-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexecises-05.qmd
709 lines (461 loc) · 21.6 KB
/
execises-05.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
# 05 - Resampling Methods {.unnumbered}
<style>
h3, h4 {
position: absolute;
width: 1px;
height: 1px;
padding: 0;
margin: -1px;
overflow: hidden;
clip: rect(0,0,0,0);
border: 0;
}
</style>
## Libraries
```{r}
library(scales)
library(tidymodels)
library(data.table)
```
## Conceptual
### 1
**1.** Using basic statistical properties of the variance, as well as single-variable calculus, derive (5.6). In other words, prove that $\alpha$ given by (5.6) does indeed minimize $\text{Var}(\alpha X + (1-\alpha)Y)$.
By taking as a reference the Propagation section of the [Variance](https://en.wikipedia.org/wiki/Variance#Propagation) Wikipedia post.
$$
\begin{split}
\text{Var}(\alpha X + (1-\alpha)Y) & =
\alpha^2 \text{Var}(X)+
(1-\alpha)^2 \text{Var}(Y) +
2 \alpha (1-\alpha) \text{Cov}(X,Y) \\
& = \alpha^2 \text{Var}(X)+
(1 - 2 \alpha + \alpha^2) \text{Var}(Y) +
(2 \alpha-2\alpha^2) \text{Cov}(X,Y) \\
& = \alpha^2 \text{Var}(X)+
\text{Var}(Y) - 2 \alpha \text{Var}(Y) + \alpha^2 \text{Var}(Y)+
2 \alpha \text{Cov}(X,Y) - 2\alpha^2 \text{Cov}(X,Y) \\
& = [\text{Var}(X) + \text{Var}(Y) - 2 \text{Cov}(X,Y)] \alpha^2 +
2[ \text{Cov}(X,Y) - \text{Var}(Y)] \alpha + \text{Var}(Y)
\end{split}
$$
Once we have the function, we can derivative using the [derivative of power](https://en.wikipedia.org/wiki/Derivative#Rules_for_basic_functions) and solve the equation.
$$
\begin{split}
2[\text{Var}(X) + \text{Var}(Y) - 2 \text{Cov}(X,Y)] \alpha + 2[ \text{Cov}(X,Y) - \text{Var}(Y)] & = 0 \\
2[\text{Var}(X) + \text{Var}(Y) - 2 \text{Cov}(X,Y)] \alpha & = 2[\text{Var}(Y) - \text{Cov}(X,Y)] \\
\alpha = \frac{\text{Var}(Y) - \text{Cov}(X,Y)}{\text{Var}(X) + \text{Var}(Y) - 2 \text{Cov}(X,Y)}
\end{split}
$$
### 2
**2.** We will now derive the probability that a given observation is part of a bootstrap sample. Suppose that we obtain a bootstrap sample from a set of n observations.
#### A
**(A)** What is the probability that the first bootstrap observation is not the *j*th observation from the original sample? Justify your answer.
The probability of an observation to be in any position of the bootstrap sample is $1/n$ and the opposite $1 - 1/n$.
#### B
**(B)** What is the probability that the second bootstrap observation is not the *j*th observation from the original sample?
The probability it's the same ($1 - 1/n$) as we are sampling with replacement.
#### C
**(C)** Argue that the probability that the *j*th observation is *not* in the bootstrap sample is $(1 - 1/n)^n$.
As the probability of the *j*th observation for avoiding each position in bootstrap sample is $1 - 1/n$ to get the probability in that situation we should use $(1 - 1/n)^n$ as the probabilities are independent.
#### D
**(D)** When $n = 5$, what is the probability that the *j*th observation is in the bootstrap sample?
As $(1 - 1/5)^5$ represent the probability that an observation won't appear.
$$
1 - (1 - 1/5)^5 = 0.6723
$$
#### E
**(E)** When $n = 100$, what is the probability that the *j*th observation is in the bootstrap sample?
$$
1 - (1 - 1/100)^{100} = 0.6340
$$
#### F
**(F)** When $n = 10,000$, what is the probability that the *j*th observation is in the bootstrap sample?
$$
1 - (1 - 1/10000)^{10000} = 0.6321
$$
#### G
**(G)** Create a plot that displays, for each integer value of n from $1$ to $100,000$, the probability that the *j*th observation is in the bootstrap sample. Comment on what you observe.
