Skip to content
This repository has been archived by the owner on Feb 3, 2021. It is now read-only.

Use or define a plugin

Timothee Guerin edited this page Feb 14, 2018 · 1 revision

Use predefined plugins

from aztk.spark.models.plugins import JupyterPlugin, RStudioServerPlugin, HDFSPlugin
cluster_config = ClusterConfiguration(
  ...# Other config,
  plugins=[
    JupyterPlugin(),
    RStudioServerPlugin(version="1.1.383"),
    HDFSPlugin(),
  ]
)

Define a custom plugin

from aztk.spark.models.plugins import PluginConfiguration, PluginFile,PluginPort
cluster_config = ClusterConfiguration(
  ...# Other config,
  plugins=[
    PluginConfiguration(
        name="my-custom-plugin",
        files=[
            PluginFile("file.sh", "/my/local/path/to/file.sh"),
            PluginFile("data/one.json", "/my/local/path/to/data/one.json"),
            PluginFile("data/two.json", "/my/local/path/to/data/two.json"),
        ],
        execute="file.sh", # This must be one of the files defined in the file list and match the target path,
        env=dict(
            SOME_ENV_VAR="foo"
        ),
        arg=["arg1"], # Those arguments are passed to your execute script
        ports=[
            PluginPort(internal="1234"),                # Internal only(For node communication for example)
            PluginPort(internal="2345", public=True),   # Open the port to the public(When ssh into). Used for UI for example
        ]
    )
  ]
)
Clone this wiki locally