-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbrain_mage_intensity_standardize
executable file
·401 lines (374 loc) · 14.1 KB
/
brain_mage_intensity_standardize
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun May 24 13:49:24 2020
@author: siddhesh
"""
import numpy as np
import os
import glob
import nibabel as nib
import argparse
from skimage.transform import resize
from multiprocessing import Pool, cpu_count
import pkg_resources
# """You can change the folder name here. The folders should be in the following
# format.
# ---main_folder
# |---Patient1
# |---something_t1.nii.gz
# |---something_t2.nii.gz
# |---something_t1ce.nii.gz
# |---something_flair.nii.gz
# |---Patient2
# |---something_t1.nii.gz
# |---something_t2.nii.gz
# |---something_t1ce.nii.gz
# |---something_flair.nii.gz
# |---Patient3
# .
# .
# .
# |---Patient(N)
#
# *** The files will be generated as something_roimask.nii.gz ***
# """
def pad_image(image):
"""[To pad the image to particular space]
[This function will pad the image to a space of [240, 240, 160] and will
automatically pad everything with zeros to this size]
Arguments:
image {[numpy image]} -- [Image of any standard shape[x, y. z]]
Returns:
[padded_image] -- [returns a padded image]
"""
padded_image = image
# Padding on X axes
if image.shape[0] < 240:
# print("Image was padded on the X-axis on both sides")
padded_image = np.pad(
padded_image,
(
(int((240 - image.shape[0]) / 2), int((240 - image.shape[0]) / 2)),
(0, 0),
(0, 0),
),
mode="constant",
constant_values=0,
)
# Padding on Y axes
if image.shape[1] < 240:
# print("Image was padded on the Y-axis on both sides")
padded_image = np.pad(
padded_image,
(
(0, 0),
(int((240 - image.shape[1]) / 2), int((240 - image.shape[1]) / 2)),
(0, 0),
),
mode="constant",
constant_values=0,
)
# Padding on Z axes
if image.shape[2] < 160:
# print("Image was padded on the Z-axis on top only")
padded_image = np.pad(
padded_image,
((0, 0), (0, 0), (0, int(160 - image.shape[2]))),
"constant",
constant_values=0,
)
return padded_image
def preprocess_image(image, is_mask=False, target_spacing=(1.875, 1.875, 1.25)):
"""[To preprocess an image depending on whether it a mask image or not]
[This function in general will try to preprocess a given image to a partic-
-ular image resolution and try to return a preprocessed image]
Arguments:
image {[nibabel image]} -- [Expecting a nibabel image to be handled]
Keyword Arguments:
is_mask {bool} -- [If the incoming image is a mask] (default: {False})
target_spacing {tuple} -- [What should be a current given target
spacing to be used]
(default: {(1.875, 1.875, 1.25)})
Returns:
[preprocessed image] -- [Returning a properly preprocessed and a norma-
-lized image]
"""
old_spacing = image.header.get_zooms()
shape = image.header.get_data_shape()
new_image = image.get_fdata()
new_spacing = (1, 1, 1)
# Check if it is a normal image or a mask
# If this thing is normal image
if not is_mask:
if old_spacing == (1.0, 1.0, 1.0):
if shape == [240, 240, 160]:
