-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphysics.c
207 lines (153 loc) · 4.08 KB
/
physics.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include "physics.h"
#include "universe.h"
#include <math.h>
void applyGravityPart(struct particle *, struct particle *);
void applyElectricPart(struct particle *, struct particle *);
int collideParticles(struct particle *, struct particle *);
void physicsApply(struct universe *univ)
{
int i;
for (i = 0; i < univ->fidelity; i++) {
applyGravity(univ);
applyElectric(univ);
applyMovement(univ);
applyCollision(univ);
}
}
void applyGravity(struct universe *univ)
{
int i, j = 0;
for (i = 0; i < univ->nextParticle; i++) {
if (!univ->particles[i].isActive) {
continue;
}
for (j = i + 1; j < univ->nextParticle; j++) {
if (!univ->particles[j].isActive) {
continue;
}
applyGravityPart(&univ->particles[i],
&univ->particles[j]);
}
}
}
void applyElectric(struct universe *univ)
{
int i, j = 0;
for (i = 0; i < univ->nextParticle; i++) {
if (!univ->particles[i].isActive) {
continue;
}
for (j = i + 1; j < univ->nextParticle; j++) {
if (!univ->particles[j].isActive) {
continue;
}
applyElectricPart(&univ->particles[i],
&univ->particles[j]);
}
}
}
void applyGravityPart(struct particle *a, struct particle *b)
{
double xDist = a->xPos - b->xPos;
double yDist = a->yPos - b->yPos;
double distance = sqrt(pow(xDist, 2) + pow(yDist, 2));
double totalForce =
GRAVITIATION * ((a->mass * b->mass) / pow(distance, 2));
a->xForce -= totalForce * xDist / distance;
a->yForce -= totalForce * yDist / distance;
b->xForce += totalForce * xDist / distance;
b->yForce += totalForce * yDist / distance;
}
void applyElectricPart(struct particle *a, struct particle *b)
{
double xDist = a->xPos - b->xPos;
double yDist = a->yPos - b->yPos;
double distance = sqrt(pow(xDist, 2) + pow(yDist, 2));
double totalForce =
ELECTROSTATIC * ((a->charge * b->charge) / pow(distance, 2));
a->xForce += totalForce * xDist / distance;
a->yForce += totalForce * yDist / distance;
b->xForce -= totalForce * xDist / distance;
b->yForce -= totalForce * yDist / distance;
}
void applyMovement(struct universe *univ)
{
int i = 0;
struct particle *p;
double xAccel, yAccel;
double tickSpeed = univ->speed / univ->fidelity;
for (i = 0; i < univ->nextParticle; ++i) {
p = &univ->particles[i];
if (!p->isActive || p->isStationary) {
continue;
}
// F = ma
// a = F / m
xAccel = (p->xForce / p->mass);
yAccel = (p->yForce / p->mass);
// update position
// x = v t + 0.5 a t^2
p->xPos +=
(p->xVel * tickSpeed) +
(0.5 * xAccel * (pow(tickSpeed, 2)));
p->yPos +=
(p->yVel * tickSpeed) +
(0.5 * yAccel * (pow(tickSpeed, 2)));
// update velocities
p->xVel += xAccel * tickSpeed;
p->yVel += yAccel * tickSpeed;
p->xForce = 0;
p->yForce = 0;
}
}
void applyCollision(struct universe *univ)
{
int i, j = 0;
for (i = 0; i < univ->nextParticle; i++) {
if (!univ->particles[i].isActive) {
continue;
}
for (j = i + 1; j < univ->nextParticle; j++) {
if (!univ->particles[j].isActive) {
continue;
}
if (collideParticles
(&univ->particles[i], &univ->particles[j])) {
deleteParticle(univ, &univ->particles[j]);
}
}
}
}
int collideParticles(struct particle *a, struct particle *b)
{
double distance =
sqrt(pow(a->xPos - b->xPos, 2) + pow(a->yPos - b->yPos, 2));
// no collision check
if (distance > a->size + b->size) {
return 0;
}
// combine into particle a
// add charge
a->charge += b->charge;
// mass-weighted new position
a->xPos =
((a->xPos * a->mass) + (b->xPos * b->mass)) / (a->mass + b->mass);
a->yPos =
((a->yPos * a->mass) + (b->yPos * b->mass)) / (a->mass + b->mass);
// conservation of momentum
a->xVel =
((a->xVel * a->mass) + (b->xVel * b->mass)) / (a->mass + b->mass);
a->yVel =
((a->yVel * a->mass) + (b->yVel * b->mass)) / (a->mass + b->mass);
// consertation of mass
a->mass += b->mass;
// stationary particles remain so
a->isStationary += b->isStationary;
// size is a function of density and mass
setParticleSize(a);
return 1;
}
void setParticleSize(struct particle *p)
{
p->size = sqrt(p->mass / DENSITY / M_PI);
}