-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy patheval.py
689 lines (584 loc) · 24.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# Copyright 2024 onwards Answer.AI, LightOn, and contributors
# License: Apache-2.0
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
import copy
import gc
import multiprocessing as mp
import os
import sys
import re
import time
from collections import defaultdict
from concurrent.futures import ProcessPoolExecutor as Pool
from multiprocessing.managers import DictProxy, SyncManager
from typing import Any, Dict, List, Optional, Sequence, Set, Tuple
from urllib.parse import urlparse
from composer.optim import DecoupledAdamW
from torch.optim import AdamW
from main import param_groups_weight_decay
# Add folder root to path to allow us to use relative imports regardless of what directory the script is run from
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
import numpy as np
import omegaconf as om
import src.evals.glue_jobs as glue_jobs_module
import src.evals.misc_jobs as misc_jobs_module
import src.evals.superglue_jobs as superglue_jobs_module
import src.hf_bert as hf_bert_module
import src.mosaic_bert as mosaic_bert_module
import src.flex_bert as flex_bert_module
import torch
from composer import algorithms
from composer.callbacks import (
LRMonitor,
MemoryMonitor,
OptimizerMonitor,
RuntimeEstimator,
SpeedMonitor,
)
from composer.loggers import WandBLogger
from composer.optim.scheduler import (
ConstantWithWarmupScheduler,
CosineAnnealingWithWarmupScheduler,
LinearWithWarmupScheduler,
)
from src.scheduler import WarmupStableDecayScheduler
from composer.utils import reproducibility
from composer.utils.file_helpers import get_file
from composer.utils.object_store import S3ObjectStore
from omegaconf import DictConfig
TASK_NAME_TO_CLASS = {
"mnli": glue_jobs_module.MNLIJob,
"rte": glue_jobs_module.RTEJob,
"mrpc": glue_jobs_module.MRPCJob,
"qnli": glue_jobs_module.QNLIJob,
"qqp": glue_jobs_module.QQPJob,
"sst2": glue_jobs_module.SST2Job,
"stsb": glue_jobs_module.STSBJob,
"cola": glue_jobs_module.COLAJob,
"boolq": superglue_jobs_module.BoolQJob,
"cb": superglue_jobs_module.CBJob,
"copa": superglue_jobs_module.COPAJob,
"multirc": superglue_jobs_module.MultiRCJob,
"wic": superglue_jobs_module.WiCJob,
"swag": misc_jobs_module.SWAGJob,
"eurlex": misc_jobs_module.EurlexJob,
"ultrafeedback": misc_jobs_module.UltrafeedbackJob,
"mlmmlu_amateur_semipro": misc_jobs_module.MLMMLUAmateurSemipro,
"mlmmlu_rookie_reserve": misc_jobs_module.MLMMLUReserveRookie,
}
GLUE_TASKS = {"mnli", "rte", "mrpc", "qnli", "qqp", "sst2", "stsb", "cola"}
SUPERGLUE_TASKS = {"boolq", "cb", "copa", "multirc", "rte", "wic"}
def build_algorithm(name, kwargs):
if name == "gradient_clipping":
return algorithms.GradientClipping(**kwargs)
elif name == "alibi":
return algorithms.Alibi(**kwargs)
elif name == "gated_linear_units":
return algorithms.GatedLinearUnits(**kwargs)
else:
raise ValueError(f"Not sure how to build algorithm: {name}")
def build_callback(name, kwargs):
if name == "lr_monitor":
return LRMonitor()
elif name == "memory_monitor":
return MemoryMonitor()
elif name == "speed_monitor":
return SpeedMonitor(
window_size=kwargs.get("window_size", 1),
gpu_flops_available=kwargs.get("gpu_flops_available", None),
)
elif name == "runtime_estimator":
return RuntimeEstimator()
elif name == "optimizer_monitor":
return OptimizerMonitor(
log_optimizer_metrics=kwargs.get("log_optimizer_metrics", True),
)
else:
raise ValueError(f"Not sure how to build callback: {name}")
def build_logger(name, kwargs):
if name == "wandb":
return WandBLogger(**kwargs)
else:
raise ValueError(f"Not sure how to build logger: {name}")
def build_scheduler(cfg):
if cfg.name == "constant_with_warmup":
