-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathrun_evals.py
780 lines (659 loc) · 32.8 KB
/
run_evals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
# Copyright 2024 onwards Answer.AI, LightOn, and contributors
# License: Apache-2.0
import os
import random
import re
import signal
import subprocess
import tempfile
import time
import warnings
from collections import deque
from enum import Enum
from multiprocessing import Process, Queue
from pathlib import Path
from typing import Annotated, List, Optional
import datasets
import psutil
import typer
import yaml
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from rich.console import Console, Group
from rich.live import Live
from rich.panel import Panel
from rich.progress import BarColumn, Progress, SpinnerColumn, TextColumn, TimeElapsedColumn
from typer import Exit, Option
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=FutureWarning)
from eval import GLUE_TASKS, SUPERGLUE_TASKS, TASK_NAME_TO_CLASS
# Create TaskName enum dynamically from TASK_NAME_TO_CLASS keys
TaskName = Enum("TaskName", {name: name for name in TASK_NAME_TO_CLASS.keys()}, type=str)
app = typer.Typer(context_settings={"help_option_names": ["-h", "--help"]}, pretty_exceptions_show_locals=False)
class ModelSize(str, Enum):
BASE = "base"
LARGE = "large"
# from maxb2: https://github.com/tiangolo/typer/issues/86#issuecomment-996374166
def conf_callback(ctx: typer.Context, param: typer.CallbackParam, config: Optional[str] = None):
if config is not None:
typer.echo(f"Loading config file: {config}\n")
try:
with open(config, "r") as f: # Load config file
conf = yaml.safe_load(f)
ctx.default_map = ctx.default_map or {} # Initialize the default map
ctx.default_map.update(conf) # Merge the config dict into default_map
except Exception as ex:
raise typer.BadParameter(str(ex))
return config
# Global dictionary to keep track of GPUs with running jobs
# Changed to store more information per GPU
gpus_in_use = {}
# Queue to keep track of GPUs that might be free
potentially_free_gpus = deque()
# Global list to keep track of all running processes
all_processes = []
# Global list to specify which GPUs to use
allowed_gpus = None # Will be set to list of GPU IDs or None
def kill_process_tree(pid):
try:
parent = psutil.Process(pid)
children = parent.children(recursive=True)
for child in children:
child.terminate()
gone, still_alive = psutil.wait_procs(children, timeout=5)
for p in still_alive:
p.kill()
parent.terminate()
parent.wait(5)
except psutil.NoSuchProcess:
pass
def signal_handler(signum, frame):
print("\nReceived termination signal. Cleaning up subprocesses...")
for process in all_processes:
if process.poll() is None: # If the process is still running
kill_process_tree(process.pid)
print("Cleanup completed. Exiting.")
os._exit(0) # Force exit without running cleanup handlers
def get_gpu_memory_usage(gpu_id):
"""Get memory usage for a specific GPU."""
try:
output = (
subprocess.check_output(
f"nvidia-smi --query-gpu=memory.used --format=csv,nounits,noheader -i {gpu_id}", shell=True
)
.decode("utf-8")
.strip()
)
return int(output)
except subprocess.CalledProcessError:
print(f"Failed to get memory usage for GPU {gpu_id}")
return None
def get_free_gpu():
"""Check for free GPUs, prioritizing potentially free GPUs."""
global allowed_gpus
while potentially_free_gpus:
gpu_id = potentially_free_gpus.popleft()
if (allowed_gpus is None or gpu_id in allowed_gpus) and gpu_id not in gpus_in_use:
memory_used = get_gpu_memory_usage(gpu_id)
if memory_used is not None and memory_used < 100:
return gpu_id
# If no potentially free GPUs, check allowed GPUs
try:
gpu_output = subprocess.check_output(
"nvidia-smi --query-gpu=index,memory.used --format=csv,nounits,noheader", shell=True
).decode("utf-8")
for line in gpu_output.strip().split("\n"):
gpu_id, memory_used = map(int, line.split(","))
if (allowed_gpus is None or gpu_id in allowed_gpus) and memory_used < 100 and gpu_id not in gpus_in_use:
return gpu_id
return None
except subprocess.CalledProcessError:
print("Failed to execute nvidia-smi")
return None
def run_subprocess(cmd: List[str], verbose: bool = False, show_errors: bool = False):
stdout = None if verbose else subprocess.DEVNULL
stderr = None if verbose or show_errors else subprocess.DEVNULL
process = subprocess.Popen(cmd, stdout=stdout, stderr=stderr)
all_processes.append(process) # Add the process to the global list
process.wait()
def handle_process_completion(process, stderr_file, config_path: Path, verbose: bool, gpu_id: Optional[int] = None):
"""Handles the completion of a process, checks for errors, cleans up stderr_file, and logs messages."""
