/9FV2sD/DDBk/qUSasg4PPw/XgPlIvE2HDxCVT4fHw4yJ6OTOpAl9WQRjkf8wzv7b0NGyNt6Y1dhLQWqgI+NkzqgkGd2+GH87FYc+oRWuBksgpDhYQ02NnoTMzdexuWhlrYP7sHDLXVuI5ESLNTU+Fj89SuGO7eAb9cjsfiP/6lS4PfgLq2SIOcepCBD/bfhY2xNvaFdEc7XQ2uIxEiN2oqfPw00Qs66irYF5GMolIRvhvvAVW6R6oaKiREJowxbLkcjzWnH8HeRIh9s3rARIfuFSGtn4DPw+oANwjVVbD1agJKykX4z+Qu1J37CiqrpF7lIgk+O3Ifq/879MmROb2oiJA2hcfjYfFwJ3z8lgPOP8zClK0RyC0q4zqW0qBCQuqUlv8SU7b+g8O3UzG1hxV2zvCBnhZNlUvaHh6Phw8HdcLKMa6ISsnHmE3XEPfsBdexlAIVEvJGf0alwf/Hy4hKycdXo12wcowb9Q2TNm9qD2vsmN4N+cUVCNh0HeGPs7iOxDn6q0BqeF5cjvkH7mLegSiY6mrgz9A+mNbThutYhCiNfg4mOPZeL+hrq2LGzkh8f/Zxm76ii062EymxhOFgZArWnnmE/JIKTO9lgy+GdqaTioTUolN7HRx/vw8+PXwPP118gsjEPKyf5Il2Om3vSkY6IiEAgJsJzxGw6RoW/f4AHfQ0cXRuTywb5UJFhJA66Gup4ddp3lg0rDNuJj7H0B+v4MT99DZ38yIdkbRxD1IL8O3Zx/g7Nhs6GipYNtIZU3tY01wihMiIx+Nhdj87dLU2xILD9/D+vrsIc07HyjGubeY+Kx5rgaXT2dkZMTExXMdosRhjiEh4jq1X4nH+YRY0VPmY0bsj3u1nC30tukudkMYqrRDjx/Nx+PVKPLTUBAgdYI/pvWxa/JF9fX9zqZC0IaUVYpz+NxM7riXgXmoBtNQEmNDNEnP727XJfl1C5OVBagGWhv2LO8n5MNfXxKdDHDDKwxyCFjqwKRWSNo4xhvupBThyOxV/RqWhsFQEEx11TO9lgyndregIhBA5YYzh1L+Z+Ob0IyTllsDaSAshfToisKslNNVa1hEKFZI2qEwkxt3kfJyNfoYz0ZlIy38JPq/yksUJ3pYY5NQeaip0DoQQRSgXSXD0Tip+vRKP+OxiGGipIrCrBQK6WMCpgy7X8WRChaSVY4zhWWEZHmYU4kFaASIScnE7KQ+lFRLweIC3tQGGuJhiuHsHdNDT5DouIW2WRMJw4VEWtl2Nxz/xzwEAzh10Mdy9AwZ2bofOpjpKO+cJp4UkPDwcoaGhKCsrQ//+/fHLL79AIKh+SHfo0CEsWbIEYrEYEydOxNdff13veltKIRFLGApfViCvpLzyUVz59csKMQCAh8orPng8gM/jgc+rfM7n8SDgV77G++/r5SIJispEeFEqwvPicqTnv0R6/kskPS9BfkmFdJvm+proYWuE7raG6O9oQuc+CFFCKc9L8PvdNPx+Nw0JOcUAAFNdDfTpZIwuVgboYq2PTu10lOacCmeFRCKRwMHBAWFhYXB2dsb48eMxfPhwBAcHS5cpKCiAm5sbIiIiYGJign79+mH16tXw9fWtc92KLCSMMZRWSPCirALFZWIUlYrworQCeSWVRSG/pPyVr6v/W/CyAvIq0yY66jDT04CFgRY6m+rAqYMunMx0YaanobR7NYSQ6hhjeJpdjEuPsnDpcRZuJ+WhTCQBAGio8mFrLIRdOyFsjbXRXlcDJjrqMNFRh7FQDUba6tBQ5Svk/3t9f3Pldh9JZGQkzMzM4OzsDACYOXMmNm7cWK2QnD59Gv3790eHDh0AAMHBwTh69Gi9haQpfr+biv0RKRBJJBBLGEQSVu1fsfS5BCXlYhSXiSDLyAc66irQ11aFgZYaLA214G6hBwMttcqHtir0tdRgoFX5vtZ/T7QxAIxV/jIxABLGIJH891/GIGFVrzGoqfAhVFeBUEMFepqqUFdpWSfrCCE18Xg82LcTwr6dELP62aJcJMGjzELcTc7Hg7QCxGcX4e/HWTh+T/SGzwOaqgJoqQmgqSaAmoAPAZ8HAZ8PAR+V//IAFT4f6yd5yq17W26FJDU1FZaWltLnVlZWSElJqXeZ06dP11jXxo0bsXHjRunz+Ph4aYGSN1k7hsQAcv/7eF1eXh4MDAyaLxQHqA3KozW0ozW0AVBcO7Tqeb/kv4+6DPqp9tdlaUNqamqd78utkMjSYyZrr1poaChCQ0ObGokzLeWcTl2oDcqjNbSjNbQBaB3taI42yO0aUEtLy2pHIMnJybCwsGjwMoQQQpSb3AqJt7c3UlNTpZVu27ZtCAgIqLaMv78/Ll26hIyMDIhEIuzatavGMoQQQpSb3AqJQCDA1q1bERgYCDs7OwiFQgQFBSEsLAwhISEAAD09Paxbtw79+vWDo6MjfH19MWDAAHlF4kxL7parQm1QHq2hHa2hDUDraEdztKFF3pBICCFEedA4GYQQQpqECgkhhJAmoULSRPPmzYOFhQVUVP53JfXWrVvh6ekpfaipqeHPP/+s9rlDhw6Bx+Ph6tWrio5cQ0PbMH36dFhbW0vf27FjB1fRq2nMz2LNmjVwdHSEi4sL3nnnHS5iV9PQNowaNUr6ur29vVLcm9HQNty+fRs9evSAp6cnPDw8EBYWxlX0ahrajitXrqBbt25wc3PDkCFD8OzZM66iS9XWhrKyMkybNg1ubm5wcnLC+++/D4mk8m76tLQ09OvXDw4ODujfvz8yMjJk2xAjTXLlyhWWkZHBBAJBre8nJyczfX199vLlS+lrubm5rHfv3qx79+7sypUrior6Rg1tQ3BwMNu9e7ciI8qkoe3Yv38/Gz16NCsvL2eMMZaRkaGwrG/SmN+nKitWrGCzZs2Sd8R6NbQNvXr1YmfOnGGMMfbw4UNmbGyssKx1aUg7JBIJMzc3Z3fu3GGMMXbs2DE2Y8YMRcatVW1t2LJlC5s0aRJjjDGRSMR69+7NTpw4wRhjbMqUKeyXX35hjDG2ceNGNn36dJm2Q0ckTdSnTx+Ympq+8f19+/YhICAAGhr/u0f+k08+wfLly6u9xqXGtEEZNbQd69evx/Lly6GqqgoAdX5WUZrys9i7dy+CgoLkGU8mjWlDfn6+9N+qIZO41pB25OTkgDEGLy8vAMCQIUNw6NAhRUV9oze1obi4GCKRCGVlZSgrK5Muc+LECUybNg1A5ZBVr/ekvFHz1r+26017LW5ubuzSpUvS52fPnmXTpk1jjDHm6+urFEckVWRtQ3BwMLOzs2Nubm5s6tSpSrEn/ypZ26Gvr89Wr17NfHx8WJ8+fVh4eLiCEtZP1jZUuXXrFrOxsWESiUTOyWQnaxuioqKYubk5s7S0ZPr6+iwyMlJBCWUjSzskEgmzsrKSPt+2bRsDwHJzcxWUsm6vtqG0tJQFBgYyQ0NDJhQK2aJFixhjjOXk5DAzM7Nqn2vXrh3Lz8+vd/10RCJH9+7dQ35+vnQQypKSEixcuBDffvstx8lk93obAODrr79GbGws7t27B3d392oDcSqr2tohEolQXFyMiIgIbN68GZMmTcKLFy84TFm32tpQZc+ePZgyZYrSj/xcWxt++eUXrFq1CsnJyThy5AimTZsm8/BJXHm9HTweD0ePHsVXX32Frl27Ii4uDsbGxjWmzVAGN2/ehEgkQnp6OlJSUvDXX3/h+vXrTfueN2fVa8tq22v59NNP2RdffCF9fv/+fWZiYsKsra2ZtbU1U1dXZ6amptL+Ya7J0obXlZSUMKFQKM9YDSZrO5ycnNj9+/elz7t168bu3r0r73gyacjPQiQSMVNTU/bo0SNFRJOZrG3Q0tJiZWVl0ucmJiZKsyfPWOP+X9S2d8+lV9vw3nvvsS1btkifL1iwgH333XdMIpEwPT096bmroqIipq+vL9P6qZA0k9d/2cRiMTM3N2fR0dFv/Iyyd229qQ1paWnSr3fu3Ml69eqlkHyykrUd//d//8e+//57xljliVNTU1OWl5enqJh1asjv0+nTp1m3bt0UFU1msrbByclJerL3zp07SvUHmDHZ25GZmckYq+zmeu+999jXX3+tsIz1ebUN33zzDZswYQITi8WstLSU9ejRg506dYoxxtjkyZOrnWyv6oavDxWSJpo9ezYzNzdnAJi5uTl77733GGOMXbhwgXl5edX5WWUpJA1tw6BBg5irqytzd3dngwcPZrGxsYqOXKuGtqOwsJCNHTuWubi4MA8PD/bHH38oOnINjfl9CgoKYuvXr1dkzDo1tA3Xrl1jXbt2Ze7u7szLy4tdvHhR0ZFr1dB2fPHFF8zBwYF16tSJzZ8/n1VUVCg6cg21taGoqIhNmDCBOTk5sc6dO1c7skpOTmZ9+vRh9vb2rG/fviw1NVWm7dAQKYQQQpqETrYTQghpEiokhBBCmoQKCSGEkCahQkIIIaRJqJAQQghpEiokROndvHkTPB5PaUaFlcWro63Kytvbu95ldu7cKZ1htLb3kpOT3/jZixcv4oMPPmhwrtqsWbMGv/32W7Osi7R8VEiI0tu9ezf69euHPXv2NNs6RSJRs62rudy6datJn6+vkCxbtgyffPJJk7ZRJTQ0FOvWrVP6oUyIYlAhIUpNJBLh6NGj+O233/D333+joKAARUVF6NChA0pLS6XLubq6IjY2FhKJBIsXL4aPjw/c3d2xaNEi6TIqKipYsmQJvLy8cOzYMezYsQM+Pj7w8vJC//79kZCQAABgjOGjjz6Co6Mj+vTpg8mTJ2PlypUAgOfPn2PixInw8fGBp6cnjhw58sbsX331FTw9PeHu7o7Y2FgAqDdflT179sDBwQFdu3bFvHnz4OfnJ30vOzsbI0aMgIODg3Sk1r179+LWrVuYMWMGPD09kZiYWC3L06dP8fLlS9jY2FTL4ebmBg8PD3z88ccAKueamTt3Lnr37g0rKyscOHAAK1asgJeXF7p164bMzEwAgI6ODuzs7HDlyhXZfpCkdZPH3ZSENJfjx4+zoUOHMsYYmz59Otu6dStjjLEJEyawI0eOMMYqR4/19vZmjFWOulo1mqlYLGYjR45kJ0+eZIwxBoBt27ZNuu6cnBzp10ePHmUTJ05kjFXOJeHr68vKy8tZfn4+s7W1ZStWrGCMVd5FXjU2Wl5eHrO3t691XCgAbP/+/YwxxtatW8dCQkLqzVc1jEVGRgYzMzNjGRkZTCKRsMDAQDZo0CDGGGM7duxgZmZmLCcnh1VUVDAPDw929epVxljdIyXs3LmTzZkzR/p8y5YtbOjQodIxrqq+F8HBwWzkyJFMLBaze/fuMS0tLbZv3z7GWOWYTMuWLZOuY+XKlWzlypW1bo+0LXREQpRa1ai2ADBlyhTs3r1b+vXevXsBVM4LMXnyZADAyZMncejQIXh6eqJLly54+PAh4uLipOurWg4AHj9+jAEDBsDNzQ1LlizBgwcPAACXL1/G+PHjoaqqCj09PYwaNUr6mVOnTuGzzz6Dp6cn+vfvj/LycsTHx9fIzePxMG7cOABAt27dpEc79eUDgIiICPTu3Rumpqbg8XiYOnVqtfcHDhwIIyMjqKiowMvLS7ruuqSnp6Ndu3bS52fOnMHcuXOhpqYGADAyMpK+N3r0aPD5fLi5uaG0tBQBAQEAAE9Pz2rbateuHdLT0+vdNmn9Gn5GkBAFKSwsxIkTJ3D9+nUsXrwYjDFkZmYiOTkZ/v7+mDNnDvLy8nD48GFcu3YNQGW31Lp16zBmzJga6xMIBNUmU5oyZQr27duHnj174sGDBxg7dmytOV4dml0ikSA8PBz6+vp1Zufz+dIJswQCgfScTF353uT1oeHV1dWrtUmW8z2amprSyaOqcrxJ1fp5PB54PJ70OZ/Pr7at0tJSaGpqytQG0rrREQlRWkePHsXIkSORnJyMxMREJCUl4YMPPsDevXuhqqqKkSNH4qOPPoKdnZ10Vr2hQ4di8+bN0vMn6enp0n791xUWFsLc3BwAsGXLFunr/fr1w5EjRyASiVBYWFjtarGhQ4fihx9+kD6/e/dug044y5LPx8cH169fR1ZWFhhj0iOv+ujo6KCwsLDW91xcXKod+fj7+2Pz5s0oLy8HAOTm5srchiqxsbFwdXVt8OdI60OFhCit3bt34+2336722ttvvy29emvKlCnYtWtXte6qmTNnomfPnvD29oabmxsCAgKq7Ym/au3atfD19UXXrl1hYGAgfX3MmDFwc3ODs7Mzhg8fDg8PD+jp6QEAfvrpJzx9+hRubm5wcXHBwoULG1RIZMnXoUMHrFq1Cn369IG3tzcMDQ2l26/LO++8g48++qjWk+19+/bFgwcPUFFRIc3h6ekJLy8veHp6YvXq1TK3ocrly5fh7+/f4M+R1odG/yWkFkVFRRAKhSguLkbfvn2xefNmdO/eXeHbZ4xhzpw5sLW1xeeff96kdX7xxRfw9vZGYGBgk/PduHEDmzZtkp6zIm0bHZEQUotx48bB09MTXbt2xbhx4xRaRABg9erV8PLygrOzM4qKivD+++83eZ0LFy6UHpE0VW5uLlatWtUs6yItHx2REEIIaRI6IiGEENIkVEgIIYQ0CRUSQgghTUKFhBBCSJNQISGEENIkVEgIIYQ0yf8D9AOQwyZp7TwAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1369,7 +1367,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEICAYAAAB4YQKYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAAuJAAALiQE3ycutAABFIElEQVR4nO3dd1wT9/8H8FcIG8KUHabMMN3inoh72zpBcfVLf9UOq9XWDu20tdVq3XtUbamjrVvBhYp7IYiyp4jsneTz+8OaSkUMkHAhvJ+PRx6ay93nXjlj3rm7z32OxxhjIIQQQhpJg+sAhBBC1AMVFEIIIQpBBYUQQohCUEEhhBCiEFRQCCGEKAQVFEIIIQpBBYUQQohCUEEhzU5ycjJ4PB4KCgoAALNnz8b8+fM5zaToDC+299/3qwhfffUVxo8fr7D26iM3Nxd9+vSBkZERxo4dy0kGoiSMEDnExcWxIUOGMHNzcyYQCJiHhwf75ptvOMmSlJTEALD8/PwmW5eBgQETCATM3Nyc9erVi23ZsoVJpdJ6txcSEsLmzJnToAwNfb9btmxh/v7+DVpWGZYsWcL69evHJBLJK+cpKytjixYtYq6urkxfX5/Z2dmx0aNHs6tXr7Jvv/2WeXt717pcly5d2CeffKKs6OQ1aA+FyGXw4MHw9/dHamoq8vPzERERARcXF65jNZn09HQUFRUhLS0NH3zwAT7//HPMmjVLKesSi8VKaVdVJCUlwdvbGxoatX/9VFdXIygoCFFRUdi7dy8KCgoQHx+PUaNGYf/+/ZgyZQri4+MRExNTY7n4+HhcunQJ06ZNa4q3QWrDdUUjqi83N5cBYKmpqa+c54cffmCurq7M0NCQubi4sJ9//ln22vNf2Js2bWLOzs7MwMCAzZs3j2VmZrJ+/foxgUDAevTowbKysmTLAGA//fQTc3d3Z8bGxmzcuHGsoKCgRnvPf7G/+Kv/+Wvbt29nrVu3ZsbGxiwkJIRVVVXJ2v7tt99Y69atmZGREZs+fTobPHgw+/TTT2t9X6/aO7hw4QLj8Xjs3r17L2WoqKhgU6dOZebm5szIyIh5e3uzmJgYtmLFCqapqcm0tLSYgYEBE4lEjDHGevbsyebNm8f69+/P9PX12aFDh2p9T+vXr2eOjo7MzMyMvfXWW6yyspIxVvseiL+/P9uyZQu7fv0609HRYRoaGszAwIAZGBiwlJQU9umnn7Lhw4fL5k9ISGBBQUHM1NSUubi4sB9//FH22vP2v/jiC2ZhYcEsLS1rvP5fUqmUff/998zFxYWZmpqyAQMGsEePHjHGGBszZkyNbbBx48aXlt+6dSszNzevc49s+PDhbPbs2TWmzZ8/n/Xr1++VyxDloz0U8lrm5ubw8PDA1KlTsW/fPqSkpLw0j6OjI06fPo2ioiJs3LgR8+bNw4ULF2rMExkZiTt37iAmJgYrVqzAuHHj8NNPPyE3Nxfa2tr46quvasy/Y8cOREZGIjk5Gfn5+Zg7d67cmY8cOYIbN24gNjYWp06dwq5duwAADx48wOTJk7Fq1Srk5eWhY8eOOHbsWL23SZcuXWBra4szZ8689Nq2bdtw69YtPHz4EAUFBfjjjz9gbW2Nd955BxMnTsT//vc/lJSU4N69e7Jltm7diqVLl6KkpAT9+vWrdZ379+/HzZs3cefOHURHR+Prr79+bc42bdpg7dq18PX1RUlJCUpKSuDg4FBjHrFYjCFDhsDf3x+ZmZnYv38/vvvuO+zevVs2z71796Cvr4+MjAzs3bsX8+bNw6NHj2pd544dO7B8+XIcOHAAmZmZ8Pb2xtChQyEWi/Hbb7/V2AZhYWEvLX/s2DEMHDgQJiYmr3xfYWFh2LNnDyoqKgAAEokE27dvr7U90nSooJDX4vF4iIqKgr+/Pz7//HO4uLhAJBLhxIkTsnlGjx4Ne3t78Hg89O7dGwMGDEBUVFSNdj7++GMYGBhAJBLB398f3bp1g7e3N3R0dDBy5Ehcv369xvwffvghbG1tYWJigiVLlmD37t2QSqVyZV68eDEEAgFsbW0RHByMa9euAQD27t2Lvn37Ijg4GJqampgxYwbc3d0btF3s7Ozw9OnTl6ZraWmhuLgY9+/fB2MM7u7usLe3r7OtCRMmoGPHjuDxeNDT06t1ns8++wwmJiawtbXFRx99hB07djQo939dvnwZWVlZWLp0KXR1deHn54e3334bW7dulc3TqlUrvP/++9DS0kKvXr3g5OSEmzdv1trejh078M4778DX1xe6urr46quvkJaW9tIhqlfJzc2FnZ1dnfMMGjQIenp6iIiIAPDsB0RlZSVGjhwp1zqIclBBIXKxtrbGDz/8gHv37iE3NxcDBw7EyJEjZV+ou3btQtu2bWFmZgYTExMcPnwYT548qdGGlZWV7O/6+vovPS8pKakxv6OjY42/V1VVITc3V+68zxkYGKC4uBgAkJmZ+dKX+39/scsrIyMDZmZmL02fPHkyQkNDMXv2bLRq1QqhoaEvbYv/kifDf7dHRkZG/UPXIj09Hba2ttDW1pZNc3FxQXp6uuz5i/9WQM1tWlt7Tk5Osuc6OjqwtbWt0V5dWrVq9dr3xufzERISgi1btgAAtmzZgokTJ0JHR0eudRDloIJC6s3MzAyfffYZSktLkZSUhNTUVISEhOC7777D48ePUVBQgEGDBoE18s4ILx5aS01Nhba2NiwsLBrVpq2tLdLS0mpMS01NrXc7Fy9eRGZmJnr27PnSa5qamli4cCFu3bqF+/fvIzU1FZ9//jkAvPJE9Kumv+i/2+P5r3hDQ0OUlZXVmDc7O1vutoVCITIzM1FdXS2blpycDKFQ+NpMr2ovOTlZ9ryqqgqZmZlytzdgwAAcPXoUhYWFdc43bdo0REZG4urVq/jzzz/pcJcKoIJCXis/Px8ff/wx4uLiIJFIUFZWhuXLl8PMzAyenp4oKSkBYwyWlpbQ0NDA4cOHcfz48Uavd9myZcjMzERBQQEWL16MN998U64v3rqMGzcOJ0+exPHjxyEWi7F582Y8ePBA7uUrKipw5MgRTJo0CdOnT4dIJHppntOnT+PmzZsQi8UwMDCArq4uNDU1ATz7pZ+YmNigYvvFF1+goKAAmZmZ+PrrrzFx4kQAQEBAABITE3Hu3DmIxWJ89913yMvLky1nZWWFrKwslJeX19pux44dYWVlhcWLF6OyshJ3797Fzz//jJCQkHpnBIBJkyZh1apViI2NRWVlJT7++GPY2dmhY8eOci0/ceJEeHp6YujQobhx4wbEYjHKy8uxb98+fPLJJ7L53Nzc0K1bN4wdOxZ+fn7w9/dvUF6iOFRQyGtpa2sjIyMDgwYNgrGxMRwcHHDhwgUcOXJEdk5k0aJF6NOnD8zNzbF3714MGzas0eudNGkSevfuDUdHRwgEAqxYsaLRbXp4eGDbtm146623YG5ujosXL6JPnz6vPVQiFAphZGQEoVCIb7/9Fh9//DHWrVtX67w5OTkYP348TExM4OzsDGNjY3z66acAgOnTp8sOlfn5+dUr+/DhwxEQEAAfHx906tQJCxcuBAC4urriu+++w5gxY2BjY4PKykp4e3vLluvTpw86d+4MOzs7mJiYvLRHpqWlhb/++gvXrl2DtbU1hg0bhvfeew8TJkyoV77npkyZgv/7v//DkCFDYG1tjVu3buHPP/+UFdXX0dLSwrFjx9C9e3eMHTsWRkZGcHNzw759+146RxIWFobk5GTaO1ERPNbY4xKEKAGPx8ONGzcQEBCg9HV5eHhg8eLFsl/8hJCGoT0U0uL8+eefKC4uRmVlJX744QdkZWUhODiY61iENHvy7YMSokaOHTuGkJAQVFdXw8PDA4cOHYK5uTnXsQhp9uiQFyGEEIWgQ16EEEIUQi0OeT3vfUMIIUS5ng+UWhu1KChCoRCxsbFcxyCEELVX27VXz9EhL0IIIQpBBYUQQohCUEEhhBCiEFRQCCGEKAQVFEIIIQpBBYUQQohCqEW3YUKUKbe4EjlFFdDia8DN0hAaGjyuIxGikqigEPIKZx7kYt2ZR4h+9O+9RUz0tfBGB3u83dsVAl0tDtMRonqooBDyH5ViCb76+z62XUyBqb4Wpndzhru1ACUVYpyOe4x1ZxLxx/UMrJ/cDm0cTLmOS4jKoIJCyAsqxRLM3nENkfG5GNXWDl8M94Ghzr//TaZ1c8bZB7l4b98tjN9wCWsmtkNvT0sOExOiOuikPCH/kEoZ3vn1BiLjc/FBkDuWjwuoUUye6+Fugf3/6wIbYz28tesabqcXNH1YQlQQFRRC/rEq8iGO3cvB/3q1xtt93Oqc195MH9undYSBtibCtl1FdmFFE6UkRHVRQSEEwIWHT/DjyQfo7WGBD4I85FrG3kwf66e0R35pFeb9fgtSKd1aiLRsVFBIi1dSKca8327B2kgXy8cF1KtbcDtHU8zt54ZzCU+w83KKElMSovqooJAWb9nROGQWVuCrUb4wNdCu9/Kze7ZGGwcTfH04DlmF5UpISEjzQAWFtGi30gqw/VIKRgTYordHw3prafI18NVI32fdjQ/HKTghIc0HFRTSYjHG8MVfsTDQ1sSiwa++aZA8vGyMMLmzI/68lYlLiXmvX4AQNUQFhbRYf93OwrWUfLzdxxUWAp1Gt/defw+Y6GvhmyNxYIxO0JOWR6kFZc6cORAKhdDU/Lcv/65du+Dv7w8/Pz+0b98ep0+flr2WkZGBHj16wN3dHb169UJWVpYy45EWrEosxXfH4mBvpoepXZ0U0qaxvhbe6tkaN9MKcCI2RyFtEtKcKLWgjB07FlevXq0xzdnZGadPn8bt27exZcsWjB8/HlKpFAAwf/58TJo0CQ8ePMC4ceOwcOFCZcYjLdjeq2lIe1qO9/t7QEeTr7B2pwQ6wVKgg++Px0NC3YhJC8NjTbBvrqmpCbFY/NJ0xhhMTU2RlpYGgUAAExMTZGdnQ1dXF6WlpbC3t8fTp09f275IJEJsbKwyohM1VFEtQc9lkTDW08KROT3AV/DowTsuJuOTg/ewdlI7BPtYK7RtQrhW1/ctp+dQ9uzZA19fXwgEAuTl5cHAwAC6uroAAAMDA2hpaaGwsPCl5VavXg2RSCR75OfnN3V00oztvpyKnKJKvNffQ+HFBADGtreHuYE21p55ROdSSIvCWUG5ceMGFixYgM2bNwNAvf7jhYeHIzY2VvYwNaURX4l8qsRSrD+bCE9rAQZ4WyllHbpafIR2ccLNtAJcSaYfO6Tl4KSgPHjwAKNHj8aePXvg5vZszCRzc3OUlpaiouLZmEilpaWoqqqCsbExFxGJmtp/Ix3ZRRX4X29X8HjKu1HW5EBH6Gnxse7MI6WtgxBV0+QFJT09HYMHD8aaNWsQGBgom87j8TB48GBs374dALBt2zYMGzasqeMRNSaRMqyJegQnc30M9rVR6rpM9LXxZkd7nIp7jAc5xUpdFyGqQqkFZdasWRAKhZBIJBAKhQgPD8fnn3+Ox48fY/78+QgICEBAQACSk5MBAN988w127NgBNzc37NmzB1999ZUy45EW5vCdLCTnlWF2z9ZKOXfyX2HdnMHX4GH92USlr4sQVdAkvbyUjXp5kddhjGHQyvPIL63CmQ97KbSrcF3m7rmBv+9k4dyHfWBtrNsk6yREmVS2lxchTSUqPhf3s4owo4dLkxUTAJjRwwXVEoZdNBIxaQGooJAWYe2ZRzDR18L4jvZNul5vW2O0dzTFrzFpqBJLm3TdhDQ1KihE7d1JL8TlpKeY1MkR+tov39JX2SYHOuJJSSWO3stu8nUT0pSooBC1t+l8IrT5GpgS6MjJ+oN9rNHKUBs7LiZzsn5CmgoVFKLWsgrL8dftLAwLsIWlETcnxXU0+Xijgz2uJOfjflYRJxkIaQpUUIha2xqdDLGUIaybM6c5JnRyhAYP2HGJTs4T9UUFhait0koxdl9ORTfXVvCyMeI0i52JHvp5WeHAjQwUVVRzmoUQZaGCQtTWvqtpKK4QY3p3bvdOnpsc6IiyKgn+uJbOdRRClIIKClFLEinD5gtJcLM0RE93C67jAAC6tm4FJ3N97I5JpVGIiVqigkLU0onYbKQ9LUdYN2elDgJZHxoaPEzo5IAHOSW4mkKjEBP1QwWFqKUN55JgbqCNEW3suI5Sw5h29tDma2D35VSuoxCicFRQiNq5kZqPayn5mBzoCF2tphtmRR5mBtoY6GuNv+9k4WlpFddxCFEoKihE7Wy5kAxtvgYmdebmQsbXmdjJEVViKSLo5DxRM1RQiFrJKarA4TtZGOpvi1aGOlzHqVUHJ1O4WRrSyXmidqigELWy61IKxFKGqV2duI7ySjzes5PzSU9KcfFRHtdxCFEYKihEbVRUS7Drcio6OJnCx061bx09qo0Quloa2BVDJ+eJ+qCCQtTGX7ezkFdahdAuqnEhY12M9bUwxM8Wx+5mI7e4kus4hCgEFRSiFhhj2HIhCTbGugjytuI6jlwmdnKAWMrw27U0rqMQohBUUIhauJqSj3uZRZgc6AgtfvP4WAfYm0BkY4Tdl1MhldLJedL8NY//eYS8xtYLydDR1MCbHRy4jiK35yfn0/PLcTYhl+s4hDQaFRTS7GUWlOPovWyMCLCDmYE213HqZUQbOxho8+nKeaIWlFpQ5syZA6FQCE3NmrddXbBgAVxdXeHu7o6IiAjZ9Lt376Jdu3Zwc3PDiBEjUFJSosx4RE3suJQCiZQhVIW7Cr+KoY4mhgXY4VTcY2QXVnAdh5BGUWpBGTt2LK5evVpj2smTJxEdHY34+HhERkbi3XfflRWO2bNn4+uvv0ZCQgLc3d3xww8/KDMeUQMV1RL8GpOKzi5mnN/zpKEmdnKARMqw9wqdnCfNm1ILSrdu3WBtbV1jWkREBEJDQ8Hn82FnZ4euXbvi+PHjyMnJQWpqKoKCggAAYWFhNfZeCKnNX7ezUFBWjZBAJ66jNJiPnTH87U3wa0wqqiVSruMQ0mBNfg4lPT0d9vb2sucODg5IS0t75fTarF69GiKRSPbIz6ehwFuqnZdSYCnQQT9R8+gq/CqhXRyR/c+wMYQ0V3IVlKlTp+LixYsKWeGrxi6qz5hG4eHhiI2NlT1MTU0Vko00L3czCnEzrQBvdnRoNl2FX2Wwry0sBTrYfD6JxvcizZZc/wuDgoKwaNEi+Pj44Mcff0ReXsPHH7K3t6+x55GamgqhUAihUFjrdEJeZdflVGjwgPEd7V8/s4rT1tTAlEBH3EovxPVU2uMmzZNcBWX8+PE4ffo0Dh48iNzcXLRp0wZvvvkmoqKi6r3CUaNGYevWrZBIJMjIyMD58+cRFBQEa2tr2Nvb4/jx4wCATZs2YdSoUfVun7QMxRXVOHgzA329rGBjrMd1HIWY0MkROpoa2HQ+iesohDRIvY4TJCYmIiEhAQYGBvD09MSSJUsQEhLyyvlnzZoFoVAIiUQCoVCI8PBw9O/fH507d4a7uzt69eqF5cuXQyAQAADWrFmD+fPnw83NDXFxcfjggw8a9+6I2jpwIwNlVRKVvedJQ5gZaGNUWzscvZuN9PwyruMQUm88JscB2yVLlmDHjh3w8/PDrFmz0L9/f9lrbm5uSEhIUGrI1xGJRIiNjeU0A2k6jDEE/3QO5dUSRH3QCxoaqnHPeEV4kFOMoB/PYkZ3ZywaLOI6DiEvqev7VrPWqf+hoaGBs2fPvtQFGACOHTvWuHSE1NO1lHzE5xRjwUBPtSomAOBuJUB3t1bYE5OG/+vrBiNdLa4jESI3uQ55JSQkvFRMQkNDAQAuLi4KD0VIXfZeSYOmBg9j2qlnp43ZPVujuFKM7dHJXEchpF7kKii3b99+adq1a9cUHoaQ1ympFOPvO1no52Wlsrf4bawurc3RztEUG88noaRSzHUcQuRWZ0H5+eef4ebmhvv378Pd3V32sLGxQbt27ZoqIyEyf9/ORFmVBG90aP5dhV+Fx+Phnb5uKCirxo6LKVzHIURudZ5DmTJlCoYOHYr33nsPP/74o2y6QCCAmZmZ0sMR8l/7rqbDykgH3d1acR1FqXq4tYK/vQk2nEtESBdH6GvLdbqTEE7VuYdibGwMJycn/PHHH3B0dJQ9qJgQLjx8XIxrKfkY004IzWZ+Zfzr8Hg8zOnriqelVdh1iYa2J81DnT97RowYgQMHDsDNzQ083r+9aRhj4PF4ePDggdIDEvLcb1fTAQBj26nv4a4X9fawhK+dMdadfYRJnR2hp83nOhIhdaqzoKxZswbAsyHnCeFStUSKiOvp6ORsBqdWBlzHaRLP9lLcMH37VWy+kITw3q5cRyKkTnUeN7CxsZH9+fxwF2MMsbGxNM4WaVKRcY/xpKQK49q3jL2T5/p6WaKjsxl+iXyIx8V0Ay6i2uQ6EN2lSxcUFxcjNzcXPXv2xIoVKzBr1ixlZyNE5o/rGTDQ5mOg78sX16ozHo+HTwaLUFolwY8nuB2RgpDXkaugSCQSCAQCHDp0CGFhYTh69ChiYmKUnY0QAEBhWTVOxz1GsI9Ni+zt5Cs0xqg2dth7JRXx2cVcxyHkleQqKGKxGJWVlfj7779ld1R88SQ9Icp0+G4WqiRSjGhjy3UUznwwwAPamhr48vB9rqMQ8kpyFZTw8HC4ublBKpWic+fOSEpKgrGxsbKzEQLg2cjCFgIddGmt3tee1MXWRA8zu7vg7INcRMY95joOIbWSq6DMnj0bqampOHDgAADA0dGRen6RJpFRUI7LSU8x3N8WfDUbCLK+ZvVsDRtjXSw+dBflVRKu4xDyErkOSFdVVSEiIgJJSUkQi/8dW2jx4sVKC0YIABy8mQEAGNHGjuMk3DPQ0cRnw7wxa8c1rDydgPnBnlxHIqQGufZQRo4cid27d0MsFoPP58sehCgTYwwHbmTAzdIQ3rZGXMdRCQO8rdFfZIUNZxMRl13EdRxCapBrDyU5ORn37t1TdhZCarifVYwHOSWYN8CDOoG84PNh3rjw8AkW/nEHv8/uonb3hCHNl1x7KAEBAUhJoVFPSdM68M/hrmH+Lbd3V21sTfTwXn93XE8twK9XaJwvojrk2kNJSUmBj48P2rZtCx2df+9Bcfz4caUFIy2bRMpw8GYGOjqZwd5Mn+s4Kie0ixP238jAN0fi0F9kBUuBLteRCJGvoHz55ZfKzkFIDZcS85BTVIk5fd25jqKSNPka+HqUL0asvoAlf93Hz+PbcB2JEPkKSs+ePVFQUIDExES0bdtW2ZkIwf4bGdDi8zCohQ21Uh9+QhNMCXTC1uhkjGknRE93C64jkRZOrnMof/zxBzp27IgxY8YAAG7evIlBgwY1asU7d+6En58fAgIC0L17d8THxwMAFixYAFdXV7i7uyMiIqJR6yDNU0W1BEfvZqO3hyVM9LW5jqPS3g9yh5WRDhYfvIuKaro2hXBLroKydOlSXLlyRXZ1fEBAAFJTG34ysKysDHPmzMHp06dx8+ZNTJw4ER9//DFOnjyJ6OhoxMfHIzIyEu+++y5KSkoavB7SPJ28n4OSSjFdeyIHga4WPh3qjZS8MvwS+ZDrOKSFk6ugaGtrvzTUioZGw++YJ5VKwRiTFYvCwkLY2NggIiICoaGh4PP5sLOzQ9euXenEfwt08GYmBDqa6ONpyXWUZmGgjzV6eVhgzZlHePiYfoAR7shVFZydnXHy5EnweDwUFRXhs88+g7+/f4NXamhoiFWrVsHHxwd2dnbYtm0blixZgvT0dNjb/3u/CwcHB6Slpb20/OrVqyESiWSP/Pz8BmchqqWwrBpR8Y8R7GMNXS26eFYePB4PXwzzgQaPh48P3AFjjOtIpIWSq6D88ssv2LFjB9LT09G6dWskJiZi5cqVDV5pdXU1fvnlF1y5cgUZGRkYM2YM5s+fL/d/hPDwcMTGxsoepqamDc5CVMuRu1moljAMD6DDXfXhYK6Pd/q64VLiUxy8mcl1HNJCyVVQTE1NsW3bNjx+/Bi5ubnYvn17o77Eb968CcYYvLy8AABvvvkmoqOjYW9vX2OPJDU1le4M2cIcvJmJVoY6CGxtznWUZmdGdxc4mevj26NxNHgk4USd3Ya/+uqrOhdeuHBhg1YqFAoRHx+PjIwM2NnZ4cSJExCJRBg1ahSWLFmCkJAQZGdn4/z581i/fn2D1kGan+zCClxKykNoF6cWP7JwQ2hrauCjQV6YteMaNp1PxNt93LiORFqYOgtKdXU1ACAhIQEXL17E8OHDAQCHDh1CYGBgg1dqY2ODb775Bv3794eWlhYsLCywefNmODg44MSJE3B3d4eGhgaWL18OgUDQ4PWQ5uWv25lgDHS4qxGCRFbo5GyGX6IeYVx7e1ga0RX0pOnwmBwnLnr27IlDhw7JenoVFhZi2LBhOHPmjNIDykMkEiE2NpbrGKSRhv58HkUV1Yj6oBcNBtkIdzMKMXTVeYxrZ49vx/hxHYeombq+b+U6h5KdnV1jT8HAwADZ2dmKSUcIgEe5JbiTUYjh/rZUTBrJx84Yo9sKse9aGmIzaYh70nTkKiiDBw9G3759sXbtWqxduxZBQUEYMmSIsrORFuR5z6RhdLhLIeYN8ICuJh/LjsVxHYW0IHKN5bV8+XIcOHAAZ8+eBQDMmTNHdj6FkMZijOHQzQz42BnB1dKQ6zhqwcpIF1MCHbHubCJupOajjQN1rSfKJ1dBAYARI0ZgxIgRSoxCWqrb6YVIzivDokFeXEdRKzN7uGDHpRT8dDIB26Z15DoOaQEaPn4KIQpy8GYmeDxgiL8N11HUirmhDqYEOuHMg1xcS6HRJIjyUUEhnJJIGf68nYlOzmawMdbjOo7amdnDBQbafPx08gHXUUgLIFdBKS0tVXYO0kJdSsxDbnElXXuiJGYG2gjp4oRzCU9wLeUp13GImpOroHh6emLmzJmIiYlRdh7Swhy8+exGWgN96EZayjKj+/O9lASuoxA1J1dBefDgAbp164YPPvgAAQEBWLVqFQoKCpQcjai7imoJjtzNRk93upGWMpkaaGNSoCPOJTzBvcxCruMQNSZXQdHT08OUKVNw9uxZ/PLLL/jmm29ga2uL0NBQJCcnKzkiUVdR8Y9RXCHGiDa2XEdRe9O6OkOLz8P6s4lcRyFqTO6T8lFRUZgwYQJCQ0Mxc+ZMxMbGonfv3ggODlZmPqLGDtzIhIE2H309rbiOovasjHQxIsAOf93OQnp+GddxiJqS6zoUDw8PuLu7Y+bMmdi5c6fsbo1OTk44evSoUgMS9ZRfWoVTcTkYHmAHPW26kVZTmNnDBb9dS8em80n4dKg313GIGpJrD2XDhg34888/MXToUFkxeX5P+V9//VV56YjaOnQrE9UShtFt6X43TcXNSoB+XpbYE5OG/NIqruMQNSRXQZk7d+5L0+iqedIYEdfTYWeih07OZlxHaVFm9miN8moJdl5K4ToKUUN1HvJKT09HSkoKSktLER0dLZteWFiIsjI6DksaJiGnGLfTC/FOH1do0I20mlQHJ1O0cTDB1uhkzOjhAl0tOtxIFKfOgnLq1Cls3boVmZmZWLRokWy6QCDAN998o/RwRD39fj0dADCKDnc1OR6Ph5ndXfDWrus4cCMDb3Z04DoSUSN1FpSQkBCEhIRg9+7dmDBhQlNlImpMImU4cCMDHZxM4dTKgOs4LVKQtzXszfSw8XwS3uhgT/efIQpTZ0G5ffs2/Pz84OTkVOOQ13NdunRRWjCins4/fIKcokq828+d6ygtFl+Dh2ldnfH5n7GIepCL3h6WXEciaqLOgvLzzz9jw4YNNQ53Pcfj8XD69GmlBSPqKeJaOnQ0NTDIj0YW5tLY9vZYfuIBNp1LooJCFKbOgrJhwwYAQGRkZJOEIeqtoKwKR+9lY6CPNYx0tbiO06IZ6mhiQkcHrDubiNjMIohsjbiORNRAnd2Go6Oj63w0RmlpKUJCQuDh4QFPT0+sW7cOALBgwQK4urrC3d0dERERjVoHUS0HbmSgSizFGx3suY5CAIR2dYKmBg+bzidxHYWoiTr3UGo71PVcYw95vf/++/D29sa2bdvAGENubi5OnjyJ6OhoxMfHIzs7G4GBgRgwYAAMDem2sM0dYwx7rqTB0VwfnZ3NuY5DANgY62Gwnw0O3crA/GAPWBrpch2JNHN1FhRlHeoqLi7GoUOHZFfb83g8WFpaIiIiAqGhoeDz+bCzs0PXrl1x/PhxjBo1Sik5SNO5nV6IuOxizBvgQdeeqJDp3Vxw8GYmtl1MxrwBnlzHIc2cXL28XnV4q6G9vBITE2FlZYW3334bMTExcHR0xE8//YT09PQaxcPBwQFpaWkNWgdRLXuupIGvwcOYdnTtiSrxFRqjk7MZdl1ORXhvV+hryzW8HyG14qSXl1gsxs2bN7Fs2TKsXbsWmzdvxrRp06CnJ98tYFevXo3Vq1fLnufn0/2yVVlppRiHbmagt4clrOiwisqZ3t0FM7ZfRcT1DEzu7Mh1HNKM8RhjrKlXmpOTA29vbzx58gQAUFZWBltbW4wfPx4dOnTAtGnTAADjx4/HmDFjMHr06DrbE4lEiI2NVXpu0jD7rqbhw99vY+OU9ugnoqHqVY1UytB3+RkAwKn3etIhSVKnur5v5RocUiwW45dffsEbb7yBN954A2vWrEF1dXWDA1lZWcHb2xvXr18HAJw4cQLe3t4YNWoUtm7dColEgoyMDJw/fx5BQUENXg9RDXuvpMHKSAe9PCy4jkJqoaHBw7Ruzkh6UopTcY+5jkOaMbkOmM6YMQPFxcWYMmUKAGDnzp24fPkytm7d2uAVr1mzBmFhYSgtLYWJiQk2btwILy8vnDhxAu7u7tDQ0MDy5cshEAgavA7CvbjsIlxLycfbvV2hyZf7fm6kiY1pK8QPx+Ox8Vwi+tNeJGkguQ55eXp6Ii4uTvacMQYvL68a07hEh7xU1ycH7mLn5RSc+7A3hKb6XMchdfj+WDxWRT7En293g6/QmOs4REU1+pCXvb09srOzZc8fP34MBwcapZTUrbRSjP03MtDHw5KKSTMwJdAR2nwNbDxP950nDVPnIa8ZM2aAx+NBT08P3t7e6NevH3g8Hk6ePImuXbs2VUbSTB24mYGSSjEmUc+hZsHSSBfDAmyx/0YG5gd7wtZEvl6XhDxXZ0Hp1q2b7O8v9rQaOHCg8hIRtcAYw85LqbA300MPdzoZ31yEdXPG79fSsS06GR8N8uI6DmlmXns/FEIa4npqAe5nFWF+sCf41A212fCyMUI311bYHZOK/+vrBkMdutCRyE+uT0t+fj6+//573LlzBxUVFbLpx48fV1ow0rztvJQCbb4GxrWnK+Obm+ndnRG65Qr2XUnDtG7OXMchzYhcJ+VDQkLQqlUrxMXF4Z133oGBgQHatm2r7GykmXpaWoW/b2dhoK81zA11uI5D6qmnuwXcLA2x+UISJNImv+6ZNGNyFZS0tDS8++670NXVxZAhQ/D777/TPVLIK/12NQ1VEimdjG+meDwepnd3Rnp+OY7ezX79AoT8Q66Coq2tDQAQCARITk5GRUUFcnNzlRqMNE9SKcPumFR4WAnQ3tGU6zikgYYH2MFCoINfoh6Cg9GZSDMlV0EZMWIE8vPzsWDBArRv3x4ODg4ICwtTdjbSDJ17+AQpeWWYFOgIHo9OxjdXulp8zOzugnuZRYiMp+FYiHzqPThkVVUVKioqYGSkOrcMpSvlVceM7VcR/fAJLi/qRz2EmrmyKjG6fRsJBzN97P9fF/qBQAAoeHDIyZMnY9euXY0aHJKop7SnZTh1Pwcj29pRMVED+tqaCOvmjJtpBTj/8AnXcUgzIFdBmTFjBk6fPo2JEydi4sSJiIyMxIwZM5SdjTQzOy6lQMqA0C5OXEchCjIl0BHGelr4+fRDrqOQZkCun5EXL16sMRDk0KFD4eVFV9GSf5VVibEnJhXd3VrB1ZJGiFYXAl0tTO3qhJ9OJuByYh46uZhzHYmoMBockijE/hsZKKoQ096JGpraxRkCHU38dDKB6yhExdHgkKTRGGPYFp0MR3N99Paw5DoOUTBjfS1M7eaMlacSEP3wCbq4tuI6ElFRNDgkabSLj/LwIKcEnwwR0e1j1dT07s7YFp2MZcfj8Udrc+rxRWpVr8Ehn4/jpaurq7xEpNnZEp0MfW0+xtK4XWrLSFcLs3u2xrdH43A67jH6etFdHcnL5DqHkpCQgM6dO0MoFEIoFKJLly5ISKDjqeRZV+GT93Mwuq0QRrpaXMchShTSxRGtDHXw/fEHkNIYX6QWcncb/vDDD/HkyRM8efIE8+bNo27DBACw/WIyGHv2ZUPUm762Jt7u3Rr3s4pw+G4W13GICpKroBQUFGDUqFGy5yNHjkRBQYGyMpFmorRSjD1X0qircAsyvpMDbI11sfzEA4glUq7jEBUjV0ExMjLC33//LXt++PBhlRp6hXBj/40MFFNX4RZFR5OPd/q6ITG3FPtvZHAdh6gYuQrK2rVr8cknn8DKygpWVlZYvHgx1q1bp5AA4eHh0NT8t2/AggUL4OrqCnd3d0RERChkHUTxpFKGzeeT4GSuj17UVbhFGd1OCCdzfaw4lYAqMe2lkH+99kp5iUSCEydO4Pr16ygqKgKPx4NAoJjDG+fOnUNJSYns+cmTJxEdHY34+HhkZ2cjMDAQAwYMgKGhoULWRxTn5P0cJD4pxZIRPnSL3xZGi6+Bd/u7Y86em9hzJRVTAp24jkRUxGv3UPh8Pnbu3Ang2aEvRRWTyspKLFiwAN9//71sWkREBEJDQ8Hn82FnZ4euXbvSbYZV1IZziTAz0MaYttRVuCUa6mcLT2sBVp5KQGmlmOs4REXIdcirX79++Oyzz5CQkIDMzEzZozG++OILhIWFwcLCQjYtPT0d9vb2sucODg5IS0t7adnVq1dDJBLJHvn5+Y3KQurnemo+riTnY3JnR+hp87mOQzigocHD/IGeeFJShQ3nErmOQ1SEXIND7tmzBwCwbds22TQej4fExIZ9kG7fvo3Lly9j6dKlNabLe2uW8PBwhIeHy56LRKIG5SANs+FsInQ0NTAlkLoKt2S93C0Q6GKODWcTMbGTIywEOlxHIhyTaw8lKSnppUdDiwkAXLhwAbGxsXB2doaTkxMkEgmcnJxgYWFRY48kNTUVQiEdUlElKXmlOHovG2PaCWFuSF8gLRmPx8OCgZ4orZLg59N0oTN5TUFJSkrCyJEj4evri8mTJyMnJ0chK33rrbeQmZmJ5ORkJCcng8/nIzk5GRMmTMDWrVshkUiQkZGB8+fPIygoSCHrJIqx8VwSACCsmzPHSYgq8Lc3wWA/G+y+nIrkJ6VcxyEcq7OgTJs2DR4eHli2bBkEAgHmzp2r1DD9+/dH586d4e7ujl69emH58uUK6wRAGi+nqAJ7r6ZhgMgaLhbU844880GQBwDg++PxHCchXKvznvK+vr64c+cOgGfnN9q2bYsbN240WTh50T3lm8Znh+5ha3Qy/n6nG7xtjbmOQ1TIJwfuYselFBwM7wp/exOu4xAlavA95bW0/h3sj8fj0ZDVLdjjogr8GpOK/iIrKibkJe/0dYO+Nh/fHImTu3MNUT91FpSbN29CW1tb9nj+XEtLC9ra2k2VkaiAtWcSUSmWYk5fN66jEBVkIdDBjO4uuJiYh7MJT7iOQzhSZ0GRSqWoqqqSPZ4/r66uRlVVVVNlJBx7XFyBXZdT0M/LEj52tHdCajejhwtaGWrjmyNxNLx9CyVXt2HSsq3/Z+/kHdo7IXUw1NHEO33dcD+rCAdv0cCRLREVFFKnzIJy7Lycgt4eFvATmnAdh6i4Nzs4wNFcH98fe4BKsYTrOKSJUUEhdVp2LB5VYinmD/TkOgppBrQ1NfBBkAcyCsqx42IK13FIE6OCQl7pVloB9t/IwBsdHOBpTfe/IfIZ7GsDP6ExVkU+RFFFNddxSBOigkJqxRjD0r9jYaijiff6u3MdhzQjGho8LAj2REFZNdadecR1HNKEqKCQWh25m40ryfn4X+/WNOgfqbcurq3Q090Cm84nIbuwgus4pIlQQSEvqaiW4Osj92FnoodpXWnMLtIw84M9USmWYsWpB1xHIU2ECgp5yerIh0h7Wo6Fg7ygq0X3OyENI7I1wogAO+y9kob47GKu45AmQAWF1BCfXYw1UY/Q28MCg3ytuY5Dmrl5AzygramBpX/H0pAsLQAVFCJTLZHiw99vPfsCGOlLY7eRRrM10cPM7i44l/AEkfGPuY5DlIwKCpFZHfkQt9ILsXCQF+xM9LiOQ9TErJ6tYWWkg6V/30e1RMp1HKJEVFAIgGf3if/59EP08rDAxE4OXMchasRARxMfDvBEYm4pdl6iix3VGRUUgoKyKvzf7hsw0dPCd6P96FAXUbiRbezgJzTGTycTkF9KA8uqKyooLZxEyvDevlvILCzHT28GwNJIl+tIRA1paPCweIgIheXV+PZoHNdxiJJQQWnhvjlyH6fjHmNuX3d0d7PgOg5RY+2dzDCuvRB7rqThavJTruMQJaCC0oL9GpOKDeeSMNTfFu/0deU6DmkBFgz0gqm+Fhbtv0sn6NUQFZQW6sLDJ/jkwF20cTDBsjF03oQ0DTMDbXw0yAvxOcXYfD6J6zhEwaigtECxmUV4a+c1WBnpYv3k9nQ1PGlSY9oK0cHJFD+dTEB6fhnXcYgCcVJQ0tLS0LdvX3h5ecHb2xsfffSR7LUFCxbA1dUV7u7uiIiI4CKeWkvIKcakTZehocHDlqkdaOBH0uQ0NHj4cqQvxFIpPvz9Nt0uWI1ocrJSTU18++23aN++PaqqqtC3b18cPHgQBgYGiI6ORnx8PLKzsxEYGIgBAwbA0NCQi5hqJ/lJKSZuvIxqiRS/zugMdysB15FIC+VuJcB7/T3w7dE4bIlORlg3GoRUHXCyh2JjY4P27dsDALS1tdGmTRukpqYiIiICoaGh4PP5sLOzQ9euXXH8+HEuIqqd9PwyTNhwCSWVYmyd2hE+dsZcRyIt3MweLujgZIpvj8YhIYcGj1QHnJ9Defr0KQ4cOID+/fsjPT0d9vb2stccHByQlpb20jKrV6+GSCSSPfLz85sycrOTXViBCRsuI6+0CptDO6CdoynXkQgBX4OHH8YGQEuDh7l7b6JKTL2+mjtOC0pVVRXGjBmDOXPmwNPTU+7RSMPDwxEbGyt7mJrSF+Sr5BZXYsLGS8gurMD6Ke3R2cWc60iEyDiY62PxUBHuZRbh++PxXMchjcRZQZFIJJgwYQICAgLw/vvvAwDs7e1r7JGkpqZCKBRyFbHZyy+twuRNl5GaV4bVE9uipztduEhUz7j29hjsZ4P1ZxNx8GYG13FII3BWUGbOnAmBQIAffvhBNm3UqFHYunUrJBIJMjIycP78eQQFBXEVsVkrqqjGlM0xeJBTjJ/eDEB/kRXXkQipFY/Hw7IxfvC0FmB+xG3czSjkOhJpIE4KyoULF7B582ZcvXoVbdq0QUBAAFauXIn+/fujc+fOcHd3R69evbB8+XIIBNQTqb5KK8WYuuUK7mQUYtkYfwzxs+U6EiF10tfWxIYp7aGnxcesHdfwpKSS60ikAXhMDW6jJhKJEBsby3UMlVBRLcHULVdwMTEPX470wcROjlxHIkRu0Q+fYPLmGATYm2BHWEfoa3NyZQOpQ13ft5z38iKKUymWYPbOa7iYmIdPhoiomJBmp4trKywd4YNrKfmYuf0aKqolXEci9UAFRU2IJVK88+sNRMXnYt4AD7pQjDRb4zs64OPBXjj/8AnCd12n7sTNCBUUNSCRMrz/2y0cu5eD8N6tEd6bRg4mzdv07i54r787TsU9xty9N6ioNBN0gLKZk0oZFv5xBwdvZmJaV2d8EOTBdSRCFOL/+riiolqCX6IeobA8BmsmtYORrhbXsUgdaA+lGWOM4Yu/YrH3ahomdHLAJ0O8aBh6ojZ4PB4+DPbEx4O9cOFhHsatvYicogquY5E6UEFpphhj+PpIHLZGJ2NUGzssHe5DxYSopendXbByfBsk5pZi5OoLuJNO16moKioozRBjDN8di8f6s4kY7GeD78b4QUODiglRX8P8bbFtWkeUV0swek00dl9OlXuoJtJ0qKA0Qz+eeIA1UY8w0McaP70RAE0+/TMS9RfY2hx/vdMdXrZGWLj/Dj747TbKqsRcxyIvoG+iZmbFyQSsPP0QQSIrrBzfBlpUTEgLYmeih32zOmNKoCMirqdj0IpzuJZCo42rCvo2akZWRz7EjycfoJ+XJVZNaEvFhLRIOpp8fDHcB2sntUNRhRhj10Zj2bE46lqsAugbqRlgjGHZsTgsOxaP3h4WWD2xLbQ16Z+OtGzBPtY4NrcH+nhaYnXkIwxeeQ5Xkp9yHatFo28lFSeWSDE/4jZWRz5CsLc11kxqBx1NPtexCFEJFgIdbJjSHj+M9ceTkkqMXXsRH/1xGwVlVVxHa5GooKiw8ioJZu24hn1X0zGxkwNWT2wLXS0qJoS8iMfjYXQ7IU693wtj2wnxa0waen0fha0XklAtocNgTYkKiopKelKKkb9cwKm4x3i3nzuWjvABn7oGE/JKZgbaWDbWH3tndobQVA+f/RmLAT+dxYnYHOpi3ESooKigY/eyMezn80jJK8OKNwMwp58bXbRIiJw6uZjjUHg3fD/WH6WVYszYfhXDVl2gwtIEaCwvFVJSKcayo3HYdjEFLq0MsHZyO7hb0Q3GCKkvDQ0exrQTYrCvDXZdTsHaM48wY/tViGyMENrFCcMCbOnwsRLQDbZUxMnYHHxy8C6yCiswPMAWS0f4QEAD4RGiEOVVEuy6nIJN55OQVVgBYz0tjG0nxIg2dvC2NaIjAPVQ1/ctFRSO3cssxI8nHuDk/ccQmuph6Qgf9PKw5DoWIWpJLJHi5P3H