-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
136 lines (116 loc) · 5.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from munch import DefaultMunch
from argparse import ArgumentParser
import wandb
import json
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision.transforms import InterpolationMode
import deepinv as dinv
from utils import Trainer, patient_random_split, ArtifactRemovalCRNN, CRNN, DeepinvSliceDataset, CineNetDataTransform
parser = ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data/CMRxRecon", help="Root dir for CMRxRecon data")
parser.add_argument("--mask", type=str, default="TimeVaryingGaussianMask08", help="Subfolder name containing masks")
parser.add_argument("--loss", type=str, default="ddei", help="Name of loss")
parser.add_argument("--model", type=str, default="ArtifactRemovalCRNN", help="Name of model")
parser.add_argument("--noise", type=float, default=0., help="Noise sigma")
parser.add_argument("--epochs", type=int, default=2, help="Training epochs")
parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
parser.add_argument("--seed", type=int, default=1, help="Random seed")
args = parser.parse_args()
config = DefaultMunch(
data_dir=args.data_dir,
mask=args.mask,
loss=args.loss,
model=args.model,
noise=args.noise,
epochs=args.epochs,
batch_size=args.batch_size,
seed=args.seed,
)
torch.manual_seed(config.seed)
np.random.seed(config.seed)
generator = torch.Generator().manual_seed(config.seed)
device = dinv.utils.get_freer_gpu() if torch.cuda.is_available() else "cpu"
with wandb.init(project="cmr-experiments", config=config, dir="./wandb"):
config = wandb.config
# Define physics
img_size = (2, 12, 512, 256)
physics = dinv.physics.DynamicMRI(img_size=(config.batch_size, *img_size), device=device)
if config.noise > 0:
physics.noise_model = dinv.physics.GaussianNoise(config.noise, rng=generator)
# Define data
dataset = DeepinvSliceDataset(
root=config.data_dir,
transform=CineNetDataTransform(time_window=12, apply_mask=True, normalize=True),
set_name="TrainingSet",
acc_folders=["FullSample"],
mask_folder=config.mask,
dataset_cache_file="dataset_cache.pkl",
noise_level=config.noise,
generator=generator
)
train_dataset, test_dataset = patient_random_split(
dataset, 0.8, sax_slices_per_vol=-1, lax_slices_per_vol=3, generator=generator
)
train_dataloader = DataLoader(dataset=train_dataset, batch_size=config.batch_size, num_workers=4, pin_memory=True, shuffle=True, generator=generator)
test_dataloader = DataLoader(dataset= test_dataset, batch_size=config.batch_size, num_workers=4, pin_memory=True, shuffle=False)
# Define model
model = ArtifactRemovalCRNN(CRNN(num_cascades=2)).to(device)
# Define group transforms
rotate = dinv.transform.Rotate(n_trans=1, interpolation_mode=InterpolationMode.BILINEAR)
tempad = dinv.transform.ShiftTime(n_trans=1)
diffeo = dinv.transform.CPABDiffeomorphism(n_trans=1, device=device)
# Define losses
mcloss = dinv.loss.MCLoss() if "sure" not in config.loss.lower() else dinv.loss.SureGaussianLoss(sigma=config.noise, tau=0.1)
match config.loss.replace("sure", ""):
case "sup":
losses = [dinv.loss.SupLoss()]
case "ei-r":
losses = [mcloss, dinv.loss.EILoss(rotate)]
case "ddei":
losses = [mcloss, dinv.loss.EILoss(tempad | (diffeo | rotate))]
case "t-ssdu" | "t-ssdu*":
losses = [dinv.loss.SplittingLoss(
split_ratio=0.6,
mask_generator=dinv.physics.generator.GaussianSplittingMaskGenerator(tensor_size=img_size, split_ratio=0.6, device=device),
eval_split_input=("*" in config.loss),
eval_n_samples=5
)]
model = losses[0].adapt_model(model)
case "phase2phase":
losses = [dinv.loss.Phase2PhaseLoss(img_size, device=device)]
model = losses[0].adapt_model(model)
## SURE must be interleaved to save memory
if isinstance(mcloss, dinv.loss.SureGaussianLoss):
losses = [dinv.loss.InterleavedLossScheduler(*losses)]
# Define metrics
metrics = [
dinv.metric.PSNR(max_pixel=None, complex_abs=True),
dinv.metric.SSIM(max_pixel=None, complex_abs=True),
dinv.metric.NMSE(complex_abs=True)
]
trainer = Trainer(
model = model,
physics = physics,
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3),
train_dataloader = train_dataloader,
eval_dataloader = test_dataloader,
epochs = config.epochs,
losses = losses,
scheduler = None,
metrics = metrics,
online_measurements = False,
ckp_interval = 1000,
device = device,
eval_interval = 25,
save_path = f"models/{wandb.run.id}",
plot_images = False,
wandb_vis = True,
)
trainer.train()
# Evaluate
results = trainer.test(test_dataloader)
print(results)
with open(f"models/results_{config.loss}.json", "w") as f:
json.dump(results, f)