returncode = process.returncode
# Read and clean up stderr output
if stderr_file is not None:
stderr_file.seek(0)
error_output = stderr_file.read()
stderr_file.close()
os.unlink(stderr_file.name) # Delete the temp file
else:
error_output = "Error output was displayed above."
# Construct job identifier
if gpu_id is not None:
job_identifier = f"Job on GPU {gpu_id} for {config_path.name}"
else:
job_identifier = f"Job for {config_path.name}"
if returncode != 0:
# The process exited with an error
if verbose:
print(f"{job_identifier} failed with return code {returncode}")
print("Error Output:")
print(error_output)
else:
console.print(f"[red]{job_identifier} failed with return code {returncode}[/red]")
console.print(f"[red]Error Output:[/red]\n{error_output}")
else:
# The process completed successfully
if verbose:
print(f"{job_identifier} has finished successfully.")
else:
console.log(f"{job_identifier} has finished successfully.")
def run_job(
config_path: Path,
verbose: bool = False,
delete_eval_yamls: bool = True,
gpu_id: Optional[int] = None,
gpu_ids: Optional[List[int]] = None,
):
"""Run a job with optional GPU management."""
if gpu_id is not None:
# GPU management is required
env = os.environ.copy()
env["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
elif gpu_ids is not None:
env = os.environ.copy()
env["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, gpu_ids))
else:
env = None # Use default environment
if verbose:
stdout = None # Output will be shown directly
stderr = None
stderr_file = None
else:
stdout = subprocess.DEVNULL
stderr_file = tempfile.NamedTemporaryFile(mode="w+", delete=False)
stderr = stderr_file
process = subprocess.Popen(["python", "eval.py", str(config_path)], env=env, stdout=stdout, stderr=stderr)
all_processes.append(process) # Add the process to the global list
if gpu_id is not None:
# Store process info for GPU management
gpus_in_use[gpu_id] = {"process": process, "stderr_file": stderr_file, "config": config_path}
if gpu_id is None:
process.wait()
handle_process_completion(process, stderr_file, config_path, verbose, gpu_id=None)
if delete_eval_yamls:
config_path.unlink()
return process
def check_finished_jobs(verbose: bool = False):
"""Check for finished jobs and free up their GPUs."""
finished_gpus = []
for gpu_id, info in gpus_in_use.items():
process = info["process"]
stderr_file = info["stderr_file"]
config = info["config"]
if process.poll() is not None: # Job has finished
# Handle process completion
handle_process_completion(process, stderr_file, config, verbose, gpu_id=gpu_id)
finished_gpus.append(gpu_id)
for gpu_id in finished_gpus:
del gpus_in_use[gpu_id]
potentially_free_gpus.append(gpu_id)
def manage_jobs(configs: List[Path], verbose: bool = False, delete_eval_yamls: bool = True):
"""Manage the launching of jobs for each configuration file in the directory."""
if verbose:
for config in configs:
while True:
check_finished_jobs(verbose)
gpu_id = get_free_gpu()
if gpu_id is not None:
time.sleep(random.randint(0, 5))
print(f"\nLaunching job for {config} on GPU {gpu_id}\n")
run_job(config, gpu_id=gpu_id, verbose=verbose, delete_eval_yamls=delete_eval_yamls)
break
else:
time.sleep(10)
# Wait for all remaining jobs to finish
while gpus_in_use:
check_finished_jobs(verbose)
time.sleep(10)
else:
def update_progress_for_finished_jobs():
"""Update progress bars for any finished GPU jobs."""
