-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathKerr_quasi-circular_flux_inspiral.nb
5962 lines (5915 loc) · 334 KB
/
Kerr_quasi-circular_flux_inspiral.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 341548, 5954]
NotebookOptionsPosition[ 337972, 5893]
NotebookOutlinePosition[ 338430, 5911]
CellTagsIndexPosition[ 338387, 5908]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Compute a quasi-circular inspiral in Kerr spacetime", "Title",
CellChangeTimes->{{3.738326815048869*^9, 3.738326836326571*^9}, {
3.738422232402094*^9,
3.7384222359240627`*^9}},ExpressionUUID->"b91d6f8f-bf1b-4f2f-b421-\
a68022eb9d02"],
Cell[TextData[StyleBox["This notebook demonstrates how to use the \
KerrGeodesics package and the data in the Black Hole Perturbation Toolkit \
(bhptoolkit.org) to compute a quasi-circular inspiral of a small mass in to a \
much more massive Kerr black hole.",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.738326888054344*^9, 3.7383269511236763`*^9}, {
3.7383275579394417`*^9,
3.738327570953094*^9}},ExpressionUUID->"2e381275-6b39-444b-8d72-\
90b3f18a4355"],
Cell[TextData[StyleBox["Load the KerrGeodeodesics package",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.7383268503980637`*^9,
3.7383268576300383`*^9}},ExpressionUUID->"ebdf4ab4-758d-4454-ba63-\
799c9af8029f"],
Cell[BoxData[
RowBox[{"<<", "KerrGeodesics`"}]], "Input",
CellChangeTimes->{{3.738321838581746*^9, 3.738321842043796*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"a4a3fcb3-806c-427a-a118-7d3cca0e9e03"],
Cell[TextData[{
StyleBox["We set the mass of the black hole to M=1 as it scales out of the \
problem. The spin of the black hole is denoted by \[OpenCurlyQuote]a\
\[CloseCurlyQuote] and the mass ratio is given by \[OpenCurlyQuote]q\
\[CloseCurlyQuote]. We set q=1 here to make the plots nicer but the flux data \
is only calculated to linear order in the mass-ratio and the flux balance is \
only valid when the system is evolving adiabatically (which requires ",
FontColor->RGBColor[0, 0, 1]],
Cell[BoxData[
FormBox[
RowBox[{"q",
RowBox[{"<<", "1"}]}], TraditionalForm]],
FontColor->RGBColor[0, 0, 1],ExpressionUUID->
"a2155e94-c46a-43f1-a498-e9c4c1f181ba"],
StyleBox[").",
FontColor->RGBColor[0, 0, 1]]
}], "Text",
CellChangeTimes->{{3.738327009910943*^9, 3.738327067024177*^9}, {
3.73832710453785*^9, 3.738327170870124*^9}, {3.738327594043744*^9,
3.738327631232813*^9},
3.738344686244039*^9},ExpressionUUID->"fd48cfd1-3a3b-4b15-a07d-\
a048e09f20d5"],
Cell[BoxData[{
RowBox[{
RowBox[{"M", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a", "=", "0.8"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"q", "=", "1"}], ";"}]}], "Input",
CellChangeTimes->{{3.7383218570670843`*^9, 3.7383218654908953`*^9}, {
3.73832210742867*^9, 3.738322108540313*^9}, {3.738322541943221*^9,
3.73832254202137*^9}, {3.738323764654851*^9, 3.7383237717876263`*^9}, {
3.738326296157365*^9, 3.738326313328513*^9}, {3.738326956459848*^9,
3.738326959067686*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"cd9ef812-7b6a-4947-8eeb-57e00b45e711"],
Cell[TextData[StyleBox["Compute the constants of motion and orbital \
frequencies",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.738326982470478*^9,
3.73832699019829*^9}},ExpressionUUID->"28b053ff-7899-4445-884e-\
dc88b08e5763"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"En", ",", "L", ",", "Q"}], "}"}], "=",
RowBox[{
RowBox[{"{",
RowBox[{
"\"\<\[ScriptCapitalE]\>\"", ",", "\"\<\[ScriptCapitalL]\>\"", ",",
"\"\<\[ScriptCapitalQ]\>\""}], "}"}], "/.",
RowBox[{"KerrGeoConstantsOfMotion", "[",
RowBox[{"a", ",", "r0", ",", "0", ",", "1"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
"\[CapitalOmega]r", ",", "\[CapitalOmega]\[Theta]", ",",
"\[CapitalOmega]\[Phi]"}], "}"}], "=",
RowBox[{
RowBox[{"{",