return ConstantWithWarmupScheduler(t_warmup=cfg.t_warmup)
elif cfg.name == "cosine_with_warmup":
return CosineAnnealingWithWarmupScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f)
elif cfg.name == "linear_decay_with_warmup":
return LinearWithWarmupScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f)
elif cfg.name == "warmup_stable_decay":
return WarmupStableDecayScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f)
else:
raise ValueError(f"Not sure how to build scheduler: {cfg.name}")
def build_optimizer(cfg, model):
if cfg is None:
return None
if cfg.get("filter_bias_norm_wd", False):
params = param_groups_weight_decay(model, weight_decay=cfg.weight_decay)
else:
params = model.parameters()
if cfg.name == "decoupled_adamw":
return DecoupledAdamW(params, lr=cfg.lr, betas=list(cfg.betas), eps=cfg.eps, weight_decay=cfg.weight_decay)
elif cfg.name == "adamw":
print(
"INFO: You might want to increase the weight decay because in AdamW it is scaled by the lr."
f" Default weight decay is ``1e-2`` -> {cfg.weight_decay}. Default lr is `lr=1e-3` -> {cfg.lr}."
)
return AdamW(params, lr=cfg.lr, betas=list(cfg.betas), eps=cfg.eps, weight_decay=cfg.weight_decay)
elif cfg.name == "stableadamw":
try:
if cfg.get("log_grad_norm", False):
from src.optimizer import StableAdamW
else:
from optimi import StableAdamW
except ImportError:
raise ImportError("Install `pip install torch-optimi` to use the StableAdamW optimizer.")
print(
"INFO: You might want to increase the weight decay because in StableAdamW it is scaled by the lr."
f" Default weight decay is ``1e-2`` -> {cfg.weight_decay}. Default lr is `lr=1e-3` -> {cfg.lr}."
)
return StableAdamW(params, lr=cfg.lr, betas=list(cfg.betas), eps=cfg.eps, weight_decay=cfg.weight_decay)
elif cfg.name == "decoupled_stableadamw":
try:
if cfg.get("log_grad_norm", False):
from src.optimizer import StableAdamW
else:
from optimi import StableAdamW
except ImportError:
raise ImportError("Install `pip install torch-optimi` to use the StableAdamW optimizer.")
return StableAdamW(
params,
lr=cfg.lr,
betas=list(cfg.betas),
eps=cfg.eps,
weight_decay=cfg.weight_decay,
decouple_lr=True,
)
else:
raise ValueError(f"Not sure how to build optimizer: {cfg.name}")
def build_model(cfg: DictConfig, num_labels: int, multiple_choice: bool = False, **kwargs):
if cfg.name == "hf_bert":
return hf_bert_module.create_hf_bert_classification(
num_labels=num_labels,
pretrained_model_name=cfg.pretrained_model_name,
use_pretrained=cfg.get("use_pretrained", False),
model_config=cfg.get("model_config", None),
tokenizer_name=cfg.get("tokenizer_name", None),
gradient_checkpointing=cfg.get("gradient_checkpointing", None),
multiple_choice=multiple_choice,
**kwargs,
)
elif cfg.name == "mosaic_bert":
return mosaic_bert_module.create_mosaic_bert_classification(
num_labels=num_labels,
pretrained_model_name=cfg.pretrained_model_name,
pretrained_checkpoint=cfg.get("pretrained_checkpoint", None),
model_config=cfg.get("model_config", None),
tokenizer_name=cfg.get("tokenizer_name", None),
gradient_checkpointing=cfg.get("gradient_checkpointing", None),
multiple_choice=multiple_choice,
**kwargs,
)
elif cfg.name == "flex_bert":
return flex_bert_module.create_flex_bert_classification(
num_labels=num_labels,
pretrained_model_name=cfg.pretrained_model_name,
pretrained_checkpoint=cfg.get("pretrained_checkpoint", None),
model_config=cfg.get("model_config", None),
tokenizer_name=cfg.get("tokenizer_name", None),
gradient_checkpointing=cfg.get("gradient_checkpointing", None),
multiple_choice=multiple_choice,
**kwargs,
)
else:
raise ValueError(f"Not sure how to build model with name={cfg.name}")
def get_values_from_path(path: str, separator: str = "/") -> Dict[str, str]:
"""Parses out information from a path/string that looks like.