for gpu_id, info in list(gpus_in_use.items()):
process = info["process"]
if process.poll() is not None: # Job finished
if gpu_id in gpu_tasks:
gpu_progress.update(gpu_tasks[gpu_id], completed=1, visible=False)
completed_configs.add(info["config"])
overall_progress.update(overall_task, completed=len(completed_configs))
overall_progress = Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
BarColumn(),
TextColumn("[progress.percentage]{task.completed}/{task.total}"),
TimeElapsedColumn(),
)
gpu_progress = Progress(
SpinnerColumn(), TextColumn("[progress.description]{task.description}"), TimeElapsedColumn()
)
progress_group = Group(
Panel(overall_progress, title="Overall Progress", border_style="blue", padding=(1, 1)),
Panel(gpu_progress, title="GPU Jobs", border_style="green", padding=(1, 1)),
)
with Live(progress_group, console=console, refresh_per_second=4):
overall_task = overall_progress.add_task("[cyan]Overall Progress", total=len(configs))
gpu_tasks = {}
completed_configs = set() # Track completed configs
for config in configs:
while True:
check_finished_jobs(verbose)
update_progress_for_finished_jobs()
gpu_id = get_free_gpu()
if gpu_id is not None:
time.sleep(random.randint(0, 5))
if gpu_id not in gpu_tasks:
gpu_tasks[gpu_id] = gpu_progress.add_task(f"[green]GPU {gpu_id}", total=1)
else:
gpu_progress.update(gpu_tasks[gpu_id], completed=1, visible=False)
gpu_tasks[gpu_id] = gpu_progress.add_task(f"[green]GPU {gpu_id}", total=1)
gpu_progress.update(gpu_tasks[gpu_id], description=f"[green]GPU {gpu_id}: {config.name}")
run_job(config, gpu_id=gpu_id, verbose=verbose, delete_eval_yamls=delete_eval_yamls)
break
else:
time.sleep(10)
# Wait for all remaining jobs to finish
while gpus_in_use:
check_finished_jobs(verbose)
update_progress_for_finished_jobs()
time.sleep(10)
overall_progress.update(overall_task, completed=len(configs))
if delete_eval_yamls:
for config in configs:
try:
config.unlink()
except FileNotFoundError:
pass
def create_symlink_for_newest_checkpoint(folder: Path, override_existing: bool = False):
"""Create a symlink to the newest checkpoint file if 'latest-rank0.pt' does not exist."""
if folder.is_dir():
pt_files = list(folder.glob("*.pt"))
if not pt_files:
print(f" Warning: No .pt file found in {folder}.")
return
# Sort files based on epoch and batch numbers extracted from filenames
def extract_numbers(filename: Path):
if filename.is_symlink():
return (0, 0)
if filename.name == "latest-rank0.pt":
return (0, 0)
try:
# Using regex to find patterns of 'ep' followed by digits and 'ba' followed by digits
match = re.search(r"ep(\d+)-ba(\d+)", filename.stem)
if match:
epoch, batch = map(int, match.groups())
return (epoch, batch)
else:
raise ValueError(f"Filename does not match expected pattern: {filename}")
except Exception as e:
print(f" Error extracting numbers from filename {filename}: {e}")
return (0, 0)
newest_file = max(pt_files, key=extract_numbers)
symlink_path = folder / "latest-rank0.pt"
if symlink_path.exists() and symlink_path.is_symlink():
if symlink_path.resolve() == newest_file.resolve():
print(f" Existing symlink points to latest checkpoint: {newest_file.parent.name}/{newest_file.name}")
return
else:
print(
f" Warning: Existing symlink points to {symlink_path.parent.name}/{symlink_path.name}, "
f"but latest checkpoint is {newest_file.parent.name}/{newest_file.name}"
)
if not override_existing:
return
symlink_path.symlink_to(newest_file.name)
if override_existing:
print(
f" Overwriting existing symlink with {symlink_path.parent.name}/{symlink_path.name} -> {newest_file.name}"
)
else:
print(f" Created new symlink {symlink_path.parent.name}/{symlink_path.name} -> {newest_file.name}")
def generate_eval_configs(
checkpoints: Path,
train_config: Optional[Path],
wandb_run: Optional[str],
wandb_project: Optional[str],
wandb_entity: Optional[str],
track_run: bool,
track_run_project: Optional[str],
pooling_type: Optional[str],
head_class_act: Optional[str],
head_class_norm: Optional[str],
head_class_dropout: float,
tasks: Optional[List[TaskName]], # type: ignore
fast_ultrafeedback: bool,
seeds: List[int],
parallel: bool,
use_dir_names: Optional[bool],
model_size: ModelSize,
rope_theta: Optional[float],
):
"""Generate evaluation configs for each checkpoint."""