RowBox[{
"\"\<\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(r\)]\)\>\"", ",",
"\"\<\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(\[Theta]\)]\)\>\"", ",",
"\"\<\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(\[Phi]\)]\)\>\""}],
"}"}], "/.",
RowBox[{"KerrGeoFrequencies", "[",
RowBox[{"a", ",", "r0", ",", "0", ",", "1"}], "]"}]}]}], ";"}]}], "Input",\
CellChangeTimes->{{3.738321843106063*^9, 3.7383218752829533`*^9}, {
3.7383229237487793`*^9, 3.738322948454064*^9}, {3.750671325039068*^9,
3.750671343294145*^9}, {3.8200865421476*^9, 3.820086608228128*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"dbf03c00-b41a-4582-bb27-1f8508dede51"],
Cell[TextData[StyleBox["Load and interpolate the flux data (change the \
directory to the local on your hard disk where the flux data is stored)",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.738326998720428*^9, 3.7383270023018312`*^9}, {
3.738421661273367*^9,
3.7384216820011463`*^9}},ExpressionUUID->"6f7cd636-89a9-4b66-bc9c-\
8ed60764aca4"],
Cell[BoxData[{
RowBox[{
RowBox[{
"SetDirectory", "[",
"\"\<~/BHPToolkit/CircularOrbitSelfForceData/Kerr/Fluxes/\>\"", "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"data", "=",
RowBox[{"Import", "[",
RowBox[{"\"\<Flux_Edot_a\>\"", "<>",
RowBox[{"ToString", "[", "a", "]"}], "<>", "\"\<.dat\>\""}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[ScriptCapitalE]dot", "=",
RowBox[{"Interpolation", "[",
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"data", "[",
RowBox[{"[",
RowBox[{";;", ",", "1"}], "]"}], "]"}], ",",
RowBox[{
SuperscriptBox["q", "2"],
RowBox[{"(",
RowBox[{
RowBox[{"data", "[",
RowBox[{"[",
RowBox[{";;", ",", "2"}], "]"}], "]"}], "+",
RowBox[{"data", "[",
RowBox[{"[",
RowBox[{";;", ",", "3"}], "]"}], "]"}]}], ")"}]}]}], "}"}], "]"}],
"]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.7383219319329844`*^9, 3.738321955154581*^9}, {
3.738322183276058*^9, 3.7383222496484547`*^9}, {3.7383225496454906`*^9,
3.7383225550129547`*^9}, {3.738326995838789*^9, 3.738326995991274*^9}, {
3.820086628293508*^9, 3.8200866299873543`*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"eeab259d-92c1-4963-9c9a-ae2da96d7690"],
Cell[TextData[{
StyleBox["From the chain rule and flux balance ",
FontColor->RGBColor[0, 0, 1]],
Cell[BoxData[
FormBox[
RowBox[{"(",
RowBox[{
OverscriptBox["E", "."], "=",
RowBox[{"-",
OverscriptBox["\[ScriptCapitalE]", "."]}]}], ")"}], TraditionalForm]],
FontColor->RGBColor[0, 0, 1],ExpressionUUID->
"f3ee7bad-938d-4f34-894a-04d8578497a9"],
StyleBox[" we have ",
FontColor->RGBColor[0, 0, 1]],
Cell[BoxData[
FormBox[
RowBox[{
FractionBox["dr", "dt"], "=",
RowBox[{
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
FractionBox["dE", "dr"], ")"}],
RowBox[{"-", "1", " "}]]}],
OverscriptBox["\[ScriptCapitalE]", "."]}]}], TraditionalForm]],
FontColor->RGBColor[0, 0, 1],ExpressionUUID->
"d73f7952-a64e-4e89-a416-c6f3f070cb8f"]
}], "Text",
CellChangeTimes->{{3.738326722258932*^9,
3.7383268073999577`*^9}},ExpressionUUID->"e7e5e0eb-927b-4ea7-972d-\
d1ae2cf62c04"],
Cell[BoxData[
RowBox[{
RowBox[{"dr0dt", "=",
RowBox[{
RowBox[{
RowBox[{"-",
SuperscriptBox[
RowBox[{"D", "[",
RowBox[{"En", ",", "r0"}], "]"}],
RowBox[{"-", "1"}]]}],
RowBox[{"\[ScriptCapitalE]dot", "[", "r0", "]"}]}], "/.",
RowBox[{"r0", "\[Rule]",
RowBox[{"r0", "[", "t", "]"}]}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.738321878578326*^9, 3.738321927045372*^9}, {
3.738322829170336*^9, 3.738322832835397*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"effc28f2-fb17-47d0-ba4e-12f7f5177530"],
Cell[TextData[StyleBox["Solve for the radial motion",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.738327186669715*^9,
3.7383271893404016`*^9}},ExpressionUUID->"b4a11cae-e57c-4b1a-a07f-\