...<separator>key=value<separator...
"""
dict_output = {}
underscore_split = path.split(separator)
for item in underscore_split:
if "=" not in item:
continue
key, value = item.split("=")
dict_output[key] = value
return dict_output
def get_checkpoint_name_from_path(path: str) -> str:
"""To go from checkpoint name to path, replace | with /"""
return path.lstrip("/").replace("/", "|")
def download_starting_checkpoint(starting_checkpoint_load_path: str, local_pretrain_checkpoints_folder: str) -> str:
"""Downloads the pretrained checkpoints to start from.
Currently only supports S3 and URLs
"""
load_object_store = None
parsed_path = urlparse(starting_checkpoint_load_path)
if parsed_path.scheme == "s3":
load_object_store = S3ObjectStore(bucket=parsed_path.netloc)
download_path = parsed_path.path if parsed_path.scheme == "s3" else starting_checkpoint_load_path
os.makedirs(local_pretrain_checkpoints_folder, exist_ok=True)
local_path = os.path.join(
local_pretrain_checkpoints_folder,
get_checkpoint_name_from_path(parsed_path.path),
)
if not os.path.exists(local_path):
get_file(
destination=local_path,
path=download_path.lstrip("/"),
object_store=load_object_store,
progress_bar=True,
)
return local_path
def _setup_gpu_queue(num_gpus: int, manager: SyncManager):
"""Returns a queue with [0, 1, ..
num_gpus].
"""
gpu_queue = manager.Queue(num_gpus)
for gpu_id in range(num_gpus):
gpu_queue.put(gpu_id)
return gpu_queue
def create_job_configs(
main_config: om.DictConfig,
tasks_to_run: Set[str],
pretrained_checkpoint_path: Optional[str],
):
configs = []
for task_name, task_config in main_config.tasks.items():
if main_config.get("base_run_name") is None:
main_config.base_run_name = os.environ.get("COMPOSER_RUN_NAME", "glue")
if task_name not in tasks_to_run:
continue
for task_seed in task_config.get("seeds", [main_config.default_seed]):
run_name = f"{main_config.base_run_name}_task={task_name}_seed={str(task_seed)}"
logger_configs = copy.deepcopy(main_config.get("loggers", {}))
for logger_name, logger_config in logger_configs.items():
if logger_name == "wandb":
# allow user set groups, otherwise set group to run name
if "group" not in logger_config:
logger_config["group"] = f"{main_config.base_run_name}_{task_name}"
logger_config["name"] = run_name
# Create a copy of model config to avoid modifying the main_config
model_kwargs = copy.deepcopy(main_config.model)
if "model_config" not in model_kwargs:
model_kwargs.model_config = {}
# update with task specific model config
model_kwargs.model_config.update(task_config.get("model_config", {}))
task_seed_config = om.OmegaConf.create(
{
"task": task_name,
"job_name": run_name,
"seed": task_seed,
"model": model_kwargs,
"tokenizer_name": main_config.tokenizer_name,
"scheduler": main_config.scheduler,
"optimizer": task_config.get("optimizer", main_config.get("optimizer", None)),
"load_path": pretrained_checkpoint_path,
"save_folder": os.path.join(
main_config.save_finetune_checkpoint_folder,
f"task={task_name}",
f"seed={task_seed}",
),
"loggers": logger_configs,
"callbacks": main_config.get("callbacks", {}),
"algorithms": main_config.get("algorithms", {}),
"precision": main_config.get("precision", None),
"trainer_kwargs": task_config.trainer_kwargs,
}
)
configs.append(task_seed_config)
return configs
def run_job_worker(
config: om.DictConfig,
gpu_queue: Optional[mp.Queue] = None,
process_to_gpu: Optional[DictProxy] = None,
) -> Any:
"""Instantiates the job object and runs it."""
