-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgft2_stc.py
208 lines (169 loc) · 9.46 KB
/
gft2_stc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""
functions for source analysis
@author: giuliano giari, [email protected]
"""
import glob
import h5py
import logging
import mne
import numpy as np
import os
import pandas as pd
from joblib import Parallel, delayed
from mne.beamformer import make_lcmv, apply_lcmv_epochs
from gft2_preprocessing import make_segments_epochs, read_epochs
from gft2_src import make_forward, make_morpher
from gft2_frequency import compute_fft_array, compute_coh_array
from gft2_utils import realign_to_trj, assert_this
def compute_inverse(info_, fwd_, data_cov_, noise_cov_, rank_, opt_local):
"""
Compute inverse solution depending on source method
"""
# compute beamformer weights
inverse_operator_ = make_lcmv(info_, fwd_, data_cov_, reg=opt_local['stc_lambda'],
noise_cov=noise_cov_, pick_ori=opt_local['stc_out'], reduce_rank=True,
rank=rank_)
return inverse_operator_
def compute_noise_covariance(sub_id, ses_id, opt_local):
"""
Compute noise (and data, if needed) covariance
"""
# load data
noise_fname = f"{opt_local['prePath']}{sub_id}_ses-{ses_id}_task-noise_raw.fif.gz"
noise_ = mne.io.read_raw_fif(noise_fname, preload=True).pick_types(meg=True, eog=False)
# select only one channel type, if necessary
if opt_local['stc_ch_type'] != 'meg':
noise_.pick_types(meg=opt_local['stc_ch_type'])
# define rank of the covariance matrix
logging.getLogger('mne').info('reducing the rank of the covariance matrix before source analysis')
rank_ = mne.compute_rank(noise_, rank='info')
# compute covariance
noise_cov_ = mne.compute_raw_covariance(noise_, method=opt_local['stc_cov_method'], rank=rank_)
return noise_cov_, rank_
def compute_fft_stc(sub_id, ses_id, opt_local):
"""
Compute FFT on stc objects
"""
if not len(glob.glob(f"{opt_local['stcPath']}{sub_id}_ses-{ses_id}_task-task_desc-{opt_local['stc_out']}_"
f"{opt_local['stc_method']}_{opt_local['frq_avg_trl']}_*_fft_{opt_local['src_type']}.h5")) == 2:
mne.set_log_level('info')
mne.set_log_file(f"{opt_local['logPath']}{sub_id}/ses-{ses_id}/{sub_id}_ses-{ses_id}_log.log",
output_format='%(asctime)s | %(levelname)s | %(message)s', overwrite=False)
# check if the segmented epochs exist
if not len(glob.glob(f"{opt_local['epoPath']}{sub_id}_ses-{ses_id}_task-task_desc-*-seg-epo.fif.gz")) == 2:
# load data
epochs = read_epochs(sub_id, ses_id, opt_local, 'task')
# remove baseline
epochs.crop(0, opt_local['tmax'])
# make or load forward solution
fwd = make_forward(sub_id, ses_id, opt_local)
make_morpher(sub_id, ses_id, opt_local)
# compute noise covariance
logging.getLogger('mne').info(f"using the {opt_local['stc_cov_data']} data for noise covariance computation")
noise_cov, rank = compute_noise_covariance(sub_id, ses_id, opt_local)
for ang_res in opt_local['ang_res']:
if os.path.exists(f"{opt_local['stcPath']}{sub_id}_ses-{ses_id}_task-task_desc-{opt_local['stc_out']}_"
f"{opt_local['stc_method']}_{opt_local['frq_avg_trl']}_{ang_res}_fft_{opt_local['src_type']}.h5"):
logging.getLogger('mne').info(f"{ang_res}° already processed")
continue
# get this event data
if os.path.exists(f"{opt_local['epoPath']}{sub_id}_ses-{ses_id}_task-task_desc-{ang_res}-seg-epo.fif.gz"):
epochs_event = read_epochs(sub_id, ses_id, opt_local, segments=True, ang_res=ang_res, reject=True)
elif 'epochs' in locals():
epochs_event = make_segments_epochs(sub_id, ses_id, 'task', ang_res, opt_local, save=False,
epochs_event=realign_to_trj(epochs[f"ang_res_{ang_res}"],
opt_local['starting_trj'], opt_local
))
if opt_local['stc_ch_type'] == 'meg':
epochs_event.pick_types(meg=True)
else:
epochs_event.pick_types(meg=opt_local['stc_ch_type'])
# compute data covariance
data_cov = mne.compute_covariance(epochs_event.copy().apply_baseline((None, None)),
method=opt_local['stc_cov_method'], rank=rank)
# compute inverse solution
inverse_operator = compute_inverse(epochs_event.info, fwd, data_cov, noise_cov, rank, opt_local)
