-
Notifications
You must be signed in to change notification settings - Fork 158
/
diffvg.cpp
1792 lines (1722 loc) · 75.7 KB
/
diffvg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "diffvg.h"
#include "aabb.h"
#include "shape.h"
#include "sample_boundary.h"
#include "atomic.h"
#include "cdf.h"
#include "compute_distance.h"
#include "cuda_utils.h"
#include "edge_query.h"
#include "filter.h"
#include "matrix.h"
#include "parallel.h"
#include "pcg.h"
#include "ptr.h"
#include "scene.h"
#include "vector.h"
#include "winding_number.h"
#include "within_distance.h"
#include <cassert>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <thrust/execution_policy.h>
#include <thrust/sort.h>
namespace py = pybind11;
struct Command {
int shape_group_id;
int shape_id;
int point_id; // Only used by path
};
DEVICE
bool is_inside(const SceneData &scene_data,
int shape_group_id,
const Vector2f &pt,
EdgeQuery *edge_query) {
const ShapeGroup &shape_group = scene_data.shape_groups[shape_group_id];
// pt is in canvas space, transform it to shape's local space
auto local_pt = xform_pt(shape_group.canvas_to_shape, pt);
const auto &bvh_nodes = scene_data.shape_groups_bvh_nodes[shape_group_id];
const AABB &bbox = bvh_nodes[2 * shape_group.num_shapes - 2].box;
if (!inside(bbox, local_pt)) {
return false;
}
auto winding_number = 0;
// Traverse the shape group BVH
constexpr auto max_bvh_stack_size = 64;
int bvh_stack[max_bvh_stack_size];
auto stack_size = 0;
bvh_stack[stack_size++] = 2 * shape_group.num_shapes - 2;
while (stack_size > 0) {
const BVHNode &node = bvh_nodes[bvh_stack[--stack_size]];
if (node.child1 < 0) {
// leaf
auto shape_id = node.child0;
auto w = compute_winding_number(
scene_data.shapes[shape_id], scene_data.path_bvhs[shape_id], local_pt);
winding_number += w;
if (edge_query != nullptr) {
if (edge_query->shape_group_id == shape_group_id &&
edge_query->shape_id == shape_id) {
if ((shape_group.use_even_odd_rule && abs(w) % 2 == 1) ||
(!shape_group.use_even_odd_rule && w != 0)) {
edge_query->hit = true;
}
}
}
} else {
assert(node.child0 >= 0 && node.child1 >= 0);
const AABB &b0 = bvh_nodes[node.child0].box;
if (inside(b0, local_pt)) {
bvh_stack[stack_size++] = node.child0;
}
const AABB &b1 = bvh_nodes[node.child1].box;
if (inside(b1, local_pt)) {
bvh_stack[stack_size++] = node.child1;
}
assert(stack_size <= max_bvh_stack_size);
}
}
if (shape_group.use_even_odd_rule) {
return abs(winding_number) % 2 == 1;
} else {
return winding_number != 0;
}
}
DEVICE void accumulate_boundary_gradient(const Shape &shape,
float contrib,
float t,
const Vector2f &normal,
const BoundaryData &boundary_data,
Shape &d_shape,
const Matrix3x3f &shape_to_canvas,
const Vector2f &local_boundary_pt,
Matrix3x3f &d_shape_to_canvas) {
assert(isfinite(contrib));
assert(isfinite(normal));
// According to Reynold transport theorem,
// the Jacobian of the boundary integral is dot(velocity, normal),
// where the velocity depends on the variable being differentiated with.
