-
Notifications
You must be signed in to change notification settings - Fork 0
/
exercise-sheet-11.Rmd
444 lines (303 loc) · 7.04 KB
/
exercise-sheet-11.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
```{r, include=FALSE}
source("custom_functions.R")
library(flextable)
library(officer)
```
---
title: "Exercise sheet 11: RNA Bioinformatics"
---
---------------------------------
# Exercise 1
RNA secondary structures can be represented using a graph notation, where nodes represent nucleotides and edges encode the molecule's backbone or intramolecular base pairs between nucleotides. Below, an RNA molecule graph is depicted that encodes base pairs in blue.
Decide for the following properties whether they are correct or wrong given the RNA secondary structure graph.
```{r, echo=FALSE, out.width="40%", fig.align='center'}
knitr::include_graphics("figures/sheet-11/RNA-structure.png")
```
### 1a)
::: {.question data-latex=""}
Position 23 represents the 5'-end
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong; We always encode in the 5' (=1) to 3' (=n) direction.
:::
#### {-}
### 1b)
::: {.question data-latex=""}
the graph is invalid
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong
:::
#### {-}
### 1c)
::: {.question data-latex=""}
contains invalid base pairs
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong; all base pairs depicted in the graph are valid
:::
#### {-}
### 1d)
::: {.question data-latex=""}
contains a pseudoknot
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong; There are no pseudoknot structures in this graph.
:::
#### {-}
### 1e)
::: {.question data-latex=""}
non-crossing
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
correct; There are no pseudoknot structures in this graph.
:::
#### {-}
### 1f)
::: {.question data-latex=""}
nested
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
correct
:::
#### {-}
### 1g)
::: {.question data-latex=""}
contains base pair (5,12)
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong; Position 5 is unpaired.
:::
#### {-}
### 1h)
::: {.question data-latex=""}
contains base pair (4,13)
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
correct
:::
#### {-}
### 1i)
::: {.question data-latex=""}
base pair (1,10) would be crossing
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
correct
:::
#### {-}
### 1j)
::: {.question data-latex=""}
obeys a minimal loop length of 4
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong; The minimum loop length for this graph is 3. (number of unpaired bases in loops)
:::
#### {-}
### 1k)
::: {.question data-latex=""}
encoded by ((...)).(((((...)).))).
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong
:::
#### {-}
### 1l)
::: {.question data-latex=""}
encoded by .(((.((...))))).((...))
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
correct
:::
#### {-}
# Exercise 2
You are given the following dot-bracket string: **(((...)))...((((...))..))**
### 2a)
::: {.question data-latex=""}
Draw graph representations of all nested structures that can be encoded by the dot-bracket string. Assume a minimal loop length of 3.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
```{r, echo=FALSE, out.width="50%", fig.align='center'}
knitr::include_graphics("figures/sheet-11/nested-structure.png")
```
This is the only possible nested structure based on the dot-bracket string given.
:::
#### {-}
### 2b)
::: {.question data-latex=""}
Draw a graph representation of one possible crossing structure that can be encoded by the dot-bracket string. Assume a minimal loop length of 3.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
```{r, echo=FALSE, out.width="50%", fig.align='center'}
knitr::include_graphics("figures/sheet-11/crossing-structure.png")
```
Dot-bracket string: **(((...)))...[(((...])..))**
There are multiple other possible crossing structures. (e.g. **(((...)))...[((<...])..>)** )
:::
#### {-}
# Exercise 3
Given the following partially filled Nussinov matrix $N$ using a minimal loop length $l = 0$, i.e. neighbored nucleotides are allowed to pair.
```{r, echo=FALSE, out.width="50%", fig.align='center'}
knitr::include_graphics("figures/sheet-11/nussinov-matrix.png")
```
### 3a)
::: {.question data-latex=""}
What are the values of the green and red entry?
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
green: $2$
red: $1$
:::
#### {-}
### 3b)
::: {.question data-latex=""}
How many tracebacks exist for the red entry using the original recursion by Nussinov?
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
There exist two tracebacks for the red entry; pairing with either G.
:::
#### {-}
# Exercise 4
Given any matrix $N$ filled by Nussinov's algorithm for and RNA sequence $S$ of length $n$. Discuss which of the following statements are correct or wrong.
The entry $N_{1,n}$ of the Nussinov matrix encodes ...
### 4a)
::: {.question data-latex=""}
... the optimal structure.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong; It only encodes the base pair number for the optimal structure.
:::
#### {-}
### 4b)
::: {.question data-latex=""}
... the minimum free energy (mfe) structure.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong; No energy minimization is done.
:::
#### {-}
### 4c)
::: {.question data-latex=""}
... the maximal number of base pairs for sequence $S_1$..$S_n$.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
correct
:::
#### {-}
### 4d)
::: {.question data-latex=""}
... the traceback end.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong; It encodes the traceback start.
:::
#### {-}
### 4e)
::: {.question data-latex=""}
... the maximal number of base pairs for any structure.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
correct
:::
#### {-}
### 4f)
::: {.question data-latex=""}
... information for a unique structure.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
wrong; Typically there is more than one optimal structure with maximal number of base pairs.
:::
#### {-}
# Exercise 5
```{r, echo=FALSE, out.width="50%", fig.align='center'}
knitr::include_graphics("figures/sheet-11/nussinov-recursion.png")
```
### 5a)
::: {.question data-latex=""}
Provide all recursion and initialization details for the following recursion depictions. Note, also ensure a minimal loop length $l$ within your recursions.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
\begin{align*}
N_{i,i} = N_{i,i-1} &=& 0 \text{ (no init for $B$ and $D$ needed)}
\\
\forall_{1\leq i<j\leq n}: N_{i,j} &=& max\left\{ B_{i,j}, D_{i,j} \right\}
\\
B_{i,j} &=& \begin{cases}
N_{i+1,j-1}+1 & \text{ if }i+l<j \wedge S_i,S_j\text{ compl.}\\
0 & \text{ else}
\end{cases}
\\
D_{i,j} &=& \max_{i\leq k<j} \left\{ B_{i,k} +
N_{k+1,j} \right\} \text{ (only valid for $i<j$)}
\end{align*}
:::
#### {-}
#### {.tabset}