2HkpBecfPgEAOJrrY6CPDXp5WKCNgwn1onwNKigq6G5GIX4+nYBj93KgramBqV2cMKefG93ylJAmkva0DIfvZOHwnSzc+mfASR1NDbR1MEUbBxN4WAvgZWME51YGdBHxC6igqIjSSjH+vJWJX6+k4VZaAbQ1NTChowPe6tUaVka6XMcjpMXKLCjHxUd5uJiYh0uJeUjPL5e9ps3XgIuFAVwsDOBgZgAHM304muvDwUwfNsa6LW4sPSooHMovrcLpuMc4EZuDswm5KKuSwMZYF+Pa22N8RwdYG1MhIUTVFJZVIy67CPE5xbifVYz47CKkPi3Dk5KaF0xqavBgZ6oHBzP9GoVGaKoPe1N9GOlpqt35mbq+b1Xy+EpUVBTCw8NRWVmJXr16Yd26deDzVf+4plTKkJ5fjjsZhbiS/BRXkp/iflYRpAwQ6Giij6clRrW1Q093S7qmhBAVZqyvhU4u5ujkYl5jekmlGGlPy5D6tAypec/+THlahrSnZbiUmIdqSc3f54Y6mhCa6sHORO/Zn6Z6EJrqw85ED7YmejAz0Far7wKV20ORSqVwd3fHoUOHIBKJMG7cOAwePBghISGvXKYp9lDEEilKKyUorqxGQVk1sgorkFVY/uzPgnIk5ZUhIacYZVUSAIAGDxDZGqGDkxn6eFqik7M5jb9FiBqTSBmyCsuRmleG9PxypBeUIz3/2d8z8suRVVgO6X++bTV4gJmBDloZasNCoINWhjowN9BGK8GzPwW6WjDS1YRAVwuGupoQ/PPQ5mtwtufTrPZQrly5AltbW4hEIgBAWFgYVq9eXWdBaaj47GJ8fOAOxFIGsYT986cUEilDtVQKiYShSsJQWilGebXkle0Y6WrC3kwfwT7W8LB6diKvjYMJdfslpAXha/AgNH12uKs21RIpsgsrkFFQjvT8cmQWlONJSSXySqqQW1KJjIJy3EorQFHF6+/xwuMBWnwN6PA1oK357KH1/O98DfA1eNDgPZtRgwdo8Hjg4Z8/ecCsni7o42ml2A0AFSwo6enpsLe3lz13cHBAWlpajXlWr16N1atXy54nJibKCpAy8ADU/hF5Rgwg6Z/HUaWlqFt+fj5MTU05WrvqoO3wDG2HfzW3bVHXd81/SQCU//N4nRe3w9srGhDsH+np6a98TeUKijxH4MLDwxEeHt4EaZoPVe6Y0JRoOzxD2+FftC2eaYrtoHIH9e3t7WvskaSmpkIoFHKYiBBCiDxUrqC0b98e6enpskq6adMmjBo1iuNUhBBCXkflCgqfz8fGjRsxZswYtG7dGoaGhpg8eTLXsVQeHQJ8hrbDM7Qd/kXb4pmm2A4q122YEEJI86RyeyiEEEKaJyoohBBCFIIKigqKioqCt7c3XF1dMX36dEgkL19UuW/fPri7u6N169ZYtGjRS69funQJfD4fO3furFe7qkRZ28HJyQne3t4ICAhAQEAA7ty5o9T30ViN2Q6fffYZbGxsZO/1yy+/rFe7qkZZ26IlfSYAYMuWLRCJRPDx8UFQUFC92q0TIypFIpGw1q1bs3v37jHGGBs7dizbunVrjXkKCgqYvb09y8zMZNXV1SwwMJBFRUXJXq+srGTdu3dngwYNYjt27JC7XVWirO3AGGOOjo4sLS2tad5IIzV2O3z66adsyZIlDWpX1ShrWzDWsj4T0dHRrHPnzqywsJAxxlhWVpbc7b4O7aGomNqGnomIiKgxz9GjR9GrVy/Y2NhAU1MTISEhNeb56quvEBoaCgsLi3q1q0qUtR2aG0Vsh4a2q2qUtS2am8Zuh5UrV2LBggUwMjICAFhbW8vd7utQQVEx8gw9U9c89+7dQ3R0NKZOnVrvdlWJsrbDc0OHDkVAQAAWLVqE6upqJbwDxWjsdgCA9evXw8/PDyNHjkRCQoLc7aoaZW2L51rKZyIuLg7Xr19Hly5d0LFjR/z+++9yt/s6VFBUDJOjF/er5pFKpfjf//6HlStXvjQSqTztqhJlbQcAOHfuHG7cuIELFy4gPj4e33//faPzKktjtgMAzJ49G48ePcLt27fx5ptvYujQoXK3q2qUtS2AlvWZEIvFSElJwblz57B//368//77SExMVMhnggqKipFn6JlXzVNcXIx79+4hODgYTk5O+P333/Huu+9i8+bNzW5IG2Vth+fLAYCBgQGmT5+O6OjoJnhHDdOY7QA8O5yhpfVs1Os33ngDBQUFyMvLa3afB0B52+L5ckDL+EzY29tj9OjR4PP5sLOzQ6dOnXD79m3FfCbqe0KIKJdYLGbOzs41Toxt3ry5xjwFBQVMKBTWOOF2+vTpl9oKCQmRnYyWp11VoqztUFJSIjsZKRaL2fTp09nChQuV/G4arrHbISMjQzbf6dOnmVAoZFKptNl9HhhT3rZoaZ+JTZs2sTlz5sjmc3FxYXFxcQr5TFBBUUGnTp1iXl5ezMXFhU2dOpVVV1ezgwcPsrCwMNk8v/76K3N1dWUuLi5swYIFtbbz4hfpq9pVZcrYDo8ePWL+/v7M19eXiUQiFhYWxkpLS5vk/TRUY7bD5MmTmY+PD/P392fdunVjMTExdbar6pSxLVraZ6K6uppNnz6diUQi5u3tzdavX19nu/VBQ68QQghRCDqHQgghRCGooBBCCFEIKiiEEEIUggoKIYQQhaCCQgghRCGooBCVUl5ejrlz58LFxQVt2rRBp06daowUXF9//PEHvLy8EBAQAIlEgo8++ggikQhTp07FoUOH8MUXX9S5/OLFi3H48OEGr//AgQO4fft2vZf7b25Fa9++/Wvn+W/2tWvXYuPGjQrPQtQHdRsmKmXy5MmQSqXYuHEj9PT0UFBQgAMHDiA0NLRB7QUHB+ODDz5Av379AAD6+vooKCiAtra2AlO/WmhoKPr164dJkybVa7n/5lYUsVgMTU1NueZtaHbSgjXu8hpCFOfRo0fMwMCAFRQU1Pp6WloaGzBgAPP19WXt27dnFy9elL22cuVK1qFDB+bn58fCwsJYVVUVW7hwITMwMGCurq4sNDSUBQUFMQDM39+frVq1im3ZskV2IZhEImELFy5kPj4+zM/Pj7377ruMsZoXRebl5bE33niDdejQgfn7+7PffvuNMcZYZGQk69KlCxs/fjzz8vJiwcHBrLy8nJ0+fZqZmpoyBwcH5u/vzy5cuPDSe/rkk0+Yt7c38/b2Zp9//jljjL2U+0UbN25kM2fOlD2PiYlhgYGBjDHGvvzyS9a+fXvm5+fHBg8ezJ48ecIYY2zLli1s8ODBLCgoiHl4eDDGGOPz+bI2Ro8ezdq1a8e8vb3Z3LlzGWOs1uwvDv9eUFDAxo0bJ9tehw4dYowxlpSUxJydnVl4eDjz8fFhgYGBLCcn5zX/8kRdUEEhKuPQoUPM39//la+PGDGCrVixgjH27IvU0dGRVVVVsVOnTrFJkyYxiUTCGGMsPDyc/fLLL4wxxnr27MnOnTsna+PFL9IXC8r69evZwIEDWWVlJWOMyb6MXywokydPZseOHWOMMZafn89cXV1ZXl4ei4yMZPr6+uzRo0eMMcYGDx7Mdu7c+dLy/3XgwAEWGBjIysvLWXl5OevQoQM7fPhwrbmfy8/PZ7a2tqyqqooxxtjcuXPZqlWramRmjLEffvhBdnX0li1bWKtWrVh2dnat2+H5chKJhA0fPpwdPXq01uwvFpS5c+fKik9SUhKztrZmjx8/ZklJSYzH48mKZ3h4OFu6dGmt75+oH/n2fQlRAWfOnMGOHTsAAB06dICJiQkSEhJw+PBhnD17Fm3btgUAVFRUQE9Pr15tHzt2DG+99ZbsUJi5uflL8xw5cgS3b9/Ghx9+CACoqqpCYmIiAKBt27ZwcXGRZUtKSnrtOqOiojBx4kTo6uoCACZMmIDIyEgMHDjwlcuYmJigc+fOOHLkCIYMGYI//vgDV69eBQBER0fj66+/RnFxMcrLy+Hp6Slbrl+/frCysqq1zfXr12Pfvn2QSCR4/PgxunXrhgEDBrw2+/NzW05OTujUqROuXLkCkUgEOzs7dOnSRbYtzp0799ptQdQDFRSiMry9vfHw4UMUFRXJbv7zXy8OR//874wxvPvuu5g7d26D183kOJUolUoRFRUFExOTGtOjoqKgo6Mje87n8yEWi1/b3n+H1q9tqP3aTJgwAbt374aBgQG8vb1hYWGByspKhIaGIiYmBq1bt8aff/6JFStWyJYxMDCota0zZ84gIiICZ8+ehUAgwPvvv4+KiopGZW/ItiDqgXp5EZXh4uKC4cOHIzw8XPalVlRUhG3btgEAevXqhS1btgAArl27hoKCAri5uWHgwIHYsmULCgoKAAD5+fly7SG8KDg4GGvWrEFVVRUAyIY1f9HAgQPx448/yp7fuHHjtYVIIBCgqKio1td69eqF3bt3o7KyEhUVFfj111/Rp0+f12YdMmQIzp49i3Xr1mHixIkAnu2VSaVSWFpaQiKRYNOmTa9tBwAKCwthYmICgUCAvLy8Gnfoe1325/8WqampiImJQceOHeVaJ1FfVFCISlm/fj1MTEzg5eUFX19f9O7dW3YPi5UrV+Kvv/6Cn58fZs+ejd27d0NLSwv9+vXD7Nmz0aNHD/j5+aFv375IT0+v13rDwsIQEBCANm3aICAgAF9//fVL86xcuRKPHj2Cr68vvL298dFHH722oEyYMAGrVq1CQEDAS/fYGDZsGPr27Yt27dqhffv2GDRoEIKDg1+bVUdHBwMHDsTff/+NESNGAACMjY3x3nvvwc/PD507d4a7u7tc7zs4OBiGhobw8PDAmDFj0KNHD7myf/rpp0hLS4Ovry+GDh2KtWvXolWrVnKtk6gv6jZMCCFEIWgPhRBCiEJQQSGEEKIQVFAIIYQoBBUUQgghCkEFhRBCiEJQQSGEEKIQVFAIIYQoBBUUQgghCvH/pq/C749UJQsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEICAYAAAB4YQKYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAABFIElEQVR4nO3dd1wT9/8H8FcIG8KUHabMMN3inoh72zpBcfVLf9UOq9XWDu20tdVq3XtUbamjrVvBhYp7IYiyp4jsneTz+8OaSkUMkHAhvJ+PRx6ay93nXjlj3rm7z32OxxhjIIQQQhpJg+sAhBBC1AMVFEIIIQpBBYUQQohCUEEhhBCiEFRQCCGEKAQVFEIIIQpBBYUQQohCUEEhzU5ycjJ4PB4KCgoAALNnz8b8+fM5zaToDC+299/3qwhfffUVxo8fr7D26iM3Nxd9+vSBkZERxo4dy0kGoiSMEDnExcWxIUOGMHNzcyYQCJiHhwf75ptvOMmSlJTEALD8/PwmW5eBgQETCATM3Nyc9erVi23ZsoVJpdJ6txcSEsLmzJnToAwNfb9btmxh/v7+DVpWGZYsWcL69evHJBLJK+cpKytjixYtYq6urkxfX5/Z2dmx0aNHs6tXr7Jvv/2WeXt717pcly5d2CeffKKs6OQ1aA+FyGXw4MHw9/dHamoq8vPzERERARcXF65jNZn09HQUFRUhLS0NH3zwAT7//HPMmjVLKesSi8VKaVdVJCUlwdvbGxoatX/9VFdXIygoCFFRUdi7dy8KCgoQHx+PUaNGYf/+/ZgyZQri4+MRExNTY7n4+HhcunQJ06ZNa4q3QWrDdUUjqi83N5cBYKmpqa+c54cffmCurq7M0NCQubi4sJ9//ln22vNf2Js2bWLOzs7MwMCAzZs3j2VmZrJ+/foxgUDAevTowbKysmTLAGA//fQTc3d3Z8bGxmzcuHGsoKCgRnvPf7G/+Kv/+Wvbt29nrVu3ZsbGxiwkJIRVVVXJ2v7tt99Y69atmZGREZs+fTobPHgw+/TTT2t9X6/aO7hw4QLj8Xjs3r17L2WoqKhgU6dOZebm5szIyIh5e3uzmJgYtmLFCqapqcm0tLSYgYEBE4lEjDHGevbsyebNm8f69+/P9PX12aFDh2p9T+vXr2eOjo7MzMyMvfXWW6yyspIxVvseiL+/P9uyZQu7fv0609HRYRoaGszAwIAZGBiwlJQU9umnn7Lhw4fL5k9ISGBBQUHM1NSUubi4sB9//FH22vP2v/jiC2ZhYcEsLS1rvP5fUqmUff/998zFxYWZmpqyAQMGsEePHjHGGBszZkyNbbBx48aXlt+6dSszNzevc49s+PDhbPbs2TWmzZ8/n/Xr1++VyxDloz0U8lrm5ubw8PDA1KlTsW/fPqSkpLw0j6OjI06fPo2ioiJs3LgR8+bNw4ULF2rMExkZiTt37iAmJgYrVqzAuHHj8NNPPyE3Nxfa2tr46quvasy/Y8cOREZGIjk5Gfn5+Zg7d67cmY8cOYIbN24gNjYWp06dwq5duwAADx48wOTJk7Fq1Srk5eWhY8eOOHbsWL23SZcuXWBra4szZ8689Nq2bdtw69YtPHz4EAUFBfjjjz9gbW2Nd955BxMnTsT//vc/lJSU4N69e7Jltm7diqVLl6KkpAT9+vWrdZ379+/HzZs3cefOHURHR+Prr79+bc42bdpg7dq18PX1RUlJCUpKSuDg4FBjHrFYjCFDhsDf3x+ZmZnYv38/vvvuO+zevVs2z71796Cvr4+MjAzs3bsX8+bNw6NHj2pd544dO7B8+XIcOHAAmZmZ8Pb2xtChQyEWi/Hbb7/V2AZhYWEvLX/s2DEMHDgQJiYmr3xfYWFh2LNnDyoqKgAAEokE27dvr7U90nSooJDX4vF4iIqKgr+/Pz7//HO4uLhAJBLhxIkTsnlGjx4Ne3t78Hg89O7dGwMGDEBUVFSNdj7++GMYGBhAJBLB398f3bp1g7e3N3R0dDBy5Ehcv369xvwffvghbG1tYWJigiVLlmD37t2QSqVyZV68eDEEAgFsbW0RHByMa9euAQD27t2Lvn37Ijg4GJqampgxYwbc3d0btF3s7Ozw9OnTl6ZraWmhuLgY9+/fB2MM7u7usLe3r7OtCRMmoGPHjuDxeNDT06t1ns8++wwmJiawtbXFRx99hB07djQo939dvnwZWVlZWLp0KXR1deHn54e3334bW7dulc3TqlUrvP/++9DS0kKvXr3g5OSEmzdv1trejh078M4778DX1xe6urr46quvkJaW9tIhqlfJzc2FnZ1dnfMMGjQIenp6iIiIAPDsB0RlZSVGjhwp1zqIclBBIXKxtrbGDz/8gHv37iE3NxcDBw7EyJEjZV+ou3btQtu2bWFmZgYTExMcPnwYT548qdGGlZWV7O/6+vovPS8pKakxv6OjY42/V1VVITc3V+68zxkYGKC4uBgAkJmZ+dKX+39/scsrIyMDZmZmL02fPHkyQkNDMXv2bLRq1QqhoaEvbYv/kifDf7dHRkZG/UPXIj09Hba2ttDW1pZNc3FxQXp6uuz5i/9WQM1tWlt7Tk5Osuc6OjqwtbWt0V5dWrVq9dr3xufzERISgi1btgAAtmzZgokTJ0JHR0eudRDloIJC6s3MzAyfffYZSktLkZSUhNTUVISEhOC7777D48ePUVBQgEGDBoE18s4ILx5aS01Nhba2NiwsLBrVpq2tLdLS0mpMS01NrXc7Fy9eRGZmJnr27PnSa5qamli4cCFu3bqF+/fvIzU1FZ9//jkAvPJE9Kumv+i/2+P5r3hDQ0OUlZXVmDc7O1vutoVCITIzM1FdXS2blpycDKFQ+NpMr2ovOTlZ9ryqqgqZmZlytzdgwAAcPXoUhYWFdc43bdo0REZG4urVq/jzzz/pcJcKoIJCXis/Px8ff/wx4uLiIJFIUFZWhuXLl8PMzAyenp4oKSkBYwyWlpbQ0NDA4cOHcfz48Uavd9myZcjMzERBQQEWL16MN998U64v3rqMGzcOJ0+exPHjxyEWi7F582Y8ePBA7uUrKipw5MgRTJo0CdOnT4dIJHppntOnT+PmzZsQi8UwMDCArq4uNDU1ATz7pZ+YmNigYvvFF1+goKAAmZmZ+PrrrzFx4kQAQEBAABITE3Hu3DmIxWJ89913yMvLky1nZWWFrKwslJeX19pux44dYWVlhcWLF6OyshJ3797Fzz//jJCQkHpnBIBJkyZh1apViI2NRWVlJT7++GPY2dmhY8eOci0/ceJEeHp6YujQobhx4wbEYjHKy8uxb98+fPLJJ7L53Nzc0K1bN4wdOxZ+fn7w9/dvUF6iOFRQyGtpa2sjIyMDgwYNgrGxMRwcHHDhwgUcOXJEdk5k0aJF6NOnD8zNzbF3714MGzas0eudNGkSevfuDUdHRwgEAqxYsaLRbXp4eGDbtm146623YG5ujosXL6JPnz6vPVQiFAphZGQEoVCIb7/9Fh9//DHWrVtX67w5OTkYP348TExM4OzsDGNjY3z66acAgOnTp8sOlfn5+dUr+/DhwxEQEAAfHx906tQJCxcuBAC4urriu+++w5gxY2BjY4PKykp4e3vLluvTpw86d+4MOzs7mJiYvLRHpqWlhb/++gvXrl2DtbU1hg0bhvfeew8TJkyoV77npkyZgv/7v//DkCFDYG1tjVu3buHPP/+UFdXX0dLSwrFjx9C9e3eMHTsWRkZGcHNzw759+146RxIWFobk5GTaO1ERPNbY4xKEKAGPx8ONGzcQEBCg9HV5eHhg8eLFsl/8hJCGoT0U0uL8+eefKC4uRmVlJX744QdkZWUhODiY61iENHvy7YMSokaOHTuGkJAQVFdXw8PDA4cOHYK5uTnXsQhp9uiQFyGEEIWgQ16EEEIUQi0OeT3vfUMIIUS5ng+UWhu1KChCoRCxsbFcxyCEELVX27VXz9EhL0IIIQpBBYUQQohCUEEhhBCiEFRQCCGEKAQVFEIIIQpBBYUQQohCqEW3YUKUKbe4EjlFFdDia8DN0hAaGjyuIxGikqigEPIKZx7kYt2ZR4h+9O+9RUz0tfBGB3u83dsVAl0tDtMRonqooBDyH5ViCb76+z62XUyBqb4Wpndzhru1ACUVYpyOe4x1ZxLxx/UMrJ/cDm0cTLmOS4jKoIJCyAsqxRLM3nENkfG5GNXWDl8M94Ghzr//TaZ1c8bZB7l4b98tjN9wCWsmtkNvT0sOExOiOuikPCH/kEoZ3vn1BiLjc/FBkDuWjwuoUUye6+Fugf3/6wIbYz28tesabqcXNH1YQlQQFRRC/rEq8iGO3cvB/3q1xtt93Oqc195MH9undYSBtibCtl1FdmFFE6UkRHVRQSEEwIWHT/DjyQfo7WGBD4I85FrG3kwf66e0R35pFeb9fgtSKd1aiLRsVFBIi1dSKca8327B2kgXy8cF1KtbcDtHU8zt54ZzCU+w83KKElMSovqooJAWb9nROGQWVuCrUb4wNdCu9/Kze7ZGGwcTfH04DlmF5UpISEjzQAWFtGi30gqw/VIKRgTYordHw3prafI18NVI32fdjQ/HKTghIc0HFRTSYjHG8MVfsTDQ1sSiwa++aZA8vGyMMLmzI/68lYlLiXmvX4AQNUQFhbRYf93OwrWUfLzdxxUWAp1Gt/defw+Y6GvhmyNxYIxO0JOWR6kFZc6cORAKhdDU/Lcv/65du+Dv7w8/Pz+0b98ep0+flr2WkZGBHj16wN3dHb169UJWVpYy45EWrEosxXfH4mBvpoepXZ0U0qaxvhbe6tkaN9MKcCI2RyFtEtKcKLWgjB07FlevXq0xzdnZGadPn8bt27exZcsWjB8/HlKpFAAwf/58TJo0CQ8ePMC4ceOwcOFCZcYjLdjeq2lIe1qO9/t7QEeTr7B2pwQ6wVKgg++Px0NC3YhJC8NjTbBvrqmpCbFY/NJ0xhhMTU2RlpYGgUAAExMTZGdnQ1dXF6WlpbC3t8fTp09f275IJEJsbKwyohM1VFEtQc9lkTDW08KROT3AV/DowTsuJuOTg/ewdlI7BPtYK7RtQrhW1/ctp+dQ9uzZA19fXwgEAuTl5cHAwAC6uroAAAMDA2hpaaGwsPCl5VavXg2RSCR75OfnN3V00oztvpyKnKJKvNffQ+HFBADGtreHuYE21p55ROdSSIvCWUG5ceMGFixYgM2bNwNAvf7jhYeHIzY2VvYwNaURX4l8qsRSrD+bCE9rAQZ4WyllHbpafIR2ccLNtAJcSaYfO6Tl4KSgPHjwAKNHj8aePXvg5vZszCRzc3OUlpaiouLZmEilpaWoqqqCsbExFxGJmtp/Ix3ZRRX4X29X8HjKu1HW5EBH6Gnxse7MI6WtgxBV0+QFJT09HYMHD8aaNWsQGBgom87j8TB48GBs374dALBt2zYMGzasqeMRNSaRMqyJegQnc30M9rVR6rpM9LXxZkd7nIp7jAc5xUpdFyGqQqkFZdasWRAKhZBIJBAKhQgPD8fnn3+Ox48fY/78+QgICEBAQACSk5MBAN988w127NgBNzc37NmzB1999ZUy45EW5vCdLCTnlWF2z9ZKOXfyX2HdnMHX4GH92USlr4sQVdAkvbyUjXp5kddhjGHQyvPIL63CmQ97KbSrcF3m7rmBv+9k4dyHfWBtrNsk6yREmVS2lxchTSUqPhf3s4owo4dLkxUTAJjRwwXVEoZdNBIxaQGooJAWYe2ZRzDR18L4jvZNul5vW2O0dzTFrzFpqBJLm3TdhDQ1KihE7d1JL8TlpKeY1MkR+tov39JX2SYHOuJJSSWO3stu8nUT0pSooBC1t+l8IrT5GpgS6MjJ+oN9rNHKUBs7LiZzsn5CmgoVFKLWsgrL8dftLAwLsIWlETcnxXU0+Xijgz2uJOfjflYRJxkIaQpUUIha2xqdDLGUIaybM6c5JnRyhAYP2HGJTs4T9UUFhait0koxdl9ORTfXVvCyMeI0i52JHvp5WeHAjQwUVVRzmoUQZaGCQtTWvqtpKK4QY3p3bvdOnpsc6IiyKgn+uJbOdRRClIIKClFLEinD5gtJcLM0RE93C67jAAC6tm4FJ3N97I5JpVGIiVqigkLU0onYbKQ9LUdYN2elDgJZHxoaPEzo5IAHOSW4mkKjEBP1QwWFqKUN55JgbqCNEW3suI5Sw5h29tDma2D35VSuoxCicFRQiNq5kZqPayn5mBzoCF2tphtmRR5mBtoY6GuNv+9k4WlpFddxCFEoKihE7Wy5kAxtvgYmdebmQsbXmdjJEVViKSLo5DxRM1RQiFrJKarA4TtZGOpvi1aGOlzHqVUHJ1O4WRrSyXmidqigELWy61IKxFKGqV2duI7ySjzes5PzSU9KcfFRHtdxCFEYKihEbVRUS7Drcio6OJnCx061bx09qo0Quloa2BVDJ+eJ+qCCQtTGX7ezkFdahdAuqnEhY12M9bUwxM8Wx+5mI7e4kus4hCgEFRSiFhhj2HIhCTbGugjytuI6jlwmdnKAWMrw27U0rqMQohBUUIhauJqSj3uZRZgc6AgtfvP4WAfYm0BkY4Tdl1MhldLJedL8NY//eYS8xtYLydDR1MCbHRy4jiK35yfn0/PLcTYhl+s4hDQaFRTS7GUWlOPovWyMCLCDmYE213HqZUQbOxho8+nKeaIWlFpQ5syZA6FQCE3NmrddXbBgAVxdXeHu7o6IiAjZ9Lt376Jdu3Zwc3PDiBEjUFJSosx4RE3suJQCiZQhVIW7Cr+KoY4mhgXY4VTcY2QXVnAdh5BGUWpBGTt2LK5evVpj2smTJxEdHY34+HhERkbi3XfflRWO2bNn4+uvv0ZCQgLc3d3xww8/KDMeUQMV1RL8GpOKzi5mnN/zpKEmdnKARMqw9wqdnCfNm1ILSrdu3WBtbV1jWkREBEJDQ8Hn82FnZ4euXbvi+PHjyMnJQWpqKoKCggAAYWFhNfZeCKnNX7ezUFBWjZBAJ66jNJiPnTH87U3wa0wqqiVSruMQ0mBNfg4lPT0d9vb2sucODg5IS0t75fTarF69GiKRSPbIz6ehwFuqnZdSYCnQQT9R8+gq/CqhXRyR/c+wMYQ0V3IVlKlTp+LixYsKWeGrxi6qz5hG4eHhiI2NlT1MTU0Vko00L3czCnEzrQBvdnRoNl2FX2Wwry0sBTrYfD6JxvcizZZc/wuDgoKwaNEi+Pj44Mcff0ReXsPHH7K3t6+x55GamgqhUAihUFjrdEJeZdflVGjwgPEd7V8/s4rT1tTAlEBH3EovxPVU2uMmzZNcBWX8+PE4ffo0Dh48iNzcXLRp0wZvvvkmoqKi6r3CUaNGYevWrZBIJMjIyMD58+cRFBQEa2tr2Nvb4/jx4wCATZs2YdSoUfVun7QMxRXVOHgzA329rGBjrMd1HIWY0MkROpoa2HQ+iesohDRIvY4TJCYmIiEhAQYGBvD09MSSJUsQEhLyyvlnzZoFoVAIiUQCoVCI8PBw9O/fH507d4a7uzt69eqF5cuXQyAQAADWrFmD+fPnw83NDXFxcfjggw8a9+6I2jpwIwNlVRKVvedJQ5gZaGNUWzscvZuN9PwyruMQUm88JscB2yVLlmDHjh3w8/PDrFmz0L9/f9lrbm5uSEhIUGrI1xGJRIiNjeU0A2k6jDEE/3QO5dUSRH3QCxoaqnHPeEV4kFOMoB/PYkZ3ZywaLOI6DiEvqev7VrPWqf+hoaGBs2fPvtQFGACOHTvWuHSE1NO1lHzE5xRjwUBPtSomAOBuJUB3t1bYE5OG/+vrBiNdLa4jESI3uQ55JSQkvFRMQkNDAQAuLi4KD0VIXfZeSYOmBg9j2qlnp43ZPVujuFKM7dHJXEchpF7kKii3b99+adq1a9cUHoaQ1ympFOPvO1no52Wlsrf4bawurc3RztEUG88noaRSzHUcQuRWZ0H5+eef4ebmhvv378Pd3V32sLGxQbt27ZoqIyEyf9/ORFmVBG90aP5dhV+Fx+Phnb5uKCirxo6LKVzHIURudZ5DmTJlCoYOHYr33nsPP/74o2y6QCCAmZmZ0sMR8l/7rqbDykgH3d1acR1FqXq4tYK/vQk2nEtESBdH6GvLdbqTEE7VuYdibGwMJycn/PHHH3B0dJQ9qJgQLjx8XIxrKfkY004IzWZ+Zfzr8Hg8zOnriqelVdh1iYa2J81DnT97RowYgQMHDsDNzQ083r+9aRhj4PF4ePDggdIDEvLcb1fTAQBj26nv4a4X9fawhK+dMdadfYRJnR2hp83nOhIhdaqzoKxZswbAsyHnCeFStUSKiOvp6ORsBqdWBlzHaRLP9lLcMH37VWy+kITw3q5cRyKkTnUeN7CxsZH9+fxwF2MMsbGxNM4WaVKRcY/xpKQK49q3jL2T5/p6WaKjsxl+iXyIx8V0Ay6i2uQ6EN2lSxcUFxcjNzcXPXv2xIoVKzBr1ixlZyNE5o/rGTDQ5mOg78sX16ozHo+HTwaLUFolwY8nuB2RgpDXkaugSCQSCAQCHDp0CGFhYTh69ChiYmKUnY0QAEBhWTVOxz1GsI9Ni+zt5Cs0xqg2dth7JRXx2cVcxyHkleQqKGKxGJWVlfj7779ld1R88SQ9Icp0+G4WqiRSjGhjy3UUznwwwAPamhr48vB9rqMQ8kpyFZTw8HC4ublBKpWic+fOSEpKgrGxsbKzEQLg2cjCFgIddGmt3tee1MXWRA8zu7vg7INcRMY95joOIbWSq6DMnj0bqampOHDgAADA0dGRen6RJpFRUI7LSU8x3N8WfDUbCLK+ZvVsDRtjXSw+dBflVRKu4xDyErkOSFdVVSEiIgJJSUkQi/8dW2jx4sVKC0YIABy8mQEAGNHGjuMk3DPQ0cRnw7wxa8c1rDydgPnBnlxHIqQGufZQRo4cid27d0MsFoPP58sehCgTYwwHbmTAzdIQ3rZGXMdRCQO8rdFfZIUNZxMRl13EdRxCapBrDyU5ORn37t1TdhZCarifVYwHOSWYN8CDOoG84PNh3rjw8AkW/nEHv8/uonb3hCHNl1x7KAEBAUhJoVFPSdM68M/hrmH+Lbd3V21sTfTwXn93XE8twK9XaJwvojrk2kNJSUmBj48P2rZtCx2df+9Bcfz4caUFIy2bRMpw8GYGOjqZwd5Mn+s4Kie0ixP238jAN0fi0F9kBUuBLteRCJGvoHz55ZfKzkFIDZcS85BTVIk5fd25jqKSNPka+HqUL0asvoAlf93Hz+PbcB2JEPkKSs+ePVFQUIDExES0bdtW2ZkIwf4bGdDi8zCohQ21Uh9+QhNMCXTC1uhkjGknRE93C64jkRZOrnMof/zxBzp27IgxY8YAAG7evIlBgwY1asU7d+6En58fAgIC0L17d8THxwMAFixYAFdXV7i7uyMiIqJR6yDNU0W1BEfvZqO3hyVM9LW5jqPS3g9yh5WRDhYfvIuKaro2hXBLroKydOlSXLlyRXZ1fEBAAFJTG34ysKysDHPmzMHp06dx8+ZNTJw4ER9//DFOnjyJ6OhoxMfHIzIyEu+++y5KSkoavB7SPJ28n4OSSjFdeyIHga4WPh3qjZS8MvwS+ZDrOKSFk6ugaGtrvzTUioZGw++YJ5VKwRiTFYvCwkLY2NggIiICoaGh4PP5sLOzQ9euXenEfwt08GYmBDqa6ONpyXWUZmGgjzV6eVhgzZlHePiYfoAR7shVFZydnXHy5EnweDwUFRXhs88+g7+/f4NXamhoiFWrVsHHxwd2dnbYtm0blixZgvT0dNjb/3u/CwcHB6Slpb20/OrVqyESiWSP/Pz8BmchqqWwrBpR8Y8R7GMNXS26eFYePB4PXwzzgQaPh48P3AFjjOtIpIWSq6D88ssv2LFjB9LT09G6dWskJiZi5cqVDV5pdXU1fvnlF1y5cgUZGRkYM2YM5s+fL/d/hPDwcMTGxsoepqamDc5CVMuRu1moljAMD6DDXfXhYK6Pd/q64VLiUxy8mcl1HNJCyVVQTE1NsW3bNjx+/Bi5ubnYvn17o77Eb968CcYYvLy8AABvvvkmoqOjYW9vX2OPJDU1le4M2cIcvJmJVoY6CGxtznWUZmdGdxc4mevj26NxNHgk4USd3Ya/+uqrOhdeuHBhg1YqFAoRHx+PjIwM2NnZ4cSJExCJRBg1ahSWLFmCkJAQZGdn4/z581i/fn2D1kGan+zCClxKykNoF6cWP7JwQ2hrauCjQV6YteMaNp1PxNt93LiORFqYOgtKdXU1ACAhIQEXL17E8OHDAQCHDh1CYGBgg1dqY2ODb775Bv3794eWlhYsLCywefNmODg44MSJE3B3d4eGhgaWL18OgUDQ4PWQ5uWv25lgDHS4qxGCRFbo5GyGX6IeYVx7e1ga0RX0pOnwmBwnLnr27IlDhw7JenoVFhZi2LBhOHPmjNIDykMkEiE2NpbrGKSRhv58HkUV1Yj6oBcNBtkIdzMKMXTVeYxrZ49vx/hxHYeombq+b+U6h5KdnV1jT8HAwADZ2dmKSUcIgEe5JbiTUYjh/rZUTBrJx84Yo9sKse9aGmIzaYh70nTkKiiDBw9G3759sXbtWqxduxZBQUEYMmSIsrORFuR5z6RhdLhLIeYN8ICuJh/LjsVxHYW0IHKN5bV8+XIcOHAAZ8+eBQDMmTNHdj6FkMZijOHQzQz42BnB1dKQ6zhqwcpIF1MCHbHubCJupOajjQN1rSfKJ1dBAYARI0ZgxIgRSoxCWqrb6YVIzivDokFeXEdRKzN7uGDHpRT8dDIB26Z15DoOaQEaPn4KIQpy8GYmeDxgiL8N11HUirmhDqYEOuHMg1xcS6HRJIjyUUEhnJJIGf68nYlOzmawMdbjOo7amdnDBQbafPx08gHXUUgLIFdBKS0tVXYO0kJdSsxDbnElXXuiJGYG2gjp4oRzCU9wLeUp13GImpOroHh6emLmzJmIiYlRdh7Swhy8+exGWgN96EZayjKj+/O9lASuoxA1J1dBefDgAbp164YPPvgAAQEBWLVqFQoKCpQcjai7imoJjtzNRk93upGWMpkaaGNSoCPOJTzBvcxCruMQNSZXQdHT08OUKVNw9uxZ/PLLL/jmm29ga2uL0NBQJCcnKzkiUVdR8Y9RXCHGiDa2XEdRe9O6OkOLz8P6s4lcRyFqTO6T8lFRUZgwYQJCQ0Mxc+ZMxMbGonfv3ggODlZmPqLGDtzIhIE2H309rbiOovasjHQxIsAOf93OQnp+GddxiJqS6zoUDw8PuLu7Y+bMmdi5c6fsbo1OTk44evSoUgMS9ZRfWoVTcTkYHmAHPW26kVZTmNnDBb9dS8em80n4dKg313GIGpJrD2XDhg34888/MXToUFkxeX5P+V9//VV56YjaOnQrE9UShtFt6X43TcXNSoB+XpbYE5OG/NIqruMQNSRXQZk7d+5L0+iqedIYEdfTYWeih07OZlxHaVFm9miN8moJdl5K4ToKUUN1HvJKT09HSkoKSktLER0dLZteWFiIsjI6DksaJiGnGLfTC/FOH1do0I20mlQHJ1O0cTDB1uhkzOjhAl0tOtxIFKfOgnLq1Cls3boVmZmZWLRokWy6QCDAN998o/RwRD39fj0dADCKDnc1OR6Ph5ndXfDWrus4cCMDb3Z04DoSUSN1FpSQkBCEhIRg9+7dmDBhQlNlImpMImU4cCMDHZxM4dTKgOs4LVKQtzXszfSw8XwS3uhgT/efIQpTZ0G5ffs2/Pz84OTkVOOQ13NdunRRWjCins4/fIKcokq828+d6ygtFl+Dh2ldnfH5n7GIepCL3h6WXEciaqLOgvLzzz9jw4YNNQ53Pcfj8XD69GmlBSPqKeJaOnQ0NTDIj0YW5tLY9vZYfuIBNp1LooJCFKbOgrJhwwYAQGRkZJOEIeqtoKwKR+9lY6CPNYx0tbiO06IZ6mhiQkcHrDubiNjMIohsjbiORNRAnd2Go6Oj63w0RmlpKUJCQuDh4QFPT0+sW7cOALBgwQK4urrC3d0dERERjVoHUS0HbmSgSizFGx3suY5CAIR2dYKmBg+bzidxHYWoiTr3UGo71PVcYw95vf/++/D29sa2bdvAGENubi5OnjyJ6OhoxMfHIzs7G4GBgRgwYAAMDem2sM0dYwx7rqTB0VwfnZ3NuY5DANgY62Gwnw0O3crA/GAPWBrpch2JNHN1FhRlHeoqLi7GoUOHZFfb83g8WFpaIiIiAqGhoeDz+bCzs0PXrl1x/PhxjBo1Sik5SNO5nV6IuOxizBvgQdeeqJDp3Vxw8GYmtl1MxrwBnlzHIc2cXL28XnV4q6G9vBITE2FlZYW3334bMTExcHR0xE8//YT09PQaxcPBwQFpaWkNWgdRLXuupIGvwcOYdnTtiSrxFRqjk7MZdl1ORXhvV+hryzW8HyG14qSXl1gsxs2bN7Fs2TKsXbsWmzdvxrRp06CnJ98tYFevXo3Vq1fLnufn0/2yVVlppRiHbmagt4clrOiwisqZ3t0FM7ZfRcT1DEzu7Mh1HNKM8RhjrKlXmpOTA29vbzx58gQAUFZWBltbW4wfPx4dOnTAtGnTAADjx4/HmDFjMHr06DrbE4lEiI2NVXpu0jD7rqbhw99vY+OU9ugnoqHqVY1UytB3+RkAwKn3etIhSVKnur5v5RocUiwW45dffsEbb7yBN954A2vWrEF1dXWDA1lZWcHb2xvXr18HAJw4cQLe3t4YNWoUtm7dColEgoyMDJw/fx5BQUENXg9RDXuvpMHKSAe9PCy4jkJqoaHBw7Ruzkh6UopTcY+5jkOaMbkOmM6YMQPFxcWYMmUKAGDnzp24fPkytm7d2uAVr1mzBmFhYSgtLYWJiQk2btwILy8vnDhxAu7u7tDQ0MDy5cshEAgavA7CvbjsIlxLycfbvV2hyZf7fm6kiY1pK8QPx+Ox8Vwi+tNeJGkguQ55eXp6Ii4uTvacMQYvL68a07hEh7xU1ycH7mLn5RSc+7A3hKb6XMchdfj+WDxWRT7En293g6/QmOs4REU1+pCXvb09srOzZc8fP34MBwcapZTUrbRSjP03MtDHw5KKSTMwJdAR2nwNbDxP950nDVPnIa8ZM2aAx+NBT08P3t7e6NevH3g8Hk6ePImuXbs2VUbSTB24mYGSSjEmUc+hZsHSSBfDAmyx/0YG5gd7wtZEvl6XhDxXZ0Hp1q2b7O8v9rQaOHCg8hIRtcAYw85LqbA300MPdzoZ31yEdXPG79fSsS06GR8N8uI6DmlmXns/FEIa4npqAe5nFWF+sCf41A212fCyMUI311bYHZOK/+vrBkMdutCRyE+uT0t+fj6+//573LlzBxUVFbLpx48fV1ow0rztvJQCbb4GxrWnK+Obm+ndnRG65Qr2XUnDtG7OXMchzYhcJ+VDQkLQqlUrxMXF4Z133oGBgQHatm2r7GykmXpaWoW/b2dhoK81zA11uI5D6qmnuwXcLA2x+UISJNImv+6ZNGNyFZS0tDS8++670NXVxZAhQ/D777/TPVLIK/12NQ1VEimdjG+meDwepnd3Rnp+OY7ezX79AoT8Q66Coq2tDQAQCARITk5GRUUFcnNzlRqMNE9SKcPumFR4WAnQ3tGU6zikgYYH2MFCoINfoh6Cg9GZSDMlV0EZMWIE8vPzsWDBArRv3x4ODg4ICwtTdjbSDJ17+AQpeWWYFOgIHo9OxjdXulp8zOzugnuZRYiMp+FYiHzqPThkVVUVKioqYGSkOrcMpSvlVceM7VcR/fAJLi/qRz2EmrmyKjG6fRsJBzN97P9fF/qBQAAoeHDIyZMnY9euXY0aHJKop7SnZTh1Pwcj29pRMVED+tqaCOvmjJtpBTj/8AnXcUgzIFdBmTFjBk6fPo2JEydi4sSJiIyMxIwZM5SdjTQzOy6lQMqA0C5OXEchCjIl0BHGelr4+fRDrqOQZkCun5EXL16sMRDk0KFD4eVFV9GSf5VVibEnJhXd3VrB1ZJGiFYXAl0tTO3qhJ9OJuByYh46uZhzHYmoMBockijE/hsZKKoQ096JGpraxRkCHU38dDKB6yhExdHgkKTRGGPYFp0MR3N99Paw5DoOUTBjfS1M7eaMlacSEP3wCbq4tuI6ElFRNDgkabSLj/LwIKcEnwwR0e1j1dT07s7YFp2MZcfj8Udrc+rxRWpVr8Ehn4/jpaurq7xEpNnZEp0MfW0+xtK4XWrLSFcLs3u2xrdH43A67jH6etFdHcnL5DqHkpCQgM6dO0MoFEIoFKJLly5ISKDjqeRZV+GT93Mwuq0QRrpaXMchShTSxRGtDHXw/fEHkNIYX6QWcncb/vDDD/HkyRM8efIE8+bNo27DBACw/WIyGHv2ZUPUm762Jt7u3Rr3s4pw+G4W13GICpKroBQUFGDUqFGy5yNHjkRBQYGyMpFmorRSjD1X0qircAsyvpMDbI11sfzEA4glUq7jEBUjV0ExMjLC33//LXt++PBhlRp6hXBj/40MFFNX4RZFR5OPd/q6ITG3FPtvZHAdh6gYuQrK2rVr8cknn8DKygpWVlZYvHgx1q1bp5AA4eHh0NT8t2/AggUL4OrqCnd3d0RERChkHUTxpFKGzeeT4GSuj17UVbhFGd1OCCdzfaw4lYAqMe2lkH+99kp5iUSCEydO4Pr16ygqKgKPx4NAoJjDG+fOnUNJSYns+cmTJxEdHY34+HhkZ2cjMDAQAwYMgKGhoULWRxTn5P0cJD4pxZIRPnSL3xZGi6+Bd/u7Y86em9hzJRVTAp24jkRUxGv3UPh8Pnbu3Ang2aEvRRWTyspKLFiwAN9//71sWkREBEJDQ8Hn82FnZ4euXbvSbYZV1IZziTAz0MaYttRVuCUa6mcLT2sBVp5KQGmlmOs4REXIdcirX79++Oyzz5CQkIDMzEzZozG++OILhIWFwcLCQjYtPT0d9vb2sucODg5IS0t7adnVq1dDJBLJHvn5+Y3KQurnemo+riTnY3JnR+hp87mOQzigocHD/IGeeFJShQ3nErmOQ1SEXIND7tmzBwCwbds22TQej4fExIZ9kG7fvo3Lly9j6dKlNabLe2uW8PBwhIeHy56LRKIG5SANs+FsInQ0NTAlkLoKt2S93C0Q6GKODWcTMbGTIywEOlxHIhyTaw8lKSnppUdDiwkAXLhwAbGxsXB2doaTkxMkEgmcnJxgYWFRY48kNTUVQiEdUlElKXmlOHovG2PaCWFuSF8gLRmPx8OCgZ4orZLg59N0oTN5TUFJSkrCyJEj4evri8mTJyMnJ0chK33rrbeQmZmJ5ORkJCcng8/nIzk5GRMmTMDWrVshkUiQkZGB8+fPIygoSCHrJIqx8VwSACCsmzPHSYgq8Lc3wWA/G+y+nIrkJ6VcxyEcq7OgTJs2DR4eHli2bBkEAgHmzp2r1DD9+/dH586d4e7ujl69emH58uUK6wRAGi+nqAJ7r6ZhgMgaLhbU844880GQBwDg++PxHCchXKvznvK+vr64c+cOgGfnN9q2bYsbN240WTh50T3lm8Znh+5ha3Qy/n6nG7xtjbmOQ1TIJwfuYselFBwM7wp/exOu4xAlavA95bW0/h3sj8fj0ZDVLdjjogr8GpOK/iIrKibkJe/0dYO+Nh/fHImTu3MNUT91FpSbN29CW1tb9nj+XEtLC9ra2k2VkaiAtWcSUSmWYk5fN66jEBVkIdDBjO4uuJiYh7MJT7iOQzhSZ0GRSqWoqqqSPZ4/r66uRlVVVVNlJBx7XFyBXZdT0M/LEj52tHdCajejhwtaGWrjmyNxNLx9CyVXt2HSsq3/Z+/kHdo7IXUw1NHEO33dcD+rCAdv0cCRLREVFFKnzIJy7Lycgt4eFvATmnAdh6i4Nzs4wNFcH98fe4BKsYTrOKSJUUEhdVp2LB5VYinmD/TkOgppBrQ1NfBBkAcyCsqx42IK13FIE6OCQl7pVloB9t/IwBsdHOBpTfe/IfIZ7GsDP6ExVkU+RFFFNddxSBOigkJqxRjD0r9jYaijiff6u3MdhzQjGho8LAj2REFZNdadecR1HNKEqKCQWh25m40ryfn4X+/WNOgfqbcurq3Q090Cm84nIbuwgus4pIlQQSEvqaiW4Osj92FnoodpXWnMLtIw84M9USmWYsWpB1xHIU2ECgp5yerIh0h7Wo6Fg7ygq0X3OyENI7I1wogAO+y9kob47GKu45AmQAWF1BCfXYw1UY/Q28MCg3ytuY5Dmrl5AzygramBpX/H0pAsLQAVFCJTLZHiw99vPfsCGOlLY7eRRrM10cPM7i44l/AEkfGPuY5DlIwKCpFZHfkQt9ILsXCQF+xM9LiOQ9TErJ6tYWWkg6V/30e1RMp1HKJEVFAIgGf3if/59EP08rDAxE4OXMchasRARxMfDvBEYm4pdl6iix3VGRUUgoKyKvzf7hsw0dPCd6P96FAXUbiRbezgJzTGTycTkF9KA8uqKyooLZxEyvDevlvILCzHT28GwNJIl+tIRA1paPCweIgIheXV+PZoHNdxiJJQQWnhvjlyH6fjHmNuX3d0d7PgOg5RY+2dzDCuvRB7rqThavJTruMQJaCC0oL9GpOKDeeSMNTfFu/0deU6DmkBFgz0gqm+Fhbtv0sn6NUQFZQW6sLDJ/jkwF20cTDBsjF03oQ0DTMDbXw0yAvxOcXYfD6J6zhEwaigtECxmUV4a+c1WBnpYv3k9nQ1PGlSY9oK0cHJFD+dTEB6fhnXcYgCcVJQ0tLS0LdvX3h5ecHb2xsfffSR7LUFCxbA1dUV7u7uiIiI4CKeWkvIKcakTZehocHDlqkdaOBH0uQ0NHj4cqQvxFIpPvz9Nt0uWI1ocrJSTU18++23aN++PaqqqtC3b18cPHgQBgYGiI6ORnx8PLKzsxEYGIgBAwbA0NCQi5hqJ/lJKSZuvIxqiRS/zugMdysB15FIC+VuJcB7/T3w7dE4bIlORlg3GoRUHXCyh2JjY4P27dsDALS1tdGmTRukpqYiIiICoaGh4PP5sLOzQ9euXXH8+HEuIqqd9PwyTNhwCSWVYmyd2hE+dsZcRyIt3MweLujgZIpvj8YhIYcGj1QHnJ9Defr0KQ4cOID+/fsjPT0d9vb2stccHByQlpb20jKrV6+GSCSSPfLz85sycrOTXViBCRsuI6+0CptDO6CdoynXkQgBX4OHH8YGQEuDh7l7b6JKTL2+mjtOC0pVVRXGjBmDOXPmwNPTU+7RSMPDwxEbGyt7mJrSF+Sr5BZXYsLGS8gurMD6Ke3R2cWc60iEyDiY62PxUBHuZRbh++PxXMchjcRZQZFIJJgwYQICAgLw/vvvAwDs7e1r7JGkpqZCKBRyFbHZyy+twuRNl5GaV4bVE9uipztduEhUz7j29hjsZ4P1ZxNx8GYG13FII3BWUGbOnAmBQIAffvhBNm3UqFHYunUrJBIJMjIycP78eQQFBXEVsVkrqqjGlM0xeJBTjJ/eDEB/kRXXkQipFY/Hw7IxfvC0FmB+xG3czSjkOhJpIE4KyoULF7B582ZcvXoVbdq0QUBAAFauXIn+/fujc+fOcHd3R69evbB8+XIIBNQTqb5KK8WYuuUK7mQUYtkYfwzxs+U6EiF10tfWxIYp7aGnxcesHdfwpKSS60ikAXhMDW6jJhKJEBsby3UMlVBRLcHULVdwMTEPX470wcROjlxHIkRu0Q+fYPLmGATYm2BHWEfoa3NyZQOpQ13ft5z38iKKUymWYPbOa7iYmIdPhoiomJBmp4trKywd4YNrKfmYuf0aKqolXEci9UAFRU2IJVK88+sNRMXnYt4AD7pQjDRb4zs64OPBXjj/8AnCd12n7sTNCBUUNSCRMrz/2y0cu5eD8N6tEd6bRg4mzdv07i54r787TsU9xty9N6ioNBN0gLKZk0oZFv5xBwdvZmJaV2d8EOTBdSRCFOL/+riiolqCX6IeobA8BmsmtYORrhbXsUgdaA+lGWOM4Yu/YrH3ahomdHLAJ0O8aBh6ojZ4PB4+DPbEx4O9cOFhHsatvYicogquY5E6UEFpphhj+PpIHLZGJ2NUGzssHe5DxYSopendXbByfBsk5pZi5OoLuJNO16moKioozRBjDN8di8f6s4kY7GeD78b4QUODiglRX8P8bbFtWkeUV0swek00dl9OlXuoJtJ0qKA0Qz+eeIA1UY8w0McaP70RAE0+/TMS9RfY2hx/vdMdXrZGWLj/Dj747TbKqsRcxyIvoG+iZmbFyQSsPP0QQSIrrBzfBlpUTEgLYmeih32zOmNKoCMirqdj0IpzuJZCo42rCvo2akZWRz7EjycfoJ+XJVZNaEvFhLRIOpp8fDHcB2sntUNRhRhj10Zj2bE46lqsAugbqRlgjGHZsTgsOxaP3h4WWD2xLbQ16Z+OtGzBPtY4NrcH+nhaYnXkIwxeeQ5Xkp9yHatFo28lFSeWSDE/4jZWRz5CsLc11kxqBx1NPtexCFEJFgIdbJjSHj+M9ceTkkqMXXsRH/1xGwVlVVxHa5GooKiw8ioJZu24hn1X0zGxkwNWT2wLXS0qJoS8iMfjYXQ7IU693wtj2wnxa0waen0fha0XklAtocNgTYkKiopKelKKkb9cwKm4x3i3nzuWjvABn7oGE/JKZgbaWDbWH3tndobQVA+f/RmLAT+dxYnYHOpi3ESooKigY/eyMezn80jJK8OKNwMwp58bXbRIiJw6uZjjUHg3fD/WH6WVYszYfhXDVl2gwtIEaCwvFVJSKcayo3HYdjEFLq0MsHZyO7hb0Q3GCKkvDQ0exrQTYrCvDXZdTsHaM48wY/tViGyMENrFCcMCbOnwsRLQDbZUxMnYHHxy8C6yCiswPMAWS0f4QEAD4RGiEOVVEuy6nIJN55OQVVgBYz0tjG0nxIg2dvC2NaIjAPVQ1/ctFRSO3cssxI8nHuDk/ccQmuph6Qgf9PKw5DoWIWpJLJHi5P3H2HkpBecfPgEAOJrrY6CPDXp5WKCNgwn1onwNKigq6G5GIX4+nYBj93KgramBqV2cMKefG93ylJAmkva0DIfvZOHwnSzc+mfASR1NDbR1MEUbBxN4WAvgZWME51YGdBHxC6igqIjSSjH+vJWJX6+k4VZaAbQ1NTChowPe6tUaVka6XMcjpMXKLCjHxUd5uJiYh0uJeUjPL5e9ps3XgIuFAVwsDOBgZgAHM304muvDwUwfNsa6LW4sPSooHMovrcLpuMc4EZuDswm5KKuSwMZYF+Pa22N8RwdYG1MhIUTVFJZVIy67CPE5xbifVYz47CKkPi3Dk5KaF0xqavBgZ6oHBzP9GoVGaKoPe1N9GOlpqt35mbq+b1Xy+EpUVBTCw8NRWVmJXr16Yd26deDzVf+4plTKkJ5fjjsZhbiS/BRXkp/iflYRpAwQ6Giij6clRrW1Q093S7qmhBAVZqyvhU4u5ujkYl5jekmlGGlPy5D6tAypec/+THlahrSnZbiUmIdqSc3f54Y6mhCa6sHORO/Zn6Z6EJrqw85ED7YmejAz0Far7wKV20ORSqVwd3fHoUOHIBKJMG7cOAwePBghISGvXKYp9lDEEilKKyUorqxGQVk1sgorkFVY/uzPgnIk5ZUhIacYZVUSAIAGDxDZGqGDkxn6eFqik7M5jb9FiBqTSBmyCsuRmleG9PxypBeUIz3/2d8z8suRVVgO6X++bTV4gJmBDloZasNCoINWhjowN9BGK8GzPwW6WjDS1YRAVwuGupoQ/PPQ5mtwtufTrPZQrly5AltbW4hEIgBAWFgYVq9eXWdBaaj47GJ8fOAOxFIGsYT986cUEilDtVQKiYShSsJQWilGebXkle0Y6WrC3kwfwT7W8LB6diKvjYMJdfslpAXha/AgNH12uKs21RIpsgsrkFFQjvT8cmQWlONJSSXySqqQW1KJjIJy3EorQFHF6+/xwuMBWnwN6PA1oK357KH1/O98DfA1eNDgPZtRgwdo8Hjg4Z8/ecCsni7o42ml2A0AFSwo6enpsLe3lz13cHBAWlpajXlWr16N1atXy54nJibKCpAy8ADU/hF5Rgwg6Z/HUaWlqFt+fj5MTU05WrvqoO3wDG2HfzW3bVHXd81/SQCU//N4nRe3w9srGhDsH+np6a98TeUKijxH4MLDwxEeHt4EaZoPVe6Y0JRoOzxD2+FftC2eaYrtoHIH9e3t7WvskaSmpkIoFHKYiBBCiDxUrqC0b98e6enpskq6adMmjBo1iuNUhBBCXkflCgqfz8fGjRsxZswYtG7dGoaGhpg8eTLXsVQeHQJ8hrbDM7Qd/kXb4pmm2A4q122YEEJI86RyeyiEEEKaJyoohBBCFIIKigqKioqCt7c3XF1dMX36dEgkL19UuW/fPri7u6N169ZYtGjRS69funQJfD4fO3furFe7qkRZ28HJyQne3t4ICAhAQEAA7ty5o9T30ViN2Q6fffYZbGxsZO/1yy+/rFe7qkZZ26IlfSYAYMuWLRCJRPDx8UFQUFC92q0TIypFIpGw1q1bs3v37jHGGBs7dizbunVrjXkKCgqYvb09y8zMZNXV1SwwMJBFRUXJXq+srGTdu3dngwYNYjt27JC7XVWirO3AGGOOjo4sLS2tad5IIzV2O3z66adsyZIlDWpX1ShrWzDWsj4T0dHRrHPnzqywsJAxxlhWVpbc7b4O7aGomNqGnomIiKgxz9GjR9GrVy/Y2NhAU1MTISEhNeb56quvEBoaCgsLi3q1q0qUtR2aG0Vsh4a2q2qUtS2am8Zuh5UrV2LBggUwMjICAFhbW8vd7utQQVEx8gw9U9c89+7dQ3R0NKZOnVrvdlWJsrbDc0OHDkVAQAAWLVqE6upqJbwDxWjsdgCA9evXw8/PDyNHjkRCQoLc7aoaZW2L51rKZyIuLg7Xr19Hly5d0LFjR/z+++9yt/s6VFBUDJOjF/er5pFKpfjf//6HlStXvjQSqTztqhJlbQcAOHfuHG7cuIELFy4gPj4e33//faPzKktjtgMAzJ49G48ePcLt27fx5ptvYujQoXK3q2qUtS2AlvWZEIvFSElJwblz57B//368//77SExMVMhnggqKipFn6JlXzVNcXIx79+4hODgYTk5O+P333/Huu+9i8+bNzW5IG2Vth+fLAYCBgQGmT5+O6OjoJnhHDdOY7QA8O5yhpfVs1Os33ngDBQUFyMvLa3afB0B52+L5ckDL+EzY29tj9OjR4PP5sLOzQ6dOnXD79m3FfCbqe0KIKJdYLGbOzs41Toxt3ry5xjwFBQVMKBTWOOF2+vTpl9oKCQmRnYyWp11VoqztUFJSIjsZKRaL2fTp09nChQuV/G4arrHbISMjQzbf6dOnmVAoZFKptNl9HhhT3rZoaZ+JTZs2sTlz5sjmc3FxYXFxcQr5TFBBUUGnTp1iXl5ezMXFhU2dOpVVV1ezgwcPsrCwMNk8v/76K3N1dWUuLi5swYIFtbbz4hfpq9pVZcrYDo8ePWL+/v7M19eXiUQiFhYWxkpLS5vk/TRUY7bD5MmTmY+PD/P392fdunVjMTExdbar6pSxLVraZ6K6uppNnz6diUQi5u3tzdavX19nu/VBQ68QQghRCDqHQgghRCGooBBCCFEIKiiEEEIUggoKIYQQhaCCQgghRCGooBCVUl5ejrlz58LFxQVt2rRBp06daowUXF9//PEHvLy8EBAQAIlEgo8++ggikQhTp07FoUOH8MUXX9S5/OLFi3H48OEGr//AgQO4fft2vZf7b25Fa9++/Wvn+W/2tWvXYuPGjQrPQtQHdRsmKmXy5MmQSqXYuHEj9PT0UFBQgAMHDiA0NLRB7QUHB+ODDz5Av379AAD6+vooKCiAtra2AlO/WmhoKPr164dJkybVa7n/5lYUsVgMTU1NueZtaHbSgjXu8hpCFOfRo0fMwMCAFRQU1Pp6WloaGzBgAPP19WXt27dnFy9elL22cuVK1qFDB+bn58fCwsJYVVUVW7hwITMwMGCurq4sNDSUBQUFMQDM39+frVq1im3ZskV2IZhEImELFy5kPj4+zM/Pj7377ruMsZoXRebl5bE33niDdejQgfn7+7PffvuNMcZYZGQk69KlCxs/fjzz8vJiwcHBrLy8nJ0+fZqZmpoyBwcH5u/vzy5cuPDSe/rkk0+Yt7c38/b2Zp9//jljjL2U+0UbN25kM2fOlD2PiYlhgYGBjDHGvvzyS9a+fXvm5+fHBg8ezJ48ecIYY2zLli1s8ODBLCgoiHl4eDDGGOPz+bI2Ro8ezdq1a8e8vb3Z3LlzGWOs1uwvDv9eUFDAxo0bJ9tehw4dYowxlpSUxJydnVl4eDjz8fFhgYGBLCcn5zX/8kRdUEEhKuPQoUPM39//la+PGDGCrVixgjH27IvU0dGRVVVVsVOnTrFJkyYxiUTCGGMsPDyc/fLLL4wxxnr27MnOnTsna+PFL9IXC8r69evZwIEDWWVlJWOMyb6MXywokydPZseOHWOMMZafn89cXV1ZXl4ei4yMZPr6+uzRo0eMMcYGDx7Mdu7c+dLy/3XgwAEWGBjIysvLWXl5OevQoQM7fPhwrbmfy8/PZ7a2tqyqqooxxtjcuXPZqlWramRmjLEffvhBdnX0li1bWKtWrVh2dnat2+H5chKJhA0fPpwdPXq01uwvFpS5c+fKik9SUhKztrZmjx8/ZklJSYzH48mKZ3h4OFu6dGmt75+oH/n2fQlRAWfOnMGOHTsAAB06dICJiQkSEhJw+PBhnD17Fm3btgUAVFRUQE9Pr15tHzt2DG+99ZbsUJi5uflL8xw5cgS3b9/Ghx9+CACoqqpCYmIiAKBt27ZwcXGRZUtKSnrtOqOiojBx4kTo6uoCACZMmIDIyEgMHDjwlcuYmJigc+fOOHLkCIYMGYI//vgDV69eBQBER0fj66+/RnFxMcrLy+Hp6Slbrl+/frCysqq1zfXr12Pfvn2QSCR4/PgxunXrhgEDBrw2+/NzW05OTujUqROuXLkCkUgEOzs7dOnSRbYtzp0799ptQdQDFRSiMry9vfHw4UMUFRXJbv7zXy8OR//874wxvPvuu5g7d26D183kOJUolUoRFRUFExOTGtOjoqKgo6Mje87n8yEWi1/b3n+H1q9tqP3aTJgwAbt374aBgQG8vb1hYWGByspKhIaGIiYmBq1bt8aff/6JFStWyJYxMDCota0zZ84gIiICZ8+ehUAgwPvvv4+KiopGZW/ItiDqgXp5EZXh4uKC4cOHIzw8XPalVlRUhG3btgEAevXqhS1btgAArl27hoKCAri5uWHgwIHYsmULCgoKAAD5+fly7SG8KDg4GGvWrEFVVRUAyIY1f9HAgQPx448/yp7fuHHjtYVIIBCgqKio1td69eqF3bt3o7KyEhUVFfj111/Rp0+f12YdMmQIzp49i3Xr1mHixIkAnu2VSaVSWFpaQiKRYNOmTa9tBwAKCwthYmICgUCAvLy8Gnfoe1325/8WqampiImJQceOHeVaJ1FfVFCISlm/fj1MTEzg5eUFX19f9O7dW3YPi5UrV+Kvv/6Cn58fZs+ejd27d0NLSwv9+vXD7Nmz0aNHD/j5+aFv375IT0+v13rDwsIQEBCANm3aICAgAF9//fVL86xcuRKPHj2Cr68vvL298dFHH722oEyYMAGrVq1CQEDAS/fYGDZsGPr27Yt27dqhffv2GDRoEIKDg1+bVUdHBwMHDsTff/+NESNGAACMjY3x3nvvwc/PD507d4a7u7tc7zs4OBiGhobw8PDAmDFj0KNHD7myf/rpp0hLS4Ovry+GDh2KtWvXolWrVnKtk6gv6jZMCCFEIWgPhRBCiEJQQSGEEKIQVFAIIYQoBBUUQgghCkEFhRBCiEJQQSGEEKIQVFAIIYQoBBUUQgghCvH/pq/C749UJQsAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/_sources/12_bootstrap.ipynb b/_sources/12_bootstrap.ipynb index f530614..76c2443 100644 --- a/_sources/12_bootstrap.ipynb +++ b/_sources/12_bootstrap.