folders = [
folder
for folder in checkpoints.glob("*")
if folder.is_dir()
and not folder.name.startswith(".")
and any(file.suffix == ".pt" for file in folder.glob("*.pt"))
]
if use_dir_names is None and len(folders) > 1:
use_dir_names = True
print("Using folder names as run names since multiple `checkpoints` were provided with one `train_config`.")
for folder in folders:
cmd = [
"python",
"generate_eval_config.py",
"--checkpoint",
str(folder),
"--output-dir",
str(checkpoints),
]
# Add optional arguments if they're provided
if use_dir_names:
cmd.append("--use-dir-name")
if model_size:
cmd.extend(["--model-size", model_size.value])
if rope_theta is not None:
cmd.extend(["--rope-theta", str(rope_theta)])
if train_config:
cmd.extend(["--train-config", str(train_config)])
if wandb_run:
cmd.extend(["--wandb-run", wandb_run])
if wandb_project:
cmd.extend(["--wandb-project", wandb_project])
if wandb_entity:
cmd.extend(["--wandb-entity", wandb_entity])
if track_run:
cmd.append("--track-run")
if track_run_project:
cmd.extend(["--track-run-project", track_run_project])
# Classification head options
if pooling_type:
cmd.extend(["--pooling-type", pooling_type])
if head_class_act:
cmd.extend(["--head-class-act", head_class_act])
if head_class_norm:
cmd.extend(["--head-class-norm", head_class_norm])
if head_class_dropout > 0:
cmd.extend(["--head-class-dropout", str(head_class_dropout)])
# Add tasks
if tasks:
for task in tasks:
cmd.extend(["--tasks", task.value])
if fast_ultrafeedback:
cmd.append("--fast-ultrafeedback")
for seed in seeds:
cmd.extend(["--seeds", str(seed)])
cmd.append("--parallel") if parallel else cmd.append("--single")
# Run the config generation process without suppressing output
run_subprocess(cmd, show_errors=True)
if not train_config:
time.sleep(1)
def download_dataset(dataset_name: str, subset: Optional[str] = None):
try:
datasets.load_dataset(dataset_name, subset, trust_remote_code=True)
return f"Successfully downloaded {dataset_name} {subset}"
except Exception as e:
return f"Error in processing {dataset_name}: {e}"
def download_datasets(tasks: List[TaskName], msg_queue): # type: ignore
try:
required_datasets = []
task_to_datasets = {
"mlmmlu_amateur_semipro": [["answerdotai/MLMMLU", "Amateur"], ["answerdotai/MLMMLU", "Semipro"]],
"mlmmlu_rookie_reserve": [["answerdotai/MLMMLU", "Rookie"], ["answerdotai/MLMMLU", "Reserve"]],
"eurlex": [["coastalcph/lex_glue", "eurlex"]],
"ultrafeedback": [["rbiswasfc/ultrafeedback-binary-classification"]],
}
for task in tasks:
if task.value in GLUE_TASKS:
datasets_info = [["glue", task.value]]
elif task.value in SUPERGLUE_TASKS:
datasets_info = [["aps/super_glue", task.value]]
else:
datasets_info = task_to_datasets.get(task.value, [])
required_datasets.extend(datasets_info)
# Suppress output globally in this process
import sys
sys.stdout = open(os.devnull, "w")
sys.stderr = open(os.devnull, "w")
msgs = []
for dataset_name, subset in required_datasets:
datasets.load_dataset(dataset_name, subset)
msgs.append(f"Successfully downloaded {dataset_name} {subset}")
msg_queue.put(" " + "\n ".join(msgs) + "\n")
except Exception as e:
msg_queue.put(f"Error in downloading datasets: {e}")
def find_checkpoint_file(file_path: str, repo_files: List[str]) -> Optional[str]:
import re
# Filter files in the specified file_path that end with .pt or .yaml
valid_files = [file for file in repo_files if file.startswith(file_path) and file.endswith((".pt", ".yaml"))]
if len(valid_files) == 1:
return valid_files[0]
# Function to extract epoch and batch numbers from the filename
def extract_numbers(filename: str):
match = re.search(r"ep(\d+)-ba(\d+)", filename)
if match:
epoch, batch = map(int, match.groups())
return epoch, batch
return -1, -1 # Return a default value for files that don't match the pattern
# Find the newest file based on epoch and batch numbers
newest_file = max(valid_files, key=extract_numbers, default=None)
return newest_file
def download_hub_files(
repo_id: str,
filenames: Optional[List[str]],
output_dir: Path,
repo_type: str = "model",
token: Optional[str] = None,
) -> List[Path]:
"""Download specific files or the entire repository from a Hugging Face Hub repository."""
