Net(
(tnn_bin): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): FP_Conv2d(
(conv): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): FP_Conv2d(
(conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(5): FP_Conv2d(
(conv): Conv2d(128, 256, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(6): FP_Conv2d(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(7): FP_Conv2d(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(8): AvgPool2d(kernel_size=3, stride=2, padding=1)
(9): FP_Conv2d(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(10): FP_Conv2d(
(conv): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(11): Conv2d(1024, 10, kernel_size=(1, 1), stride=(1, 1))
(12): BatchNorm2d(10, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(13): ReLU(inplace=True)
(14): AvgPool2d(kernel_size=8, stride=1, padding=0)
)
)
Net(
(tnn_bin): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): FP_Conv2d(
(conv1): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), groups=32)
(conv2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): FP_Conv2d(
(conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), groups=64)
(conv2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): FP_Conv2d(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128)
(conv2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(6): FP_Conv2d(
(conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), groups=256)
(conv2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(7): FP_Conv2d(
(conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), groups=256)
(conv2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(8): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(9): FP_Conv2d(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
(conv2): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(10): FP_Conv2d(
(conv1): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), groups=512)
(conv2): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(11): Conv2d(1024, 10, kernel_size=(1, 1), stride=(1, 1))
(12): BatchNorm2d(10, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(13): ReLU(inplace=True)
(14): AvgPool2d(kernel_size=8, stride=1, padding=0)
)
)
Net(
(tnn_bin): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): FP_Conv2d(
(conv1): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), groups=32)
(conv2): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): FP_Conv2d(
(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), groups=64)
(conv2): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): FP_Conv2d(
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128)
(conv2): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(6): FP_Conv2d(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), groups=256)
(conv2): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(7): FP_Conv2d(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), groups=256)
(conv2): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(8): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(9): FP_Conv2d(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
(conv2): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(10): FP_Conv2d(
(conv1): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), groups=512)
(conv2): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(11): Conv2d(2048, 10, kernel_size=(1, 1), stride=(1, 1))
(12): BatchNorm2d(10, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(13): ReLU(inplace=True)
(14): AvgPool2d(kernel_size=8, stride=1, padding=0)
)
)