# need to set seed before model initialization for determinism
reproducibility.configure_deterministic_mode()
reproducibility.seed_all(config.seed)
task_cls = TASK_NAME_TO_CLASS[config.task]
model = build_model(
config.model,
num_labels=task_cls.num_labels,
multiple_choice=task_cls.multiple_choice,
custom_eval_metrics=task_cls.custom_eval_metrics,
)
instantiated_job = task_cls(
job_name=config.job_name,
seed=config.seed,
model=model,
tokenizer_name=config.tokenizer_name,
scheduler=build_scheduler(config.scheduler),
optimizer=build_optimizer(config.optimizer, model),
load_path=config.load_path,
save_folder=config.save_folder,
loggers=[build_logger(name, logger_config) for name, logger_config in config.get("loggers", {}).items()],
callbacks=[
build_callback(name, callback_config) for name, callback_config in config.get("callbacks", {}).items()
],
algorithms=[
build_algorithm(name, algorithm_config) for name, algorithm_config in config.get("algorithms", {}).items()
],
precision=config.precision,
**config.trainer_kwargs,
)
results = instantiated_job.run(gpu_queue, process_to_gpu, config)
# Extract W&B run ID from the logger
results["wandb_name"] = None
results["wandb_project"] = None
results["wandb_entity"] = None
if results["loggers"] is None:
results["loggers"] = []
for logger in results["loggers"]:
if isinstance(logger, WandBLogger):
results["wandb_run_url"] = logger.run_url
break
# Clean up: delete the job so that the optimizer and anything else on the gpu gets deleted
del instantiated_job
torch.cuda.empty_cache()
gc.collect()
return results
def run_jobs_parallel(configs: Sequence[om.DictConfig]) -> Dict[str, Any]:
"""Runs a list of jobs (passed in as Hydra configs) across GPUs.
Returns a dictionary mapping job name to the result and original config
Each job's results is a dict of:
* 'checkpoints': list of saved_checkpoints, if any,
* 'metrics': nested dict of results, accessed by
dataset and metric name, e.g.
``metrics['glue_mnli']['MulticlassAccuracy']``.
* 'job_name': The job name, helpful for keeping track of results during multiprocessing
"""
num_gpus = torch.cuda.device_count()
mp.set_start_method("spawn", force=True)
torch.multiprocessing.set_start_method("spawn", force=True)
results = []
with mp.Manager() as manager:
# workers get gpu ids from this queue
# to set the GPU to run on
gpu_queue = _setup_gpu_queue(num_gpus, manager)
process_to_gpu = manager.dict()
ctx = mp.get_context("spawn")
with Pool(max_workers=min(num_gpus, len(configs)), mp_context=ctx) as pool:
results = pool.map(
run_job_worker,
[config for config in configs],
[gpu_queue for _ in configs],
[process_to_gpu for _ in configs],
)
job_name_to_config = {config.job_name: config for config in configs}
finished_results = {}
for result in results:
job_name = result["job_name"]
finished_results[job_name] = {
"result": result,
"config": job_name_to_config[job_name],
}
return finished_results
def run_jobs_serial(configs) -> Dict[str, Any]:
"""Runs the jobs serially, rather than in parallel.