if (boundary_data.is_stroke) {
auto has_path_thickness = false;
if (shape.type == ShapeType::Path) {
const Path &path = *(const Path *)shape.ptr;
has_path_thickness = path.thickness != nullptr;
}
// differentiate stroke width: velocity is the same as normal
if (has_path_thickness) {
Path *d_p = (Path*)d_shape.ptr;
auto base_point_id = boundary_data.path.base_point_id;
auto point_id = boundary_data.path.point_id;
auto t = boundary_data.path.t;
const Path &path = *(const Path *)shape.ptr;
if (path.num_control_points[base_point_id] == 0) {
// Straight line
auto i0 = point_id;
auto i1 = (point_id + 1) % path.num_points;
// r = r0 + t * (r1 - r0)
atomic_add(&d_p->thickness[i0], (1 - t) * contrib);
atomic_add(&d_p->thickness[i1], ( t) * contrib);
} else if (path.num_control_points[base_point_id] == 1) {
// Quadratic Bezier curve
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = (point_id + 2) % path.num_points;
// r = (1-t)^2r0 + 2(1-t)t r1 + t^2 r2
atomic_add(&d_p->thickness[i0], square(1 - t) * contrib);
atomic_add(&d_p->thickness[i1], (2*(1-t)*t) * contrib);
atomic_add(&d_p->thickness[i2], (t*t) * contrib);
} else if (path.num_control_points[base_point_id] == 2) {
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = point_id + 2;
auto i3 = (point_id + 3) % path.num_points;
// r = (1-t)^3r0 + 3*(1-t)^2tr1 + 3*(1-t)t^2r2 + t^3r3
atomic_add(&d_p->thickness[i0], cubic(1 - t) * contrib);
atomic_add(&d_p->thickness[i1], 3 * square(1 - t) * t * contrib);
atomic_add(&d_p->thickness[i2], 3 * (1 - t) * t * t * contrib);
atomic_add(&d_p->thickness[i3], t * t * t * contrib);
} else {
assert(false);
}
} else {
atomic_add(&d_shape.stroke_width, contrib);
}
}
switch (shape.type) {
case ShapeType::Circle: {
Circle *d_p = (Circle*)d_shape.ptr;
// velocity for the center is (1, 0) for x and (0, 1) for y
atomic_add(&d_p->center[0], normal * contrib);
// velocity for the radius is the same as the normal
atomic_add(&d_p->radius, contrib);
break;
} case ShapeType::Ellipse: {
Ellipse *d_p = (Ellipse*)d_shape.ptr;
// velocity for the center is (1, 0) for x and (0, 1) for y
atomic_add(&d_p->center[0], normal * contrib);
// velocity for the radius:
// x = center.x + r.x * cos(2pi * t)
// y = center.y + r.y * sin(2pi * t)
// for r.x: (cos(2pi * t), 0)
// for r.y: (0, sin(2pi * t))
atomic_add(&d_p->radius.x, cos(2 * float(M_PI) * t) * normal.x * contrib);
atomic_add(&d_p->radius.y, sin(2 * float(M_PI) * t) * normal.y * contrib);
break;
} case ShapeType::Path: {
Path *d_p = (Path*)d_shape.ptr;
auto base_point_id = boundary_data.path.base_point_id;
auto point_id = boundary_data.path.point_id;
auto t = boundary_data.path.t;
const Path &path = *(const Path *)shape.ptr;
if (path.num_control_points[base_point_id] == 0) {
// Straight line
auto i0 = point_id;
auto i1 = (point_id + 1) % path.num_points;
// pt = p0 + t * (p1 - p0)
// velocity for p0.x: (1 - t, 0)
// p0.y: ( 0, 1 - t)
// p1.x: ( t, 0)
// p1.y: ( 0, t)
atomic_add(&d_p->points[2 * i0 + 0], (1 - t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i0 + 1], (1 - t) * normal.y * contrib);
atomic_add(&d_p->points[2 * i1 + 0], ( t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i1 + 1], ( t) * normal.y * contrib);
} else if (path.num_control_points[base_point_id] == 1) {
// Quadratic Bezier curve
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = (point_id + 2) % path.num_points;
// pt = (1-t)^2p0 + 2(1-t)t p1 + t^2 p2
// velocity for p0.x: ((1-t)^2, 0)
// p0.y: ( 0, (1-t)^2)
// p1.x: (2(1-t)t, 0)
// p1.y: ( 0, 2(1-t)t)
// p1.x: ( t^2, 0)
// p1.y: ( 0, t^2)
atomic_add(&d_p->points[2 * i0 + 0], square(1 - t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i0 + 1], square(1 - t) * normal.y * contrib);
atomic_add(&d_p->points[2 * i1 + 0], (2*(1-t)*t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i1 + 1], (2*(1-t)*t) * normal.y * contrib);
atomic_add(&d_p->points[2 * i2 + 0], (t*t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i2 + 1], (t*t) * normal.y * contrib);
} else if (path.num_control_points[base_point_id] == 2) {
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = point_id + 2;
auto i3 = (point_id + 3) % path.num_points;
// pt = (1-t)^3p0 + 3*(1-t)^2tp1 + 3*(1-t)t^2p2 + t^3p3
// velocity for p0.x: ( (1-t)^3, 0)
// p0.y: ( 0, (1-t)^3)
// p1.x: (3*(1-t)^2t, 0)
// p1.y: ( 0, 3*(1-t)^2t)
// p2.x: (3*(1-t)t^2, 0)
// p2.y: ( 0, 3*(1-t)t^2)
// p2.x: ( t^3, 0)
// p2.y: ( 0, t^3)
atomic_add(&d_p->points[2 * i0 + 0], cubic(1 - t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i0 + 1], cubic(1 - t) * normal.y * contrib);
atomic_add(&d_p->points[2 * i1 + 0], 3 * square(1 - t) * t * normal.x * contrib);
atomic_add(&d_p->points[2 * i1 + 1], 3 * square(1 - t) * t * normal.y * contrib);
atomic_add(&d_p->points[2 * i2 + 0], 3 * (1 - t) * t * t * normal.x * contrib);
atomic_add(&d_p->points[2 * i2 + 1], 3 * (1 - t) * t * t * normal.y * contrib);
atomic_add(&d_p->points[2 * i3 + 0], t * t * t * normal.x * contrib);
atomic_add(&d_p->points[2 * i3 + 1], t * t * t * normal.y * contrib);
} else {
assert(false);
}
break;
} case ShapeType::Rect: {
Rect *d_p = (Rect*)d_shape.ptr;
// The velocity depends on the position of the boundary
if (normal == Vector2f{-1, 0}) {
// left
// velocity for p_min is (1, 0) for x and (0, 0) for y
atomic_add(&d_p->p_min.x, -contrib);
} else if (normal == Vector2f{1, 0}) {
// right
// velocity for p_max is (1, 0) for x and (0, 0) for y
atomic_add(&d_p->p_max.x, contrib);
} else if (normal == Vector2f{0, -1}) {
// top
// velocity for p_min is (0, 0) for x and (0, 1) for y
atomic_add(&d_p->p_min.y, -contrib);
} else if (normal == Vector2f{0, 1}) {
// bottom
// velocity for p_max is (0, 0) for x and (0, 1) for y
atomic_add(&d_p->p_max.y, contrib);
} else {
// incorrect normal assignment?
