-
Notifications
You must be signed in to change notification settings - Fork 0
/
exercise-sheet-9.Rmd
216 lines (132 loc) · 3.14 KB
/
exercise-sheet-9.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
```{r, include=FALSE}
source("custom_functions.R")
library(flextable)
library(officer)
```
---
title: "Exercise sheet 9: Suffix-Trees"
---
---------------------------------
# Exercise 1
You are given the text T=`CAGTAGTAGC`.
### 1a)
::: {.question data-latex=""}
Draw the corresponding suffix tree!
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
```{r, echo=FALSE, out.width="100%", fig.align='center'}
knitr::include_graphics("figures/sheet-8/suffix_tree_1.png")
```
:::
#### {-}
### 1b)
::: {.question data-latex=""}
Describe the steps of a counting query for $P =$ `TAG`.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
* start at root node
* locate outgoing edge that starts with $T$
* match subsequent characters of the pattern
* in the subtree rooted at TAG count the number of leaves $\Rightarrow 2$
:::
#### {-}
### 1c)
::: {.question data-latex=""}
Describe the steps of a reporting query for $P =$ `AG`.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
* start at root node
* locate outgoing edge that start with $A$
* match subsequent characters of the pattern
* in the subtree rooted at AG report the labels of all leaves $\Rightarrow \{2, 5, 8\}$
:::
#### {-}
# Exercise 2
### 2a)
::: {.question data-latex=""}
Draw a generalized suffix tree for the sequences $A=$`CCATG` and $B=$ `CATG`.
:::
#### {.tabset}
##### Hide
##### Hint 1
::: {.answer data-latex=""}
Concatenate the two sequences using a unique character for splitting. e.g.
`CCATG#CATG$`.
Dont forget to include suffix links!
:::
##### Formulae
::: {.answer data-latex=""}
$sl(v) = w$
$\overline{v} = cb$
$\overline{w} = b$
$c: character, b: string$
remember: $\overline{v}$ denotes the concatenation of all path labels from the root to v.
:::
##### Solution
::: {.answer data-latex=""}
```{r, echo=FALSE, out.width="100%", fig.align='center'}
knitr::include_graphics("figures/sheet-8/suffix_tree_2.png")
```
:::
#### {-}
### 2b)
::: {.question data-latex=""}
Find the Maximal Unique Matches of the sequences $A=$`CCATG` and $B=$`CATG` using
the tree from A).
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
`CATG` is the only MUM as $\overline{v} =$ `CATG` has no suffix links pointing to
it
:::
#### {-}
# Exercise 3
### 3a)
::: {.question data-latex=""}
Draw a generalized suffix tree for the sequence $A=$`ACGCACGCG`.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
```{r, echo=FALSE, out.width="100%", fig.align='center'}
knitr::include_graphics("figures/sheet-8/suffix_tree_3.png")
```
:::
#### {-}
### 3b)
::: {.question data-latex=""}
Find all maximal pairs of length at least 2.
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
`ACGC`: $(1,5,4)$
`CG`: $(2,8,2), (6,8,2)$
:::
#### {-}
### 3c)
::: {.question data-latex=""}
Why is `C`: $(2, 8, 1)$ not a maximal pair?
:::
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
It is not right maximal.
This can be seen since `CG`: $(2, 8, 2)$ already includes the indices 2 and 8 with
a longer match.
:::
#### {-}