cad466025063"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"r1", "=",
RowBox[{"r0", "/.",
RowBox[{
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"r0", "'"}], "[", "t", "]"}], "==", "dr0dt"}], ",",
RowBox[{
RowBox[{"r0", "[", "0", "]"}], "\[Equal]", "50"}]}], "}"}], ",",
"r0", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",",
RowBox[{"2", " ",
SuperscriptBox["10", "6"]}]}], "}"}]}], "]"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "1"}], "]"}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.738322717593314*^9, 3.738322905536303*^9}, {
3.738323115541827*^9, 3.738323116405652*^9}, {3.738323232414102*^9,
3.73832324503176*^9}, {3.738323485429606*^9, 3.7383234870516787`*^9},
3.750671393360828*^9},
CellLabel->"In[11]:=",ExpressionUUID->"a9ac3038-8dbf-4539-bcb8-1683965448a5"],
Cell[BoxData[
TemplateBox[{
"NDSolve", "ndsz",
"\"At \\!\\(\\*RowBox[{\\\"t\\\"}]\\) == \
\\!\\(\\*RowBox[{\\\"127369.87863362793`\\\"}]\\), step size is effectively \
zero; singularity or stiff system suspected.\"", 2, 11, 1,
23069798662872807159, "Local 3"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.738323245732284*^9, 3.73832333295868*^9, 3.738323487570147*^9, {
3.738323570358803*^9, 3.738323597542745*^9}, 3.7383237871206408`*^9, {
3.738326303045656*^9, 3.738326315850267*^9}, {3.750671365736717*^9,
3.7506713936648617`*^9}, 3.820086660623164*^9},
CellLabel->
"During evaluation of \
In[11]:=",ExpressionUUID->"21054d50-cbe2-4717-bbf8-de6653eb6b46"],
Cell[BoxData[
InterpretationBox[
RowBox[{
TagBox["InterpolatingFunction",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SquarePlusIconMedium"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
Evaluator -> Automatic, Method -> "Preemptive"],
Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1]],
LineBox[CompressedData["
1:eJwVy3081AcAx/FjcZ5WJMvjzOuUZiZnJGb5uqffj+ZlyePObGbCK2W5mV4v
WbVGx143D+cpD9fD616aOBHO0pVb1LI8TUxMGjrHnHnKkYez9sfn9f7rY/dl
UlCsNoVC8X7d/14IrbDg3oz2+VPfXbO1RaI5q5fXdPAKwvu4skwFiRN1AXVc
ZR3qSEY97xEJk2LTXXSb2xCa67gu1JB4rPxiUFEgRwvtuu/lPBI9bzRmZS62
Y3u/mVEhj0TkZ83JeTodCBqJ63AII3FDKpXPJXVBum+ANeVBIsXaLOTpeC+e
Zn8S3W5OImJjr+LEVB8U41Ur/usE3h6ROkgsBhD1uOrHoWECPw+LMq7uGUQp
IVDtlhG4MQs64TAEl+a7/DMVBASU6Jyi4L+Qkthd15pGwM11SK8s8hl4hjbD
ci4BWUyPm1/uc0ykDv565iCB0X6fsP6RvxEyUs2BGQFQ26+Ojo4hpSk+8I8l
DvI9Lz64qx6HkBlyR9nNAZGm/nZlfQLpy5Htva8XlUyspbtbgdTT5PcmGRx0
6bl8MOs0CZ1O2xhGFAfGX8UtOrsokSgs2h/qyQGr9Vk2228Kql9mJ9KMORh+
l1IvDZzGUMIYnz/NRo1oK51y5B+MudtBcJ+NJNND9rbxM/AS3849WsxGQfG+
8JJEFWbqdzgan2SjyioodjJzFme7qBIO2FirCrd4s/xffK5VQdu/k41awpD7
k2gO/E5Xms0kC1XJGq9k7jxUCufQnU0svO8XkOM/Oo+IhaMHDDNZ6BEbeORE
LeDF1w8LboWykHAu7vC96QUUFRbnDdix0BhTWll6fBE/rByo2jbHxMrDxJPR
q4uouVBu5SxlYoZulj6QtgTh5MczIWeZ2LRzet60sQRDzX31A4IJvfxxyTn+
SwTuzcgP1meiXT+pbdVgGVr2Lb39nQyc1ipjc0uWUaAuzRbxGfD/zt3KkaYG
XfNe2S0GA13alR6VYjWigq8tCjS+IKlSuRF9BQKJ/IltvS++MS3PfadxBebR
17JsYn3RKp5vuOK2CtH2Duuat3yhLX3BNJSv4pJ9kXeeDFB311rSGK/QHe84
axkDjMeZR+3peYVxScCpArUPVBnzL4URa9Ck1BiGWfrgerWo7+bwGloZzoLD
Hx7Cp0dU1tJj63h0h2fVQP8IrZodtQnT64ignFfes/GGtdOTamrqBno9tcpP
/e6F4tFtmybam7AL6li9zPJEW4lRYceFTRzLTMuzFHhA2ddw6bixBtnxPO0i
mjtku+iKFqEGuuJqycU2OnRSDHRF5ltYav1tinqeiv8A8LHNkA==
"]]},
Annotation[#, "Charting`Private`Tag$2542#1"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding ->
All, DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2},
"HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6],
"ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0., 127369.87863362793`}, {0.,
49.99999978627936}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}],
GridBox[{{
RowBox[{
TagBox["\"Domain: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "127369.87863362793`"}], "}"}], "}"}],
"SummaryItem"]}]}, {
RowBox[{