assert(false);
}
break;
} default: {
assert(false);
break;
}
}
// for shape_to_canvas we have the following relationship:
// boundary_pt = xform_pt(shape_to_canvas, local_pt)
// the velocity is the derivative of boundary_pt with respect to shape_to_canvas
// we can use reverse-mode AD to compute the dot product of the velocity and the Jacobian
// by passing the normal in d_xform_pt
auto d_shape_to_canvas_ = Matrix3x3f();
auto d_local_boundary_pt = Vector2f{0, 0};
d_xform_pt(shape_to_canvas,
local_boundary_pt,
normal * contrib,
d_shape_to_canvas_,
d_local_boundary_pt);
atomic_add(&d_shape_to_canvas(0, 0), d_shape_to_canvas_);
}
DEVICE
Vector4f sample_color(const ColorType &color_type,
void *color,
const Vector2f &pt) {
switch (color_type) {
case ColorType::Constant: {
auto c = (const Constant*)color;
assert(isfinite(c->color));
return c->color;
} case ColorType::LinearGradient: {
auto c = (const LinearGradient*)color;
// Project pt to (c->begin, c->end)
auto beg = c->begin;
auto end = c->end;
auto t = dot(pt - beg, end - beg) / max(dot(end - beg, end - beg), 1e-3f);
// Find the correponding stop:
if (t < c->stop_offsets[0]) {
return Vector4f{c->stop_colors[0],
c->stop_colors[1],
c->stop_colors[2],
c->stop_colors[3]};
}
for (int i = 0; i < c->num_stops - 1; i++) {
auto offset_curr = c->stop_offsets[i];
auto offset_next = c->stop_offsets[i + 1];
assert(offset_next > offset_curr);
if (t >= offset_curr && t < offset_next) {
auto color_curr = Vector4f{
c->stop_colors[4 * i + 0],
c->stop_colors[4 * i + 1],
c->stop_colors[4 * i + 2],
c->stop_colors[4 * i + 3]};
auto color_next = Vector4f{
c->stop_colors[4 * (i + 1) + 0],
c->stop_colors[4 * (i + 1) + 1],
c->stop_colors[4 * (i + 1) + 2],
c->stop_colors[4 * (i + 1) + 3]};
auto tt = (t - offset_curr) / (offset_next - offset_curr);
assert(isfinite(tt));
assert(isfinite(color_curr));
assert(isfinite(color_next));
return color_curr * (1 - tt) + color_next * tt;
}
}
return Vector4f{c->stop_colors[4 * (c->num_stops - 1) + 0],
c->stop_colors[4 * (c->num_stops - 1) + 1],
c->stop_colors[4 * (c->num_stops - 1) + 2],
c->stop_colors[4 * (c->num_stops - 1) + 3]};
} case ColorType::RadialGradient: {
auto c = (const RadialGradient*)color;
// Distance from pt to center
auto offset = pt - c->center;
auto normalized_offset = offset / c->radius;
auto t = length(normalized_offset);
// Find the correponding stop:
if (t < c->stop_offsets[0]) {
return Vector4f{c->stop_colors[0],
c->stop_colors[1],
c->stop_colors[2],
c->stop_colors[3]};
}
for (int i = 0; i < c->num_stops - 1; i++) {
auto offset_curr = c->stop_offsets[i];
auto offset_next = c->stop_offsets[i + 1];
assert(offset_next > offset_curr);
if (t >= offset_curr && t < offset_next) {
auto color_curr = Vector4f{
c->stop_colors[4 * i + 0],
c->stop_colors[4 * i + 1],
c->stop_colors[4 * i + 2],
c->stop_colors[4 * i + 3]};
auto color_next = Vector4f{
c->stop_colors[4 * (i + 1) + 0],
c->stop_colors[4 * (i + 1) + 1],
c->stop_colors[4 * (i + 1) + 2],
c->stop_colors[4 * (i + 1) + 3]};
auto tt = (t - offset_curr) / (offset_next - offset_curr);
assert(isfinite(tt));
assert(isfinite(color_curr));
assert(isfinite(color_next));
return color_curr * (1 - tt) + color_next * tt;
}
}
return Vector4f{c->stop_colors[4 * (c->num_stops - 1) + 0],
c->stop_colors[4 * (c->num_stops - 1) + 1],
c->stop_colors[4 * (c->num_stops - 1) + 2],
c->stop_colors[4 * (c->num_stops - 1) + 3]};
} default: {
assert(false);
}
}
return Vector4f{};
}
DEVICE
void d_sample_color(const ColorType &color_type,
void *color_ptr,
const Vector2f &pt,
const Vector4f &d_color,
void *d_color_ptr,
float *d_translation) {
switch (color_type) {
case ColorType::Constant: {
auto d_c = (Constant*)d_color_ptr;
atomic_add(&d_c->color[0], d_color);
return;
} case ColorType::LinearGradient: {
auto c = (const LinearGradient*)color_ptr;
auto d_c = (LinearGradient*)d_color_ptr;
// Project pt to (c->begin, c->end)
auto beg = c->begin;
