-
Notifications
You must be signed in to change notification settings - Fork 0
/
Lista_chamada.py
131 lines (106 loc) · 4.1 KB
/
Lista_chamada.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from datetime import date
import face_recognition
import os
import cv2
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video.
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
train_dir = "imagens/"
known_face_encodings = []
# Loop through images in folder
for filename in os.listdir (train_dir):
#take the image inside the filename in train_dir
rosto = face_recognition.load_image_file(train_dir + filename)
#encode that face
rostoTreinado = face_recognition.face_encodings(rosto)[0]
#push it in the list
known_face_encodings.insert(len(known_face_encodings),rostoTreinado)
known_face_names = []
with open('alunos.txt', 'r') as my_file:
filerows =my_file.read().split("\n")
for line in filerows:
known_face_names.append(line)
#print(line)
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
data =date.today()
datastr = data.strftime('%d|%m|%Y')
nomeLista= 'lista_chamada_'+ datastr + '.txt'
lista = open(nomeLista,'w')
lista.close
end = False
#check if the name had alread been saved on the txt
def pesquisaChamada(name):
arq = open(nomeLista, 'r')
texto = arq.read().split("\n")
for linha in texto:
if (linha == name):
result = True
arq.close
break
else:
result= False
arq.close
return result
#write name on the txt
def assinaLista(name):
#print("escrito")
lista = open(nomeLista, 'a')
lista.write(name + "\n")
lista.close
while True:
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown [X]"
fname = name
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
#print("mach")
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
fname = name
# if name is new in the list save
if (pesquisaChamada(name)!=True):
fname += "[X]"
assinaLista(name)
#else show the [V] after the name
fname += "[V]"
face_names.append(fname)
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()