output_dir.mkdir(parents=True, exist_ok=True)
downloaded_files = []
def move_and_flatten_files(local_dir: Path):
for file_path in local_dir.rglob("*"):
if file_path.is_file() and file_path.name.endswith((".pt", ".yaml")):
# Determine the target directory
target_dir = output_dir / file_path.parent.name
# Check if the file is already in the correct location
if file_path.parent.resolve() in [target_dir.resolve(), output_dir.resolve()]:
downloaded_files.append(file_path)
continue
# Create the target directory if it doesn't exist
target_dir.mkdir(parents=True, exist_ok=True)
# Move the file to the target directory
new_path = target_dir / file_path.name
file_path.rename(new_path)
downloaded_files.append(new_path)
# List all files in the repository
api = HfApi()
repo_files = api.list_repo_files(repo_id=repo_id, repo_type=repo_type, token=token)
try:
if not filenames:
# Check if files already exist before downloading entire repository
existing_files = list(output_dir.glob("**/*.pt")) + list(output_dir.glob("**/*.yaml"))
if existing_files:
print(f"Found existing files in '{output_dir}', skipping download.")
return existing_files
# Download the entire repository
local_dir = snapshot_download(
repo_id=repo_id,
repo_type=repo_type,
revision=None,
cache_dir=None,
local_dir=output_dir,
use_auth_token=token,
)
move_and_flatten_files(Path(local_dir))
print(f"Successfully downloaded and flattened the repository '{repo_id}' to '{output_dir}'.")
else:
for filename in filenames:
resolved_filename = find_checkpoint_file(filename, repo_files)
if not resolved_filename:
print(f"Warning: Could not find matching file for '{filename}' in repository.")
continue
# Check if file exists in output_dir or any immediate subdirectory
filename = Path(resolved_filename).name
parent_dir = Path(resolved_filename).parent.name
existing_files = list(output_dir.glob(f"**/{parent_dir}/{filename}"))
if existing_files:
existing_file = existing_files[0]
print(f"File '{parent_dir}/{filename}' already exists at '{existing_file}', skipping download.")
downloaded_files.append(existing_file)
continue
# Download the file
_ = hf_hub_download(
repo_id=repo_id,
filename=resolved_filename,
repo_type=repo_type,
token=token,
local_dir=output_dir,
cache_dir=None,
)
print(f"Successfully downloaded '{resolved_filename}' from '{repo_id}'.")