auto end = c->end;
auto t = dot(pt - beg, end - beg) / max(dot(end - beg, end - beg), 1e-3f);
// Find the correponding stop:
if (t < c->stop_offsets[0]) {
atomic_add(&d_c->stop_colors[0], d_color);
return;
}
for (int i = 0; i < c->num_stops - 1; i++) {
auto offset_curr = c->stop_offsets[i];
auto offset_next = c->stop_offsets[i + 1];
assert(offset_next > offset_curr);
if (t >= offset_curr && t < offset_next) {
auto color_curr = Vector4f{
c->stop_colors[4 * i + 0],
c->stop_colors[4 * i + 1],
c->stop_colors[4 * i + 2],
c->stop_colors[4 * i + 3]};
auto color_next = Vector4f{
c->stop_colors[4 * (i + 1) + 0],
c->stop_colors[4 * (i + 1) + 1],
c->stop_colors[4 * (i + 1) + 2],
c->stop_colors[4 * (i + 1) + 3]};
auto tt = (t - offset_curr) / (offset_next - offset_curr);
// return color_curr * (1 - tt) + color_next * tt;
auto d_color_curr = d_color * (1 - tt);
auto d_color_next = d_color * tt;
auto d_tt = sum(d_color * (color_next - color_curr));
auto d_offset_next = -d_tt * tt / (offset_next - offset_curr);
auto d_offset_curr = d_tt * ((tt - 1.f) / (offset_next - offset_curr));
auto d_t = d_tt / (offset_next - offset_curr);
assert(isfinite(d_tt));
atomic_add(&d_c->stop_colors[4 * i], d_color_curr);
atomic_add(&d_c->stop_colors[4 * (i + 1)], d_color_next);
atomic_add(&d_c->stop_offsets[i], d_offset_curr);
atomic_add(&d_c->stop_offsets[i + 1], d_offset_next);
// auto t = dot(pt - beg, end - beg) / max(dot(end - beg, end - beg), 1e-6f);
// l = max(dot(end - beg, end - beg), 1e-3f)
// t = dot(pt - beg, end - beg) / l;
auto l = max(dot(end - beg, end - beg), 1e-3f);
auto d_beg = d_t * (-(pt - beg)-(end - beg)) / l;
auto d_end = d_t * (pt - beg) / l;
auto d_l = -d_t * t / l;
if (dot(end - beg, end - beg) > 1e-3f) {
d_beg += 2 * d_l * (beg - end);
d_end += 2 * d_l * (end - beg);
}
atomic_add(&d_c->begin[0], d_beg);
atomic_add(&d_c->end[0], d_end);
if (d_translation != nullptr) {
atomic_add(d_translation, (d_beg + d_end));
}
return;
}
}
atomic_add(&d_c->stop_colors[4 * (c->num_stops - 1)], d_color);
return;
} case ColorType::RadialGradient: {
auto c = (const RadialGradient*)color_ptr;
auto d_c = (RadialGradient*)d_color_ptr;
// Distance from pt to center
auto offset = pt - c->center;
auto normalized_offset = offset / c->radius;
auto t = length(normalized_offset);
// Find the correponding stop:
if (t < c->stop_offsets[0]) {
atomic_add(&d_c->stop_colors[0], d_color);
return;
}
for (int i = 0; i < c->num_stops - 1; i++) {
auto offset_curr = c->stop_offsets[i];
auto offset_next = c->stop_offsets[i + 1];
assert(offset_next > offset_curr);
if (t >= offset_curr && t < offset_next) {
auto color_curr = Vector4f{
c->stop_colors[4 * i + 0],
c->stop_colors[4 * i + 1],
c->stop_colors[4 * i + 2],
c->stop_colors[4 * i + 3]};
auto color_next = Vector4f{
c->stop_colors[4 * (i + 1) + 0],
c->stop_colors[4 * (i + 1) + 1],
c->stop_colors[4 * (i + 1) + 2],
c->stop_colors[4 * (i + 1) + 3]};
auto tt = (t - offset_curr) / (offset_next - offset_curr);
assert(isfinite(tt));
// return color_curr * (1 - tt) + color_next * tt;
auto d_color_curr = d_color * (1 - tt);
auto d_color_next = d_color * tt;
auto d_tt = sum(d_color * (color_next - color_curr));
auto d_offset_next = -d_tt * tt / (offset_next - offset_curr);
auto d_offset_curr = d_tt * ((tt - 1.f) / (offset_next - offset_curr));
auto d_t = d_tt / (offset_next - offset_curr);
assert(isfinite(d_t));
atomic_add(&d_c->stop_colors[4 * i], d_color_curr);
atomic_add(&d_c->stop_colors[4 * (i + 1)], d_color_next);
atomic_add(&d_c->stop_offsets[i], d_offset_curr);
atomic_add(&d_c->stop_offsets[i + 1], d_offset_next);
// offset = pt - c->center
// normalized_offset = offset / c->radius
// t = length(normalized_offset)
auto d_normalized_offset = d_length(normalized_offset, d_t);
auto d_offset = d_normalized_offset / c->radius;
auto d_radius = -d_normalized_offset * offset / (c->radius * c->radius);
auto d_center = -d_offset;
