-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0034_P1043_Partition_Array_for_Maximum_Sum.cpp
43 lines (38 loc) · 1.2 KB
/
0034_P1043_Partition_Array_for_Maximum_Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/*
Day: 34
Problem Number: 1043 (https://leetcode.com/problems/partition-array-for-maximum-sum)
Date: 03-02-2024
Description:
Given an integer array arr, partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray.
Return the largest sum of the given array after partitioning. Test cases are generated so that the answer fits in a 32-bit integer.
Example 1:
Input: arr = [1,15,7,9,2,5,10], k = 3
Output: 84
Explanation: arr becomes [15,15,15,9,10,10,10]
Example 2:
Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4
Output: 83
Example 3:
Input: arr = [1], k = 1
Output: 1
Constraints:
* 1 <= arr.length <= 500
* 0 <= arr[i] <= 10^9
* 1 <= k <= arr.length
Code: */
class Solution {
public:
int maxSumAfterPartitioning(vector<int>& arr, int k) {
int n = arr.size();
int f[n + 1];
memset(f, 0, sizeof(f));
for (int i = 1; i <= n; ++i) {
int mx = 0;
for (int j = i; j > max(0, i - k); --j) {
mx = max(mx, arr[j - 1]);
f[i] = max(f[i], f[j - 1] + mx * (i - j + 1));
}
}
return f[n];
}
};