```{r}
ggplot(data.frame(x = 1:1e4))+
geom_function(aes(x), fun = \(x) 1 - (1 - 1/x)^x,
color = "blue", linewidth = 0.8)+
geom_hline(yintercept = 1 - 1/exp(1), linetype = 2,
color = as.character(round(1 - 1/exp(1), 4)))+
expand_limits(y = 0)+
labs(x = "Number of observations",
y = "Probability",
title = "Probability an observation is in the bootstrap sample")+
scale_y_continuous(labels = percent_format(accuracy = 1),
breaks = breaks_width(0.1))+
scale_x_continuous(labels = comma_format(accuracy = 1))+
theme_light()+
theme(panel.grid.minor = element_blank(),
panel.grid.major.x = element_blank(),
plot.title = element_text(hjust = 0.5, face = "bold"))
```
#### H
**(H)** We will now investigate numerically the probability that a bootstrap sample of size $n = 100$ contains the *j*th observation. Here $j = 4$. We repeatedly create bootstrap samples, and each time we record whether or not the fourth observation is contained in the bootstrap sample.
```{r}
set.seed(2018)
vapply(1:1e4,
FUN = \(x) 4L %in% sample.int(100L, 100L, replace = TRUE),
FUN.VALUE = TRUE) |>
mean()
```
As we can see the probability es really close to $0.6340$.
### 3
**3.** We now review k-fold cross-validation.
#### A
**(A)** Explain how k-fold cross-validation is implemented.
It involves randomly dividing the set of observations into *k* groups, or folds, of approximately equal size. The first fold is treated as a validation set, and the method is fit on the remaining $k - 1$ folds.
#### B
**(B)** What are the advantages and disadvantages of *k*-fold cross validation relative to the validation set approach and the LOOCV?
|Main Characteristics|Validation Set Approach|LOOCV|
|:-------------|:---:|:---:|
|Accuracy in estimating the testing error|Lower|[Lower](https://stats.stackexchange.com/questions/61783/bias-and-variance-in-leave-one-out-vs-k-fold-cross-validation)|
|Time efficiency|Higher|Lower|
|Proportion of data used to train the models (bias mitigation)|Lower|Higher|
|Estimation variance|-|Higher|
### 4
**4.** Suppose that we use some statistical learning method to make a prediction for the response *Y* for a particular value of the predictor *X*. Carefully describe how we might estimate the standard deviation of our prediction.
I would use to bootstrap method to re-sample the original data set many times, fit a statistical learning method on each re-sample, predict the value based on the predictors we want to study and calculate the standard deviation of the response, which is a good approximation of the standard error as we can on page 210.
## Applied
### 5
**5.** In Chapter 4, we used logistic regression to predict the probability of `default` using `income` and `balance` on the `Default` data set. We will now estimate the test error of this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis.
```{r}
DefaultFormulaToFit <- as.formula("default ~ balance + income")
```
#### A
**(A)** Fit a logistic regression model that uses `income` and `balance` to predict `default`.
```{r}
DefaultFittedModel <-
logistic_reg() |>
fit(DefaultFormulaToFit, data = ISLR::Default)
DefaultFittedModel
```
#### B
**(B)** Using the validation set approach, estimate the test error of this model. In order to do this, you must perform the following steps:
1. Split the sample set into a training set and a validation set.
```{r}
set.seed(4)
DefaultSplit <- initial_split(ISLR::Default, prop = 0.5, strata = default)
DefaultSplit
```
2. Fit a multiple logistic regression model using only the training observations.
```{r}
DefaultTrainingModel <-
logistic_reg() |>
fit(DefaultFormulaToFit, data = training(DefaultSplit))
DefaultTrainingModel
```
3. Obtain a prediction of default status for each individual in the validation set by computing the posterior probability of default for that individual, and classifying the individual to the `default` category if the posterior probability is greater than 0.5.
```{r}
DefaultTestPredictions <-
augment(DefaultTrainingModel, new_data = testing(DefaultSplit))
DefaultTestPredictions
```
4. Compute the validation set error, which is the fraction of the observations in the validation set that are misclassified.
```{r}
DefaultTestPredictions |>
summarize(`Test error rate` = mean(default != .pred_class))
```
#### C
**(C)** Repeat the process in (b) three times, using three different splits of the observations into a training set and a validation set. Comment on the results obtained.