atomic_add(&d_c->center[0], d_center);
atomic_add(&d_c->radius[0], d_radius);
if (d_translation != nullptr) {
atomic_add(d_translation, d_center);
}
}
}
atomic_add(&d_c->stop_colors[4 * (c->num_stops - 1)], d_color);
return;
} default: {
assert(false);
}
}
}
struct Fragment {
Vector3f color;
float alpha;
int group_id;
bool is_stroke;
};
struct PrefilterFragment {
Vector3f color;
float alpha;
int group_id;
bool is_stroke;
int shape_id;
float distance;
Vector2f closest_pt;
ClosestPointPathInfo path_info;
bool within_distance;
};
DEVICE
Vector4f sample_color(const SceneData &scene,
const Vector4f *background_color,
const Vector2f &screen_pt,
const Vector4f *d_color = nullptr,
EdgeQuery *edge_query = nullptr,
Vector4f *d_background_color = nullptr,
float *d_translation = nullptr) {
if (edge_query != nullptr) {
edge_query->hit = false;
}
// screen_pt is in screen space ([0, 1), [0, 1)),
// need to transform to canvas space
auto pt = screen_pt;
pt.x *= scene.canvas_width;
pt.y *= scene.canvas_height;
constexpr auto max_hit_shapes = 256;
constexpr auto max_bvh_stack_size = 64;
Fragment fragments[max_hit_shapes];
int bvh_stack[max_bvh_stack_size];
auto stack_size = 0;
auto num_fragments = 0;
bvh_stack[stack_size++] = 2 * scene.num_shape_groups - 2;
while (stack_size > 0) {
const BVHNode &node = scene.bvh_nodes[bvh_stack[--stack_size]];
if (node.child1 < 0) {
// leaf
auto group_id = node.child0;
const ShapeGroup &shape_group = scene.shape_groups[group_id];
if (shape_group.stroke_color != nullptr) {
if (within_distance(scene, group_id, pt, edge_query)) {
auto color_alpha = sample_color(shape_group.stroke_color_type,
shape_group.stroke_color,
pt);
Fragment f;
f.color = Vector3f{color_alpha[0], color_alpha[1], color_alpha[2]};
f.alpha = color_alpha[3];
f.group_id = group_id;
f.is_stroke = true;
assert(num_fragments < max_hit_shapes);
fragments[num_fragments++] = f;
}
}
if (shape_group.fill_color != nullptr) {
if (is_inside(scene, group_id, pt, edge_query)) {
auto color_alpha = sample_color(shape_group.fill_color_type,
shape_group.fill_color,
pt);
Fragment f;
f.color = Vector3f{color_alpha[0], color_alpha[1], color_alpha[2]};
f.alpha = color_alpha[3];
f.group_id = group_id;
f.is_stroke = false;
assert(num_fragments < max_hit_shapes);
fragments[num_fragments++] = f;
}
}
} else {
assert(node.child0 >= 0 && node.child1 >= 0);
const AABB &b0 = scene.bvh_nodes[node.child0].box;
if (inside(b0, pt, scene.bvh_nodes[node.child0].max_radius)) {
bvh_stack[stack_size++] = node.child0;
}
const AABB &b1 = scene.bvh_nodes[node.child1].box;
if (inside(b1, pt, scene.bvh_nodes[node.child1].max_radius)) {
bvh_stack[stack_size++] = node.child1;
}
assert(stack_size <= max_bvh_stack_size);
}
}
if (num_fragments <= 0) {
if (background_color != nullptr) {
if (d_background_color != nullptr) {
*d_background_color = *d_color;
}
return *background_color;
}
return Vector4f{0, 0, 0, 0};
}
// Sort the fragments from back to front (i.e. increasing order of group id)
// https://github.com/frigaut/yorick-imutil/blob/master/insort.c#L37
for (int i = 1; i < num_fragments; i++) {
auto j = i;
auto temp = fragments[j];
while (j > 0 && fragments[j - 1].group_id > temp.group_id) {
fragments[j] = fragments[j - 1];
j--;
}
fragments[j] = temp;
}
// Blend the color
Vector3f accum_color[max_hit_shapes];
float accum_alpha[max_hit_shapes];
// auto hit_opaque = false;
auto first_alpha = 0.f;
auto first_color = Vector3f{0, 0, 0};
if (background_color != nullptr) {
first_alpha = background_color->w;
first_color = Vector3f{background_color->x,
background_color->y,
background_color->z};
}
for (int i = 0; i < num_fragments; i++) {
const Fragment &fragment = fragments[i];
auto new_color = fragment.color;
auto new_alpha = fragment.alpha;
auto prev_alpha = i > 0 ? accum_alpha[i - 1] : first_alpha;
auto prev_color = i > 0 ? accum_color[i - 1] : first_color;
if (edge_query != nullptr) {
// Do we hit the target shape?