TagBox["\"Output: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"scalar\"", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SquareMinusIconMedium"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
Evaluator -> Automatic, Method -> "Preemptive"],
Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1]],
LineBox[CompressedData["
1:eJwVy3081AcAx/FjcZ5WJMvjzOuUZiZnJGb5uqffj+ZlyePObGbCK2W5mV4v
WbVGx143D+cpD9fD616aOBHO0pVb1LI8TUxMGjrHnHnKkYez9sfn9f7rY/dl
UlCsNoVC8X7d/14IrbDg3oz2+VPfXbO1RaI5q5fXdPAKwvu4skwFiRN1AXVc
ZR3qSEY97xEJk2LTXXSb2xCa67gu1JB4rPxiUFEgRwvtuu/lPBI9bzRmZS62
Y3u/mVEhj0TkZ83JeTodCBqJ63AII3FDKpXPJXVBum+ANeVBIsXaLOTpeC+e
Zn8S3W5OImJjr+LEVB8U41Ur/usE3h6ROkgsBhD1uOrHoWECPw+LMq7uGUQp
IVDtlhG4MQs64TAEl+a7/DMVBASU6Jyi4L+Qkthd15pGwM11SK8s8hl4hjbD
ci4BWUyPm1/uc0ykDv565iCB0X6fsP6RvxEyUs2BGQFQ26+Ojo4hpSk+8I8l
DvI9Lz64qx6HkBlyR9nNAZGm/nZlfQLpy5Htva8XlUyspbtbgdTT5PcmGRx0
6bl8MOs0CZ1O2xhGFAfGX8UtOrsokSgs2h/qyQGr9Vk2228Kql9mJ9KMORh+
l1IvDZzGUMIYnz/NRo1oK51y5B+MudtBcJ+NJNND9rbxM/AS3849WsxGQfG+
8JJEFWbqdzgan2SjyioodjJzFme7qBIO2FirCrd4s/xffK5VQdu/k41awpD7
k2gO/E5Xms0kC1XJGq9k7jxUCufQnU0svO8XkOM/Oo+IhaMHDDNZ6BEbeORE
LeDF1w8LboWykHAu7vC96QUUFRbnDdix0BhTWll6fBE/rByo2jbHxMrDxJPR
q4uouVBu5SxlYoZulj6QtgTh5MczIWeZ2LRzet60sQRDzX31A4IJvfxxyTn+
SwTuzcgP1meiXT+pbdVgGVr2Lb39nQyc1ipjc0uWUaAuzRbxGfD/zt3KkaYG
XfNe2S0GA13alR6VYjWigq8tCjS+IKlSuRF9BQKJ/IltvS++MS3PfadxBebR
17JsYn3RKp5vuOK2CtH2Duuat3yhLX3BNJSv4pJ9kXeeDFB311rSGK/QHe84
axkDjMeZR+3peYVxScCpArUPVBnzL4URa9Ck1BiGWfrgerWo7+bwGloZzoLD
Hx7Cp0dU1tJj63h0h2fVQP8IrZodtQnT64ignFfes/GGtdOTamrqBno9tcpP
/e6F4tFtmybam7AL6li9zPJEW4lRYceFTRzLTMuzFHhA2ddw6bixBtnxPO0i
mjtku+iKFqEGuuJqycU2OnRSDHRF5ltYav1tinqeiv8A8LHNkA==
"]]},
Annotation[#, "Charting`Private`Tag$2542#1"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding ->
All, DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2},
"HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6],
"ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0., 127369.87863362793`}, {0.,
49.99999978627936}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}],
GridBox[{{
RowBox[{
TagBox["\"Domain: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "127369.87863362793`"}], "}"}], "}"}],
"SummaryItem"]}]}, {
RowBox[{
TagBox["\"Output: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"scalar\"", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Order: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Method: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"Hermite\"", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Periodic: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["False", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
InterpolatingFunction[{{0., 127369.87863362793`}}, {
5, 7, 1, {315}, {4}, 0, 0, 0, 0, Automatic, {}, {}, False}, CompressedData["
1:eJwt0Qk41VkbAPBLWa71uiRlmWGKJEWSmElvWoy2SVmn71bER5JS2UrRIkvF
DWmytBIfUoQRRjUhSZZvSLJkD1mukOXee/5zzv92nuec33POeZ/3Pe9ztF2P
7XEXZzAYYnj+TJbvQ3fTCinJvo0g0va7LvDM7W+ZyGav73tfuOh37Wr17hgo
ps8TwVnqjofDvAdg39ZmM5CYAWLbVluvSS6GYXbJmtN+5dDMaN/yMfktuASE
GGi6NoCjD2vNu6lG0OrarFoT0QL9e4NmqtU7wLHHYcTNsQtKNHz3997tgR8c
rtQdGuqDizFp0GMyAP1Vz3Ndzw5B2sj0IgWnYTjENrrwbPUoXFdf45cnyQOe
4W596UkeOA0KZ/2ejMOL1KzqHu+voH/QOclWfwLHSXk/75sAcdaXFIkzk3Bi
fl3ddtYU9MzkicWmTYHdSILJB4tvYPwkR1cp9xsonqxctE1vGoZNO+QupkzD
m5kpqkR5Bm6oJYbt850Bl3WWsvzaGTB06uYmrpiF2YDLqhZRs8CMXujPaZwF
tdSMplCtOdArNjdN9ZwDs/rq+Nd5c8DMalMOHpmD1rDRWKNlfHh0kMHuc+VD
yM/s67dS+MDlKfao1PDhfpq8KXeOD09/lw2X1RdAhSKz5bKjAIa2VvXvDRYA
61z45I/3BGBasFV8tEIA+4YlWCVDAmC6h59olxLCn+3STdQSIbg7RJnpWAlB
uU42cfMBIYRofiyy8xfClyMZzW7XhOBQ7P/tVKoQ/pbesiCsRAil+056V74T
QmHOvVdSnULIFatfbPNVCFl2yDdqPoLQU7LrhGwE9vFq6Jg2AoP8peXdqxAw
GldH2Vsi0NzQlVVug8AiM+adiT0CxwWWY/cPIjgZOsxieyMoSOZs1vJDMF1U
G7D8HALzpg1Za8MRnBl/0mHFReDjc/fwkZsIXL7ETMbdRmDnGRJSmobAus9H
pi8b58uJLozOQ+ARkOO6rghBINQqdP+FIII5WnzlFQKZ2mBHySoE12JlJ0Nr
ECg6JnL59Qj/v76hfxOCAd1XXxgtCCxXczKvtCG4sX7aU7UTwfCv1/Xu9SDg