```{r}
DefaultBasedResults <-
lapply(8:10,
model_recipe = recipe(DefaultFormulaToFit, data = ISLR::Default),
FUN = \(seed, model_recipe){
set.seed(seed)
split <- initial_split(ISLR::Default, prop = 0.5, strata = default)
workflow() |>
add_model(logistic_reg()) |>
add_recipe(model_recipe) |>
last_fit(split = split) |>
collect_predictions() |>
summarize(seed_used = seed,
`test_error_rate` = mean(.pred_class != default)) }) |>
rbindlist()
DefaultBasedResults
```
#### D
**(D)** Now consider a logistic regression model that predicts the probability of `default` using `income`, `balance`, and a dummy variable for `student`. Estimate the test error for this model using the validation set approach. Comment on whether or not including a dummy variable for student leads to a reduction in the test error rate.
Adding the student variable as a dummy one doesn't make a big impact on the prediction accurency.
```{r}
DefaultDummyRecipe <-
recipe(default ~ ., data = ISLR::Default) |>
step_dummy(student)
DefaultDummyResults <-
lapply(8:10,
model_recipe = DefaultDummyRecipe,
FUN = \(seed, model_recipe){
set.seed(seed)
split <- initial_split(ISLR::Default, prop = 0.5, strata = default)
workflow() |>
add_model(logistic_reg()) |>
add_recipe(model_recipe) |>
last_fit(split = split) |>
collect_predictions() |>
summarize(seed_used = seed,
`test_error_rate_dummy` = mean(.pred_class != default)) }) |>
rbindlist()
DefaultBasedResults[DefaultDummyResults, on = "seed_used"
][, diff := comma(test_error_rate_dummy - test_error_rate, accuracy = 0.0001)][]
```
### 6
**6.** We continue to consider the use of a logistic regression model to predict the probability of `default` using `income` and `balance` on the `Default` data set. In particular, we will now compute estimates for the standard errors of the `income` and `balance` logistic regression coefficients in two different ways: (1) using the bootstrap, and (2) using the standard formula for computing the standard errors in the `glm()` function. Do not forget to set a random seed before beginning your analysis.
#### A
**(A)** Using the `summary()` and `glm()` functions, determine the estimated standard errors for the coefficients associated with `income` and `balance` in a multiple logistic regression model that uses both predictors.
```{r}
DefaultGlmSummary <- tidy(DefaultFittedModel)
DefaultGlmSummary
```
#### B
**(B)** Write a function, `boot.fn()`, that takes as input the `Default` data set as well as an index of the observations, and that outputs the coefficient estimates for `income` and `balance` in the multiple logistic regression model.
To create the function it's optimal
#### C
**(C)** Use the `boot()` function together with your `boot.fn()` function to estimate the standard errors of the logistic regression coefficients for `income` and `balance`.
```{r}
set.seed(15)
DefaultBootstrapsSe <-
as.data.table(bootstraps(ISLR::Default, times = 500)
)[, logistic_reg() |>
fit(DefaultFormulaToFit,
data = analysis(splits[[1L]])) |>
tidy(),
by = "id"
][, .(SE = sd(estimate)),
by = "term"]
DefaultBootstrapsSe
```
#### D
**(D)** Comment on the estimated standard errors obtained using the `glm()` function and using your bootstrap function.
As you can see bellow the results are really close to each other.
```{r}
left_join(DefaultBootstrapsSe,
DefaultGlmSummary[,c("term","std.error")],
by = "term") |>
mutate(diff = SE - std.error)
```
### 7
**7.** In Sections 5.3.2 and 5.3.3, we saw that the `cv.glm()` function can be used in order to compute the LOOCV test error estimate. Alternatively, one could compute those quantities using just the `glm()` and `predict.glm()` functions, and a for loop. You will now take this approach in order to compute the LOOCV error for a simple logistic regression model on the Weekly data set. Recall that in the context of classification problems, the LOOCV error is given in (5.4).
#### A
**(A)** Fit a logistic regression model that predicts `Direction` using `Lag1` and `Lag2`.
```{r}
WeeklyModel <-
logistic_reg() |>
fit(Direction ~ Lag1 + Lag2, data = ISLR::Weekly)
WeeklyModel
```
#### B
**(B)** Fit a logistic regression model that predicts `Direction` using `Lag1` and `Lag2` *using all but the first observation*.
```{r}
WeeklyModelNotFirst <-
logistic_reg() |>
fit(Direction ~ Lag1 + Lag2, data = ISLR::Weekly[-1L,])
WeeklyModelNotFirst
```
#### C
**(C)** Use the model from (b) to predict the direction of the first observation. You can do this by predicting that the first observation will go up if *P*(`Direction = "Up"` | `Lag1`, `Lag2`) > 0.5. Was this observation correctly classified?