if (new_alpha >= 1.f && edge_query->hit) {
// A fully opaque shape in front of the target occludes it
edge_query->hit = false;
}
if (edge_query->shape_group_id == fragment.group_id) {
edge_query->hit = true;
}
}
// prev_color is alpha premultiplied, don't need to multiply with
// prev_alpha
accum_color[i] = prev_color * (1 - new_alpha) + new_alpha * new_color;
accum_alpha[i] = prev_alpha * (1 - new_alpha) + new_alpha;
}
auto final_color = accum_color[num_fragments - 1];
auto final_alpha = accum_alpha[num_fragments - 1];
if (final_alpha > 1e-6f) {
final_color /= final_alpha;
}
assert(isfinite(final_color));
assert(isfinite(final_alpha));
if (d_color != nullptr) {
// Backward pass
auto d_final_color = Vector3f{(*d_color)[0], (*d_color)[1], (*d_color)[2]};
auto d_final_alpha = (*d_color)[3];
auto d_curr_color = d_final_color;
auto d_curr_alpha = d_final_alpha;
if (final_alpha > 1e-6f) {
// final_color = curr_color / final_alpha
d_curr_color = d_final_color / final_alpha;
d_curr_alpha -= sum(d_final_color * final_color) / final_alpha;
}
assert(isfinite(*d_color));
assert(isfinite(d_curr_color));
assert(isfinite(d_curr_alpha));
for (int i = num_fragments - 1; i >= 0; i--) {
// color[n] = prev_color * (1 - new_alpha) + new_alpha * new_color;
// alpha[n] = prev_alpha * (1 - new_alpha) + new_alpha;
auto prev_alpha = i > 0 ? accum_alpha[i - 1] : first_alpha;
auto prev_color = i > 0 ? accum_color[i - 1] : first_color;
auto d_prev_alpha = d_curr_alpha * (1.f - fragments[i].alpha);
auto d_alpha_i = d_curr_alpha * (1.f - prev_alpha);
d_alpha_i += sum(d_curr_color * (fragments[i].color - prev_color));
auto d_prev_color = d_curr_color * (1 - fragments[i].alpha);
auto d_color_i = d_curr_color * fragments[i].alpha;
auto group_id = fragments[i].group_id;
if (fragments[i].is_stroke) {
d_sample_color(scene.shape_groups[group_id].stroke_color_type,
scene.shape_groups[group_id].stroke_color,
pt,
Vector4f{d_color_i[0], d_color_i[1], d_color_i[2], d_alpha_i},
scene.d_shape_groups[group_id].stroke_color,
d_translation);
} else {
d_sample_color(scene.shape_groups[group_id].fill_color_type,
scene.shape_groups[group_id].fill_color,
pt,
Vector4f{d_color_i[0], d_color_i[1], d_color_i[2], d_alpha_i},
scene.d_shape_groups[group_id].fill_color,
d_translation);
}
d_curr_color = d_prev_color;
d_curr_alpha = d_prev_alpha;
}
if (d_background_color != nullptr) {
d_background_color->x += d_curr_color.x;
d_background_color->y += d_curr_color.y;
d_background_color->z += d_curr_color.z;
d_background_color->w += d_curr_alpha;
}
}
return Vector4f{final_color[0], final_color[1], final_color[2], final_alpha};
}
DEVICE
float sample_distance(const SceneData &scene,
const Vector2f &screen_pt,
float weight,
const float *d_dist = nullptr,
float *d_translation = nullptr) {
// screen_pt is in screen space ([0, 1), [0, 1)),
// need to transform to canvas space
auto pt = screen_pt;
pt.x *= scene.canvas_width;
pt.y *= scene.canvas_height;
// for each shape
auto min_group_id = -1;
auto min_distance = 0.f;
auto min_shape_id = -1;
auto closest_pt = Vector2f{0, 0};
auto min_path_info = ClosestPointPathInfo{-1, -1, 0};
for (int group_id = scene.num_shape_groups - 1; group_id >= 0; group_id--) {
auto s = -1;
auto p = Vector2f{0, 0};
ClosestPointPathInfo local_path_info;
auto d = infinity<float>();
if (compute_distance(scene, group_id, pt, infinity<float>(), &s, &p, &local_path_info, &d)) {
if (min_group_id == -1 || d < min_distance) {
min_distance = d;
min_group_id = group_id;
min_shape_id = s;
closest_pt = p;
min_path_info = local_path_info;
}
}
}
if (min_group_id == -1) {
return min_distance;
}
