-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtopology_utils.py
74 lines (51 loc) · 2.83 KB
/
topology_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
""" Functions related to Topological Data Analysis - Simiplicial Complicies, Persistent Homology, and Persistence Diagrams. """
import numpy as np
import dionysus as d
# Convert a dionysus diagram object to a numpy array
def diagram_to_array(diagram, dimension=0):
""" Takes in a dionysus diagram object and returns a m x 2 numpy array
for the persistent features of the specified dimension,
with rows of the form
[birth time] [death time]
- diagram [list of dionysus._dionysus.Diagram objects]: Dionysus diagram list.
- dimension [int]: Which dimension to take the persistent features from. """
res = np.zeros(( len(diagram[dimension]), 2 ))
for i, pt in enumerate(diagram[dimension]):
res[i,0] = pt.birth
res[i,1] = pt.death
return res
# Compute the p-norm of a diagram
def p_norm(diagram, p=2):
""" Computes the p-norm of a diagram in array form.
- diagram [m X 2 numpy.array]: Array with the birth and death times of features from a persistence diagram. Columns should be in order 'birth', 'death'.
- p [int]: Specifies which norm to compute. """
# We first remove features with no death time
# In particular, for a 0-dim persistence module, there will always be one feature
# (the single cc that is the point cloud) with infinite lifetime
features = diagram[diagram[:,1]!=np.inf]
# Compute the liftime of each feature
lifetimes = np.abs(features[:,1] - features[:,0])
# Compute the p-norm of the vector of lifetimes
if len(lifetimes)==0:
res = 0
elif p==np.inf:
res = lifetimes.max()
else:
res = (np.sum(lifetimes**p))**(1/p)
return res
# Construct the filtration for a specific set of vertices, edges, and values defined on vertices
def function_filtration(values, edges):
""" Takes in an adjacency structure and function values for a set of vertices, and computes the upper star
filtration for this function.
index of each vertex = value of the function at that vertex
index of an edge = value of the function on the lowest vertex of the edge
Higher dimensional faces not included as they do not affect the 0D PH
- values [n x 1 numpy.array]: Values of the function on each vertex
- edges [n x 2 numpy.array]: Which edges to add in the simplicial complex, each row [a,b] adds edge [a,b] to the vertex. """
# Created filtration using list comprehension
num_vertices = values.size
f = d.Filtration( [ ([i], values[i]) for i in range(num_vertices) ] +
[ ([edges[i,0], edges[i,1]], np.min((values[edges[i,0]], values[edges[i,1]]))) for i in range(edges.shape[0]) ] )
# Sort the simplices in descending order
f.sort(reverse=True)
return f