Useful for debugging
"""
results = {}
for config in configs:
result = run_job_worker(config)
results[config.job_name] = {"result": result, "config": config}
return results
def format_job_name(job_name: str) -> str:
"""Formats the job name for pretty printing."""
dict_output = get_values_from_path(job_name, separator="_")
return f'{dict_output["task"].upper()}(seed={dict_output["seed"]})'
def _print_table(results: Dict[str, Dict[str, Any]]):
"""Pretty prints a table given a results dictionary."""
header = "{job_name:50}| {eval_task:25}| {name:27}|"
hyphen_count = 50 + 25 + 27 + 11
row_format = header + " {value:.2f}"
print("\nCollected Job Results: \n")
print("-" * hyphen_count)
print(header.format(job_name="Job", eval_task="Dataset", name="Metric"))
print("-" * hyphen_count)
for job_name, result in results.items():
for eval_task, eval_results in result["result"]["metrics"].items():
for name, metric in eval_results.items():
print(
row_format.format(
job_name=format_job_name(job_name),
eval_task=eval_task,
name=name,
value=metric * 100,
)
)
print("-" * hyphen_count)
print("\n")
def _print_averaged_glue_results(glue_results: List[Tuple[str, float]]) -> None:
"""Pretty prints a table of glue results averaged across seeds."""
header = "{job_name:50}|"
hyphen_count = 50 + 11
row_format = header + " {value:.2f}"
print("\nCollected Job Results: \n")
print("-" * hyphen_count)
print(header.format(job_name="Task"))
print("-" * hyphen_count)
for task_name, result in glue_results:
print(
row_format.format(
job_name=f"{task_name.upper()}",
value=result,
)
)
print("-" * hyphen_count)
print("\n")
def train(config: om.DictConfig) -> None:
"""Main training logic.
Args:
config (DictConfig): Configuration composed by OmegaConf
"""
# these subtasks require the parent task to have been run
round_2_task_names = config.get(
"round_2_task_names",
{
"mnli": {"rte", "mrpc", "stsb"},
"swag": {"copa"},
},
)
start_time = time.time()
# Initial default seed
reproducibility.seed_all(config.default_seed)
# Quiet down WandB
os.environ["WANDB_SILENT"] = "true"
# Set tokenizer parallelism
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Confirm GPUs if parallel=True
if config.parallel:
assert (
torch.cuda.device_count() > 0
), "Can only use parallel mode if GPUs are available. Please set parallel=False."
# Downloads the starting checkpoint ahead of time so that
# the different tasks don't all try to download it at the same time
if config.get("starting_checkpoint_load_path", None):
local_pretrain_checkpoint_path = download_starting_checkpoint(
config.starting_checkpoint_load_path,
config.local_pretrain_checkpoint_folder,
)
else:
local_pretrain_checkpoint_path = None
# Builds round 1 configs and runs them by first filtering out all round 2 tasks
if round_2_task_names:
round_2_tasks = [task for tasks in round_2_task_names.values() for task in tasks]
else:
round_2_tasks = []
round_1_task_names = [task for task in TASK_NAME_TO_CLASS.keys() if task not in round_2_tasks]
round_1_job_configs = create_job_configs(config, round_1_task_names, local_pretrain_checkpoint_path)
round_1_results = {}
if len(round_1_job_configs) > 0:
if config.parallel:
round_1_results = run_jobs_parallel(round_1_job_configs)
else:
round_1_results = run_jobs_serial(round_1_job_configs)
# Builds up the information needed to run the second round, starting from the MNLI checkpoints
checkpoint_paths = {}
for job_name, output_dict in round_1_results.items():
job_results = output_dict["result"]
job_values = get_values_from_path(job_name, separator="_")
task_name = job_values["task"]
if task_name in checkpoint_paths:
continue
elif len(job_results["checkpoints"]) == 0:
continue
checkpoint_paths[task_name] = job_results["checkpoints"][-1]
# Builds round 2 configs and runs them
round_2_job_configs = []
for dependent_task_name in round_2_task_names:
starting_checkpoint_path = (
checkpoint_paths[dependent_task_name]
if dependent_task_name in checkpoint_paths
else local_pretrain_checkpoint_path
)
round_2_job_configs.extend(
create_job_configs(
config,
round_2_task_names[dependent_task_name],
starting_checkpoint_path,
)
)
round_2_results = {}
if len(round_2_job_configs) > 0:
if config.parallel:
round_2_results = run_jobs_parallel(round_2_job_configs)
else:
round_2_results = run_jobs_serial(round_2_job_configs)
end_time = time.time()
print("-" * 30)
print(f"Training completed in {(end_time-start_time):.2f} seconds")
print("-" * 30)
# Join the results and pretty print them
all_results = {}
all_results.update(round_1_results)
all_results.update(round_2_results)
_print_table(all_results)
# Average the GLUE results across seeds and pretty print them
task_metrics: Dict[str, List[float]] = defaultdict(list)
task_to_run_infos: Dict[str, List[Dict[str, Any]]] = defaultdict(list)
for job_name, output_dict in all_results.items():
result = output_dict["result"]
job_values = get_values_from_path(job_name, separator="_")
task_name = job_values["task"]
# Collect W&B run information per task
run_url = result.get("wandb_run_url")
if run_url:
task_to_run_infos[task_name].append({"job_name": job_name, "run_url": run_url})
# Collect metrics per task
for _, eval_results in result["metrics"].items():
for _, metric in eval_results.items():
task_metrics[task_name].append(metric * 100)
# Compute average metrics per task
results_mean: Dict[str, float] = {task_name: float(np.mean(values)) for task_name, values in task_metrics.items()}
overall_glue = []
overall_superglue = []
overall_other = []
for task_name, average_metric in results_mean.items():
# Classify tasks into GLUE, SuperGLUE, or other
if task_name in GLUE_TASKS:
overall_glue.append(average_metric)
elif task_name in SUPERGLUE_TASKS:
overall_superglue.append(average_metric)
else:
overall_other.append(average_metric)
# Update W&B runs with average metrics
for run_info in task_to_run_infos.get(task_name, []):
match = re.search(r"([^/]+)/([^/]+)/runs/([^/]+)", run_info["run_url"])
if match:
import wandb
api = wandb.Api()
run = api.run(f"{match.group(1)}/{match.group(2)}/{match.group(3)}")
# Update the run's summary with the average metric
run.summary[f"average_{task_name}"] = average_metric
run.update()
if len(overall_other) > 0:
other_results_mean = {k: v for k, v in results_mean.items() if k not in GLUE_TASKS.union(SUPERGLUE_TASKS)}
_print_averaged_glue_results([(key, value) for key, value in other_results_mean.items()])
if len(overall_glue) > 0:
glue_results_mean = {
**{k: v for k, v in results_mean.items() if k in GLUE_TASKS},
"glue": float(np.mean(overall_glue)),
}
_print_averaged_glue_results([(key, value) for key, value in glue_results_mean.items()])
if len(overall_superglue) > 0:
superglue_results_mean = {
**{k: v for k, v in results_mean.items() if k in SUPERGLUE_TASKS},
"superglue": float(np.mean(overall_superglue)),
}
_print_averaged_glue_results([(key, value) for key, value in superglue_results_mean.items()])
if __name__ == "__main__":
yaml_path, args_list = sys.argv[1], sys.argv[2:]
with open(yaml_path) as f:
yaml_cfg = om.OmegaConf.load(f)
cli_cfg = om.OmegaConf.from_cli(args_list)
cfg = om.OmegaConf.merge(yaml_cfg, cli_cfg)
if cfg.model.name == "mosaic_bert":
with open("yamls/defaults.yaml") as f:
default_cfg = om.OmegaConf.load(f)
cfg = om.OmegaConf.merge(cfg, default_cfg)
assert isinstance(cfg, om.DictConfig)
train(cfg)