# print("Image is perfect?")
"""[Checking if it is an ideal image]
_________________________________________
___________|_Correct_|_Incorrect_|______|
shape | Yes | No | _|
resolution_|___Yes___|_____No____|______|
pad________|_________|___________|__No__|
[An ideal image would be to have a shape of (240, 240, 160)
with an isotropic resolution of (1.0, 1.0, 1.0), then we would
just resize the image to (128, 128, 128)]
"""
new_image = resize(
new_image,
(128, 128, 128),
order=3,
mode="edge",
cval=0,
anti_aliasing=False,
)
else:
"""[Checking if it is an isotropic image with need to incorrect
shape]
________________________________________
___________|_Correct_|_Incorrect_|_____|
shape | No | Yes | |
resolution_|___Yes___|_____No____|_____|
pad________|_________|___________|_Yes_|
[An ideal image would be to have a shape of (240, 240, 160)
with a isotropic resolution of (1.0, 1.0, 1.0), then we would
just resize the image to (128, 128, 128)]
"""
# print("Image shape wasn't perfect")
new_image = pad_image(new_image)
# print("Trying to pad the image now")
new_image = resize(
new_image,
(128, 128, 128),
order=3,
mode="edge",
cval=0,
anti_aliasing=False,
)
else:
"""[Checking if it is not isotropic image with resolution needed]
________________________________________
___________|_Correct_|_Incorrect_|_____|
shape | No | Yes | |
resolution_|___Yes___|_____No____|_____|
pad________|_________|___________|_Yes_|
[An ideal image would be to have a shape of (240, 240, 160) with
a isotropic resolution of (1.0, 1.0, 1.0), then we would just
resize the image to (128, 128, 128)]
"""
new_shape = (
int(np.round(old_spacing[0] / new_spacing[0] * float(image.shape[0]))),
int(np.round(old_spacing[1] / new_spacing[1] * float(image.shape[1]))),
int(np.round(old_spacing[2] / new_spacing[2] * float(image.shape[2]))),
)
new_image = resize(
new_image, new_shape, order=1, mode="edge", cval=0, anti_aliasing=False
)
if new_shape == [240, 240, 160]:
new_image = resize(
new_image,
(128, 128, 128),
order=3,
mode="edge",
cval=0,
anti_aliasing=False,
)
else:
new_image = pad_image(new_image)
new_image = resize(
new_image,
(128, 128, 128),
order=3,
mode="edge",
cval=0,
anti_aliasing=False,
)
else:
if old_spacing == (1.0, 1.0, 1.0):
if shape == [240, 240, 160]:
new_image = resize(
new_image,
(128, 128, 128),
order=0,
mode="edge",
cval=0,
anti_aliasing=False,
)
else:
new_image = pad_image(new_image)
new_image = resize(
new_image,
(128, 128, 128),
order=0,
mode="edge",
cval=0,
anti_aliasing=False,
)
else:
new_shape = (
int(np.round(old_spacing[0] / new_spacing[0] * float(image.shape[0]))),
int(np.round(old_spacing[1] / new_spacing[1] * float(image.shape[1]))),
int(np.round(old_spacing[2] / new_spacing[2] * float(image.shape[2]))),
)
new_image = resize(
new_image, new_shape, order=0, mode="edge", cval=0, anti_aliasing=False
)
if new_shape == [240, 240, 160]:
new_image = resize(
new_image,
(128, 128, 128),
order=0,
mode="edge",
cval=0,
anti_aliasing=False,
)
else:
new_image = pad_image(new_image)
new_image = resize(
new_image,
(128, 128, 128),
order=0,
mode="edge",
cval=0,
anti_aliasing=False,
)
if is_mask: # Retrun if mask
return new_image.astype(np.int8)
else:
new_image_temp = new_image[new_image >= new_image.mean()]
p1 = np.percentile(new_image_temp, 2)
p2 = np.percentile(new_image_temp, 95)
new_image[new_image > p2] = p2
new_image = (new_image - p1) / p2
return new_image.astype(np.float32)
def normalize(folder, dest_folder, patient_name, test=False):
"""[Function used to pre-process files]
[This function is used for the skull stripping preprocessing,
for more details, please visit the paper at : arxiv.org]
Arguments:
folder {[string]} -- [The Root folder to look into]
dest_folder {[type]} -- [The folder to store preprocessed files into]
test {[type]} -- [If doing it for the testing, we don't want to check
for ground truths]
"""
patient_dest_folder = os.path.join(dest_folder, patient_name)