PdVQ8ulHMKWVMWcxiGAu0qRXahgBNVn2rnEU1x+UCZEdR/Ck3cHIagIB8//3
uwKn8HsrR2MfTyPQS0Yex2YRjPgqrF/FR/DUWos9JkAQpLnycw5CYDx/LI/F
oGBg6PG5E2IU3G04vq1RnALHImPVtfMpCINb53ZKUPC0ivHZTZKCrt2evwVL
UaDQUvdnnDQF3A3vbY4zKWA/bGvdIUNBvFzPUX1ZClRPDlISchS8ODDHzMd6
7ZBVcZWnQMVcQ4ulQEHZUsNlZVhpCz0Pa0UKbHdpP6zHJrmq9zmzKOj1X7Ck
B1uBduz4TYmC9MuXTpVgIxRKk/XYOF/CRHkcNuJ/RaMD2PTSs2qWyji+zsoq
DtvbLeU9gHXfHnfYQIWC/qdaHj5YT41Mt1zs4CVT10lstX3ePP0FFGTprkrj
YK9OZ22NxXpXLRuoxOqeSTLmYTsNFc4sUqUgsTO03AprFzch743V3PnZ5Sq2
X7K1IBv7+EUt8x25NzKc/oydvXOlV3whBSmKQw2aWKuQX5+vwxpUJTXtxCor
jX1xxQqcrcQDsY0c/sVIbLZLvkQS9qL70fBsbOSo2oISbHRA+f032DjGcaMP
WIVD0Vt7sVEV2f/hYSWXvT0hwP5km+svqUYBnL55moXlPDh7bjE2TPN8hQ42
++YlOQPsP0oRe02wPL3apRZYeUuVGcAut/u92hpbUDnmthO7wTyM2oN9k7U4
0Qkr1Es34mCNUk1eu2DdfnzB+S/2VRlP3QurzdH+eBQbyrf9wxfb7Sr94BR2
U3XZowBsmrFf0WnsrvrKlWex33zU0kKwd+S91C9gM54FLryEzXUPV76MLVZK
UIzApjjbpEeSvPcEllewhwYfv7+K1S2z04jGDsbOusSQ/jxup3Oxswa+mdex
W3mbHsVi4/NVn8Rh6/qLg+OxMosO2NzAbtk+TzUBu3nLUCHRakOD403sRvOi
GeIeuTP+f5B6n9ZPEnc5SXBuYdc11FQQdbbFr0zExsSlnScK2gobiZlrXy1K
wjpx6/YTJYdaHxA/bB9rIWY+EmclY3/5mfsLsbZK8zDxgEPWDWL+iF4RkRmW
+pGofaTqG9HcdpidQvq4sG850S2/eiPR2mezPdFgWZkn0fvZ+0BizraxCOId
hmECkVvo9YAYoLsph8hJUH9GHA+aeEkM47ytJnqenWkg7khZ2kJsbeZ1EI+w
S3uJsxqHBokRejKjxBbll+N0fUbgFFEn1muGuHgJh09sFD4WEq81izNuY+1D
G8WImvoP5xHXTyhKEPf/FSRJPBbNlSKeP5AuTQzfH8wkXuPYyhCbIr/SahTG
ydL3h+XkiOMaYbTqwR20W1rN5IlZpkG0bG4xrUHeIO2mRjUFIuy0oF1fuY9W
8aeTtF0hUbQdwYm0rUGZtBtXFNBmdDyndRZ/QcvUFVlsI9LrqEj16yKDP4hs
/+ElraWHSCnjctqGuUrapPI3tO7RNbRm9XW0Mux/aD+VNtGKTzbTLjH4SKuT
20qrbdZOm27WQcuT+SSqkyfyjkUn7b0MkUyxLtrT1iKNQ0R2ZoqsqxH5uV/k
8zmRGcxu2gIVka81RMbqiPwXr4DJ1w==
"], {
Developer`PackedArrayForm, CompressedData["
1:eJwl01FEHQAUgOFbkiRJkiRpSZIkSZJJkiRJriRJciVJWpJMMpmZSZIkSWaS
JEmSJJlJkiRJkmQmmSRJkklm37XDd17Py3/ehN4FeyICgcDb8DKRRBFNDLHE
EU8CiSSRTAqppJFOBplkkU0OueSRTwGFFFFMCaXh25RRTgWVVFFNDbXUUU+Q
BhppopkWWmkjRDsddNJFNz300kc/A7xnkCE+MMxHPvGZL4wwyhjjTDDJFNPM
MMtXvjHHPAssssQyK6yyxjobbLLFNt/5wQ677LHPAYccccwJp5xxzgWX/OQX
V1zzmxtuueOeBx554pk/vPDKXwIaiCSKaGKIJY54EkgkiWRSSCWNdDLIJIts
csglj3wKKKSIYkoojfjfXhnlVFBJFdXUUEsd9QRpoJEmmmmhlTZCtNNBJ110
E468lz76GeA9gwzxgWE+8onPfGGEUcYYZ4JJpphmhlm+8o055llgkSWWWWGV
NdbZYJMttvnOD3bYZY99DjjkiGNOOOWMcy645Ce/uOKa39xwyx33PPDIE8/8
4YVX/hJ+/kiiiCaGWOKIJ4FEkkgmhVTSSCeDTLLIJodc8singEKKKKaEUt5S
RjkVVFJFNTXUUkc9QRpopIlmWmiljRDtdNBJF9300Esf/QzwD7dCj70=
"], CompressedData["
1:eJwt12k41evXB3BT9jZG5nkKIfM81cLGlkRF4UgyHJExkkhKpjIlkZSQqURF
IidZP0klQqZkjvyjECIZe/aL5373efe9rrXWfa0l5R54yIuejo4ujIHu/58V
/NcwHV33SwiLCbqxpL9UqOybq5FYFsI3qg11AjSzFnCIxP8WwmqPJ26qW1SQ
kXI7enhVCI8Kp85ZbFLhQFgIVWpDCBXoD3q4blAh6+C1uZ9bQniFpSvR7BcV
RP6apiqICKNmxb7X4t+pULCHV/yhrjD+so3e+DlGBersOTxjL4yttVUCtZ+o
4Gt6OedqsDCSBf9sTZRSwTvewYGbTQSDGa/P/w6jwrX99RdXy0Vw52CsxRiF
Cr1076XpHUXRceTOcio3FUx6FGY32cXwNznon/khS8jRn1P60iaGg39SUvNu
WsIJFxX/kW5x9FxqDR2ytQT/69GnWBckcCLQZDRomyV0jvWJNGRIoq5Jz//E
n1tAyMvmhFBjKeR9GWGd520BB/r1z3xbkcLLZ1775fFYQOiGdEVfszTyqjy6
3/DCHCpOKZY9KJNBz34fdAo2h+LXO1jGzu7Esj3FF/tkzME1saOw3kkW1+Rq
5ce7KGCy+/m1msNyaDKbnSlygQJNgkUqYr7yWHqu/es7XQrUBW31LrjuQtcB
07lLc2YQqZJ2/qyfAu567Cjyp8AMDJJafXqzFNGy56pSx0EzyEvg6dSZUMLT
gq+rQ7ebgSVvmd0MszJyVW942L03hSPZh49wUVXw7e1qBsEYU9hpGDGR9VAV
64tuBYfqmEIKpxFH7201lOrLtBhaMQHWRmfTbCt1/LR/7dq9GhOYjWgp/krW
wAyvbItLp03AI3F1pmJIA68+PaYsp2QCS7tZn+S/08R58SYX4XmAthTHwaKb
WkhRe8OdUQVwq1svOzVSG2NfHtQ8cBrAkGm2cvysDspMK8pvqQDYGsf+y5Cu
ix2nihhuzu2FbO3cS6UJeoha5dkxEXtht2DUZ82b+jhtX3fAlH4vnCnx2fu5
yQD9YzPKzGL2wHBtlFfnDiOsoLxkVxPaA+uhLFpP9IyxorpSqPKhMaSH+wvs
Ob8HDXvv8R7UN4b+b9ImEeN7sSrdBeMajSB0sUuj4zmgI/Hj7klXIyCsF0O/
eptgV+0lCckVQ2Ar2df6YJcpdt6vljFOMgRtTQ1v4S1TXI3U0TAWNgRzboWQ
mR9mOCgXnkjUG4CL5ONDqfUUZL2XNGD/jwGoek6WmN8zR/uvRfvSl/Vh1c0y
Oj/fAt9f+P107ao+KLv4rrDVW6LY4X6XDxr68GWKUbC8moor+4KWp/v0gPop
Pz7gjRXeeGYUNxumB4wStTeuLe/DdP75jx479ICfY6HKyXI/jsT9S9FHXbiW