logging.getLogger('mne').info('computing source reconstruction')
# and apply the spatial filter to them to reconstruct the time series as source level. this returns a
# generator object that is easier to deal with given the huge file size of these data
stc_time = apply_lcmv_epochs(epochs_event, inverse_operator, return_generator=True)
# hack to get output thingies
trl = apply_lcmv_epochs(epochs_event[0], inverse_operator, return_generator=False)[0]
# compute the fft
def _parallelize_fft(trl, opt_local):
trl_spctrm = compute_fft_array(trl.data, trl.sfreq, opt_local['frq_n_seg'],
opt_local.copy(), average=False, verbose=True)[0]
return trl_spctrm
out = Parallel(n_jobs=opt_local['stc_n_jobs'])(delayed(_parallelize_fft)(trl, opt_local.copy())
for trl in stc_time)
# prepare spctrm data for the output
spctrm = np.stack(out, 0)
# get output frequencies
freqs = compute_fft_array(trl.data[0, ...] if trl.data.ndim == 3 else trl.data, trl.sfreq,
opt_local['frq_n_seg'], opt_local.copy(), average=True, verbose=True)[1]
# put the results in a h5 container and save
stc_fname = f"{opt_local['stcPath']}{sub_id}_ses-{ses_id}_task-task_desc-{opt_local['stc_out']}_" \
f"{opt_local['stc_method']}_{opt_local['frq_avg_trl']}_{ang_res}_fft_" \
f"{opt_local['src_type']}.h5"
write_stc(stc_fname, spctrm.squeeze(), sub_id, trl.vertices, freqs[0], np.diff(freqs)[0])
def write_stc(stc_fname, spctrm, sub_id, vertices, freqs_min, delta_freq):
"""
Write stc data to stc_fname h5
:param stc_fname:
:param spctrm:
:param sub_id:
:param vertices:
:param freqs_min:
:param delta_freq:
:return:
"""
logging.getLogger('mne').info(f"saving {stc_fname} ...")
with h5py.File(stc_fname, 'w') as f:
for k, v in {'data': np.squeeze(spctrm),
'subject': sub_id,
'vertices': vertices,
'tmin': freqs_min,
'tstep': delta_freq}.items():
if k == 'subject' or k.startswith('t'):
f.create_dataset(name=k, data=v)
else: f.create_dataset(name=k, data=v, compression='gzip', compression_opts=9)
def read_stc(stc_fname, return_object=True):
"""
read stc h5 dataset
adapted from https://github.com/mne-tools/mne-python/blob/maint/1.0/mne/time_frequency/tfr.py#L2532
:param stc_fname:
:return:
"""
logging.getLogger('mne').info(f"loading {stc_fname} ...")
with h5py.File(stc_fname, 'r') as f:
out = dict()
for k, v in f.items():
if k == 'vertices': out[k] = list(np.array(f.get(k, v)))
# https://groups.google.com/g/h5py/c/42oh2kyXVGs
elif k == 'subject': out[k] = f[k].asstr()[()]
else: out[k] = np.array(f.get(k, v))
if return_object:
return mne.VolSourceEstimate(**out)
else:
# from https://github.com/mne-tools/mne-python/blob/maint/1.0/mne/source_estimate.py#L818
out['times'] = out['tmin'] + (out['tstep'] * np.arange(out['data'].shape[-1]))
return out, mne.VolSourceEstimate
def compute_coh_stc(sub_id, ses_id, opt_local):
"""
Compute coherence at source level
"""
for ang_res in opt_local['ang_res']:
if not glob.glob(f"{opt_local['stcPath']}{sub_id}_ses-{ses_id}_task-task_desc-{opt_local['stc_out']}_"
f"{opt_local['stc_method']}_{ang_res}_coh_{opt_local['src_type']}.h5"):
mne.set_log_file(f"{opt_local['logPath']}{sub_id}/ses-{ses_id}/{sub_id}_ses-{ses_id}_log.log",
output_format='%(asctime)s | %(levelname)s | %(message)s', overwrite=False)
# get the data of this angular resolution
fft_fname = f"{opt_local['stcPath']}{sub_id}_ses-{ses_id}_task-task_desc-{opt_local['stc_out']}_" \
f"{opt_local['stc_method']}_trl_{ang_res}_fft_{opt_local['src_type']}.h5"
stc_dict, stc_type = read_stc(fft_fname, return_object=False)
logging.getLogger('mne').info('computing coherence at source level...')
coh = compute_coh_array(stc_dict['data'], stc_dict['times'], opt_local.copy())
# save output
coh_fname = f"{opt_local['stcPath']}{sub_id}_ses-{ses_id}_task-task_desc-{opt_local['stc_out']}_" \
f"{opt_local['stc_method']}_{ang_res}_coh_{opt_local['src_type']}.h5"
write_stc(coh_fname, coh, sub_id, stc_dict['vertices'], stc_dict['tmin'], stc_dict['tstep'])