os.makedirs(patient_dest_folder, exist_ok=True)
t1 = glob.glob(os.path.join(folder, "*t1.nii.gz"))[0]
t2 = glob.glob(os.path.join(folder, "*t2.nii.gz"))[0]
t1ce = glob.glob(os.path.join(folder, "*t1ce.nii.gz"))[0]
flair = glob.glob(os.path.join(folder, "*flair.nii.gz"))[0]
if not test:
gt = glob.glob(os.path.join(folder, "*mask.nii.gz"))[0]
new_affine = np.array([[1.875, 0, 0], [0, 1.875, 0], [0, 0, 1.25]])
# Reading T1 image and storing it
t1_image = nib.load(t1)
resized_t1_image = preprocess_image(t1_image, is_mask=False)
temp_affine = t1_image.affine
temp_affine[:3, :3] = new_affine
resized_t1_image = nib.Nifti1Image(resized_t1_image, temp_affine)
print(patient_dest_folder)
print(
"Saving T1 at : ",
os.path.join(patient_dest_folder, patient_name + "_t1.nii.gz"),
)
nib.save(
resized_t1_image, os.path.join(patient_dest_folder, patient_name + "_t1.nii.gz")
)
t2_image = nib.load(t2)
resized_t2_image = preprocess_image(t2_image, is_mask=False)
temp_affine = t2_image.affine
temp_affine[:3, :3] = new_affine
resized_t2_image = nib.Nifti1Image(resized_t2_image, temp_affine)
nib.save(
resized_t2_image, os.path.join(patient_dest_folder, patient_name + "_t2.nii.gz")
)
t1ce_image = nib.load(t1ce)
resized_t1ce_image = preprocess_image(t1ce_image, is_mask=False)
temp_affine = t1ce_image.affine
temp_affine[:3, :3] = new_affine
resized_t1ce_image = nib.Nifti1Image(resized_t1ce_image, t1ce_image.affine)
nib.save(
resized_t1ce_image,
os.path.join(patient_dest_folder, patient_name + "_t1ce.nii.gz"),
)
flair_image = nib.load(flair)
resized_flair_image = preprocess_image(flair_image, is_mask=False)
temp_affine = flair_image.affine
temp_affine[:3, :3] = new_affine
resized_flair_image = nib.Nifti1Image(resized_flair_image, flair_image.affine)
nib.save(
resized_flair_image,
os.path.join(patient_dest_folder, patient_name + "_flair.nii.gz"),
)
if not test:
gt_image = nib.load(gt)
resized_gt_image = preprocess_image(gt_image, is_mask=True)
resized_gt_image = nib.Nifti1Image(resized_gt_image, gt_image.affine)
nib.save(
resized_gt_image,
os.path.join(patient_dest_folder, patient_name + "_mask.nii.gz"),
)
return
def batch_works(k):
if k == n_processes - 1:
sub_patients = patients[k * int(len(patients) / n_processes) :]
else:
sub_patients = patients[
k
* int(len(patients) / n_processes) : (k + 1)
* int(len(patients) / n_processes)
]
for patient in sub_patients:
patient_name = os.path.basename(patient)
print(patient_name)
normalize(patient, output_path, patient_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="intensity_standardize",
formatter_class=argparse.RawTextHelpFormatter,
description="\nThis code was implemented to standardize intensities for skull stripping\n"
+ "\n"
"Copyright: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania.\n"
"For questions and feedback contact: [email protected]",
)
parser.add_argument(
"-i",
"--input_path",
dest="input_path",
help="input path for the tissues",
required=True,
)
parser.add_argument(
"-o",
"--output_path",
dest="output_path",
help="output path for saving the files",
required=True,
)
parser.add_argument(
"-t",
"--threads",
dest="threads",
help="number of threads, by default will use all",
)
parser.add_argument(
"-v",
"--version",
action="version",
version=pkg_resources.require("BrainMaGe")[0].version
+ "\n\nCopyright: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania.",
help="Show program's version number and exit.",
)
args = parser.parse_args()
if args.threads:
n_processes = int(args.threads)
else:
n_processes = cpu_count()
print("Number of CPU's used : ", n_processes)
input_path = os.path.abspath(args.input_path)
output_path = os.path.abspath(args.output_path)
os.makedirs(output_path, exist_ok=True)
patients = glob.glob(os.path.abspath(args.input_path) + "/*")
n_processes = cpu_count()
pool = Pool(processes=n_processes)
pool.map(batch_works, range(n_processes))