-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmdtraj_domain_based_rmsf.py
123 lines (87 loc) · 4.54 KB
/
mdtraj_domain_based_rmsf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
Author: Halil ibrahim özdemir
Loc: Marmara University / Bioengineering
"""
import mdtraj as md
import matplotlib.pyplot as plt
def get_rmsf_data(top, traj, start_frame, stop_frame, stride, selection, superpose, group_selections=None):
"""
Make RMSF Calculation with Group Selections with mdtraj.
Parameters
----------
top: topology file
traj : trajectory file
start_frame : int
Include after this snapshot for your analysis.
stop_frame: int
Include until this snapshot for your analysis
stride: int
It will take snapshots at intervals of the "stride" unit you specified for your analysis
selection: str
Normal Selection
superpose: bool
Will align Snapshots for best fitting
group_selections: list
list of domains selections
Example
----------
or_rmsf, domain_rmsf, time, residue_list = get_rmsf_data(top='test/protein.pdb', traj='test/50_frame.dcd',
start_frame=0, stop_frame=49, stride=1,
selection='backbone and name CA', name='aaa', superpose=True,
group_selections=["backbone and name CA and resid 0 to 20",
"backbone and name CA and resid 21 to 59",
"backbone and name CA and resid 60 to 100",
"backbone and name CA and resid 101 to 115",
"backbone and name CA and resid 116 to 142"])
"""
global groupselections
def group_selection(traj_universe, reference_universe, selection, group_selection):
new_ref = reference_universe.atom_slice(topology.select(selection + ' and ' + group_selection))
new_traj = traj_universe.atom_slice(topology.select(selection + ' and ' + group_selection))
new_traj.superpose(reference=new_ref, parallel=True)
print(new_traj)
return md.rmsf(new_traj, new_ref, parallel=True) * 10
try:
traj_origin = md.load(traj, top=top, stride=stride)
ref_origin = md.load(top)
topology = traj_origin.topology
traj = traj_origin.atom_slice(topology.select(selection))
ref = ref_origin.atom_slice(topology.select(selection))
if traj.n_atoms != ref.n_atoms:
traj = traj.atom_slice(topology.select(selection))
if group_selections is not None:
groupselections = [group_selection(traj_origin, ref_origin, selection, s) for s in
group_selections]
if superpose:
traj.superpose(reference=ref, parallel=True)
if (start_frame and stop_frame) is not None:
traj = traj[start_frame:stop_frame]
elif stop_frame is not None:
traj = traj[:stop_frame]
elif start_frame is not None:
traj = traj[start_frame:]
all_rmsf_data_struct = {'origin_RMSF': md.rmsf(traj, ref, parallel=True) * 10,
'groupSelection_RMSF': groupselections, 'time': traj.time,
'residues': list(range(0, traj.n_atoms))}
ori_selection_rmsf = list(all_rmsf_data_struct['origin_RMSF'])
selection_rmsf = all_rmsf_data_struct['origin_RMSF']
domain_base_rmsf = all_rmsf_data_struct['groupSelection_RMSF']
count = 0
for i in range(len(groupselections)):
selection_rmsf[count: len(domain_base_rmsf[i])+count] = domain_base_rmsf[i]
count = len(domain_base_rmsf[i]) +count
return ori_selection_rmsf, selection_rmsf, all_rmsf_data_struct['time'], all_rmsf_data_struct['residues']
except Exception as Error:
print(Error)
print("problem in rmsf calculation")
# ---> For Plot
# fig = plt.figure(figsize=(4, 4))
# ax = fig.add_subplot(111)
# ax.plot(residue_list, domain_rmsf, 'r-', label="domain_based_rmsf")
#
# ax.plot(residue_list, or_rmsf, 'g-', label="Original (All)")
#
# ax.legend(loc="best")
# ax.set_xlabel("Residues")
# ax.set_ylabel(r"RMSF ($\AA$)")
# plt.show()