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/13_hypothesis.ipynb b/_sources/13_hypothesis.ipynb index a77c4a5..3a4dca4 100644 --- a/_sources/13_hypothesis.ipynb +++ b/_sources/13_hypothesis.ipynb @@ -4,9 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/_sources/14_outro.ipynb b/_sources/14_outro.ipynb index 259f836..b1baacb 100644 --- a/_sources/14_outro.ipynb +++ b/_sources/14_outro.ipynb @@ -2,12 +2,10 @@ "cells": [ { "cell_type": "markdown", - "id": "c3e54f0e", + "id": "189bde3b", "metadata": {}, "source": [ - "Printed copies of *Elements of Data Science* are available now, with a **full color interior**.\n", - "\n", - "From July 17 to July 31, [get 20% off at Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." + "Printed copies of *Elements of Data Science* are available now, with a **full color interior**, from [Lulu.com](https://www.lulu.com/shop/allen-downey/elements-of-data-science/paperback/product-9dyrwn.html)." ] }, { diff --git a/searchindex.js b/searchindex.js index 2ad5325..46558c5 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"Are First Babies More Likely To Be Late?": [[12, "are-first-babies-more-likely-to-be-late"]], "Arithmetic": [[0, "arithmetic"]], "Boolean Series": [[6, "boolean-series"]], "Boostrap sampling": [[16, "boostrap-sampling"]], "Bootstrap Sampling": [[11, null]], "Bootstrapping": [[11, "bootstrapping"]], "CDF of Age": [[7, "cdf-of-age"]], "Calculating Distance": [[1, "calculating-distance"]], "Calculating with Variables": [[0, "calculating-with-variables"]], "Case Studies": [[14, "case-studies"]], "Categorical Variables": [[9, "categorical-variables"]], "Comparing Distributions": [[7, "comparing-distributions"]], "Comparing Incomes": [[7, "comparing-incomes"]], "Computing p-values": [[12, "computing-p-values"]], "Controlling for Age": [[12, "controlling-for-age"]], "Correlation and Regression": [[11, "correlation-and-regression"]], "Counting Unique Words": [[4, "counting-unique-words"]], "Counting Word Frequencies": [[4, "counting-word-frequencies"]], "Counting Words": [[3, "counting-words"]], "Counting with Loops": [[3, "counting-with-loops"]], "Cumulative Distribution Functions": [[7, "cumulative-distribution-functions"]], "DataFrames and Series": [[6, null]], "Dealing with Capitalization": [[4, "dealing-with-capitalization"]], "Debugging": [[2, "debugging"]], "Decorating the Axes": [[5, "decorating-the-axes"]], "Defining Functions": [[1, "defining-functions"]], "Dictionaries": [[4, null], [4, "id1"]], "Distribution of Education": [[7, "distribution-of-education"]], "Distributions": [[7, null], [7, "id1"]], "Elements of Data Science": [[14, null]], "Estimating Average Income": [[11, "estimating-average-income"]], "Estimating Means": [[10, "estimating-means"]], "Estimating Percentiles": [[11, "estimating-percentiles"]], "Exploring relationships": [[8, "exploring-relationships"]], "Files": [[3, "files"]], "Filtering Data": [[6, "filtering-data"]], "Further Reading": [[13, null]], "Geopandas": [[1, "geopandas"]], "Graphing Religious Affiliation": [[5, "graphing-religious-affiliation"]], "Grouping by Age": [[9, "grouping-by-age"]], "Haversine Distance": [[1, "haversine-distance"]], "Histograms": [[6, "histograms"]], "Hypothesis Testing": [[12, null]], "Indexing": [[4, "indexing"]], "Kernel Density Estimation": [[7, "kernel-density-estimation"]], "Keyword Arguments": [[5, "keyword-arguments"]], "Limitations of Bootstrapping": [[11, "limitations-of-bootstrapping"]], "Lists": [[2, "lists"]], "Lists and Arrays": [[2, null]], "Logarithmic Scales": [[5, "logarithmic-scales"]], "Logistic Regression": [[9, "logistic-regression"], [16, "logistic-regression"]], "Loops": [[3, "loops"]], "Loops and Files": [[3, null]], "Making an Extract": [[6, "making-an-extract"]], "Math Functions": [[0, "math-functions"]], "Modeling Distributions": [[7, "modeling-distributions"]], "Multiple Regression": [[9, "multiple-regression"]], "Never Test for Normality": [[15, null]], "Notebook 1": [[14, "notebook-1"]], "Notebook 10": [[14, "notebook-10"]], "Notebook 11": [[14, "notebook-11"]], "Notebook 12": [[14, "notebook-12"]], "Notebook 13": [[14, "notebook-13"]], "Notebook 2": [[14, "notebook-2"]], "Notebook 3": [[14, "notebook-3"]], "Notebook 4": [[14, "notebook-4"]], "Notebook 5": [[14, "notebook-5"]], "Notebook 6": [[14, "notebook-6"]], "Notebook 7": [[14, "notebook-7"]], "Notebook 8": [[14, "notebook-8"]], "Notebook 9": [[14, "notebook-9"]], "NumPy Arrays": [[2, "numpy-arrays"]], "Numbers": [[0, "numbers"]], "Parametric bootstrap": [[16, "parametric-bootstrap"]], "Plotting": [[5, null]], "Plotting Sandwich Prices": [[5, "plotting-sandwich-prices"]], "Quantifying Correlation": [[8, "quantifying-correlation"]], "Reading the Data": [[6, "reading-the-data"]], "Regression": [[9, null]], "Regression of Height and Weight": [[8, "regression-of-height-and-weight"]], "Regression with StatsModels": [[9, "regression-with-statsmodels"]], "Relationships": [[8, null]], "Relative Difference": [[2, "relative-difference"]], "Removing Punctuation": [[4, "removing-punctuation"]], "Representing Dates and Times": [[1, "representing-dates-and-times"]], "Representing Location": [[1, "representing-location"]], "Resampling": [[10, null]], "Resampling and Logistic Regression": [[16, null]], "Resampling with KDE": [[11, "resampling-with-kde"]], "Sample size": [[15, "sample-size"]], "Sandwich Prices": [[2, "sandwich-prices"]], "Series": [[6, "series"]], "Series Arithmetic": [[6, "series-arithmetic"]], "Simple Linear Regression": [[8, "simple-linear-regression"]], "Simulating One Group": [[10, "simulating-one-group"]], "Simulating the Trial": [[10, "simulating-the-trial"]], "Statistical Summaries": [[2, "statistical-summaries"]], "Strings": [[1, "strings"]], "Summarizing Relative Differences": [[2, "summarizing-relative-differences"]], "Summary": [[0, "summary"], [1, "summary"], [2, "summary"], [3, "summary"], [4, "summary"], [5, "summary"], [6, "summary"], [7, "summary"], [8, "summary"], [9, "summary"], [10, "summary"], [11, "summary"], [12, "summary"]], "Summary Statistics": [[6, "summary-statistics"]], "Testing Correlation": [[12, "testing-correlation"]], "Testing Medical Treatments": [[12, "testing-medical-treatments"]], "Testing Regression Models": [[12, "testing-regression-models"]], "The Data": [[16, "the-data"]], "The General Social Survey": [[7, "the-general-social-survey"]], "The Hybrid Model": [[16, "the-hybrid-model"]], "The Hypothesis Testing Framework": [[12, "the-hypothesis-testing-framework"]], "The Resampling Framework": [[10, "the-resampling-framework"], [16, "the-resampling-framework"]], "The break Statement": [[3, "the-break-statement"]], "The notebooks": [[14, "the-notebooks"]], "Timedelta": [[1, "timedelta"]], "Times and Places": [[1, null]], "Tuples": [[2, "tuples"]], "Vaccine Testing": [[10, "vaccine-testing"]], "Validation": [[6, "validation"]], "Variables": [[0, "variables"]], "Variables and Values": [[0, null]], "Visualizing regression results": [[9, "visualizing-regression-results"]], "Visualizing relationships": [[8, "visualizing-relationships"]], "Weighted Bootstrapping": [[11, "weighted-bootstrapping"]], "Weighted Means": [[6, "weighted-means"]], "Which One Is Right?": [[16, "which-one-is-right"]], "Whitespace": [[3, "whitespace"]], "Working with Bigger Data": [[11, "working-with-bigger-data"]], "Zipf\u2019s Law": [[5, "zipf-s-law"]], "if Statements": [[3, "if-statements"]]}, "docnames": ["01_variables", "02_times", "03_arrays", "04_loops", "05_dictionaries", "06_plotting", "07_dataframes", "08_distributions", "09_relationships", "10_regression", "11_resampling", "12_bootstrap", "13_hypothesis", "14_outro", "README", "anderson", "resample_logit"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1}, "filenames": ["01_variables.ipynb", "02_times.ipynb", "03_arrays.ipynb", "04_loops.ipynb", "05_dictionaries.ipynb", "06_plotting.ipynb", "07_dataframes.ipynb", "08_distributions.ipynb", "09_relationships.ipynb", "10_regression.ipynb", "11_resampling.ipynb", "12_bootstrap.ipynb", "13_hypothesis.ipynb", "14_outro.ipynb", "README.md", "anderson.ipynb", "resample_logit.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "00": [1, 2], "000": [3, 4, 7, 11, 16], "000000": [6, 8, 11, 12, 15, 16], "000017": 16, "000044": 16, "000051": 16, "000053": 16, "000054": 16, "000058": 16, "000061": 16, "000083": 16, "000094": 16, "0001": 16, "000100": 16, "000108": 16, "000114": 16, "000115": 16, "000116": 16, "000125": 16, "000126": 16, "000129": 16, "000137": 16, "000147": 16, "000156": 16, "000168": 16, "000173": 16, "000177": 16, "000216": 9, "0004430600283776241": 8, "000679": 7, "0008229516424471632": 12, "000935": 16, "001": [8, 16], "001166": 16, "001173": 16, "001197": 16, "001453": 16, "001615": 12, "0019073328587490353": 8, "001914": 16, "001940": 16, "002191": 7, "002218": 16, "002302": 16, "002312": 16, "002334": 16, "002337849260560818": 8, "002454": 7, "002599": 16, "002806793650907722": 8, "002855": 16, "0029": 16, "002912": 16, "003302": 16, "003430": 16, "003461": 16, "004339": 16, "004530": 16, "004569": 16, "004616": 16, "004944": 16, "005": [12, 16], "005012": 16, "005085": 16, "005153": 16, "005557": 9, "005563": 16, "005769": 16, "008109710250479907": 12, "008819": 6, "009536120931481635": 12, "01": [8, 15], "010": 12, "013145": 12, "014": 16, "014555": 15, "014708": 16, "016": 12, "016407": 12, "01640747818656365": 12, "01716181": 8, "018": [11, 16], "018821034903244386": 8, "019": 8, "019658": 16, "01990049751243781": 12, "02": [2, 8], "021274": 9, "023101": 16, "023190": 16, "023207": 16, "024265": 16, "024899": 16, "0249975737241255": 7, "025": 16, "025192": 16, "025486": 12, "025974": 16, "025989": 16, "027137": 16, "027473": 16, "0278": 16, "027804": 16, "027825": 16, "028435": 16, "029": 16, "029538": 16, "029799": 16, "029943": 16, "030217": 16, "030494": 16, "031": 16, "031057": 16, "031193": 16, "031469": 16, "031532": 16, "031659": 16, "031756": 16, "032862": 16, "033815": 16, "034": 0, "034946": 16, "035": 10, "035600": 16, "03654909244711291": 10, "038": 16, "04": [1, 2, 15], "04675698521121631": 8, "04745762711864407": 10, "05": [1, 6, 8, 16], "05003": 16, "050773": 16, "055303": 16, "0589": 1, "06": [1, 12], "064951": 12, "066840": 16, "067902": 8, "06790235862083926": 8, "07": [1, 2, 5], "071802": 9, "074107": 9, "07467595184363": 9, "076100": 9, "0761003894995": 9, "08": [11, 16], "08049023710964": 8, "08138685042569352": 8, "084075851039522": 10, "08439154079040358": 8, "08929132209777034": 6, "09": [1, 2, 5, 8], "0925279328183": 10, "092962": 16, "096781": 12, "097853": 9, "098093": 9, "09842209405975708": 12, "099": 12, "099338": 12, "09933806121560428": 12, "0x7fe63035c7f0": 6, "1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "10": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "100": [0, 2, 4, 10, 11, 12, 15, 16], "1000": [3, 4, 7, 10, 11, 15], "10000": 4, "1000000": 5, "1001": [10, 11, 12], "101": [11, 16], "10191082802547771": 12, "103": 10, "1056": 12, "106774": 6, "108238": 9, "1099": [8, 11], "10th": 11, "11": [1, 2, 5, 6, 8, 11, 12, 15, 16], "11019675319089409": 8, "111": 6, "1112": 7, "1136": 11, "113654": 16, "11564967": 10, "116": 10, "117": 15, "118557": 16, "11884": 16, "11940": 9, "11993351438646496": 12, "12": [1, 2, 6, 7, 8, 9, 11, 12, 16], "120": [11, 14], "121": [2, 11], "12151": 16, "121771": 12, "122187": 8, "1225": 12, "123": [1, 5], "123123123": 1, "1234": 0, "124": 11, "12672": 11, "127": 11, "1278": 1, "12791": 16, "128590": 12, "1287": 6, "12887112887112886": 12, "129": 11, "13": [6, 12], "130148": 12, "132": 11, "13337": 6, "135980": 12, "137394": [8, 11], "139": 16, "1391": 12, "14": [6, 7, 8, 9, 11, 12, 16], "140": [8, 11], "140045": 12, "140381990193": 11, "14159": [0, 2], "141592653589793": 0, "144": 11, "14616": 11, "148": [0, 11], "14807357731763": 11, "15": [5, 8, 9, 11, 12, 15, 16], "150": [8, 11, 16], "15007": 9, "152": 12, "155": 12, "156": 9, "157": 12, "15724": 6, "158": 7, "16": [0, 6, 7, 9, 10, 11, 12, 16], "160": [8, 11], "160754": 16, "16138": 6, "163": [8, 11, 12], "163240": 12, "1644": 6, "165": [8, 9, 11, 12], "1650": 12, "166255": 16, "166667": 7, "168": [8, 11], "17": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "170": [8, 11, 12], "170088": 12, "1711": [8, 11], "1720": 9, "1728": 9, "175": [10, 12], "176": [10, 11], "17642069806488855": 8, "177": [7, 10, 11], "1779": 9, "178": [10, 11], "178173": 16, "179": 6, "17999": 9, "18": [7, 8, 9, 12, 16], "180": [8, 10, 11], "180158": 16, "180217889908257": 6, "1803": 7, "180796": 16, "182666": 16, "182822": 16, "1847133757961785": 12, "1851851851851852": 12, "1864094701037655": 12, "189228": 16, "18951": [7, 9, 11, 16], "19": [1, 5, 7, 16], "190": [11, 16], "1924": 6, "193701": 11, "196367": 9, "1967": 1, "196758": 16, "1972": [7, 9, 11, 16], "197452229299362": 12, "19775280898877": 12, "198399": 16, "1986": [7, 9, 11], "19872296193634043": 12, "1989": 1, "1990": 11, "199178": 16, "1994": 16, "1995": 7, "1st": 6, "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "20": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "200": [4, 8, 11, 15], "2000": 16, "200002": 16, "2003": 1, "2006": 1, "2009": [1, 5], "201": [11, 12], "2010": 5, "2011": 5, "201137": 16, "2012": 5, "2013": [5, 15], "2014": 5, "2015": [5, 12], "2015_2017_fempregdata": 6, "2015_2017_fempregsetup": 6, "2016": [5, 14], "2017": 5, "2018": [5, 11], "2019": [2, 5], "2021": [8, 11, 13], "2021000019": 11, "2021000044": 11, "2021000091": 11, "2021001348": 11, "2021003808": 11, "2022": 7, "2023": [15, 16], "2024": 1, "2030": 11, "203760": 11, "20469": 16, "20475": 16, "20483": 5, "20484": 5, "206": 11, "207513": 9, "208": 16, "20801": 1, "21": [4, 5, 7, 10], "2100": 0, "213299": 16, "216985": 16, "21777778": 2, "21885": 10, "21911": 10, "21e": 16, "22": 1, "221221": 6, "221295": 16, "223": 11, "22609399141": 11, "2268": 6, "22727273": 2, "228": 11, "22984884706593015": 1, "23": [5, 7, 9, 11, 16], "2345": 0, "2345e3": 0, "234792": 16, "236901": 16, "238870": 16, "24": [1, 2, 5, 12], "240": 16, "240243": 16, "242778": 16, "242922": 16, "24366": [7, 9, 11, 16], "24635": 9, "248": [6, 11], "248814": 16, "249717": 16, "25": [0, 2, 5, 6, 7, 11, 12, 16], "251942": 16, "25662": 16, "257": 11, "25997": 11, "25th": [6, 7, 8], "26": [5, 11], "2600": [3, 4, 5], "261": 16, "26336": 9, "2661": 0, "269497": 12, "27": [7, 9, 11, 16], "2724": 12, "274": 16, "274097": 9, "276153": 16, "28": [6, 8, 11], "284478654019068": 10, "2863": 6, "28e": 16, "29": [2, 5, 12], "290082606909771": 10, "29046069532454": 12, "292620941946657": 8, "294144493633334": 10, "2945": 7, "299": [8, 11], "2nd": 6, "3": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "30": [1, 6, 7, 8, 9, 12], "300": 15, "30000000000000004": 0, "301154": 15, "3013": 6, "30458": [7, 9, 11, 16], "306": 1, "306774": 1, "30883": 11, "31": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "3115": 12, "314": 12, "317167": 16, "3174114774114774": 16, "317927": 16, "32": [7, 8, 11], "322": 11, "32331": 11, "32345": 11, "324": 16, "32533": 11, "32537": 11, "32540": 11, "32573": 11, "32724": 11, "32735": 11, "327560": 16, "3291544097817203": 10, "33": [2, 10, 12], "331": 11, "332": 2, "336757": 16, "3370276162790695": 12, "337773": 16, "34": 12, "34389": 5, "3450": 9, "3464": 9, "34974372": 10, "35": [1, 9, 12], "351063": 16, "3514": 9, "352": 10, "352934": 16, "3601": 1, "363082": 15, "3631": 9, "36367": 9, "363829": 16, "365": 1, "366": 1, "3665": 9, "367273": 12, "3675": 6, "37": [6, 11, 12], "37169252259280877": 9, "373": 11, "375719": 16, "375796178343949": 12, "379621": 16, "37th": [6, 12], "38": 6, "383268": 6, "38469590704490736": 6, "384881": 16, "3849": 16, "384919": 16, "38545760530519": 12, "385612": 16, "386624": 16, "39": 12, "390859": 16, "392391": 16, "39253624525765": 15, "393080": 8, "394": 16, "394937": 16, "396": 6, "39647577092511": 12, "396516": 12, "399": 16, "399981032493": 11, "3rd": 6, "4": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "40": [2, 7, 8, 11, 12], "400000": 6, "400791": 16, "404636": 16, "406837": 16, "41": 11, "411": 12, "411384": 16, "412": 16, "4131591025766": 0, "413202": 16, "414960": 16, "4156": 9, "415658": 16, "418268": 12, "41990": 4, "42": [1, 4, 11, 12], "420195135117": 11, "422171": 16, "425944": 6, "429609416096791": 6, "43": [10, 11], "432664": 16, "438": 11, "438693": [8, 11], "439306": 9, "44": [7, 8, 11], "44247680097321": 8, "445272": 9, "445770": 16, "446": 16, "447477": 12, "45": [7, 8, 11], "450": 16, "453640508655": 9, "453641": 9, "454811": 9, "4563973063973": 2, "4575": 6, "46": [6, 11], "464670": 16, "468": 10, "4687": 11, "469398": 8, "4693981914367916": 8, "4693981914367917": 11, "47": 11, "477151": 12, "477151462838814": 12, "478": 12, "4782776976576317": 8, "47827769765763173": 8, "47939863668166327": 8, "48": [7, 9, 11, 12, 16], "480": 9, "480958781362007": 6, "48237692869481597": 10, "483": 15, "483746": 9, "4891": 9, "49": [2, 5, 7, 11], "49028": 11, "490835": 6, "495": 2, "496": 9, "499": 6, "5": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "50": [4, 6, 7, 8, 9, 11, 15, 16], "507115749525616": 12, "507116": 12, "5074": 1, "50763": [7, 9, 11, 16], "50th": 6, "51": [1, 7], "5103": 11, "5107": 11, "513": 11, "5155": 11, "51827849": 10, "5221": 11, "52599": 9, "5265": 1, "5272": 11, "53": 7, "531441": 0, "534347": 16, "53641955": 5, "537": 11, "54": [2, 11, 12], "541": 11, "54149968876962": 11, "544026": 9, "5448": 11, "545800": 11, "546811": 11, "547000": 11, "55": [9, 11], "5512": 11, "5537": 11, "555e": 16, "5561": 11, "56": [1, 2, 8], "560": [4, 11], "563299": 3, "5646310470973316": 8, "5648": 6, "566316": [3, 4], "5675": 11, "567779": 16, "5687": 11, "569630553049": 11, "57": [1, 16], "570": 6, "573": 11, "5730": 11, "573000": 11, "57572755": 10, "58": [8, 11, 16], "5827": 11, "585064": 11, "587": [8, 11], "59": 2, "5902": 11, "592": [11, 12], "593464": 16, "598": 2, "59956": 12, "5th": [10, 11], "6": [0, 1, 2, 3, 5, 6, 7, 10, 12, 16], "60": [7, 11], "60000": 3, "6015": 11, "605170185988092": 0, "60861545": 10, "60980474219305": 8, "61": [7, 9, 10, 11, 16], "6108980682593": 0, "6129": 11, "613167": 16, "618": 0, "62": [2, 7, 8, 11], "62121445": 7, "621570": [8, 11], "622418": 16, "623120": 9, "6242": 11, "625290800764": 9, "629106": 16, "630366": 16, "6372": 1, "64": [2, 11, 16], "6416666666666666": 2, "6416666666666675": 2, "642430": 16, "64814": 16, "648528": 16, "64912": 11, "65": [2, 5, 7, 8, 11], "6540": 6, "655314": 16, "656325981015": 1, "6573": 6, "6599": 6, "66": [3, 8, 11], "66050": 3, "66340016901641": 8, "6666666666666666": 0, "6690": 6, "6693": 12, "6697923695446464": 10, "67": [2, 5, 8, 10, 11], "6708455902182797": 10, "6709": 11, "674844": 9, "677287": 11, "67733333": 2, "6788": 16, "678838": 16, "68": 5, "681880": 16, "684106": 15, "687507": 16, "6878308158080697": 8, "69": 5, "693": 11, "7": [0, 2, 5, 6, 9, 10, 11, 12, 15, 16], "70": [2, 7, 9, 10, 11, 16], "700": 0, "7006176070344394": 6, "7022507535102278": 10, "70227273": 2, "7036": 11, "706": 9, "70627": [6, 12], "70628": [6, 12], "71": [1, 5, 8, 11], "718281828459045": [0, 5], "72": [8, 10, 11], "72390": 7, "724": 11, "7251222": 10, "7262363980891564": 15, "726908": 9, "7292": 6, "73": 5, "73333333": 2, "7377": 11, "74": [2, 9], "740717": 9, "744": [8, 11], "745": 2, "745531": [8, 11], "7474241": 7, "747448": 16, "75": [2, 5, 6, 7, 8, 11, 16], "750536260325863": 10, "752798": 15, "754357": 6, "7579660563439401": 8, "7579660563439402": 8, "75th": [6, 7, 8], "76": [5, 6, 8], "766346": 9, "767539": 9, "77": [5, 7, 8, 11, 15], "771360": 6, "772": 15, "7721998": 7, "774": 1, "7777777777777778": 12, "77777777777779": 2, "77777778": 2, "78": 12, "780499": 16, "781547": 11, "783": 10, "8": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16], "80": [5, 7, 11], "804015": 16, "804886": 16, "805556": 16, "81003584229393": 2, "812430": 16, "814": 16, "819110": 16, "82": [6, 12, 16], "8255649832811274": 10, "825870": [8, 11], "827253": 15, "837752726940806": 10, "840253": 16, "8470158725246148e": 8, "847295": 16, "851529": 11, "862986": [8, 11], "87": 8, "870685": 9, "878271": 6, "88": [8, 11], "883391903610059": 10, "884552": 16, "89": [2, 6, 7, 9, 16], "898221": 9, "9": [0, 2, 5, 6, 7, 8, 9, 11, 12], "90": [10, 11], "901": 6, "902673": 6, "91": [7, 11], "911": 10, "916000": 6, "92": 11, "924924924924927": 2, "93": [8, 11], "9366891536604244": [8, 11], "939358": 16, "94": 11, "945": 2, "95": [6, 10, 11, 16], "951593472785014": 1, "955": 11, "9553": 6, "95th": [10, 11], "962552": 9, "97": 11, "970833333333334": 2, "975": [11, 16], "97693409905207": 10, "978361997": 0, "98": [6, 7, 12], "987083970017878": 11, "988": 16, "99": [2, 5, 6, 7, 12], "A": [0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15], "AND": [3, 6], "And": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "As": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "At": [4, 6, 8, 9, 12, 15], "BY": [15, 16], "But": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "By": [1, 2, 3, 5, 6, 11, 12, 16], "FOR": 5, "For": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "If": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "In": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "It": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "NOT": 6, "No": [0, 13, 15, 16], "Not": [1, 6], "OF": 3, "OR": 6, "Of": [6, 10, 12, 16], "On": [1, 8], "One": [1, 2, 3, 6, 7, 8, 11, 12, 13], "Or": [1, 2, 4, 5, 12, 14], "That": [2, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16], "The": [0, 1, 2, 4, 5, 6, 8, 9, 11, 13, 15], "Then": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16], "There": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13], "These": [1, 3, 5, 6, 7, 8, 9, 12], "To": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16], "With": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12], "_": [4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "__main__": 1, "_ageg5yr": [8, 11], "_asdict": [8, 9], "_htm4g10": [8, 11], "_htmg10": 8, "_incomg1": [8, 11], "_io": 3, "_llcpwt": [8, 11], "_sex": [8, 11], "_vegesu1": [8, 11], "ab": [4, 12], "abbrevi": 1, "abl": [2, 