5nCvNNAGe2pJXqkndUElKunOzLMDWF3t3bqNUxeYsq6n3d5uh4336prUH+vA
QZ7EO9P9dmjLo/yx0U0Hful1r5+/chAjM/IoTNt1gFDekzprfQjVS44v59dp
Q6ZH7am9Mofx14ePR9XctIGe8ZGqFo89TodVz+nwa8MkY8rCw0l7bPdhb5Fo
0QJfT0dy8AcHLJYWq7oZrgUUug93RNuP4PPPKbNGO7Wgp7eTR3HmKE65ZQ+d
G9EEef2Be+zfHPHvYIvhm0xNqAy0azmy7oTDcWMx3VaakEP2fXZY+R9kZB0L
Ml/TAIvRwhqXGBcc7cjWOP9cA3RHyH4hFcfQmuMraTZEA/S50jU//XbFsseZ
H212a0DvgsdCt7obtlfNR1h+UQfm1srfMptuyMYWtm1voTq8p2ceD3h8At9+
sZ3IdleH4+aK59pC3HH6z5T4dgl14N/PX2Vt44FtX/TibPvVYH+ln079Xk+k
P/WEvytXDSxE4xIP8XohxXx8bchNDVp+ir8M3/LCjctLCipSahBTUVzQS++N
enezBOfrVUH4Ui71t/RJTNEIpSs5oAp7BoYZzkr64EY9j231oAosWf41qdL1
xczCoON3PVTAgG3chcn/FK41v6j+OKkMdw1Fvw81+6Gkjjbj5yhluMnH9151
yR8Lb1qdP8+tDIey6ZR0TQLRxiI80iJ/Nxh/cAVepyB0UyqtK1fYDdmL29Ua
5YIRZdrLHr5VgtvU7DW2wWBcbU5siT+hBIfeizKWFZzGyLVvHB2/FSFHl22y
NioEE28LLdAnKELbRCm/QEgoxv8dEylSVIRw23Q5uX1nMImSP+/6XgEy5Q6/
49MNQ6FNckmLlwLc7gpkv2t8Fu/nKJB8NnaB0t2tbHf3cEx1+yt0vHgXCLx+
rLHgfg41K1mZSvftglSs0MqLisD4vc7jwz/kwc6w9NNITSSeFub3TUuUh1IH
Om8j3iik6yLmU3XkwWpy23/2FheQW7LjBP8XOah9fPpd3s1oXO7t8n+XIAc2
5+R8a+MvYjN35iFdRTkomT8Rr3H0Ej5/PpO8NiQLdo93pXVyxKDf5ZqR8GRZ
mOLz7OL6FIPJvRf2OOvJgmlZe75UzWV8xecjoDu2E9wPj31afxSLcW3OLedv
7gTOT/s9vyXG4VTTXbZH1juB+RaLK/+5ePz4yqzr7IYMyA9Hhhy9nID5myfc
wh/IwB5ei4N+5Yn4b5z+E0YvGfhUo5sb9eQKdj/9FXdfTAbM5K2ZFDuuou2x
7DTBbmkI6RR6TseRjDZ347JXYqXBYmK0ojowBb+X6fxOo0jD+9kPf/hLUrGU
cuC8P7006G1WlVtspOG6s5i9xQsp+OH8WWb4xTUUv66R0BQsBZ+KtyIK09JR
oeneHS1tKSC7zjgOUa/jeCmLM+9vSTjDaMguyJeBXAySimLVkhA29nb6zkoG
MsoJcm0GSMIBEljELt1AkvuRWn4dSXjGYOWW8TETJU3OyqUsS8AMi6G7a3MW
DrNlaGedkwAvDXqB7u6buPIgQuDRijgkDI6kDdPfQj6vq7kDyeLQLlZcVs6S
gx6Ml6WixcRh60NOe/nu2yi9z9hK8oEYZCzTVWQG3sE68fn03apisOtt1I+D
/bnI5RPQzdAqCtqCi18FefLQQoc37pa7KDzndajQ1M3HABP3ivPLIrB0Tdd7
aSUfq3M/uMtcFgEtAWB17SjA0DbqcRdZETCdefhALOkebmO7eOF2kzA4bjtl
fNi5EE14Bj6HHBOG1/ddyCehCIceqjV5LgrBf4ahZ0tMimn/v9NGY44QHKxY
X06QKsG4YYaKk3uFwFjlktdTwVJUTZ+oXxwVBHt20jJF6T7WB1tFLycLwuHA
jx0Zux7gA767MeE6ghD9iYVJC8qwoefPA5EhAehwfa7XFvYQmxYZjP2jBMBl
VpHXoKscf2wfzpxRFYC8ugj/j3SPUM9CrEh2lB/0FJhUxG0fY7L5m4KXV/nB
eqe1qveJJ3jqqNLuOyb8oGD+RyGYvRL7knrmvZf54M+OMNGTLZXItD3qaWsx
H4j53jeLu12FAUUNtS/d+MCYUpqrduwpfmC9SmoV5INTeyKvGWhWo4z2Gnfh
B15Q9Hx62l7qGfI2lmnHJvOCMbdZ/uONZ1gRTgoup/KC4KwuGv2sweH3ty53
0PNCityXMsPNWrwf1qqT8poHwmsqd9xYfo6T9Re+18fywIB9YoYz+T+0YGRI
5TflgYUD1nNnDF7gi57vevlkHshVmra8dLgeLc6QN5rbdoC/7TehJ1dfotXb
jM9mqTtgkndEumKyAecVUqITHXfAVtcZ4U5uAoOs9HyvS9LsoEXZbCQQjS6k
Sf2PG/gSgrlL4xsRGxpvcFZzQ87u26bnDV7h1Amepalobvj5ijN7nb4JZfjz
Q0KtuOGrr/+hlbEmTC1IqlkS5oYa0nxSYPlrrPw7KnrlOxdo102xBKQ2Y+Hq
Cu9qLRe4axovnkx6g2ZdmQZLyVxw05hbtCn4LZp2Vbzb5cYFCr5Fw2vB71Bz
v96DE+pcoET2O26d3oJ021kev2DhgrK6oh8uWe/xSvam3SSxHWK2szIb1LVi
9exo5gPf7bDsWrWXne4D7uuPbB+U2g68E4OlJ3e1Y4Cnpg5bHyc8HXLh1Avp
QPqtHT4D8ZzA2HDOeCKkE5njrpEpFE5w4nA/Ey76EQs2Gzi/b3GA77TKC47P
H3F87d2X0BoOUFFd0lmv6MKgc5Fd785xgEe96bhtQDf2LlCVbxhwAEPjN441
8x4MGLKvj/3DDmOByyPKBr3oqWQ+HNTIDtmn29eO8vfhP62j6myJ7LBfvvzu
KMcnVPjbHse8nx02NdJCWeX70X28bZe2MDvUe5F5OXd+xqjzXUWU/7GBrSSc
PWoygKq15r4zj9lgokj3v5j4QVxNgcFtl9kghj6tJK1sCPdHO31UsWeDQr28
2MmlYfQ9eYtNRoYN/sbWW3UGjKLEjKxaxxorVM47zb11G8Pzu/pbnnWyAnlh
hy691BccKt6RnVXECkyKyvvbNr8gXUuIyIWLrLC5fn3/vqZxdI+3v/rWmRWO
q5bwGRVNYFVb1pElfVZ45RBLlJz7ig8Gzc6UC7ACx49WUprfJG52mjXV/WKB
II7VqtjY/2EKT27ncC8L1DPfnn5w+Ruq07dE5dWwQGj8ZuSf0ilcc7N+dvo2
C7BWqfc4N0xjWcviFaZoFnCS1P1qtvkd1bjkymVOsEDi18HoR4EzuLYsJ3Kd
ygLpeQ+DSnEW708HP+tQYYGwieO1YPYTufX2b6QKsoDWtiC9fqd5FPhcNGRA
zwLf5fg9HVUWsObdyZKSKTL05eZoG8svIkv/jV95PWRobJSLUyX/QsrOrJkM
JEOrc2JqDccSHphZn4mvIENEpmxq77ZlLEycqU/NIUNxpUsNRe43/jDid1q8
QoYt3+E/c8Yr+DDkaH94OBlu3gATgdg/yF1AUVH1IUNQiG9UM7GKvyK/cfA5
kWFv8azHGc111O9tPcFpTQbBVc7WqpwNbHq3Pm1mRIbFBCW3F7CF6cm+s36q
ZGh41frT/vNfZNAZ/XdEigxP6Ubrrw/TEVqyfQPS/GQ4VpniUfmGnmAU/hbw
goUMATEazGUDDMS+4p450l8SaHfXvcucZCQYVmrvPf1Fgpl3VIZx6W1Epa77
+PI0CZxpl+ltB2Zi78PsoYJRErgJ/LO7u4lEONoHpb/rI9H26VLRAlkWouuh
