forked from carrtesy/M2N2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·108 lines (91 loc) · 3.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
######################################################
# _oo0oo_ #
# o8888888o #
# 88" . "88 #
# (| -_- |) #
# 0\ = /0 #
# ___/`---'\___ #
# .' \\| |// '. #
# / \\||| : |||// \ #
# / _||||| -:- |||||- \ #
# | | \\\ - /// | | #
# | \_| ''\---/'' |_/ | #
# \ .-\__ '-' ___/-. / #
# ___'. .' /--.--\ `. .'___ #
# ."" '< `.___\_<|>_/___.' >' "". #
# | | : `- \`.;`\ _ /`;.`/ - ` : | | #
# \ \ `_. \_ __\ /__ _/ .-` / / #
# =====`-.____`.___ \_____/___.-`___.-'===== #
# `=---=' #
# #
# #
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# #
# Buddha Bless: "No Bugs in my code" #
# #
######################################################
import os
import wandb
import hydra
from omegaconf import DictConfig
import warnings; warnings.filterwarnings("ignore")
from utils.logger import make_logger
from utils.argpass import prepare_arguments
from utils.tools import SEED_everything
from utils.secret import WANDB_API_KEY, WANDB_PROJECT_NAME, WANDB_ENTITY
import torch
import pandas as pd
from ast import literal_eval
import json
from Exp import MLP_Tester, LSTMEncDec_Tester, USAD_Tester, THOC_Tester, AnomalyTransformer_Tester
from data.load_data import DataFactory
@hydra.main(version_base=None, config_path="cfgs", config_name="test_defaults")
def main(cfg: DictConfig) -> None:
# prepare arguments
args = prepare_arguments(cfg)
# WANDB
wandb.login(key=WANDB_API_KEY)
wandb.init(project=WANDB_PROJECT_NAME, entity=WANDB_ENTITY, name=args.exp_id, mode="offline")
wandb.config.update(args)
# Logger
logger = make_logger(os.path.join(args.log_path, f'{args.exp_id}_test.log'))
logger.info("=== TESTING START ===")
logger.info(f"Configurations: {args}")
# SEED
SEED_everything(args.SEED)
logger.info(f"Experiment with SEED: {args.SEED}")
# Data
logger.info(f"Preparing {args.dataset} dataset...")
datafactory = DataFactory(args, logger)
train_dataset, train_loader, test_dataset, test_loader = datafactory()
args.num_channels = train_dataset.X.shape[1]
# Model
logger.info(f"Loading pre-trained {args.model.name} model...")
Testers = {
"MLP": MLP_Tester,
"LSTMEncDec": LSTMEncDec_Tester,
"USAD": USAD_Tester,
"THOC": THOC_Tester,
"AnomalyTransformer": AnomalyTransformer_Tester,
}
tester = Testers[args.model.name](
args=args,
logger=logger,
train_loader=train_loader,
test_loader=test_loader,
load=True,
)
# infer
cols = ["tau", "Accuracy", "Precision", "Recall", "F1", "tn", "fp", "fn", "tp"]
cols += ["Accuracy_PA", "Precision_PA", "Recall_PA", "F1_PA", "tn_PA", "fp_PA", "fn_PA", "tp_PA"]
cols += ["ROC_AUC", "PR_AUC"]
result_df = pd.DataFrame([], columns=cols)
for option in args.infer_options:
result = tester.infer(mode=option, cols=cols)
result_df = pd.concat([result_df, result])
logger.info(f"\n{result_df.to_string()}")
# log result
wt = wandb.Table(dataframe=result_df)
wandb.log({"result_table": wt})
if __name__ == "__main__":
main()