6, 14], "abort": 6, "about": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "abov": [1, 7, 8], "abracadabra": 4, "absolut": [2, 14], "abut": 15, "acceler": 13, "accord": [5, 6, 7, 9, 12], "accordingli": 3, "account": [0, 4, 6, 11, 12], "accumul": 0, "accur": [1, 7, 10, 11, 12], "across": [7, 8], "actual": [1, 3, 7, 9, 10, 12, 14, 15], "ad": [2, 3, 4, 8, 9, 12], "add": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16], "addit": [0, 1, 6, 7, 9, 12, 14], "address": 1, "adher": 6, "adjei": 16, "adjust": [8, 11, 15], "adult": [5, 7, 10], "advantag": [10, 12], "advic": 16, "advis": 16, "affect": [6, 10, 12, 16], "after": [0, 3, 4, 7, 9, 12, 15], "ag": [1, 3, 6, 8, 11, 14, 16], "again": [3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16], "against": [6, 9], "age2": [9, 16], "age_jitt": 8, "agecon": [6, 12], "agecon2": 12, "agegrp": 12, "agepreg": 6, "agre": [6, 7], "agreement": 6, "akpor": 16, "algebra": 1, "algorithm": [3, 13, 14], "align": [12, 13, 14], "aliv": 6, "all": [0, 1, 2, 4, 5, 6, 7, 9, 11, 12, 15, 16], "all_punctu": [4, 5], "allen": [13, 15, 16], "allendownei": [5, 6, 7, 8, 9, 10, 11, 12, 16], "allergi": 12, "allow": [0, 9], "almost": [4, 5, 6, 7, 8, 10, 12], "along": [1, 2, 6, 7, 9, 11, 12], "alpha": [8, 9, 11, 15, 16], "alreadi": [1, 2, 3, 4, 8], "also": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16], "altern": [7, 8, 10, 11, 12, 13, 16], "although": 11, "altogeth": [0, 1, 11], "alwai": [0, 1, 8, 10, 12, 15, 16], "am": [0, 7, 13, 16], "american": [2, 5], "among": [5, 9, 11, 14], "amount": [0, 2], "an": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16], "analysi": [3, 6, 7, 9, 10, 12, 13], "analyst": 11, "analyt": [12, 16], "analyz": 6, "anderson": 15, "anderson1": 15, "anderson2": 15, "anderson_test": 15, "angl": 1, "ani": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16], "annual": 0, "anoth": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 16], "answer": [0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 15, 16], "anyon": 4, "anyth": [6, 7, 8, 12, 14, 15], "anywai": 5, "api": [6, 9, 11, 12, 15, 16], "apologi": 7, "apostroph": 4, "appar": [7, 12], "appear": [3, 4, 5, 6, 7, 10, 11], "append": [12, 15], "appli": [9, 12, 13], "applic": 16, "appreci": 16, "approach": [12, 14], "appropri": [6, 9], "approxim": [0, 1, 5, 7, 10, 16], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "arang": 12, "arbitrari": [1, 2], "arctan2": 1, "area": [1, 8], "aren": 3, "argu": 15, "argument": [2, 4, 6, 7, 8, 9, 10, 11, 12], "arithmet": [1, 2], "around": [5, 12], "arrai": [1, 4, 5, 6, 7, 8, 10, 14, 15], "arrow": 7, "articl": [2, 5, 12, 13, 14, 15, 16], "ascend": 5, "asid": 2, "ask": [2, 3, 5, 7, 9, 10, 11, 16], "aspect": 8, "assc": 7, "assess": [10, 13, 14], "assign": [0, 1, 3, 4, 5, 6, 8, 9, 10, 16], "assist": 5, "associ": [4, 6, 7, 9, 12], "assum": [0, 3, 5, 10, 12, 14, 16], "assumpt": [10, 12, 16], "astronom": 14, "astyp": 15, "asymptot": 16, "attach": 3, "attempt": [1, 6, 8, 12], "attend": 7, "attent": [0, 6, 8], "attribut": [5, 6, 13, 15, 16], "attributeerror": 5, "audienc": 7, "automat": 5, "avail": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "averag": [1, 2, 6, 8, 9, 10, 12, 14], "avoid": [1, 2, 3, 6, 8, 12, 13], "aw": 12, "ax": [1, 6, 7, 11], "axi": [5, 6, 7, 8, 9, 11, 15], "axvlin": 16, "b": [4, 9, 13, 15], "babi": [6, 11, 14], "bach": 7, "bachelor": [7, 9], "back": [3, 4, 5, 6, 8, 11, 12, 15], "background": [3, 6], "balanc": 0, "bang": [2, 5], "bank": 0, "bar": [7, 8], "base": [1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16], "basenam": [5, 6, 7, 8, 9, 10, 11, 12, 16], "basic": 0, "basket": 2, "bass": 5, "bay": [13, 14], "bayesian": 13, "bc": 3, "bday_this_year": 1, "becaus": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "been": [6, 8, 10, 11, 12, 14, 16], "befor": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12], "begin": [3, 4, 5, 6, 12], "behav": [0, 9], "behavior": [8, 11, 12], "being": [5, 12], "belief": [7, 13], "bell": [6, 7], "belong": [1, 3, 9], "below": [1, 6, 7, 8, 11, 12, 14], "benefit": 13, "bernoulli": [10, 12, 16], "best": [6, 7, 8, 10, 14, 16], "better": [5, 7, 8, 9, 11, 12, 13], "between": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "beyond": 11, "bfrss": 11, "bia": [11, 14], "bias": [10, 16], "big": [6, 9, 10, 12, 16], "bigger": [2, 5, 12], "biggest": [11, 12], "bin": [6, 8, 12], "binari": [9, 14], "binomi": 7, "birth": [6, 11, 12], "birth_weight": 6, "birthdai": 1, "birthdat": 1, "birthord": [6, 12], "birthweight": [6, 12], "birthwgt": 12, "birthwgt_first": 12, "birthwgt_lb1": [6, 12], "birthwgt_oth": 12, "birthwgt_oz1": [6, 12], "bit": [0, 2, 12], "bite": 14, "black": 14, "blind": 10, "blog": [13, 15], "book": [1, 3, 4, 5, 9, 12, 13, 14], "bookmark": 3, "bool": [1, 6], "boolean": [1, 7, 11, 12, 15], "bootstrap": 14, "bootstrap2": 16, "bootstrap3": 16, "bootstrap_income_percentil": 11, "bootstrap_mean": 11, "bootstrap_regression_lin": 11, "born": [1, 6, 12], "boston": [1, 2, 5], "boston_mean": 2, "boston_price_arrai": 2, "boston_price_list": [2, 5], "both": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "bottom": [7, 8], "bound": [5, 11], "boundari": 12, "box": [8, 12, 14], "boxplot": [8, 12], "bracket": [0, 2, 4, 5, 6, 7, 9], "branch": 1, "break": [4, 5, 8], "brfss": [8, 11, 12], "brfss_2021": [8, 11], "bring": [11, 12], "briton": [2, 5], "browser": 14, "bse": 16, "bugbear": 14, "bui": 9, "build": [4, 10, 12], "c": [2, 5, 9, 12, 16], "c0": 5, "c3": 5, "c4": 9, "caesar": [2, 5], "caesarean": 12, "calcul": 2, "calendar": 1, "call": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "callabl": 0, "came": [7, 15], "can": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "cannot": [6, 9], "capabl": 2, "captur": [8, 12], "care": [6, 8, 10, 15], "carefulli": [0, 6, 16], "case": [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 16], "caseid": [6, 12], "casual": [8, 10], "catch": 5, "categor": [8, 11], "categori": [4, 8, 9], "caus": [0, 11], "cc": [15, 16], "cdc": [6, 8], "cdf": [8, 9, 14, 15], "cdf_age": 7, "cdf_female_ag": 7, "cdf_incom": 7, "cdf_male_ag": 7, "cdf_sampl": 7, "ceil": 1, "cell": [0, 1, 2, 4, 5, 12], "center": [5, 6, 8, 12], "centimet": [8, 10, 11], "central": [7, 9], "certain": 16, "certainli": 11, "challeng": [6, 13, 14], "chanc": [7, 9, 10, 12, 13, 15], "chang": [4, 5, 11, 13, 14], "chapter": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "charact": [0, 2, 3, 4, 5, 6], "character": [9, 16], "chart": [7, 8], "chatgpt": 5, "cheaper": 2, "check": [0, 1, 3, 4, 6, 7, 9, 12, 15], "chees": [2, 5], "chicago": 13, "chicken": [2, 5], "child": 12, "children": 12, "choic": [1, 2, 7, 8, 12], "choos": [5, 7, 9, 10, 11, 12, 14, 15, 16], "chose": [1, 3, 7], "chosen": [2, 11], "christian": 5, "chunk": 2, "ci": 10, "ci90": [10, 11, 16], "circl": [5, 8], "citi": [2, 5], "clarifi": 9, "classic": [7, 14], "classifi": 14, "claus": 4, "clean": [6, 9], "clear": [0, 7, 12, 14], "clearer": [7, 12], "clearli": [1, 8], "click": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "clinic": 12, "close": [0, 5, 7, 8, 9, 10, 11, 12, 15, 16], "closer": 8, "cm": [8, 10, 11], "cmintvw": 6, "cmjan3yr": 6, "cmjan4yr": 6, "cmjan5yr": 6, "cmlstyr": 6, "co": [0, 1, 12], "code": [0, 1, 2, 4, 7, 12, 14], "codebook": [6, 7], "coef": 16, "coeffici": [8, 10, 12, 14], "cohort": 12, "coin": [10, 16], "colab": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "collect": [0, 1, 3, 4, 7, 10, 11, 12, 16], "colleg": 7, "collid": 8, "colon": [3, 5], "color": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "colspec": 6, "column": [3, 6, 7, 8, 9, 11, 12, 15, 16], "com": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "combin": [1, 6, 12], "come": [0, 1, 6, 10, 15], "comma": [0, 2, 4], "command": 0, "comment": 1, "commit": 14, "common": [0, 1, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 16], "commut": 8, "compa": 14, "compact": 7, "compar": [1, 2, 3, 5, 6, 9, 10, 11, 12, 14, 15, 16], "comparison": [2, 7, 9], "compass": 1, "complement": [7, 10], "complet": [10, 12], "complevel": 6, "complic": 6, "compon": 1, "composit": 1, "compound": 0, "compress": 6, "comput": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "computation": 11, "con": [5, 7], "concat": 11, "concaten": [1, 2, 4], "concept": [6, 7, 12], "concern": 8, "concis": 5, "conclud": [8, 12, 14, 15], "conclus": [6, 12], "condit": [3, 6, 9], "confid": [6, 10, 11, 16], "confidence_interv": 10, "confirm": [2, 3, 6, 9, 10, 11], "conflict": 13, "confus": [0, 6, 7], "connect": [5, 8, 9], "conserv": 14, "consid": [4, 6, 7, 8, 12, 13, 16], "consist": [6, 8, 11, 12], "constant": [0, 5, 9], "construct": 8, "consumpt": [8, 12], "contact": 2, "contain": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "content": [3, 5], "contenti": 12, "context": [1, 7, 8, 12, 14], "continu": [0, 3, 5, 7, 11], "contrast": [7, 13], "contribut": 9, "control": [8, 9, 10], "conveni": [5, 16], "convent": [1, 3, 13], "converg": 16, "convers": [2, 5], "convert": [1, 2, 4, 5, 6, 7, 8, 11], "coord1": 1, "coord2": 1, "coordin": 1, "copi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "copyright": [13, 15, 16], "core": [6, 9], "corr": [8, 11, 12], "corr_actu": 12, "corrcoef": 8, "correct": [0, 4, 6, 10, 11, 16], "correctli": [0, 6], "correl": [9, 14], "correspond": [2, 4, 6, 7, 9, 11, 12, 16], "could": [2, 6, 7, 9, 10, 11, 12, 16], "count": [0, 5, 6, 7, 9, 11, 12, 14, 16], "counter": 4, "counterfactu": 16, "countri": [7, 10], "coupl": 2, "cours": [10, 16], "covari": 16, "cover": 9, "creat": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14], "creativ": 13, "crime": 14, "crimin": [13, 14], "criteria": 16, "criterion": 6, "critic": 15, "critical_valu": 15, "csv": 6, "cucumb": [2, 5], "curios": 12, "current": [1, 6, 9, 11, 13, 16], "curriculum": [12, 14], "curv": [6, 7, 11], "cut": [8, 11, 12], "cv": 10, "d": [2, 3, 4, 9, 15], "d1": 1, "d2": 1, "dai": [1, 8], "danger": 12, "darl": 15, "dat": 6, "data": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15], "data1": 12, "data2": 12, "data_access": 6, "data_fil": [6, 7], "databas": 1, "datafram": [7, 8, 9, 11, 12, 14, 15, 16], "dataframegroupbi": 9, "datasci": [1, 2], "dataset": [2, 6, 7, 8, 9, 10, 11, 12, 16], "date": [0, 14, 16], "date_of_birth": 1, "day_nam": 1, "dct": 6, "deal": 6, "dealt": 6, "death": 12, "decad": 11, "decemb": 1, "decid": 12, "decim": 1, "decis": [1, 12, 13, 15, 16], "declar": 12, "declin": [5, 6], "decor": 11, "decreas": [3, 15], "decrement": 3, "deduct": 3, "def": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "default": [1, 5, 6, 12], "defeat": 12, "defend": 14, "defin": [0, 3, 4, 5, 14, 16], "definit": 12, "degre": [1, 7, 9, 11], "deliber": 10, "deliveri": 12, "delta": 12, "demograph": [7, 11], "demonstr": [2, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16], "den": 16, "denomin": 2, "denot": 12, "densiti": [8, 10, 11, 12], "dep": 16, "depend": [3, 8, 9, 10, 12, 15, 16], "deposit": 0, "depth": 13, "deriv": 16, "descend": 5, "describ": [1, 2, 5, 6, 7, 8, 9, 11, 16], "descript": [7, 16], "deserv": 4, "design": [6, 11], "desir": 11, "detail": [0, 1, 5, 7, 9, 11, 12], "determin": [5, 6, 8], "detour": 12, "dev": 16, "develop": [2, 12, 14], "deviat": [2, 6, 7, 8, 10, 11, 12, 15, 16], "df": [9, 11, 12, 16], "df_pred": 11, "diagnos": [10, 12], "diagram": [10, 12], "dict": 16, "dict_fil": 6, "dict_valu": 5, "dictionari": [3, 5, 6, 14], "did": [2, 4, 6, 9, 10, 11], "didn": 7, "die": 7, "diet": 8, "diff": [5, 12, 16], "diff2": 12, "diff_actu": 12, "differ": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "difficulti": 13, "digit": [0, 1, 11], "dimens": 2, "dimension": 2, "diploma": 7, "direct": [1, 8], "directli": 5, "disadvantag": 12, "disagre": 16, "disappear": 12, "discov": 9, "discret": [5, 8, 11], "discuss": [11, 14], "diseas": [8, 10, 13], "disguis": 11, "disp": [15, 16], "displai": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11], "dist": 15, "distanc": [7, 8], "distinct": 11, "distract": [7, 12], "distribut": [6, 8, 9, 10, 11, 12, 14, 15, 16], "divers": 11, "divid": [1, 5, 6, 9, 10, 12], "divis": 0, "dlambda": 1, "do": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "doc": 6, "document": [4, 5, 6, 7, 8, 14], "doe": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "doesn": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16], "doi": 12, "dollar": [2, 7, 11], "don": [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16], "done": [0, 1, 2, 6, 9, 11, 12, 15], "dot": [1, 3, 5, 9], "doubl": [1, 3], "doubt": 16, "down": [1, 8, 12], "downei": [13, 15, 16], "download": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "downward": 9, "dphi": 1, "dpi": 15, "draft": 2, "dramat": 6, "draw": [5, 6, 7, 10, 11, 12, 16], "draw_arrow_down": 7, "draw_arrow_left": 7, "draw_lin": 7, "drawn": [10, 12], "drive": 14, "drop": [11, 12, 16], "dropna": [6, 8, 9, 11, 12, 16], "dtype": [2, 6, 9, 11, 12, 15, 16], "due": [7, 10, 11, 12, 13, 14, 16], "durat": [1, 6], "dure": [10, 11, 12], "e": [0, 1, 2], "each": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "earli": [1, 12], "earlier": [6, 8], "earn": [0, 7, 9], "earner": 7, "earth": 1, "easi": [1, 9, 10, 12, 16], "easier": [7, 10, 12], "easiest": [11, 16], "eastern": 1, "eat": [8, 12], "ebook": [3, 4], "econom": [2, 5], "economist": [2, 5], "ectop": 6, "edgecolor": 1, "edu": 5, "educ": [9, 11, 14, 16], "educ2": [9, 16], "effect": [1, 4, 6, 8, 10, 11, 12, 13, 16], "efficaci": 10, "effici": 6, "effort": 8, "efron": 16, "egg": [2, 5], "eight": 4, "either": [0, 1, 3, 6, 10, 11, 15], "element": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "elementsofdatasci": [5, 6, 7, 8, 9, 10, 11, 12, 16], "elementwis": [2, 6, 12], "els": [4, 5, 8, 15], "elsewher": 6, "embarrass": 9, "emphas": [10, 12], "emphasi": 13, "empir": [7, 15], "empiricaldist": [7, 8, 15], "empti": [2, 4, 9], "en": 0, "encapsul": 11, "enclos": 1, "encod": [3, 6, 12], "encount": 11, "encourag": 0, "end": [0, 3, 4, 5, 6, 8, 11, 12], "england": [1, 12], "english": [0, 4], "enough": [2, 3, 6, 7, 8, 10, 11, 12, 15, 16], "ensur": 6, "enter": 5, "entir": [3, 11], "entri": 8, "environ": 14, "equal": [3, 7, 8, 9, 10, 12, 13], "equat": [0, 5], "equirectangular": 1, "equival": [0, 4, 10], "err": 16, "error": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 16], "especi": [1, 5], "est": 11, "establish": 6, "estim": [1, 6, 8, 9, 12, 13, 14, 16], "etc": [1, 5, 6], "ethic": [6, 14], "evalu": [7, 14], "even": [0, 1, 6, 7, 8, 11, 12], "everi": [0, 1, 4, 5, 6, 7], "everyon": 10, "everyth": [0, 4, 7, 9], "evid": 12, "ewd": 5, "ewd08xx": 5, "ewd831": 5, "exact": [0, 1], "exactli": [0, 6], "exampl": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "exce": [7, 12, 15], "excel": 6, "except": [1, 7, 9, 11, 15, 16], "excess": 11, "excit": [0, 9], "exclud": 6, "execut": 3, "exercis": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "exist": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16], "exit": 3, "exp": [0, 5, 15], "expect": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16], "expens": [2, 11], "experi": [2, 10, 12, 14], "experienc": 12, "expit": 15, "explain": [1, 7, 9, 10, 12, 13, 14, 15, 16], "explan": 12, "explanatori": 11, "explicit": [0, 6, 12], "explor": [4, 6, 7, 9, 11, 12, 13, 14, 15], "exploratori": [7, 9, 13], "expon": 0, "exponenti": [0, 1, 7], "express": [0, 1, 2, 3, 4, 6], "extend": [6, 7, 8, 11], "extens": 1, "extra": 3, "extract": [5, 7, 8, 9, 11, 12], "extrem": [7, 12], "f": 5, "face": 9, "fact": [11, 12], "factor": [8, 9, 11, 12], "fail": [11, 15], "fair": [13, 14], "fake": 8, "fall": [6, 8, 9, 10, 11], "fals": [1, 3, 4, 6, 7, 15, 16], "famili": [1, 6, 11, 12, 14], "familiar": [0, 6, 7, 12], "famou": 3, "famous": 5, "far": [0, 2, 3, 6, 7, 8, 9, 12, 16], "farther": [6, 8, 9, 11], "fast": [11, 16], "faster": [6, 7, 12, 16], "fastest": 16, "father": 12, "favor": [9, 11], "favor_by_ag": 9, "favorit": 9, "featur": [0, 4, 5, 14], "feedback": 14, "feet": 11, "femal": [7, 9, 16], "female_ag": 7, "fetch": 1, "few": [1, 2, 6, 7, 8, 9, 10, 11, 12, 14, 15], "fewer": [10, 11], "figsiz": 8, "figur": [3, 4, 5, 6, 7, 8, 11, 12, 16], "file": [1, 2, 4, 6, 7, 11, 12, 14, 16], "filenam": [5, 6, 7, 8, 9, 10, 11, 12, 16], "fill": 1, "fill_between": 11, "final": [3, 5, 7, 8, 9, 10, 11, 12, 13], "financ": [2, 5], "find": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16], "fine": [0, 1], "finish": [5, 6], "finit": [0, 16], "first": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "fit": [7, 8, 9, 10, 11, 12, 15, 16], "five": [6, 7, 8], "fix": [4, 6, 7, 8, 9, 11], "flat": 7, "flip": [10, 16], "float": [0, 1, 2, 4], "float64": [2, 6, 9, 11, 12, 15, 16], "floor": 1, "flowingdata": 13, "focu": [5, 6, 14], "focus": 13, "follow": [0, 1, 3, 4, 5, 7, 8, 10, 11, 12, 16], "food": 12, "fool": [8, 12], "forget": [4, 12], "forgiv": 0, "form": [7, 9, 11, 14, 16], "formal": [0, 7, 10], "format": [0, 1, 3, 5, 6], "formula": [0, 7, 9, 11, 12, 15, 16], "fortun": [1, 11], "forum": 13, "found": [2, 6, 11, 12], "four": [0, 3, 7, 9, 10, 16], "fp": [3, 4, 5], "frac": [0, 12], "fraction": [0, 2, 6, 7, 9, 10, 11, 12, 16], "frame": 6, "framework": 11, "fraud": 10, "free": [3, 16], "freq": 5, "freq_list": 5, "frequenc": [0, 5, 6, 14], "frequent": 6, "from": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "from_seq": [7, 15], "front": [3, 4], "ftp_dua": 6, "full": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "full_term_weight": 6, "fullterm": [6, 12], "function": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16], "funni": 2, "fx": 8, "fy": 8, "gaia": 14, "gain": [2, 8], "game": 3, "gap": 9, "gaussian": [7, 15], "gaussian_kd": 11, "gave": 16, "gca": 1, "gender": 9, "gener": [2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "geodataset": 1, "geograph": 1, "geometri": 1, "geopanda": 14, "georg": 5, "geoseri": 1, "get": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "get_path": 1, "ghij": 3, "github": [14, 16], "githubusercont": [5, 6, 7, 8, 9, 10, 11, 12], "give": [1, 3, 7, 8, 11, 12, 16], "given": [1, 4, 7, 8, 10, 12], "glanc": [8, 11], "global": 1, "globe": 1, "go": [0, 1, 2, 6, 7, 9, 11, 12, 15], "goal": 14, "goe": [0, 1, 4, 8], "golden": 0, "gone": [8, 10, 11], "good": [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15], "googl": 14, "gosset": 1, "got": [3, 9, 10, 12], "gov": [6, 8], "gpd": 1, "gradual": 12, "graduat": 7, "grai": [1, 5, 7, 11, 15], "graph": [2, 9], "grass": [7, 9, 11, 16], "grass_by_year": 11, "greater": [1, 7, 8, 13, 16], "greek": 1, "grei": 5, "grid": [6, 7], "group": [6, 7, 8, 11, 12, 13], "group1": 12, "group2": 12, "groupbi": [9, 11], "growth": [6, 11, 12, 13, 14], "gss": [7, 9, 11, 13, 16], "gss2018": 11, "gss_eda": 16, "gss_extract_2022": [7, 9, 11], "gssdataexplor": 7, "guess": [6, 8, 10, 12], "gun": 9, "gunlaw": [7, 9, 11, 16], "gutenberg": [3, 4], "h_0": 12, "ha": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "had": [1, 6, 10, 12, 16], "half": [3, 8, 11, 12], "ham": [2, 5], "hand": [5, 12], "handl": [4, 8, 11], "happen": [0, 3, 4, 7, 8, 11, 12, 16], "hard": [2, 7, 8, 9, 10, 12], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "haven": 15, "haversine_dist": 1, "hdf": [6, 7, 8, 9, 11, 12, 16], "he": 9, "head": [6, 7, 8, 9, 10, 11, 12, 15, 16], "header": 3, "health": [6, 8], "heard": [7, 12], "heavi": 6, "heavier": [6, 8, 11, 12], "heaviest": [6, 8], "height": [10, 11, 12], "height_jitt": 8, "held": 9, "help": [0, 2, 6, 8, 9, 15], "hemispher": 1, "her": 12, "here": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "hi": [12, 13], "high": [7, 8, 9, 10, 12, 14, 15], "higher": [2, 6, 7, 8, 9, 10, 11, 16], "highest": [6, 7, 11, 12], "highli": 12, "hint": 0, "hist": [6, 7], "histogram": 7, "histor": [1, 3], "histori": [7, 12], "hline": 5, "hold": [0, 5, 9], "home": 1, "honest": 10, "horizont": 5, "hour": [1, 12], "household": [7, 9, 11], "how": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "howenddk": 6, "howev": [0, 4, 5, 6, 7, 9, 11, 12, 16], "howpreg_n": [6, 12], "howpreg_p": [6, 12], "hpagelb": [6, 12], "htm": 6, "htm4": [8, 11, 12], "html": [3, 5, 6, 8], "http": [0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16], "hundr": [7, 8, 9], "hypothesi": [13, 14, 15, 16], "hypothet": [8, 12], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "id": [7, 9, 11], "id_": 16, "idea": [7, 8, 11], "ideal": 10, "ident": [0, 6, 7], "identifi": [3, 4, 5, 6, 11, 12], "idiom": 12, "idiomat": 12, "idl": 12, "ignor": [2, 4, 7, 8, 10, 12], "imagin": [10, 12], "immedi": [3, 14], "immut": 2, "impact": [13, 14], "implement": [10, 16], "impli": [5, 12], "implicit": 0, "import": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "importantli": [2, 8], "importerror": [1, 15, 16], "impract": 10, "impress": 12, "improv": [8, 12], "inapplic": 6, "inch": [8, 11], "includ": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16], "incom": [8, 9, 14], "inconveni": 1, "incorrectli": 6, "increas": [3, 5, 7, 8, 9, 11, 15], "increment": [2, 3, 4], "indent": 3, "independ": 9, "index": [1, 6, 11, 12, 16], "indexerror": 4, "indic": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "indirect": 12, "induc": 6, "ineffect": 12, "inequ": 11, "infant": 12, "infecti": 13, "infer": [9, 13], "inflat": 11, "inform": [3, 6, 7, 9, 10, 11, 12], "inner": [4, 8], "inplac": 16, "insid": [3, 4], "instal": [1, 14, 15, 16], "instanc": 4, "instead": [1, 4, 6, 8, 11, 12], "instruct": [3, 6, 7, 9, 11], "int": [0, 1, 5, 15], "int64": [6, 9, 11, 12, 16], "integ": [0, 1, 2, 3, 4, 5], "intend": [2, 7, 12], "intent": 12, "intercept": [5, 8, 9, 12, 15, 16], "intercept_stderr": [8, 9], "interest": [0, 2, 8, 13], "interior": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "intermedi": [2, 5], "intern": [13, 15, 16], "interpret": [1, 5, 6, 7, 8, 9, 10, 12, 14], "interquartil": [7, 8], "interv": [0, 1, 6, 10, 11, 16], "interview": [7, 12], "introduc": [0, 1, 2, 3, 4, 5, 6, 10, 12, 14], "introduct": [0, 3, 13, 14], "introductori": 3, "intvwyear": 6, "invalid": [1, 4, 5, 6], "invers": [5, 7], "invert": [5, 7], "invest": 0, "invok": 9, "involv": [0, 11], "ipykernel_12818": 0, "iqr": 7, "isaac": 16, "isin": 12, "isna": 6, "issu": [6, 7, 11, 14], "item": 4, "iter": [4, 9, 11, 15, 16], "its": [1, 5, 7, 9, 11, 12, 13], "itself": [0, 8, 12], "jan": 16, "jitter": [8, 11], "job": 2, "join": 4, "journal": [10, 12], "judg": 4, "juli": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "june": 1, "jupyt": [0, 1, 14], "just": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "justic": [13, 14], "k": [5, 10, 12], "k_all": 12, "k_control": [10, 12], "k_placebo": 12, "k_treatment": [10, 12], "karim": 16, "kde": [7, 8, 9, 10, 12], "kdeplot": [7, 10, 11, 12, 16], "keep": [2, 3, 11], "kei": [4, 5, 6], "kernel": 11, "keyword": [6, 7, 8], "kg": [8, 11], "kilogram": [6, 8], "kind": [0, 1, 2, 3, 4, 7, 11, 12, 13, 14], "kingslei": 5, "klmno": 3, "km": 1, "know": [0, 3, 4, 6, 7, 8, 10, 11, 12, 14, 16], "known": 14, "l": 16, "label": [5, 6, 7, 8, 9, 10, 11, 12, 16], "lack": 11, "land": 1, "landscap": 5, "languag": [0, 1, 4, 5], "larg": [1, 6, 8, 10, 11, 12], "larger": [0, 11], "largest": [11, 12], "last": [1, 3, 4, 5, 6, 7, 9, 12], "lat": 1, "lat1": 1, "lat2": 1, "lat_lon_str": 1, "later": [1, 2, 5, 6, 12], "latitud": [0, 1, 2], "law": 9, "layout": 8, "leap": 12, "leapstudi": 12, "learn": [0, 3, 4, 5, 6, 7, 9, 13, 14, 15], "least": [1, 4, 5, 7, 9, 12], "leav": [0, 3], "left": [0, 5, 6, 9, 11], "legal": [3, 9, 11, 16], "legend": [5, 7, 9, 11, 16], "len": [2, 3, 4, 5, 8, 11, 12, 16], "length": [2, 6, 12], "length_first": 12, "length_live_ful": 12, "length_oth": 12, "leo": 3, "less": [0, 1, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "lesson": 8, "let": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "letter": [0, 1, 2, 3, 4, 9], "letter_count": 4, "level": [6, 7, 8, 9, 11, 15], "liber": 14, "librari": [0, 1, 2, 4, 5, 6, 7, 8, 9, 14], "licens": [3, 4, 13], "life": 12, "light": [6, 11, 12], "lighter": [6, 8, 12], "lightest": [6, 8], "like": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "likelihood": 16, "limit": [5, 6, 8, 12], "line": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14], "linear": [9, 11, 12, 16], "linestr": 1, "linestyl": 5, "linger": 15, "linregress": [8, 9, 11], "linregressresult": 8, "linspac": [7, 8, 9, 11, 15, 16], "list": [1, 3, 4, 5, 6, 7, 10, 11, 12, 14], "liter": 1, "littl": [4, 6, 11, 12], "live": [6, 12, 13], "live_preterm": 6, "ll": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "llr": 16, "lo": 16, "load": [1, 6, 7, 11], "lobel": 13, "lobster": [2, 5], "loc": 11, "local": [5, 6, 7, 8, 9, 10, 11, 12, 16], "locat": [0, 5, 14], "log": [0, 5, 7, 8, 9, 15, 16], "log10": [5, 7, 11], "log_realinc": [7, 11], "logarithm": [0, 7, 8, 11], "logic": 6, "logist": [11, 14, 15], "logit": [9, 11, 15, 16], "lognorm": [7, 15], "logspac": 15, "lon": 1, "lon1": 1, "lon2": 1, "london": [1, 2, 5], "london_mean": 2, "london_price_arrai": 2, "london_price_list": [2, 5], "long": [0, 3, 7], "longer": [0, 6], "longest": 2, "longitud": [0, 1, 2], "look": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16], "loop": [2, 4, 5, 11, 14, 16], "lot": [0, 7, 8, 9, 10, 12, 13], "low": [8, 10, 11, 12, 15], "lower": [4, 5, 8, 9, 10, 11, 12, 16], "lowercas": [0, 4], "lowest": 11, "lulu": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "lunch": [2, 5], "m": [4, 12, 16], "machin": [13, 14], "made": [1, 2, 5, 9, 12, 16], "magic": [0, 16], "mai": [1, 2], "make": [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16], "make_cdf": 7, "maker": 7, "male": [7, 9, 10, 11, 16], "male_ag": 7, "male_df": 11, "man": 7, "manger": 