Fb3HBxIsv/zLzNzOSiSezes81kyCcCeq5BtvduL1NoHB3noSGIf4mz9z4CQ8
JcRtM5+RYOr0i8syQlzEiapDjIMVJLiV6Z3/VZ+boC7cuGRXSoK1Y44j1nY7
CFeJqXb7fBJoKIQ8v1bIQyiY9qeeziFB8sW/gX7feYnjo1qG8jdIoNXBZ7sz
kp9gqRs3GkslQaHLq56JDQHisLfioO4VEtQRfrIj/ULE2hHzkehYEoxO/bvy
8J4IEcnK2+wfTQKjjGsvLw6KETl2B0A/kgRvfRccxLckCNY2uUuVYST471jS
vI6DFJHcMHRr+TQJQgLuTD/JlSZ8TuT8mQkggVQ8v7GV0U5igf5nRN4pEsRk
mWb+r0WWcLlY7cV2kgT5Mjzf4LU84dzF+lLaiwSyOleYHB8oEAnXr1FWT5Cg
XcHbRkFoNyEWcjzU7zgJ8i4TvUIBKsRify6lyIWWbyGFm+WFGuGgW/DF15kE
t231WwaUNYh0688G60dJYCk5mvWYT4vYdLnjyXGEBMw5mRePfNMmfuY+5507
TAIRbfGzSvZ6RLfO2UDKIRJclZ6eXy00IFamiFZ/OxLM9wzpbLw2Jg5V3o2g
t6XldWcVfXEciPCuJic/GxJsiCvNl/mZEqXJzqs6+2l5XMaN7hynED+3GiuG
9tHqX+cickTUkmjW3W7bb0Wi3T8VqQ7PrAimyQsFVVQSNI4WfhMKtiFuuGXG
PqJZQI47MPGiDbGhFutVRrPPzXvJm2k2hN+cJaWE5vn45wJJeTYE965hyXs0
v723ZKf+2IZY9ID1XJpv5U2fm2+wIdIibz3MpLnvkcHuqhEboi2W5XAKzelM
aREDWzaEWmbIQizNBgXNWackDhC/HY/xq9LcGj81WR5lS7DMy8j0WtL6x0FQ
EhLtiFdN50+H0Xz9WaIshBwkZCeoyjtoTugLJDtfPUTcbWA4d8OCBC9WG3Pr
xewJH6tUEhvNPacHfDyVjxBm5SZ/Us1J0HWBk4kU5Ehcovx0E6OZbsx+J+OS
MyFzyLHoLoUE3tz8PP+EuBIJT/pXjGhel/b/NfLdjciVYPjVbkYCwSdrT/KO
eBDy3Le4omh+ZN24e6LIi9Bj/sdfnebR4pxTTw+dJD4FSujOmZLgi7y7mor9
KUIvKdb5Cc0929PvSvYFEBcHv7CF0xxzZspR/Uww0S86/pRCs/vRr29NBkKI
fuYOXn6ax5SmHP+tCCNk8t4M/TChzZcIT7soOYKo53z7upnmQXl/pVTWC0QW
u1l8Ic17gz8jNfASwfCNYySW5h49u1d+x2KJzTafJB+ai2WfLi/+SiDEN8Hu
IM326qUuFz2SiX2zbAuGNF8W73GSXblGBIh3ainQXLiswT119gbRvio0KUhz
t7i+/b6lbOL/AET0Tfk=
"]}, {Automatic}],
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellChangeTimes->{3.750671393681044*^9, 3.8200866607956553`*^9},
CellLabel->"Out[11]=",ExpressionUUID->"32d6963a-e82c-4287-b2f5-e4d3b939bd3c"]
}, Open ]],
Cell[TextData[StyleBox["We let NDSolve run until the step size drops too \
small, This happens as the particle approaches the inner-most stable circular \
orbit (ISCO)",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.738327195604113*^9,
3.7383272613619823`*^9}},ExpressionUUID->"54553d8d-f437-43e8-b2d2-\
2321c77a18db"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"tmax", "=",
RowBox[{
RowBox[{"r1", "[", "\"\<Domain\>\"", "]"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "2"}], "]"}], "]"}]}]], "Input",
CellChangeTimes->{{3.738323246935267*^9, 3.738323267534884*^9},
3.738323494995264*^9},
CellLabel->"In[12]:=",ExpressionUUID->"4dc4c44b-3096-495a-8cca-352eaf0408f7"],
Cell[BoxData["127369.87863362793`"], "Output",
CellChangeTimes->{
3.738323495315076*^9, {3.738323570979691*^9, 3.738323597674818*^9},
3.7383237876064672`*^9, {3.738326303402755*^9, 3.738326315995816*^9},
3.750671366865862*^9, 3.8200866632890053`*^9},
CellLabel->"Out[12]=",ExpressionUUID->"6c216b7b-ab3f-4ecf-ae7e-fcd7fa151e34"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"r1", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tmax"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Detailed\>\""}]}], "]"}]], "Input",
CellChangeTimes->{{3.738322851770658*^9, 3.73832290022418*^9}, {
3.738323235949951*^9, 3.738323236901599*^9}, {3.738323270559835*^9,
3.738323271142674*^9}, {3.738323566817543*^9, 3.738323567319604*^9}, {
3.7383238757365026`*^9, 3.738323880421362*^9}},
CellLabel->"In[13]:=",ExpressionUUID->"3e18d32a-6b5c-4fc3-ad90-be86e06b9080"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVkXk01YkbxpE0UVFSliwtiInLtV0uerhrlsxERmMb6yi/YmwVoYhEEjG2
qdFmqWm4MaWZW1lmGArViEiokOhaxs73fu/c3x/vec9z3nM+n3Oed7t/2IEg
KQkJiRzx/H/X/+Hisd8xaG+Yb7dQJOLiwDa29rk0BsxO5tqcEefq0IqLXmmu
CGVLxkiJc4CiJ4OTFoCO+ZwuaZIL+sfqK9ZpkSDSZWzXElzofj3oYJGWjIHL
rrcUFrlQT425Zpp2GcdoMu0qU1wUlNQ7maTdwISarLPSIBe+nOVNCd/WoOVp
R9Ukn4tVz7dlsGweo3fNLuaPxVz8YE5XNl1oRLf2z598Y7m4lW28c5zWAjoh
P//4IBfXoz9X/6PVDp7t6/NLVC6MI0+QU7UvoJm/075kHRcl4dyJDQc70WTz
ag17hIOoe8slrD+7IOCVTXTXc3D79xcU+ZAebMi+Ksgv5IC5JuPMdP8bSHPZ
W/ZFciBQzrl6ZF8/+rwyHFc5c3Bqsd+RHjUIVV60+q0dHNTIjFQ4332HKbW6