min_distance *= weight;
auto inside = false;
const ShapeGroup &shape_group = scene.shape_groups[min_group_id];
if (shape_group.fill_color != nullptr) {
inside = is_inside(scene,
min_group_id,
pt,
nullptr);
if (inside) {
min_distance = -min_distance;
}
}
assert((min_group_id >= 0 && min_shape_id >= 0) || scene.num_shape_groups == 0);
if (d_dist != nullptr) {
auto d_abs_dist = inside ? -(*d_dist) : (*d_dist);
const ShapeGroup &shape_group = scene.shape_groups[min_group_id];
const Shape &shape = scene.shapes[min_shape_id];
ShapeGroup &d_shape_group = scene.d_shape_groups[min_group_id];
Shape &d_shape = scene.d_shapes[min_shape_id];
d_compute_distance(shape_group.canvas_to_shape,
shape_group.shape_to_canvas,
shape,
pt,
closest_pt,
min_path_info,
d_abs_dist,
d_shape_group.shape_to_canvas,
d_shape,
d_translation);
}
return min_distance;
}
// Gather d_color from d_image inside the filter kernel, normalize by
// weight_image.
DEVICE
Vector4f gather_d_color(const Filter &filter,
const float *d_color_image,
const float *weight_image,
int width,
int height,
const Vector2f &pt) {
auto x = int(pt.x);
auto y = int(pt.y);
auto radius = filter.radius;
assert(radius > 0);
auto ri = (int)ceil(radius);
auto d_color = Vector4f{0, 0, 0, 0};
for (int dy = -ri; dy <= ri; dy++) {
for (int dx = -ri; dx <= ri; dx++) {
auto xx = x + dx;
auto yy = y + dy;
if (xx >= 0 && xx < width && yy >= 0 && yy < height) {
auto xc = xx + 0.5f;
auto yc = yy + 0.5f;
auto filter_weight =
compute_filter_weight(filter, xc - pt.x, yc - pt.y);
// pixel = \sum weight * color / \sum weight
auto weight_sum = weight_image[yy * width + xx];
if (weight_sum > 0) {
d_color += (filter_weight / weight_sum) * Vector4f{
d_color_image[4 * (yy * width + xx) + 0],
d_color_image[4 * (yy * width + xx) + 1],
d_color_image[4 * (yy * width + xx) + 2],
d_color_image[4 * (yy * width + xx) + 3],
};
}
}
}
}
return d_color;
}
DEVICE
float smoothstep(float d) {
auto t = clamp((d + 1.f) / 2.f, 0.f, 1.f);
return t * t * (3 - 2 * t);
}
DEVICE
float d_smoothstep(float d, float d_ret) {
if (d < -1.f || d > 1.f) {
return 0.f;
}
auto t = (d + 1.f) / 2.f;
// ret = t * t * (3 - 2 * t)
// = 3 * t * t - 2 * t * t * t
auto d_t = d_ret * (6 * t - 6 * t * t);
return d_t / 2.f;
}
DEVICE
Vector4f sample_color_prefiltered(const SceneData &scene,
const Vector4f *background_color,
const Vector2f &screen_pt,
const Vector4f *d_color = nullptr,
Vector4f *d_background_color = nullptr,
float *d_translation = nullptr) {
// screen_pt is in screen space ([0, 1), [0, 1)),
// need to transform to canvas space
auto pt = screen_pt;
pt.x *= scene.canvas_width;
pt.y *= scene.canvas_height;
constexpr auto max_hit_shapes = 64;
constexpr auto max_bvh_stack_size = 64;
PrefilterFragment fragments[max_hit_shapes];
int bvh_stack[max_bvh_stack_size];
auto stack_size = 0;
auto num_fragments = 0;
bvh_stack[stack_size++] = 2 * scene.num_shape_groups - 2;
while (stack_size > 0) {
const BVHNode &node = scene.bvh_nodes[bvh_stack[--stack_size]];
if (node.child1 < 0) {
// leaf
auto group_id = node.child0;
const ShapeGroup &shape_group = scene.shape_groups[group_id];
if (shape_group.stroke_color != nullptr) {
auto min_shape_id = -1;
auto closest_pt = Vector2f{0, 0};
auto local_path_info = ClosestPointPathInfo{-1, -1, 0};
auto d = infinity<float>();
compute_distance(scene, group_id, pt, infinity<float>(),
&min_shape_id, &closest_pt, &local_path_info, &d);
assert(min_shape_id != -1);
const auto &shape = scene.shapes[min_shape_id];
auto w = smoothstep(fabs(d) + shape.stroke_width) -
smoothstep(fabs(d) - shape.stroke_width);
if (w > 0) {
auto color_alpha = sample_color(shape_group.stroke_color_type,