move_and_flatten_files(output_dir)
except Exception as e:
print(f"Error downloading from '{repo_id}': {e}")
return downloaded_files
console = Console()
@app.command()
def main(
checkpoints: Annotated[Path, Option(help="Path to the directory containing FlexBert checkpoints or location to download checkpoints from Hugging Face Hub to", rich_help_panel="Checkpoint & Config Paths", show_default=False)],
train_config: Annotated[Optional[Path], Option(help="Path to a .yaml file containing training configuration. If one is not provided, will attempt to load the config from a wandb run or use defaults.", rich_help_panel="Checkpoint & Config Paths")] = None,
model_size: Annotated[ModelSize, Option("--model-size", help="Model to use for default model config", rich_help_panel="Checkpoint & Config Paths")] = ModelSize.BASE,
rope_theta: Annotated[Optional[float], Option("--rope-theta", help="Value for `rotary_emb_base` in the model configuration. If not provided, defaults to pretraining value of 10000.0", rich_help_panel="Checkpoint & Config Paths")] = None,
skip_generation: Annotated[bool, Option("--skip-generation", help="Skip generation of evaluation configs. If not true, assumes all existing eval yamls have been already ran.", rich_help_panel="Checkpoint & Config Paths")] = False,
run_all_yamls: Annotated[bool, Option("--run-all-yamls", help="Run all evaluation yamls in the `checkpoints` directory, even if some have already been run.", rich_help_panel="Checkpoint & Config Paths")] = False,
tasks: Annotated[Optional[List[TaskName]], Option(help="List of tasks to include in the evaluation. Default is all tasks.", rich_help_panel="Eval Tasks", case_sensitive=False, show_default=False)] = None, # type: ignore
hub_repo: Annotated[Optional[str], Option(help="Hugging Face Hub repository ID to download FlexBert weights. Downloads to `checkpoints` directory.", rich_help_panel="Hugging Face Download")] = None,
hub_files: Annotated[Optional[List[str]], Option(help="List of files to download from the `hub_repo`. If not provided, will download all files in the repo.", rich_help_panel="Hugging Face Download")] = None,
hub_token: Annotated[Optional[str], Option(help="Authentication token for private Hugging Face Hub repositories if not already logged in via `huggingface-cli login`", rich_help_panel="Hugging Face Download")] = None,
wandb_run: Annotated[Optional[str], Option(help="wandb run containing the training configuration", rich_help_panel="Weights & Biases")] = None,
wandb_project: Annotated[Optional[str], Option(help="wandb project for the run", rich_help_panel="Weights & Biases")] = None,
wandb_entity: Annotated[Optional[str], Option(help="wandb entity for the project", rich_help_panel="Weights & Biases")] = None,
track_run: Annotated[bool, Option("--track-run", help="Track the eval run with wandb", rich_help_panel="Weights & Biases")] = False,
track_run_project: Annotated[Optional[str], Option(help="wandb project for tracking the run", rich_help_panel="Weights & Biases")] = None,
pooling_type: Annotated[Optional[str], Option(help="Pooling type for the classification head", show_default=False, rich_help_panel="Model Options")] = None,
head_class_act: Annotated[Optional[str], Option(help="Classification head activation function", show_default=False, rich_help_panel="Model Options")] = None,
head_class_norm: Annotated[Optional[str], Option(help="Classification head normalization function", show_default=False, rich_help_panel="Model Options")] = None,
head_class_dropout: Annotated[float, Option(help="Classification head dropout rate", rich_help_panel="Model Options")] = 0.0,
fast_ultrafeedback: Annotated[bool, Option("--fast-ultrafeedback", help="Use a shorter sequence length (1536) for the UltraFeedback eval", rich_help_panel="Task Settings")] = False,
seeds: Annotated[List[int], Option(help="List of seeds to use for the eval", rich_help_panel="Task Settings")] = [1618, 42, 6033, 3145],
verbose: Annotated[bool, Option("-v", "--verbose", help="Show detailed output from evaluation jobs", rich_help_panel="Config Options")] = False,
overwrite_existing_symlinks: Annotated[bool, Option("--override-existing-symlinks", help="Overwrite existing symlinks to point to latest checkpoint", rich_help_panel="Config Options")] = False,
parallel: Annotated[bool, Option("--parallel/--single", help="Run the evals in parallel on multiple GPUs or one GPU. Use `parallel` if passing to `config`. Only use if evaluating a single checkpoint on multiple GPUs.", rich_help_panel="Task Settings")] = False,
delete_eval_yamls: Annotated[bool, Option("--delete/--keep", help="Delete all evaluation YAML files after running the evals. Use `delete_eval_yamls` if passing to `config`", rich_help_panel="Config Options")] = False,
use_dir_names: Annotated[Optional[bool], Option("--use-dir-names", help="Use the folder names as the wandb run names. Defaults to true if multiple `checkpoints` are provided with one `train_config`", rich_help_panel="Config Options")] = None,
gpu_ids: Annotated[Optional[List[int]], Option(help="List of GPU IDs to use", rich_help_panel="GPU Options")] = None,
config: Annotated[Optional[Path], Option(callback=conf_callback, is_eager=True, help="Relative path to YAML config file for setting options. Passing CLI options will supersede config options.", case_sensitive=False, rich_help_panel="Options")] = None,
): # fmt: skip
"""Run evaluations on model checkpoints."""