5, "mani": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "manufactur": 10, "map": [1, 4, 5, 14], "marijuana": [9, 11, 16], "mark": [1, 3, 4], "marker": [5, 8], "markers": 8, "marri": 9, "mass": 7, "massachusett": 1, "master": 16, "match": [5, 7], "materi": [3, 9, 14], "matern": 12, "math": [1, 2, 3], "mathemat": [0, 1, 7, 10, 12, 14, 15], "mathrm": 1, "matplotlib": [1, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "matrix": 8, "matter": [2, 3, 4, 12, 16], "max": [2, 6, 8, 11, 12, 16], "maximum": [2, 6, 8, 11], "mayb": [1, 7, 12], "me": [2, 3, 6, 12], "mean": [0, 2, 7, 8, 9, 11, 12, 15, 16], "mean_height": [10, 11], "mean_income_by_ag": 9, "mean_realinc": 11, "meaning": 2, "meant": 14, "measur": [0, 1, 2, 7, 8, 10, 12], "mechan": 13, "media": 13, "median": [6, 7, 8], "medic": 10, "medicin": 12, "meet": 6, "men": [7, 9, 10, 11, 16], "mention": [1, 6], "messag": [0, 3], "method": [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "methodologi": 11, "metric": [13, 14], "microsecond": 1, "middl": [1, 4, 8, 12], "midnight": 1, "midpoint": [2, 7, 8, 11, 12], "midpoint_pric": 2, "midpoint_price_arrai": 2, "might": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "million": [3, 10], "millisecond": 1, "min": [2, 6, 8, 11, 12, 16], "mine": 12, "minimum": [2, 6, 8, 11], "minut": 1, "miscarriag": 6, "misclassifi": 14, "misl": 8, "mislead": [0, 1, 5, 6, 8, 9, 11, 12], "miss": [0, 5, 6, 8, 12, 16], "mississippi": 4, "mistak": [0, 10], "mle": 16, "mode": 3, "model": [9, 10, 11, 13, 14, 15], "moder": [8, 12, 14], "modifi": [1, 2, 4, 5, 10, 12, 14], "modul": 0, "modulenotfounderror": 0, "monei": 0, "month": [1, 12], "month_nam": 1, "more": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "moscurrp": [6, 12], "most": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16], "most_common": 4, "mostli": [6, 8], "mother": 12, "move": [5, 9], "mu": [10, 11, 12, 15], "much": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 16], "multipl": [0, 3, 5, 6, 7, 8, 10, 14, 16], "multipli": [0, 1, 3, 6, 8], "multivari": [9, 14], "must": [3, 4], "my": [8, 9, 12, 14], "n": [0, 1, 2, 3, 5, 10, 11, 12, 15, 16], "n1": 10, "n2": 10, "n_all": 12, "n_control": [10, 12], "n_first": 12, "n_height": [10, 11], "n_job": 16, "n_other": 12, "n_placebo": 12, "n_realinc": 11, "n_treatment": [10, 12], "name": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 16], "name_arrai": 2, "name_list": [2, 5], "nameerror": [3, 4], "nan": [6, 7, 8, 9, 11, 12, 16], "nanosecond": 1, "narrow": 11, "nathan": 13, "nation": [6, 11, 12, 14], "natur": [0, 5, 6], "naturalearth": 1, "nbrnaliv": 6, "nbviewer": 14, "nc": [15, 16], "nch": 6, "nd": 2, "ndarrai": 2, "nearli": 10, "necessari": 1, "necessarili": 12, "need": [0, 2, 5, 6, 8, 9, 11, 12, 14, 16], "neg": [1, 4, 8, 9, 11, 12], "nejm": 12, "nejmoa1414850": 12, "nest": 4, "never": [3, 6, 11, 12], "nevertheless": [4, 10, 12], "new": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14], "newlin": [3, 5], "next": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12], "nice": 10, "nine": 8, "nois": [7, 8], "noisi": 7, "noisier": 11, "nomin": 9, "non": [8, 9, 12, 16], "noncommerci": [13, 15, 16], "none": [7, 8, 16], "nonlinear": [8, 12], "nonrobust": 16, "nonsens": 6, "norc": 7, "norm": [7, 11, 15], "normal": [3, 5, 7, 8, 10, 11, 12, 16], "northern": 1, "not_actually_a_numb": 1, "not_really_a_d": 1, "not_really_a_tim": 1, "notat": [0, 7], "note": [0, 3, 6, 9], "notebook": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "noth": [8, 15, 16], "notic": [0, 1, 3, 5, 9, 15], "notna": 6, "novel": 3, "now": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "nowprgdk": [6, 12], "np": [0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "nsfg": [6, 11, 12], "nt": 0, "null": [12, 15, 16], "num": [0, 16], "number": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "numer": [0, 9, 11, 14], "numpi": [0, 1, 5, 6, 7, 8, 9, 11, 14, 15, 16], "o": [5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "object": [0, 1, 5, 6, 7, 8, 9, 10, 11, 16], "obscur": 7, "observ": [5, 8, 10, 11, 12, 13, 16], "obtain": [6, 9], "occasion": 12, "octob": 5, "odd": 9, "off": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "often": [0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 16], "ol": [9, 12], "old": [1, 3, 8, 12], "older": [7, 8, 9, 12, 16], "oldest": 12, "omega": 0, "omit": 8, "onc": [4, 5, 10, 11, 12], "one": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "one_year": 11, "ones": [8, 12, 16], "onli": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "onlin": [1, 5, 7, 13], "open": [3, 4, 5], "oper": [0, 1, 2, 3, 4, 6, 7, 12], "operand": 2, "opinion": [8, 12, 14], "oppos": [8, 9], "opposit": 5, "optim": [9, 11, 16], "option": [2, 4, 11, 12, 14, 16], "order": [0, 1, 3, 4, 5, 6, 12], "ordinari": 9, "org": [0, 5, 6, 7, 8, 12], "orient": 1, "origin": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16], "orli": 13, "other": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "otherwis": [2, 3, 4, 6, 8, 15], "ounc": [6, 12], "ounces_clean": 6, "our": [5, 6, 10, 11, 12], "out": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12], "outcom": [6, 7, 9, 12, 15], "outdent": 3, "outer": 4, "outlier": 7, "output": [5, 9], "over": [4, 5, 7, 8, 10, 11, 12, 13, 14, 16], "overlap": [8, 11], "overplot": 8, "oversampl": [6, 11], "overthink": 13, "overwhelm": 6, "own": [9, 14], "p": [0, 4, 7, 10, 15, 16], "p1": [1, 7, 10], "p2": [1, 7, 10], "p_valu": 12, "pace": 5, "page": [1, 3], "pai": [0, 2, 5], "pair": [1, 2, 4, 8], "panda": [1, 6, 7, 8, 9, 11, 12, 15, 16], "paper": [10, 12, 14, 16], "parabola": 9, "param": [9, 12, 15, 16], "paramet": [6, 9, 10, 11, 12, 15, 16], "parenthes": [0, 2, 3, 4], "parse_stata_dict": 6, "part": [0, 1, 3, 4, 5, 6, 9, 13], "partial": 12, "particip": 10, "particular": [3, 4, 15], "particularli": [8, 11, 12], "pass": [5, 10, 11], "past": [1, 4, 11, 12], "patern": 12, "path": [1, 5, 6, 7, 8, 9, 10, 11, 12, 16], "patient": 10, "pattern": [4, 5], "pd": [1, 6, 7, 8, 9, 11, 12, 15, 16], "pdf": [5, 7, 11, 14], "peac": [3, 4, 5, 14], "peak": 7, "peanut": 12, "pemda": 0, "peopl": [1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "per": [0, 6, 8, 9, 10, 12, 16], "percent": [2, 14, 16], "percent_differ": 2, "percentag": [2, 5, 9, 11, 12], "percentil": [6, 7, 8, 10], "perfect": 1, "perfectli": 10, "perform": [0, 1, 2, 3, 7], "perhap": 0, "period": [3, 4, 10, 12], "permit": 9, "permut": 12, "person": [1, 3, 6, 7, 8, 9, 10], "pew": 5, "pewforum": 5, "pewresearch": 5, "phase": 6, "phi": 0, "phi1": 1, "phi2": 1, "physic": 13, "pi": 0, "pi_hat": 16, "pick": [9, 11], "picki": 0, "pictur": [1, 5, 7, 8, 9], "pie": 0, "pile": 8, "pip": [1, 15, 16], "place": [2, 7, 12, 14], "placebo": 12, "plan": [1, 12], "plausibl": [10, 11, 12], "plausibli": 10, "ple": 1, "plot": [1, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "plot_data": 11, "plt": [1, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "plu": [7, 8], "pmf": [7, 8, 9, 14], "pmf_educ": 7, "pmf_educ_norm": 7, "pmf_female_ag": 7, "pmf_male_ag": 7, "pmf_sampl": 7, "png": 15, "point": [0, 1, 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16], "pointer": [3, 16], "poisson": 7, "polic": 9, "polici": 7, "polit": [5, 7, 13, 14], "politician": 7, "politico": 14, "popul": [6, 10, 11, 13, 16], "popular": 1, "por": 16, "pose": [6, 9, 13], "posit": [1, 5, 8, 9, 11, 12, 15], "possibl": [1, 2, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16], "post": [7, 13, 14, 15], "post95": 7, "potenti": 13, "pound": [6, 12], "pounds_clean": 6, "power": [0, 5, 9, 14, 16], "pqdm": 16, "pqrstu": 3, "practic": [4, 5, 8, 9, 10, 12, 14, 16], "practition": 16, "pre95": 7, "precaut": 10, "preced": 0, "precis": [3, 10, 11, 13], "pred": 11, "pred1": 16, "pred12": 9, "pred14": 9, "pred16": 9, "pred2": 16, "pred_femal": 9, "pred_mal": 9, "predict": [5, 8, 9, 11, 13, 16], "predictor": [9, 12], "prefer": [10, 16], "pregend1": [6, 12], "pregend2": 6, "pregnanc": [6, 12], "pregnant": 6, "pregordr": [6, 12], "premis": 16, "prepar": 11, "present": [0, 1, 2, 3, 5, 7, 8, 11, 12, 13, 14, 16], "press": 13, "presum": [10, 16], "pret": 5, "preterm": 6, "preterm_weight": 6, "pretti": [12, 15], "prevent": [5, 10, 12], "previou": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "previous": [5, 8], "prglngth": [6, 12], "primari": 6, "primarili": 2, "principl": 0, "print": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "prior": 6, "privaci": [6, 8], "pro": [5, 7], "prob": 7, "probabl": [2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "problem": [0, 1, 2, 3, 4, 6, 8, 11, 12], "problemat": [11, 12], "procedur": 16, "process": [2, 6, 7, 9, 10, 11, 12, 16], "produc": [0, 2, 11], "product": 6, "program": [0, 1, 4, 5, 14], "progress": 14, "project": [1, 3, 4, 6], "prompt": 16, "pronounc": [0, 1], "proper": 7, "proport": [5, 8, 10, 11, 12], "proportion": 5, "propos": 16, "propublica": 14, "protect": 8, "protocol": 10, "provid": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "pseudo": 16, "publish": [2, 5, 13, 14], "punc_mark": 4, "punctuat": [1, 5], "purpos": [0, 1, 7, 8, 10, 12, 15, 16], "put": [1, 2, 3, 4, 9, 12], "pvalu": [8, 9], "py": [0, 5, 6, 7, 8, 9, 10, 11, 12], "pydata": [6, 8], "pyplot": [1, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "python": [0, 1, 2, 3, 4, 6, 7, 13, 14], "q": [7, 13], "q1": 7, "q2": 7, "quadrat": [9, 12, 16], "qualiti": 10, "quantifi": [2, 9, 10, 11, 12, 13, 14, 16], "quantil": [11, 16], "quantiti": [2, 7, 15], "quarter": [6, 12], "question": [1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "questionnair": 6, "quick": 14, "quickli": [2, 9, 14], "quit": [3, 5, 8, 9], "quot": 1, "quotat": [1, 4], "qu\u00e9": 16, "r": [0, 1, 3, 5, 16], "racadabr": 4, "race": 9, "radian": 1, "radiu": 1, "rais": 0, "ran": [9, 10, 11, 16], "random": [7, 8, 10, 11, 12, 14, 15, 16], "rang": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "rank": [4, 5, 16], "rapid": 5, "rate": 0, "rather": [0, 1, 2, 5, 7, 10, 11, 12, 16], "ratio": [0, 5, 10, 12], "raw": [5, 6, 7, 8, 9, 10, 11, 12, 16], "rct": 10, "re": [3, 5, 6, 9, 11, 15], "read": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14], "read_fil": 1, "read_fwf": 6, "read_hdf": [6, 7, 8, 9, 11, 12, 16], "readabl": 1, "reader": 14, "readi": 5, "readili": 8, "real": [7, 8, 9, 10, 11, 12, 13, 14, 15], "realinc": [7, 9, 11, 16], "realiz": 6, "realli": [5, 6, 7, 8, 11, 15, 16], "reason": [1, 3, 8, 11], "recal": 7, "receiv": 10, "recent": [12, 13, 16], "recidiv": [13, 14], "recod": [9, 11, 16], "recogn": 13, "recollect": 12, "recommend": [6, 7, 13, 16], "record": [6, 7, 8, 9, 10, 11], "recruit": 10, "red": 5, "reddit": [13, 16], "reduc": [10, 11], "refer": [0, 1, 3, 4, 6, 7, 9], "reflect": [2, 13], "refus": 6, "region": 11, "regress": [14, 15], "regressionresultswrapp": 9, "reilli": 13, "reject": 15, "rel": [1, 6, 10, 11, 12, 14], "relat": [6, 7, 8, 9, 12, 14], "relationship": [5, 7, 9, 12, 14, 15, 16], "relative_differ": 2, "relative_risk": [10, 12], "relative_risk_actu": 12, "relative_risk_placebo": 12, "relax": 12, "releas": 14, "relev": [6, 8, 11], "reli": 16, "reliabl": [6, 8], "religion": 5, "remain": 12, "remark": [5, 12], "rememb": [0, 1, 5, 6, 7, 8, 9, 10, 12], "remind": 3, "remov": [5, 6, 8], "repeat": [1, 3, 11, 12], "repetit": 3, "replac": [3, 6, 7, 9, 11, 12, 16], "replic": 5, "report": [1, 2, 6, 7, 8, 9, 10, 11, 12], "repositori": [3, 14, 16], "repres": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "request": [5, 6, 7, 8, 9, 10, 11, 12, 16], "requir": [2, 9, 13], "res1": 8, "res2": 8, "res_aw": 8, "res_hw": 8, "resampl": [9, 13, 14], "resample_kde_percentil": 11, "research": [5, 7], "reset_index": 12, "resid": [7, 10], "residu": 16, "resolv": 13, "resourc": [13, 16], "respect": 6, "respond": [6, 7, 8, 9, 11, 12, 14, 16], "respons": [7, 9, 11, 14, 16], "rest": [3, 10], "result": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16], "result_hat": 16, "return": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "reveal": 6, "revers": [1, 5], "review": [0, 10, 11, 12, 13], "rezaul": 16, "rho1": 8, "rho2": 8, "rid": 8, "right": [0, 4, 6, 7, 8, 9, 11, 15], "rise": 5, "risk": [8, 10, 11, 12, 14, 16], "risk1": 10, "risk2": 10, "risk_al": 12, "risk_control": [10, 12], "risk_placebo": 12, "risk_treat": [10, 12], "riski": 6, "robust": [7, 11], "role": [10, 12], "roll": [2, 5, 7], "root": 0, "rotat": [8, 12], "roughli": [5, 6, 7], "round": [1, 8, 11], "row": [6, 7, 8, 9, 11, 12, 16], "rt": 0, "rule": [0, 2, 12], "run": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "rv": [10, 12, 15, 16], "rvalu": [8, 9], "sa": [15, 16], "sadli": 3, "sai": [1, 2, 4, 6, 7, 8, 9, 10, 15, 16], "same": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16], "sampl": [6, 7, 10, 12, 13, 14], "sample_and_test": 15, "sampling_dist": 16, "sampling_dist2": 16, "sampling_dist3": 16, "sampling_weight": 6, "satisfi": 6, "satur": 8, "save": [6, 7, 9, 11, 12, 14], "savefig": 15, "saw": [4, 5, 8, 9, 11, 12], "scale": 8, "scatter": [8, 9, 14], "scenario": [8, 10], "schedul": 12, "school": [7, 9], "scienc": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "scientif": [0, 10, 13], "scientific_not": 0, "scientist": [6, 10, 12], "scipi": [7, 8, 9, 10, 11, 12, 15, 16], "se": [10, 11], "seaborn": [7, 8, 10, 11, 12, 15, 16], "seali": 1, "search": 6, "second": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16], "section": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12], "secu": 6, "see": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15], "seed": [7, 8, 15, 16], "seem": [1, 2, 5, 6, 8, 10, 11, 12, 15], "seen": [0, 2, 3, 4, 6, 7, 8, 9, 11], "seldom": 12, "select": [4, 5, 6, 7, 8, 9, 11, 12, 16], "self": [11, 12], "semi": [0, 5], "sens": [1, 3, 5, 6, 7, 8, 10, 11, 12, 16], "sensibl": 11, "sensit": [0, 7], "sent": 16, "sentenc": [2, 7], "separ": [2, 4, 5, 6, 9], "septemb": 2, "seqno": 11, "sequenc": [1, 2, 3, 4, 5, 7, 8, 9, 12], "seri": [1, 7, 9, 11, 12], "serious": 16, "serv": 8, "sest": 6, "set": [2, 5, 6, 7, 8, 9, 11, 16], "seven": 8, "sever": [0, 1, 2, 5, 6, 10, 11, 12, 14], "sex": [7, 9, 11, 16], "shade": 11, "shape": [1, 6, 7, 8, 9, 11, 12, 16], "share": 2, "sharealik": [13, 15, 16], "she": [9, 12], "shift": 7, "short": [0, 3, 10], "shorten": 5, "shorter": [8, 11], "should": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 15, 16], "show": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "shown": [6, 10, 12], "shuffl": 12, "sick": 10, "side": [1, 5, 7, 9], "sigma": [10, 11, 12, 15], "sign": [9, 12], "signific": [12, 15], "significance_level": 15, "silli": 2, "similar": [0, 2, 4, 6, 7, 8, 10, 11], "simpl": [2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15], "simplifi": [7, 8], "simul": [11, 12, 13, 16], "simulate_correl": 12, "simulate_group": 10, "simulate_group_perc": 12, "simulate_sampl": 10, "simulate_sample_cv": 10, "simulate_sample_mean": [10, 11, 12], "simulate_sample_percentil": 11, "simulate_slop": 12, "simulate_slope2": 12, "simulate_tri": 10, "simulate_two_group": 12, "simulate_variable_group": 10, "simulate_variable_tri": 10, "sin": [0, 1], "sinc": [9, 11, 12, 16], "singl": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 16], "site": 5, "six": [6, 7, 11], "sixth": 5, "size": [7, 8, 10, 11, 12, 14], "skeptic": [10, 12], "skew": [6, 8, 11], "skim": 6, "skip": [3, 4], "slice": 4, "slightli": [1, 12], "slope": [5, 8, 9, 11, 12, 14], "slope_actu": 12, "slopes_nul": 12, "slow": 6, "small": [2, 5, 7, 8, 9, 11, 12, 14, 16], "smaller": [0, 2, 6, 8, 11, 12], "smf": [9, 11, 12, 15, 16], "smooth": [7, 11], "sn": [7, 8, 10, 11, 12, 15, 16], "snack": 12, "so": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "social": [9, 11, 13, 14, 16], "softwar": 14, "solar": 1, "solut": [11, 12], "solv": [0, 2, 4, 6, 11, 12], "some": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "someon": [1, 3, 8, 10, 11, 12], "someplac": 1, "someth": [2, 3, 11, 13, 15], "sometim": [0, 5, 7, 8, 9, 12], "somewhat": 8, "soon": 7, "sort": [4, 5, 6], "sort_index": [6, 11, 12], "sourc": [5, 6, 10, 11, 12, 14, 16], "southern": 1, "space": [1, 3, 5, 7, 8, 14], "span": 6, "speak": 12, "special": [3, 4, 6, 7, 9, 12, 15], "specif": [5, 8, 10, 12], "specifi": [1, 3, 4, 5, 6, 9, 11], "speed": 14, "spend": 2, "spent": 9, "sphere": 1, "split": [2, 3, 4, 5, 12], "spot": 2, "spous": 9, "spread": [7, 10], "spuriou": 12, "sql": 14, "sqrt": [0, 1], "squ": 16, "squar": [0, 2, 5, 8, 9, 11, 16], "stabl": 6, "stamp": 1, "stand": [0, 1, 2, 6, 7, 9], "standard": [2, 6, 7, 8, 10, 11, 12, 15, 16], "standard_error": [10, 16], "starch": 13, "start": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "start_param": 16, "startswith": [3, 4, 5], "stat": [7, 8, 9, 10, 11, 12, 13, 15, 16], "stata": 6, "stata_dict": 6, "statadict": 6, "state": [5, 6, 10, 11, 13, 14], "statement": [0, 2, 4, 5, 7, 9, 14], "statist": [7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "statistician": 1, "statsmodel": [11, 12, 15, 16], "std": [2, 6, 10, 11, 12, 15, 16], "std_height": [10, 11], "std_realinc": 11, "stderr": [8, 9], "steeper": 8, "step": [2, 6, 8, 9, 10, 11, 15], "still": [3, 8, 12], "stillbirth": 6, "store": [0, 1, 2, 3, 6, 11, 12], "str": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12], "straight": [5, 8], "strang": [1, 5], "stratifi": 16, "strength": [8, 12, 14], "string": [2, 3, 4, 5, 6, 8, 9], "stringent": 12, "strip": [4, 5], "strong": [8, 12], "studi": [5, 12, 13], "style": [8, 11, 13], "subject": [10, 12], "subplot": 8, "subsequ": 12, "subset": [6, 8, 9, 11, 12, 14, 16], "substanti": [2, 4, 8, 9, 10, 11, 12, 14, 16], "subtitl": 13, "subtract": [0, 2, 11, 12], "successfulli": [9, 11, 16], "suggest": [2, 4, 8, 9, 10, 11, 12, 14, 15, 16], "suit": 14, "sum": [6, 7, 10, 11, 12], "summar": [6, 8, 9, 10, 11, 14], "summari": 16, "summary1": 11, "summary10": 11, "summary2": 11, "summary3": 11, "summary4": 11, "summary9": 11, "support": [1, 9, 11, 16], "suppos": [0, 1, 2, 3, 4, 7, 8, 10, 11, 12], "sure": [2, 11, 14], "surfac": 1, "surpris": [1, 7, 9], "surprisingli": 8, "survei": [1, 5, 6, 8, 9, 11, 12, 13, 14, 16], "surveil": [8, 11, 12], "suspect": 11, "suspici": 11, "sustain": 12, "switch": [9, 11], "symmetr": [8, 11], "syntax": [3, 4], "syntaxerror": 4, "syntaxwarn": 0, "system": [8, 11, 12, 13, 14], "t": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "t1": [11, 12], "t10": 11, "t2": [10, 11, 12], "t3": [10, 11], "t4": 11, "t5": 11, "t6": 11, "t9": 11, "t_first": 12, "t_other": 12, "tab": 3, "tabl": [5, 7, 11, 14], "tail": [6, 7, 10, 11], "take": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15], "taken": [4, 11], "talk": 4, "tall": [10, 11], "taller": [8, 11], "tbc": 3, "tdef": 3, "telescop": 14, "tell": [0, 1, 3, 6, 7, 8, 15], "tempt": [2, 7, 8], "ten": 11, "tend": [6, 8, 12, 15], "tendenc": [7, 11], "tenth": 5, "term": [1, 6, 7, 9, 12, 14, 16], "termin": [9, 11, 16], "test": [2, 3, 5, 11, 13, 14, 16], "text": [1, 3, 4, 14], "textiowrapp": 3, "textual": 3, "tghij": 3, "th": 6, "than": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "thei": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16], "them": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "theme": 9, "themselv": [6, 11], "theorem": 14, "theoret": 7, "theori": [12, 16], "therefor": 12, "theta": 1, "thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "thing": [0, 1, 2, 5, 7, 8, 9, 10, 11, 12], "think": [1, 2, 6, 8, 9, 10, 13, 16], "third": [1, 3, 4, 5, 6, 10, 12, 13, 16], "those": [2, 4, 6, 7, 8, 9, 11, 13], "though": [0, 8, 11], "thought": 6, "thousand": 11, "thread": 16, "three": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16], "threshold": 12, "through": [1, 3, 4, 5, 7, 9, 11], "thrown": 7, "thursdai": 1, "tibshirani": 16, "tight_layout": 8, "time": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "timeit": 16, "timestamp": 1, "titl": [1, 5, 6, 7, 8, 9, 10, 11, 12, 16], "tklmno": 3, "tmp": 0, "to_hdf": 6, "todai": 1, "togeth": [1, 7, 9], "tolstoi": 3, "too": [1, 2, 7, 8, 10, 12], "tool": [0, 3, 5, 6, 9, 13, 14], "top": 8, "topic": [0, 9, 12, 13, 14, 16], "toss": [10, 16], "total": [0, 4, 6, 7], "total_pric": 2, "total_price_arrai": 2, "toward": 8, "town": 1, "tpqrstu": 3, "track": 3, "tradit": 12, "transcript": 5, "transform": [3, 7], "translat": 0, "transpar": 8, "trap": 13, "treat": [4, 6, 9, 11, 12, 16], "treatment": 10, "trend": 11, "trial": 12, "trick": 3, "tripl": 1, "triplet": 6, "true": [0, 1, 3, 4, 5, 6, 7, 10, 11, 12, 15, 16], "try": [0, 1, 2, 4, 6, 7, 8, 9, 12, 14, 15, 16], "tue": 16, "tuh": 1, "tuna": [2, 5], "tupl": [1, 3, 4, 5, 6, 7], "turn": 2, "twice": [0, 1, 2, 5], "twin": 6, "two": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "txt": [3, 4, 5], "type": [0, 1, 2, 3, 4, 5, 6, 7, 9, 16], "typeerror": [0, 1, 2, 4, 5], "u": [2, 5, 6, 7, 8, 9, 10, 11, 14], "u17": 2, "uk": [1, 12], "unaffili": 5, "uncertainti": [10, 11, 16], "under": [6, 12, 16], "underestim": 8, "underli": 16, "undersampl": 11, "understand": [2, 4, 9], "understood": [0, 8], "unexpect": 9, "unfair": 14, "unfamiliar": 7, "unfil": 6, "unicod": [2, 3, 4], "unicodedata": 4, "uniform": 10, "uniqu": [3, 5, 6, 7, 8, 11, 14, 16], "unique_word": [4, 5], "unit": [5, 6, 10, 11, 13, 14], "univers": 13, "unknown": [5, 6], "unlik": [0, 12], "unnorm": 7, "unreason": 8, "unrepres": 12, "unshuffl": 12, "unsupport": 2, "until": [1, 3, 7], "unus": 11, "unusu": 12, "unweight": [6, 11], "up": [0, 1, 2, 4, 6, 7, 8, 10, 11, 12, 14], "updat": 3, "upload": 5, "upper": [5, 8, 11], "uppercas": [0, 4], "url": [5, 6, 7, 8, 9, 10, 11, 12, 16], "urllib": [5, 6, 7, 8, 9, 10, 11, 12, 16], "urlretriev": [5, 6, 7, 8, 9, 10, 11, 12, 16], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "usa": 1, "usd": [5, 7], "user": [5, 6], "usual": [1, 4, 8, 11, 12, 16], "utexa": 5, "utf": 3, "util": [1, 5, 6, 7, 8, 9, 10, 11, 12], "v": 0, "v1": [5, 6, 7, 8, 9, 10, 11, 12], "valid": [9, 11, 16], "valu": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16], "value_count": [6, 9, 11, 12, 16], "valueerror": 1, "var1": [11, 12], "var2": [11, 12], "vari": [8, 10, 11, 15, 16], "variabl": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16], "varianc": [7, 16], "variat": [10, 12, 14], "varieti": [5, 12, 13, 14], "varnam": 11, "ve": [2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15], "vegesu": 8, "veget": 8, "veri": [0, 1, 2, 6, 7, 8, 11, 12], "versatil": 9, "version": [4, 6, 7, 10, 14], "versu": [5, 8, 9], "vertic": [3, 8], "vicin": 15, "view": [7, 8, 14], "violat": 16, "violin": [8, 14], "violinplot": 8, "virtual": 5, "visibl": 12, "visual": [1, 5, 6, 7, 10, 11, 12, 13, 14], "vocabulari": 6, "volunt": 10, "vshow": 7, "vulner": 11, "w": 1, "wa": [2, 5, 6, 7, 9, 12, 14], "wai": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "walk": [11, 15], "want": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "war": [3, 4, 5, 14], "warn": [0, 12], "washington": 14, "we": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "weak": 8, "weaker": [12, 16], "web": [1, 5, 14], "websit": 3, "week": [1, 6, 12], "weigh": 6, "weight": [12, 14], "weight_jitt": 8, "weighted_bootstrap_corr": 11, "weighted_bootstrap_mean": 11, "weighted_bootstrap_slop": 11, "welcom": 14, "well": [7, 8, 11, 13, 14], "went": [11, 12], "were": [1, 2, 6, 7, 8, 11, 12, 16], "western": 1, "wgt2015_2017": 6, "what": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "when": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "where": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "wherev": 3, "whether": [1, 3, 4, 6, 7, 10, 11, 12, 13, 15, 16], "whi": [8, 12], "which": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "whichev": 16, "while": [0, 2, 13], "whisker": 8, "white": [1, 3], "who": [7, 8, 10, 11, 12], "whole": [3, 6], "whose": [3, 7], "why": [0, 2, 5, 7, 8, 9, 10, 15], "wide": [6, 7, 11, 12], "wider": 16, "width": [6, 7, 8, 10, 11], "wife": 12, "wiki": 0, "wikipedia": 0, "william": 1, "within": 10, "without": [1, 4, 7, 11, 12], "woman": [6, 7], "women": [7, 9, 16], "won": [1, 9, 15], "wonder": [2, 10, 12, 16], "word": [0, 1, 2, 5, 7, 12, 14], "word_freq_pair": 4, "work": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14], "world": [1, 4, 7, 10, 11, 12, 15], "would": [0, 2, 6, 8, 9, 10, 11, 12, 13, 16], "wp": 5, "wrap": [1, 15], "write": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12], "written": [0, 2], "wrong": [0, 4, 10, 11, 16], "wrote": 15, "wtkg3": [8, 11, 12], "www": [2, 3, 5, 6, 8, 12], "x": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16], "xlabel": [5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "xlim": [7, 8], "xs1": 8, "xs2": 8, "xscale": [5, 15], "xtick": [7, 8, 12], "y": [1, 5, 6, 7, 8, 9, 11, 12, 15], "yau": 13, "ye": [9, 16], "year": [0, 1, 5, 7, 8, 9, 11, 12, 16], "year2": 11, "yejax3vkika": 12, "yet": [4, 12], "yield": 16, "ylabel": [5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "ylim": [5, 8], "yo_dad": 12, "you": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "young": 12, "younger": [7, 8, 12, 16], "youngest": 12, "your": [1, 3, 6, 10, 12, 14, 15], "yourself": 2, "ys1": 8, "ys2": 8, "yscale": [5, 8], "z": 16, "zero": [4, 5, 8, 12, 15], "zipf": 14, "zoom": 8, "\u03b8": 1}, "titles": ["Variables and Values", "Times and Places", "Lists and Arrays", "Loops and Files", "Dictionaries", "Plotting", "DataFrames and Series", "Distributions", "Relationships", "Regression", "Resampling", "Bootstrap Sampling", "Hypothesis Testing", "Further Reading", "Elements of Data Science", "Never Test for Normality", "Resampling and Logistic Regression"], "titleterms": {"": 5, "1": 14, "10": 14, "11": 