-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbrain_mage_single_run_multi_4
executable file
·119 lines (103 loc) · 3.96 KB
/
brain_mage_single_run_multi_4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created on Sat May 30 01:05:59 2020
@author: siddhesh
"""
from __future__ import absolute_import, print_function, division
import argparse
import os, sys
from BrainMaGe.tester import test_single_multi_4
import pkg_resources
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="BrainMaGe",
formatter_class=argparse.RawTextHelpFormatter,
description="\nThis code was implemented for Deep Learning "
+ "based training and inference of 3D-U-Net,\n3D-Res-U-Net models for "
+ "Brain Extraction a.k.a Skull Stripping in biomedical NIfTI volumes.\n"
+ "The project is hosted at: https://github.com/CBICA/BrainMaGe * \n"
+ "See the documentation for details on its use.\n"
+ "If you are using this tool, please cite out paper."
"This software accompanies the research presented in:\n"
+ "Thakur et al., 'Brain Extraction on MRI Scans in Presence of Diffuse\n"
+ "Glioma:Multi-institutional Performance Evaluation of Deep Learning Methods"
+ "and Robust Modality-Agnostic Training'.\n"
+ "DOI: 10.1016/j.neuroimage.2020.117081\n"
+ "We hope our work helps you in your endeavours.\n"
+ "\n"
"Copyright: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania.\n"
"For questions and feedback contact: [email protected]",
)
parser.add_argument(
"-i",
"--inputs",
dest="input_paths",
help="Should be the paths to the four modalities .nii.gz files in the"
+ " order `T1_path,T2_path,T1ce_path,Flair_path`.",
required=True,
type=str,
)
parser.add_argument(
"-o",
"--output",
dest="output_path",
help="Should be either a filename or a folder.\n"
+ "In the case of single file or a folder for input",
required=True,
type=str,
)
parser.add_argument(
"-m",
"--mask_path",
dest="mask_path",
help="Should be either a filename or a folder.\n"
+ "In the case of single file or a folder for input",
required=False,
default=None,
type=str,
)
parser.add_argument(
"-dev",
default="cpu",
dest="device",
type=str,
help="used to set on which device the prediction will run.\n"
+ "Must be either int or str. Use int for GPU id or\n"
+ "'cpu' to run on CPU. Avoid training on CPU. \n",
required=False,
)
parser.add_argument(
"-v",
"--version",
action="version",
version=pkg_resources.require("BrainMaGe")[0].version
+ "\n\nCopyright: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania.",
help="Show program's version number and exit.",
)
args = parser.parse_args()
input_paths = args.input_paths.split(',')
output_path = args.output_path
mask_path = args.mask_path
DEVICE = args.device
base_dir = os.path.dirname(os.path.realpath(__file__))
base_dir = os.path.join(base_dir, "BrainMaGe", "weights")
if os.path.isdir(base_dir):
weights = os.path.join(base_dir, "resunet_multi_4.pt")
else:
# this control path is needed if someone installs brainmage into their virtual environment directly
base_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
base_dir = os.path.join(os.path.dirname(base_dir), "BrainMaGe/weights")
if os.path.isdir(base_dir):
weights = os.path.join(base_dir, "resunet_ma.pt")
if os.path.isfile(weights):
print("Weight file used :", weights)
else:
sys.exit('Weights file at \'' + weights + '\' was not found...')
# Running Inference
test_single_multi_4.infer_single_multi_4(
input_paths, output_path, weights, mask_path, device=DEVICE
)
print("*" * 80)
print("Finished")
print("*" * 80)