No, it wasn't.
```{r}
WeeklyModelNotFirst |>
augment(new_data = ISLR::Weekly[1L,] )
```
#### D
**(D)** Write a for loop from $i = 1$ to $i = n$, where n is the number of observations in the data set, that performs each of the following steps:
1. Fit a logistic regression model using all but the *i*th observation to predict `Direction` using `Lag1` and `Lag2`.
2. Compute the posterior probability of the market moving up for the *i*th observation.
3. Use the posterior probability for the *i*th observation in order to predict whether or not the market moves up.
4. Determine whether or not an error was made in predicting the direction for the *i*th observation. If an error was made, then indicate this as a 1, and otherwise indicate it as a 0.
```{r}
WeeklyLoocv <- loo_cv(ISLR::Weekly)
setDT(WeeklyLoocv)
WeeklyLoocvPredictions <-
WeeklyLoocv[, training(splits[[1L]]), by = "id"
][, .(model = .(logistic_reg() |>
fit(Direction ~ Lag1 + Lag2, data = .SD))),
by = "id"
][WeeklyLoocv[, testing(splits[[1L]]), by = "id"],
on = "id"
][, .pred_class := predict(model[[1L]], new_data = .SD, type = "class"),
by = "id"
][, is_error := Direction != .pred_class]
```
#### E
**(E)** Take the average of the *n* numbers obtained in (4d) in order to obtain the LOOCV estimate for the test error. Comment on the results.
```{r}
mean(WeeklyLoocvPredictions$is_error)
```
### 8
#### A
**(A)** Generate a simulated data set as follows. In this data set, what is *n* and what is *p*? Write out the model used to generate the data in equation form.
```{r}
set.seed(1)
x <- rnorm(100)
y <- x- 2*x^2 + rnorm(100)
SimulatedDt <- data.table(x, y)
```
n: `r nrow(SimulatedDt)` and p: 1.
#### B
**(B)** Create a scatterplot of X against Y. Comment on what you find.
The values follows a function of second degree.
```{r}
ggplot(SimulatedDt, aes(x, y))+
geom_point()+
geom_smooth(se = FALSE)+
theme_light()
```
#### C
**(C)** Set a random seed, and then compute the LOOCV errors that result from fitting the following four models using least squares. Note you may find it helpful to use the `data.frame()` function to create a single data set containing both X and Y .
1. $Y = \beta_0 + \beta_1 X + \epsilon$
2. $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$
3. $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$
4. $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 X^4 + \epsilon$
we don't need to set a seed when performing LOOCV, as we don't do anything at random.
```{r}
collect_loo_testing_error <- function(formula,
loo_split,
metric_function = rmse,
...){
# Validations
stopifnot("There is no espace between y and ~" = formula %like% "[A-Za-z]+ ")
stopifnot("loo_split must be a data.table object" = is.data.table(loo_split))
predictor <- sub(pattern = " .+", replacement = "", formula)
formula_to_fit <- as.formula(formula)
Results <-
loo_split[, training(splits[[1L]]), by = "id"
][, .(model = .(lm(formula_to_fit, data = .SD))),
by = "id"
][loo_split[, testing(splits[[1L]]), by = "id"],
on = "id"
][, .pred := predict(model[[1L]], newdata = .SD),
by = "id"
][, metric_function(.SD, truth = !!predictor, estimate = .pred, ...) ]
setDT(Results)
if(formula %like% "degree"){
degree <- gsub(pattern = "[ A-Za-z,=\\~()]", replacement = "", formula)
Results <-
Results[,.(degree = degree,
.metric,
.estimator,
.estimate)]
}
return(Results)
}
# Creating the rplit object
SimulatedDtSplit <- loo_cv(SimulatedDt)
# Transforming to data.table
setDT(SimulatedDtSplit)
paste0("y ~ poly(x, degree=", 1:4, ")") |>
lapply(collect_loo_testing_error,
loo_split = SimulatedDtSplit) |>
rbindlist()
```
#### D
**(D)** Repeat (c) using another random seed, and report your results. Are your results the same as what you got in (c)? Why?
The results will be the same as LOOCV don't perform any random process.
#### E
**(E)** Which of the models in (c) had the smallest LOOCV error? Is this what you expected? Explain your answer.
The model with the lowest test error is the model using as a base the second grade evacuation. It's what we were expecting, as we know the true form of the original function it's a second degree one and adding more flexibility to the model just over-fit it.