# Set the allowed_gpus global variable
global allowed_gpus
if gpu_ids is not None:
allowed_gpus = gpu_ids
else:
allowed_gpus = None # Use all GPUs
if hub_repo:
print(f"\nDownloading files from {hub_repo}...")
downloaded_files = download_hub_files(
repo_id=hub_repo, filenames=hub_files, output_dir=checkpoints, token=hub_token
)
if not downloaded_files:
print("No files were downloaded successfully. Exiting.")
raise Exit(code=1)
print(f"Successfully downloaded {len(downloaded_files)} files to {checkpoints}")
# Set default tasks to all tasks if not provided
all_tasks = [task for task in TaskName]
tasks = tasks or all_tasks
print("\nAsynchronously downloading required datasets...")
msg_queue = Queue()
download_process = Process(target=download_datasets, args=(tasks, msg_queue))
download_process.start()
print("\nCreating symlinks for latest checkpoints...")
for folder in checkpoints.glob("*"):
if folder.is_dir() and not folder.name.startswith("."):
create_symlink_for_newest_checkpoint(folder, overwrite_existing_symlinks)
if not skip_generation:
print("\nGenerating evaluation configs...\n")
if not run_all_yamls:
config_files_completed = list(checkpoints.glob("*_evaluation.yaml"))
print("Skipping Completed Jobs (delete yamls to run):")
for config in config_files_completed:
print(f" {config.name}\n")
else:
config_files_completed = []
generate_eval_configs(
checkpoints=checkpoints,
train_config=train_config,
wandb_run=wandb_run,
wandb_project=wandb_project,
wandb_entity=wandb_entity,
track_run=track_run,
track_run_project=track_run_project,
pooling_type=pooling_type,
head_class_act=head_class_act,
head_class_norm=head_class_norm,
head_class_dropout=head_class_dropout,
tasks=tasks,
fast_ultrafeedback=fast_ultrafeedback,
seeds=seeds,
parallel=parallel,
use_dir_names=use_dir_names,
model_size=model_size,
rope_theta=rope_theta,
)
config_files = list(checkpoints.glob("*_evaluation.yaml"))
config_files = sorted(list(set(config_files) - set(config_files_completed)))
else:
config_files = list(checkpoints.glob("*_evaluation.yaml"))
print("Jobs to be run:")
for config in config_files:
print(f" {config.name}\n")
# Wait for the dataset download to complete
print("Waiting for dataset downloads to complete...")
download_process.join()
print("\nDataset downloading complete.")
while not msg_queue.empty():
print(msg_queue.get())
if len(config_files) >= 1 and parallel is False:
manage_jobs(configs=config_files, verbose=verbose, delete_eval_yamls=delete_eval_yamls)
elif len(config_files) > 1 and parallel is True:
raise ValueError(f"{parallel=} is only supported for running one config at a time.")
elif len(config_files) == 1 and parallel is True:
if not verbose:
console.print(f"[bold green]Running {config_files[0].name} in parallel on GPUs {', '.join(map(str, gpu_ids))}") # fmt: skip
run_job(config_files[0], verbose=verbose, delete_eval_yamls=delete_eval_yamls, gpu_ids=gpu_ids)
else:
message = "No configuration files found in the specified directory."
if verbose:
print(message)
else:
console.print(f"[bold red]{message}")
raise Exit(code=1)
if verbose:
print("All jobs completed.")
else:
console.print("[bold green]All jobs completed.")
# Register the signal handler
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
if __name__ == "__main__":
try:
app()
finally:
# Ensure all subprocesses are terminated when the script exits
for process in all_processes:
if process.poll() is None:
process.terminate()
for process in all_processes:
try:
process.wait(timeout=5)
except subprocess.TimeoutExpired:
process.kill()