-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlinUCB.py
127 lines (107 loc) · 5.71 KB
/
linUCB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from _commons import warn, error, create_dir_path
import numpy as np
import time
from movielens import MovieLens
class LinUCB:
def __init__(self, alpha, dataset=None, max_items=500, allow_selecting_known_arms=True, fixed_rewards=True,
prob_reward_p=0.9):
if dataset is None:
self.dataset = MovieLens(variant='ml-100k',
pos_rating_threshold=4,
data_augmentation_mode='binary_unknown')
else:
self.dataset = dataset
self.dataset.shrink(max_items)
self.dataset.add_random_ratings(num_to_each_user=3)
self.alpha = alpha
self.fixed_rewards = fixed_rewards
self.prob_reward_p = prob_reward_p
self.users_with_unrated_items = np.array(range(self.dataset.num_users))
self.monitored_user = np.random.choice(self.users_with_unrated_items)
self.allow_selecting_known_arms = allow_selecting_known_arms
self.d = self.dataset.arm_feature_dim
self.b = np.zeros(shape=(self.dataset.num_items, self.d))
# More efficient way to create array of identity matrices of length num_items
print("\nInitializing matrix A of shape {} which will require {}MB of memory."
.format((self.dataset.num_items, self.d, self.d), 8 * self.dataset.num_items * self.d * self.d / 1e6))
self.A = np.repeat(np.identity(self.d, dtype=float)[np.newaxis, :, :], self.dataset.num_items, axis=0)
print("\nLinUCB successfully initialized.")
def choose_arm(self, t, unknown_item_ids, verbosity):
"""
Choose an arm to pull = item to recommend to user t that he did not rate yet.
:param t: User_id of user to recommend to.
:param unknown_item_ids: Indexes of items that user t has not rated yet.
:return: Received reward for selected item = 1/0 = user liked/disliked item.
"""
A = self.A
b = self.b
arm_features = self.dataset.get_features_of_current_arms(t=t)
p_t = np.zeros(shape=(arm_features.shape[0],), dtype=float)
p_t -= 9999 # I never want to select the already rated items
item_ids = unknown_item_ids
if self.allow_selecting_known_arms:
item_ids = range(self.dataset.num_items)
p_t += 9999
for a in item_ids: # iterate over all arms
x_ta = arm_features[a].reshape(arm_features[a].shape[0], 1) # make a column vector
A_a_inv = np.linalg.inv(A[a])
theta_a = A_a_inv.dot(b[a])
p_t[a] = theta_a.T.dot(x_ta) + self.alpha * np.sqrt(x_ta.T.dot(A_a_inv).dot(x_ta))
max_p_t = np.max(p_t)
if max_p_t <= 0:
print("User {} has max p_t={}, p_t={}".format(t, max_p_t, p_t))
# I want to randomly break ties, np.argmax return the first occurence of maximum.
# So I will get all occurences of the max and randomly select between them
max_idxs = np.argwhere(p_t == max_p_t).flatten()
a_t = np.random.choice(max_idxs) # idx of article to recommend to user t
# observed reward = 1/0
r_t = self.dataset.recommend(user_id=t, item_id=a_t,
fixed_rewards=self.fixed_rewards, prob_reward_p=self.prob_reward_p)
if verbosity >= 2:
print("User {} choosing item {} with p_t={} reward {}".format(t, a_t, p_t[a_t], r_t))
x_t_at = arm_features[a_t].reshape(arm_features[a_t].shape[0], 1) # make a column vector
A[a_t] = A[a_t] + x_t_at.dot(x_t_at.T)
b[a_t] = b[a_t] + r_t * x_t_at.flatten() # turn it back into an array because b[a_t] is an array
return r_t
def run_epoch(self, verbosity=2):
"""
Call choose_arm() for each user in the dataset.
:return: Average received reward.
"""
rewards = []
start_time = time.time()
for i in range(self.dataset.num_users):
start_time_i = time.time()
user_id = self.dataset.get_next_user()
# user_id = 1
unknown_item_ids = self.dataset.get_uknown_items_of_user(user_id)
if self.allow_selecting_known_arms == False:
if user_id not in self.users_with_unrated_items:
continue
if unknown_item_ids.size == 0:
print("User {} has no more unknown ratings, skipping him.".format(user_id))
self.users_with_unrated_items = self.users_with_unrated_items[
self.users_with_unrated_items != user_id]
continue
rewards.append(self.choose_arm(user_id, unknown_item_ids, verbosity))
time_i = time.time() - start_time_i
if verbosity >= 2:
print("Choosing arm for user {}/{} ended with reward {} in {}s".format(i, self.dataset.num_users,
rewards[i], time_i))
total_time = time.time() - start_time
avg_reward = np.average(np.array(rewards))
return avg_reward, total_time
def run(self, num_epochs, verbosity=1):
"""
Runs run_epoch() num_epoch times.
:param num_epochs: Number of epochs = iterating over all users.
:return: List of average rewards per epoch.
"""
self.users_with_unrated_items = np.array(range(self.dataset.num_users))
avg_rewards = np.zeros(shape=(num_epochs,), dtype=float)
for i in range(num_epochs):
avg_rewards[i], total_time = self.run_epoch(verbosity)
if verbosity >= 1:
print(
"Finished epoch {}/{} with avg reward {} in {}s".format(i, num_epochs, avg_rewards[i], total_time))
return avg_rewards