14, "12": 14, "13": 14, "2": 14, "3": 14, "4": 14, "5": 14, "6": 14, "7": 14, "8": 14, "9": 14, "Be": 12, "One": [10, 16], "The": [3, 7, 10, 12, 14, 16], "To": 12, "affili": 5, "ag": [7, 9, 12], "an": 6, "ar": 12, "argument": 5, "arithmet": [0, 6], "arrai": 2, "averag": 11, "ax": 5, "babi": 12, "bigger": 11, "boolean": 6, "boostrap": 16, "bootstrap": [11, 16], "break": 3, "calcul": [0, 1], "capit": 4, "case": 14, "categor": 9, "cdf": 7, "compar": 7, "comput": 12, "control": 12, "correl": [8, 11, 12], "count": [3, 4], "cumul": 7, "data": [6, 11, 14, 16], "datafram": 6, "date": 1, "deal": 4, "debug": 2, "decor": 5, "defin": 1, "densiti": 7, "dictionari": 4, "differ": 2, "distanc": 1, "distribut": 7, "educ": 7, "element": 14, "estim": [7, 10, 11], "explor": 8, "extract": 6, "file": 3, "filter": 6, "first": 12, "framework": [10, 12, 16], "frequenc": 4, "function": [0, 1, 7], "further": 13, "gener": 7, "geopanda": 1, "graph": 5, "group": [9, 10], "haversin": 1, "height": 8, "histogram": 6, "hybrid": 16, "hypothesi": 12, "i": 16, "incom": [7, 11], "index": 4, "kde": 11, "kernel": 7, "keyword": 5, "late": 12, "law": 5, "like": 12, "limit": 11, "linear": 8, "list": 2, "locat": 1, "logarithm": 5, "logist": [9, 16], "loop": 3, "make": 6, "math": 0, "mean": [6, 10], "medic": 12, "model": [7, 12, 16], "more": 12, "multipl": 9, "never": 15, "normal": 15, "notebook": 14, "number": 0, "numpi": 2, "p": 12, "parametr": 16, "percentil": 11, "place": 1, "plot": 5, "price": [2, 5], "punctuat": 4, "quantifi": 8, "read": [6, 13], "regress": [8, 9, 11, 12, 16], "rel": 2, "relationship": 8, "religi": 5, "remov": 4, "repres": 1, "resampl": [10, 11, 16], "result": 9, "right": 16, "sampl": [11, 15, 16], "sandwich": [2, 5], "scale": 5, "scienc": 14, "seri": 6, "simpl": 8, "simul": 10, "size": 15, "social": 7, "statement": 3, "statist": [2, 6], "statsmodel": 9, "string": 1, "studi": 14, "summar": 2, "summari": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "survei": 7, "test": [10, 12, 15], "time": 1, "timedelta": 1, "treatment": 12, "trial": 10, "tupl": 2, "uniqu": 4, "vaccin": 10, "valid": 6, "valu": [0, 12], "variabl": [0, 9], "visual": [8, 9], "weight": [6, 8, 11], "which": 16, "whitespac": 3, "word": [3, 4], "work": 11, "zipf": 5}}) \ No newline at end of file +Search.setIndex({"alltitles": {"Are First Babies More Likely To Be Late?": [[12, "are-first-babies-more-likely-to-be-late"]], "Arithmetic": [[0, "arithmetic"]], "Boolean Series": [[6, "boolean-series"]], "Boostrap sampling": [[16, "boostrap-sampling"]], "Bootstrap Sampling": [[11, null]], "Bootstrapping": [[11, "bootstrapping"]], "CDF of Age": [[7, "cdf-of-age"]], "Calculating Distance": [[1, "calculating-distance"]], "Calculating with Variables": [[0, "calculating-with-variables"]], "Case Studies": [[14, "case-studies"]], "Categorical Variables": [[9, "categorical-variables"]], "Comparing Distributions": [[7, "comparing-distributions"]], "Comparing Incomes": [[7, "comparing-incomes"]], "Computing p-values": [[12, "computing-p-values"]], "Controlling for Age": [[12, "controlling-for-age"]], "Correlation and Regression": [[11, "correlation-and-regression"]], "Counting Unique Words": [[4, "counting-unique-words"]], "Counting Word Frequencies": [[4, "counting-word-frequencies"]], "Counting Words": [[3, "counting-words"]], "Counting with Loops": [[3, "counting-with-loops"]], "Cumulative Distribution Functions": [[7, "cumulative-distribution-functions"]], "DataFrames and Series": [[6, null]], "Dealing with Capitalization": [[4, "dealing-with-capitalization"]], "Debugging": [[2, "debugging"]], "Decorating the Axes": [[5, "decorating-the-axes"]], "Defining Functions": [[1, "defining-functions"]], "Dictionaries": [[4, null], [4, "id1"]], "Distribution of Education": [[7, "distribution-of-education"]], "Distributions": [[7, null], [7, "id1"]], "Elements of Data Science": [[14, null]], "Estimating Average Income": [[11, "estimating-average-income"]], "Estimating Means": [[10, "estimating-means"]], "Estimating Percentiles": [[11, "estimating-percentiles"]], "Exploring relationships": [[8, "exploring-relationships"]], "Files": [[3, "files"]], "Filtering Data": [[6, "filtering-data"]], "Further Reading": [[13, null]], "Geopandas": [[1, "geopandas"]], "Graphing Religious Affiliation": [[5, "graphing-religious-affiliation"]], "Grouping by Age": [[9, "grouping-by-age"]], "Haversine Distance": [[1, "haversine-distance"]], "Histograms": [[6, "histograms"]], "Hypothesis Testing": [[12, null]], "Indexing": [[4, "indexing"]], "Kernel Density Estimation": [[7, "kernel-density-estimation"]], "Keyword Arguments": [[5, "keyword-arguments"]], "Limitations of Bootstrapping": [[11, "limitations-of-bootstrapping"]], "Lists": [[2, "lists"]], "Lists and Arrays": [[2, null]], "Logarithmic Scales": [[5, "logarithmic-scales"]], "Logistic Regression": [[9, "logistic-regression"], [16, "logistic-regression"]], "Loops": [[3, "loops"]], "Loops and Files": [[3, null]], "Making an Extract": [[6, "making-an-extract"]], "Math Functions": [[0, "math-functions"]], "Modeling Distributions": [[7, "modeling-distributions"]], "Multiple Regression": [[9, "multiple-regression"]], "Never Test for Normality": [[15, null]], "Notebook 1": [[14, "notebook-1"]], "Notebook 10": [[14, "notebook-10"]], "Notebook 11": [[14, "notebook-11"]], "Notebook 12": [[14, "notebook-12"]], "Notebook 13": [[14, "notebook-13"]], "Notebook 2": [[14, "notebook-2"]], "Notebook 3": [[14, "notebook-3"]], "Notebook 4": [[14, "notebook-4"]], "Notebook 5": [[14, "notebook-5"]], "Notebook 6": [[14, "notebook-6"]], "Notebook 7": [[14, "notebook-7"]], "Notebook 8": [[14, "notebook-8"]], "Notebook 9": [[14, "notebook-9"]], "NumPy Arrays": [[2, "numpy-arrays"]], "Numbers": [[0, "numbers"]], "Parametric bootstrap": [[16, "parametric-bootstrap"]], "Plotting": [[5, null]], "Plotting Sandwich Prices": [[5, "plotting-sandwich-prices"]], "Quantifying Correlation": [[8, "quantifying-correlation"]], "Reading the Data": [[6, "reading-the-data"]], "Regression": [[9, null]], "Regression of Height and Weight": [[8, "regression-of-height-and-weight"]], "Regression with StatsModels": [[9, "regression-with-statsmodels"]], "Relationships": [[8, null]], "Relative Difference": [[2, "relative-difference"]], "Removing Punctuation": [[4, "removing-punctuation"]], "Representing Dates and Times": [[1, "representing-dates-and-times"]], "Representing Location": [[1, "representing-location"]], "Resampling": [[10, null]], "Resampling and Logistic Regression": [[16, null]], "Resampling with KDE": [[11, "resampling-with-kde"]], "Sample size": [[15, "sample-size"]], "Sandwich Prices": [[2, "sandwich-prices"]], "Series": [[6, "series"]], "Series Arithmetic": [[6, "series-arithmetic"]], "Simple Linear Regression": [[8, "simple-linear-regression"]], "Simulating One Group": [[10, "simulating-one-group"]], "Simulating the Trial": [[10, "simulating-the-trial"]], "Statistical Summaries": [[2, "statistical-summaries"]], "Strings": [[1, "strings"]], "Summarizing Relative Differences": [[2, "summarizing-relative-differences"]], "Summary": [[0, "summary"], [1, "summary"], [2, "summary"], [3, "summary"], [4, "summary"], [5, "summary"], [6, "summary"], [7, "summary"], [8, "summary"], [9, "summary"], [10, "summary"], [11, "summary"], [12, "summary"]], "Summary Statistics": [[6, "summary-statistics"]], "Testing Correlation": [[12, "testing-correlation"]], "Testing Medical Treatments": [[12, "testing-medical-treatments"]], "Testing Regression Models": [[12, "testing-regression-models"]], "The Data": [[16, "the-data"]], "The General Social Survey": [[7, "the-general-social-survey"]], "The Hybrid Model": [[16, "the-hybrid-model"]], "The Hypothesis Testing Framework": [[12, "the-hypothesis-testing-framework"]], "The Resampling Framework": [[10, "the-resampling-framework"], [16, "the-resampling-framework"]], "The break Statement": [[3, "the-break-statement"]], "The notebooks": [[14, "the-notebooks"]], "Timedelta": [[1, "timedelta"]], "Times and Places": [[1, null]], "Tuples": [[2, "tuples"]], "Vaccine Testing": [[10, "vaccine-testing"]], "Validation": [[6, "validation"]], "Variables": [[0, "variables"]], "Variables and Values": [[0, null]], "Visualizing regression results": [[9, "visualizing-regression-results"]], "Visualizing relationships": [[8, "visualizing-relationships"]], "Weighted Bootstrapping": [[11, "weighted-bootstrapping"]], "Weighted Means": [[6, "weighted-means"]], "Which One Is Right?": [[16, "which-one-is-right"]], "Whitespace": [[3, "whitespace"]], "Working with Bigger Data": [[11, "working-with-bigger-data"]], "Zipf\u2019s Law": [[5, "zipf-s-law"]], "if Statements": [[3, "if-statements"]]}, "docnames": ["01_variables", "02_times", "03_arrays", "04_loops", "05_dictionaries", "06_plotting", "07_dataframes", "08_distributions", "09_relationships", "10_regression", "11_resampling", "12_bootstrap", "13_hypothesis", "14_outro", "README", "anderson", "resample_logit"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1}, "filenames": ["01_variables.ipynb", "02_times.ipynb", "03_arrays.ipynb", "04_loops.ipynb", "05_dictionaries.ipynb", "06_plotting.ipynb", "07_dataframes.ipynb", "08_distributions.ipynb", "09_relationships.ipynb", "10_regression.ipynb", "11_resampling.ipynb", "12_bootstrap.ipynb", "13_hypothesis.ipynb", "14_outro.ipynb", "README.md", "anderson.ipynb", "resample_logit.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "00": [1, 2], "000": [3, 4, 7, 11, 16], "000000": [6, 8, 11, 12, 15, 16], "000017": 16, "000044": 16, "000051": 16, "000053": 16, "000054": 16, "000058": 16, "000061": 16, "000083": 16, "000094": 16, "0001": 16, "000100": 16, "000108": 16, "000114": 16, "000115": 16, "000116": 16, "000125": 16, "000126": 16, "000129": 16, "000137": 16, "000147": 16, "000156": 16, "000168": 16, "000173": 16, "000177": 16, "000216": 9, "0004430600283776241": 8, "000679": 7, "0008229516424471632": 12, "000935": 16, "001": [8, 16], "001166": 16, "001173": 16, "001197": 16, "001453": 16, "001615": 12, "0019073328587490353": 8, "001914": 16, "001940": 16, "002191": 7, "002218": 16, "002302": 16, "002312": 16, "002334": 16, "002337849260560818": 8, "002454": 7, "002599": 16, "002806793650907722": 8, "002855": 16, "0029": 16, "002912": 16, "003302": 16, "003430": 16, "003461": 16, "004339": 16, "004530": 16, "004569": 16, "004616": 16, "004944": 16, "005": [12, 16], "005012": 16, "005085": 16, "005153": 16, "005557": 9, "005563": 16, "005769": 16, "008109710250479907": 12, "008819": 6, "009536120931481635": 12, "01": [8, 15], "010": 12, "013145": 12, "014": 16, "014555": 15, "014708": 16, "016": 12, "016407": 12, "01640747818656365": 12, "01716181": 8, "018": [11, 16], "018821034903244386": 8, "019": 8, "019658": 16, "01990049751243781": 12, "02": [2, 8], "021274": 9, "023101": 16, "023190": 16, "023207": 16, "024265": 16, "024899": 16, "0249975737241255": 7, "025": 16, "025192": 16, "025486": 12, "025974": 16, "025989": 16, "027137": 16, "027473": 16, "0278": 16, "027804": 16, "027825": 16, "028435": 16, "029": 16, "029538": 16, "029799": 16, "029943": 16, "030217": 16, "030494": 16, "031": 16, "031057": 16, "031193": 16, "031469": 16, "031532": 16, "031659": 16, "031756": 16, "032862": 16, "033815": 16, "034": 0, "034946": 16, "035": 10, "035600": 16, "03654909244711291": 10, "038": 16, "04": [1, 2, 15], "04675698521121631": 8, "04745762711864407": 10, "05": [1, 6, 8, 16], "05003": 16, "050773": 16, "055303": 16, "0589": 1, "06": [1, 12], "064951": 12, "066840": 16, "067902": 8, "06790235862083926": 8, "07": [1, 2, 5], "071802": 9, "074107": 9, "07467595184363": 9, "076100": 9, "0761003894995": 9, "08": [11, 16], "08049023710964": 8, "08138685042569352": 8, "084075851039522": 10, "08439154079040358": 8, "08929132209777034": 6, "09": [1, 2, 5, 8], "0925279328183": 10, "092962": 16, "096781": 12, "097853": 9, "098093": 9, "09842209405975708": 12, "099": 12, "099338": 12, "09933806121560428": 12, "0x7fe63035c7f0": 6, "1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "10": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "100": [0, 2, 4, 10, 11, 12, 15, 16], "1000": [3, 4, 7, 10, 11, 15], "10000": 4, "1000000": 5, "1001": [10, 11, 12], "101": [11, 16], "10191082802547771": 12, "103": 10, "1056": 12, "106774": 6, "108238": 9, "1099": [8, 11], "10th": 11, "11": [1, 2, 5, 6, 8, 11, 12, 15, 16], "11019675319089409": 8, "111": 6, "1112": 7, "1136": 11, "113654": 16, "11564967": 10, "116": 10, "117": 15, "118557": 16, "11884": 16, "11940": 9, "11993351438646496": 12, "12": [1, 2, 6, 7, 8, 9, 11, 12, 16], "120": [11, 14], "121": [2, 11], "12151": 16, "121771": 12, "122187": 8, "1225": 12, "123": [1, 5], "123123123": 1, "1234": 0, "124": 11, "12672": 11, "127": 11, "1278": 1, "12791": 16, "128590": 12, "1287": 6, "12887112887112886": 12, "129": 11, "13": [6, 12], "130148": 12, "132": 11, "13337": 6, "135980": 12, "137394": [8, 11], "139": 16, "1391": 12, "14": [6, 7, 8, 9, 11, 12, 16], "140": [8, 11], "140045": 12, "140381990193": 11, "14159": [0, 2], "141592653589793": 0, "144": 11, "14616": 11, "148": [0, 11], "14807357731763": 11, "15": [5, 8, 9, 11, 12, 15, 16], "150": [8, 11, 16], "15007": 9, "152": 12, "155": 12, "156": 9, "157": 12, "15724": 6, "158": 7, "16": [0, 6, 7, 9, 10, 11, 12, 16], "160": [8, 11], "160754": 16, "16138": 6, "163": [8, 11, 12], "163240": 12, "1644": 6, "165": [8, 9, 11, 12], "1650": 12, "166255": 16, "166667": 7, "168": [8, 11], "17": [1, 2, 5, 6, 7, 9, 11, 12, 14, 16], "170": [8, 11, 12], "170088": 12, "1711": [8, 11], "1720": 9, "1728": 9, "175": [10, 12], "176": [10, 11], "17642069806488855": 8, "177": [7, 10, 11], "1779": 9, "178": [10, 11], "178173": 16, "179": 6, "17999": 9, "18": [7, 8, 9, 12, 16], "180": [8, 10, 11], "180158": 16, "180217889908257": 6, "1803": 7, "180796": 16, "182666": 16, "182822": 16, "1847133757961785": 12, "1851851851851852": 12, "1864094701037655": 12, "189228": 16, "18951": [7, 9, 11, 16], "19": [1, 5, 7, 16], "190": [11, 16], "1924": 6, "193701": 11, "196367": 9, "1967": 1, "196758": 16, "1972": [7, 9, 11, 16], "197452229299362": 12, "19775280898877": 12, "198399": 16, "1986": [7, 9, 11], "19872296193634043": 12, "1989": 1, "1990": 11, "199178": 16, "1994": 16, "1995": 7, "1st": 6, "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "20": [1, 4, 5, 6, 7, 8, 9, 12, 14, 16], "200": [4, 8, 11, 15], "2000": 16, "200002": 16, "2003": 1, "2006": 1, "2009": [1, 5], "201": [11, 12], "2010": 5, "2011": 5, "201137": 16, "2012": 5, "2013": [5, 15], "2014": 5, "2015": [5, 12], "2015_2017_fempregdata": 6, "2015_2017_fempregsetup": 6, "2016": [5, 14], "2017": 5, "2018": [5, 11], "2019": [2, 5], "2021": [8, 11, 13], "2021000019": 11, "2021000044": 11, "2021000091": 11, "2021001348": 11, "2021003808": 11, "2022": 7, "2023": [15, 16], "2024": 1, "2030": 11, "203760": 11, "20469": 16, "20475": 16, "20483": 5, "20484": 5, "206": 11, "207513": 9, "208": 16, "20801": 1, "21": [4, 5, 7, 10], "2100": 0, "213299": 16, "216985": 16, "21777778": 2, "21885": 10, "21911": 10, "21e": 16, "22": 1, "221221": 6, "221295": 16, "223": 11, "22609399141": 11, "2268": 6, "22727273": 2, "228": 11, "22984884706593015": 1, "23": [5, 7, 9, 11, 16], "2345": 0, "2345e3": 0, "234792": 16, "236901": 16, "238870": 16, "24": [1, 2, 5, 12], "240": 16, "240243": 16, "242778": 16, "242922": 16, "24366": [7, 9, 11, 16], "24635": 9, "248": [6, 11], "248814": 16, "249717": 16, "25": [0, 2, 5, 6, 7, 11, 12, 16], "251942": 16, "25662": 16, "257": 11, "25997": 11, "25th": [6, 7, 8], "26": [5, 11], "2600": [3, 4, 5], "261": 16, "26336": 9, "2661": 0, "269497": 12, "27": [7, 9, 11, 16], "2724": 12, "274": 16, "274097": 9, "276153": 16, "28": [6, 8, 11], "284478654019068": 10, "2863": 6, "28e": 16, "29": [2, 5, 12], "290082606909771": 10, "29046069532454": 12, "292620941946657": 8, "294144493633334": 10, "2945": 7, "299": [8, 11], "2nd": 6, "3": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "30": [1, 6, 7, 8, 9, 12], "300": 15, "30000000000000004": 0, "301154": 15, "3013": 6, "30458": [7, 9, 11, 16], "306": 1, "306774": 1, "30883": 11, "31": 14, "3115": 12, "314": 12, "317167": 16, "3174114774114774": 16, "317927": 16, "32": [7, 8, 11], "322": 11, "32331": 11, "32345": 11, "324": 16, "32533": 11, "32537": 11, "32540": 11, "32573": 11, "32724": 11, "32735": 11, "327560": 16, "3291544097817203": 10, "33": [2, 10, 12], "331": 11, "332": 2, "336757": 16, "3370276162790695": 12, "337773": 16, "34": 12, "34389": 5, "3450": 9, "3464": 9, "34974372": 10, "35": [1, 9, 12], "351063": 16, "3514": 9, "352": 10, "352934": 16, "3601": 1, "363082": 15, "3631": 9, "36367": 9, "363829": 16, "365": 1, "366": 1, "3665": 9, "367273": 12, "3675": 6, "37": [6, 11, 12], "37169252259280877": 9, "373": 11, "375719": 16, "375796178343949": 12, "379621": 16, "37th": [6, 12], "38": 6, "383268": 6, "38469590704490736": 6, "384881": 16, "3849": 16, "384919": 16, "38545760530519": 12, "385612": 16, "386624": 16, "39": 12, "390859": 16, "392391": 16, "39253624525765": 15, "393080": 8, "394": 16, "394937": 16, "396": 6, "39647577092511": 12, "396516": 12, "399": 16, "399981032493": 11, "3rd": 6, "4": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "40": [2, 7, 8, 11, 12], "400000": 6, "400791": 16, "404636": 16, "406837": 16, "41": 11, "411": 12, "411384": 16, "412": 16, "4131591025766": 0, "413202": 16, "414960": 16, "4156": 9, "415658": 16, "418268": 12, "41990": 4, "42": [1, 4, 11, 12], "420195135117": 11, "422171": 16, "425944": 6, "429609416096791": 6, "43": [10, 11], "432664": 16, "438": 11, "438693": [8, 11], "439306": 9, "44": [7, 8, 11], "44247680097321": 8, "445272": 9, "445770": 16, "446": 16, "447477": 12, "45": [7, 8, 11], "450": 16, "453640508655": 9, "453641": 9, "454811": 9, "4563973063973": 2, "4575": 6, "46": [6, 11], "464670": 16, "468": 10, "4687": 11, "469398": 8, "4693981914367916": 8, "4693981914367917": 11, "47": 11, "477151": 12, "477151462838814": 12, "478": 12, "4782776976576317": 8, "47827769765763173": 8, "47939863668166327": 8, "48": [7, 9, 11, 12, 16], "480": 9, "480958781362007": 6, "48237692869481597": 10, "483": 15, "483746": 9, "4891": 9, "49": [2, 5, 7, 11], "49028": 11, "490835": 6, "495": 2, "496": 9, "499": 6, "5": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "50": [4, 6, 7, 8, 9, 11, 15, 16], "507115749525616": 12, "507116": 12, "5074": 1, "50763": [7, 9, 11, 16], "50th": 6, "51": [1, 7], "5103": 11, "5107": 11, "513": 11, "5155": 11, "51827849": 10, "5221": 11, "52599": 9, "5265": 1, "5272": 11, "53": 7, "531441": 0, "534347": 16, "53641955": 5, "537": 11, "54": [2, 11, 12], "541": 11, "54149968876962": 11, "544026": 9, "5448": 11, "545800": 11, "546811": 11, "547000": 11, "55": [9, 11], "5512": 11, "5537": 11, "555e": 16, "5561": 11, "56": [1, 2, 8], "560": [4, 11], "563299": 3, "5646310470973316": 8, "5648": 6, "566316": [3, 4], "5675": 11, "567779": 16, "5687": 11, "569630553049": 11, "57": [1, 16], "570": 6, "573": 11, "5730": 11, "573000": 11, "57572755": 10, "58": [8, 11, 16], "5827": 11, "585064": 11, "587": [8, 11], "59": 2, "5902": 11, "592": [11, 12], "593464": 16, "598": 2, "59956": 12, "5th": [10, 11], "6": [0, 1, 2, 3, 5, 6, 7, 10, 12, 16], "60": [7, 11], "60000": 3, "6015": 11, "605170185988092": 0, "60861545": 10, "60980474219305": 8, "61": [7, 9, 10, 11, 16], "6108980682593": 0, "6129": 11, "613167": 16, "618": 0, "62": [2, 7, 8, 11], "62121445": 7, "621570": [8, 11], "622418": 16, "623120": 9, "6242": 11, "625290800764": 9, "629106": 16, "630366": 16, "6372": 1, "64": [2, 11, 16], "6416666666666666": 2, "6416666666666675": 2, "642430": 16, "64814": 16, "648528": 16, "64912": 11, "65": [2, 5, 7, 8, 11], "6540": 6, "655314": 16, "656325981015": 1, "6573": 6, "6599": 6, "66": [3, 8, 11], "66050": 3, "66340016901641": 8, "6666666666666666": 0, "6690": 6, "6693": 12, "6697923695446464": 10, "67": [2, 5, 8, 10, 11], "6708455902182797": 10, "6709": 11, "674844": 9, "677287": 11, "67733333": 2, "6788": 16, "678838": 16, "68": 5, "681880": 16, "684106": 15, "687507": 16, "6878308158080697": 8, "69": 5, "693": 11, "7": [0, 2, 5, 6, 9, 10, 11, 12, 15, 16], "70": [2, 7, 9, 10, 11, 16], "700": 0, "7006176070344394": 6, "7022507535102278": 10, "70227273": 2, "7036": 11, "706": 9, "70627": [6, 12], "70628": [6, 12], "71": [1, 5, 8, 11], "718281828459045": [0, 5], "72": [8, 10, 11], "72390": 7, "724": 11, "7251222": 10, "7262363980891564": 15, "726908": 9, "7292": 6, "73": 5, "73333333": 2, "7377": 11, "74": [2, 9], "740717": 9, "744": [8, 11], "745": 2, "745531": [8, 11], "7474241": 7, "747448": 16, "75": [2, 5, 6, 7, 8, 11, 16], "750536260325863": 10, "752798": 15, "754357": 6, "7579660563439401": 8, "7579660563439402": 8, "75th": [6, 7, 8], "76": [5, 6, 8], "766346": 9, "767539": 9, "77": [5, 7, 8, 11, 15], "771360": 6, "772": 15, "7721998": 7, "774": 1, "7777777777777778": 12, "77777777777779": 2, "77777778": 2, "78": 12, "780499": 16, "781547": 11, "783": 10, "8": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16], "80": [5, 7, 11], "804015": 16, "804886": 16, "805556": 16, "81003584229393": 2, "812430": 16, "814": 16, "819110": 16, "82": [6, 12, 16], "8255649832811274": 10, "825870": [8, 11], "827253": 15, "837752726940806": 10, "840253": 16, "8470158725246148e": 8, "847295": 16, "851529": 11, "862986": [8, 11], "87": 8, "870685": 9, "878271": 6, "88": [8, 11], "883391903610059": [], "884552": 16, "89": [2, 6, 7, 9, 16], "898221": 9, "9": [0, 2, 5, 6, 7, 8, 9, 11, 12], "90": [10, 11], "901": 6, "902673": 6, "91": [7, 11], "911": 10, "916000": 6, "92": 11, "924924924924927": 2, "93": [8, 11], "9366891536604244": [8, 11], "939358": 16, "94": 11, "945": 2, "95": [6, 10, 11, 16], "951593472785014": 1, "955": 11, "9553": 6, "95th": [10, 11], "962552": 9, "97": 11, "970833333333334": 2, "975": [11, 16], "97693409905207": 10, "978361997": 0, "98": [6, 7, 12], "987083970017878": 11, "988": 16, "99": [2, 5, 6, 7, 12], "A": [0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15], "AND": [3, 6], "And": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "As": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "At": [4, 6, 8, 9, 12, 15], "BY": [15, 16], "But": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "By": [1, 2, 3, 5, 6, 11, 12, 16], "FOR": 5, "For": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "If": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "In": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "It": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "NOT": 6, "No": [0, 13, 15, 16], "Not": [1, 6], "OF": 3, "OR": 6, "Of": [6, 10, 12, 16], "On": [1, 8], "One": [1, 2, 3, 6, 7, 8, 11, 12, 13], "Or": [1, 2, 4, 5, 12, 14], "That": [2, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16], "The": [0, 1, 2, 4, 5, 6, 8, 9, 11, 13, 15], "Then": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16], "There": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13], "These": [1, 3, 5, 6, 7, 8, 9, 12], "To": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16], "With": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12], "_": [4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "__main__": 1, "_ageg5yr": [8, 11], "_asdict": [8, 9], "_htm4g10": [8, 11], "_htmg10": 8, "_incomg1": [8, 11], "_io": 3, "_llcpwt": [8, 11], "_sex": [8, 11], "_vegesu1": [8, 11], "ab": [4, 12], "abbrevi": 1, "abl": [2, 6, 14], "abort": 6, "about": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "abov": [1, 7, 8], "abracadabra": 4, "absolut": [2, 14], "abut": 15, "acceler": 13, "accord": [5, 6, 7, 9, 12], "accordingli": 3, "account": [0, 4, 6, 11, 12], "accumul": 0, "accur": [1, 7, 10, 11, 12], "across": [7, 8], "actual": [1, 3, 7, 9, 10, 12, 14, 15], "ad": [2, 3, 4, 8, 9, 12], "add": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16], "addit": [0, 1, 6, 7, 9, 12, 14], "address": 1, "adher": 6, "adjei": 16, "adjust": [8, 11, 15], "adult": [5, 7, 10], "advantag": [10, 12], "advic": 16, "advis": 16, "affect": [6, 10, 12, 16], "after": [0, 3, 4, 7, 9, 12, 15], "ag": [1, 3, 6, 8, 11, 14, 16], "again": [3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16], "against": [6, 9], "age2": [9, 16], "age_jitt": 8, "agecon": [6, 12], "agecon2": 12, "agegrp": 12, "agepreg": 6, "agre": [6, 7], "agreement": 6, "akpor": 16, "algebra": 1, "algorithm": [3, 13, 14], "align": [12, 13, 14], "aliv": 6, "all": [0, 1, 2, 4, 5, 6, 7, 9, 11, 12, 15, 16], "all_punctu": [4, 5], "allen": [13, 15, 16], "allendownei": [5, 6, 7, 8, 9, 10, 11, 12, 16], "allergi": 12, "allow": [0, 9], "almost": [4, 5, 6, 7, 8, 10, 12], "along": [1, 2, 6, 7, 9, 11, 12], "alpha": [8, 9, 11, 15, 16], "alreadi": [1, 2, 3, 4, 8], "also": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16], "altern": [7, 8, 10, 11, 12, 13, 16], "although": 11, "altogeth": [0, 1, 11], "alwai": [0, 1, 8, 10, 12, 15, 16], "am": [0, 7, 13, 16], "american": [2, 5], "among": [5, 9, 11, 14], "amount": [0, 2], "an": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16], "analysi": [3, 6, 7, 9, 10, 12, 13], "analyst": 11, "analyt": [12, 16], "analyz": 6, "anderson": 15, "anderson1": 15, "anderson2": 15, "anderson_test": 15, "angl": 1, "ani": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16], "annual": 0, "anoth": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 16], "answer": [0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 15, 16], "anyon": 4, "anyth": [6, 7, 8, 12, 14, 15], "anywai": 5, "api": [6, 9, 11, 12, 15, 16], "apologi": 7, "apostroph": 4, "appar": [7, 12], "appear": [3, 4, 5, 6, 7, 10, 11], "append": [12, 