-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov3_person.py
87 lines (77 loc) · 3.07 KB
/
yolov3_person.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""
File used for inferencing of yolo using cv2.dnn Module
"""
import cv2
import numpy as np
def load_yolo():
net = cv2.dnn.readNet("yolo_cnfgs/yolov3.weights", "yolo_cnfgs/yolov3.cfg")
# net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
# net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
classes = []
with open("yolo_cnfgs/coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layers_names = net.getLayerNames()
output_layers = [layers_names[i[0]-1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
return net, classes, colors, output_layers
def detect_objects(img, net, outputLayers):
blob = cv2.dnn.blobFromImage(img, scalefactor=0.00392, size=(416, 416), mean=(0, 0, 0), swapRB=True, crop=False)
net.setInput(blob)
outputs = net.forward(outputLayers)
return blob, outputs
def get_box_dimensions(outputs, height, width):
boxes = []
confs = []
classes = [0]
class_ids = []
for output in outputs:
for detect in output:
scores = detect[5:]
#print(scores)
class_id = np.argmax(scores)
conf = scores[class_id]
if class_id in classes:
if conf > 0.3:
center_x = int(detect[0] * width)
center_y = int(detect[1] * height)
w = int(detect[2] * width)
h = int(detect[3] * height)
x = int(center_x - w/2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confs.append(float(conf))
class_ids.append(class_id)
return boxes, confs, class_ids
def draw_labels(boxes, confs, colors, class_ids, classes, img):
indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.6, 0.5)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[i]
cv2.rectangle(img, (x,y), (x+w, y+h), color, 2)
# print(x, y, w, h)
imgs = img[y:y+h, x:x+w]
# if imgs.shape[1]>0 and imgs.shape[0]>0:
#cv2.imshow("imgs"+str(i), imgs)
cv2.putText(img, label, (x, y - 5), font, 1, color, 1)
cv2.putText(img, str(round(confs[i], 2)), (x+w, y - 5), font, 1, color, 1)
img = cv2.resize(img, (1080, 720))
cv2.imshow("Image", img)
def start_video(video_path):
model, classes, colors, output_layers = load_yolo()
cap = cv2.VideoCapture(video_path)
while True:
_, frame = cap.read()
height, width, channels = frame.shape
blob, outputs = detect_objects(frame, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
draw_labels(boxes, confs, colors, class_ids, classes, frame)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
start_video("sample_videos/test1.mp4")