-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
192 lines (164 loc) · 5.96 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# %%
import matplotlib.pyplot as plt
import pandas as pd
import os
from tqdm import tqdm
import os
import numpy as np
# %%
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession, Row
from pyspark.sql.functions import col
from pyspark.sql.types import StructType, StructField, StringType, FloatType
import ast
# %%
tags_df_path = './data/id_target_jaccard.csv'
mood_df_path = './data/id_mood_simi.csv'
lyrics_df_path = './data/id_lyrics_simi.csv'
genre_df_path = './data/id_genre_simi.csv'
inst_df_path = './data/id_instruments_simi.csv'
def map_keys(row: Row):
'''get all
args:
row: Row
'''
dct = row.asDict()
return dct.pop('id')
def map_id(row: Row):
dct = row.asDict()
id = dct.pop('id')
dct.pop(id)
dct.pop('_c0')
return (id, dct)
def reduce_to_sum(row0_dct: dict, row1_dct: dict) -> dict:
res = dict()
for key in set(list(row0_dct.keys()) + list(row1_dct.keys())):
sc0, sc1 = row0_dct.get(key, 0.0), row1_dct.get(key, 0.0)
res[key] = float(sc0) + float(sc1)
return res
def rm_zero_and_sorted(row_dct: dict) -> list:
'''remove score zero and return nested list
nested list means the same value
'''
sorted_lst = [(key, score) for key, score in row_dct.items() if score > 0]
sorted_lst = sorted(sorted_lst, key=lambda x: x[1], reverse=True)
res = []
for key, score in sorted_lst:
if len(res) < 1:
res.append([(key, score)])
continue
if res[-1][-1][1] != score:
res.append([(key, score)])
else:
res[-1].append((key, score))
return res
def rm_score(row_lst: list) -> list:
res = []
for s_lst in row_lst:
l = []
for key, _ in s_lst:
l.append(key)
res.append(l)
return res
def hits_at_k(k: int, tar_lst_of_tuple, hat_lst_of_tuple):
'''readability 0 :)
args
k: int, hits at k
tar_lst_of_tuple: list[tuple[str, lst[lst[str]]]]
list, each of tuple represent each spo id
tuple, spo id and its list of sorted similarity spo id
list, list of sorted similarity spo id
list, same value will be in the same bracket
hat_lst_of_tuple: list[tuple[str, lst[lst[str]]]]
as same as the top
returns
float, accuracy of hits at k
'''
hits_lst = []
for spo_id, tar_ids in tar_lst_of_tuple:
for h_spo_id, hat_ids in hat_lst_of_tuple:
if spo_id != h_spo_id:
continue
target_y = []
for id_lst in tar_ids:
if len(target_y) > k:
break
target_y.extend(id_lst)
print('target_y', len(target_y))
if len(target_y) > 0:
hits = 0
cur_k = 0
for id_lst in hat_ids:
for h_y in id_lst:
if h_y in target_y:
hits += 1
print(h_y)
cur_k += len(id_lst)
if cur_k > k:
print(cur_k)
break
hits_lst.append(hits)
break
return 0.0 if len(hits_lst) == 0 else sum(hits_lst) / len(hits_lst)
if __name__ == '__main__':
conf = SparkConf()
conf.setMaster(
'local[8]').setAppName('Evalation')
sc = SparkContext(conf=conf)
sc.setLogLevel("ERROR")
spark = SparkSession(sc)
tags_rdd = spark.read.csv(tags_df_path, sep=',', header=True).rdd
mood_df = spark.read.csv(mood_df_path, sep=',', header=True)
inst_df = spark.read.csv(inst_df_path, sep=',', header=True)
genre_df = spark.read.csv(genre_df_path, sep=',', header=True)
lyrics_df = spark.read.csv(lyrics_df_path, sep=',', header=True)
#! the type of cell is str
# for field in mood_df.schema.fields:
# if str(field.dataType) in ['DoubleType', 'FloatType', 'LongType', 'IntegerType', 'DecimalType']:
# name = str(field.name)
# mood_df = mood_df.withColumn(name, col(name) * 2)
all_rdd = mood_df.unionByName(genre_df, allowMissingColumns=True)\
.unionByName(inst_df, allowMissingColumns=True)\
.unionByName(lyrics_df, allowMissingColumns=True)\
.fillna('0')
del mood_df
del inst_df
del genre_df
del lyrics_df
keys = tags_rdd.map(lambda row: map_keys(row)).collect()
print(len(keys))
print(type(keys))
print(keys[0])
print(type(keys[0]))
print(all_rdd.count())
print(len(all_rdd.columns))
all_simi = all_rdd.rdd\
.map(lambda row: map_id(row))\
.filter(lambda row: row[0] in keys)\
.map(lambda row: (row[0], {k: v for k, v in row[1].items() if k in keys}))\
.reduceByKey(lambda simis0, simis1: reduce_to_sum(simis0, simis1))\
.mapValues(lambda simis: rm_zero_and_sorted(simis))\
.mapValues(lambda lst: rm_score(lst))\
.collect()
print(len(all_simi))
print(len(all_simi[0][1]))
tags_simi = tags_rdd.map(lambda row: map_id(row))\
.map(lambda row: (row[0], {k: float(v) for k, v in row[1].items()}))\
.mapValues(lambda simis: rm_zero_and_sorted(simis))\
.mapValues(lambda lst: rm_score(lst))\
.collect()
# %%
ks = [1, 5, 10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
# hits_k = [hits_at_k(k, tags_simi, all_simi)/k for k in ks]
hits_k = [0.08759124087591241, 0.04470802919708029, 0.06715328467153284, 0.13099908759124088,
0.19432709854014596, 0.24257147201946472, 0.278654197080292, 0.30063777372262773]
hits_k = [0.0770985401459854, 0.04452554744525548, 0.0614963503649635, 0.1373859489051095,
0.1998426094890511, 0.23799270072992704, 0.2603775091240876, 0.2800474452554744]
print(hits_k)
fig, ax = plt.subplots()
bar_colors = ['tab:orange', 'tab:orange', 'tab:orange', 'tab:orange']
ax.bar([str(k) for k in ks], hits_k, color=bar_colors)
ax.set_ylabel('Accuracy')
ax.set_title('Number of K')
plt.show()
# %%