#### F
**(F)** Comment on the statistical significance of the coefficient estimates that results from fitting each of the models in (c) using least squares. Do these results agree with the conclusions drawn based on the cross-validation results?
For the first model the predictor it's significant.
```{r}
lm(y ~ poly(x, degree= 1), data = SimulatedDt) |>
summary()
```
For the second model the predictors are very significant.
```{r}
lm(y ~ poly(x, degree= 2), data = SimulatedDt) |>
summary()
```
The additional element of the function is not significant.
```{r}
lm(y ~ poly(x, degree= 3), data = SimulatedDt) |>
summary()
```
The additional element of the function is not significant.
```{r}
lm(y ~ poly(x, degree= 4), data = SimulatedDt) |>
summary()
```
### 9
**9.** We will now consider the Boston housing data set, from the `ISLR2` library.
#### A
**(A)** Based on this data set, provide an estimate for the population mean of `medv`. Call this estimate $\hat{\mu}$.
```{r}
BostonMedvMean <- mean(ISLR2::Boston$medv)
BostonMedvMean
```
#### B
**(B)** Provide an estimate of the standard error of $\hat{\mu}$. Interpret this result. *Hint: We can compute the standard error of the sample mean by dividing the sample standard deviation by the square root of the number of observations.*
```{r}
BostonMedvSeEstimation <- sd(ISLR2::Boston$medv)/sqrt(nrow(ISLR2::Boston))
```
#### C
**(C)** Now estimate the standard error of $\hat{\mu}$. using the bootstrap. How does this compare to your answer from (b)?
Both estimations are really close.
```{r}
# Using the infer package as just need to estimate
# a single number
set.seed(123)
BostonMedvBootstrap <-
ISLR2::Boston |>
specify(medv ~ NULL) |>
generate(reps = 5000, type = "bootstrap") |>
calculate(stat = "mean")
BostonMedvBootstrap |>
summarize(Se_bootstrap = sd(stat)) |>
mutate(Se_estimation = BostonMedvSeEstimation,
diff = Se_bootstrap - Se_estimation)
```
#### D
**(D)** Based on your bootstrap estimate from (c), provide a 95 % confidence interval for the mean of `medv`. Compare it to the results obtained using `t.test(Boston$medv)`. *Hint: You can approximate a 95 % confidence interval using the formula* [$\hat{\mu} - 2\text{SE}(\hat{\mu}), \hat{\mu} + 2\text{SE}(\hat{\mu})$ *.*
```{r}
get_ci(BostonMedvBootstrap,
point_estimate = BostonMedvMean,
level = 0.95,
type = "se")
```
#### E
**(E)** Based on this data set, provide an estimate, $\hat{\mu}_{med}$, for the median value of `medv` in the population.
```{r}
median(ISLR2::Boston$medv)
```
#### F
**(F)** We now would like to estimate the standard error of $\hat{\mu}_{med}$. Unfortunately, there is no simple formula for computing the standard error of the median. Instead, estimate the standard error of the median using the bootstrap. Comment on your findings.
The intervals for the median seams to be a little bit lower than the ones for the average. It seems the distributions of `medv` is right skewed.
```{r}
set.seed(77)
ISLR2::Boston |>
specify(medv ~ NULL) |>
generate(reps = 5000, type = "bootstrap") |>
calculate(stat = "median") |>
get_ci(level = 0.95,
type = "percentile")
```
Right skewed has been confirmed.
```{r}
ggplot(ISLR2::Boston, aes(medv))+
geom_histogram(fill = "dodgerblue3",
alpha = 0.9, bins = 15)+
theme_light()+
theme(panel.grid = element_blank())
```
#### G
**(G)** Based on this data set, provide an estimate for the tenth percentile of `medv` in Boston census tracts. Call this quantity $\hat{\mu}_{0.1}$. (You can use the `quantile()` function.)
```{r}
quantile(ISLR2::Boston$medv, probs = 0.1)
```
#### H
**(H)** Use the bootstrap to estimate the standard error of $\hat{\mu}_{0.1}$. Comment on your findings.
The standard error is slightly larger relative to $\hat{\mu}_{0.1}$, but it is still small.
```{r}
set.seed(77)
ISLR2::Boston |>
specify(medv ~ NULL) |>
generate(reps = 5000, type = "bootstrap") |>
group_by(replicate) |>
summarize(medv_tenth_percentile = quantile(medv, probs = 0.1)) |>
summarize(se_medv_tenth_percentile = sd(medv_tenth_percentile))
```