15], "appli": [9, 12, 13], "applic": 16, "appreci": 16, "approach": [12, 14], "appropri": [6, 9], "approxim": [0, 1, 5, 7, 10, 16], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "arang": 12, "arbitrari": [1, 2], "arctan2": 1, "area": [1, 8], "aren": 3, "argu": 15, "argument": [2, 4, 6, 7, 8, 9, 10, 11, 12], "arithmet": [1, 2], "around": [5, 12], "arrai": [1, 4, 5, 6, 7, 8, 10, 14, 15], "arrow": 7, "articl": [2, 5, 12, 13, 14, 15, 16], "ascend": 5, "asid": 2, "ask": [2, 3, 5, 7, 9, 10, 11, 16], "aspect": 8, "assc": 7, "assess": [10, 13, 14], "assign": [0, 1, 3, 4, 5, 6, 8, 9, 10, 16], "assist": 5, "associ": [4, 6, 7, 9, 12], "assum": [0, 3, 5, 10, 12, 14, 16], "assumpt": [10, 12, 16], "astronom": 14, "astyp": 15, "asymptot": 16, "attach": 3, "attempt": [1, 6, 8, 12], "attend": 7, "attent": [0, 6, 8], "attribut": [5, 6, 13, 15, 16], "attributeerror": 5, "audienc": 7, "automat": 5, "avail": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "averag": [1, 2, 6, 8, 9, 10, 12, 14], "avoid": [1, 2, 3, 6, 8, 12, 13], "aw": 12, "ax": [1, 6, 7, 11], "axi": [5, 6, 7, 8, 9, 11, 15], "axvlin": 16, "b": [4, 9, 13, 15], "babi": [6, 11, 14], "bach": 7, "bachelor": [7, 9], "back": [3, 4, 5, 6, 8, 11, 12, 15], "background": [3, 6], "balanc": 0, "bang": [2, 5], "bank": 0, "bar": [7, 8], "base": [1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16], "basenam": [5, 6, 7, 8, 9, 10, 11, 12, 16], "basic": 0, "basket": 2, "bass": 5, "bay": [13, 14], "bayesian": 13, "bc": 3, "bday_this_year": 1, "becaus": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "been": [6, 8, 10, 11, 12, 14, 16], "befor": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12], "begin": [3, 4, 5, 6, 12], "behav": [0, 9], "behavior": [8, 11, 12], "being": [5, 12], "belief": [7, 13], "bell": [6, 7], "belong": [1, 3, 9], "below": [1, 6, 7, 8, 11, 12, 14], "benefit": 13, "bernoulli": [10, 12, 16], "best": [6, 7, 8, 10, 14, 16], "better": [5, 7, 8, 9, 11, 12, 13], "between": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "beyond": 11, "bfrss": 11, "bia": [11, 14], "bias": [10, 16], "big": [6, 9, 10, 12, 16], "bigger": [2, 5, 12], "biggest": [11, 12], "bin": [6, 8, 12], "binari": [9, 14], "binomi": 7, "birth": [6, 11, 12], "birth_weight": 6, "birthdai": 1, "birthdat": 1, "birthord": [6, 12], "birthweight": [6, 12], "birthwgt": 12, "birthwgt_first": 12, "birthwgt_lb1": [6, 12], "birthwgt_oth": 12, "birthwgt_oz1": [6, 12], "bit": [0, 2, 12], "bite": 14, "black": 14, "blind": 10, "blog": [13, 15], "book": [1, 3, 4, 5, 9, 12, 13, 14], "bookmark": 3, "bool": [1, 6], "boolean": [1, 7, 11, 12, 15], "bootstrap": 14, "bootstrap2": 16, "bootstrap3": 16, "bootstrap_income_percentil": 11, "bootstrap_mean": 11, "bootstrap_regression_lin": 11, "born": [1, 6, 12], "boston": [1, 2, 5], "boston_mean": 2, "boston_price_arrai": 2, "boston_price_list": [2, 5], "both": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "bottom": [7, 8], "bound": [5, 11], "boundari": 12, "box": [8, 12, 14], "boxplot": [8, 12], "bracket": [0, 2, 4, 5, 6, 7, 9], "branch": 1, "break": [4, 5, 8], "brfss": [8, 11, 12], "brfss_2021": [8, 11], "bring": [11, 12], "briton": [2, 5], "browser": 14, "bse": 16, "bugbear": 14, "bui": 9, "build": [4, 10, 12], "c": [2, 5, 9, 12, 16], "c0": 5, "c3": 5, "c4": 9, "caesar": [2, 5], "caesarean": 12, "calcul": 2, "calendar": 1, "call": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "callabl": 0, "came": [7, 15], "can": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "cannot": [6, 9], "capabl": 2, "captur": [8, 12], "care": [6, 8, 10, 15], "carefulli": [0, 6, 16], "case": [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 16], "caseid": [6, 12], "casual": [8, 10], "catch": 5, "categor": [8, 11], "categori": [4, 8, 9], "caus": [0, 11], "cc": [15, 16], "cdc": [6, 8], "cdf": [8, 9, 14, 15], "cdf_age": 7, "cdf_female_ag": 7, "cdf_incom": 7, "cdf_male_ag": 7, "cdf_sampl": 7, "ceil": 1, "cell": [0, 1, 2, 4, 5, 12], "center": [5, 6, 8, 12], "centimet": [8, 10, 11], "central": [7, 9], "certain": 16, "certainli": 11, "challeng": [6, 13, 14], "chanc": [7, 9, 10, 12, 13, 15], "chang": [4, 5, 11, 13, 14], "chapter": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "charact": [0, 2, 3, 4, 5, 6], "character": [9, 16], "chart": [7, 8], "chatgpt": 5, "cheaper": 2, "check": [0, 1, 3, 4, 6, 7, 9, 12, 15], "chees": [2, 5], "chicago": 13, "chicken": [2, 5], "child": 12, "children": 12, "choic": [1, 2, 7, 8, 12], "choos": [5, 7, 9, 10, 11, 12, 14, 15, 16], "chose": [1, 3, 7], "chosen": [2, 11], "christian": 5, "chunk": 2, "ci": 10, "ci90": [10, 11, 16], "circl": [5, 8], "citi": [2, 5], "clarifi": 9, "classic": [7, 14], "classifi": 14, "claus": 4, "clean": [6, 9], "clear": [0, 7, 12, 14], "clearer": [7, 12], "clearli": [1, 8], "click": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "clinic": 12, "close": [0, 5, 7, 8, 9, 10, 11, 12, 15, 16], "closer": 8, "cm": [8, 10, 11], "cmintvw": 6, "cmjan3yr": 6, "cmjan4yr": 6, "cmjan5yr": 6, "cmlstyr": 6, "co": [0, 1, 12], "code": [0, 1, 2, 4, 7, 12, 14], "codebook": [6, 7], "coef": 16, "coeffici": [8, 10, 12, 14], "cohort": 12, "coin": [10, 16], "colab": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "collect": [0, 1, 3, 4, 7, 10, 11, 12, 16], "colleg": 7, "collid": 8, "colon": [3, 5], "color": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "colspec": 6, "column": [3, 6, 7, 8, 9, 11, 12, 15, 16], "com": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "combin": [1, 6, 12], "come": [0, 1, 6, 10, 15], "comma": [0, 2, 4], "command": 0, "comment": 1, "commit": 14, "common": [0, 1, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 16], "commut": 8, "compa": 14, "compact": 7, "compar": [1, 2, 3, 5, 6, 9, 10, 11, 12, 14, 15, 16], "comparison": [2, 7, 9], "compass": 1, "complement": [7, 10], "complet": [10, 12], "complevel": 6, "complic": 6, "compon": 1, "composit": 1, "compound": 0, "compress": 6, "comput": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "computation": 11, "con": [5, 7], "concat": 11, "concaten": [1, 2, 4], "concept": [6, 7, 12], "concern": 8, "concis": 5, "conclud": [8, 12, 14, 15], "conclus": [6, 12], "condit": [3, 6, 9], "confid": [6, 10, 11, 16], "confidence_interv": 10, "confirm": [2, 3, 6, 9, 10, 11], "conflict": 13, "confus": [0, 6, 7], "connect": [5, 8, 9], "conserv": 14, "consid": [4, 6, 7, 8, 12, 13, 16], "consist": [6, 8, 11, 12], "constant": [0, 5, 9], "construct": 8, "consumpt": [8, 12], "contact": 2, "contain": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "content": [3, 5], "contenti": 12, "context": [1, 7, 8, 12, 14], "continu": [0, 3, 5, 7, 11], "contrast": [7, 13], "contribut": 9, "control": [8, 9, 10], "conveni": [5, 16], "convent": [1, 3, 13], "converg": 16, "convers": [2, 5], "convert": [1, 2, 4, 5, 6, 7, 8, 11], "coord1": 1, "coord2": 1, "coordin": 1, "copi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "copyright": [13, 15, 16], "core": [6, 9], "corr": [8, 11, 12], "corr_actu": 12, "corrcoef": 8, "correct": [0, 4, 6, 10, 11, 16], "correctli": [0, 6], "correl": [9, 14], "correspond": [2, 4, 6, 7, 9, 11, 12, 16], "could": [2, 6, 7, 9, 10, 11, 12, 16], "count": [0, 5, 6, 7, 9, 11, 12, 14, 16], "counter": 4, "counterfactu": 16, "countri": [7, 10], "coupl": 2, "cours": [10, 16], "covari": 16, "cover": 9, "creat": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14], "creativ": 13, "crime": 14, "crimin": [13, 14], "criteria": 16, "criterion": 6, "critic": 15, "critical_valu": 15, "csv": 6, "cucumb": [2, 5], "curios": 12, "current": [1, 6, 9, 11, 13, 16], "curriculum": [12, 14], "curv": [6, 7, 11], "cut": [8, 11, 12], "cv": 10, "d": [2, 3, 4, 9, 15], "d1": 1, "d2": 1, "dai": [1, 8], "danger": 12, "darl": 15, "dat": 6, "data": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15], "data1": 12, "data2": 12, "data_access": 6, "data_fil": [6, 7], "databas": 1, "datafram": [7, 8, 9, 11, 12, 14, 15, 16], "dataframegroupbi": 9, "datasci": [1, 2], "dataset": [2, 6, 7, 8, 9, 10, 11, 12, 16], "date": [0, 14, 16], "date_of_birth": 1, "day_nam": 1, "dct": 6, "deal": 6, "dealt": 6, "death": 12, "decad": 11, "decemb": 1, "decid": 12, "decim": 1, "decis": [1, 12, 13, 15, 16], "declar": 12, "declin": [5, 6], "decor": 11, "decreas": [3, 15], "decrement": 3, "deduct": 3, "def": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "default": [1, 5, 6, 12], "defeat": 12, "defend": 14, "defin": [0, 3, 4, 5, 14, 16], "definit": 12, "degre": [1, 7, 9, 11], "deliber": 10, "deliveri": 12, "delta": 12, "demograph": [7, 11], "demonstr": [2, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16], "den": 16, "denomin": 2, "denot": 12, "densiti": [8, 10, 11, 12], "dep": 16, "depend": [3, 8, 9, 10, 12, 15, 16], "deposit": 0, "depth": 13, "deriv": 16, "descend": 5, "describ": [1, 2, 5, 6, 7, 8, 9, 11, 16], "descript": [7, 16], "deserv": 4, "design": [6, 11], "desir": 11, "detail": [0, 1, 5, 7, 9, 11, 12], "determin": [5, 6, 8], "detour": 12, "dev": 16, "develop": [2, 12, 14], "deviat": [2, 6, 7, 8, 10, 11, 12, 15, 16], "df": [9, 11, 12, 16], "df_pred": 11, "diagnos": [10, 12], "diagram": [10, 12], "dict": 16, "dict_fil": 6, "dict_valu": 5, "dictionari": [3, 5, 6, 14], "did": [2, 4, 6, 9, 10, 11], "didn": 7, "die": 7, "diet": 8, "diff": [5, 12, 16], "diff2": 12, "diff_actu": 12, "differ": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "difficulti": 13, "digit": [0, 1, 11], "dimens": 2, "dimension": 2, "diploma": 7, "direct": [1, 8], "directli": 5, "disadvantag": 12, "disagre": 16, "disappear": 12, "discov": 9, "discret": [5, 8, 11], "discuss": [11, 14], "diseas": [8, 10, 13], "disguis": 11, "disp": [15, 16], "displai": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11], "dist": 15, "distanc": [7, 8], "distinct": 11, "distract": [7, 12], "distribut": [6, 8, 9, 10, 11, 12, 14, 15, 16], "divers": 11, "divid": [1, 5, 6, 9, 10, 12], "divis": 0, "dlambda": 1, "do": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "doc": 6, "document": [4, 5, 6, 7, 8, 14], "doe": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "doesn": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16], "doi": 12, "dollar": [2, 7, 11], "don": [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16], "done": [0, 1, 2, 6, 9, 11, 12, 15], "dot": [1, 3, 5, 9], "doubl": [1, 3], "doubt": 16, "down": [1, 8, 12], "downei": [13, 15, 16], "download": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "downward": 9, "dphi": 1, "dpi": 15, "draft": 2, "dramat": 6, "draw": [5, 6, 7, 10, 11, 12, 16], "draw_arrow_down": 7, "draw_arrow_left": 7, "draw_lin": 7, "drawn": [10, 12], "drive": 14, "drop": [11, 12, 16], "dropna": [6, 8, 9, 11, 12, 16], "dtype": [2, 6, 9, 11, 12, 15, 16], "due": [7, 10, 11, 12, 13, 14, 16], "durat": [1, 6], "dure": [10, 11, 12], "e": [0, 1, 2], "each": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "earli": [1, 12], "earlier": [6, 8], "earn": [0, 7, 9], "earner": 7, "earth": 1, "easi": [1, 9, 10, 12, 16], "easier": [7, 10, 12], "easiest": [11, 16], "eastern": 1, "eat": [8, 12], "ebook": [3, 4], "econom": [2, 5], "economist": [2, 5], "ectop": 6, "edgecolor": 1, "edu": 5, "educ": [9, 11, 14, 16], "educ2": [9, 16], "effect": [1, 4, 6, 8, 10, 11, 12, 13, 16], "efficaci": 10, "effici": 6, "effort": 8, "efron": 16, "egg": [2, 5], "eight": 4, "either": [0, 1, 3, 6, 10, 11, 15], "element": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "elementsofdatasci": [5, 6, 7, 8, 9, 10, 11, 12, 16], "elementwis": [2, 6, 12], "els": [4, 5, 8, 15], "elsewher": 6, "embarrass": 9, "emphas": [10, 12], "emphasi": 13, "empir": [7, 15], "empiricaldist": [7, 8, 15], "empti": [2, 4, 9], "en": 0, "encapsul": 11, "enclos": 1, "encod": [3, 6, 12], "encount": 11, "encourag": 0, "end": [0, 3, 4, 5, 6, 8, 11, 12], "england": [1, 12], "english": [0, 4], "enough": [2, 3, 6, 7, 8, 10, 11, 12, 15, 16], "ensur": 6, "enter": 5, "entir": [3, 11], "entri": 8, "environ": 14, "equal": [3, 7, 8, 9, 10, 12, 13], "equat": [0, 5], "equirectangular": 1, "equival": [0, 4, 10], "err": 16, "error": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 16], "especi": [1, 5], "est": 11, "establish": 6, "estim": [1, 6, 8, 9, 12, 13, 14, 16], "etc": [1, 5, 6], "ethic": [6, 14], "evalu": [7, 14], "even": [0, 1, 6, 7, 8, 11, 12], "everi": [0, 1, 4, 5, 6, 7], "everyon": 10, "everyth": [0, 4, 7, 9], "evid": 12, "ewd": 5, "ewd08xx": 5, "ewd831": 5, "exact": [0, 1], "exactli": [0, 6], "exampl": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "exce": [7, 12, 15], "excel": 6, "except": [1, 7, 9, 11, 15, 16], "excess": 11, "excit": [0, 9], "exclud": 6, "execut": 3, "exercis": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "exist": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16], "exit": 3, "exp": [0, 5, 15], "expect": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16], "expens": [2, 11], "experi": [2, 10, 12, 14], "experienc": 12, "expit": 15, "explain": [1, 7, 9, 10, 12, 13, 14, 15, 16], "explan": 12, "explanatori": 11, "explicit": [0, 6, 12], "explor": [4, 6, 7, 9, 11, 12, 13, 14, 15], "exploratori": [7, 9, 13], "expon": 0, "exponenti": [0, 1, 7], "express": [0, 1, 2, 3, 4, 6], "extend": [6, 7, 8, 11], "extens": 1, "extra": 3, "extract": [5, 7, 8, 9, 11, 12], "extrem": [7, 12], "f": 5, "face": 9, "fact": [11, 12], "factor": [8, 9, 11, 12], "fail": [11, 15], "fair": [13, 14], "fake": 8, "fall": [6, 8, 9, 10, 11], "fals": [1, 3, 4, 6, 7, 15, 16], "famili": [1, 6, 11, 12, 14], "familiar": [0, 6, 7, 12], "famou": 3, "famous": 5, "far": [0, 2, 3, 6, 7, 8, 9, 12, 16], "farther": [6, 8, 9, 11], "fast": [11, 16], "faster": [6, 7, 12, 16], "fastest": 16, "father": 12, "favor": [9, 11], "favor_by_ag": 9, "favorit": 9, "featur": [0, 4, 5, 14], "feedback": 14, "feet": 11, "femal": [7, 9, 16], "female_ag": 7, "fetch": 1, "few": [1, 2, 6, 7, 8, 9, 10, 11, 12, 14, 15], "fewer": [10, 11], "figsiz": 8, "figur": [3, 4, 5, 6, 7, 8, 11, 12, 16], "file": [1, 2, 4, 6, 7, 11, 12, 14, 16], "filenam": [5, 6, 7, 8, 9, 10, 11, 12, 16], "fill": 1, "fill_between": 11, "final": [3, 5, 7, 8, 9, 10, 11, 12, 13], "financ": [2, 5], "find": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16], "fine": [0, 1], "finish": [5, 6], "finit": [0, 16], "first": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "fit": [7, 8, 9, 10, 11, 12, 15, 16], "five": [6, 7, 8], "fix": [4, 6, 7, 8, 9, 11], "flat": 7, "flip": [10, 16], "float": [0, 1, 2, 4], "float64": [2, 6, 9, 11, 12, 15, 16], "floor": 1, "flowingdata": 13, "focu": [5, 6, 14], "focus": 13, "follow": [0, 1, 3, 4, 5, 7, 8, 10, 11, 12, 16], "food": 12, "fool": [8, 12], "forget": [4, 12], "forgiv": 0, "form": [7, 9, 11, 14, 16], "formal": [0, 7, 10], "format": [0, 1, 3, 5, 6], "formula": [0, 7, 9, 11, 12, 15, 16], "fortun": [1, 11], "forum": 13, "found": [2, 6, 11, 12], "four": [0, 3, 7, 9, 10, 16], "fp": [3, 4, 5], "frac": [0, 12], "fraction": [0, 2, 6, 7, 9, 10, 11, 12, 16], "frame": 6, "framework": 11, "fraud": 10, "free": [3, 16], "freq": 5, "freq_list": 5, "frequenc": [0, 5, 6, 14], "frequent": 6, "from": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "from_seq": [7, 15], "front": [3, 4], "ftp_dua": 6, "full": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "full_term_weight": 6, "fullterm": [6, 12], "function": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16], "funni": 2, "fx": 8, "fy": 8, "gaia": 14, "gain": [2, 8], "game": 3, "gap": 9, "gaussian": [7, 15], "gaussian_kd": 11, "gave": 16, "gca": 1, "gender": 9, "gener": [2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "geodataset": 1, "geograph": 1, "geometri": 1, "geopanda": 14, "georg": 5, "geoseri": 1, "get": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "get_path": 1, "ghij": 3, "github": [14, 16], "githubusercont": [5, 6, 7, 8, 9, 10, 11, 12], "give": [1, 3, 7, 8, 11, 12, 16], "given": [1, 4, 7, 8, 10, 12], "glanc": [8, 11], "global": 1, "globe": 1, "go": [0, 1, 2, 6, 7, 9, 11, 12, 15], "goal": 14, "goe": [0, 1, 4, 8], "golden": 0, "gone": [8, 10, 11], "good": [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15], "googl": 14, "gosset": 1, "got": [3, 9, 10, 12], "gov": [6, 8], "gpd": 1, "gradual": 12, "graduat": 7, "grai": [1, 5, 7, 11, 15], "graph": [2, 9], "grass": [7, 9, 11, 16], "grass_by_year": 11, "greater": [1, 7, 8, 13, 16], "greek": 1, "grei": 5, "grid": [6, 7], "group": [6, 7, 8, 11, 12, 13], "group1": 12, "group2": 12, "groupbi": [9, 11], "growth": [6, 11, 12, 13, 14], "gss": [7, 9, 11, 13, 16], "gss2018": 11, "gss_eda": 16, "gss_extract_2022": [7, 9, 11], "gssdataexplor": 7, "guess": [6, 8, 10, 12], "gun": 9, "gunlaw": [7, 9, 11, 16], "gutenberg": [3, 4], "h_0": 12, "ha": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "had": [1, 6, 10, 12, 16], "half": [3, 8, 11, 12], "ham": [2, 5], "hand": [5, 12], "handl": [4, 8, 11], "happen": [0, 3, 4, 7, 8, 11, 12, 16], "hard": [2, 7, 8, 9, 10, 12], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "haven": 15, "haversine_dist": 1, "hdf": [6, 7, 8, 9, 11, 12, 16], "he": 9, "head": [6, 7, 8, 9, 10, 11, 12, 15, 16], "header": 3, "health": [6, 8], "heard": [7, 12], "heavi": 6, "heavier": [6, 8, 11, 12], "heaviest": [6, 8], "height": [10, 11, 12], "height_jitt": 8, "held": 9, "help": [0, 2, 6, 8, 9, 15], "hemispher": 1, "her": 12, "here": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "hi": [12, 13], "high": [7, 8, 9, 10, 12, 14, 15], "higher": [2, 6, 7, 8, 9, 10, 11, 16], "highest": [6, 7, 11, 12], "highli": 12, "hint": 0, "hist": [6, 7], "histogram": 7, "histor": [1, 3], "histori": [7, 12], "hline": 5, "hold": [0, 5, 9], "home": 1, "honest": 10, "horizont": 5, "hour": [1, 12], "household": [7, 9, 11], "how": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "howenddk": 6, "howev": [0, 4, 5, 6, 7, 9, 11, 12, 16], "howpreg_n": [6, 12], "howpreg_p": [6, 12], "hpagelb": [6, 12], "htm": 6, "htm4": [8, 11, 12], "html": [3, 5, 6, 8], "http": [0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16], "hundr": [7, 8, 9], "hypothesi": [13, 14, 15, 16], "hypothet": [8, 12], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "id": [7, 9, 11], "id_": 16, "idea": [7, 8, 11], "ideal": 10, "ident": [0, 6, 7], "identifi": [3, 4, 5, 6, 11, 12], "idiom": 12, "idiomat": 12, "idl": 12, "ignor": [2, 4, 7, 8, 10, 12], "imagin": [10, 12], "immedi": [3, 14], "immut": 2, "impact": [13, 14], "implement": [10, 16], "impli": [5, 12], "implicit": 0, "import": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "importantli": [2, 8], "importerror": [1, 15, 16], "impract": 10, "impress": 12, "improv": [8, 12], "inapplic": 6, "inch": [8, 11], "includ": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16], "incom": [8, 9, 14], "inconveni": 1, "incorrectli": 6, "increas": [3, 5, 7, 8, 9, 11, 15], "increment": [2, 3, 4], "indent": 3, "independ": 9, "index": [1, 6, 11, 12, 16], "indexerror": 4, "indic": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "indirect": 12, "induc": 6, "ineffect": 12, "inequ": 11, "infant": 12, "infecti": 13, "infer": [9, 13], "inflat": 11, "inform": [3, 6, 7, 9, 10, 11, 12], "inner": [4, 8], "inplac": 16, "insid": [3, 4], "instal": [1, 14, 15, 16], "instanc": 4, "instead": [1, 4, 6, 8, 11, 12], "instruct": [3, 6, 7, 9, 11], "int": [0, 1, 5, 15], "int64": [6, 9, 11, 12, 16], "integ": [0, 1, 2, 3, 4, 5], "intend": [2, 7, 12], "intent": 12, "intercept": [5, 8, 9, 12, 15, 16], "intercept_stderr": [8, 9], "interest": [0, 2, 8, 13], "interior": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "intermedi": [2, 5], "intern": [13, 15, 16], "interpret": [1, 5, 6, 7, 8, 9, 10, 12, 14], "interquartil": [7, 8], "interv": [0, 1, 6, 10, 11, 16], "interview": [7, 12], "introduc": [0, 1, 2, 3, 4, 5, 6, 10, 12, 14], "introduct": [0, 3, 13, 14], "introductori": 3, "intvwyear": 6, "invalid": [1, 4, 5, 6], "invers": [5, 7], "invert": [5, 7], "invest": 0, "invok": 9, "involv": [0, 11], "ipykernel_12818": 0, "iqr": 7, "isaac": 16, "isin": 12, "isna": 6, "issu": [6, 7, 11, 14], "item": 4, "iter": [4, 9, 11, 15, 16], "its": [1, 5, 7, 9, 11, 12, 13], "itself": [0, 8, 12], "jan": 16, "jitter": [8, 11], "job": 2, "join": 4, "journal": [10, 12], "judg": 4, "juli": 14, "june": 1, "jupyt": [0, 1, 14], "just": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "justic": [13, 14], "k": [5, 10, 12], "k_all": 12, "k_control": [10, 12], "k_placebo": 12, "k_treatment": [10, 12], "karim": 16, "kde": [7, 8, 9, 10, 12], "kdeplot": [7, 10, 11, 12, 16], "keep": [2, 3, 11], "kei": [4, 5, 6], "kernel": 11, "keyword": [6, 7, 8], "kg": [8, 11], "kilogram": [6, 8], "kind": [0, 1, 2, 3, 4, 7, 11, 12, 13, 14], "kingslei": 5, "klmno": 3, "km": 1, "know": [0, 3, 4, 6, 7, 8, 10, 11, 12, 14, 16], "known": 14, "l": 16, "label": [5, 6, 7, 8, 9, 10, 11, 12, 16], "lack": 11, "land": 1, "landscap": 5, "languag": [0, 1, 4, 5], "larg": [1, 6, 8, 10, 11, 12], "larger": [0, 11], "largest": [11, 12], "last": [1, 3, 4, 5, 6, 7, 9, 12], "lat": 1, "lat1": 1, "lat2": 1, "lat_lon_str": 1, "later": [1, 2, 5, 6, 12], "latitud": [0, 1, 2], "law": 9, "layout": 8, "leap": 12, "leapstudi": 12, "learn": [0, 3, 4, 5, 6, 7, 9, 13, 14, 15], "least": [1, 4, 5, 7, 9, 12], "leav": [0, 3], "left": [0, 5, 6, 9, 11], "legal": [3, 9, 11, 16], "legend": [5, 7, 9, 11, 16], "len": [2, 3, 4, 5, 8, 11, 12, 16], "length": [2, 6, 12], "length_first": 12, "length_live_ful": 12, "length_oth": 12, "leo": 3, "less": [0, 1, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "lesson": 8, "let": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "letter": [0, 1, 2, 3, 4, 9], "letter_count": 4, "level": [6, 7, 8, 9, 11, 15], "liber": 14, "librari": [0, 1, 2, 4, 5, 6, 7, 8, 9, 14], "licens": [3, 4, 13], "life": 12, "light": [6, 11, 12], "lighter": [6, 8, 12], "lightest": [6, 8], "like": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "likelihood": 16, "limit": [5, 6, 8, 12], "line": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14], "linear": [9, 11, 12, 16], "linestr": 1, "linestyl": 5, "linger": 15, "linregress": [8, 9, 11], "linregressresult": 8, "linspac": [7, 8, 9, 11, 15, 16], "list": [1, 3, 4, 5, 6, 7, 10, 11, 12, 14], "liter": 1, "littl": [4, 6, 11, 12], "live": [6, 12, 13], "live_preterm": 6, "ll": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "llr": 16, "lo": 16, "load": [1, 6, 7, 11], "lobel": 13, "lobster": [2, 5], "loc": 11, "local": [5, 6, 7, 8, 9, 10, 11, 12, 16], "locat": [0, 5, 14], "log": [0, 5, 7, 8, 9, 15, 16], "log10": [5, 7, 11], "log_realinc": [7, 11], "logarithm": [0, 7, 8, 11], "logic": 6, "logist": [11, 14, 15], "logit": [9, 11, 15, 16], "lognorm": [7, 15], "logspac": 15, "lon": 1, "lon1": 1, "lon2": 1, "london": [1, 2, 5], "london_mean": 2, "london_price_arrai": 2, "london_price_list": [2, 5], "long": [0, 3, 7], "longer": [0, 6], "longest": 2, "longitud": [0, 1, 2], "look": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16], "loop": [2, 4, 5, 11, 14, 16], "lot": [0, 7, 8, 9, 10, 12, 13], "low": [8, 10, 11, 12, 15], "lower": [4, 5, 8, 9, 10, 11, 12, 16], "lowercas": [0, 4], "lowest": 11, "lulu": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "lunch": [2, 5], "m": [4, 12, 16], "machin": [13, 14], "made": [1, 2, 5, 9, 12, 16], "magic": [0, 16], "mai": [1, 2], "make": [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16], "make_cdf": 7, "maker": 7, "male": [7, 9, 10, 11, 16], "male_ag": 7, "male_df": 11, "man": 7, "manger": 5, "mani": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "manufactur": 10, "map": [1, 4, 5, 14], "marijuana": [9, 11, 16], "mark": [1, 3, 4], "marker": [5, 8], "markers": 8, "marri": 9, "mass": 7, "massachusett": 1, "master": 16, "match": [5, 7], "materi": [3, 9, 14], "matern": 12, "math": [1, 2, 3], "mathemat": [0, 1, 7, 10, 12, 14, 15], "mathrm": 1, "matplotlib": [1, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "matrix": 8, "matter": [2, 3, 4, 12, 16], "max": [2, 6, 8, 11, 12, 16], "maximum": [2, 6, 8, 11], "mayb": [1, 7, 12], "me": [2, 3, 6, 12], "mean": [0, 2, 7, 8, 9, 11, 12, 15, 16], "mean_height": [10, 11], "mean_income_by_ag": 9, "mean_realinc": 11, "meaning": 2, "meant": 14, "measur": [0, 1, 2, 7, 8, 10, 12], "mechan": 13, "media": 13, "median": [6, 7, 8], "medic": 10, "medicin": 12, "meet": 6, "men": [7, 9, 10, 11, 16], "mention": [1, 6], "messag": [0, 3], "method": [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "methodologi": 11, "metric": [13, 14], "microsecond": 1, "middl": [1, 4, 8, 12], "midnight": 1, "midpoint": [2, 7, 8, 11, 12], "midpoint_pric": 2, "midpoint_price_arrai": 2, "might": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "million": [3, 10], "millisecond": 1, "min": [2, 6, 8, 11, 12, 16], "mine": 12, "minimum": [2, 6, 8, 11], "minut": 1, "miscarriag": 6, "misclassifi": 14, "misl": 8, "mislead": [0, 1, 5, 6, 8, 9, 11, 12], "miss": [0, 5, 6, 8, 12, 16], "mississippi": 4, "mistak": [0, 10], "mle": 16, "mode": 3, "model": [9, 10, 11, 13, 14, 15], "moder": [8, 12, 14], "modifi": [1, 2, 4, 5, 10, 12, 14], "modul": 0, "modulenotfounderror": 0, "monei": 0, "month": [1, 12], "month_nam": 1, "more": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16], "moscurrp": [6, 12], "most": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16], "most_common": 4, "mostli": [6, 8], "mother": 12, "move": [5, 9], "mu": [10, 11, 12, 15], "much": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 16], "multipl": [0, 3, 5, 6, 7, 8, 10, 14, 16], "multipli": [0, 1, 3, 6, 8], "multivari": [9, 14], "must": [3, 4], "my": [8, 9, 12, 14], "n": [0, 1, 2, 3, 5, 10, 11, 12, 15, 16], "n1": 10, "n2": 10, "n_all": 12, "n_control": [10, 12], "n_first": 12, "n_height": [10, 11], "n_job": 