From 3c21b35626a162ed057ed7b064c6dd31a527ab8f Mon Sep 17 00:00:00 2001 From: rubenareces Date: Tue, 10 Dec 2024 12:14:28 +0100 Subject: [PATCH] clean --- .github/workflows/build.yml | 3 +-- examples/mnist/main.cpp | 14 +++++++------- opennn/neural_network.cpp | 14 +++++++------- opennn/pooling_layer.cpp | 4 +--- 4 files changed, 16 insertions(+), 19 deletions(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 1bb1b43c9..a0e43f086 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -32,5 +32,4 @@ jobs: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} SONAR_TOKEN: ${{ secrets.SONARCLOUD_TOKEN }} run: | - sonar-scanner \ - -Dsonar.cfamily.compile-commands="build_wrapper_output_directory/build-wrapper-dump.json" \ No newline at end of file + sonar-scanner --define sonar.cfamily.compile-commands="${{ env.BUILD_WRAPPER_OUT_DIR }}/compile_commands.json" \ No newline at end of file diff --git a/examples/mnist/main.cpp b/examples/mnist/main.cpp index 2a4d7646f..502e08b80 100644 --- a/examples/mnist/main.cpp +++ b/examples/mnist/main.cpp @@ -30,30 +30,30 @@ int main() const Index channels = 1; const Index targets = 2; - //ImageDataSet image_data_set(samples_number, {image_height, image_width, channels}, {targets}); + ImageDataSet image_data_set(samples_number, {image_height, image_width, channels}, {targets}); - //image_data_set.set_image_data_random(); + image_data_set.set_image_data_random(); - //image_data_set.set(DataSet::SampleUse::Training); + image_data_set.set(DataSet::SampleUse::Training); - ImageDataSet image_data_set(0,{0,0,0},{0}); + //ImageDataSet image_data_set(0,{0,0,0},{0}); //image_data_set.set_data_path("data"); //image_data_set.set_data_path("C:/mnist/train"); - image_data_set.set_data_path("C:/binary_mnist"); + //image_data_set.set_data_path("C:/binary_mnist"); //image_data_set.set_data_path("C:/Users/Roberto Lopez/Documents/opennn/examples/mnist/data"); //image_data_set.set_data_path("C:/melanoma_dataset_bmp"); //image_data_set.set_data_path("C:/melanoma_dataset_bmp_small"); //image_data_set.set_data_path("C:/melanoma_supersmall"); //image_data_set.set_input_dimensions({24,24,1}); - image_data_set.read_bmp(); + //image_data_set.read_bmp(); // Neural network NeuralNetwork neural_network(NeuralNetwork::ModelType::ImageClassification, image_data_set.get_input_dimensions(), - { 16 }, + { 1 }, image_data_set.get_target_dimensions()); //neural_network.print(); diff --git a/opennn/neural_network.cpp b/opennn/neural_network.cpp index e3b02f2c4..ffae6d23e 100644 --- a/opennn/neural_network.cpp +++ b/opennn/neural_network.cpp @@ -424,17 +424,17 @@ void NeuralNetwork::set_image_classification(const dimensions& input_dimensions, const dimensions convolution_stride_dimensions = { 1, 1 }; const ConvolutionalLayer::ConvolutionType convolution_type = ConvolutionalLayer::ConvolutionType::Valid; - add_layer(make_unique(get_output_dimensions(), - kernel_dimensions, - ConvolutionalLayer::ActivationFunction::RectifiedLinear, - convolution_stride_dimensions, - convolution_type, - "convolutional_layer_" + to_string(i+1))); + //add_layer(make_unique(get_output_dimensions(), + // kernel_dimensions, + // ConvolutionalLayer::ActivationFunction::RectifiedLinear, + // convolution_stride_dimensions, + // convolution_type, + // "convolutional_layer_" + to_string(i+1))); const dimensions pool_dimensions = { 2, 2 }; const dimensions pooling_stride_dimensions = { 2, 2 }; const dimensions padding_dimensions = { 0, 0 }; - const PoolingLayer::PoolingMethod pooling_method = PoolingLayer::PoolingMethod::AveragePooling; + const PoolingLayer::PoolingMethod pooling_method = PoolingLayer::PoolingMethod::MaxPooling; add_layer(make_unique(get_output_dimensions(), pool_dimensions, diff --git a/opennn/pooling_layer.cpp b/opennn/pooling_layer.cpp index 9244edff6..cd6e9e52c 100644 --- a/opennn/pooling_layer.cpp +++ b/opennn/pooling_layer.cpp @@ -255,7 +255,6 @@ void PoolingLayer::set_pooling_method(const string& new_pooling_method) } - void PoolingLayer::forward_propagate(const vector>& input_pairs, unique_ptr& layer_forward_propagation, const bool& is_training) @@ -351,8 +350,7 @@ void PoolingLayer::forward_propagate_max_pooling(const Tensor& inputs, const Eigen::array reshape_dimensions = { pool_size, output_size }; - #pragma omp parallel for - +#pragma omp parallel for for (Index batch_index = 0; batch_index < batch_samples_number; batch_index++) { const Tensor patches_flat = image_patches.chip(batch_index, 0)