Yu4yG+onRNEVEh9A8WlIzGtjY8OzJ2XPnYfw4JuiR1UlbBjbT1udPTsMr7XK
r/qj2UhRM7M+82oENUeqx9zYbMhtHbsqqzCKp3kL4QPKbDRG88LeBn7CEvnn
kOcIC1IPNEvjqsegr/5C+Ug1C5GqIpvS8XFka9b1FyWxoPRuiqFqK0A1/ZCL
sRMLYy2ud1RjJyC/m39uaCsL7DzvEyOVkzgcLbDW+MDEp3f8HmHiFKK2SPwq
X84EN31Vefu2aSgXt4ZrhTGBQFeDP5umkbX3/pcsChNxlTFBPx/9Fz1e9GCL
CQY6Mg60Y+0MFk7NGNtUMsAvtJiQuTeDQI82JWoIAw20V7aXXWZh5vmLq9xO
BtbtY9uvHptFz3eciQN99phIryOKs+cQv91KMJVhj0/eMx8XDebhq+yrp2lj
j3h/Snps9zzq4wqUFt/bQX9xp3dD9AIi6jnN9eftoCYafz+psIivv40tHdxj
h5sWjzTtHy6ColtUqFQPcCQ5md+6LyGl1c280g1IInp4+RLLYFQH/jBZsReS
h3H+97JlGLlr++fl2aIw2Df7BmMFFnvKO3tibNCSd+4r3ucVSM1oOoZssUar
Mqdk9+QKnnUx5AYVrPGsWGbq5+kVGLR8cclNzhrt11KyLs6vgPn6QpeJhDVe
3k1uD5Ug4HqrYqD1Ex19fyU66WwmUBTuWOPOp2Ni7ji3mE7AzsUjosGHDkX3
EKSkEzD01Jy6nW+FXp0ZnakLBLzhdsoh2wolC/HrPbMIWBJ3E4bTrbCn8HKv
US6Bv54kN69PsAKz73FU3xUCqwXX83QCrRDjr1RhwiPwtrOUGUER8441bHzf
TaApXuqgaYMlSvY6Lzr1Eqhq7P6e+oclghVe9z/oIyBU4L3Qr7HEDE9wJ/Md
gavKTqdlSy2xbk6ZbTlO4NF32jvOnreETVxY7CWSQHhMU6y7i5h3btsHW20h
hIF9jRpdNOyJT/bq1xUiScLTsbSNhocRY6/i9YVIuJ4K7b9oeOld+zefIhRz
z6ivraFhtanbr1ZW4vs9V1ZwNg1HBjNOmrsIIciU3BrgQIOJ5Yq84UkhSnYd
enq/xgJ1hv7n2+LEPqP1OcLbFnDa1SJ1NEEIqRfqibRrFgiWz5+7kywEf8AZ
6ZkWKBimvtG7KPbN16QXBlmAyD5Sqn1DiGNerEC2ogWaxnqs1duEyIr3XV0W
YI78hlUdWR1C/ENyj496mCOkyMBP6qUQ87lz+ar7zSHrcCblY5cQ9R1G67+i
mWN/xe523qAQflqpb5bkzNH1/XFf9qwQShKbbbZUmaFs77Xp2nkhfJyjWjk3
zXBi69PkL5eEMIj8jRZcYAbVZo1yBVIIb63c9JDTZvDRaZrqXUPisG3r41gX
M4wMbU4KUyPxU49KU8YnUzzg225+r05iLUdPMqjPFGm5IaVuWiR+Uykt1u4w
hT6T32qpTULGgM71rDHFsRsBitIUEg/P2mVmxJti3u/ezQJ7Eq2PGn2zZE3R
bNlnLsciEU5JMbm5YoKCjTIt8RwSL++lj+R/NoFV/SGBvxOJH9eTdirtJkjQ
kjQ3cCcxaSSghmWZYPWAS3P9YRJZSzmTd2VNEJPNoMX/j8QhSuAX+xaoGGVY
VNDCSEQddFpX8YGKZ+UaGZVRJHiUtUNVf1CREyHYfyWRRMgo3e6XECqktd89
8UgiYTNOlaG7UhHd3Wm0OUXMK9N9nWBDhYc1f1NGOolNUx8W1DZSoSGT0XUi
j4QpNdnct8YYl2oTOKYFJE6yVrU5/GQMydCI2skiEu61aoJ/ko0x1HGoKLiE
hKTdBr/Kr41xu3C3j9sdEswT/kGbRo2wzWlbh/yvJB4NnfSLeGaETFIeT6tI
1EbJKztUGSE8YGG7/X1xf7dvzLJjjGBu0DRMqSehVZzY7DBHQfnAQ/fxRhL2
fToVo9UUqOTcbS5tIlEte5sxFU4BMZ9bof6MxM1h/qXeYUMcq0hT7WknEemR
dyH1iiEGPE9l5L4gYYn9tQauhmioCzgq1y3+55Pjcv0PDGAa+U1/Uw+J+71P
2nKDDXBL29ElqY9EjuqTzpJNBkhLpxovvSOhXb8Q0uW3B8vWOtdrhkiMW1Uq
x0nvQeikimL4RxJ1CQGZITe+xH43ybmRzyQIVupIfqc+6mTmgq5PivtsweDn
IH0YPxzt8v6XxI67Uq7l03q4HtrHUZkj0RjxhlA8rofNGs9rOxdIbFQZCz0w
txupzxv1Li2TeDt82uFA6G4sJD0ochSS6Bn1kuV36yLE7I7cGgkRIkd1NLpp
uuj9ePVUg5QIEyogfC/owKkoRxC/WgT/Yj0ms0Mbj5xSfSy/EGGfmtR9Q+Eu
GIpOdszKimDUJh/Dk9+FEt5RVK0X4fRXI4l5xA5sCvTjhSqIMHvIJ2aKtx3J
Ww7u0FUUQfTym0FpOS3M/s29/F5J7C97y7/PVENwnLX0VWURLrAyf3M8twb/
ARfzWho=
"]]},
Annotation[#, "Charting`Private`Tag$2691#1"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 2.9410623725640956`},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {Automatic, Automatic}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 2.9410623725640956`},
DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> Automatic,
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {Automatic, Automatic}, GridLinesStyle -> Directive[
GrayLevel[0.4, 0.5],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0, 127369.87863362793`}, {2.9410623725640956`,
49.9999997426629}}, PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
RowBox[{"r1", "(",
TagBox["t", HoldForm], ")"}]}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{",
TagBox[#, HoldForm], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.738322864815982*^9, 3.738322900675366*^9}, {
3.738323234172016*^9, 3.7383232374259043`*^9}, 3.738323271646006*^9,
3.738323334254758*^9, {3.73832348966179*^9, 3.738323497424955*^9}, {
3.7383235679230967`*^9, 3.738323598072255*^9}, 3.738323788054707*^9,
3.738323880966076*^9, {3.738326304143306*^9, 3.7383263161615973`*^9},
3.8200866691160727`*^9},
CellLabel->"Out[13]=",ExpressionUUID->"ec4e9525-75c9-4cdf-9907-75591ab600d2"]
}, Open ]],