forked from EndlessCheng/codeforces-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrand.go
114 lines (96 loc) · 4.38 KB
/
rand.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
package copypasta
import (
"math"
"math/rand"
"time"
)
/* 力扣
- [470. 用 Rand7() 实现 Rand10()](https://leetcode.cn/problems/implement-rand10-using-rand7/)
我的总结 https://leetcode.cn/problems/implement-rand10-using-rand7/solutions/979495/mo-neng-gou-zao-fa-du-li-sui-ji-shi-jian-9xpz/comments/1343003
randA() 构造 randB() 时,需要找一个最大质因子不超过 A 的数 n (n>=B),然后对 n 分解质因子就能找到每个采样需要取多少种结果。实际到具体数字时,可以把部分质因子合并成不超过 A 的数,从而减少采样次数。
- [528. 按权重随机选择](https://leetcode.cn/problems/random-pick-with-weight/)
- [710. 黑名单中的随机数](https://leetcode.cn/problems/random-pick-with-blacklist/)
*/
/* 交互 + 随机
https://codeforces.com/problemset/problem/843/B 2000
https://codeforces.com/problemset/problem/1114/E 2200
*/
/* 随机化技巧
https://oi-wiki.org/misc/rand-technique/
https://www.luogu.com.cn/blog/DengDuck/qian-tan-ha-xi-yu-chu-li-ha-xi-chong-tu-di-yi-suo-fang-fa
随机梯度下降 SGD, Stochastic Gradient Descent https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://codeforces.com/problemset/problem/995/C
https://codeforces.com/problemset/problem/1314/D 推荐
https://codeforces.com/problemset/problem/1523/D
Kick Start 2021 Round C Binary Operator https://codingcompetitions.withgoogle.com/kickstart/round/0000000000435c44/00000000007ec290
https://codeforces.com/problemset/problem/1689/D https://www.luogu.com.cn/blog/wangxiwen/solution-cf1689d
https://atcoder.jp/contests/abc272/tasks/abc272_g
todo https://codeforces.com/problemset/problem/364/D 2900
推荐 https://atcoder.jp/contests/abc339/tasks/abc339_f
随机映射
https://codeforces.com/problemset/problem/1746/F 2800
异或哈希 xor hashing
https://codeforces.com/problemset/problem/1996/G 2200
https://codeforces.com/problemset/problem/1830/C 2400
https://codeforces.com/problemset/problem/1771/F 2500
多项式哈希 加法哈希
https://codeforces.com/problemset/problem/869/E 2400
*/
/* 模拟退火 (Simulated Annealing, SA)
基于 Metropolis 准则
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://oi-wiki.org/misc/simulated-annealing/
https://www.luogu.com.cn/blog/Darth-Che/mu-ni-tui-huo-xue-xi-bi-ji
https://zhuanlan.zhihu.com/p/47234502
https://www.cnblogs.com/ECJTUACM-873284962/p/8468831.html
技巧:可以在时限内重复跑 SA 取最优值,防止脸黑
Heuristic algorithm for Hamiltonian path in undirected graphs https://codeforces.com/blog/entry/90743
模板题 https://www.luogu.com.cn/problem/P1337
LC1515 https://leetcode.cn/problems/best-position-for-a-service-centre/
http://poj.org/problem?id=2420
UVa 10228 https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=14&page=show_problem&problem=1169
todo 教学题 https://atcoder.jp/contests/intro-heuristics/tasks/intro_heuristics_a
https://atcoder.jp/contests/ahc001/tasks/ahc001_a
https://atcoder.jp/contests/ahc002/tasks/ahc002_a
*/
func simulatedAnnealing(f func(x float64) float64) float64 {
// 例:最小值
x := .0
ans := f(x)
for t := 1e5; t > 1e-8; t *= 0.99 {
y := x + (2*rand.Float64()-1)*t
v := f(y)
if v < ans || math.Exp((ans-v)/t) > rand.Float64() { // 最小直接取,或者以一定概率接受较大的值
ans = v
x = y
}
}
return ans
}
// 另一种写法(利用时限)
// 此时 alpha 可以设大点,例如 0.999
func simulatedAnnealingWithinTimeLimit(f func(x float64) float64) float64 {
const timeLimit = 2 - 0.1
t0 := time.Now()
// 例:最小值
x := .0
ans := f(x)
for t := 1e5; time.Since(t0).Seconds() < timeLimit; {
y := x + (2*rand.Float64()-1)*t
v := f(y)
if v < ans || math.Exp((ans-v)/t) > rand.Float64() { // 最小直接取,或者以一定概率接受较大的值
ans = v
x = y
}
t *= 0.999 // 置于末尾,方便在 roll 到不合适的数据时直接 continue,同时也保证不会因为 roll 不到合适的数据而超时
}
return ans
}
/* 爬山算法 (Hill Climbing, HC)
https://en.wikipedia.org/wiki/Hill_climbing
https://oi-wiki.org/misc/hill-climbing/
https://en.wikipedia.org/wiki/Geometric_median
LC1515 https://leetcode.cn/problems/best-position-for-a-service-centre/
https://leetcode.cn/problems/best-position-for-a-service-centre/solution/fu-wu-zhong-xin-de-zui-jia-wei-zhi-by-leetcode-sol/
*/