16, "n_other": 12, "n_placebo": 12, "n_realinc": 11, "n_treatment": [10, 12], "name": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 16], "name_arrai": 2, "name_list": [2, 5], "nameerror": [3, 4], "nan": [6, 7, 8, 9, 11, 12, 16], "nanosecond": 1, "narrow": 11, "nathan": 13, "nation": [6, 11, 12, 14], "natur": [0, 5, 6], "naturalearth": 1, "nbrnaliv": 6, "nbviewer": 14, "nc": [15, 16], "nch": 6, "nd": 2, "ndarrai": 2, "nearli": 10, "necessari": 1, "necessarili": 12, "need": [0, 2, 5, 6, 8, 9, 11, 12, 14, 16], "neg": [1, 4, 8, 9, 11, 12], "nejm": 12, "nejmoa1414850": 12, "nest": 4, "never": [3, 6, 11, 12], "nevertheless": [4, 10, 12], "new": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14], "newlin": [3, 5], "next": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12], "nice": 10, "nine": 8, "nois": [7, 8], "noisi": 7, "noisier": 11, "nomin": 9, "non": [8, 9, 12, 16], "noncommerci": [13, 15, 16], "none": [7, 8, 16], "nonlinear": [8, 12], "nonrobust": 16, "nonsens": 6, "norc": 7, "norm": [7, 11, 15], "normal": [3, 5, 7, 8, 10, 11, 12, 16], "northern": 1, "not_actually_a_numb": 1, "not_really_a_d": 1, "not_really_a_tim": 1, "notat": [0, 7], "note": [0, 3, 6, 9], "notebook": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "noth": [8, 15, 16], "notic": [0, 1, 3, 5, 9, 15], "notna": 6, "novel": 3, "now": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "nowprgdk": [6, 12], "np": [0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "nsfg": [6, 11, 12], "nt": 0, "null": [12, 15, 16], "num": [0, 16], "number": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "numer": [0, 9, 11, 14], "numpi": [0, 1, 5, 6, 7, 8, 9, 11, 14, 15, 16], "o": [5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "object": [0, 1, 5, 6, 7, 8, 9, 10, 11, 16], "obscur": 7, "observ": [5, 8, 10, 11, 12, 13, 16], "obtain": [6, 9], "occasion": 12, "octob": 5, "odd": 9, "off": [5, 6, 7, 8, 10, 11, 14], "often": [0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 16], "ol": [9, 12], "old": [1, 3, 8, 12], "older": [7, 8, 9, 12, 16], "oldest": 12, "omega": 0, "omit": 8, "onc": [4, 5, 10, 11, 12], "one": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "one_year": 11, "ones": [8, 12, 16], "onli": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "onlin": [1, 5, 7, 13], "open": [3, 4, 5], "oper": [0, 1, 2, 3, 4, 6, 7, 12], "operand": 2, "opinion": [8, 12, 14], "oppos": [8, 9], "opposit": 5, "optim": [9, 11, 16], "option": [2, 4, 11, 12, 14, 16], "order": [0, 1, 3, 4, 5, 6, 12], "ordinari": 9, "org": [0, 5, 6, 7, 8, 12], "orient": 1, "origin": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16], "orli": 13, "other": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "otherwis": [2, 3, 4, 6, 8, 15], "ounc": [6, 12], "ounces_clean": 6, "our": [5, 6, 10, 11, 12], "out": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12], "outcom": [6, 7, 9, 12, 15], "outdent": 3, "outer": 4, "outlier": 7, "output": [5, 9], "over": [4, 5, 7, 8, 10, 11, 12, 13, 14, 16], "overlap": [8, 11], "overplot": 8, "oversampl": [6, 11], "overthink": 13, "overwhelm": 6, "own": [9, 14], "p": [0, 4, 7, 10, 15, 16], "p1": [1, 7, 10], "p2": [1, 7, 10], "p_valu": 12, "pace": 5, "page": [1, 3], "pai": [0, 2, 5], "pair": [1, 2, 4, 8], "panda": [1, 6, 7, 8, 9, 11, 12, 15, 16], "paper": [10, 12, 14, 16], "parabola": 9, "param": [9, 12, 15, 16], "paramet": [6, 9, 10, 11, 12, 15, 16], "parenthes": [0, 2, 3, 4], "parse_stata_dict": 6, "part": [0, 1, 3, 4, 5, 6, 9, 13], "partial": 12, "particip": 10, "particular": [3, 4, 15], "particularli": [8, 11, 12], "pass": [5, 10, 11], "past": [1, 4, 11, 12], "patern": 12, "path": [1, 5, 6, 7, 8, 9, 10, 11, 12, 16], "patient": 10, "pattern": [4, 5], "pd": [1, 6, 7, 8, 9, 11, 12, 15, 16], "pdf": [5, 7, 11, 14], "peac": [3, 4, 5, 14], "peak": 7, "peanut": 12, "pemda": 0, "peopl": [1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "per": [0, 6, 8, 9, 10, 12, 16], "percent": [2, 14, 16], "percent_differ": 2, "percentag": [2, 5, 9, 11, 12], "percentil": [6, 7, 8, 10], "perfect": 1, "perfectli": 10, "perform": [0, 1, 2, 3, 7], "perhap": 0, "period": [3, 4, 10, 12], "permit": 9, "permut": 12, "person": [1, 3, 6, 7, 8, 9, 10], "pew": 5, "pewforum": 5, "pewresearch": 5, "phase": 6, "phi": 0, "phi1": 1, "phi2": 1, "physic": 13, "pi": 0, "pi_hat": 16, "pick": [9, 11], "picki": 0, "pictur": [1, 5, 7, 8, 9], "pie": 0, "pile": 8, "pip": [1, 15, 16], "place": [2, 7, 12, 14], "placebo": 12, "plan": [1, 12], "plausibl": [10, 11, 12], "plausibli": 10, "ple": 1, "plot": [1, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "plot_data": 11, "plt": [1, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "plu": [7, 8], "pmf": [7, 8, 9, 14], "pmf_educ": 7, "pmf_educ_norm": 7, "pmf_female_ag": 7, "pmf_male_ag": 7, "pmf_sampl": 7, "png": 15, "point": [0, 1, 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16], "pointer": [3, 16], "poisson": 7, "polic": 9, "polici": 7, "polit": [5, 7, 13, 14], "politician": 7, "politico": 14, "popul": [6, 10, 11, 13, 16], "popular": 1, "por": 16, "pose": [6, 9, 13], "posit": [1, 5, 8, 9, 11, 12, 15], "possibl": [1, 2, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16], "post": [7, 13, 14, 15], "post95": 7, "potenti": 13, "pound": [6, 12], "pounds_clean": 6, "power": [0, 5, 9, 14, 16], "pqdm": 16, "pqrstu": 3, "practic": [4, 5, 8, 9, 10, 12, 14, 16], "practition": 16, "pre95": 7, "precaut": 10, "preced": 0, "precis": [3, 10, 11, 13], "pred": 11, "pred1": 16, "pred12": 9, "pred14": 9, "pred16": 9, "pred2": 16, "pred_femal": 9, "pred_mal": 9, "predict": [5, 8, 9, 11, 13, 16], "predictor": [9, 12], "prefer": [10, 16], "pregend1": [6, 12], "pregend2": 6, "pregnanc": [6, 12], "pregnant": 6, "pregordr": [6, 12], "premis": 16, "prepar": 11, "present": [0, 1, 2, 3, 5, 7, 8, 11, 12, 13, 14, 16], "press": 13, "presum": [10, 16], "pret": 5, "preterm": 6, "preterm_weight": 6, "pretti": [12, 15], "prevent": [5, 10, 12], "previou": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "previous": [5, 8], "prglngth": [6, 12], "primari": 6, "primarili": 2, "principl": 0, "print": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "prior": 6, "privaci": [6, 8], "pro": [5, 7], "prob": 7, "probabl": [2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "problem": [0, 1, 2, 3, 4, 6, 8, 11, 12], "problemat": [11, 12], "procedur": 16, "process": [2, 6, 7, 9, 10, 11, 12, 16], "produc": [0, 2, 11], "product": 6, "program": [0, 1, 4, 5, 14], "progress": 14, "project": [1, 3, 4, 6], "prompt": 16, "pronounc": [0, 1], "proper": 7, "proport": [5, 8, 10, 11, 12], "proportion": 5, "propos": 16, "propublica": 14, "protect": 8, "protocol": 10, "provid": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "pseudo": 16, "publish": [2, 5, 13, 14], "punc_mark": 4, "punctuat": [1, 5], "purpos": [0, 1, 7, 8, 10, 12, 15, 16], "put": [1, 2, 3, 4, 9, 12], "pvalu": [8, 9], "py": [0, 5, 6, 7, 8, 9, 10, 11, 12], "pydata": [6, 8], "pyplot": [1, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "python": [0, 1, 2, 3, 4, 6, 7, 13, 14], "q": [7, 13], "q1": 7, "q2": 7, "quadrat": [9, 12, 16], "qualiti": 10, "quantifi": [2, 9, 10, 11, 12, 13, 14, 16], "quantil": [11, 16], "quantiti": [2, 7, 15], "quarter": [6, 12], "question": [1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "questionnair": 6, "quick": 14, "quickli": [2, 9, 14], "quit": [3, 5, 8, 9], "quot": 1, "quotat": [1, 4], "qu\u00e9": 16, "r": [0, 1, 3, 5, 16], "racadabr": 4, "race": 9, "radian": 1, "radiu": 1, "rais": 0, "ran": [9, 10, 11, 16], "random": [7, 8, 10, 11, 12, 14, 15, 16], "rang": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "rank": [4, 5, 16], "rapid": 5, "rate": 0, "rather": [0, 1, 2, 5, 7, 10, 11, 12, 16], "ratio": [0, 5, 10, 12], "raw": [5, 6, 7, 8, 9, 10, 11, 12, 16], "rct": 10, "re": [3, 5, 6, 9, 11, 15], "read": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14], "read_fil": 1, "read_fwf": 6, "read_hdf": [6, 7, 8, 9, 11, 12, 16], "readabl": 1, "reader": 14, "readi": 5, "readili": 8, "real": [7, 8, 9, 10, 11, 12, 13, 14, 15], "realinc": [7, 9, 11, 16], "realiz": 6, "realli": [5, 6, 7, 8, 11, 15, 16], "reason": [1, 3, 8, 11], "recal": 7, "receiv": 10, "recent": [12, 13, 16], "recidiv": [13, 14], "recod": [9, 11, 16], "recogn": 13, "recollect": 12, "recommend": [6, 7, 13, 16], "record": [6, 7, 8, 9, 10, 11], "recruit": 10, "red": 5, "reddit": [13, 16], "reduc": [10, 11], "refer": [0, 1, 3, 4, 6, 7, 9], "reflect": [2, 13], "refus": 6, "region": 11, "regress": [14, 15], "regressionresultswrapp": 9, "reilli": 13, "reject": 15, "rel": [1, 6, 10, 11, 12, 14], "relat": [6, 7, 8, 9, 12, 14], "relationship": [5, 7, 9, 12, 14, 15, 16], "relative_differ": 2, "relative_risk": [10, 12], "relative_risk_actu": 12, "relative_risk_placebo": 12, "relax": 12, "releas": 14, "relev": [6, 8, 11], "reli": 16, "reliabl": [6, 8], "religion": 5, "remain": 12, "remark": [5, 12], "rememb": [0, 1, 5, 6, 7, 8, 9, 10, 12], "remind": 3, "remov": [5, 6, 8], "repeat": [1, 3, 11, 12], "repetit": 3, "replac": [3, 6, 7, 9, 11, 12, 16], "replic": 5, "report": [1, 2, 6, 7, 8, 9, 10, 11, 12], "repositori": [3, 14, 16], "repres": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "request": [5, 6, 7, 8, 9, 10, 11, 12, 16], "requir": [2, 9, 13], "res1": 8, "res2": 8, "res_aw": 8, "res_hw": 8, "resampl": [9, 13, 14], "resample_kde_percentil": 11, "research": [5, 7], "reset_index": 12, "resid": [7, 10], "residu": 16, "resolv": 13, "resourc": [13, 16], "respect": 6, "respond": [6, 7, 8, 9, 11, 12, 14, 16], "respons": [7, 9, 11, 14, 16], "rest": [3, 10], "result": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16], "result_hat": 16, "return": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "reveal": 6, "revers": [1, 5], "review": [0, 10, 11, 12, 13], "rezaul": 16, "rho1": 8, "rho2": 8, "rid": 8, "right": [0, 4, 6, 7, 8, 9, 11, 15], "rise": 5, "risk": [8, 10, 11, 12, 14, 16], "risk1": 10, "risk2": 10, "risk_al": 12, "risk_control": [10, 12], "risk_placebo": 12, "risk_treat": [10, 12], "riski": 6, "robust": [7, 11], "role": [10, 12], "roll": [2, 5, 7], "root": 0, "rotat": [8, 12], "roughli": [5, 6, 7], "round": [1, 8, 11], "row": [6, 7, 8, 9, 11, 12, 16], "rt": 0, "rule": [0, 2, 12], "run": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "rv": [10, 12, 15, 16], "rvalu": [8, 9], "sa": [15, 16], "sadli": 3, "sai": [1, 2, 4, 6, 7, 8, 9, 10, 15, 16], "same": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16], "sampl": [6, 7, 10, 12, 13, 14], "sample_and_test": 15, "sampling_dist": 16, "sampling_dist2": 16, "sampling_dist3": 16, "sampling_weight": 6, "satisfi": 6, "satur": 8, "save": [6, 7, 9, 11, 12, 14], "savefig": 15, "saw": [4, 5, 8, 9, 11, 12], "scale": 8, "scatter": [8, 9, 14], "scenario": [8, 10], "schedul": 12, "school": [7, 9], "scienc": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "scientif": [0, 10, 13], "scientific_not": 0, "scientist": [6, 10, 12], "scipi": [7, 8, 9, 10, 11, 12, 15, 16], "se": [10, 11], "seaborn": [7, 8, 10, 11, 12, 15, 16], "seali": 1, "search": 6, "second": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16], "section": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12], "secu": 6, "see": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15], "seed": [7, 8, 15, 16], "seem": [1, 2, 5, 6, 8, 10, 11, 12, 15], "seen": [0, 2, 3, 4, 6, 7, 8, 9, 11], "seldom": 12, "select": [4, 5, 6, 7, 8, 9, 11, 12, 16], "self": [11, 12], "semi": [0, 5], "sens": [1, 3, 5, 6, 7, 8, 10, 11, 12, 16], "sensibl": 11, "sensit": [0, 7], "sent": 16, "sentenc": [2, 7], "separ": [2, 4, 5, 6, 9], "septemb": 2, "seqno": 11, "sequenc": [1, 2, 3, 4, 5, 7, 8, 9, 12], "seri": [1, 7, 9, 11, 12], "serious": 16, "serv": 8, "sest": 6, "set": [2, 5, 6, 7, 8, 9, 11, 16], "seven": 8, "sever": [0, 1, 2, 5, 6, 10, 11, 12, 14], "sex": [7, 9, 11, 16], "shade": 11, "shape": [1, 6, 7, 8, 9, 11, 12, 16], "share": 2, "sharealik": [13, 15, 16], "she": [9, 12], "shift": 7, "short": [0, 3, 10], "shorten": 5, "shorter": [8, 11], "should": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 15, 16], "show": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16], "shown": [6, 10, 12], "shuffl": 12, "sick": 10, "side": [1, 5, 7, 9], "sigma": [10, 11, 12, 15], "sign": [9, 12], "signific": [12, 15], "significance_level": 15, "silli": 2, "similar": [0, 2, 4, 6, 7, 8, 10, 11], "simpl": [2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15], "simplifi": [7, 8], "simul": [11, 12, 13, 16], "simulate_correl": 12, "simulate_group": 10, "simulate_group_perc": 12, "simulate_sampl": 10, "simulate_sample_cv": 10, "simulate_sample_mean": [10, 11, 12], "simulate_sample_percentil": 11, "simulate_slop": 12, "simulate_slope2": 12, "simulate_tri": 10, "simulate_two_group": 12, "simulate_variable_group": 10, "simulate_variable_tri": 10, "sin": [0, 1], "sinc": [9, 11, 12, 16], "singl": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 16], "site": 5, "six": [6, 7, 11], "sixth": 5, "size": [7, 8, 10, 11, 12, 14], "skeptic": [10, 12], "skew": [6, 8, 11], "skim": 6, "skip": [3, 4], "slice": 4, "slightli": [1, 12], "slope": [5, 8, 9, 11, 12, 14], "slope_actu": 12, "slopes_nul": 12, "slow": 6, "small": [2, 5, 7, 8, 9, 11, 12, 14, 16], "smaller": [0, 2, 6, 8, 11, 12], "smf": [9, 11, 12, 15, 16], "smooth": [7, 11], "sn": [7, 8, 10, 11, 12, 15, 16], "snack": 12, "so": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "social": [9, 11, 13, 14, 16], "softwar": 14, "solar": 1, "solut": [11, 12], "solv": [0, 2, 4, 6, 11, 12], "some": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "someon": [1, 3, 8, 10, 11, 12], "someplac": 1, "someth": [2, 3, 11, 13, 15], "sometim": [0, 5, 7, 8, 9, 12], "somewhat": 8, "soon": 7, "sort": [4, 5, 6], "sort_index": [6, 11, 12], "sourc": [5, 6, 10, 11, 12, 14, 16], "southern": 1, "space": [1, 3, 5, 7, 8, 14], "span": 6, "speak": 12, "special": [3, 4, 6, 7, 9, 12, 15], "specif": [5, 8, 10, 12], "specifi": [1, 3, 4, 5, 6, 9, 11], "speed": 14, "spend": 2, "spent": 9, "sphere": 1, "split": [2, 3, 4, 5, 12], "spot": 2, "spous": 9, "spread": [7, 10], "spuriou": 12, "sql": 14, "sqrt": [0, 1], "squ": 16, "squar": [0, 2, 5, 8, 9, 11, 16], "stabl": 6, "stamp": 1, "stand": [0, 1, 2, 6, 7, 9], "standard": [2, 6, 7, 8, 10, 11, 12, 15, 16], "standard_error": [10, 16], "starch": 13, "start": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "start_param": 16, "startswith": [3, 4, 5], "stat": [7, 8, 9, 10, 11, 12, 13, 15, 16], "stata": 6, "stata_dict": 6, "statadict": 6, "state": [5, 6, 10, 11, 13, 14], "statement": [0, 2, 4, 5, 7, 9, 14], "statist": [7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "statistician": 1, "statsmodel": [11, 12, 15, 16], "std": [2, 6, 10, 11, 12, 15, 16], "std_height": [10, 11], "std_realinc": 11, "stderr": [8, 9], "steeper": 8, "step": [2, 6, 8, 9, 10, 11, 15], "still": [3, 8, 12], "stillbirth": 6, "store": [0, 1, 2, 3, 6, 11, 12], "str": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12], "straight": [5, 8], "strang": [1, 5], "stratifi": 16, "strength": [8, 12, 14], "string": [2, 3, 4, 5, 6, 8, 9], "stringent": 12, "strip": [4, 5], "strong": [8, 12], "studi": [5, 12, 13], "style": [8, 11, 13], "subject": [10, 12], "subplot": 8, "subsequ": 12, "subset": [6, 8, 9, 11, 12, 14, 16], "substanti": [2, 4, 8, 9, 10, 11, 12, 14, 16], "subtitl": 13, "subtract": [0, 2, 11, 12], "successfulli": [9, 11, 16], "suggest": [2, 4, 8, 9, 10, 11, 12, 14, 15, 16], "suit": 14, "sum": [6, 7, 10, 11, 12], "summar": [6, 8, 9, 10, 11, 14], "summari": 16, "summary1": 11, "summary10": 11, "summary2": 11, "summary3": 11, "summary4": 11, "summary9": 11, "support": [1, 9, 11, 16], "suppos": [0, 1, 2, 3, 4, 7, 8, 10, 11, 12], "sure": [2, 11, 14], "surfac": 1, "surpris": [1, 7, 9], "surprisingli": 8, "survei": [1, 5, 6, 8, 9, 11, 12, 13, 14, 16], "surveil": [8, 11, 12], "suspect": 11, "suspici": 11, "sustain": 12, "switch": [9, 11], "symmetr": [8, 11], "syntax": [3, 4], "syntaxerror": 4, "syntaxwarn": 0, "system": [8, 11, 12, 13, 14], "t": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "t1": [11, 12], "t10": 11, "t2": [10, 11, 12], "t3": [10, 11], "t4": 11, "t5": 11, "t6": 11, "t9": 11, "t_first": 12, "t_other": 12, "tab": 3, "tabl": [5, 7, 11, 14], "tail": [6, 7, 10, 11], "take": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15], "taken": [4, 11], "talk": 4, "tall": [10, 11], "taller": [8, 11], "tbc": 3, "tdef": 3, "telescop": 14, "tell": [0, 1, 3, 6, 7, 8, 15], "tempt": [2, 7, 8], "ten": 11, "tend": [6, 8, 12, 15], "tendenc": [7, 11], "tenth": 5, "term": [1, 6, 7, 9, 12, 14, 16], "termin": [9, 11, 16], "test": [2, 3, 5, 11, 13, 14, 16], "text": [1, 3, 4, 14], "textiowrapp": 3, "textual": 3, "tghij": 3, "th": 6, "than": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "thei": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16], "them": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "theme": 9, "themselv": [6, 11], "theorem": 14, "theoret": 7, "theori": [12, 16], "therefor": 12, "theta": 1, "thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "thing": [0, 1, 2, 5, 7, 8, 9, 10, 11, 12], "think": [1, 2, 6, 8, 9, 10, 13, 16], "third": [1, 3, 4, 5, 6, 10, 12, 13, 16], "those": [2, 4, 6, 7, 8, 9, 11, 13], "though": [0, 8, 11], "thought": 6, "thousand": 11, "thread": 16, "three": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16], "threshold": 12, "through": [1, 3, 4, 5, 7, 9, 11], "thrown": 7, "thursdai": 1, "tibshirani": 16, "tight_layout": 8, "time": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "timeit": 16, "timestamp": 1, "titl": [1, 5, 6, 7, 8, 9, 10, 11, 12, 16], "tklmno": 3, "tmp": 0, "to_hdf": 6, "todai": 1, "togeth": [1, 7, 9], "tolstoi": 3, "too": [1, 2, 7, 8, 10, 12], "tool": [0, 3, 5, 6, 9, 13, 14], "top": 8, "topic": [0, 9, 12, 13, 14, 16], "toss": [10, 16], "total": [0, 4, 6, 7], "total_pric": 2, "total_price_arrai": 2, "toward": 8, "town": 1, "tpqrstu": 3, "track": 3, "tradit": 12, "transcript": 5, "transform": [3, 7], "translat": 0, "transpar": 8, "trap": 13, "treat": [4, 6, 9, 11, 12, 16], "treatment": 10, "trend": 11, "trial": 12, "trick": 3, "tripl": 1, "triplet": 6, "true": [0, 1, 3, 4, 5, 6, 7, 10, 11, 12, 15, 16], "try": [0, 1, 2, 4, 6, 7, 8, 9, 12, 14, 15, 16], "tue": 16, "tuh": 1, "tuna": [2, 5], "tupl": [1, 3, 4, 5, 6, 7], "turn": 2, "twice": [0, 1, 2, 5], "twin": 6, "two": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "txt": [3, 4, 5], "type": [0, 1, 2, 3, 4, 5, 6, 7, 9, 16], "typeerror": [0, 1, 2, 4, 5], "u": [2, 5, 6, 7, 8, 9, 10, 11, 14], "u17": 2, "uk": [1, 12], "unaffili": 5, "uncertainti": [10, 11, 16], "under": [6, 12, 16], "underestim": 8, "underli": 16, "undersampl": 11, "understand": [2, 4, 9], "understood": [0, 8], "unexpect": 9, "unfair": 14, "unfamiliar": 7, "unfil": 6, "unicod": [2, 3, 4], "unicodedata": 4, "uniform": 10, "uniqu": [3, 5, 6, 7, 8, 11, 14, 16], "unique_word": [4, 5], "unit": [5, 6, 10, 11, 13, 14], "univers": 13, "unknown": [5, 6], "unlik": [0, 12], "unnorm": 7, "unreason": 8, "unrepres": 12, "unshuffl": 12, "unsupport": 2, "until": [1, 3, 7], "unus": 11, "unusu": 12, "unweight": [6, 11], "up": [0, 1, 2, 4, 6, 7, 8, 10, 11, 12, 14], "updat": 3, "upload": 5, "upper": [5, 8, 11], "uppercas": [0, 4], "url": [5, 6, 7, 8, 9, 10, 11, 12, 16], "urllib": [5, 6, 7, 8, 9, 10, 11, 12, 16], "urlretriev": [5, 6, 7, 8, 9, 10, 11, 12, 16], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "usa": 1, "usd": [5, 7], "user": [5, 6], "usual": [1, 4, 8, 11, 12, 16], "utexa": 5, "utf": 3, "util": [1, 5, 6, 7, 8, 9, 10, 11, 12], "v": 0, "v1": [5, 6, 7, 8, 9, 10, 11, 12], "valid": [9, 11, 16], "valu": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16], "value_count": [6, 9, 11, 12, 16], "valueerror": 1, "var1": [11, 12], "var2": [11, 12], "vari": [8, 10, 11, 15, 16], "variabl": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16], "varianc": [7, 16], "variat": [10, 12, 14], "varieti": [5, 12, 13, 14], "varnam": 11, "ve": [2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15], "vegesu": 8, "veget": 8, "veri": [0, 1, 2, 6, 7, 8, 11, 12], "versatil": 9, "version": [4, 6, 7, 10, 14], "versu": [5, 8, 9], "vertic": [3, 8], "vicin": 15, "view": [7, 8, 14], "violat": 16, "violin": [8, 14], "violinplot": 8, "virtual": 5, "visibl": 12, "visual": [1, 5, 6, 7, 10, 11, 12, 13, 14], "vocabulari": 6, "volunt": 10, "vshow": 7, "vulner": 11, "w": 1, "wa": [2, 5, 6, 7, 9, 12, 14], "wai": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "walk": [11, 15], "want": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "war": [3, 4, 5, 14], "warn": [0, 12], "washington": 14, "we": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "weak": 8, "weaker": [12, 16], "web": [1, 5, 14], "websit": 3, "week": [1, 6, 12], "weigh": 6, "weight": [12, 14], "weight_jitt": 8, "weighted_bootstrap_corr": 11, "weighted_bootstrap_mean": 11, "weighted_bootstrap_slop": 11, "welcom": 14, "well": [7, 8, 11, 13, 14], "went": [11, 12], "were": [1, 2, 6, 7, 8, 11, 12, 16], "western": 1, "wgt2015_2017": 6, "what": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "when": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "where": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "wherev": 3, "whether": [1, 3, 4, 6, 7, 10, 11, 12, 13, 15, 16], "whi": [8, 12], "which": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "whichev": 16, "while": [0, 2, 13], "whisker": 8, "white": [1, 3], "who": [7, 8, 10, 11, 12], "whole": [3, 6], "whose": [3, 7], "why": [0, 2, 5, 7, 8, 9, 10, 15], "wide": [6, 7, 11, 12], "wider": 16, "width": [6, 7, 8, 10, 11], "wife": 12, "wiki": 0, "wikipedia": 0, "william": 1, "within": 10, "without": [1, 4, 7, 11, 12], "woman": [6, 7], "women": [7, 9, 16], "won": [1, 9, 15], "wonder": [2, 10, 12, 16], "word": [0, 1, 2, 5, 7, 12, 14], "word_freq_pair": 4, "work": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14], "world": [1, 4, 7, 10, 11, 12, 15], "would": [0, 2, 6, 8, 9, 10, 11, 12, 13, 16], "wp": 5, "wrap": [1, 15], "write": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12], "written": [0, 2], "wrong": [0, 4, 10, 11, 16], "wrote": 15, "wtkg3": [8, 11, 12], "www": [2, 3, 5, 6, 8, 12], "x": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16], "xlabel": [5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "xlim": [7, 8], "xs1": 8, "xs2": 8, "xscale": [5, 15], "xtick": [7, 8, 12], "y": [1, 5, 6, 7, 8, 9, 11, 12, 15], "yau": 13, "ye": [9, 16], "year": [0, 1, 5, 7, 8, 9, 11, 12, 16], "year2": 11, "yejax3vkika": 12, "yet": [4, 12], "yield": 16, "ylabel": [5, 6, 7, 8, 9, 10, 11, 12, 15, 16], "ylim": [5, 8], "yo_dad": 12, "you": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "young": 12, "younger": [7, 8, 12, 16], "youngest": 12, "your": [1, 3, 6, 10, 12, 14, 15], "yourself": 2, "ys1": 8, "ys2": 8, "yscale": [5, 8], "z": 16, "zero": [4, 5, 8, 12, 15], "zipf": 14, "zoom": 8, "\u03b8": 1}, "titles": ["Variables and Values", "Times and Places", "Lists and Arrays", "Loops and Files", "Dictionaries", "Plotting", "DataFrames and Series", "Distributions", "Relationships", "Regression", "Resampling", "Bootstrap Sampling", "Hypothesis Testing", "Further Reading", "Elements of Data Science", "Never Test for Normality", "Resampling and Logistic Regression"], "titleterms": {"": 5, "1": 14, "10": 14, "11": 14, "12": 14, "13": 14, "2": 14, "3": 14, "4": 14, "5": 14, "6": 14, "7": 14, "8": 14, "9": 14, "Be": 12, "One": [10, 16], "The": [3, 7, 10, 12, 14, 16], "To": 12, "affili": 5, "ag": [7, 9, 12], "an": 6, "ar": 12, "argument": 5, "arithmet": [0, 6], "arrai": 2, "averag": 11, "ax": 5, "babi": 12, "bigger": 11, "boolean": 6, "boostrap": 16, "bootstrap": [11, 16], "break": 3, "calcul": [0, 1], "capit": 4, "case": 14, "categor": 9, "cdf": 7, "compar": 7, "comput": 12, "control": 12, "correl": [8, 11, 12], "count": [3, 4], "cumul": 7, "data": [6, 11, 14, 16], "datafram": 6, "date": 1, "deal": 4, "debug": 2, "decor": 5, "defin": 1, "densiti": 7, "dictionari": 4, "differ": 2, "distanc": 1, "distribut": 7, "educ": 7, "element": 14, "estim": [7, 10, 11], "explor": 8, "extract": 6, "file": 3, "filter": 6, "first": 12, "framework": [10, 12, 16], "frequenc": 4, "function": [0, 1, 7], "further": 13, "gener": 7, "geopanda": 1, "graph": 5, "group": [9, 10], "haversin": 1, "height": 8, "histogram": 6, "hybrid": 16, "hypothesi": 12, "i": 16, "incom": [7, 11], "index": 4, "kde": 11, "kernel": 7, "keyword": 5, "late": 12, "law": 5, "like": 12, "limit": 11, "linear": 8, "list": 2, "locat": 1, "logarithm": 5, "logist": [9, 16], "loop": 3, "make": 6, "math": 0, "mean": [6, 10], "medic": 12, "model": [7, 12, 16], "more": 12, "multipl": 9, "never": 15, "normal": 15, "notebook": 14, "number": 0, "numpi": 2, "p": 12, "parametr": 16, "percentil": 11, "place": 1, "plot": 5, "price": [2, 5], "punctuat": 4, "quantifi": 8, "read": [6, 13], "regress": [8, 9, 11, 12, 16], "rel": 2, "relationship": 8, "religi": 5, "remov": 4, "repres": 1, "resampl": [10, 11, 16], "result": 9, "right": 16, "sampl": [11, 15, 16], "sandwich": [2, 5], "scale": 5, "scienc": 14, "seri": 6, "simpl": 8, "simul": 10, "size": 15, "social": 7, "statement": 3, "statist": [2, 6], "statsmodel": 9, "string": 1, "studi": 14, "summar": 2, "summari": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "survei": 7, "test": [10, 12, 15], "time": 1, "timedelta": 1, "treatment": 12, "trial": 10, "tupl": 2, "uniqu": 4, "vaccin": 10, "valid": 6, "valu": [0, 12], "variabl": [0, 9], "visual": [8, 9], "weight": [6, 8, 11], "which": 16, "whitespac": 3, "word": [3, 4], "work": 11, "zipf": 5}}) \ No newline at end of file