-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
277 lines (211 loc) · 8.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import os
import time
import shutil
import itertools
import numpy as np
from utils import Bar, Logger, AverageMeter, regression_accuracy, mkdir_p, savefig
# Training settings
parser = argparse.ArgumentParser(description='Observer Network')
parser.add_argument('--train-batch', default=128, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--test-batch', default=100, type=int, metavar='N',
help='test batchsize')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.0001)')
parser.add_argument('--schedule', type=int, nargs='+', default=[10, 30, 50, 80],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.5, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--n-classes', default=3, type=int, metavar='N',
help='number of classes')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
args.cuda = torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
best_acc = float("-inf")
if not os.path.isdir(args.checkpoint):
mkdir_p(args.checkpoint)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
# from models.cnned import SegNet
from new_models.model import TrajPredictor
# model = SegNet(n_classes=args.n_classes, is_unpooling=True)
model = TrajPredictor()
if args.cuda:
model = torch.nn.DataParallel(model).cuda()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
lossfun = nn.MSELoss()
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title='observer')
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
def mkdir(folder):
if os.path.exists(folder):
shutil.rmtree(folder)
os.makedirs(folder)
test_results_path = './test_results'
mkdir(test_results_path)
train_data = np.load('./final_data/train_data.npy')
train_target = np.load('./final_data/train_target.npy')
test_data = np.load('./final_data/test_data.npy')
test_target = np.load('./final_data/test_target.npy')
# train_data = (train_data - 128) / 128
# train_target = (train_target - 128) / 128
# test_data = (test_data - 128) / 128
# test_target = (test_target - 128) / 128
train_data = train_data / 255.0
train_target = train_target / 255.0
test_data = test_data / 255.0
test_target = test_target / 255.0
train_data = torch.FloatTensor(train_data)
train_target = torch.FloatTensor(train_target)
test_data = torch.FloatTensor(test_data)
test_target = torch.FloatTensor(test_target)
final_train_data = torch.utils.data.TensorDataset(train_data, train_target)
final_test_data = torch.utils.data.TensorDataset(test_data, test_target)
trainloader = torch.utils.data.DataLoader(final_train_data, batch_size=args.train_batch, shuffle=True, num_workers=args.workers)
testloader = torch.utils.data.DataLoader(final_test_data, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
def train():
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
end = time.time()
bar = Bar('Processing', max=len(trainloader))
scores = []
for batch_idx, (data, target) in enumerate(trainloader):
data = data.permute(0, 3, 1, 2)
target = target.permute(0, 3, 1, 2)
data_time.update(time.time() - end)
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = lossfun(output, target)
# measure accuracy and record loss
prec1 = 0.0
losses.update(loss.item(), data.size(0))
top1.update(prec1, data.size(0))
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(trainloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top1.avg,
)
bar.next()
return (losses.avg, -top1.avg)
def test(save_flag, epoch):
global best_acc
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
end = time.time()
bar = Bar('Processing', max=len(testloader))
if save_flag == True:
saved_test_results = []
for batch_idx, (data, target) in enumerate(testloader):
data = data.permute(0, 3, 1, 2)
target = target.permute(0, 3, 1, 2)
# measure data loading time
data_time.update(time.time() - end)
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
output = model(data)
loss = lossfun(output, target)
prec1 = 0.0
losses.update(loss.item(), data.size(0))
top1.update(prec1, data.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(testloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top1.avg,
)
bar.next()
# save outputs
if save_flag == True:
output = output.cpu().detach().numpy() # (100, 12288)
target = target.cpu().numpy()
data = data.cpu().numpy()
saved_test_results.append([data, target, output])
if save_flag == True:
saved_test_results = np.array(saved_test_results)
filename = "test_resutls_" + str(epoch) + ".npy"
filepath = os.path.join(test_results_path, filename)
np.save(filepath, saved_test_results)
bar.finish()
return (losses.avg, -top1.avg)
def save_checkpoint(state, is_best, checkpoint='checkpoint', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
def adjust_learning_rate(optimizer, epoch):
global state
if epoch in args.schedule:
state['lr'] *= args.gamma
for param_group in optimizer.param_groups:
param_group['lr'] = state['lr']
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters())/1000000.0))
for epoch in range(0, args.epochs):
adjust_learning_rate(optimizer, epoch)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, state['lr']))
if epoch % 10 == 0:
save_flag = True
else:
save_flag = False
train_loss, train_acc = train()
test_loss, test_acc = test(save_flag, epoch)
logger.append([state['lr'], train_loss, test_loss, train_acc, test_acc])
# save model
is_best = test_acc > best_acc
best_acc = max(test_acc, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'acc': test_acc,
'best_acc': best_acc,
'optimizer' : optimizer.state_dict(),
}, is_best, checkpoint=args.checkpoint)
logger.close()
print('Best acc: ', best_acc)