shape_group.stroke_color,
pt);
color_alpha[3] *= w;
PrefilterFragment f;
f.color = Vector3f{color_alpha[0], color_alpha[1], color_alpha[2]};
f.alpha = color_alpha[3];
f.group_id = group_id;
f.shape_id = min_shape_id;
f.distance = d;
f.closest_pt = closest_pt;
f.is_stroke = true;
f.path_info = local_path_info;
f.within_distance = true;
assert(num_fragments < max_hit_shapes);
fragments[num_fragments++] = f;
}
}
if (shape_group.fill_color != nullptr) {
auto min_shape_id = -1;
auto closest_pt = Vector2f{0, 0};
auto local_path_info = ClosestPointPathInfo{-1, -1, 0};
auto d = infinity<float>();
auto found = compute_distance(scene,
group_id,
pt,
1.f,
&min_shape_id,
&closest_pt,
&local_path_info,
&d);
auto inside = is_inside(scene, group_id, pt, nullptr);
if (found || inside) {
if (!inside) {
d = -d;
}
auto w = smoothstep(d);
if (w > 0) {
auto color_alpha = sample_color(shape_group.fill_color_type,
shape_group.fill_color,
pt);
color_alpha[3] *= w;
PrefilterFragment f;
f.color = Vector3f{color_alpha[0], color_alpha[1], color_alpha[2]};
f.alpha = color_alpha[3];
f.group_id = group_id;
f.shape_id = min_shape_id;
f.distance = d;
f.closest_pt = closest_pt;
f.is_stroke = false;
f.path_info = local_path_info;
f.within_distance = found;
assert(num_fragments < max_hit_shapes);
fragments[num_fragments++] = f;
}
}
}
} else {
assert(node.child0 >= 0 && node.child1 >= 0);
const AABB &b0 = scene.bvh_nodes[node.child0].box;
if (inside(b0, pt, scene.bvh_nodes[node.child0].max_radius)) {
bvh_stack[stack_size++] = node.child0;
}
const AABB &b1 = scene.bvh_nodes[node.child1].box;
if (inside(b1, pt, scene.bvh_nodes[node.child1].max_radius)) {
bvh_stack[stack_size++] = node.child1;
}
assert(stack_size <= max_bvh_stack_size);
}
}
if (num_fragments <= 0) {
if (background_color != nullptr) {
if (d_background_color != nullptr) {
*d_background_color = *d_color;
}
return *background_color;
}
return Vector4f{0, 0, 0, 0};
}
// Sort the fragments from back to front (i.e. increasing order of group id)
// https://github.com/frigaut/yorick-imutil/blob/master/insort.c#L37
for (int i = 1; i < num_fragments; i++) {
auto j = i;
auto temp = fragments[j];
while (j > 0 && fragments[j - 1].group_id > temp.group_id) {
fragments[j] = fragments[j - 1];
j--;
}
fragments[j] = temp;
}
// Blend the color
Vector3f accum_color[max_hit_shapes];
float accum_alpha[max_hit_shapes];
auto first_alpha = 0.f;
auto first_color = Vector3f{0, 0, 0};
if (background_color != nullptr) {
first_alpha = background_color->w;
first_color = Vector3f{background_color->x,
background_color->y,
background_color->z};
}
for (int i = 0; i < num_fragments; i++) {
const PrefilterFragment &fragment = fragments[i];
auto new_color = fragment.color;
auto new_alpha = fragment.alpha;
auto prev_alpha = i > 0 ? accum_alpha[i - 1] : first_alpha;
auto prev_color = i > 0 ? accum_color[i - 1] : first_color;
// prev_color is alpha premultiplied, don't need to multiply with
// prev_alpha
accum_color[i] = prev_color * (1 - new_alpha) + new_alpha * new_color;
accum_alpha[i] = prev_alpha * (1 - new_alpha) + new_alpha;
}
auto final_color = accum_color[num_fragments - 1];
auto final_alpha = accum_alpha[num_fragments - 1];
if (final_alpha > 1e-6f) {
final_color /= final_alpha;
}
assert(isfinite(final_color));
assert(isfinite(final_alpha));
if (d_color != nullptr) {
// Backward pass
auto d_final_color = Vector3f{(*d_color)[0], (*d_color)[1], (*d_color)[2]};
auto d_final_alpha = (*d_color)[3];
auto d_curr_color = d_final_color;
auto d_curr_alpha = d_final_alpha;
if (final_alpha > 1e-6f) {
// final_color = curr_color / final_alpha